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a b s t r a c t 

The joint Doppler and Direction-of-Arrival (DOA) estimation of moving targets using an (Ultra-)Wideband 

(UWB) frequency modulated continuous-wave (FMCW) antenna array radar is investigated. Besides the 

well-known range migration problem, another concern for wideband signals is the DOA estimation prob- 

lem. For the first time, both problems are considered in this paper simultaneously, where the wideband 

DOA is transformed into a second-order coupling system similar to the range migration problem by using 

the property of the FMCW signal. A novel embedded compensation approach to eliminate the coupling 

terms caused by range migration and wideband DOA is proposed and 2D multiple signal classification (2D 

MUSIC) algorithm is subsequently applied with dynamic noise subspace to joint estimation of Doppler 

and DOA. Further, to reduce the computational load caused by multiple eigendecompositions of large 

matrices, efficient implementation methods are proposed and their performance in speed, accuracy and 

robustness is compared. The performance of the proposed methods is validated by the numerical simu- 

lations and is compared with Keystone MUSIC. Finally, it is shown that for a small number of targets, the 

Rayleigh-Ritz is the most efficient approach among them. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Detection and localization of moving targets are important in

any fields such as automotive radar [1] , ground moving target

ndication (GMTI) [2] , underwater acoustic array [3] . The most im-

ortant parameters of moving targets are the range, azimuthal

and, in 3D space, elevation) angle (or DOA) and velocity. The tar-

et range and angle together determine the location of a target.

hile the Doppler (along with range) velocity is determined in

oherent radars by means of phase shift between chirps within

he coherent processing interval (CPI), and DOA is determined

rom the phase shift of signals received by different antennas

ithin antenna array. Both phase shifts can be easily measured

eparately using narrowband radar. Using the de-chirping tech-

ique for FMCW radar [2,4] , the received signals are transformed

nto multi-dimensional complex sinusoids (whose phase depends

n the fast-time - range, slow-time - Doppler velocity and ar-

ay element - DOA). Then the estimation of targets parameters is

ransformed into the frequencies estimation problem. By extending

raditional single-frequency estimators to joint multiple frequen-

ies estimators, such as matched filter, 2D-Capon [5] , 2D-MUSIC
∗ Corresponding author. 
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6] , 2D-ESPRIT [7] and sparse representation methods [8,9] , joint

ange-Doppler estimation algorithms have been developed. These

lgorithms perform well under narrow-band signal condition. Tar-

et movement causes, however, change in the target range dur-

ng one CPI (physically) and the cross-couplings between fast-time

nd slow-time (mathematically), which is called range migration

r range walk in GMTI [2,10,11] . The cross-coupling terms spread

he Fourier spectrum and consequently lead to estimation errors

or these classic algorithms: the larger the signal bandwidth or the

igher the target velocity, the higher the estimation error of con-

entional methods [10,12] . 

Recently, since wideband signals are widely used due to the de-

and of increasingly higher range resolution, the range migration

roblem has attracted significant attention. To solve the target mi-

ration problem, the relaxation-based super-resolution algorithms

ave been proposed in [2,13,14] for multiple moving target fea-

ure extractions. However, they consider a wide-band approach for

he range profile, while they assume a narrow-band approach

or the steering vector. In [15] , the authors present the iterative

daptive algorithm (IAA) for joint multiple parameters estimation,

hich provides super-resolution by iteratively calculating the co-

ariance matrix together with estimation results. In [16,17] , IAA

s extended to the wideband waveform case together with the

ange migration problem. However, IAA consumes a huge amount

f memory and time when the raw data dimension is large and

https://doi.org/10.1016/j.sigpro.2019.107259
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2019.107259&domain=pdf
mailto:s.xu-4@tudelft.nl
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the scanning area is divided into dense bins, which makes the

algorithm impractical for real-time applications. The Keystone

transform and matched filter are used in [12,18] to eliminate the

range walk residual and the Radon Fourier transform (RFT) is pro-

posed to consider even higher-order coupling problems by line or

curve searching in the time domain in [10,19] . Unfortunately, these

approaches need a large amount of raw data to do interpolation or

coherent integration, therefore. They could not provide the same

fine resolution as the super-resolution algorithms in [6,15] . Im-

plementation of the RFT also requires a large amount of comput-

ing power for the line searching in multi-dimensional data. Some

waveform design methods are also proposed to solve the range mi-

gration problem [11] , but these algorithms increase the system’s

complexity and the achieved resolution is not as high as that ob-

tained by super-resolution algorithms. 

In addition to the range migration, another limitation for (Ultra-

)WB signal in the collocated array or multiple-input and multiple-

output (MIMO) application is the DOA estimation. Although the

range migration problem has been studied intensively, the cur-

rent algorithms jointly dealing with range migration and DOA

estimation fail to provide a good solution to wideband DOA esti-

mation by simplifying the signal model with narrowband DOA as-

sumption [2,14,20] . The traditional DOA estimators are based on

narrowband assumptions by the interferometry information, such

as Capon, MUSIC, etc. To apply the traditional narrowband super-

resolution algorithm for wideband cases, two of the mainstreams

of wideband DOA estimation are proposed, namely the incoher-

ent signal subspace method (ISSM) and the coherent signal sub-

space method (CSSM). ISSM solves this problem via a filter bank

to decompose the array output into its independent narrowband

components. Then the subspace-based algorithm is applied to each

narrowband output, and DOA estimates can be average in some

way. However, each of narrowband estimates does not fully exploit

the total emitter power and some of the narrowband components

may have a low signal-to-noise ratio (SNR), and the final DOA es-

timates may be adversely affected by few inaccurate narrowband

estimates. CSSM combines the different narrowband signal sub-

space into a single signal subspace that obeys the narrowband ar-

ray model. Although it is shown in [21] that the performance of

CSSM is superior to ISSM, the forming of focusing matrices and

universal spatial covariance matrix (USCM) can increase the com-

putational complexity significantly. In addition, the accuracy of the

focussing matrices highly depends on and is sensitive to the pre-

liminary estimate of the true DOAs [22] . In some other communi-

cation problems, joint time-of-arrival (TOA) and DOA estimation in

impulse radio (IR)-UWB is studied, unfortunately, the DOAs are es-

timated by the pulse delay which is decided by the bandwidth and

not suitable for the compact array. Another powerful tool for DOA

estimation is the time-frequency(TF)-MUSIC [23,24] which is used

to deal with non-stationary sources and it is also applied for wide-

band DOA estimation in a similar way as CSSM [25] . However, in

FMCW radar de-chirped signals (beat frequency signals) for each

antenna element and a single FMCW chirp behave as “stationary

sources”, so an application of TF-MUSIC to them is not helpful. 

Although both range migration and wideband DOA estimation

are intensively studied separately, there are few articles address

both problems simultaneously. In this paper, a MUSIC-based algo-

rithm is proposed for the problem of joint Doppler and DOA es-

timation using an (ultra)wide-band array-based radar considering

both range migration and wideband DOA issues. The range migra-

tion model has been studied comprehensively and presented as the

second-order coupling between fast-time and slow-time. Combine

the fact that the steering vector is the function of the frequency

of wideband DOA and the frequency is the function of fast-time

in FMCW signal, the conventional CSSM and ISSM can be avoided

by transforming the steering vector into the function of fast-time.
hus, the wideband DOA problem is transformed into the inter-

oupling between the fast-time and the element indices analogue

o the range migration problem. By this transform, both range mi-

ration and wideband DOA problem present as coupling terms and

an be eliminated in the same way. After establishing the signal

odel, the classic 2D MUSIC-based algorithm for joint estimation

f Doppler and DOA is presented. Unfortunately, conventional 2D

USIC algorithm cannot correctly estimate the parameters in the

resence of the couplings. To eliminate the influence of the cou-

ling terms for accurate parameters estimation, a phase compensa-

ion method is proposed for both couplings of range migration and

ideband DOA. The compensation method needs, however, multi-

le large-size matrix eigendecompositions which are computation-

lly heavy. Therefore, two efficient implementations, namely the

anczos algorithm and Rayleigh–Ritz step, are introduced. We com-

are the two proposed methods with the inverse method, which is

lso a general MUSIC accelerating approach presented in [26] . The

dvantages of the proposed techniques are shown via numerical

imulations. 

The rest of the paper is organised as follows. In Section 2 , we

stablish the signal model of multiple moving targets for (Ultra-

WB FMCW antenna array radar. In Section 3 , the classic 2D MUSIC

s applied to joint estimation of Doppler and DOA. Then, the com-

ensation algorithm is proposed. The efficient implementations are

ntroduced and compared in Section 4 . Simulation results are pre-

ented in Section 5 . 

Notations used in this paper are as follows. Scalars are denoted

y lower-case letters, vectors and matrices are written as lower-

ase and uppercase bold-face letters, respectively. ( · ) T , ( · ) H and

 · ) ∗ denote transpose, conjugate transpose and complex conjugate

f a vector or matrix, respectively. � and � represent the Kro-

ecker and Hadamard product, respectively. � x � gives the near-

st integer less than or equal to x . I M 

denotes the M × M identity

atrix. Some other special matrices are 1 M 

= [1 , 1 , . . . , 1] T ∈ R 

M×1 ,

 M 

= [0 , 1 , . . . , M − 1] T ∈ R 

M×1 . Further, the symbols E () , Tr(), � ()

nd O() represent the expectation computation, the trace of a ma-

rix, the real part extraction operation and asymptotic notation,

espectively. 

. UWB FMCW antenna array model 

.1. Array signal model 

In this section, the signal model using the mono-static antenna

rray with one transmitter and L receivers is established. Assume

 point targets with unknown range r = [ R 1 , R 2 , . . . , R I ] , radial ve-

ocity v = [ v 1 , v 2 , . . . , v I ] and angle θ = [ θ1 , θ2 , . . . , θI ] are located in

he observed far-field, where v and θ are expected to be jointly

stimated. The radar transmits a group of chirps during one CPI

ith the chirp duration T 0 and the pulse repetition interval (PRI)

 . A normalized single chirp signal with the bandwidth B has the

orm 

 0 (t) = 

{
e j2 π( f 0 t +0 . 5 μt 2 ) t ∈ [0 , T 0 ) , 

0 t ∈ (−∞ , 0] ∧ t ∈ [ T 0 , ∞ ) , 
(1)

here f 0 denotes the starting frequency and μ = 

B 

T 0 
denotes the

requency modulation rate. The periodic transmitted signal is de-

omposed into fast-time domain t ′ and chirp number domain m =
 

t 

T 
� as (2) , where m = 0 , 1 , . . . , M − 1 , and M is the total number

f chirps in one CPI. 

 = t ′ + mT t ′ ∈ [0 , T 0 ) . (2)

hen the periodic transmitted signal has 

 (t) = s (t ′ + mT ) = s (m, t ′ ) = s 0 (t ′ ) . (3)
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onsider the i th scatterer in the observation domain with the ve-

ocity v i and the range R i , the round trip time delay of this scat-

erer is 

i (m, t ′ ) = 

2(R i + v i (t ′ + mT )) 

c 
= γi + 

2 v i 
c 

(t ′ + mT ) , (4) 

here γi = 

2 R i 
c 

is the initial round trip delay of the i th target for

he first chirp and c is the speed of light. Using the 0th element as

 reference, the received signal of i th scatterer by the l th element

an be written as 

 

(l) 
i 

(m, t ′ ) = αi exp ( jϕ 

(l) 
i 

) s (t ′ + mT − τi (m, t ′ )) 

= αi exp ( jϕ 

(l) 
i 

) s 0 (t ′ − τi (m, t ′ )) 

= αi exp ( j ϕ 

(l) 
i 

) exp [ j 2 πφi (m, t ′ )] , 

with t ′ ∈ [ τi (m, t 0 ) , T 0 ) , (5) 

here t 0 = τi (m, t 0 ) = τi (m, 0) / (1 − 2 v i /c) is the round trip delay

nd usually t 0 < < T 0 , the superscript ( l ) denotes the l th element,

 = 0 , 1 , . . . , L − 1 denotes the indices of the element and L is the

otal number of the elements, αi is the constant complex ampli-

ude of the i th scatterer, exp ( jϕ 

(l) 
i 

) denotes the phase delay rel-

tive to the 0th element, and 2 πφi ( m, t ′ ) is the phase of the re-

eived signal of the 0th element, which according to (1) has the

orm 

i (m, t ′ ) = f c (t ′ − τi (m, t ′ )) + 0 . 5 μ(t ′ − τi (m, t ′ )) 2 , (6) 

with t ′ ∈ [ τi (m, t 0 ) , T 0 ) . 

From the phase of the received signal, the instantaneous fre-

uency of the received signal is extracted as 

f i (m, t ′ ) = 

dφi (m, t ′ ) 
dt ′ 

= f c 

(
1 − dτi (m, t ′ ) 

dt ′ 

)
+ μ(t ′ − τi (m, t ′ )) 

(
1 − dτi (m, t ′ ) 

dt ′ 

)
≈ f c + μt ′ . (7) 

Now the terms of the time delay are neglected since τ i ( m,

 

′ ) < < T 0 and v i < < c . Then the phase delay of the l th element is

iven by 

 

(l) 
i 

= 2 π f i (m, t ′ ) d l 
c 

sin θi = 2 π( f c + μt ′ ) d l 
c 

sin θi , (8) 

here θ i denotes the angle of the i th scatterer, f i ( m, t ′ ) denotes

he instantaneous frequency and is obtained from (7) , and d l de-

otes the distance between the l th element and the reference ele-

ent, respectively. It is seen in (8) that the phase delay is not only

elated to the l th element, but also the fast-time t ′ . In fact, it is

ery straightforward because the steering vector is the function of

requency for wideband DOA and the frequency is the function of

ime for FMCW signal, therefore, the steering vector is also a func-

ion of time. Then, the wideband DOA can be transformed into an

dditional second-order coupling between the indices of elements

nd the indices of fast-time. Most approaches for joint estimation

OA and Doppler have failed to provide a solution for this wide-

and DOA estimation [14,26,27] . Besides, the conventional ISSM or

SSM for wideband DOA can be avoided by solving the problem of

oupling terms. 

In this paper, the targets are located in the far-field and the

bservation time in one CPI is very short, thus, the angles are

ssumed not changing in one CPI. Without losing generality, the

niformly distributed linear array (ULA) with omnidirectional ele-

ents is used to establish the signal model in the following, where

 l = ld and d is the interspace between the neighbouring elements.

The received signal is then cross-correlated with the transmit-

ed signal and the de-chirped signal of the i th scatterer received
y l th element can be written as 

 

(l) 
i 

(m, t) s ∗(m, t) = αi exp ( j ϕ 

(l) 
i 

) exp 

(
j 2 πφi (m, t ′ ) 

)
s ∗(m, t ′ ) 

= αi exp ( jϕ 

(l) 
i 

) ×
exp 

[
− j2 π( f c τi (m, t ′ ) − 0 . 5 μτ 2 

i (m, t ′ ) 

+ μt ′ τi (m, t ′ )) 
]

≈ αi exp ( j ϕ 

(l) 
i 

) exp 

[
− j 2 π

(
f c τi (m, t ′ ) 

+ μt ′ τi (m, t ′ ) 
)]

. (9) 

ubstitution of Eq. (4) in the result of Eq. (9) yields the de-chirped

ata z (l) 
i 

(m, t) given by, 

 

(l) 
i 

(m, t ′ ) = αi exp ( jϕ 

(l) 
i 

) × exp 

[ 
− j2 π

(
f c (γi + 

2 v i 
c 

(t ′ + mT )) 

+ μt ′ (γi + 

2 v i 
c 

(t ′ + mT )) 
)] 

≈ α′ 
i exp ( j ϕ 

(l) 
i 

) exp 

[
− j 2 π

(
μγi t 

′ + f d,i T m 

+ μ
2 v i 
c 

T mt ′ 
)] 

, (10) 

here f d,i = 

2 v i f c 
c 

represents the Doppler frequency of the i th

catterer and exp ( j 2 π f c γ i ) is absorbed into α′ 
i 

(for simplicity, αi 

s still used in the following), and the terms f d,i t 
′ and μ

2 v i 
c 

t ′ 2 are

mitted as they are very small. As we can see from (10) , the signal

odel is a 2D complex sinusoid with a coupling term between the

ast-time t ′ and the slow-time number m . If the scatterers migrate

ne or several range bins in one CPI as 

 i × MT � 

c 

2 B 

, (11) 

here MT is one CPI formed by M chirps and v i is the velocity

f the i th targets. It is called range migration in GMTI and this

oupling term will decrease the performance of estimation apply-

ng classic Fourier transform. It is worth noting that, the definition

f conventional range migration, which shown as a coupling term

n the signal model, is based on the Rayleigh criterion. However,

he resolution of subspace-based methods has broken the Rayleigh

riterion and the coupling terms will always decrease the perfor-

ance of these methods more or less even if the targets migrate

ess than one range resolution cell in one CPI. 

After the de-chirping, the data in Eq. (10) is sampled with re-

pect to fast-time with frequency f s and the discretized data ˆ z (l) 
i 

in

he time domain is obtained as 

ˆ 
 

(l) 
i 

(m, k ) = αi a 
(l) (θi ) × exp 

[
− j2 π

(
−μ

kld 

c f s 
sin θi + μγi 

k 

f s 
(12) 

+ f d,i T m + μ
2 v i 
c f s 

T mk 

)] 
, 

here 

 

(l) (θi ) = exp 

(
j2 π

ld 

λ
sin θi 

)
, (13) 

nd λ = c/ f c is the wavelength of the starting frequency, k de-

otes the sampling index ( k = 0 , 1 . . . , K − 1 , in which K is the total

umber of snapshots in one chirp). By stacking all the ˆ z (l) (m, k ) ,

he raw data of the l th element is written in the matrix format

 

(l) 
i 

∈ C 

M×K conform 

 

(l) 
i 

= αi a 
(l) (θi )(1 M 

[ h 

(l) 
i 

] T ) � (f d,i f 
T 
r,i ) � �i , (14) 

here h 

(l) 
i 

∈ C 

K×1 , f r,i ∈ C 

K×1 and f d,i ∈ C 

M×1 are denoted by 
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p  

n  

H  
h 

(l) 
i 

= 

[ 
1 , e j2 πμ ld 

c f s 
sin θi , . . . , e j2 πμ (K−1) ld 

c f s 
sin θi 

] T 
, 

f r,i = 

[ 
1 , e − j2 πμ

γi 
f s , . . . , e − j2 πμ

γi 
f s 

(K−1) 
] T 

, 

f d,i = 

[
1 , e − j2 π f d,i T , . . . , e − j2 π f d,i T (M−1) 

]T 
, (15)

and �i ∈ C 

M×K is denoted by 

�i = 

⎛ 

⎜ ⎜ ⎝ 

g 

T 
i 
(0) 

g 

T 
i 
(1) 
. . . 

g 

T 
i 
(M − 1) 

⎞ 

⎟ ⎟ ⎠ 

, (16)

in which g i (m ) ∈ C 

K×1 is given by 

g i (m ) = [1 , e − j2 πμ
2 v i 
c f s 

T m 

, . . . , e − j2 πμ
2 v i 
c f s 

T m (K−1) ] T . (17)

The coupling term 1 M 

[ h 

(l) 
i 

] T in Eq. (14) between element in-

dices and fast-time sampling indices is introduced by wideband

modulated frequencies. If we consider a narrowband signal, then

the signal model reduces to 

Z 

(l) 
i 

= αi a 
(l) (θi ) f d,i f 

T 
r,i . (18)

However, the coupling terms are in general too large to be ne-

glected for (Ultra-)WB signals, which we will consider in the fol-

lowing sections. The received signal model X 

(l) ∈ C 

M×K for mul-

tiple scatterers in the presence of white Gaussian noise is repre-

sented by 

X 

(l) = 

I ∑ 

i =1 

Z 

(l) 
i 

+ N 

(l) , (19)

where N 

(l) ∈ C 

M×K denotes the Gaussian noise with distribution

CN (0 , σ 2 I ) . 

2.2. Unambiguous angle and velocity 

According to the Nyquist sampling criteria, in the sampled de-

chirped data in Eq. (13) the following parameters are bounded by 

2 πT f d,i ∈ (−π, π) , 

2 π f c 
d 

c 
sin θi ∈ (−π, π) , (20)

so the unambiguous velocity and angle are obtained as 

v m 

= 

c 

4 T f c 
, 

sin (θm 

) = min 

{ 

c 

2 f c d 
, 1 

} 

. (21)

If the velocities or angles are greater than the unambiguous ones,

they will be folded into the unambiguous domain. 

3. 2D MUSIC algorithm and compensation method 

In this section, the classic 2D MUSIC algorithm for joint estima-

tion of DOA and Doppler is presented at first. However, the cou-

pling terms decline the performance of the classic 2D MUSIC, in

order to circumvent this a novel compensation method is proposed

in the MUSIC algorithm to remove such interference. The estima-

tion of the model order is discussed at last in this section. 

3.1. 2D MUSIC algorithm 

With the three-dimensional signal model, it is possible to ap-

ply the MUSIC algorithm for joint parameter estimation if we ig-

nore the coupling terms. Using one dimension of sinusoidal data as
eference, the 2D MUSIC algorithm can be implemented for joint

wo-dimensional parameter estimation. The 3D MUSIC algorithm

an be further used for joint three-dimensional parameter estima-

ion for DOA, range and Doppler. The noise subspace can be ex-

racted by applying a spatial smoothing technique to eliminate co-

erence between the sources [28] or by applying a high order sin-

ular value decomposition (HOSVD) [29] . However, it is both time-

nd memory-consuming to directly apply the 3D MUSIC algorithm.

hus, the 2D MUSIC algorithm is applied here, for instance, to es-

imate Doppler and DOA jointly. It is worth noting that, the pro-

osed methods can also be applied for joint estimation of Doppler

nd range or DOA and range. To apply the 2D MUSIC algorithm, the

aw data have to be reshaped from the 3-dimensional tensor form

o the 2-dimensional matrix form Y ∈ C 

LM×K by stacking element

nd slow-time dimensions together as 

 = 

⎛ 

⎜ ⎜ ⎜ ⎝ 

X 

(0) 

X 

(1) 

. . . 

X 

(L −1) 

⎞ 

⎟ ⎟ ⎟ ⎠ 

. (22)

or simplicity, Y is rewritten in matrix notation as: 

 = 

I ∑ 

i 

αi (a θi 
� f d,i )(f r,i ) 

T 
� �dr,i � �θ r,i + N , (23)

here a θi 
∈ C 

L ×1 , �dr,i ∈ C 

LM×K and �θ r,i ∈ C 

LM×K are given by, 

a θi 
= [1 , a (1) (θi ) , . . . , a 

(L −1) (θi )] T , 

�dr,i = 1 L � �i , 

θ r,i = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

(h 

(0) 
i 

) T 

(h 

(1) 
i 

) T 

. . . 

(h 

(L −1) 
i 

) T 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

� 1 M 

. (24)

ow, the classic 2D MUSIC algorithm is applied directly by ignor-

ng the coupling terms. First, the covariance matrix R ∈ C 

LM×LM is

omputed according to 

 = E (YY 

H ) . (25)

he eigendecomposition is applied to split the data space into the

oise subspace associated to the noise eigenvectors U n and the sig-

al subspace associated to the signal eigenvectors U s . 

R = U�U 

H 
, 

 = [ U s U n ] . (26)

o extract the noise subspace we assume that the number of scat-

erers is known. The estimation of the number of scatterers will be

iscussed later. The matched steering vector α(v p , θq ) ∈ C 

LM×1 for

he velocity v p and the angle θq is formulated as: 

(v p , θq ) = a θq 
� f d,p . (27)

fter that, the MUSIC spectrum at the point ( v p , θq ) can be calcu-

ated by 

 (v p , θq ) = 

1 

αH (v p , θq ) U n U n 
H α(v p , θq ) 

. (28)

.2. Compensation for coupling terms 

Directly applying the classic MUSIC algorithm without any

hase compensation yields an estimation performance that is sig-

ificantly less accurate due to the influence of the coupling terms.

ence, phase adjustment is needed before the MUSIC algorithm is
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Algorithm 1 2D MUSIC with Compensation. 

1: Reshape the raw data as (22) 

2: for v p in [ −v m 

, v m 

] do 

3: for θq in [ −θm 

, θm 

] do 

4: C := (�dr,p � �θ r,q ) 
∗

5: ˆ Y := Y � C 

6: ˆ R := E ( ̂  Y ̂

 Y 

H ) 

7: ˆ R =: U�U 

−1 # Eigendecomposition 

8: U n := U [: , I : end] 

9: α(v p , θq ) := a θq 
� f d,p 

10: P (v p , θq ) := 

1 

αH (v p , θq ) U n U n 
H α(v p , θq ) 

11: endfor 

12: endfor 

3

 

t  

A  

d  

v  

T  

o  

F

c

pplied. Although the Keystone transform is the most common ap-

roach for the coupling term adjustment, the interpolation of the

eystone transform leads to significant phase errors when the data

ize is small [18,30] . Despite this drawback, the performance of

eystone transform will be discussed and compared with the pro-

osed algorithm in Section 5 . Fortunately, since the coupling terms

re functions of v for �dr,i and θ for �θ r,i , we are able to remove

he coupling terms in each scanning grid. The compensation term

or the grid in terms of ( v p , θq ) is formulated as 

 = (�dr,p � �θ r,q ) 
∗. (29) 

hen by Hadamard product with the raw data matrix Y yields 

ˆ 
 = Y � C . (30) 

ince the compensation term is just a phase shift, it will not in-

rease the noise power. The coupling terms of the new obtained

ata are removed for the grid in terms of ( v p , θq ). With this com-

ensation, not only the phase is adjusted to improve the accu-

acy, but also the orthogonality between the steering vector and

he noise subspace is enhanced which helps to improve the reso-

ution. The covariance matrix is calculated using the improved data
ˆ 
 according to 

ˆ 
 = E( ̂  Y ̂

 Y 

H ) . (31) 

inally, the 2D MUSIC algorithm (28) can be applied to the

mproved covariance matrix. The algorithm is concluded in

lgorithm 1 . 
ig. 1. Time consumption comparison for (a) calculating the different number of eigen

alculating 10 eigenvectors with the different dimension of the Hermitian matrix. 

Fig. 2. Comparison of RMSEs with CRLB as a function of SNR at B = 1 GHz for one targe
.3. Estimation of the target number 

Before implementing the 2D MUSIC algorithm, the number of

argets has to be estimated to correctly split the noise subspace.

pparently, the coupling terms in the UWB signal model bring

ifficulties to estimate the number of the targets, since the eigen-

alues decrease more smoothly than that of narrowband data.

herefore, a method is proposed for the estimation of the number

f targets involved. Usually, the number of targets is much smaller
vectors with the same dimension of the Hermitian matrix of 768 × 768 and (b) 

t at angle 40 ◦ and velocity 8 m/s. (a) angle estimation and (b) velocity estimation. 
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Fig. 3. Angle-Velocity maps of B = 1 GHz and SNR = 3 dB for (a) 2D MUSIC without phase compensation, (b) 2D MUSIC after Keystone transform, (c) 2D MUSIC with phase 

compensation and accelerated by Lanczos algorithm, (d) 2D MUSIC with phase compensation and accelerated by Rayleigh–Ritz step and (e) 2D MUSIC with phase compen- 

sation and accelerated by inverse algorithm. 
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than the dimension of the covariance matrix, so the dimension of

the signal subspace is allowed to be slightly overestimated. Accord-

ing to this property, a larger model order than the true one can be

selected at first to image the MUSIC pseudo-spectrum. Then by us-

ing peaks detection methods, we estimate the number of the tar-

gets from the MUSIC pseudo-spectrum. Although it is allowed to

assume the larger dimension of the signal subspace than the true

one, it provides better imaging results by using the whole noise

subspace. After we obtain the number of targets, the proposed al-

gorithms can be applied to obtain better estimations. The simula-

tions of such a method will be shown in Section 5.3 . 

4. Efficient implementation 

In this section, the efficient implementations of the proposed

method are proposed by accelerating the extraction of the noise

subspace and parallel implementation. 
.1. Efficient implementation for the noise subspace extraction 

As for 2D MUSIC, the dimension of the covariance matrix

M × LM is usually very large. Thus, it is a heavy computational

urden to perform all the eigendecompositions for each scanning

rid and limits the proposed methods for real applications. Fortu-

ately, as the covariance is a Hermitian matrix, some properties

f the algorithm allow opportunities to accelerate the algorithm.

he first one is that the number of targets is usually much smaller

han the dimension of the covariance matrix. Instead of calculat-

ng all eigenvectors, one can only calculate the needed eigenvec-

ors in the signal subspace, while the noise subspace can be easily

btained from the orthogonal complement subspace of the signal

ubspace according to, 

 n U n 
H = I − U s U s 

H 
. (32)
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Fig. 4. Comparison of RMSEs with CRLB as a function of SNR at B = 4 GHz for one target at angle 40 ◦ and velocity 8 m/s. (a) angle estimation and (b) velocity estimation. 
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nother interesting property is that the compensation term is

ust a minor phase shift. Therefore, the signal subspaces in each

djacent grid are close to each other in the norm. Based on these

roperties, two acceleration methods are introduced, namely the

anczos algorithm and the Rayleigh-Ritz step. The inverse approach

n [26] is also mentioned for comparison. 

.1.1. Lanczos algorithm 

The Lanczos algorithm is an iterative method for calculating the

igendecomposition of large Hermitian/symmetric matrix [31] . It

aves a lot of computation by only computing the largest eigen-

alues and their corresponding eigenvectors. Thus, it can be used

n scenarios where only the signal subspace is needed and the di-

ension of the signal subspace is much smaller than that of the

ovariance matrix. 

.1.2. Rayleigh–Ritz step 

Lanczos is much faster to extract the signal subspace than the

efault eig function if the dimension of the signal subspace is

mall. However, it is not fast enough and we do not take advan-

age of the fact that the adjacent signal subspaces are close to each

ther. The signal subspaces for neighbouring grids are close to each

ther in the norm so the previous signal subspace provides a good

nitial guess to calculate the next one. Thus, the Rayleigh–Ritz step

ethod [32] is adopted to use the previous signal subspace as the

nitial guess to approach the current signal subspace. According to

he simulation, just one step is needed to obtain a sufficiently good

igenvector approximation. 

.1.3. Inverse algorithm without EVD 

In [26] , the authors propose to use the inverse of the covari-

nce matrix to replace the noise subspace. Certainly, calculating

he inverse or pseudo-inverse of a huge matrix will save a lot

f time compared to calculating the eigendecomposition. It shows

omparable results with MUSIC but is faster than eigendecompo-

ition MUSIC. However, this method can only work in high SNR

ondition. If the SNR is low, the approximation of this method

o longer valid. Besides, the convergence performance of matrix

nverse/pseudo-inverse is not monotonically increasing with the

napshot/SNR [33] . Thus this algorithm is not stable and robust.

espite its disadvantages, from the computational burden and es-

imation performance perspectives, we use this algorithm as a ref-

rence to compare it with our proposed algorithms. 

.1.4. Comparison 

To compare the priority of selected methods on time con-

umption, we first fix the dimension of the covariance matrix and
imulate the time consumption with the different number of

igenvectors associated with the largest eigenvalues. The simula-

ion results with a mean time of 100 repeats using Python3.5 with

ciPy0.19 under Inter(R) Core i5-6500 @ 3.20 GHz are shown in

ig. 1 (a). (It is worth noting that the results using MATLAB could

e different.) 

The time consumption is not only influenced by the number of

igenvectors associated with the largest eigenvalues, but also by

he dimension of the covariance matrix. Thus, the comparison of

ime consumption with the different dimensions of the covariance

atrix is shown in Fig. 1 (b). As we can see, the time consumption

f the default eig function increases significantly with the dimen-

ion of the covariance matrix as it needs O(n 3 ) flops (float number

perations). The Rayleigh-Ritz step shows to be the most efficient

ethod among all of them. 

The computational complexity is shown in Table 1 , where n

epresents the dimension of the Hermitian matrix and β repre-

ents the number of eigenvectors associated with the β largest

igenvalues. 

According to the above analysis, using the Rayleigh-Ritz step as

n example, the algorithm can be illustrated as Algorithm 2 . 

lgorithm 2 Compensation algorithm with Rayleigh–Ritz step. 

1: Reshape the raw data Y as (22) 

2: R := E (YY 

H ) 

3: R =: U�U 

H 
# Eigendecomposition 

4: U s := U [: , 0 : I − 1] 

5: for v p in [ −v m 

, v m 

] do 

6: ˆ Y := Y � (�dr,p ) 
∗

7: for θq in [ −θm 

, θm 

] do 

8: ˆ Y := 

ˆ Y � (�θ r,q ) 
∗

9: ˆ R := E ( ̂  Y ̂

 Y 

H ) 

10: Z := 

ˆ R U s 

11: Z =: QP # QR decomposition 

12: H := Q 

H ˆ R Q 

13: H =: F�F H # Eigendecomposition 

14: U s := QF 

15: α(v p , θq ) := a θq 
� f d,p 

16: P (v p , θq ) := 

1 

αH (v p , θq )(I − U s U s 
H ) α(v p , θq ) 

17: endfor 

18: endfor 
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Fig. 5. Angle-Velocity maps of B = 4 GHz and SNR = 30 dB for (a) 2D MUSIC without phase compensation, (b) 2D MUSIC after Keystone transform, (c) 2D MUSIC with 

phase compensation and accelerated by Lanczos algorithm, (d) 2D MUSIC with phase compensation and accelerated by Rayleigh–Ritz step and (e) 2D MUSIC with phase 

compensation and accelerated by inverse algorithm. 
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4.2. Parallel processing 

As the 2D MUSIC algorithm is a scanning process, it is pos-

sible to divide the scanning domain into several parts related

to CPU cores for parallel processing. We can process each part

parallelly to fully utilize the hardware. Here, by using a thread-

ing package in python3.5, we divide the scanning domain into

4 parts with identical size and by using covariance matrix size

of 256 × 256, the computational time with and without paral-

lel computing are 25.8 s and 41.9 s, respectively. In the simu-

lation, 62% of the computational time is saved by using parallel

processing. 
. Simulations 

In this section, the performance of the proposed methods is dis-

ussed. As the coupling terms are related to the bandwidth, the

erformance of the proposed methods with different bandwidths,

.e. 1 GHz and 4 GHz, will be simulated. The system parameters

sed for simulation are shown in Table 2 . 

.1. Bandwidth 1 GHz 

We start with considering a case with a bandwidth of B =
 GHz , where the relative bandwidth is 1.3%. Fig. 2 shows the
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Fig. 6. Angle-Velocity maps of B = 4 GHz and SNR = 20 dB for (a) 2D MUSIC without phase compensation, (b) 2D MUSIC after Keystone transform, (c) 2D MUSIC with 

phase compensation and accelerated by Lanczos algorithm, (d) 2D MUSIC with phase compensation and accelerated by Rayleigh–Ritz step and (e) 2D MUSIC with phase 

compensation and accelerated by inverse algorithm. 

Table 1 

Computational complexity. 

Algorithm Computational complexity 

Default eig Func O(n 3 ) 

Inverse O( 1 
3 

n 3 ) 

Lanczos O(βn 2 ) 

Rayleigh-Ritz O(β2 n + β3 ) 

r  

o

a  

t  

f  

Table 2 

Parameters of system. 

Parameters Value 

Number of Chirps in one CPI 16 

Number of Snapshots in one Chirp 32 

Number of Antenna Elements 8 

Starting Frequency 77 GHz 

Inter-element Distance 1.899 mm 

Chirp Repetition Interval 0.1 ms 

Chirp Duration 0.09 ms 

t  

d  

R  
oot-mean-square errors (RMSEs) of estimates of DOA and Doppler

f a single point scatterer with the radial velocity 8 m/s, angle 40 ◦

nd range 80 m as a function of the SNR. They are compared with

he corresponding Cramér-Rao lower bounds (CRLB) (see Appendix

or CRLB derivation). The RMSEs are obtained from 40 Monte Carlo
rials. As classic MUSIC is a biased estimator, the RMSEs will not

ecrease with an increase of SNR. One can also observe that the

MSEs of the Keystone MUSIC do not always decrease along with
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Fig. 7. (a) 2D MUSIC without phase compensation and (b) 2D MUSIC after Keystone transform (c) 2D MUSIC with phase compensation and accelerated by Rayleigh–Ritz 

step. 

Table 3 

Comparison of computational time. 

Algorithm Computational Time 

Default eig Func 152.68 s 

Lanczos 18.75 s 

Rayleigh-Ritz 5.48 s 

Inverse 32.66 s 

Keystone MUSIC 1.01 s 
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the increase of the SNR since the error introduced by the interpo-

lation will dominantly decrease the accuracy of the estimation at

high SNR condition. 

We further focus on the performance of the proposed meth-

ods in a challenging scenario. To this end, four closely positioned

point scatterers with the same angles θ = 45 ◦ and the same ampli-

tudes 0 dB, but close radial velocities v = [4 . 6 , 5 . 68 , 6 . 86 , 7 . 91] m / s

and random range from 100 m to 200 m are set. The SNR is set to

3 dB. The normalized results are shown in Fig. 3 . While the inverse

method and the classic MUSIC algorithm without phase compen-

sation are not able to separate scatterers from each other, MUSIC

with phase compensation (in both Lanczos and Rayleigh–Ritz ac-

celeration implementations) achieves at least -3 dB isolation be-

tween the scatterers. The Keystone-MUSIC ( Fig. 3 (b)) shows some

separation of the scatterers with low speed, but fast-moving scat-

terers are not separated. Table 3 shows the time consumptions of

the four methods and the compensated MUSIC algorithm with de-

fault eig function, where the observation domain is divided into

a 100 × 100 grid. It is worth noting that the superiority with re-

spect to the computational time of the proposed algorithm could

be more significant if the dimension of the covariance matrix is

larger. 
.2. Bandwidth 4 GHz 

Next, we increase the bandwidth from 1 GHz to 4 GHz, where

he relative bandwidth is 5.1%. According to the model from (23) ,

he estimation accuracy will deteriorate as the bandwidth in-

reases. The same point scatterer with radial velocity 8 m/s, an-

le 40 ◦ and range 80 m is set for RMSE simulation. The obtained

MSEs results of the proposed methods and the competitors are

ompared with CRLB in Fig. 4 . The error of the no compensa-

ion method is much larger than what we obtained in the case of

 = 1 GHz. 

The next simulation is to test the ability of the proposed algo-

ithm to detect a relatively weak target. According to the analy-

is, if there is a strong migrated target present in an observation

omain, the energy of this target will dominantly spread into

everal eigenvectors. Thus, the subspace corresponding to the

elatively weak target will be allocated to noise subspace. Two tar-

ets, one with range 100 m, angle 20 ◦, velocity 8 m/s and ampli-

ude α = −10 dB and another one with range 80 m, angle 40 ◦, ra-

ial velocity 5 m/s and amplitude α = 0 dB , are set. The SNR is set

o 30 dB. The results are shown in Fig. 5 , where for improved visi-

ility the results are normalized. From Fig. 5 (a), we can see that

he weak target is missing in the classic MUSIC result without

hase compensation. Both targets are seen in the MUSIC pseudo-

pectrum obtained by Keystone MUSIC algorithms, however, the

eaks corresponding to the targets are wider than in the conven-

ional MUSIC or proposed algorithms and their relative contrast

ith the background is much smaller in magnitude. 

Then 11 point scatterers with random angles from 0 ◦ to 50 ◦,

andom radial velocities from 0 m/s to 9 m/s and random ranges

rom 100 m to 200 m random α from −3 dB to 0 dB are set and
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Fig. 8. Angle-Velocity maps of B = 4 GHz , SNR = 20 dB and 128 snapshots for (a) 2D MUSIC without phase compensation, (b) 2D MUSIC after Keystone transform, (c) 2D 

MUSIC with phase compensation and accelerated by Lanczos algorithm, (d) 2D MUSIC with phase compensation and accelerated by Rayleigh-Ritz step and (e) 2D MUSIC 

with phase compensation and accelerated by inverse algorithm. 
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a  
he SNR is set to 20 dB. The normalized results are presented in

ig. 6 , where the dynamic range is limited to 20 dB. From the

ngle-velocity map, one can conclude that the peaks of estima-

ion without phase compensation are biased towards higher veloc-

ties and widened (especially in the azimuthal domain) in com-

arison with that of the proposed methods. Although the accura-

ies of estimation are slightly better, the Keystone MUSIC suffers

rom a poor resolution of closely spaced targets (especially in az-

muthal domain). At the same time, all three compensation algo-

ithms demonstrate the clear separation of all targets and accurate

stimation of their parameters. To show the improvement of the

esolution of the proposed compensation method, an extra simu-

ation using the same system parameters of 6 random point tar-

ets with large angles and velocities is implemented. The results

ithout compensation, phase adjustment by Keystone transform

nd phase compensation by the proposed method are presented
n Fig. 7 . The three closely positioned targets are hardly resolved

rom Fig. 7 (a)(b), while they are clearly resolved in Fig. 7 (c). 

In the next simulation, we keep the same parameters as be-

ore while increase the snapshots from 32 to 128. The results of

he 11 point targets from the previous simulation are presented in

ig. 8 . The imaging performance of the inverse algorithm signifi-

antly degrades when we increase snapshots to 128 and a strong

host target appears at the position (v = 0 , θ = 0) , while the

ayleigh-Ritz and Lanczos algorithms reveal sharper peaks related

o targets. It is noted that the results agree with the simulation

n [33] . 

.3. Number of the targets estimation 

The 11 point scatterers from the previous simulation are used

gain in this simulation and the SNR is set to 20 dB. Fig. 9 shows
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Fig. 9. The number of targets estimation from MUSIC pseudo-spectrum using dif- 

ferent dimensions of the signal subspace assumptions. 
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the number of target estimations using the different dimension of

the signal subspace assumption. The connected region label algo-

rithm is used here to obtain the number of targets from the bina-

rized MUSIC spectrum. Here the threshold for binarization is set to

−7 dB , which is a third of the mean value of the normalized MUSIC

spectrum of a large number of target assumptions. 

Fig. 10 shows the MUSIC spectrum of Rayleigh-Ritz method and

classic MUSIC without compensation for the incorrect dimension

of signal subspace assumptions. From the results, both classic MU-
Fig. 10. Angle-Velocity maps of B = 4 GHz , SNR = 20 dB and 32 snapshots for (a) 2D M

targets, (c) 2D MUSIC without compensation assume 16 targets and (d) Rayleigh-Ritz step
IC and compensation MUSIC will miss targets if the dimension

f the signal subspace is underestimated. However, compared with

ig. 6 , our proposed compensation MUSIC has a higher tolerance

or overestimating the dimension of signal subspace than that of

lassic MUSIC. 

. Conclusions 

In this paper, a novel joint Doppler-DOA estimation using the

WB FMCW array-based radar for moving targets is proposed.

e present an accurate signal model for radar returns from mov-

ng targets which at first takes both range migration and wide-

and DOA into account. Using this model we introduce a mod-

fied MUSIC algorithm to eliminate the influence of the inter-

oupling terms. The method adjusts the phase of the raw data in

ach scanning grid before eigendecomposition to improve the ac-

uracy of the Doppler and DOA estimation. Moreover, we propose

wo efficient implementations, namely a Lanczos algorithm and a

ayleigh-Ritz step, to reduce the computational burden specifically

or the proposed method. 

By comparing RMSEs and CRLB of conventional MUSIC, Key-

tone MUSIC and proposed algorithm (for the bandwidth of 1GHz

nd 4GHz) via numerical simulations, we demonstrate that the

hase compensation algorithm improves the accuracies of both

oppler and DOA estimation over the conventional and Keystone

USIC and the accuracies of the proposed algorithm improve with

NR. For example, the accuracies of both Doppler and DOA esti-

ations are improved more than 20 dB for SNR = 20 dB in Fig. 4 .

lthough for SNR below -10dB Keystone MUSIC has accuracy sim-

lar to the proposed method, the resolution and overall contrast
USIC without compensation assume 10 targets, (b) Rayleigh–Ritz step assume 10 

 assume 16 targets. 
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f the MUSIC pseudo-spectrum are worse than by the algorithm

roposed. Due to the phase compensation, the algorithm proposed

lso resolves targets closely spaced in the velocity-angular domain,

hich are not resolvable both with conventional and Keystone MU-

IC algorithms. Further, we show that the proposed Lanczos algo-

ithm and Rayleigh–Ritz are more robust than the inverse algo-

ithm in our simulations. In addition, the Rayleigh–Ritz step shows

uperiority with respect to computational time when the number

f targets is much smaller than the dimension of the signal co-

ariance matrix and has a high tolerance for overestimating the

imension of the signal subspace. 
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ppendix: CRLB derivation 

To formulate the CRB matrix, we first reshape the raw data into

he vector form y ∈ C 

LMK×1 as 

 = 

I ∑ 

i =1 

αi (a θi 
� f d,i � f r,i ) � ω dr,i � ω θ r,i + n , (33) 

here ω dr,i ∈ C 

LMK×1 , ω θ r,i ∈ C 

LMK×1 are 

 dr,i = 1 L �

⎛ 

⎜ ⎜ ⎝ 

g i (0) 
g i (1) 

. . . 
g i (M − 1) 

⎞ 

⎟ ⎟ ⎠ 

, ω θ r,i = 

⎛ 

⎜ ⎜ ⎜ ⎝ 

1 M 

� h 

(0) 
i 

1 M 

� h 

(1) 
i 

. . . 

1 M 

� h 

(L −1) 
i 

⎞ 

⎟ ⎟ ⎟ ⎠ 

. (34)

et Q ∈ C 

LMK×1 be the noise covariance matrix, which is 

 = E( nn 

H ) = σ 2 I MLK , (35) 

ith σ 2 being the variances of the noise. According to the ex-

ended Slepian-Bangs’ formula [34] , the ij th element of the fisher

nformation matrix (FIM) has the form: 

 FIM } i j = Tr 

(
Q 

−1 ∂Q 

∂ ηi 

Q 

−1 ∂Q 

∂ η j 

)
+ 2 � 

[ (
∂y 

∂ ηi 

)H 

Q 

−1 

(
∂y 

∂ η j 

)] 

, (36) 

here 

= [ θ, v ] T , (37) 

ith θ and v being the vectors consisting of the DOAs and Doppler

requencies, respectively. ∂ y / ∂ ηi denotes the derivative of y with

espect to the i th parameter of η. Note that the FIM is block diag-

nal since the parameters in Q are independent of those in μ and

ice versa. Thus, the CRB matrix for the motion parameters can be

alculated from the second term on the right side of (36) . Let 

θ
i = jξ1 ,i (d L � a θi 

) � f d,i � f r,i � ω dr,i � ω θ r,i 

+ jξ2 ,i a θi 
� f d,i � f r,i � ω dr,i � [ ω θ r,i � (d L � 1 M 

� d K )] , (38) 

v 
i = jζ1 ,i a θi 

� (d M 

� f d,i ) � f r,i � ω dr,i � ω θ r,i 

+ jζ2 ,i a θ � f d,i � f r,i � [(1 L � d M 

� d K ) � ω dr,i ] � ω θ r,i , (39) 

i 
here ξ1 ,i = 2 παi f c 
d 

c 
cos θi , ξ2 ,i = 2 παi μ

d 

c f s 
cos θi , ζ1 = 

4 παi T 
f c 

c 
, ζ2 = −4 παi T 

μ

c f s 
. Let 

 = [ χθ
1 . . . χθ

I , χ
v 
1 . . . χ

v 
I ] , (40) 

hen the CRB matrix for the parameter vector η is given by 

RB ( η) = [2 � (G 

H Q 

−1 G )] −1 . (41) 
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