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Summary 
 
Oil production optimization of petroleum reservoirs under uncertainty give rise to large-scale optimization 
problems.  
Ensemble-based methods for production optimization are used in combination with gradient-based optimization 
algorithms.  
Use of commercial-grade simulators able to handle real-scale reservoir models and compute the gradient by the 
adjoint method is essential for implementing such methods in real-life.  
However, the simulation time for a single ensemble model renders the problem computationally intractable. 
Therefore, model reduction is needed.  
We introduce a grid coarsening method that maintains the overall dynamics of the flow, by preserving the 
geological features of the model.  
In this paper, we present a software tool for oil production optimization and a semi-automated workflow for grid 
coarsening and property upscaling.  
The software tool integrates state-of-the-art optimization algorithms, ensemble-based optimization strategies and 
reservoir simulators with adjoint capability.  
The software is based on the Eclipse input file-format, which enables use of existing reservoir models for 
production optimization.  
This allows for oil production optimization of both black-oil and compositional flow models and brings model 
based production optimization a step closer to routinely implementation in reservoir management workflow.  
We present the workflow of the optimization software and numerical examples that demonstrates the application 
of ensemble-based production optimization. 
 
 
 



Introduction

With the modern reservoir characterization and geological modeling techniques geologists and engineers
build more and more detailed reservoir models. The increasing level of available data allows geologist
to build models that can account for the heterogeneity with increasing resolution. Geological reservoir
models encompass detailed heterogeneous geological information at multiple length scales in different
directions. Often geological models is of the size, 107 to 108 cells, which despite the computational
capabilities of modern computers is too large to simulate. To build reservoir models at a scale man-
ageable for computer simulation it is necessary to reduce the number of grid cells and upscale grid cell
properties, e.g. porosity and absolute permeability. Upscaling techniques that capture the heterogeneity
effects of a high-resolution model has been a long-time focus of the research community. The methods
encompass simple statistical averaging techniques as well as more sophisticated numerical flow-based
methods. Flow-based methods cover a range of techniques that solve a steady-state fluid flow problem
over a region of the grid with no source terms. Renard and De Marsily (1997) and Barker and Thibeau
(1997) provide reviews of upscaling techniques for permeability and pseudorelative permeabilities. The
typical size range of upscaled reservoir models is about, 105 to 106 cells, with simulation times on the
scale of hours. The industry uses these multi-phase reservoir simulation models for prediction purposes
including production optimization. Frequent simulation of modern reservoir models requires a consider-
able computational capabilities, even by today’s standards. Production optimization workflows require
a potentially large number of reservoir simulations, even when applying adjoint gradient-based meth-
ods (Brouwer and Jansen, 2004; Sarma et al., 2006). In many cases, the simulation time of renders the
direct use of high-fidelity models intractable. The computational burden of the optimal control prob-
lem solved in a deterministic production optimization procedure depends on the size of the simulation
model, the number of control variables and control intervals. Different reduced-order modeling methods
that enable approximate yet accurate simulation of complex models, has been proposed by van Doren
et al. (2005) and by Cardoso and Durlofsky (2010). In order to reduce the computational effort needed
in production optimization Oliveira and Reynolds (2015) propose the use of a hierarchical multiscale
method for coarsening the control interval parametrization, based on control value and gradient criteria.
This approach reduces the adjoint computation effort, but not the forward simulation run-time. Aliyev
and Durlofsky (2015) proposes a multilevel procedure for optimizing well-placement and well-controls.
The procedure utilizes a gradient-free particle-swarm optimization algorithm. Krogstad et al. (2016)
use a global upscaling procedure to compute a coarse model calibrated to specific flow scenarios and
applies an adjoint gradient-based optimization procedure.

In this paper, we consider reducing the computational impact of a high-fidelity model by applying a
coarsening and upscaling procedure to the high-fidelity model. The coarsening and upscaling proce-
dure is semi-automated and aims to simplify the upscaling procedure and reduce the turnover time. The
coarsening method seeks to preserve geological features important for capturing the flow dynamics of
the high-resolution model. The coarsening procedure partitions a fine scale grid by an index-based vec-
tor, similar to the method presented by Lie et al. (2017). To ensure flexibility in the choice of reservoir
simulators we only consider logically indexed grids, i.e. corner-point grids. Hence, grid properties such
as total volume is not preserved. We apply a local single-phase procedure for absolute permeability
upscaling. To capture the heterogeneous effects of the high-resolution model in the near-well regions we
apply the approximate coarse scale well model, proposed by Chen and Wu (2008) to upscale the well-
index of well-bore completions. In this way we, reduce the forward simulation time, while replicating
the behavior of the high-fidelity model to a sufficient degree for production optimization purposes. By
applying this procedure, we compute a hierarchy of coarsening/upscaling levels. We introduce a hi-
erarchical multilevel optimization procedure that optimizes an objective over the hierarchy of coarse
models. The optimization procedure integrates with the adjoint gradient-based constrained optimization
software tool RESOPT. RESOPT is an internally developed optimization software tool that integrates
commercial reservoir simulators and state of the art optimization software (Hørsholt et al., 2018). RE-
SOPT implements a number of optimization strategies for deterministic optimization and optimization
under uncertainty, e.g. robust optimization, mean-variance optimization, and conditional value at risk
optimization. RESOPT is based on the Eclipse input-file format. This allows for the use of existing
reservoir models for production optimization purposes. The software integration enables optimization
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of black-oil and compositional flow reservoir models.

The paper is organized as follows. We start by describing the system of equations that govern multi-
phase flow in porous media, the net present value objective and states the optimal control problem.
Next we describe the coarsening procedure, the grid property upscaling procedure and the well-index
upscaling procedure, followed by a description of the hierarchical multigrid optimization workflow. The
next part presents two numerical examples that demonstrates the optimization workflow in deterministic
water-flooding scenarios. The first example is a deterministic net present value optimization of the top
8-layers of the tenth SPE comparative solution project, SPE10 model 2(Christie and Blunt, 2001). The
second example is a rate-controlled optimization of the well-known Egg-model (Jansen et al., 2013).
The two cases represent different types of permeability, namely a highly heterogeneous permeability
field and a channeled permeability field. Finally we provide conclusions.

Reservoir simulation and optimal control problem

In this section, we state a general formulation of the system of differential algebraic equations for multi-
phase flow in porous media. We present the net present value function and the optimal control problem
for oil production optimization. Aziz et al. (2005) and Chen et al. (2006) provide a detailed description
of the general multi-phase flow model.

System of differential algebraic equations

The system of equations that describes the subsurface flow is in most simulators discretized in space by
the finite volume method and in time by the implicit Euler method. We denote the state vector as x(t) ∈
Rnx , the vector of algebraic variables as y(t)∈Rny , the vector of manipulated variables as u(t)∈Rnu , and
the vector of geological parameters as θ . u(t) is discretized by a zero-order-hold parametrization defined
by u(t) = uk, tk ≤ t ≤ tk+1,k = 0, . . . ,N−1, where tN = t f is the final time. After spatial discretization,
we write the model equations as the system of differential-algebraic equations:

x(t0) = x0, (1a)
G(x(t),y(t),θ) = 0, t ∈ [t0, t f ], (1b)
ẋ(t) = F(y(t),u(t),θ), t ∈ [t0, t f ]. (1c)

The temporal implicit Euler discretization gives the following system of non-linear equations

Rk+1 = Rk+1 (xk+1,yk+1,xk,uk;θ)

=

[
xk+1− xk−∆tkF (yk+1,uk,θ)

G(xk+1,yk+1,θ)

]
= 0,

(2)

for k ∈N = {0,1, . . . ,N−1}.

To allow for a more compact notation, we introduce the vectors, x̄ = (x1;x2; . . . ;xN ,y1;y2; . . . ;yN), R̄ =
(R0;R1; . . . ;RN−1), and ū = (u0;u1; . . . ;uN−1). In compact notation we write residual equations 2 as

R̄(x̄, ū,x0;θ) = 0. (3)

Net present value

We define the net present value over the life time of an oil reservoir as the function, Φ, of the states, x̄,
the operating trajectory, ū, the initial state, x0, and the the geological parameters, θ . In discrete time, we
write the net present value as

Φ(x̄, ū,x0;θ) =
N−1

∑
k=0

Jk (xk+1,uk;θ) , (4)
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where the discounted net present value, Jk, for the k‘th time interval is given by

Jk =
∆tk

(1+d)tk+1/tτ

[
roqOs,k+1 + rgqGs,k+1−

(
rwqWs,k+1 + rw,injqw,inj,k+1

)]
. (5)

∆tk, is the length of the k’th time interval, d is the annual discount factor, tτ is the discount time interval.
ro and rg are the sale prices for oil and gas. rw is the water production cost and rw,inj is the water
injection cost. The corresponding flow rates for oil, gas, water, and water injection are denoted as,
qOs,qGs,qWs,qw,inj.

Optimal control problem

The discrete-time constrained optimal control problem for production optimization is given by (Capolei
et al., 2012)

max
ū∈U

ψ = ψ (ū;x0,θ) , (6)

where the objective function is

ψ (ū;x0,θ) =

{
Φ(x̄, ū,x0;θ) : R̄(x̄, ū,x0;θ) = 0

}
. (7)

In this paper, we only consider linear constraints on the input. The constraints are bounds on controls,
rate of movement constraints, (rom), on controls to prevent ‘large‘ changes, and bounds on total injection
rates in each time step. We write the constraints as

U = {ū : ūmin ≤ ū≤ ūmax, ∆ūmin ≤ ∆ū≤ ∆ūmax, bl ≤ Āū≤ bu}. (8)

Black-box simulator

The optimization workflow we present in this paper is not dependent on any specific formulation and
solution method of the flow equations (1). This means we can treat the reservoir simulator as a black-box
function, S (ū;x0,θ). To be eligible for gradient-based production optimization purposes, a reservoir
simulator must fulfill the following requirements. Given the initial state, x0, an operating profile, ū, and
a geological realization vector, θ , it must at every time-step return the states, x̄, the net present value, ψ ,
and the gradient of the net present value with respect to the controls, ∇ūψ .

[x̄,ψ,∇ūψ] = S (ū;x0,θ). (9)

Upscaling/coarsening procedure

The oil production optimization workflow, we apply in this work uses a hierarchy of upscaled models of
a high-fidelity model. In this section, we outline the workflow of the coarsening and upscaling procedure
for constructing such models. We describe a practical grid-coarsening method, which for our purposes
preserve the geological features of the fine grid to a satisfactory degree. We apply local flow-based
upscaling for the absolute permeability and simple averaging of additive properties, e.g. porosity and
net to gross. To capture the effect of fine scale heterogeneity in the near well region, we upscale the
well-index.

Coarsening

The oil production optimization workflow, we apply in this work uses a hierarchy of upscaled models of
a high-fidelity model. In this paper, we only consider grids with logical i jk-indexing, i.e. Cartesian and
corner-point grids, where each grid cell has 6-faces. The i−index runs first, followed by the j−index
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and last by the k−index. For a grid orientated along the principal axes of a 3-dimensional coordinate
system, this is the definition of "normal reading order". A grid has a number of grid cells, Nc which is
the product of grid cells in each direction. Formally a grid consists of a set of i jk-indexed grid cells,
{cn}Nc

n=1,Nc = NxNyNz.

To construct a coarse grid based on a fine grid, {cn}Nfine
n=1 , we group the fine grid into a number of subsets

and amalgamate them into coarse grid cells, {cn}Ncoarse
n=1 ,Ncoarse = Nx,coarseNy,coarseNz,coarse. An amalga-

mated coarse grid is represented by a partitioning vector, p ∈ Nfine, that maps all fine grid cell into a
coarse grid cell, i.e. pi = j, if the fine grid cell, ci, belongs to coarse grid cell, c j. In principle, this
allows for grouping arbitrary selections of fine grid cells into a subset. However, we only allow amalga-
mation of neighboring cells in the fine grid. Since all coarse grid cells are limited to have only 6-faces,
the corner nodes consists of the outermost fine grid cell corner nodes. We note that this procedure does
not preserve the reservoir volume, but for the purpose of optimization, this is less important. Figure 1a
shows an illustration of coarsening of a fine grid. A simple way of computing the partitioning is to divide
the dimensions of the fine grid by a coarsening factor in each direction, (c fx,c fy,c fz). The coarse grid
dimensions are then computed by

(Nx,coarse,Ny,coarse,Nz,coarse) = (dNx,fine/c fxe,dNy,fine/c fye,dNz,fine/c fze) . (10)

This method is useful when there are no geological features, e.g. impermeable layers, horizons and
faults, to take into consideration. In the gridding process for a faulted reservoir the geologist/engineer
typically tries to align the grid with the faults. In this case, we take the faults into account when creating
the partition by identifying the direction and the, i jk−index of the faults. By applying these techniques,
we can construct coarse corner-point grids that preserve the geological features of a high-fidelity model
to a degree that is satisfactory for our purpose.

Flow-based upscaling

After the construction of a coarse-grid, the problem of populating the grid cell with properties, e.g.
net to gross, porosity and permeability remains. There exist numerous methods for upscaling these
properties. These methods includes simple averaging of properties over the fine grid to more advanced
methods, such as flow-based permeability upscaling. For high-level coarsening of multi-phase flow
systems, upscaling the relative permeability functions is often required. For a more detailed discussion
of these methods, we refer the reader to Barker and Thibeau (1997), and Renard and De Marsily (1997).

In this paper, we only consider upscaling of the grid properties, net to gross, porosity and absolute
permeability. We consider arithmetic average upscaling of the porosity and net to gross properties.
To upscale the absolute permeability we apply local single-phase flow-based method. By emulating a
laboratory setup, we compute each component in the permeability tensor separately. The setup applies
a pressure drop in each axial direction and keeps all other boundaries sealed. In the x−direction we
compute the upscaled permeability, K∗x in a coarse-grid cell as,

K∗x =
qx,outLx

LzLy(Pout −Pin)
, (11)

where, qx,out, is the flow through the boundary, Lx,Ly,Lz, are the cell dimensions, and Pin,Pout are the
pressures at the boundaries. Figure 1b shows a schematic illustration of the setup. The upscaled perme-
ability in the, y and z−direction is computed in a similar fashion.

Well-index upscaling

To capture the effects of the fine scale heterogeneous permeability in the near-well regions, we upscale
the well-index. We apply the ‘near-well arithmetic averaging’ method proposed by Chen and Wu (2008).
The basis of the method is analysis of the pressure solution for two-dimensional flow in homogeneous
porous media. The method applies arithmetic averaging of the effective permeabilities, Keff, along the
well trajectory within a coarse cell. We denote the fine scale permeability and the fine scale volume
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(a) Conceptual illustration of coarsening of a fine
grid. The fine grid has dimensions (6, 2, 2) and is
coarsened into a (3, 1, 1) grid, by a logical partition
vector.

(b) Schematic illustration of local flow-based up-
scaling of absolute permeability in the x−direction.

Figure 1 Conceptual illustrations of the coarsening and upscaling procedures.

Figure 2 Schematic illustration of near-well arithmetic averaging for a vertical well completion in a 
coarse cell.

along the well trajectory in a coarse cell as, Kfine,Vfine, respectively. Then the near-well averaging in a 
given direction is calculated by

Keff =
∑KfineVfine

∑Vfine
. (12)

Figure 2 shows an illustration of the near-well arithmetic averaging for a coarse grid cell with a vertical
well completion. The coarse scale well-index for a vertical well is then computed by inserting the
effective permeabilities into the Peaceman model:

ro =

(√
Ky,eff/Kx,eff∆x2 +

√
Kx,eff/Ky,eff∆y2

)1/2

(Ky,eff/Kx,eff)
1/4 +(Kx,eff/Ky,eff)

1/4 , (13a)

WIcoarse =
2π
√

Kx,effKy,eff∆z
ln(ro/rw)

. (13b)

We note that this is equivalent to computing the well-index by averaging the fine scale well-index com-
puted by the Peaceman model.

Hierarchical multigrid optimization workflow

In this section, we outline the workflow of the hierarchical multigrid optimization procedure used in this
paper. In the examples presented in this paper, we select the E300 reservoir simulator from Schlumberger
as the simulator and the Matlab optimization toolbox as the optimizer.
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𝑵
𝑷
𝑽

𝒖𝒐𝒑𝒕 𝒍𝒆𝒗𝒆𝒍 𝟑

Level-3

𝒖𝒐𝒑𝒕 𝒍𝒆𝒗𝒆𝒍 𝟑
𝐨𝐩𝐭𝐢𝐦𝐢𝐳𝐚𝐭𝐢𝐨𝐧

Level-2

𝒖𝒐𝒑𝒕 𝒍𝒆𝒗𝒆𝒍 𝟐
𝐨𝐩𝐭𝐢𝐦𝐢𝐳𝐚𝐭𝐢𝐨𝐧

Level-1

𝒖𝒐𝒑𝒕 𝒍𝒆𝒗𝒆𝒍 𝟏
𝐨𝐩𝐭𝐢𝐦𝐢𝐳𝐚𝐭𝐢𝐨𝐧

𝒖𝒐𝒑𝒕 𝒃𝒂𝒔𝒆 𝒍𝒆𝒗𝒆𝒍𝐨𝐩𝐭𝐢𝐦𝐢𝐳𝐚𝐭𝐢𝐨𝐧

Base-level

Figure 3 Illustration of the hierarchical multigrid optimization workflow.

Optimization workflow

The optimization workflow presented in this paper uses a  hierarchy of coarse l evel m odels, based on 
the high-fidelity m odel. In the f ollowing, we refer to the high-fidelity model as  the basecase and the 
increasing coarse model as levels, starting with the next finest level as l evel-1. We use the coarsening-
upscaling procedure presented in the previous section to produce a hierarchy of coarse level models. The 
optimization procedure starts at the coarsest-level. Starting with an initial guess of the set of controls, 
we perform production optimization on the coarsest-level. Optimization on the subsequent levels uses 
the optimal set of controls computed at the previous level as start guess. At each level, we evaluate the 
optimal solution at the base-level. The optimization procedure can be stopped at any level depending 
on the aim of the optimization, time limitations and the computational resources available. Figure 3 
illustrates the concept of the hierarchical multigrid optimization workflow.

Case studies

In this section, we present two case studies that demonstrate the hierarchical multigrid optimization 
workflow.

The first case demonstrates the workflow on the top 8-layers of the SPE10 model 2 (Christie and Blunt, 
2001). The original aim of SPE10 model 2 was to compare coarsening and upscaling techniques, which 
makes it an ideal candidate model for testing the methods presented in this paper.

The second case is the Egg-model, which is the well-known production optimization benchmark test-
case presented by Jansen et al. (2013). The Egg-model was first introduced in the robust optimization 
study by van Essen et al. (2009). It has been used as a benchmark test-case for optimal control method-
ologies in numerous publications, e.g. by Fonseca et al. (2014), Siraj et al. (2015), Fonseca et al. (2016) 
and by Codas et al. (2016).

SPE10 model 2

The model reservoir model has the physical dimensions (1200 × 2200 × 16) ft. The model is discretized 
into an equidistant Cartesian grid, with (Nx,Ny,Nz) = (60,220,8) cells. The top layers is a Tarbert 
formation with a highly heterogeneous permeability field. The horizontal permeability ranges from 0-
20000 mD with a mean of 364.5 mD and standard deviation of 1443.4 mD. The vertical permeability 
equals the horizontal multiplied by 0.3. The porosity has an average value of 0.175, and ranges from 
0-0.5. The reservoir has a five-spot well pattern with four producers l ocated i n t he r eservoir corners
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Table 1 Reservoir data for the top eight-layers of the SPE10 model2.

Description symbol value metric
physical dim (x,y,y) (1200,2200,16) [ft]
grid-cell dim (∆x,∆y,∆z) (20,10,2) [ft]
water compressibility cw 1.0×10−6 [psia−1]
rock compressibility cr 1.0×10−6 [psia−1]
pore volume Vpore 1.357×106 [rb]
oil in place Voip 874.93×103 [rb]
permeability range (kx,ky) [0,1200] [mD]
porosity range σ [0,1200] -
bubble-point pressure Pb 3600 [psia]
datum pressure Pr 3600 [psia]
datum depth dr 9000 [ft]
oil water contact OWC 9100 [ft]
gas-oil contact GOC 8800 [ft]
average water saturation Swi 0.355 -

and one water injector completed in middle of the reservoir. All wells are vertical and completed in all
eight layers of the reservoir. Figure 4a shows the reservoir model. In contrast to the original model we
here consider flow of a black-oil type fluid, namely the black-oil fluid from the SPE09 model (Killough,
1995). Table 1 shows the reservoir data.

Optimization parameters

We have performed a deterministic net present value optimization of the SPE10 model. Reservoir pro-
duction is simulated for 3000 days in a water-flooding scenario. The simulation time interval is divided
into 100 control time-steps, N, of equal length, ∆t = 30days. The bottom-hole pressures in all wells are
subject to control. This gives a total of 500 controls, ū. The bottom-hole pressure in the injection well
are bounded to the interval [3800,5500] psia and the producers are bounded in the interval [1700,3500]
psia. The bottom-hole pressures are constrained by a rate of movement of 30 psia between control inter-
vals. There is no imposed constraints on the well rates and the net present value is not discounted. The
optimization procedure utilizes an active-set algorithm and is initialized with a water injection pressure
of 4000 psia and producer pressure of 2000 psia. Table 2 shows the optimization parameters.

Model hierarchy

We have constructed three coarsening/upscaling levels of the SPE10 model. For the coarsening proce-
dure we apply three levels of coarsening factors, (c fx,c fy,c fz), namely (2,2,2),(4,4,4) and (8,8,8).
Table 3 shows the details of the coarsening procedure. The basecase properties are upscaled as decribed
in section . The porosity is upscaled by arithmetic averaging. The absolute permeability is upscaled by
the local flow-based method. The well-index is not upscaled, but is computed by the reservoir simulator
using the standard Peaceman model. Figure 4b shows the SPE10 model hierarchy with the upscaled
horizontal permeability.

Optimization procedure

We demonstrate the hierarchical multigrid optimization procedure on four constructed levels of the
SPE10 model. As described previously, the hierarchical optimization starts with optimization on level-
3. The computed set of optimal controls, ū∗opt,level-3, is passed on to level-2 as initial controls, ūinit,
where a new optimal set of controls, ūopt,level-2 is computed. This procedure continues all the way
to the base-case level. After applying this procedure we end up with four sets of optimal controls,
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Table 2 Optimization parameters for the deterministic net present value optimization of the top 8 layers 
of SPE10 model 2.

Description symbol value metric
strategy Deterministic - -
simulation time t f 3000 [day]
number of control steps N 100 -
length of control steps ∆t 30 [day]
number of controlled wells nw 5 -
number of controls nu 500 -
initial controls uinit - [psia]

injector uinj,init 4000 [psia]
producers uprod,init 2000 [psia]

lower bound on controls umin - [psia]
injector uinj,min 3800 [psia]
producers uprod,min 5500 [psia]

upper bound on controls umax - [psia]
injector uinj,max 1700 [psia]
producers uprod,max 3500 [psia]

rom constraint ∆ūmin,∆ūmax 30 [psia]
discount factor d 0.0 -
fluid prices: rα - [US$/SVOL]

oil ro 45.00 [US$/STB]
gas rg 0.0001 [US$/SCF]
water rw 10.00 [US$/STB]
water injection rw,in j 2.00 [US$/STB]

algorithm active-set - -
max iterations maxit 50 -
max function evaluations maxit 150 -
tolerance on optimimality tolopt 10−6 -
tolerance on step size tol∆u 10−6 [psia]
tolerance on objective tol∆u 103 [US$]

Table 3 SPE10 model grid coarsening levels

level coarsening factor grid dimensions number of cells
base-case - (60,220,8) 105600
level-1 (2,2,2) (30,11,4) 13200
level-2 (4,4,4) (15,55,2) 1650
level-3 (8,8,8) (8,28,1) 512

ū∗opt,level-3, ūopt,level-2, ūopt,level-1, ūopt,base-level. Furthermore we optimize all levels individually with initial
controls, ūinit, given in table 2, to obtain three additional sets of optimal controls. We refer to these by
the superscript *, hence the optimal controls are denoted, ū∗opt,level-2, ū

∗
opt,level-2, ū

∗
opt,base-level.

In-order to validate the results we evaluate all optimal sets of controls by simulation in the Schlum-
berger E100 reservoir simulator. This gives us the E100-net present value for all levels. To assess the
effectiveness of the strategies, we simulate a reactive-strategy case in E100 and compute the net present
value. The reactive-strategy case is simulated using the initial controls, ūinit, where a production well
is shut if it becomes uneconomical, i.e. if the watercut rises above 0.88. Table 4 show the results from
the hierarchical multigrid optimization and the optimization with the initial controls, ūinit, of all levels
individually. Figures 5a and 5b show iteration versus net present value, including the evaluation in E100,
for the hierarchical optimization procedure and the individual optimizations respectively. The results
for the hierarchical optimization approach show that the net present value evaluated at the high fidelity
model (E100) increases at every level in the hierarchy, as expected. There are clear jumps in the net
present value when moving from one level to the next. This is expected since the coarsening/upscaling
procedure does not preserve volumes, e.g. oil in place. However, this is not too important as long as
the coarse levels capture the dynamics of the flow at the base-level to a reasonable degree. Figure 7
shows the optimal controls for each well at all coarsening levels. The figure clearly shows that the op-
timal controls computed at the coarsest level propagates through to the base-level while approximately
maintaining the same shape. This suggest that the flow dynamic are preserved to a high degree at all
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(a) Horizontal permeability field and the 5-spot
well-pattern.

(b) Base-case and three coarsening levels with
coarsening factors: (2,2,2),(4,4,4),(8,8,8).

Figure 4 Top 8 layers of the SPE10 model 2.

Table 4 SPE10 hierarchical multigrid optimization results.

Level # iterations # simulations elapsed time [hour] flag NPV [MMUS$] E100
level-3* 37 76 0.2338 ∆ū 9.56 8.15
level-2 14 27 0.1196 ∆ū 9.41 8.24
level-1 7 17 0.3941 ∆ū 8.85 8.35
base-level 3 17 13.0770 ∆ū 8.38 8.43
level-2* 49 98 0.4443 ∆ū 9.40 8.32
level-1* 29 57 1.6590 ∆ū 8.87 8.41
base-level* 13 53 44.7560 ∆ū 8.06 8.16
reactive-strategy 7.81

coarsening levels. However, there is no guarantee that the hierarchical approach will provide a higher
net present value at all levels than the corresponding initial controls optimization at the same level.

Figure 6 shows the elapsed time versus net present value for all performed optimizations. The figure
shows that the hierarchical approach provides the best result at the base-level (shortest computation
time and highest NPV). At all levels, the hierarchical optimization converges using fewer iterations and
thus computation time. However the initial control optimization of both level-2* and level-1* obtains a
higher net present value than the hierarchical optimizations at the same levels. This underlines that the
optimization is sensitive to the choice of initial controls. In all cases, optimization leads to a significantly
higher net present value than the reactive strategy case.
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(a) Hierarchical multigrid optimization of all lev-
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simulation in E100.
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Figure 5 Optimization of the SPE10 model 2. All points denoted E100 are placed arbitrary on the 
iteration axis.
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Figure 6 Optimization of the SPE10 model, computation time versus net present value evaluated in 
E100.
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Figure 7 Optimization of the SPE10 model. Optimal controls for all levels and computation time versus net 
present value evaluated in E100.

Egg-model

The Egg-model is a three-dimensional synthetic two-phase flow reservoir m odel. The model consist of 
101 realizations of the permeability field. In this paper, we consider only the first of these fields.

The physical reservoir dimensions is, (480,480,28)m. It is discretized on a Cartesian grid with (Nx,Ny,Nz) = 
(60,60,7) cells. All grid cells have the size, (∆x,∆y,∆z) = (8,8,4) m. The grid has a total of 25.200 
cells where 18553 are active. The reservoir has uniform pososity, φ = 0.2, and a highly channelized 
permeability field. The model has a  t otal of 12 vertical wells of which e ight a re water i njectors and 
four are producers. All well-bores are vertical and are completed throughout all seven layers in the
z−direction. Figure 8a shows the permeability field for the realization used in the optimization and the 
well locations. The reservoir is simulated with the original two-phase fluid. Table 5 shows the reservoir 
model parameters. Jansen et al. (2013) provides a full description of the model.
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Table 5 Egg-model; standard reservoir and fluid data.

description symbol value Metric
grid-cell height ∆z 4 [m]
grid-cell length/width ∆x,∆y 8 [m]
porosity, uniform φ 0.2 -
oil compressibility co 10−5 [1/bar]
water compressibility cw 10−5 [1/bar]
rock compressibility cr 0 [1/bar]
viscosity oil µo 5 [cp]
viscosity water µw 1 [cp]
rel. perm end point, oil k0

ro 0.8 -
rel. perm end point, water kw

ro 0.2 -
Corey exponent, oil no 4.0 -
Corey exponent, water nw 3.0 -
residual oil saturation Sor 0.1 -
connate-water saturation Swc 0.2 -
capillary pressure Pc 0 [bar]
initial reservoir pressure Pri 400 [bar]
initial water saturation Swi 0. -
bhp producer wells Pbh 395 [bar]
well-bore radius rw 0.1 [m]

Optimization parameters

The deterministic optimization is performed on the first realization of the permeability field (see Fig-
ure 8a). Reservoir production is simulated for 3600 days with 120 control time-steps of length, ∆t = 30
days. The water injection rate in all injector wells are subject to control. This gives a total of 960
controls, ū. The bottom-hole pressures in the producers are kept constant at 395 bar throughout the
simulation. All injection rates are bounded in the interval [0, 80] m3/day and are not allowed to change
with a rate greater than, 5 m3/day between control steps. The discount rate, d in (5) is set to 10%. The
optimization is initialized with a water injection rate of, 79.0 m3/day. The convergence tolerances for
the KKT-optimality conditions, tolopt and the step-size, tolx are both set to 10−6.

The optimization is performed by first applying a SQP-algorithm for a limited number of iterations
and then switching to an interior-point algorithm until convergence. The number of SQP-iterations
depends on the coarsening-level. The SQP-algorithm is more aggressive and tends to achieve good
results in relatively few iterations. However it uses many line-search simulations especially when close
to convergence. The interior-point algorithm on the other hand tends to apply relatively small changes
to the controls, but uses fewer line-search simulations. Hence, by combining the algorithms we attempt
to minimize the number of optimization iterations.

Model hierarchy

As in the previous example, we have constructed three coarsening/upscaling levels of the Egg-model.

For the coarsening procedure we apply three levels of coarsening factors, (2,2,1),(4,4,1), and (8,8,1).
Thus keeping the resolution in the vertical direction constant. To determine whether a coarse cell is
active or not, we consider the fine cells that it contains. If half or more of the fine cells contained in the
coarse cell are active the coarse cell is set to be active and otherwise the coarse cell is set to be in-active.
We note that this does not preserve the grid volume, but as mentioned earlier this is not an issue for the
purpose of the optimization procedure. Table 7 shows the details of the coarsening procedure. The base-
case properties are upscaled as described in section . The porosity is uniform and hence no upscaling
is required. The absolute permeability is upscaled by the local flow-based method. In this example, the
well-index is upscaled and written directly to the simulator. Figure 8b shows the Egg-model hierarchy
with the upscaled horizontal permeability.
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Table 6 Egg-model; optimization parameters.

Description symbol value Metric
optimization strategy deterministic - -
number of control steps N 120 -
length of control steps ∆t 30 [day]
controls, water injection rates qwi - [m3/day]
bound constraints qwi,min 0.2 [m3/day]

qwi,max 80.0 [m3/day]
rate of movement constraints rom ±5 [m3/day]
initial controls uinit 79.0 [m3/day]
prices rα - [US$/m3]

ro 283.04 [US$/m3]
rw 37.74 [US$/m3]
rwi 12.58 [US$/m3]

discount factor d 10% -
optimization algorithm SQP, interior-point - -
optimality tolerance tolopt 1e-6 -
step-size tolerance tolx 1e-6 -

Table 7: Egg-model grid coarsening levels.

Level coarsening factor grid dimensions # cells active cells
base-case - (60,60,7) 25200 18553
level-1 (2,2,1) (30,30,7) 6300 4736
level-2 (4,4,1) (15,15,7) 1575 1198
level-3 (8,8,1) (8,8,7) 448 344

Optimization procedure

The hierarchical optimization procedure starts at level-3, where the optimization is initiated with, ūinit,
stated in Table 6. The optimal controls, ū∗opt,level-3, is passed on to the next level where it is used as
the initial guess. This continues to the base-level. Hence we get four sets of optimal controls denoted,
ū∗opt,level-3, ūopt,level-2, ūopt,level-1, ūopt,base-level. Again we optimize all levels using the initial controls, ūinit,
to get the optimal controls, ū∗opt,level-2, ū

∗
opt,level-1, ū

∗
opt,base-level. All sets of optimal controls are evaluated

by simulation at the base-level in the E100 simulator and is compared to a reactive-strategy simulation.

As described previously we apply a combination of the SQP and the interior-point optimization algo-
rithms. The limit of iterations and simulations depends on coarsening level and adapts to the tolerances
in Table 8. For validation purposes, we evaluate the obtained optimal control sets, by simulation in the
Schlumberger E100 reservoir simulator. Furthermore, we run a reactive-strategy case, also simulated in
E100. The reactive-strategy case is simulated using the initial controls, ūinit, where a production well
is shut if it becomes uneconomical, i.e. the water-cut rises above 0.88. Table 9 shows the results from
all levels for both the hierarchical multigrid optimization procedure and for the optimization with initial

(a) Well locations and permeability field of first re-
alization.

(b) Base-case and three coarsening levels, with
coarsening factors: (2,2,1),(4,4,1),(8,8,1).

Figure 8 Egg-model hierarchy and well-pattern.
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Table 8 Egg-model combined SQP and interior-point strategy tolerances.

SQP interior-point
level max it max sim max it max sim
level-3* 50 300 100 300
level-2 25 300 100 300
level-1 10 300 50 300
base-level 10 300 25 300
level-2* 50 300 100 300
level-1* 50 300 50 300
base-level 50 300 50 300

Table 9 Egg-model hierarchical multigrid optimization results.

level # iterations # simulations elapsed time [hour] flag NPV [MMUS$] E100
level-3* 46 351 2.079 max sim 89.7 81.6
level-2 27 261 1.313 ∆ū 90.8 85.2
level-1 38 138 1.131 max it 87.8 88.9
base-level 19 193 8.592 max it 89.2 90.4
level-2* 66 318 1.644 ∆ū 90.8 85.0
level-1* 67 370 3.532 max sim 87.4 88.4
base-level* 38 248 11.527 ∆ū 88.7 89.8

controls, ūinit. Figures 9a and 9b shows iteration versus net present value, including the evaluation in
E100, for the hierarchical optimization procedure and the individual optimizations respectively. As in
the SPE10 example, we see clear jumps in the objective value when moving from one level to the next.
This is partially an effect of the fact that the coarsening/upscaling procedure do not preserve volumes.
In addition, the coarser a level is, the capture of the flow dynamic of the high-fidelity model becomes
worse. However, this is expected and not significant as long as we experience an increasing objective
value, when evaluated at the high-fidelity level.

Evaluation of the optimal controls computed during the hierarchical multigrid optimization procedure,
shows that the net present value increases at every level. The same trend is showing in the optimizations
using, ūinit, as initial controls. Optimization at the coarsest level, level-3*, is not able to provide a net
present value higher than that obtained by the reactive-strategy case.

Figure 10 shows the injector rate controls computed at all levels by the hierarchical multigrid optimiza-
tion procedure. There is some similarities of the controls throughout the levels, but it is not as significant
as for the SPE10 case. These similarities increases for the finer levels. This suggest that the difference
in the flow dynamic between the layers decreases for finer grid resolution as expected. Figure 11 shows
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Figure 11 Optimization of the Egg-model, computation time versus net present value evaluated in E100.

elapsed time versus net present value for all level optimizations. At all levels we see that the hierarchical 
approach provides a higher net present value than the optimization using the initial controls, ūinit, at the 
corresponding level. The shape of the elapsed time versus net present value curve is close to the ideal as 
depicted in the conceptual illustration in Figure 3. We partially credit this to the relatively simple two-
phase, oil-water fluid model, for which the single-phase flow-based upscaling method is  better suited.

Conclusion

We have developed a hierarchical multigrid optimization procedure for oil production optimization. The 
base of the procedure is the Eclipse file-format, which enables the use of existing reservoir models. The 
procedure uses a partitioning of a high-fidelity grid to compute a number of increasing coarse level grids 
with upscaled properties. A gradient-based optimization software tool, (RESOPT) perform optimization 
on the hierarchy of models. The optimization procedure starts on the coarsest level and uses the optimal 
solution as the start guess on the next level. We demonstrate the optimization workflow on the SPE10 
model 2. The developed procedure significantly reduces the both the simulation run time and the number 
of performed optimization iterations. By applying this workflow, we bring implementing optimization 
of industry scale reservoirs for use in reservoir management decisions a step closer.
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