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SUMMARY

Complex systems are made up of many interconnected components. The interactions

between components further produce emerging complex collective behaviors. In most

cases, a complex system can be represented as a network in which the nodes represent

the elements and the connected links illustrate the interactions. The spreading process

is one of the most important dynamics in complex networks and systems. Since 2000,

scientific findings related to spreading models and complex networks are experiencing

a boom. Quantum computers are also complex systems. The development of quantum

computing is to bring qualitative change to many fields by solving some problems faster

than classical computers. However, during quantum computing, errors are spreading in

the quantum circuits and accumulated with time.

The first part of this dissertation focuses on the epidemic spreading in complex

networks and systems. Dynamical processes running on different networks behave

differently, making reconstructing the underlying network from dynamical observations

possible. In Chapter 2, we focus on inferring network properties from the dynamics of

a susceptible-infected-susceptible (SIS) epidemic. Different from the previous works

that based on the complete infection data of each node, we investigate what network

properties can be inferred only based on the epidemic prevalence, i.e., the average fraction

of infected nodes.

The recent Coronavirus disease 2019 (COVID-19) outbreak, which is caused by Severe

Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2), asks for a precise understand-

ing of the transmission mechanisms of this virus among people. Different compartmental

epidemic models are applied or proposed to fit and forecast the pandemic. In Chapter 3,

we discover significant reporting delays in COVID-19 data, especially the daily recovered

data. It is essential to consider the reporting delays in forecasting the COVID-19 pan-

demic. Another main topic about the COVID-19 pandemic is how to efficiently control

and suppress the pandemic. Although many strategies have been applied to flatten the

epidemic curves, it is still challenging to efficiently reduce mortality. Chapter 4 uses a

two-population Susceptible-Infected-Removed (SIR) model to investigate the COVID-19

spreading when the connection between elderly and non-elderly individuals is dimin-

ished due to the high mortality risk of older people. The efficient strategies to reduce

mortality are further discussed in this chapter.
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xii SUMMARY

The Markovian SIS epidemic on complete graphs can be exactly reduced to the birth-

and-death process. However, the birth-and-death approximation for random graphs, e.g.,

Erdős–Rényi (ER) random networks, could lead to relatively large errors. In Chapter 5,

to lessen the approximation error, we propose a spectral clustering SIS approximation

(SCSA), which combines the spectral clustering of the Markov graph and the birth-and-

death approximation.

The second part of this dissertation, as shown in Chapter 6, presents an exact study of

an error accumulation model for multi-qubit quantum circuits using techniques from the

fields of probability theory and operations research. By modeling the error accumulation

process in quantum circuits using two coupled Markov chains, we can capture a weak

form of time-dependency between errors in the past and future analytically. By relating

the error probabilities to so-called hitting times, the presented approach can calculate

probability distributions for a wide class of error measures precisely, deal with multi-qubit

scenarios, and allow for fairly generic error distributions: for example, it can handle errors

that are gate- as well as time-dependent. The availability of an analytical expression

for the accumulation of errors also allows us to proceed with second-tier optimization

methods: we illustrate how simulated annealing can be combined with our formulae to

tailor-make circuits with lower error accumulation rates based on the error distributions

of one’s experiment.



SAMENVATTING

Complexe systemen zijn opgebouwd uit vele onderling verbonden componenten. De

interacties tussen de componenten leiden tot complexe collectieve gedragingen. In de

meeste gevallen kan een complex systeem worden voorgesteld als een netwerk waarin de

knopen de elementen voorstellen en de verbonden links de interacties illustreren. Het

spreidingsproces is een van de belangrijkste dynamieken in complexe systemen. Sinds

2000 beleven wetenschappelijke bevindingen in verband met verspreidingsmodellen

en complexe netwerken een hausse. Kwantumcomputers zijn ook complexe systemen.

De ontwikkeling van quantumcomputing moet op vele gebieden een kwalitatieve ver-

andering teweegbrengen door sommige problemen sneller op te lossen dan klassieke

computers. Echter, tijdens kwantumcomputing verspreiden fouten zich in de kwantum-

circuits en stapelen zich op met de tijd.

Het eerste deel van dit proefschrift richt zich op de epidemieverspreiding in complexe

netwerken en systemen. Dynamische processen die op verschillende netwerken draaien

gedragen zich verschillend, waardoor reconstructie van het onderliggende netwerk uit

dynamische waarnemingen mogelijk is. In hoofdstuk 2 richten we ons op het afleiden

van netwerkeigenschappen uit de dynamica van een susceptible-infected-susceptible

(SIS) epidemie. We onderzoeken welke netwerkeigenschappen kunnen worden afgeleid

op basis van de epidemieprevalentie, d.w.z. de gemiddelde fractie van geïnfecteerde

knooppunten.

De recente uitbraak van Coronavirusziekte 2019 (COVID-19), die veroorzaakt wordt

door Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2), vraagt om een

nauwkeurig begrip van de transmissiemechanismen van dit virus onder mensen. Ver-

schillende compartimentele epidemische modellen worden toegepast of voorgesteld om

de pandemie in te passen en te voorspellen. In hoofdstuk 3 ontdekken we aanzienlijke

vertragingen in de rapportage van COVID-19 gegevens, met name de dagelijks herstelde

gegevens. Het is essentieel om de vertragingen in de rapportage in overweging te nemen

bij het voorspellen van de COVID-19 pandemie. Een ander belangrijk onderwerp in

verband met de COVID-19 pandemie is hoe de pandemie efficiënt te controleren en te on-

derdrukken. Hoewel veel strategieën zijn toegepast om de epidemiecurven af te vlakken,

is het nog steeds een uitdaging om de mortaliteit terug te dringen. Hoofdstuk 4 gebruikt

een twee-populatie Susceptible-Infected-Removed (SIR) model om de verspreiding van

COVID-19 te onderzoeken wanneer de verbinding tussen oudere en niet-oudere indivi-

xiii



xiv SAMENVATTING

duen verminderd is door het hoge sterfterisico van ouderen. De efficiënte strategieën om

de mortaliteit te verminderen worden verder besproken in dit hoofdstuk.

De Markoviaanse SIS-epidemie op volledige grafiek kan exact worden herleid tot het

geboorte-en-doodsproces. De geboorte-en-dood benadering voor willekeurige grafiek,

b.v. Erdős-Rényi (ER) willekeurige netwerken, kan echter tot relatief grote fouten leiden. In

Hoofdstuk 5, om de benaderingsfout te verminderen, stellen we een spectrale clustering

SIS benadering (SCSA) voor, die de spectrale clustering van de Markov-grafiek en de

geboorte-en-dood benadering combineert.

Het tweede deel van dit proefschrift, zoals weergegeven in Hoofdstuk 6, presenteert

een exacte studie van een foutenaccumulatiemodel voor multi-qubit kwantumcircuits

met behulp van technieken uit de domeinen van de waarschijnlijkheidsrekening en be-

sliskunde. Door het foutaccumulatieproces in kwantumschakelingen te modelleren met

behulp van twee gekoppelde Markovketens, kunnen we een zwakke vorm van tijdsafhan-

kelijkheid tussen fouten in het verleden en in de toekomst analytisch vastleggen. Door

de foutkansen te relateren aan de zogenaamde inslagtijden, kan de voorgestelde bena-

dering de kansverdelingen voor een brede klasse van foutmaten nauwkeurig berekenen,

multi-qubit scenario’s behandelen, en vrij generieke foutverdelingen toestaan: zo kan

zij bijvoorbeeld fouten behandelen die zowel gate- als tijdsafhankelijk zijn. De beschik-

baarheid van een analytische uitdrukking voor de accumulatie van fouten stelt ons ook

in staat om verder te gaan met tweederangs optimalisatiemethoden: we illustreren hoe

gesimuleerde annealing gecombineerd kan worden met onze formules om circuits op

maat te maken met lagere accumulatie van fouten op basis van de foutverdelingen van

iemands experiment.



1
INTRODUCTION

Spreading processes are ubiquitous in the real world, including the spread of disease

among people or animals, the spread of computer viruses in Email networks, the spread of

news and rumors in social media, the cascading failure of power grids, etc. The most basic

way to model the spreading processes in complex systems are compartment models [1].

Many complex systems are represented as networks, where nodes represent individuals

and links indicate the interactions between nodes [2]. Quantum computers are also

complex systems. During quantum computing, errors spread in the quantum circuits and

are accumulated with time [3].

This dissertation focuses on the Markov processes in which the future state is solely

determined by the current state. The Markovian SIS epidemic in complex networks and

the Markovian error accumulation process in quantum circuits are all continuous-time or

discrete-time Markov chains [4]. The Markov theory can further be applied to study these

Markovian spreading processes in complex networks and systems.

1.1. COMPARTMENTAL EPIDEMIC MODELS

The Susceptible-Infectious-Recovered-Dead (SIRD) model [5, 2, 6, 7, 8] and their exten-

sions are widely applied to describe the dynamics of the COVID-19 pandemic. The SIRD

model consists of four compartments [9, 10, 11]: the fraction of susceptible individuals (S),

the fraction of actively infected individuals (I ), the fraction of recovered individuals (R)

and the fraction of deceased individuals (D). There are transition rates between compart-

ments. Specifically, the transition rate from S to I is βSI , where β denotes the infection

1
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rate; the transition rates from I to R and D are respectively γr I and γd I , where γr denotes

the recovery rate and γd denotes the deceased rate. For the COVID-19 pandemic, more

realistic compartments, e.g., the quarantine state [12] and the asymptomatic infected

state [13], are further considered.

The reporting delay of cases should be eliminated before fitting the real daily infection,

recovery and death data by epidemic models. The reporting delays for real epidemic data

occur due to many reasons, e.g., the patient delay, the diagnosis delay and the public

health authorities (PHA) delay [14]. The reporting delays of infections are found to be

significant for many infectious diseases [14, 15]. Specifically, the reporting delays of

infections for some diseases, e. g., Hepatitis B, Shigellosis and Salmonella, can take on

average 2-3 weeks [14, 16]. The cases for some diseases, e. g., Hepatitis A, Measles and

Mumps, are usually reported after eight days [14]. The median diagnosis delay for Malaria

is around four days [17]. Research on the Middle East Respiratory Syndrome CoronaVirus

(MERS-CoV), a kind of virus similar to SARS-CoV-2, found a time difference between the

symptom onset and confirmation around four days [18]. Recent research on COVID-19

reveals significant reporting delays of infections for China [19, 20, 21, 22, 23, 24], Italy [25],

Germany [26, 27], Singapore [28], the USA [29] and the UK [30].

1.2. SIS EPIDEMICS IN COMPLEX NETWORKS

In Markovian Susceptible-Infected-Susceptible (SIS) epidemic processes on networks

[31, 32, 33, 34], both the infection process per link and the curing process are Poisson

processes with rates β and δ. We can apply the continuous-time Markov chain to exactly

describe the SIS epidemic processes on networks. The network infection state at any time

t in the Markov chain can be represented by a N ×1 vector with elements xk ∈ {0,1} for

k ∈ {1,2, · · · , N }, where k is a label of a node and xk is the state of node k. Furthermore,

xk = 0 if node k is susceptible to be infected and xk = 1 if node k is infected. Since each

node has two possible states, there are 2N possible network infection states in this Markov

chain. It is infeasible to calculate the exact SIS prevalence due to the huge state space for

large networks. Hence approximation methods with much lower complexity are required.

Network reconstruction is to infer the underlying networks based on the observations

of an epidemic outbreak [35]. Nowadays, most network-reconstruction related papers

focus on reconstructing the underlying graphs by measuring the time-dependent dynam-

ical state of each node [36, 37, 38, 39, 40, 41, 42, 43, 44]. With the complete dynamics

of each node, the network may be approximately reconstructed by different heuristic

algorithms, e.g., the Bayesian methods [45, 46], the conflict-based method [34], statistical

inference based method [47] and the compressed sensing or lasso methods [35]. Apart

from reconstructing simple networks, there are many works on the reconstruction of the
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stochastic temporal networks [48], multilayer networks [49], weighted networks [50] and

directed networks [51]. All of the above methods are based on the data from all or at least

most nodes, but in real scenarios, individual-level observations of spreading are hard to

obtain while most of the epidemic data are population-level [52, 53].

1.3. ERROR ACCUMULATION IN QUANTUM CIRCUITS

The development of a quantum computer is expected to revolutionize computing by

being able to solve hard computational problems faster than any classical computer [3,

54, 55]. However, present-day state-of-the-art quantum computers are prone to errors

in their calculations due to physical effects such as unwanted qubit–qubit interactions,

qubit crosstalk, and state leakage [56]. Minor errors can be corrected, but error correction

methods will still be overwhelmed once too many errors occur [57, 58, 59]. Quantum

circuits with different numbers of qubits and circuit depths have been designed to imple-

ment algorithms more reliably [60] and the susceptibility of a circuit to the accumulation

of errors remains an important evaluation criterion.

1.4. RESEARCH QUESTIONS

This dissertation aims to study the application of techniques from epidemics, complex

networks and probability theory to resolve problems about the actual spreading processes

in complex networks and systems. The main questions considered in this dissertation

are:

Chapter 2: What network properties can be inferred only based on the epidemic

prevalence data?

Chapter 3: Are there significant reporting delays in COVID-19 data? If so, to what

extent can the reporting delays affect the forecast accuracy?

Chapter 4: What’s the effect of the reduction of connections between young and old

people due to the high mortality rate for the elderly on the epidemic spreading? How can

we efficiently reduce mortality in the COVID-19 pandemic?

Chapter 5: The birth-and-death approximation is a method to approximate the

Markovian SIS epidemics on networks. How can we further improve the approxima-

tion accuracy? What’s the relationship between the size of reduced state space and the

approximation accuracy?

Chapter 6: How to exactly model the accumulation of Markovian errors in multi-qubit

quantum computations? How to design new quantum circuits to lower the rate of error

accumulation?
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1.5. CHAPTER OVERVIEW

There are seven chapters in this thesis. The key chapters can be split into two parts. Part I

(Chapters 2-5) focuses on the epidemic spreading in complex networks and systems. Part

II (Chapters 6) studies the error accumulation in quantum circuits.

In Chapter 2, we focus on the problem of inferring network properties from the

dynamics of an SIS epidemic and we assume that only the epidemic prevalence curve, i.e.,

the average fraction of infected nodes, is given. This chapter first studies what network

properties can be inferred if we know the network type. Next, a simulated annealing

link-rewiring algorithm, called SARA, is proposed to obtain an optimized network whose

prevalence is close to the benchmark. The output of the algorithm is applied to classify

the network types.

In Chapter 3, by analyzing the epidemic models and the COVID-19-related infection,

recovery and death data, we discover significant reporting delays in reported data, es-

pecially the recovery data. The reporting delays are found to be different for different

countries. We further demonstrate that accounting for reporting delays can substantially

improve the accuracy to forecast the COVID-19 incidence.

In Chapter 4, we find that reducing connections between the young and old popu-

lations can delay the death curve but cannot reduce the final mortality. We propose a

merged Susceptible-Infectious-Removed (SIR) model, which advises elderly individuals

to interact less with their non-elderly connections at the initial stage but interact more

with their non-elderly relationships later, to better reduce mortality.

The Markovian SIS epidemics in a complex network with N nodes can be exactly

described by the continuous-time Markov chain with 2N network infection states. In

Chapter 5, we propose a spectral clustering SIS approximation (SCSA) method, which

combines the spectral clustering of the infinitesimal generator matrix (also known as

the transition rate matrix) and the birth-and-death approximation, to reduces the huge

2N state space of the Markov chain to a smaller number of states. We discover that

the relationship between the approximation error ε and the number of clusters r in the

spectral clustering roughly obeys ε∼ r−α, where α ∈ ( 1
4 , 4

5 ). The exponent α tends to be

larger if the network has a higher link density.

In Chapter 6, we investigate a classical model for the accumulation of errors in multi-

qubit quantum computations. By modeling the error process in a quantum computation

using two coupled Markov chains, we are able to capture a weak form of time-dependency

between errors in the past and future. By subsequently using techniques from the field of

discrete probability theory, we calculate the probability that error quantities such as the

fidelity and trace distance exceed a threshold analytically. Besides this, we study a model

describing continuous errors accumulating in a single qubit. Finally, taking inspiration
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from the field of operations research, we illustrate how our expressions can be used to

decide how many gates one can apply before too many errors accumulate with high

probability and how one can lower the rate of error accumulation in existing circuits

through simulated annealing.





2
INFERRING NETWORK PROPERTIES

BASED ON THE EPIDEMIC

PREVALENCE

Dynamical processes running on different networks behave differently, which makes the

reconstruction of the underlying network from dynamical observations possible. However,

to what level of detail the network properties can be determined from incomplete mea-

surements of the dynamical process is still an open question. In this chapter, we focus on

the problem of inferring the properties of the underlying network from the dynamics of an

susceptible-infected-susceptible (SIS) epidemic and we assume that only a time series of

the epidemic prevalence, i.e., the average fraction of infected nodes, is given. We find that

some of the network metrics, namely those that are sensitive to the epidemic prevalence,

can be roughly inferred if the network type is known. A simulated annealing link-rewiring

algorithm, called SARA, is proposed to obtain an optimized network whose prevalence is

close to the benchmark. The output of the algorithm is applied to classify the network types.

7
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2.1. INTRODUCTION

Graphs are the underlying structures of many systems and many dynamic processes on

those systems can be modeled by a spreading process on their underlying graphs [2, 61,

62]. The difference in the underlying graphs may lead to contrasting dissimilar behavior

of the process. One well-known result is that the mean-field epidemic threshold of

the spreading process vanishes with the size of the scale-free network [63, 64], while

the threshold of a sparse homogeneous network is non-zero. Another key difference

is that a near-threshold spreading process is localized just above the threshold in a

heterogeneous network, but delocalized in a homogeneous network [65, 66]. Moreover,

the autocorrelation of the infection state of each node in a regular graph is irrelevant

to the curing rate in the steady state [67]. In a real scenario, reviewing of the spreading

data of cholera in London in 1854 under the susceptible-infected-susceptible (SIS) model

indicates that the trajectory of the prevalence reflecting network properties supporting the

hypotheses that the Broad Street pump was the source of the cholera outbreak and that

cholera does not spread via the air [68]. Since the dynamics of different networks behave

differently, the inverse question raises: “How much can we deduce about the underlying

contact network by measuring the dynamics on the network?” The inverse question is

meaningful when the direct measurement of the underlying graph is unavailable. For

example, a disease control agency usually has the statistics of disease infection, but the

underlying graph bearing the spreading of the disease is generally unknown.

Much work on the inverse problem exists [69, 70]. Most of the papers focus on

reconstructing the underlying graphs by measuring the time-dependent dynamical state

of each node [36, 37, 38, 39, 40, 41, 42, 43, 44]. With the complete dynamics of each node,

the network may be approximately reconstructed by different heuristic algorithms, e.g.,

the Bayesian methods [45, 46], the conflict-based method [34], statistical inference based

method [47] and the compressed sensing or lasso methods [35]. Different networked

dynamical processes have been studied, such as the evolutionary game model [71, 72],

the SIS model [35] and the Ising model [47]. Apart from reconstructing simple networks,

there are many works on the reconstruction of the stochastic temporal networks [48],

multilayer networks [49], weighted networks [50] and directed networks [51].

All of the above methods are based on the data from all or at least most nodes, but in

real scenarios, individual-level observations of spreading are hard to obtain while most

of the epidemic data are population-level [52, 53]. Motivated by the incompleteness of

realistic situations, we study how much about the underlying network can be deduced

with incomplete measurements. We assume that only the prevalence, which is the average

fraction of infected nodes in the network is measured, but not the infection state of each

node. Under this setting, network reconstruction does not seem possible, but inferring
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some network properties may be possible, in particular, when additional information

apart from the prevalence is available. In this chapter, we confine ourselves to four types

of classical network models: the scale-free configuration (SF) graphs [73], the Barabási-

Albert (BA) graphs [74], the Erdős-Rényi (ER) random graphs [75] and the Watts-Strogatz

(WS) small-world graphs [76]. The network size N of these networks considered in this

chapter is not larger than 2000. Additionally, we focus on the SIS epidemic process on

networks, which is one of the basic models resembling the dynamics of many networked

systems and assume that the infection and curing rate of the SIS process are known.

Under our assumptions, part of the network properties can be inferred, provided that

the network type is additionally given. Furthermore, the network type among the four

above-mentioned graphs can be identified, given the network size N and the average

degree E [D], which is also emphasized by recent work from a different approach [77]: the

ER, regular and BA graphs are distinguished by the epidemic prevalence.

This chapter is organized as following: In Section 2.2, we first briefly review the SIS

process on networks. We further evaluate the correlation between the network metric

difference and the corresponding SIS prevalence difference given the network type. A

high correlation implies that, if an estimated network, whose prevalence is close to the

benchmark prevalence, can be found, then the metric of this estimated network may

be also close to the metric of the benchmark network. We further verify the possibil-

ity of estimating the network metrics, whose differences are highly correlated with the

prevalence difference. In Section 2.3, we propose a simulated annealing link-rewiring

algorithm (SARA) to find a possible network whose prevalence is close to the benchmark.

The output of the algorithm is applied to classify the network types. In Section 2.4, we test

the performance of SARA by inferring the structure of small networks and by forecasting

the future trend of the prevalence. Finally, we conclude in Section 2.5.

2.2. CORRELATIONS BETWEEN THE SIS PREVALENCE AND NET-

WORK METRICS

2.2.1. PRELIMINARIES

We consider the SIS process on an unweighed, undirected network without self-loops.

In the network, all the nodes are divided into two compartments: infected nodes and

susceptible (healthy) nodes. An infected node can infect each healthy neighbor with

rate β and the infected node can be cured spontaneously with rate δ, both as Poisson

processes. If we denote the infection state of node i at time t by a Bernoulli random

variable Xi (t), with Xi (t) = 1 being infected and Xi (t) = 0 being healthy, the exact SIS
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process of node i in an N -node network is governed by the following equation [31],

dE [Xi (t )]

d t
= E

[
−δXi (t )+ [1−Xi (t )]β

N∑
k=1

aki Xk (t )

]
, (2.1)

where aki ∈ {0,1} is the element of the adjacency matrix A of the network. In the brackets

of the right-hand side of (2.1), the first term represents the curing process and the second

term represents the infection process. If the effective infection rate τ,β/δ is above an

epidemic threshold, then the infection can persist in the network; below the threshold, the

epidemic dies out exponentially fast for sufficiently long time [78]. The endemic phase and

all-healthy phase are identified by the time-dependent prevalence y(t ) = 1
N

∑N
i=1 E [Xi (t )].

in this chapter, the SIS prevalence is generated by an event-driven simulation based on

the Gillespie algorithm [79, 80, 81].

Two different networks may produce a similar prevalence, and thus we need to un-

derstand which network properties are important factors in the SIS process. If the SIS

prevalence is sensitive to a specific network metric, then the prevalence generated by two

networks with different values of this metric may be distinct. Assume that we have

a benchmark network with a metric Mb and an estimated network with the metric

Me . If the time series of the prevalence on the benchmark and estimated networks

are {yb(i∆t)}i=0,...,T−1 and {ye (i∆t)}i=0,...,T−1, respectively, then their correlation can be

evaluated by computing the prevalence difference

Dp ,
1

T

T−1∑
i=0

∣∣ye (i∆t )− yb(i∆t )
∣∣ (2.2)

and the metric difference

DG , |Me −Mb |. (2.3)

If we have n corresponding realizations of the differences (Dpi ,DGi ) for i = 1, . . . ,n, then

we can compute their correlation by the Pearson correlation coefficient [4, p. 26],

ρ(Dp ,DG ),

n∑
i=1

(Dpi −Dp )(DGi −DG )√
n∑

i=1
(Dpi −Dp )

2
√

n∑
i=1

(DGi −DG )
2

. (2.4)

Only if ρ(Dp ,DG ) approaches one, then the metric M and the prevalence y(t ) are highly

correlated, which indicates that inferring the metric from the prevalence may be possible.

2.2.2. EVALUATED NETWORK METRICS

The graph metrics considered in this section are shown in Tab. 2.1.

The assortativity ρD , which is the degree correlation between connected nodes [82], can
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N Network size (the number of nodes)

E [D] Average degree

E [D2] Second moment of degree

dmax Largest degree

E [H ] Average shortest path length (the average hop-count)

E [1/H ] Global efficiency

λ1 Spectral radius (the largest eigenvalue of the adjacency matrix)

µN−1 Algebraic connectivity (the second smallest eigenvalue of the Laplacian matrix)

ρD Assortativity

CG Average clustering coefficient

Table 2.1: Graph metrics

be calculated as

ρD =
L−1 ∑

i ji di − [L−1 ∑
i

1

2
( ji +di )]

2

L−1 ∑
i

1

2
( j 2

i +d 2
i )− [L−1 ∑

i
1

2
( ji +di )]

2 , (2.5)

where ji and di are the degrees of the nodes at the ends of the i th link, with i = 1, · · · ,L,

and L is the number of links.

The average clustering coefficient CG , which is the probability that the node pairs

with same neighbors are also connected, can be computed as

CG = 1

N

N∑
i=1

Ci = 1

N

N∑
i=1

2Ni

di (di −1)
,

where Ni is the number of triangles containing node i .

Some of the above metrics can be strongly correlated with the prevalence y(t). For

example, the epidemic threshold τHMF
c derived from the heterogeneous mean-field (HMF)

approach [2] is

τHMF
c = E [D]

E [D2]
,

where D is the degree of a randomly selected node and the epidemic threshold τ(1)
c derived

from NIMFA [83] is

τ(1)
c = 1

λ1
.

Many graph metrics can also be bounded. For example, the average degree follows

E [D] É λ1 in connected graphs [84] and the largest eigenvalue of the Laplacian matrix

µ1 Ê N

N −1
dmax, while the algebraic connectivity is µN−1 É dmin.
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2.2.3. CORRELATION ANALYSIS

For any pair of networks, the prevalence difference Dp and the metric difference DG

can be calculated based on (2.2) and (2.3). For each network metric, we calculate the

correlations via (2.4) between a set of metric differences DG and their corresponding

prevalence differences Dp on four network models: the SF graphs [73], the BA graphs [74],

the ER random graphs [75] and the WS small-world graphs [76]. Specifically, the SF graphs

are generated by the configuration model [73, 85] and the degree exponent parameter γ is

uniformly at random chosen in the interval [2.5,3.0] in this chapter.

Specifically, we first randomly generate the four kinds of networks each with 100

realizations. The network sizes N and the average degrees E [D] are chosen uniformly

at random in the interval [1000,2000] and [4,12], respectively. The effective infection

rate is set as τ= 3.0, which is above the epidemic threshold of every network realization.

Two kinds of initial state are chosen: y0 = 0.2 or y0 = 1.0, which means that 20% of the

nodes are randomly chosen to be infected or all nodes are infected initially. For each

network and initial state, a corresponding time series of the prevalence is obtained by

averaging over 100 realizations of the SIS simulation. We mark the prevalence difference

Dp under initial condition y0 as Dp (y0). We further denote the metric difference DG for

one specific metric as DG (metric). All metrics shown in Section 2.2.2 are considered and

the Pearson correlation coefficients ρ
(
Dp (y0),DG (metric)

)
are calculated by Eq. (2.4). The

sample size of each correlation coefficient is
(100

2

)= 4950. Table 2.2 and Tab. 2.3 indicate

that there are generally strong correlations between the difference of the prevalence Dp

and the differences of the average degree E [D], the second moment of degree E [D2], the

average shortest path length E [H ], the global efficiency E [1/H ] and the spectral radius

λ1. A strong positive correlation indicates that the metric between two networks with

the same network type can be similar if they have similar prevalence curves. However,

there are relatively weak correlations between the difference of the prevalence Dp and

the differences of the network size N , the largest degree dmax, the algebraic connectivity

µN−1, the assortativity ρD and the average clustering coefficient CG . Moreover, the initial

state has very slight influence on the correlations.

To summarize, if the type of the underlying graph is given, then inferring the network

properties, whose differences DG are highly correlated to the difference of the prevalence

Dp , is possible. A straightforward method is randomly generating the network realizations

by the corresponding network model and selecting the one realization produces minimum

prevalence difference Dp .
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ρ
(
Dp (y0),DG (metric)

)
DG (E [D]) DG (E [D2]) DG (λ1) DG (E [H ]) DG

(
E

[
1

H

])
ER graphs, Dp (y0 = 0.2) 0.941 0.856 0.940 0.953 0.939

WS graphs, Dp (y0 = 0.2) 0.877 0.826 0.921 0.952 0.958

BA graphs, Dp (y0 = 0.2) 0.940 0.838 0.871 0.952 0.945

SF graphs, Dp (y0 = 0.2) 0.944 0.612 0.561 0.861 0.823

ER graphs, Dp (y0 = 1.0) 0.947 0.866 0.944 0.948 0.932

WS graphs, Dp (y0 = 1.0) 0.905 0.818 0.927 0.952 0.954

BA graphs, Dp (y0 = 1.0) 0.945 0.856 0.908 0.954 0.948

SF graphs, Dp (y0 = 1.0) 0.948 0.631 0.459 0.792 0.783

Table 2.2: Metrics with strong positive correlations

ρ
(
Dp (y0),DG (metric)

)
DG (dmax) DG (CG ) DG (µN−1) DG (ρD ) DG (N )

ER graphs, Dp (y0 = 0.2) 0.821 0.477 0.490 −0.014 −0.059

WS graphs, Dp (y0 = 0.2) 0.805 −0.036 −0.002 0.624 −0.012

BA graphs, Dp (y0 = 0.2) 0.386 0.358 0.854 0.595 −0.031

SF graphs, Dp (y0 = 0.2) 0.398 0.182 0.657 0.013 −0.038

ER graphs, Dp (y0 = 1.0) 0.856 0.525 0.524 0.082 −0.018

WS graphs, Dp (y0 = 1.0) 0.807 −0.031 0.081 0.666 −0.039

BA graphs, Dp (y0 = 1.0) 0.284 0.410 0.813 0.535 −0.003

SF graphs, Dp (y0 = 1.0) 0.247 0.100 0.659 0.006 0.034

Table 2.3: Metrics with weak positive correlations
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2.2.4. INFERRING NETWORK METRICS GIVEN THE NETWORK TYPE

We further try to infer the network metrics based on the prevalence from a single realiza-

tion of the SIS process given the network type. Specifically, for each network type, we first

generate 1000 benchmark networks whose network sizes N and average degrees E [D] are

chosen uniformly at random in the interval [200,500] and [4,8], respectively. For each

benchmark network, one corresponding benchmark prevalence is generated from only

one realization of the SIS process.

We then try to estimate the network metrics of each benchmark network as follows. For

each benchmark, 1000 networks with the same network type as the benchmark network

are generated. The network sizes N and average degrees E [D] of the generated networks

are also chosen uniformly at random in the interval [200,500] and [4,8], respectively. The

network with the smallest prevalence difference Dp to the benchmark is selected as the

estimated network. The metrics of this estimated network are regarded as the estimated

metrics of the benchmark network.

We measure the performance of the metric inference under the mean absolute error

(MAE) and the mean squared error (MSE). The MAE and MSE for n underlying graphs is

given by

MAE = 1

n

n∑
i=1

|Mei −Mbi | (2.6)

and

MSE = 1

n

n∑
i=1

(Mei −Mbi )2, (2.7)

where Mei and Mbi denote the estimated and real metrics of the benchmark network Gi ,

i = 1,2, · · · ,n.

Tables in the supplementary material A.1 show MAE and MSE of each network metric

for different network types (the ER random graphs, the WS small-world graphs, the BA

graphs and the SF graphs). For the treatment group, we calculate MAE and MSE of each

metrics which are estimated by selecting the network whose prevalence is closest to the

benchmark. For the control group, we calculate MAE and MSE of each metrics which are

estimated by randomly generating a network whose network sizes N and average degrees

E [D] are chosen uniformly at random in the interval [200,500] and [4,8]. For the network

metrics whose differences are closely correlated with the prevalence difference Dp , i.e.,

the average degree E [D], the second moment of degree E [D2], the average shortest path

length E [H ], the global efficiency E [1/H ] and the spectral radius λ1, their MAE and MSE

of the treatment group are much less than those of the control group, which indicates

that these metrics can be roughly deduced based on the prevalence given the network

type. However, for the network metrics whose differences are weakly correlated with the

prevalence difference Dp , i.e., the network size N , the largest degree dmax, the algebraic



2.3. DISTINCTION BETWEEN NETWORK TYPES

2

15

connectivity µN−1, the assortativity ρD and the average clustering coefficient CG , their

MAE and MSE of the treatment group are close to those of the control group.

2.3. DISTINCTION BETWEEN NETWORK TYPES

In this section, we try to distinguish the type of the underlying network given the time

series of the prevalence {yb(i∆t )}i=0,...,T−1, the network size N , the number of links L and

the effective infection rate τ. We propose a simulated annealing link-rewiring algorithm

(SARA) to optimize a network whose prevalence can be close to the input prevalence

benchmark and the performance difference between different rewiring mechanisms in

SARA can be applied to identify the graph type.

2.3.1. SIMULATED ANNEALING LINK-REWIRING ALGORITHM (SARA)
The basic principle of SARA is that the links of an estimated network are continually

rewired based on different rewiring methods to minimize the prevalence difference Dp

between the optimized network and the benchmark network.

The algorithm operates iteratively and a random network is initialized. In each iter-

ation, the network will be renewed by rewiring the links of partial nodes. A new corre-

sponding time series of the prevalence {ye (i∆t )}i=0,...,T−1 can be generated by simulating

the SIS process on the network and its difference Dp to the benchmark time series of

the prevalence {yb(i∆t)}i=0,...,T−1 is calculated. If the difference Dp decreases, then the

rewired network will be accepted. If Dp increases, then the rewired network is accepted

with an acceptance probability p and rejected with rejection probability 1−p to prevent

local optima. Moreover, a stable final converging result is obtained provided that the

acceptance probability p decreases with the iterations. The final result of this algorithm

is an estimated graph, whose corresponding prevalence is almost the same as the bench-

mark prevalence. Inspired by the generation processes of ER graphs and BA scale-free

graphs, we consider two different rewiring methods: randomly connecting (RC) and

preferential attachment (PA). In RC, the selected nodes are rewired uniformly at random

to the rest of the nodes in the network, and in PA, the selected nodes are rewired to a node

with probability proportional to the node’s degree. The pseudo-code of SARA is shown in

Algorithm 5.

2.3.2. DISTINCTION BETWEEN THE NETWORK TYPES

We try to distinguish four kinds of graphs (the SF graphs, the BA graphs, the ER random

graphs and the WS small-world graphs) based on the optimized prevalence curves gen-

erated by SARA. The experiment and the results are as follows. For each network model,

we generate 100 network realizations with N = 1000 nodes and L = 4000 links as the
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Algorithm 1: Pseudo-code of the simulated annealing link-rewiring algorithm

(SARA)
Input :{y(i∆t )}i=0,...,T−1, N , L, τ, initial temperature Vtmp, cooling rate 0 < r < 1

and step length SN

Output :Estimated network Ge , final prevalence difference Dp

1 An initial network is chosen uniformly at random from the set of all networks with

N nodes and L links.

2 for iteration bound do

3 Uniformly randomly choose Nc = round(SN ×Dp ) nodes.

4 Delete all links of each chosen node and then rewire these links to new

neighbors.

5 If we randomly choose new neighbors without preference (RC), the probability

pi that the rewired link is connected to a neighbor i is pi = 1/(N −Nc ), where

node i belongs to the N −Nc uncollected nodes.

6 If we rewire links based on preferential attachment mechanism (PA) , the

probability pi that the rewired link is connected to a neighbor i is

pi = di /
∑
j

d j , where di is the degree of node i in residual network and the

sum is made over all unselected nodes.

7 If n isolated nodes appear after the rewiring process in step 5 or step 6, we

remove n links uniformly at random and rewire them to the isolated nodes

based on the RC or PA mechanism, respectively. This step continues until

there is no isolated node in the network.

8 Simulate the SIS process on the new network and calculate the prevalence

difference D2 to the benchmark.

9 if D2 <D then

10 D ←−D2; G ←−G2;

11 else if Exp(−(D2 −D)/Vtmp) > random(0,1) then

12 D ←−D2; G ←−G2;

13 end

14 Vtmp = r ×Vtmp;

15 end
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benchmark networks. For the SF graphs, the degree exponent γ ranges in the interval

γ ∈ [2.5,3.0]. For the SW graphs, the rewiring probability pr ∈ [0.5,1.0]. The corresponding

time series of the prevalence are obtained by averaging 10 realizations with effective

infection rate τ= 1, which is above the epidemic threshold for benchmark networks. For

each benchmark graph realization and corresponding prevalence, we apply SARA with

RC and PA mechanisms separately and obtain two corresponding prevalence differences

DRC and DPA from the final output of the optimization, respectively. The performance

difference between these two rewiring mechanisms provides a possibility of identifying

the types of underlying graphs by applying different rewiring methods in SARA. We then

try to classify the networks by the difference value DRC −DPA. Figure 2.1 shows that these

four kinds of networks can be almost exactly classified by the difference value DRC −DPA.

Indeed, DRC > DPA for almost all SF and BA graphs while DRC < DPA for almost all ER

and SW graphs as shown in Fig. 2.1a. We examine the classification performance by the

receivers operating characteristic (ROC) curve, which is a curve of the True Positive Rate

(TPR)

RTPR(d) = NTP(d)

NTP(d)+NFN(d)

against the False Positive Rate (FPR)

RFPR(d) = NFP(d)

NFP(d)+NTN(d)
,

where d is the threshold of the difference value DRC −DPA, NTP(d) is the number of true

positives of DRC −DPA > d , NFP(d) is the number of false positives of DRC −DPA > d . The

denominators NTP(d)+NFN(d) and NFP(d)+NTN(d) are the number of real positives and

real negatives of DRC −DPA > d , respectively.

The area under the ROC curve (AUC) depicts the accuracy of classification. If AUC = 1,

then the classification is perfect. In Figure 2.1b and Fig. 2.1d, the ROC curves of the

difference value DRC −DPA between any two kinds of networks show that these networks

can be distinguished almost exactly.

2.4. ESTIMATING THE TOPOLOGY OF SMALL NETWORKS AND

PREVALENCE

2.4.1. THE NETWORK OUTPUT OF SARA: AN EXAMPLE

In this section, we test the feasibility of approximately reconstructing small graphs from

the prevalence. We show example output of SARA under the benchmark of a small

tree network and a small wheel network. In SARA, the initialized networks are chosen

uniformly at random from all networks with the same number of nodes and links as the

benchmark networks. The rewiring methods are selected to be the one with a smaller
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Figure 2.1: The classification of network types. a) and b): The results for the initial state y0 = 0.2. c) and d):

The results for the initial state y0 = 1.0. The time series of the prevalence are obtained by averaging over 10

realizations.



2.4. ESTIMATING THE TOPOLOGY OF SMALL NETWORKS AND PREVALENCE

2

19

Number of iterations

Number of iterations

D
iff

er
en

ce
 o

f p
re

va
le

nc
e

D
iff

er
en

ce
 o

f p
re

va
le

nc
e

a

b

initial infected node

Figure 2.2: The reconstruction of a tree network and a wheel network. The left parts are the benchmark

underlying network and the right parts are the estimated networks. The curves are the difference of prevalence

against the number of iterations. The difference of prevalence is already small when the number of iterations

is around 150. The prevalence curves are obtained by averaging 500 realizations and only the central node is

infected initially.

difference of the prevalence in the output. As shown in Fig. 2.2, the main features of the

benchmark networks are captured fairly well by the final output of SARA.

2.4.2. FORECAST THE FUTURE TRENDS OF EPIDEMIC PREVALENCE

Any benchmark prevalence from either homogeneous or heterogeneous networks can

be fitted well by SARA. Therefore, we can further analyze the feasibility of predicting the

future prevalence evolution by fitting the few initial prevalence observations.

We fit only the initial part (10%) of the time series of the prevalence {y(i∆t )}i=0,...,bT /10c−1

generated by four different benchmark networks and compare the whole prevalence out-

put of the algorithm with the benchmark prevalence. RC rewiring is applied for ER and WS

graphs, and PA rewiring is applied for BA and SF graphs. As shown in Fig. 2.3a about the

ER and WS graphs, the estimated prevalence (dashed curves) are close to the benchmark

(solid curves). However, as shown in Fig. 2.3b, the prediction is inaccurate for BA and SF
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a b

Figure 2.3: Forecast the future trend of epidemic prevalence. We fit the curves before t = 0.1 and forecast the

rest prevalence. a) The results about ER graphs and WS graphs. b) The results about BA graphs and SF graphs.

Two kinds of initial states are chosen: y0 = 0.2 and y0 = 1.0. The time series of the prevalence are the mean of 10

propagation.

graphs.

2.5. CONCLUSION

We study the feasibility of inferring properties of the underlying graphs based on the

SIS prevalence. Pearson’s correlations (2.4) between the differences of prevalence and

the network metrics are evaluated. Given network type, the difference of the epidemic

prevalence is highly related to the differences of some network metrics, such as the average

degree E [D], the second moment of degree E [D2], the average shortest path length E [H ],

the global efficiency E [1/H ] and the spectral radius λ1. If the network type is known,

then these metrics can be roughly estimated by finding a network whose prevalence

curve is close to the benchmark. To distinguish the network type, we further propose

an algorithm SARA, which can find a network whose epidemic prevalence is close to

the benchmark. Given network size and the number of links, four network types (the

SF graphs, the BA graphs, the ER random graphs and the WS small-world graphs) can

be classified by different rewiring methods combined with SARA. Visually, the output

network of SARA captures the features of small benchmark networks well. Finally, we

show that it is possible to predict the later prevalence from the initial stage prevalence for

homogeneous networks.

The epidemic prevalence in the SIS model resembles the population-level observa-

tions. Population-level observations lose details of nodal infection but may still provide

information about the underlying network. In real scenarios, the population-level ob-
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servations are available for many different infectious diseases, such as influenza, Ebola

virus disease, Zika virus disease, etc. Disease control agencies may take advantage of

the population-level observations to understand the detailed spreading pattern, further

forecast the outbreaks more accurately and control the diseases more efficiently. For

example, a small diameter of the network inferred by the population-level observations

implies that modern transportation plays a role; a large clustering coefficient means that

spreading is effectively exploring a community or geographical area; using the initial

stage prevalence, it is possible to approximately reconstruct the small-size local network

containing the initial infections.

This chapter considers the average of multiple epidemic outbreaks. However, the

prevalence of each epidemic outbreak may contain more information on the network

properties, which could be further studied in future works.
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ACCOUNTING FOR COVID-19

REPORTING DELAYS TO ENHANCE

THE ACCURACY OF EPIDEMIC

FORECASTS

COVID-19 is a global pandemic that has directly affected 220 millions of individuals world-

wide. While the rapid research and development of COVID-19 vaccines and their timely

deployment is expected to mitigate the pandemic in the near future, the planning of the

COVID-19 containment measures and vaccine distribution strategies is currently of utmost

importance. All these activities are impossible without accurate data reports of COVID-19

clinical cases. Through the statistical analysis of COVID-19 data reports in several countries

we identify discrepancies in correlations among the infected, recovered and deceased time

series. We explain the observed discrepancies by the existence of reporting delays in data and

devise a statistical framework to infer delay mechanisms. We demonstrate that the account-

ing for reporting delays can substantially improve the accuracy to forecast the COVID-19

incidence. We anticipate that our findings and the developed statistical framework will

prove useful in forecasts of not only COVID-19 but also other viral infections.
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3.1. INTRODUCTION

The recent outbreak of the Coronavirus disease 2019 (COVID-19), which is caused by

Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2), asks for a precise un-

derstanding of the transmission mechanisms of this virus among people [86, 87, 88, 89,

90]. The Susceptible-Infectious-Recovered-Dead (SIRD) model is one of the most basic

epidemic models to describe the COVID-19 spreading [7, 6, 2, 9]. There are many varia-

tions on the basic SIRD model [91, 92, 93, 94, 95], e.g., considering the exposed state [5, 2],

the time-varying infection rate [96] and the underlying traffic network [7]. Recent works

attempt to forecast how many people will be infected or deceased in the future by fitting

the history data via epidemic models [89, 93, 97, 98, 99, 100, 101, 102, 103].

A prominent topic in epidemiology is the reporting delays of cases [30, 104] defined

as the time difference between two events: 1. an individual was infected, recovered or

deceased; 2. the infected, recovered or deceased case was reported. The reporting delays

occur due to many reasons, e.g., the patient delay, the diagnosis delay and the public

health authorities (PHA) delay [14]. The reporting delays of infections are found to be

significant for many infectious diseases [14, 15]. Specifically, the reporting delays of

infections for some diseases, e. g., Hepatitis B, Shigellosis and Salmonella, can take on

average 2-3 weeks [14, 16]. The cases for some diseases, e. g., Hepatitis A, Measles and

Mumps, are usually reported after eight days [14]. The median diagnosis delay for Malaria

is around four days [17]. Research on the Middle East Respiratory Syndrome CoronaVirus

(MERS-CoV), a kind of virus similar to SARS-CoV-2, found a time difference between the

symptom onset and confirmation around four days [18]. Recent researches on COVID-19

reveal significant reporting delays of infections for China [19, 20, 21, 22, 23, 24], Italy [25],

Germany [26, 27], Singapore [28], the USA [29] and the UK [30]. These reporting delays

are fitted by the negative binomial distribution [25, 27], the log-normal distribution [20],

the Weibull distribution [27] and the gamma distribution [30, 23, 28]. Dehning et al. [26]

and Mitze et al. [105] considered the reporting delay of infections in the data-driven

modeling of the COVID-19 pandemic for Germany. No reporting delay distributions for

the recovered and deceased individuals have been considered in COVID-19 modeling and

forecasts.

This chapter focuses on reporting delays of infections, recoveries and deaths in COVID-

19 data and the effect of reporting delays on epidemic forecasts. We first discover that, to

some extent, the infection, recovery and death data disagree with many commonly-used

compartmental epidemic models. There is a time shift for the real time series and we

hypothesize that the reporting delays could be an essential factor that cannot be neglected.

We model the reporting delays of infections, recoveries and deaths and further explain

the inconsistency between the COVID-19 data and the compartmental epidemic model
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by considering these reporting delays. Next, we propose a correlation-based method to

infer the reporting delay information for different countries. Significant reporting delays

of recoveries are found in many countries such as Italy and Spain. One possible reason is

that the discharge criteria for the recovered patients are usually strict due to the risk of a

relatively long SARS-CoV-2 virus shedding after remission of symptoms [106, 107]. Finally,

we analyze the impact of reporting delays on COVID-19 forecasts. The results reveal that

the forecast accuracy can be significantly improved by considering the reporting delays.

Nomenclature. The data one can directly obtain is the reported data with delays.

The delays work on daily new cases [26], which are different from the compartments in

epidemic models. To prevent confusion among symbols, we provide the critical symbols

in Table 3.1.

Fractions of compartments Fractions of new cases in each day

Y : fractions of cases ∆Y : fractions of new cases

Ỹ : fractions of reported cases ∆Ỹ : fractions of reported new cases

Ŷ : fractions of predicted cases ∆Ŷ : fractions of predicted new cases

Table 3.1: This work considers the fractions, which are the proportions of the number of cases to total population.

The left notations are fractions applied in the compartmental epidemic models and the right notations are

fractions applied in the reporting delays. The fraction Y can denote the fraction of infectious cases I , the fraction

of recovered cases R or the fraction of deceased cases D .

3.2. EVIDENCE FOR REPORTING DELAYS IN EPIDEMIOLOGICAL

DATA

We begin the exposition by considering daily reports on the number of infected, recovered

and deceased individuals in Spain, whose time series are relatively smooth compared with

the epidemiological data of many other countries. We observe in Fig. 3.1(A) that both the

fraction of reported new deceased cases ∆D̃ and the fraction of reported infectious cases

Ĩ peaked within the second month of the COVID-19 pandemic. The times, at which these

peaks occurred, are substantially different: the fraction of reported new deceased cases

∆D̃ reached its peak on April 1, 2020, while the largest fraction of infectious individuals

Ĩ was reported 22 days later on April 23, 2020. This observation is not specific to Spain:

the peak of the fraction of reported new deceased cases precedes that of the fraction of

reported infectious cases by more than one week not only for Spain but also for many

countries, including China and Turkey, Fig. B.1. We make similar observations for the

fraction of reported new recoveries ∆R̃, which also exhibit the peak after that of the

fraction of reported new deaths ∆D̃ , Fig. 3.1(A) and Fig. B.1. When plotted as a function
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of fraction of daily new deceased cases ∆D̃, fractions of reported infectious cases Ĩ and

daily recovered cases ∆R̃ form loop patterns, see Fig. 3.1(B),(C) and Fig. B.2.
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Figure 3.1: Time series of the fractions of reported infectious cases Ĩ [k], reported new recovered cases ∆R̃[k +1]

and reported new deceased cases ∆D̃[k +1] for Spain (panel a). The peak locations (marked with the vertical

dashed lines) of Ĩ [k], ∆R̃[k +1] and ∆D̃[k +1] are remarkably different. Panels b and c are data points between

two of the three fractions. Symbol color (from light to dark green) show the day k changing from day 0 to day

80. Loop patterns instead of straight lines are observed. Data points can evolve in a counter-clockwise or a

clockwise direction, indicating which data is more delayed than another. The first day k = 0 is February 25, 2020.

The observed patterns carry the evidence of reporting delays. Indeed, recent observa-

tions [108, 109, 110, 111] indicate the recovery rate γr and the fatality rate γd are almost

not time-varying during the first wave of the pandemic, suggesting that the peaks of the

observed fraction of infectious individuals should coincide with those of the daily recov-

ery and deceased fractions for the first wave of the COVID-19 pandemic, contradicting

Fig. 3.1(A). To explain the formation of the loop patterns in Fig. 3.1(B,C), we employ the

SIRD discrete time compartmental model [5, 2]. Within the SIRD model, the population
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is split into four compartments: susceptible (S), infectious (I ), recovered(R), deceased

(D). Compartment S denotes the fraction of susceptible individuals who can be infected

by the infectious individuals. Compartment I denotes the fraction of individuals who

have been infected but haven’t recovered or deceased. The compartments R and D are

respectively the fractions of individuals who have recovered or deceased. The SIRD model

assumes that recovered individuals become immune and cannot be infected by the virus

in the future. Discrete-time transitions between the compartments are governed by

I [k +1]− I [k] =βI [k]S[k]− (γr +γd )I [k],

∆R[k +1] ≡ R[k +1]−R[k] = γr I [k],

∆D[k +1] ≡ D[k +1]−D[k] = γd I [k],

∆I [k +1] ≡ I [k +1]− I [k]+∆R[k +1]+∆D[k +1],

(3.1)

where β, γr and γd are SIRD model parameters quantifying, respectively, the infection

rate, the recovery rate and the deceased rate.

We use the SIRD model to simulate COVID-19 spreading without and with reporting

delays, observing in the latter case peak shifts and loop patterns similar to those in Fig. 3.1,

see Figs. B.3-Fig. B.11. Intuitively, the observed loop patterns are the result of the effective

time shift between two non-monotonous time series. The upper part of the loop in

Fig. 3.1b is due to the fact that initially ∆D[k] data grows faster than infectious data I [k].

The lower part of the loop is observed when ∆D[k] is decreasing after experiencing its

peak, while I [k] is still increasing. The shape of the observed loop patterns depends on

the effective delay between the datasets and the exact shape of each data function.

STATISTICAL FRAMEWORK FOR UNCOVERING REPORTING DELAYS

To uncover reported delays we employ the following null model. For brevity, we present

the rigorous derivation of the model in Appendix B.2 and only provide a simple argument

here. Within the model, each individual i is endowed with Yi random time of getting

infected (recovered or deceased) and Ti random time of delay report, resulting in the ran-

dom reported time as Ki = Yi +Ti . Assuming that the reporting delays Ti are independent

of Yi , we obtain

Pr[Ki = k] =
∞∑

y=0

∞∑
m=0

Pr[Yi = y]Pr[Ti = m]δy+m,k ,

where δ is the Kronecker delta function. Assuming that delay times are independent and

identically distributed, Pr[Ti = m] ← Pr[T = m] for m = 0,1,2, · · · , we obtain

Pr[Ki = k] =
k∑

m=0
Pr[Yi = k −m]Pr[T = m].
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By ignoring the correlations between individual epidemic events, ∆Ỹ [k] = 1
N

∑
i Pr[Ki = k],

we obtain

∆Ỹ [k] =
k∑

m=0
Pr[T = m]∆Y [k −m], (3.2)

where Y = {I ,R,D} and T = {TI ,TR ,TD }. Equations [3.1] and [3.2] form the statistical

framework for uncovering reporting delays and improving epidemic forecasts.

3.3. UNCOVERING REPORTING DELAYS
To uncover reporting delays and reconstruct the original epidemic data Y = {I ,R,D}

from the reported data Ỹ = {Ĩ , R̃,D̃}, we aim to find the delay distribution Pr[T = m] for

days m = 0,1,2, · · · based the correlations among the fractions of new recoveries ∆R, new

deaths ∆D and infectious cases I in Eq. [3.1].

While this inference problem can be formulated and solved in a non-parametric

way, to simplify the exposition we solve the problem parametrically. We assume that

the shape of delay distributions Pr[T = m] are known but their parameters κ are not.

We consider three families of two-parameter discrete-time distributions that are ap-

propriate for skewed data [112, 113]: the negative binomial distribution, the Neyman

type A distribution and the Pólya-Aeppli distribution, see 3.5.1. These distributions are

related to well-known one-parameter distributions. The logarithmic, geometric and

Poisson distributions are, for instance, all special cases of the negative binomial dis-

tribution [112]. For the same mean and variance, the shapes of the negative binomial

distribution and the Neyman type A distribution are usually very different and the Pólya-

Aeppli distribution is in between of these two distributions [114]. For brevity, we only

investigate the Pólya-Aeppli distribution in the main text and present the results for

the other two distributions in Figs. B.3-Fig. B.11. There are in total 6 parameters in the

delay distributions to be optimized. For the Pólya-Aeppli distributions, the parameter

vector κ= (λI ,θI ,λR ,θR ,λD ,θD )ᵀ, where λY and θY are parameters of the Pólya-Aeppli

distribution describing the reporting delays of data Y = {I ,R,D}.

We then aim to determine parameters κ of the distributions using the information

that the true data ∆R, ∆D and I are proportional to each other. If we use a candidate

parameter vector κ̄ which is far different from the true parameters κ, the Pearson correla-

tion coefficients between the inferred data ∆R̄, ∆D̄ and Ī which are obtained by solving

Eq. [3.2] will be significantly smaller than 1. We thus infer the delay distributions by

maximizing the product of three pairwise Pearson correlation coefficients

O (Ỹ ,κ̄) ≡ ρ(∆R̄,∆D̄)ρ(Ī ,∆R̄)ρ(Ī ,∆D̄). (3.3)

We apply the random search [115] to determine κ̄ maximizing correlations O (Ỹ ,κ̄). Here

we conduct a large set of independent random iterations. In each iteration, we uniformly
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at random select the delay parameters in vector κ̄. We use the selected delay parameters

inferred ∆R̄, ∆D̄ and Ī and to compute the corresponding O (Ỹ ,κ̄). After conducting all

iterations, we select the delay parameters maximizing O (Ỹ ,κ̄), see 3.5.2.

To test the accuracy of the random search, we conducted a series of experiments

using synthetic data. We first generate synthetic curves of the daily cases ∆I [k], ∆R[k]

and ∆D[k] at day k = 1,2, · · · that close to the real data for Spain. Second, we uniformly

randomly select the mean delays for deaths E [TD ] ∈ [0,5] days, the mean differences

E [TI ]−E [TD ] ∈ [0,20] days, E [TR ]−E [TD ] ∈ [0,20] days, parameters θD ∈ [0,1], θI ∈ [0,1]

and θR ∈ [0,1] to generate the synthetic delay parameters κ. We consider the situation

that the reporting delays for deaths are relatively short due to the diagnosis of deceased

cases is easier than the diagnosis of the infected or recovered cases. Besides, the real data

of reporting delays for the UK also show that the expected reporting delays for infections

are longer than the delays for deaths [30, 116]. We generate 50 different delay parameter

vectors κ and add these reporting delays to the synthetic curves of the daily cases ∆I [k],

∆R[k] and ∆D[k] by (3.2). Finally, we infer the delay information by the random search.

Figure 3.2(A) reveals that the inference errors decrease as a function of the number of

iteration stops reaching their minimal values after 107 iterations. Figure 3.2(B) shows

that the true and inferred values are close and most errors are within 2 days. Figure

3.2(C) further indicates that, compared with the reported curves, the inferred curves are

significantly closer to the data with no reporting delays.

After testing the inference algorithm on synthetic data, we move on to uncover report-

ing delays in 8 regions of interest. Table 3.2 summarizes uncovered delays in 8 regions

located in Europe, Asia and the Middle East. Although the inferred delay distributions are

significantly different for different countries, The reporting delays for deceased cases are

always the shortest. As what previous works have discovered, there are significant report-

ing delays of infections. We also discover that there are relatively long reporting delays of

recoveries for Italy, Spain, Turkey and China, which haven’t studied before. Specifically,

the mean reporting delays for recoveries E [TR ] are more than two weeks in these countries.

On the contrary, there are relatively small expected delay E [TR ] for Denmark, Romania

and Germany. We also note that the standard deviations of reporting delays tend to vary

across different regions. The standard deviations for the delays in recovered data, σR , for

Germany and Romania are larger than the other regions, indicating that some recovered

events for Germany and Romania are reported with extremely long delays. The standard

deviations for the delays in infected data, σI , for Italy and Spain are smaller than the other

regions, revealing that the infection cases in Italy or Spain are reported with almost same

delays. Table 3.2 also shows the maximum objective function O (Ỹ ,κ̄) by the random

research. The maximum objective function O (Ỹ ,κ̄) for some regions, e.g., Wuhan, Hubei,

Romania and Germany, are relatively low, indicating that the inferred reporting delays
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for these regions could be inaccurate. One possible reason is that the reporting delay

distributions for some regions are not constant over time.

Figure 3.3 shows the inferred results for Spain. Compared with the reported data as

shown in Fig. 3.1, after removing the reporting delays, peaks of the three curves coinciding

with one another and the loop patterns are turned in good correlations.

3.4. ACCOUNTING FOR REPORTING DELAYS IMPROVES EPIDEMIC

FORECASTS
Our statistical framework allows one not only to uncover the reporting delays in the

epidemiological data but also allows to improve the accuracy of epidemic forecasts. To

demonstrate its utility in epidemic forecasting we design the following two experiments.

Experiment 1 aims to forecast the epidemic data in the testing set without accounting for

reporting delays, and serves as a basis for Experiment 2, which uncovers reporting delays

prior to forecasting epidemic data. In both experiments we split the reported epidemic

data in two parts, which we call the training and the testing sets, respectively, see Fig. 3.4a.

In Experiment 1, we fit the training set with the SIRD epidemic model, obtaining model

parameters β, γr +γd and I [0], where I [0] denotes the percentage of initial infected cases.

We then use the SIRD model with the obtained parameters to forecast the epidemic data,

and compare it with that in the testing set.

In Experiment 2, we first use the reported data ∆Ĩ in the training set to infer the

parameters of the delay distributions κ̄. We rely on the inferred delay parameters κ̄ and

to strip the data in the testing set of the delays. We then use these parameters in (3.2) to

uncover the original epidemic data, which we call ∆Ī . At the next step, we fit the ∆Ī data

with the SIRD model, obtaining β, γr +γd and I [0] parameters. We rely on the obtained

SIRD parameters to forecast the epidemic data ∆Î . The last step is to compare ∆Î with

the reported data in the testing set. The caveat here is that ∆Ĩ in the testing set contains

the reporting delays while ∆Î does not. Therefore, our last step is to add the inferred

reporting delays to the ∆Î by (3.2) so that the forecast results in Experiment 2 can be fairly

compared with the forecast results in Experiment 1. See 3.5.3 for technical details.

Figure 3.4 summarizes the results of epidemic forecasts for the 8 considered regions.

To compare the results of the two experiments we start with the epidemic data of Spain.

We plot the original reported data ∆Ĩ as well as the forecasts ∆Î produced by experiments

1 and 2 for two different starting dates, Figs. 3.4(B,C), respectively. As seen from both

plots, the forecasts accounting for reporting delays, experiment 2, are more accurate than

the baseline forecasts in experiment 1.

We quantify the accuracy of forecasts in both experiments using the root mean

square error RMSE(X ,Y ) =
√

1
n

∑n−1
k=0(X [k]−Y [k])2, where n is the length of the pre-
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Figure 3.2: Uncovering reporting delays in synthetic data. The schematics illustrates the process to generate

the synthetic reporting delay distributions and the synthetic daily reported cases. We generate synthetic data

that close to the real data for Spain. We further add different reporting delays to the synthetic curves and try to

infer these delays of death, infections and recoveries by our inference method. The synthetic reporting delays

we considered hold that E [TD ] is smaller than E [TI ] and E [TR ] for the reason that the diagnosis of deceased

cases is easier than the diagnosis of the infected and recovered cases and the real data also indicates that the

delays for deaths are shorter [30, 116]. a, The mean absolute inference errors as the function of the number of

iteration steps in the search. Note that all inference errors decrease as a function of the number of iteration

stops reaching their minimal values after 107 iterations. Panel b reveal the relationship between the true values

and the inferred values. Panel c further indicates that, compared with the reported curves, the inferred curves

are significantly closer to the data with no reporting delays (blue curves).
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Figure 3.3: Inferred delay data for Spain. Panel a shows the time series of the revised fractions Ī [k], ∆R̄[k +1]

and ∆D̄[k+1] for Spain. Panels b and c are data points between two of the three revised fractions. Loop patterns

are revised to be roughly straight lines.
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diction time window, Figs. 3.4(D) and 3.4(E). By comparing the average ratios of RMSE

errors, RMSE2/RMSE1 in Fig. 3.4(E), we find the benefits of accounting for reporting

delays vary depending on the region of interest. While nearly two-fold improvement in

the forecast accuracy is observed for Denmark, there is almost no forecast improvement

for Chinese provinces of Wuhan and Hubei.

We apply the above experiments on real data for the 8 regions or countries mentioned

in Table 3.2. We apply the inferred reporting delays for infections in Experiment 2 to

better forecast the daily infection data ∆Ĩ . Figure 3.4(D) shows that, compared with

the Experiment 1 (considering the reporting delays), the negligence of the reporting

delays (Experiment 2) results in significantly larger forecast errors for Spain. However,

not all forecast results are as good as Fig. 3.4(D). For example, as shown in Fig. 3.4(E),

the improvement of forecast accuracy for Germany data is not significant. The forecast

results for all 8 regions are shown in Figs.B.12-B.14. It indicates that the improvements

of the forecast accuracy for Spain, Italy, Turkey and Denmark are more significant than

the other regions. Panel h shows the mean of the ratio RMSE2/RMSE1 for all 8 countries.

The forecast accuracy for some countries, e.g., Spain, can improve by around 40% by

considering the effect of reporting delays. The improvement of forecast accuracy for some

countries, e.g., Germany, however, is not significant.

There could be three reasons to explain the performance difference among regions:

first, the SIRD model is too basic and thus cannot well describe the epidemic processes in

some regions; second, the reporting delays for some regions are longer than the others;

third, the inferred reporting delays in some regions are significantly time-varying. To

support our claims, we show Fig. B.15 and Fig. B.16. It shows that the better the SIRD

model fit, the better is the forecast, see Fig. B.15d. Moreover, there are some correlations

between the mean reporting delays E [TI ] and the ratio RMSE2/RMSE1, see Fig. S16b,

indicating that the bigger is the reporting delays, the worse we do, with the exception of

Denmark. Besides, we also observe that the closer the objective function O (Ỹ ,κ̄) to 1, the

smaller is the forecast error, see Fig. 3.4(G).

3.5. MATERIALS AND METHODS

3.5.1. TYPES OF DISTRIBUTIONS

We assume that probability distributions for infections, recoveries and deaths are the

same functional. To determine the family of reporting delay distributions that best suit

our data, we consider three different two-parameter discrete distributions [114] below:

(I) Negative binomial distribution. The probabilities that a deceased, infected or recovered



3.5. MATERIALS AND METHODS

3

35

Mar 09 Mar 12 Mar 15 Mar 18 Mar 21 Mar 24 Mar 27 Mar 30

Date
2020   

0

0.2

0.4

0.6

0.8

1

1.2

F
ra

ct
io

n
 o

f 
d
ai

ly
 i

n
fe

ct
io

n
s

10
-4

Date

R
M

S
E

 f
o
r 

in
fe

ct
io

n
s

2020   

Date

a

b

Reported data

Fit and forecast results (Experiment 1)

Fit and forecast results (Experiment 2)

RMSE1

RMSE2

(training set) (test set)

Exp1:

Exp2:

(training set)

optimize model parameters by forecast compare with

(test set)future trends
RMSE1

(training set)

infer data with no

reporting delays

forecast

future trends

predicted data 

with no delays

add the inferred compare with

(test set)reporting delays
RMSE2

fitting the SIRD model

optimize model parameters by

fitting the SIRD model

Mar 15 Mar 18 Mar 21 Mar 24 Mar 27 Mar 30 Apr 02 Apr 05

2020   

4

6

8

10

12

14

F
ra

ct
io

n
 o

f 
d
ai

ly
 i

n
fe

ct
io

n
s

10
-5

0

1

2

3

4

5
10

-5

Reported data

Fit and forecast results (Experiment 1)

Fit and forecast results (Experiment 2)

(training set) (test set)

Spain

c

d e

0

0.5

1

1.5

2

2.5

3

R
M

S
E

 f
o
r 

in
fe

ct
io

n
s

10

Germany

Date 2020   

-5

R
M

S
E

2
/R

M
S

E
1

f g

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
0.4

0.5

0.6

0.7

0.8

0.9

1

Hubei

Wuhan

Italy

Spain

Denmark

Turkey

Romania

Germany

Hubei Wuhan Italy Spain Denmark Turkey Romania Germany

Country/Region

0

0.2

0.4

0.6

0.8

1

1.2

Mar 23 Mar 24 Mar 25 Mar 26 Mar 27 Mar 28 Mar 29 Mar 30 Mar 31 Apr 1
0

0.2

0.4

0.6

0.8

1

R
M

S
E

2
/R

M
S

E
1

Mar 18 Mar 19 Mar 20 Mar 21 Mar 22 Mar 23 Mar 24 Mar 25 Mar 26 Mar 27
0

0.2

0.4

0.6

0.8

1

I[0], ,

Figure 3.4: Forecast the COVID-19 pandemic for 8 regions by the SIRD model considering and ignoring the

reporting delays for a forecast horizon of 10 days.



3

36
3. ACCOUNTING FOR COVID-19 REPORTING DELAYS TO ENHANCE THE ACCURACY OF

EPIDEMIC FORECASTS

individual is reported after m ∈N days are

Pr[T = m] =
(

m + r −1

m

)
(1−p)m pr . (3.4)

The negative binomial distribution with parameters r > 0 and p ∈ [0,1] has mean value

E [T ] = r (1−p)/p and variance V ar [T ] = r (1−p)/p2.

(II) Pólya-Aeppli distribution (also called the geometric Poisson distribution). The prob-

abilities that a deceased, infected or recovered individual is reported after m ∈N days

are

Pr[T = m] =


∑m
j=1 e−λ λ j

j ! (1−θ)m− jθ j
(m−1

j−1

)
, m > 0

e−λ, m = 0
. (3.5)

The Pólya-Aeppli distribution with parameters λ> 0 and θ ∈ [0,1] has mean value E [T ] =
λ/θ and variance V ar [T ] =λ(2−θ)/θ2.

(III) Neyman type A distribution. The probabilities that a deceased, infected or recovered

individual is reported after m ∈N days are,

Pr[T = m] = µme−ξ

m!

∞∑
j=0

(ξe−µ) j

j !
j m . (3.6)

The Neyman type A distribution with parameters ξ> 0 andµ> 0 has mean value E [T ] = ξµ

and variance V ar [T ] = ξµ(1+µ).

3.5.2. MECHANISM TO INFER THE REPORTING DELAYS

We aim to infer the reporting delay information based on the reported data. (3.2) can be

rewritten in the matrix form as

∆Ỹ =Ψ∆Y , (3.7)

where the matrix Ψ ∈ [0,1]n×n are element-wise defined by

Ψi , j ,

Pr[T = i − j ] if i ≥ j ,

0 otherwise.
,

the column vectors for reported data and real data are

∆Ỹ = (
∆Ỹ [0], · · · ,∆Ỹ [n]

)
, ∆Y = (∆Y [0], · · · ,∆Y [n]) .

The data with no reporting delays can be deduced given the reported data and the

reporting delay distributions by

∆Y =Ψ−1∆Ỹ . (3.8)
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If the reporting delay distributions are unknown, we can guess a reporting delay matrix Ψ̄

and obtain an inferred data by

∆Ȳ = Ψ̄−1∆Ỹ .

The inferred data ∆Ȳ are expected to be close to the original data ∆Y if the guessed

delay matrix Ψ̄ is close to the true matrix Ψ. We infer the reporting delay information by

maximizing the following objective function:

arg max
x

O (Ỹ ,κ̄) ≡ ρ(∆R̄,∆D̄)ρ(Ī ,∆R̄)ρ(Ī ,∆D̄)

s.t. min(∆Ī [k],∆R̄[k],∆D̄[k], Ī [k]) ≥ 0, for k = 0,1, · · ·

where the 6× 1 vector κ denotes the parameters for delay distributions of infections,

recoveries and deaths. In the random search to optimize the objective function, the

mean reporting delays E [TI ] = λI /θI , E [TR ] = λR /θR and E [TD ] = λD /θD are uniformly

randomly chosen in range [0,30]. The parameters θD , θR and θI are uniformly randomly

chosen in range [0,1]. Then the parameters λD , λR and λI are also determined.

3.5.3. FORECAST THE FUTURE PREVALENCE CONSIDERING THE REPORTING

DELAYS

If we neglect the reporting delays, one can fit the prevalence data directly by the epidemic

models, e.g., the SIRD model, and extend the model curve to forecast the future trends.

If we consider the reporting delays, we forecast the future trend by more steps. We first

modify the reported data ∆Ỹ to the data with no delays ∆Y given the inferred or real

reporting delay distributions by (3.8). We further optimize the model parameters by

fitting the data ∆Y based on the epidemic model. Next, we extend the model curve to

forecast the future prevalence. Finally, we convert the forecast data with no delays back

to predicted data with delays ∆Ŷ by (3.7). We fit the data of previous 10 days (training set)

and forecast the prevalence of future 10 days (test set). We apply the grid search [117] to

optimize the parameters in the SIRD model. Specifically, we respectively consider 100

candidate values for the infection rate β, the curing rate γr and the ratio γd /γr ranging

from 0.01 to 1. The loss function we applied is still the RMSE

√
1

n

∑n−1
k=0(∆Î [k]−∆Ĩ [k])2.

Details of the forecast method can be found in the SI Appendix G.

3.6. CONCLUSION
In this chapter, we discover that there are loops and shifts in reported infection, recovery

and death data, indicating that there are reporting delays in COVID-19 data and the

delays for infection, recovery and death data are different. We propose a method to infer
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the reporting delays. This chapter discovered for the first time that there are significant

reporting delay in recovery data. Finally, It indicates that accounting for reporting delays

improves epidemic forecasts.
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TWO-POPULATION SIR MODEL

AND STRATEGIES TO REDUCE

MORTALITY IN PANDEMICS

Despite many studies on the transmission mechanism of the Severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2), it remains still challenging to efficiently reduce

mortality. In this chapter, we apply a two-population Susceptible-Infected-Removed (SIR)

model to investigate the spread of the coronavirus SARS-CoV-2 when contacts between

elderly and non-elderly individuals are reduced due to the high mortality risk of elderly

people. We discover that the reduction of connections between two populations can delay

the death curve but cannot well reduce the final mortality. We propose a merged SIR model,

which advises elderly individuals to interact less with their non-elderly connections at the

initial stage but interact more with their non-elderly relationships later, to reduce the final

mortality. Finally, immunizing elderly hub individuals can also significantly decrease

mortality.
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4.1. INTRODUCTION
In many countries, the first wave of the Coronavirus disease 2019 (COVID-19) appeared

in early 2020. In the summer of 2020, the spread of COVID-19 was significantly reduced

due to strict restrictions [118] and weather effects [119]. At that time, the majority of

the population and politicians were hoping for the end of the COVID-19 pandemic. At

the beginning of autumn, students went back to school, which marked the beginning of

the second wave. However, rising infections were not taken seriously because infections

were mainly among the young population and no significant hospitalization and deaths

were observed [120]. Simultaneously, the high decease rate and self-preservation have

caused that many elderly individuals reduced their contact with young people [121]. In

October 2020, the hospitalization rates in many countries started increasing and the

second COVID-19 wave was born. At the beginning of 2021, more contagious mutations

of the coronavirus marked the third wave in many countries [122]. Even though there

are COVID-19 vaccines, the distribution in many countries is painfully slow. Moreover,

SARS-CoV-2 viral mutations lead to uncertainty about the effectiveness of recent vaccines.

The third wave might not be the last COVID-19 pandemic and efficient strategies to reduce

mortality will remain on the agenda.

The Susceptible-Infected-Removed (SIR) model [96, 123] and its variations are com-

monly applied to describe the COVID-19 pandemic [124, 125, 2, 126, 127] and to forecast

the number of infected and deceased cases in a population [7, 6, 128, 129, 130]. The

ratio of deceased elderly cases to deceased non-elderly cases each day is expected to be

constant over time in classic epidemic models but is time-varying in reality. Recent works

start to consider the age-structured SIR model to describe the COVID-19 pandemic more

realistically [131, 132, 133, 134, 135]. The age-structured SIR model divides the whole

population into several age groups and the infection rates are age-dependent. Real data

reveal that the elderly infected had a 30- to 100- fold higher risk of dying than younger

individuals in many European countries [136]. Here, elderly and non-elderly individuals

are respectively defined as individuals who are < 65 years old and ≥ 65 years old [136].

The elderly population accounts for a proportion of around 20% in many European coun-

tries [137]. Since the main difference in the COVID-19 pandemic is between elderly and

non-elderly individuals, we construct a two-population SIR model [138] as follows:

1. There are two sub-populations: non-elderly and elderly individuals uniformly

distributed over the social contact network. The virus spreading in a region is

likely to start from non-elderly individuals because the virus can be carried into a

community from other areas by commuters [139] and most commuters are non-

elderly individuals.

2. There are four infection rates between and within non-elderly and elderly individ-
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uals. We believe that the highest infection rate is among elderly people. Elderly

individuals are advised to a kind of self-isolation to protect themselves [140]. Stay-

ing in relative isolation from non-elderly people could be feasible, but some strong

connections among elderly individuals, e.g., couples and people in the same nurs-

ing home, cannot be cut off. Conversely, the ties among elderly individuals will

be stronger when their connections with non-elderly individuals are significantly

reduced. The second highest infection rate is among the non-elderly population.

The inter-group infection rates are the smallest since elderly individuals are afraid

of being infected by non-elderly individuals. The infection rates between non-

elderly and elderly individuals are low, but not zero, as elderly people still depend

on younger people one way or another.

This chapter first investigates the features of fatality curves in the two-population

SIR model when the connection between two populations is reduced. It shows that non-

elderly deceased cases are prone to occur at the initial stage and most elderly deceased

patients appear more often at a later stage. The difference in infection probability between

non-elderly and elderly individuals is significant when the inter-population infection rates

are low and the infection rate among elderly individuals is slightly above the epidemic

threshold. The final mortality, however, cannot be reduced by only limiting the connection

between two populations. Moreover, reducing the infection rate among non-elderly

individuals, e.g., closing schools, can also not efficiently reduce mortality. In this chapter,

we propose a merged SIR model to reduce the final mortality significantly. There are

two stages in the merged SIR model: in the first stage, the model is the same as the two-

population SIR model of Magal et al. [138] and in the second stage, the merged SIR model

reduces to the standard SIR model. The physical meaning of the merged SIR model is

that elder people are advised to reduce their connections with non-elderly individuals at

the beginning of the pandemic and interact more with non-elderly individuals later. The

merged SIR model benefits the mortality reduction since many recovered non-elderly

people can protect the susceptible elderly individuals.

Compartmental epidemic models assume that social contact networks are homoge-

neous with an infinite network size, but the actual network size is finite and the degree

distributions of many real social networks follow a power law [141] with an exponent

γ ∈ [2,3]. We thus simulate the two-population SIR model on scale-free networks with

a realistic network size to investigate the effect of network topology on the reduction

of mortality. By comparing the simulation results of the two-population SIR model for

the scale-free network and the Erdős–Rényi random network [142], the epidemic spread-

ing in the heterogeneous network is much faster due to the star (or super spreader)

effect. Reducing the connections between elderly and non-elderly individuals cannot
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decrease mortality in the compartmental model, but can reduce the mortality in the two-

population SIR epidemic on complex networks. The merged SIR model is the best strategy

to efficiently mitigate mortality. Finally, we illustrate that mortality can be efficiently

reduced by only immunizing rare elderly hub individuals.

4.2. TWO-POPULATION SIR MODEL
The two-population SIR model was first proposed by Magal et al. [138]. Similar models,

that incorporate the underlying contact graph, are the networked SIR model proposed by

Youssef and Scoglio [143], that was later entirely generalized to GEMF in [144]. Our work

here applies the two-population SIR model to a realistic scenario related to the COVID-19

pandemic, systematically analyzes the death-related curve features, explores the effect of

restrictions on mortality reduction and proposes an improved model to reduce the final

mortality.

Suppose that the elderly and non-elderly populations are well-mixed and large enough,

then the fractions of susceptible individuals S(t ), infectious individuals I (t ) and removed

(recovered or deceased) individuals R(t) at time t are reasonably well modeled by the

following well-known differential equations:

dS(t )

d t
=−diag(S(t ))B I (t ),

d I (t )

d t
= diag(S(t ))B I (t )−E I (t ),

dR(t )

d t
= E I (t ),

(4.1)

where the vectors of fractions S(t ), I (t ) and R(t ) are respectively,

S(t ) =
(

Sn(t )

Se (t )

)
, I (t ) =

(
In(t )

Ie (t )

)
, R(t ) =

(
Rn(t )

Re (t )

)
, (4.2)

and the matrices E (removed rates) and B (infection rates) are respectively

E =
(
δn 0

0 δe

)
, B =

(
βnn βne

βen βee

)
, (4.3)

where βne denotes the infection rate from elderly infectious individuals to non-elderly

susceptible individuals, βen denotes the infection rate from non-elderly infectious individ-

uals to elderly susceptible individuals, βnn denotes the infection rate among non-elderly

individuals, βee denotes the infection rate among elderly individuals, δn denotes the

removed rate for non-elderly infectious individuals and δe denotes the removed rate

for elderly infectious individuals. To simplify, we let the infection rates between two
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populations be equal, βne =βen = εβnn , and thus the matrix B can be rewritten as

B =βnn

(
1 ε

ε κ

)
. (4.4)

For the COVID-19 pandemic, it holds that ε¿ 1 and κ≥ 1. Furthermore, we have that

the non-elderly fractions Sn(t )+ In(t )+Rn(t ) = Nn and the elderly fractions Se (t )+ Ie (t )+
Re (t) = Ne , where Nn denotes the fraction of non-elderly population and Ne denotes

the fraction of elderly population. The two-population SIR model assumes that the

total population is unchanged and thus Nn + Ne = 1. We denote the initial state by

v[0] = (Sn[0], In[0],Rn[0],Se [0], Ie [0],Re [0]). A schematic depiction of the two-population

SIR model is shown in Fig. 4.1. The infectious individuals will turn to be immune with a

recovery rate (ξn for non-elderly individuals and ξe for elderly individuals) or deceased

with a fatality rate (ηn for non-elderly individuals and ηe for elderly individuals). It holds

that the removed rates δn = ηn +ξn and δe = ηe +ξe . This chapter focuses on the fractions

of new deceased non-elderly and elderly cases that are ηn In(t ) and ηe Ie (t ), respectively.

We are also interested in the fractions of deceased non-elderly and elderly cases that are

Dn(t ) = ηnRn(t )/δn and De (t ) = ηe Re (t )/δe .

Figure 4.1: Schematic depiction of the two-population SIR model. There are two populations in the model:

non-elderly individuals (highlighted in orange) and elderly individuals (highlighted in green). There are four

different infection rates βnn , βne , βen and βee between and among the populations and two different removed

rates δn and δe for each population.

By numerical solving Equations (4.1), we analyze the effect of infection rates on the

following four death-related curve features,

1. maximum of ηn In(t ) and ηe Ie (t ): max
t≥0

ηn In(t ) and max
t≥0

ηe Ie (t ),

2. time points at which the maximum of ηn In(t ) and ηe Ie (t ) occur:

argmax
t≥0

ηn In(t ) and argmax
t≥0

ηe Ie (t ),
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3. time difference between two arguments of the maxima:

argmax
t≥0

ηe Ie (t )−argmax
t≥0

ηn In(t ),

4. fractions of final deceased non-elderly cases Dn(∞) and elderly cases De (∞).

In this chapter, we set the fraction of non-elderly individuals as Nn = 0.8, the fraction of

elderly individuals as Ne = 0.2 and the removed rates as δn = δe = 0.1. The fatality rates

for non-elderly and elderly infections are set to be ηn = 0.0001 and ηe = 0.01, respectively.

The initial state is set as v[0] = (0.7999,0.0001,0,0.2,0,0). These parameters are set based

on real data. The elderly population makes up around 20% of the whole population in

many European countries [137]. Elderly people who were infected had 30- to 100- fold

higher risk of dying than younger people in several European countries [136]. The time

to recovery or death is on average around 10 days [145]. We also investigate various

parameter settings and find that the changing of these parameters has little effect on the

main conclusions drawn in this chapter.

There are three parameters in matrix (4.4), which are βnn , ε and κ. We first set ε =
0.001 and κ = 4 and study the effect of the infection rate βnn on death-related curves.

Figure 4.2 reveals that both the non-elderly related curves and elderly related curves

are significantly affected by the parameter βnn . The time difference argmax
t≥0

ηe Ie (t)−
argmax

t≥0
ηn In(t ) is positive and increases with the infection rate βnn deceasing. The final

non-elderly deceased fraction Dn(∞) and elderly deceased fraction De (∞) increase with

the infection rate βnn .

We further set parameters βnn = 0.15 and κ = 4 and study the effect of parameter

ε on death-related curves. Figure 4.3 shows the death-related fractions with different

parameter ε. It indicates that the parameter ε has almost no effect on non-elderly related

curves. The final deceased fractions are little affected by the parameter ε. The effect of

smaller ε is approximately to delay the elderly related curves and there will be larger time

difference argmax
t≥0

ηe Ie (t )−argmax
t≥0

ηn In(t ) when ε is smaller.

We finally set parameters βnn = 0.15 and ε= 0.001 and study the effect of parameter

κ on death-related curves. Figure 4.3 shows the death-related fractions with different

parameters κ. The parameter κ has little effect on non-elderly curves but has large impact

on elderly related curves. The time difference argmax
t≥0

ηe Ie (t)− argmax
t≥0

ηn In(t) is the

largest when the parameter κ= 3.5 in three considered parameters κ. The final elderly

deceased fraction De (∞) increases as the parameter κ.

To better understand the effect of parameters βnn and κ on death-related curves,

we plot the heatmaps as shown in Fig. 4.5. It indicates that there are large time differ-

ence argmax
t≥0

ηe Ie (t )−argmax
t≥0

ηn In(t ) when the infection rate βee is around the epidemic

threshold. Specifically, suppose that the infection rate between two populations βen → 0,
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nn 0.15  non-elderly fractions

nn 0.15  elderly fractions

Figure 4.2: Death-related curves of the two-population SIR model with different infection rates βnn . The left

figure is about the fractions of new deceased cases ηn In (t) for non-elderly individuals (dashed curves) and

ηe Ie (t ) for elderly individuals (solid curves). The right figure is about the fractions of deceased cases Dn (t ) for

non-elderly individuals (dashed curves) and De (t) for elderly individuals (solid curves). Parameters ε and κ

are set as 0.001 and 4, respectively. Three different infection rates βnn are considered: βnn = 0.25 (red curves),

βnn = 0.2 (blue curves) and βnn = 0.15 (black curves).

0.0001  non-elderly fractions

0.0001  elderly fractions

0.001  non-elderly fractions

0.001  elderly fractions

0.01  non-elderly fractions

0.01  elderly fractions

t t

nn

Figure 4.3: Death-related curves of the two-population SIR model with different parameters ε. Parameters βnn

and κ are set as 0.15 and 4, respectively. Three different parameters ε are considered: ε= 0.0001 (red curves),

ε= 0.001 (blue curves) and ε= 0.01 (black curves).
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t t

3.7  non-elderly fractions

3.7  elderly fractions

3.5  non-elderly fractions

3.5  elderly fractions

3.3  non-elderly fractions

3.3  elderly fractions

nn

Figure 4.4: Death-related curves of the two-population SIR model with different parameters κ. Parameters βnn

and ε are set as 0.15 and 0.001, respectively. Three different parameters κ are considered: κ= 3.7 (red curves),

κ= 3.5 (blue curves) and κ= 3.3 (black curves).

the epidemic threshold for elderly individuals is βee = δe /Ne (shown as the black curves

in Fig. 4.5). The mortality cannot be significantly reduced by only reducing the infection

rate among non-elderly individuals βnn , e.g., closing schools, given that the infection rate

βee is above the epidemic threshold. The only efficient way to well reduce the mortality in

the two-population SIR model is to keep the infection rate βee among elderly individuals

below the epidemic threshold.

In conclusion, we observe the following interesting curve properties: 1) the death-

related curves for non-elderly individuals ηn In(t) are mainly affected by the infection

rate βnn , 2) the time difference argmax
t≥0

ηe Ie (t )−argmax
t≥0

ηn In(t ) will be large if the inter-

population infection rates βne and βen are small and the infection rate βee is slightly above

the epidemic threshold, 3) the fraction of eventually deceased cases Dn(∞)+De (∞) will

be small if the infection rate among elderly individuals βee < δe /Ne , 4) only reducing the

infection rates among non-elderly individuals cannot significantly reduce mortality.

The above observations are theoretically explained in Appendix C.1.

Although mortality can be reduced best by reducing the infection rates among elderly

individuals βee , this strategy is not realistic since elderly people necessitate a sufficient

amount of social interaction. This chapter discusses possible strategies to reduce mor-

tality considering the social needs of all the people. Elderly people reduce their social

connections with non-elderly individuals and increase their interactions with elderly

relationships. Thus their interaction frequency [146], which is the total number of social

interactions per unit time, is unchanged. We study the effect of reducing connections

between elderly and non-elderly individuals on mortality reduction by comparing the

mortality in the standard SIR model and the two-population SIR model. To keep the
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Figure 4.5: Curve features for the two-population SIR model with different parameters βnn and κ. The parameter

ε is set to be ε= 0.001. The black curves show the parameters when the infection rate βee is at the epidemic

threshold δe /Ne . The time difference argmax
t≥0

ηe Ie (t )−argmax
t≥0

ηn In (t ) will be large when the infection rate βee

is slightly above the epidemic threshold. The fraction of total deceased individuals will be small when the the

infection rate βee < δe /Ne .



4

48
4. TWO-POPULATION SIR MODEL AND STRATEGIES TO REDUCE MORTALITY IN PANDEMICS

interaction frequency in the standard SIR model and the two-population SIR model to be

at the same level, the equivalent infection rate in the standard SIR model is

β=βnn N 2
n +βee N 2

e + (βne +βen)Nn Ne . (4.5)

It holds that β=βnn Nn =βee Ne when βne → 0, βen → 0 and βnn Nn =βee Ne . Figure 4.7a

indicates that the fractions of the final deceased individuals for the standard SIR model

and the two-population SIR model are the same. The effect of reducing the connection

between elderly and non-elderly groups is only to delay the deceased curve, but not to

effectively reduce mortality.

4.3. MERGED SIR MODEL TO REDUCE MORTALITY
To effectively reduce mortality, we propose a merged SIR model in which the epidemic

spreading follows the two-population SIR model in the first stage and follows the standard

SIR model in the second stage. The illustration of the merged SIR model is shown in

Fig. 4.6. The reduction of the connection between two populations can delay the pan-

demic among elderly people. The reconnection of these two populations further protect

elderly people due to the herd immunity effect of recovered non-elderly individuals.

Figure 4.7 shows that the merged SIR model can significantly reduce the final deceased

fractions and there is the best switch time point to minimize the final mortality. Heatmaps

in Fig. 4.8 show the effect of parameters βnn and ε on the best switch time point and

reduced rate of the final mortality. The reduced rate of the final mortality is defined as

De (∞)+Dn(∞)− D̃e (∞)− D̃n(∞)

De (∞)+Dn(∞)
, (4.6)

where De (∞) and Dn(∞) are respectively the elderly and non-elderly mortality for the

two-population SIR model and D̃e (∞) and D̃n(∞) are respectively the elderly and non-

elderly mortality for the merged SIR model. Figure 4.8 reveals that the first stage (reducing

the connection between non-elderly and elderly people) should take a longer time if

parameters βnn and ε are smaller. Besides, the final mortality can be reduced more

significantly for smaller parameters βnn and ε.
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Figure 4.6: Schematic depiction of the merged SIR model. This model has two stages: the first stage follows

the two-population SIR model and the second stage follows the standard SIR model. The physical meaning of

this model is to reduce the connection between the elderly and non-elderly populations initially and reconnect

these two populations after many non-elderly infected individuals have been recovered. There is a switch time

point between these two stages.

Standard SIR model

Two-population SIR model

Merged SIR model

t

Stage 1 Stage 2

Switch time point in the merged SIR model

Best switch time point

Figure 4.7: The fractions of deceased individuals in the standard SIR model, the two-population SIR model

and the merged SIR model. The parameters for the two-population SIR model are βnn = 0.15, ε= 0.0001 and

κ= 4. We set the infection rate β= 0.12 for the standard SIR model to keep the interaction frequency the same

among models. The left figure reveals that the two-population SIR model cannot, but the merged SIR model can

efficiently reduce mortality. The right figure shows the final deceased fractions with different switch time points,

indicating that there is the best switch time point to minimize the final mortality.
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n
n n
n

Figure 4.8: The best switch time point and reduced rate of the final mortality. We choose different parameters

βnn and ε and a fixed parameter κ= 4 for the two-population SIR model. The best switch time point will be

larger and the final mortality will be reduced more significantly if parameters βnn and ε are smaller.

4.4. TWO-POPULATION SIR EPIDEMIC ON LARGE COMPLEX NET-

WORKS
We apply the Monte Carlo method [147] to simulate the two-group SIR epidemic on

complex networks. In this chapter, we consider large networks with network size N = 105

generated by the configuration model [148] and the simulation starts from 100 non-elderly

infected individuals. We first compare the simulation results on the scale-free network

and the Erdős–Rényi random network to analyze the effect of network heterogeneity on

epidemic curves. The network size N and mean degree E [D] of the Erdős–Rényi random

network are the same as the scale-free network. Figure 4.9a and Fig. 4.9b indicate that

the epidemic spreading in the scale-free network is much faster than the spreading in

the Erdős–Rényi random network due to the super spreaders. Figure 4.9c and Fig. 4.9d

illustrate that the epidemic spreads quicker when the mean degree E [D] is higher.
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Figure 4.9: Fractions of infectious cases In (t)+ Ie (t) and daily deceased cases ηn In (t)+ηe Ie (t) for the two-

population SIR epidemic on the scale-free network and the Erdős–Rényi network with the network size N = 105.

The infection parameters are set to be βnn = 0.015, κ= 4 and ε= 0.001. The spreading in the scale-free network

is much faster than the spreading in the Erdős–Rényi network. Figures c and d show the effect of mean degree

E [D] of the scale-free network on the two-population SIR epidemic. With the increase of the scale-free networks’

link density, there are more individuals infected and deceased. The exponent in the scale free networks is set as

γ= 2.5. The minimum degree of the scale-free network is set to be 5.
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We simulate the standard SIR model, the two-population SIR model and the merged

SIR model on the scale-free network as shown in Fig. 4.10. Different from the results for

the compartmental models as demonstrated in Fig. 4.7, for the epidemic spreading on

complex networks, the final mortality for the two-population SIR model is lower than

the standard SIR model since a part of susceptible elderly people can be protected by

their recovered non-elderly relationships. This type of local immunity, which differs from

the herd immunity, can only be observed in the epidemic spreading on networks. The

merged SIR model is the best strategy to reduce mortality.

0 100 200 300 400
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0.5

1

1.5

2
10

-4

0 100 200 300 400
0

0.005

0.01

Day Day

Figure 4.10: Fractions of daily deceased cases ηn In (t )+ηe Ie (t ) and deceased cases Dn (t )+De (t ) for the standard

SIR epidemic, the two-population SIR epidemic and the merged SIR epidemic on the scale-free network with

the network size N = 105. The infection rate in the standard SIR model is β = 0.012. The infection rates in

the two-population SIR model are the same as Fig. 4.9. Different from the result in Fig. 4.7, the final deceased

fraction for the two-population SIR model is lower than the standard SIR model. The final deceased fraction for

the merged SIR model is the smallest, indicating that the merged SIR model is the best strategy to reduce the

mortality.

Given that there have been COVID-19 vaccines but the vaccine is still insufficient, it

is valuable to study the strategy to reduce mortality by immunizing specific population.

There are rare elderly hub individuals in social networks, e.g., the priests, which are the

virus’s primary route of transmission from non-elderly to elderly people. Figure 4.11a and

Fig. 4.11b reveal that the final mortality can be significantly reduced by only immunize 20

elderly hub individuals in 105 population assuming that the vaccines are 100% effective.

In reality, the COVID-19 vaccine efficacy cannot reach 100% and thus we analyze the

situation when the vaccines are 80% effective. Figure 4.11c and Fig. 4.11d illustrate that

more elderly hub individuals require to be immunized to reduce mortality efficiently.
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Figure 4.11: Effect of immunizing rare elderly hub individuals on reducing the final mortality. Figures a and

b respectively show the fractions of daily deceased cases ηn In (t)+ηe Ie (t) and deceased cases Dn (t)+De (t)

for the two-population SIR epidemic with and without immunizing elderly hub individuals. We immunize 20

elderly individuals with the largest degree in the simulation of the two-population SIR model on the scale-free

network with 105 population assuming that the vaccines are 100% effective. The mortality can be significantly

reduced by immunizing such rare specific individuals. Figures c and d show the fractions when the vaccines are

80% effective. It requires more vaccine doses to effectively reduce the mortality if the vaccines are less effective.
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4.5. CONCLUSION
Since early 2020, scientists have found that COVID-19 is substantially more dangerous for

the elderly. Elderly people’s interactions with their non-elderly relationships are reduced

to lower the risk of being infected. This chapter applies the two-population SIR model to

describe the COVID-19 pandemic when the connections between elderly and non-elderly

individuals are significantly reduced. We analyze how the reduction of connections

between two populations can affect the COVID-19 pandemic, especially the mortality.

It reveals that severing ties between two populations can postpone the pandemic but

not effectively cut mortality. We further find that reconnecting two populations at an

appropriate time can significantly lessen the final mortality. Assuming that rare vaccines

are available, this study recommends immunizing elderly hub individuals first to better

decrease mortality.
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APPROXIMATION OF SIS

EPIDEMICS ON NETWORKS

Markovian Susceptible-Infected-Susceptible (SIS) epidemics on a network with N nodes

can be described by a continuous-time Markov chain, that consists of 2N network infection

states. The Markovian SIS epidemics on complete graphs can be exactly described by the

birth-and-death process. The birth-and-death approximation for random networks, e.g.,

Erdős–Rényi (ER) random networks, however, leads to errors. The approximation errors for

some networks are significantly larger than other networks and thus the SIS epidemics on

these networks require a higher order of approximation to ensure a relatively high accuracy.

To lessen the birth-and-death approximation error and study how many reduced states

are required to make sure the approximation error smaller than a threshold based on the

network properties, we propose a spectral clustering SIS approximation (SCSA) method,

which combines the spectral clustering of the huge Markov graph and the birth-and-death

approximation, to reduces the huge 2N state space of the Markov chain to a smaller number

of states. We discover that the relationship between the approximation error ε and the

number of clusters r roughly obeys ε∼ r−α, where α ∈ ( 1
4 , 4

5 ). The exponent α tends to be

larger if the network has a higher link density. The approximation errors are usually larger

for networks with larger network size N . For Watts-Strogatz (WS) small-world networks,

the approximation error ε deceases faster with the number of clusters r when the rewiring

probability p is higher.

55
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5.1. INTRODUCTION

The Susceptible-Infected-Susceptible (SIS) model [2] describes the spread of an infectious

disease on a network G . Each of the N nodes in the network is either susceptible (S) or

infectious (I) at any time t . If the infection and curing processes are independent Poisson

processes, then the SIS model can be represented as a continuous-time Markov chain

with 2N network infection states [149, 150, 31]. A network infection state represents which

nodes in the networks are infected and which nodes are susceptible. Any random graph

with more than N > 20 nodes renders an exact analysis infeasible due to the huge number

of network infection states.

Researchers have attempted to apply exact reduction methods on the huge Markov

chain based on the automorphisms of the underlying graph [150, 151, 152, 153, 154, 155].

Unfortunately, few networks can be reduced significantly, e.g. the complete graph, the

star graph and the household graph [156, 150]. For other graphs, e.g., Erdős–Rényi (ER)

random networks, the number of automorphisms is very small compared to the size

of the network, which makes the exact method intractable. As an alternative, various

mean-field methods have been developed with a much lower complexity than the original

Markov chain with 2N states. A prominent example is the N-Intertwined mean field

approximation (NIMFA) which approximates the SIS prevalence by assuming that the

states of any two neighboring nodes are statistically independent [149, 157]. The NIMFA

method can be extended to consider dynamical correlations between pairs of adjacent

nodes [158]. Alternatively, the Heterogeneous Mean-Field (HMF) approximation was

proposed by Pastor-Satorras and Vespignani [159], which assumes that all nodes with the

same degree are statistically equivalent. Like the individual-based mean-field approaches,

the degree-based mean-field theory was also extended to higher orders such as the second-

order pairwise approximation [160, 161, 162, 163]. The first-order mean-field methods are

less accurate for sparse networks [144], small networks [164] and spreading parameters

around the epidemic threshold [165]. Moreover, all mean-field approaches fail to describe

the eventual convergence to the absorbing state (all-healthy state). A completely different

approach is the birth-and-death approximation [166], which approximates the 2N -sized

Markov chain with a birth-and-death process with N +1 states. Each state in the birth-

and-death process represents a certain number of infected nodes. The transition rates

in the birth-and-death approximation are estimated based on the original Markov chain

[166]. The advantage of the birth-and-death approximation is that the absorbing state is

reserved and the prevalence after the metastable state is well approximated.

The birth-and-death process can exactly describe the Markovian SIS epidemics on

complete graphs, but leads to errors in the approximation of the SIS epidemics on random

graphs. As what we have mentioned in the above paragraph, in the birth-and-death
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approximation, all network infection states with the same number of infected nodes are

grouped into one reduced state. But this degree of approximations may lead to significant

errors for some random networks and thus require a kind of higher order approximation

method to achieve a higher accuracy.

In the continuous-time SIS Markov processes, the state transition rate diagram with

2N network infection states and transition rates between any two states can be seen

as a huge graph with directed weighted links and 2N nodes. Spectral clustering is one

computationally efficient method based on the spectral decomposition of the infinitesi-

mal generator matrix to approximately partition the graph into clusters so that the links

between clusters have low weights and the links within clusters have high weights.

In this chapter, we propose the spectral clustering SIS approximation (SCSA) that

combines the spectral clustering with the birth-and-death approximation. Specifically,

we partition the 2N network infection states into r clusters by the spectral clustering of

the infinitesimal generator matrix (also known as the transition rate matrix) Q. Different

from the birth-and-death approximation in which the network infection states with the

same number of infected nodes are grouped into one state, the SCSA groups the network

infection states with the same number of infected nodes and the same cluster into one

state. The number of clusters r can be any integer value between 1 and 2N . If the number

of clusters r = 1, then the approximation reduces to the birth-and-death approximation

[166]. For r > 1, the resulting method more accurately approximates the original SIS

process, at the cost of more reduced states. If r = 2N , we recover the original SIS process.

We measure the approximation error between the approximated prevalence and the exact

prevalence for different numbers of clusters r . We show that the relationship between

the approximation error ε and the number of clusters r roughly obeys ε ∼ r−α, where

α ∈ ( 1
4 , 4

5 ). The exponentα tends to be larger if the network has higher link density. Besides,

for Watts-Strogatz (WS) small-world networks, the approximation error decreases faster

for networks with larger rewiring probability p.

This chapter is structured as follows. We compare the prevalence of the SIS process

with the birth-and-death approximation and N-Intertwined mean field approximation

(NIMFA) in Section 5.2. Although the birth-and-death approximation has performance

advantages for the prevalence after the metastable state, there are still large errors com-

pared with the exact SIS prevalence for some random networks. Section 5.3 introduces the

spectral clustering on the infinitesimal generator matrix that could be used to group the

states. In Section 5.4, we propose the spectral clustering SIS approximation (SCSA), which

combined the spectral clustering information with the birth-and-death approximation,

to better approximate the prevalence of the SIS network epidemic. We apply the SCSA in

Section 5.5 to SIS epidemics on ER random networks [142] and WS small-world networks

[76]. We further analyze the relationship between the approximation error ε and the
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number of clusters r . The impact of the network size N , the link density, the rewiring

probability p of the WS small-world networks and the effective infection rate τ are also

analyzed. Finally, we conclude in Section 5.6.

5.2. PREVALENCE CURVES OF THE SIS PROCESS, THE BIRTH-

AND-DEATH APPROXIMATION AND THE NIMFA MODEL
The Susceptible-Infected-Susceptible (SIS) network epidemic model describes the spread

of an infectious disease on a network with N nodes and L links. We use the adjacency

matrix A with elements ai j to indicate if there is a connection between nodes i and j

(ai j = 1) or not (ai j = 0). Each node in the network at time t can be either in state 0

(susceptible) or state 1 (infected). The SIS process consists of two independent processes.

Infected nodes can recover from the disease, which is modelled as a Poisson process with

a curing rate δ. Simultaneously, infected nodes may infect their susceptible neighbours

with an infection rate β. The effective infection rate τ is defined as the ratio τ=β/δ of the

infection rate β to the curing rate δ. We set the curing rate δ= 1 in this chapter.

At any time t , each node i in the network is either susceptible (0) or infected (1). We

apply the Bernoulli random variable Xi (t ) ∈ {0,1} to denote the infection state of node i at

time t : Xi (t ) = 0 when node i is susceptible at time t , otherwise Xi (t ) = 1. We represent

the current infection state of all nodes in the network as an N ×1 vector x, where each

element xk ∈ {0,1}. Using the representation from Van Mieghem [31], we represent the

state vector x by an N -digits binary number (xN xN−1 · · ·x2x1) and the corresponding

decimal value is

i =
N∑

k=1
xk (i )2k−1. (5.1)

The transition rate qi j specifies the rate to go from state i to state j , and can be computed

as [149, 32, 167]

qi j =



δ if

 j = i −2m−1;m = 1,2, · · · , N

and xm(i ) = 1

β
N∑

k=1
amk xk (i ) if

 j = i +2m−1;m = 1,2, · · · , N

and xm(i ) = 0

−
2N∑

k=1;k 6= j
qk j if i = j

0 otherwise

(5.2)

The set of all transition rates qi j forms the 2N ×2N infinitesimal generator Q. The proba-

bility state vector at time t can be calculated by sT(t ) = sT(0)eQt , where the i -th element
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of the N ×1 column vector s(t) is the joint probability si (t) = Pr[X1(t) = x1(i ), X2(t) =
x2(i ), · · · , XN (t) = xN (i )]. The prevalence, which denotes the average fraction of the in-

fected nodes, at time t equals

y(t ) = 1

N
sT(0)eQtξ, (5.3)

where ξ denotes the column vector of the number of infected nodes for each state. Specif-

ically, the vector ξ can be calculated by ξ= Mu, where u = (1,1, · · · ,1) is the all-one vector

and the 2N ×N matrix M includes all states in binary notation, but bit-revised:

M =



0 0 0 · · · 0

1 0 0 · · · 0

0 1 0 · · · 0

1 1 0 · · · 0

0 0 1 · · · 0
...

...
...

...
...

1 1 1 · · · 1


Figure 5.1 shows the prevalence curves generated by the birth-and-death approxima-

tion (r = 1) and the exact SIS network epidemic (r = 2N ). We randomly generate the ER

random networks and the WS small-world networks with the average degree E [D] = 4 and

the network sizes N = 6, N = 8 or N = 10. The rewiring probability of the WS small-world

networks is p = 0.1. The epidemic threshold τ(1)
c = 1/λ1, where λ1 denotes the largest

eigenvalue of the network, derived from NIMFA [2], is the lower bound of the actual

epidemic threshold τc . We considered four different effective infection rates: τ = τ(1)
c ,

τ = 3τ(1)
c , τ = 5τ(1)

c and τ = 10τ(1)
c . Figure 5.1 indicates that the overall trends can be

captured by the birth-and-death approximation (r = 1). However, the approximation

errors are relatively large for some networks. To investigate the advantages of the birth-

and-death approximation compared with the mean-field approximation, we analyse the

prevalence curves of the NIMFA model, the exact SIS model and the birth-and-death

approximation as shown in Fig. 5.2. The networks and parameters considered are the

same as Fig. 5.1c and Fig. 5.1f. Figure 5.2 indicates that the mean squared error ε be-

tween the NIMFA prevalence and the exact prevalence are much larger than the error

between the birth-and-death approximated prevalence and the exact prevalence. This

result is consistent with previous works which show that mean-field approximations work

poorly for sparse and/or small networks [168]. Moreover, mean-field approximations

cannot capture the prevalence trend after the metastable state. The gap between the exact

prevalence and the birth-and-death approximated prevalence can be further reduced by

considering more clusters.
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Figure 5.1: The comparison between the exact SIS prevalence and the birth-and-death approximated prevalence.

We consider ER random networks and WS small-world networks with average degree E [D] = 4 and network sizes

N = 6, N = 8 and N = 10. The rewiring probability for the WS small-world networks is p = 0.1. Four different

effective infection rates are considered: τ= τ(1)
c , τ= 3τ(1)

c , τ= 5τ(1)
c and τ= 10τ(1)

c . The curing rate equals δ= 1.

All prevalence curves in this paper have a horizontal logarithmic scale.
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Figure 5.2: The prevalence of the exact SIS model, the birth-and-death approximation and the NIMFA model

for the ER random network (left) and the WS small-world network (right) with the network size N = 10. The

effective infection rate is τ= 5τ(1)
c and the curing rate equals δ= 1.

5.3. SPECTRAL CLUSTERING ON THE INFINITESIMAL GENERA-

TOR MATRIX

We aim for a dimensionality reduction on the 2N × 2N infinitesimal generator matrix

Q of the Markov chain for the SIS processs by spectral clustering. However, the matrix

Q is, in general, asymmetric so that its eigenvalues and eigenvectors can be complex.

A heuristic method to apply the spectral clustering on the asymmetric matrix Q is to

construct a corresponding symmetric matrix Q+QT , but the clustering results may not be

optimized since a set of different asymmetric matrices may associate with the same con-

structed symmetric matrix [169, 170, 171]. Recent research reveals that, for any irreducible

stochastic matrix, the clustering behavior can still be captured by only considering the

real part of the eigenvalues and eigenvectors if the real part of the eigenvalues is much

greater than the imaginary part. To guarantee that the infinitesimal generator matrix Q is

irreducible [31, p. 447], we assume that each node i can be infected spontaneously with

a small self-infection rate ε = 10−10. In Appendix D.1, we show that the eigenvalues of

the infinitesimal generator Q have a dominant real part, which means that the imaginary

part is usually too small and thus can be ignored. Based on the above analysis, in this

paper, we only consider the real part of the eigenvalues and eigenvectors in the spectral

clustering. The spectral-based clustering consists of two steps:

1. find the r eigenvectors corresponding to the r smallest eigenvalues (the real part)
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of Laplacian matrix −Q;

2. partition the 2N states into r clusters by the k-means algorithm [172].

Although k-means algorithm is not the only way to cluster the 2N states in step 2, re-

searches usually use k-means algorithm here mainly due to its advantage in computa-

tional efficiency.

Figure 5.3 illustrates the results of spectral clustering on the infinitesimal generator

matrix Q for the SIS process on an example network with 5 nodes. In the state transition

rate diagrams of Fig. 5.3, the network infection states in the same column have the same

number of infected nodes. The network infection states that belong to different clusters

are marked with different colors. With the number of clusters r = 1, there is only one

cluster and thus all network infection states are with the same color. With the number of

clusters r = 2, in this example, only the all healthy state (absorbing state) in one and all

others in another cluster. With the number of clusters r = 3, the clustering results turn to

be complicated, but we can still see some relation between clusters and the underlying

network. For example, the network infection states 3 and 5 are in the same cluster. In the

network infection state 3, the nodes 1 and 2 in the network are infected. In the network

infection state 5, the nodes 1 and 3 are infected. These two network infection states are

symmetric from the view of the underlying network.

5.4. SPECTRAL CLUSTERING SIS APPROXIMATION
The states in the same cluster and with the same number of infected nodes are aggregated

into one state. Figure 5.4 shows an example of the partition into r = 3 clusters. The states

in the m-th partition all have ξm infected nodes and are all in the Cm-th cluster. We

denote the set of states in the m-th partition as Sm . We further denote the number of

partitions as Ñ and the upper bound of the partition number1 Ñ is (N −1)r +2. The

partitioned infinitesimal generator matrix Q̃ is

Q̃m,n =


1

|Sm |
∑

i∈Sm

∑
j∈Sn Qi j if |ξm −ξn | = 1, Sm 6= ; and Sn 6= ;

−∑Ñ
z=1;z 6= j Q̃k j if m = n

0 otherwise.

(5.4)

The probability partition vector is s̃(0) =
(∑

i∈S1 si (0),
∑

i∈S2 si (0), · · · ,
∑

i∈SÑ
si (0)

)
at the

initial time t = 0 and the vector of the number of the infected nodes for the partitions

1For a network with N nodes, the possible number of infected nodes is any integer ranging from 0 to N . There

are N +1 columns in the state transition rate diagram as shown in Fig. 5.3 if we let each column show the states

with the same number of infected nodes. Apart from the all healthy state 0 and the all-infected state 2N −1,

the states in each other column can be split into a maximum of r partitions. Thus the maximum number of

partitions is (N −1)r +2.
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Figure 5.3: Example of the spectral clustering on the infinitesimal generator matrix Q for the SIS process on

a network with 5 nodes. Each state can be represented by the N-digits binary number x5x4x3x2x1 and the

corresponding integer value follows from Eq. (5.1). The binary digit xi denotes whether node i is susceptible

(xi = 0) or infected (xi = 1). For example, state 0, which can also be represented as state 00000, indicates that all

5 nodes are susceptible. The effective infection rate is τ= 5τ(1)
c , where τ(1)

c is the epidemic threshold derived by

NIMFA. The curing rate equals δ= 1.
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is ξ̃= (
ξ1,ξ2, · · · ,ξÑ

)
. The probability partition vector at time t is calculated by s̃T(0)eQ̃t .

The m-th element of the vector s̃(t ) denotes the probability that the state is in the m-th

partition at time t . The approximated prevalence at the time t equals

ỹ(t ) = 1

N
s̃T(0)eQ̃t ξ̃. (5.5)

By adjusting the number of clusters, one can tune the results from the birth-and-death

approximated prevalence (r = 1) to the exact SIS prevalence (r = 2N ). The pseudocode of

the approach is shown in Appendix D.2. Compared with the birth-and-death approxima-

tion, the spectral clustering method with the number of clusters r > 1 reduces the error ε,

but also increases the size of the partitioned infinitesimal generator Q̃.

There are an immense amount of possible way and the spectral clustering is just

one possible way to partition the 2N network infection states. The performance of the

spectral clustering in the approximation of SIS network epidemics compared with the

other clustering results is still unknown. To access the quality of SCSA, we compare the

SCSA results with a random clustering method, which places each state in a uniformly

random cluster. As shown in Fig. D.3 of Appendix D.4, with the same size of the partitioned

state space, the approximate accuracy of SCSA is significantly higher than the random

clustering benchmark. Fig. D.4 of Appendix D.4 further indicates that the SCSA result

is close to the best approximation accuracy one can obtained if we keep the size of the

reduced state space to be the same.

Another question is the approximation performance of the spectral clustering without

considering the birth-and-death restriction. In other words, why do we combine the

spectral clustering with the birth-and-death approximation rather than directly group the

network infection states in the same cluster? To answer this question, we show the SIS

approximation results without the birth-and-death restriction in Appendix D.3. It shows

that the prevalence before and after the metastable state will be significantly different

from the exact prevalence if we do not consider the birth-and-death restriction.

5.5. APPROXIMATION ERROR

We measure the approximation error between the approximated prevalence ỹ(t ) and the

exact prevalence y(t ) at time t using the Mean Squared Error ε(t ). We separate the time

interval from t = 10−2 to t = 103 into Nt = 51 logarithmically spaced time points, because

the main dynamics of the SIS process takes place over multiple orders to magnitude [173].

The Mean Squared Error ε is then computed as

ε= 1

Nt

Nt−1∑
t=0

(
y(t )− ỹ(t )

)2 (5.6)
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Figure 5.4: Diagram of the spectral clustering SIS approximation (SCSA). The first step of SCSA is clustering

the infinitesimal generator matrix Q and the second step is to get the partitions by considering the number of

infections. The left graph shows the infinitesimal generator matrix Q and the right graph shows the partitioned

infinitesimal generator matrix Q̃. The states in the same cluster and with the same number of infections are

partitioned into one state.

The spectral clustering approximation method (SCSA) is evaluated by simulations of

the spectral clustering approximation. We compare the approximation results with the

exact SIS epidemic on connected ER random networks and WS small-world networks for

small network sizes N , due to the 2N computing complexity of the exact Markov chain.

We study how fast the approximation error decreases by increasing the number of

clusters. Figure 5.5 and 5.6 depict the mean squared error ε between the approximated

prevalence and the exact prevalence for the ER random networks and the WS small-world

networks with different link densities. Relatively large errors may occur when applying

the birth-and-death approximation (r = 1). The errors can be efficiently reduced by

considering more clusters. The insets in Fig. 5.5 and 5.6 indicate that the relationship

between the error ε and and the number of clusters r roughly obeys ε∼ r−α. The figures

also indicate that the approximation errors are larger for sparse networks. Similar results

can be discovered for networks with other link densities, which are shown in Appendix

D.5. We also notice that the approximation error for r = 2 is generally similar to the

approximation error for r = 1. Usually, the clustering algorithm with r = 2 takes the

all-healthy state 0 in one cluster and the other states in the other cluster, which is also

depicted in Figure 5.3. Thus the partitions for the number of clusters r = 2 and the

partitions for the number of clusters r = 1 are the same, because we also assemble states

with a different number of infected nodes in a different group.

In practice, the spectral clustering approximation will be of little significance if plenty

of clusters are considered, because a large amount of clusters implies a large state space.

Thus we focus on the approximation performance for the number of clusters 1 ≤ r ≤ N .

We analyze the performance of the spectral clustering approximation method for different
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link densities. Figure 5.7 and 5.8 show the error ε between the approximated prevalence

and the exact prevalence with different network sizes and indicate that the approximation

error will be larger for the network with larger network size N . We further analyze the ap-

proximation performance for the underlying networks with different rewiring probability

p for the WS small-world networks. The rewiring probability p is an important parameter

which varies the WS small-world network between a regular network (p = 0) and the

network close to the ER random network (p = 1). The larger the rewiring probability p,

the more random the network will be. The results in Figure 5.9 reveal that, for the WS

small-world networks with lower rewiring probability p, the approximation errors tend to

be larger for the birth-and-death approximation (r = 1) but reduce faster with the increase

of the number of clusters r .

a b

c d

Figure 5.5: Mean squared error ε between the approximated prevalence and the exact prevalence for the ER

random networks with network size N = 10 and different number of links: L = 9 (a), L = 19 (b), L = 29 (c), L = 39

(d). Note that all plots have a horizontal logarithmic scale. The mean and percentiles of the error are obtained

by considering 1000 randomly generated networks. The effective infection rate τ= 5τ(1)
c . The curing rate equals

δ= 1. The mean and percentiles of error are obtained by considering 100 randomly generated networks.
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a b

c d

Figure 5.6: Mean squared error ε between the approximated prevalence and the exact prevalence for the WS

small-world networks with network size N = 10 and different average degree: E [D] = 2 (a), E [D] = 4 (b), E [D] = 6

(c), E [D] = 8 (d). Note that all plots have a horizontal logarithmic scale. The rewiring probability for the WS

small-world networks is p = 0.1. The effective infection rate is τ= 5τ(1)
c . The curing rate equals δ= 1. The mean

and percentiles of the error are obtained by considering 1000 randomly generated networks.
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a

d

(1) (1)

c

b

Figure 5.7: Mean squared error ε between the approximated prevalence and the exact prevalence for the ER

random networks with different network sizes. The average degree is E [D] = 4. The mean and percentiles of the

error are obtained by considering 1000 randomly generated networks. The curing rate equals δ= 1.
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a

c d

b

(1) (1)

Figure 5.8: Mean squared error ε between the approximated prevalence and the exact prevalence for the WS

small-world networks with different network sizes. The average degree is E [D] = 4. The rewiring probability for

the WS small-world networks is p = 0.1. The mean and percentiles of the error are obtained by considering 1000

randomly generated networks. The curing rate equals δ= 1.

(1) (1)

a b

Figure 5.9: The approximation performance of SCSA for the WS small-world networks with different rewiring

probability p. The average degree is E [D] = 4. The mean error ε is obtained by considering 1000 randomly

generated networks. The curing rate equals δ= 1.
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5.6. CONCLUSION
This chapter proposes the SCSA method to approximate the SIS network epidemic by

combining the spectral clustering and the birth-and-death approximation. We discover

that the relationship between the approximation error ε and the number r of clusters

roughly obeys ε∼ r−α, where α ∈ ( 1
4 , 4

5 ). The exponent α tends to be larger if the network

has higher link density. Besides, for WS small-world networks, the approximation error

decreases faster for networks with larger rewiring probability p. These rules can be

applied to decide how many reduced states are required to make sure the approximation

error is smaller than a threshold for the SIS spreading on a specific network. Using SCSA,

the effect of more network properties on the approximation accuracy can be studied in

future works. The spectral clustering approximation method can also be applied to other

epidemiological models, like the Susceptible-Infected-Removed (SIR) model. Then the

infinitesimal generator will contain 3N states, which is even more challenging than the

SIS model.



6
ERROR ACCUMULATION IN

QUANTUM CIRCUITS

We study a classical model for the accumulation of errors in multi-qubit quantum com-

putations. By modeling the error process in a quantum computation using two coupled

Markov chains, we are able to capture a weak form of time-dependency between errors in

the past and future. By subsequently using techniques from the field of discrete probability

theory, we calculate the probability that error quantities such as the fidelity and trace

distance exceed a threshold analytically. The formulae cover fairly generic error distribu-

tions, cover multi-qubit scenarios and are applicable to e.g. the randomized benchmarking

protocol. To combat the numerical challenge that may occur when evaluating our expres-

sions, we additionally provide an analytical bound on the error probabilities that is of

lower numerical complexity. Besides this, we study a model describing continuous errors

accumulating in a single qubit. Finally, taking inspiration from the field of operations

research, we illustrate how our expressions can be used to decide how many gates one can

apply before too many errors accumulate with high probability and how one can lower the

rate of error accumulation in existing circuits through simulated annealing.

71
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6.1. INTRODUCTION

We study Markov chains that provide a model for the accumulation of errors in quantum

circuits. Different types of errors [174] that can occur and are included in our model are

e.g. Pauli channels [3], Clifford channels [175, 176], depolarizing channels [3] and small

rotational errors [177, 178]. If the random occurrence of such errors only depends on the

last state of the quantum mechanical system, then the probability that error quantities

such as the fidelity and trace distance accumulate beyond a threshold can be related to

different hitting time distributions of two coupled Markov chains [179]. These hitting time

distributions are then calculated analytically using techniques from probability theory

and operations research.

Error accumulation models that share similarities with the Markov chains under con-

sideration here can primarily be found in the literature on randomized benchmarking

[180]. From the modeling point of view, the dynamical description of error accumulation

that we adopt is shared in [181, 182, 183, 184]. These articles however do not explicitly

tie the statistics of error accumulation to a hitting time analysis of a coupled Markov

chain. Furthermore, while Markovianity assumptions on noise are common [185], the

explicit mention of an underlying random walk is restricted to a few papers only [182,

186]. From the analysis point of view, research on randomized benchmarking has pre-

dominantly focused on generalizing expressions for the expected fidelity over time. For

example, the expected decay rates of the fidelity are analyzed for cases of randomized

benchmarking with restricted gate sets [187], Gaussian noise with time-correlations [188],

gate-dependent noise [184] and leakage errors [189]; and the expected loss rate of a

protocol related to randomized benchmarking is calculated in [190, 181, 191, 184, 192].

In this chapter, we focus instead on the probability distributions of both the error and

maximum error in the Markov chain model – which capture the statistics in more detail

than an expectation – for arbitrary distance measures and in random as well as nonran-

dom quantum circuits. Finally, [181, 182, 184, 189] resort to perturbation or approximate

analyses (via e.g. Taylor expansions and independence or decorrelation assumptions) to

characterize the fidelity, whereas here we provide the exact, closed-form expressions for

the distributions using the theory of Markov chains.

To be precise: this chapter first studies a model for discrete Markovian error accu-

mulation in a multi-qubit quantum circuit. We suppose for simplicity that both the

quantum gates and errors belong to a finite unitary group Gn ⊆U (2n), where U (2n) is

the unitary group for n qubits. The group Gn can e.g. be the generalized Pauli group

(i.e., the discrete Heisenberg–Weyl group), or the Clifford group. By modeling the quan-

tum computation with and without errors as two coupled Markov chains living on the

state space consisting of pairs of elements from these groups, we are able to capture a
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weak form of time-dependency within the process of error accumulation. To see this,

critically note that the assumption of a Markov property does not imply that the past

and the future in the quantum computation are independent given any information

concerning the present [179]. We must also note that while the individual elements of our

two-dimensional Markov chain belong to a group, the two-dimensional Markov chain

itself, here, is generally not a random walk on a group. Lastly, our Markov chain model

works for an arbitrary number of qubits. These model features are all relevant to the

topic of error modeling in quantum computing and since the Markov property is satisfied

in randomized benchmarking, the model has immediate application. The method is

generic in the sense that any measure of distance between two pure quantum states may

be used to quantify the error and that it allows for a wide range of error distributions.

The method can handle nonuniform, gate- and time-dependent errors. Concretely, for

arbitrary measure of distance and a wide range of error distributions, we will calculate

(i) the expected error at time t , (ii) the probability that an error is larger than a threshold

δ at time t and (iii) the probability that the error has ever been larger than a threshold δ

before time t and we do so both for random and nonrandom circuits.

In addition to studying a model for discrete Markovian error accumulation in quantum

circuits, we also briefly study a random walk model on the three-dimensional sphere

[193]. This model is commonly used to describe the average dephasing of a single qubit

(or spin) [194]. Using this model, we characterize the distribution and expectation of the

trace distance measuring the error that is accumulated over time. These derivations are,

essentially, refinements that provide information about the higher-order statistics of the

error accumulation in a single qubit.

The approach taken in this chapter is a hybrid between classical probability theory

and quantum information theory. This hybridization allows us to do quite detailed calcu-

lations, but not every quantum channel will satisfy the necessary assumptions such as

Markovianity of the error distribution. On the other hand, in cases where one introduces

their own source of randomness (such as in randomized benchmarking), the assumptions

are met naturally. It should furthermore be noted that the numerical complexity of the

exact expressions we provide is high for large quantum circuits. The precise difficulty of

evaluating our expressions depends on the particulars of the quantum circuit one looks

at. For practical purposes, we therefore also provide an explicit bound on the maximum

error probability that is of lower numerical complexity. Furthermore, we also discuss a

reduction in complexity that occurs when starting a quantum computation from a stabi-

lizer state: the coupled Markov chain’s state space then reduces in size. Reference [183] is

relevant to mention here, because similar to our observations, these authors also note

the generally high computational complexity of error analysis in quantum circuits. The

issue is approached in [183] differently and in fact combinatorially by converting circuits
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into directed graphs, tracing so-called fault-paths through these graphs and therewith

estimating the success rates of circuits.

To illustrate and substantiate our theoretical results, we provide detailed discussions

of further numerical experiments that we ran with a quantum simulator purpose-built

for this research. Experiments include: the application of our formulae to randomized

benchmarking; a comparison between simulated results on the accumulation of errors on

a single qubit and our explicit formulae, as well as to a traditional method that calculates

the evolution of the trace distance when repeating a depolarization channel; the effect

of gate-dependent error distributions on the accumulation of errors in a one- and two-

dimensional quantum circuit; and lowering the misclassification probability in a circuit

that implements the Deutsch–Jozsa Algorithm for one classical bit.

Finally, we use the expressions that describe how likely it is that errors accumulate to

answer two operational questions that will help advance the domain of practical quantum

computing [195]. First, we calculate and bound analytically how many quantum gates

t?
δ,γ one can apply before an error measure of your choice exceeds a threshold δ with

a probability above γ. This information is useful for deciding how often a quantum

computer should perform repairs on qubits and is particularly opportune at this moment

since quantum gates fail O(0.1–1%) of the time [195]. Related but different ideas can be

found in [174, §2.3], where the accumulation of bit-flips and rotations on a repetition code

is studied and a time to failure is derived and in [196, §V], where an upper bound on the

number of necessary measurements for a randomized benchmarking protocol is derived.

Second, using techniques from optimization, we design a simulated annealing method

that improves existing circuits by swapping out gate pairs to achieve lower rates of error

accumulation. There is related literature where the aim is to reduce the circuit depth [197,

198, 199], but an explicit expression for error accumulation has not yet been leveraged

in the same way. Moreover, we also discuss conditions under which this tailor-made

method is guaranteed to find the best possible circuit. Both of these excursions illustrate

how the availability of an analytical expression for the accumulation of errors allows us

to proceed with second-tier optimization methods to facilitate quantum computers in

the long-term. We further offer an additional proof-of-concept that simulated annealing

algorithms can reduce error accumulation rates in existing quantum circuits when taking

error distributions into account: we illustrate that the misclassification probability in

a circuit that implements the Deutsch–Jozsa Algorithm for one classical bit [200, 201]

can be lowered by over 40%. In this proof of concept we have chosen an example error

distribution that is gate-dependent and moreover one that is such that not applying a

gate gives the lowest error rate in this model; applying a single-qubit gate results in a

medium error rate; and applying a two-qubit gate gives the largest probability that an

error may occur.
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This chapter is structured as follows. In Section 6.2, we give the model aspects per-

taining to the quantum computation (gates, error dynamics and error measures) and

we introduce the coupled Markov chain to describe error accumulation. In Section 6.3,

we provide the relation between the probability of error and the hitting time distribu-

tions and we derive the error distributions as well as its bound. We also calculate the

higher-order statistics of an error accumulation model for a single qubit that undergoes

(continuous) random phase kicks and depolarization. In Section 6.4, we illustrate our

theoretical results by comparing to numerical results of a quantum simulator we wrote

for this chapter. In Section 6.5, we discuss the simulated annealing scheme. Finally, in

Section 6.6, we conclude with ideas for future research.

6.2. MODEL AND COUPLED MARKOV CHAIN

6.2.1. GATES AND ERRORS IN QUANTUM COMPUTING

It is generally difficult to describe large quantum systems on a classical computer for the

reason that the state space required increases exponentially in size with the number of

qubits [202]. However, the stabilizer formalism is an efficient tool to analyze such complex

systems [203]. Moreover, the stabilizer formalism covers many paradoxes in quantum

mechanics [204], including the Greenberger–Horne–Zeilinger (GHZ) experiment [205],

dense quantum coding [206] and quantum teleportation [207]. Specifically, the stabi-

lizer circuits are the smallest class of quantum circuits that consist of the following four

gates: ω= eiπ/4, H = (1/
p

2)
(
(1,1); (1,−1)

)
, S = (

(1,0); (0, i)
)
, and Zc =

(
(1,0,0,0); (0,1,0,0);

(0,0,1,0); (0,0,0,−1)
)
. These four gates are closed under the operations of tensor product

and composition [208]. As a consequence of the Gottesman–Knill theorem, stabilizer

circuits can be efficiently simulated on a classical computer [209].

Unitary stabilizer circuits are also known as the Clifford circuits; the Clifford group

Cn can be defined as follows. First: let P , {I , X ,Y , Z } denote the Pauli matrices, so

I = ((1,0); (0,1)), X = ((0,1); (1,0)), Y = ((0,−i ); (i ,0)), and Z = ((1,0); (0,−1)), and let Pn ,{
σ1 ⊗ ·· · ⊗σn | σi ∈ P

}
denote the Pauli matrices on n qubits. The Pauli matrices are

commonly used to model errors that can occur due to the interactions of the qubit with

its environment [210]. In the case of a single qubit, the matrix I represents that there is no

error, the matrix X that there is a bit-flip error, the matrix Z that there is a phase-flip error

and the matrix Y that there are both a bit-flip and a phase-flip error. The multi-qubit case

interpretations follow analogously. Second: let P∗
n = Pn/I⊗n . We now define the Clifford

group on n qubits by Cn ,
{
U ∈U (2n) |σ ∈±P∗

n ⇒UσU † ∈±P∗
n

}
/U (1).

The fact that Cn is a group can be verified by checking the two necessary prop-

erties (see Appendix E.1). The Clifford group on n qubits is finite [211], and we will

ignore the global phase throughout this chapter for convenience; its size is then |Cn | =
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2n2+2n ∏n
i=1

(
4i −1

)
. Moreover, for a single qubit, a representation for the Clifford group

C1 = {C1,C2, · · · ,C24} can then be enumerated and its elements are for example shown in

[180] and [182].

6.2.2. DYNAMICS OF ERROR ACCUMULATION

Suppose that we had a faultless, perfect quantum computer. Then a faultless quantum

mechanical state ρt at time t could be calculated under a gate sequence Uτ = {U1, . . . ,Uτ}

from the initial state ρ0 , |ψ0〉〈ψ0|. Here τ <∞ denotes the sequence length and t ∈
{0,1, · · · ,τ} enumerates the intermediate steps. On the other hand, with an imperfect

quantum computer, a possibly faulty quantum mechanical state σt at time t would be

calculated under both Ut and some (unknown) noise sequence Et = {Λ1, . . . ,Λt } starting

from an initial state σ0 , |Ψ0〉〈Ψ0| possibly different from ρ0. We define the set of all pure

states for n qubits as S n and consider the situation that |ψ0〉 , |Ψ0〉 ∈S n .

To be precise, define for the faultless quantum computation

ρt , |ψt 〉〈ψt | =Ut |ψt−1〉〈ψt−1|U †
t (6.1)

for times t = 1,2, . . . ,τ. Let X t , UtUt−1 · · ·U1 be shorthand notation such that ρt =
X tρ0X †

t . For the possibly faulty quantum computation, define

σt , |Ψt 〉〈Ψt | =ΛtUt |Ψt−1〉〈Ψt−1|U †
t Λ

†
t

for times t = 1,2, . . . ,τ, respectively. Introduce also the shorthand notation

Yt , ΛtUtΛt−1Ut−1 · · ·Λ1U1 such that σt = Ytσ0Y †
t . The analysis in this chapter can

immediately be extended to the case where errors (also) precede the gate. The error

accumulation process is also illustrated in Figure 6.1.

a) Faultless computation:

ρ0 ρ1 . . . ρτ−1 ρτ
U1 U2 Uτ−1 Uτ

b) Potentially faulty computation:

σ0 σ1 . . . στ−1 στ
Λ1U1 Λ2U2 Λτ−1Uτ−1 ΛτUτ

Figure 6.1: Schematic depiction of the coupled quantum mechanical states ρt and σt for times t = 0,1, · · · ,τ.

a) Faultless computation. The state ρt is calculated based on a gate sequence Ut = {U1, . . . ,Ut } from the

initial state ρ0. b) Potentially faulty computation. The state σt is calculated using the same gate sequence

Ut = {U1, . . . ,Ut } and an additional error sequence Et = {Λ1, . . . ,Λt }. The final state στ can depart from the

faultless state ρτ because of errors.
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6.2.3. DISTANCE MEASURES FOR QUANTUM ERRORS

The error can be quantified by any measure of distance between the faultless quantum-

mechanical state ρt and the possibly faulty quantum-mechanical state σt for steps t =
0,1, . . . ,τ. For example, we can use the fidelity Ft ,Tr

√
ρt

1/2σtρt
1/2 [3], or the Schatten

d-norm [212] defined by

D t , ‖σt −ρt‖d = 1
2 Tr

[{
(σt −ρt )†(σt −ρt )

} d
2

] 1
d

(6.2)

for any d ∈ [1,∞). The Schatten d–norm reduces to the trace distance for d = 1, the

Frobenius norm for d = 2 and the spectral norm for d =∞. In the case of one qubit, the

trace distance between quantum-mechanical states ρt and σt equals half of the Euclidean

distance between ρt and σt when representing them on the Bloch sphere [3]. It is well

known that the trace distance is invariant under unitary transformations [3]; a fact that

we leverage in Section 6.3.

ρ0 =σ0

ρ1 =σ1 ρ2 =σ2

ρ3

· · ·σ3

Λ1 = I⊗n , Λ1U1

Λ2 = I⊗n , Λ2U2

U3

U1

U2

Λ3 6= I⊗n , Λ3U3

Figure 6.2: Coupled chain describing the quantum circuit with errors. In this depiction, we start from the same

initial state for simplicity. Here an error Λ3 6= I⊗n occurs as the third gate is applied. Note that the coupled chain

ρt , σt separates.

In this chapter, we are going to analyze the statistical properties of some arbitrary

distance measure (one may choose) between the quantum mechanical states ρt and σt

for times t = 0,1, . . . ,τ. For illustration, we will state the results in terms of the Schatten

d–norm and so are after its expectation E[D t ], as well as its probabilities P[D t ≤ δ],

P[max0≤s≤t Ds ≤ δ]. Throughout this chapter, the operator P and thus also E are with

respect to a sufficiently rich probability space (Ω,P,F ) that each time can describe the

Markov chain being considered. As we show in Appendix E.2, in case of the trace distance

(d = 1), these probabilities can then be related to the corresponding probabilities for the
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fidelity. With d = 1, it holds that P[Ft ≥ 1−ε] ≥P[D t ≤ ε] for all t ≥ 0. Furthermore,

P[ min
0≤s≤t

Fs ≥ 1−ε] ≥P[ max
0≤s≤t

Ds ≤ ε]. (6.3)

6.3. ERROR ACCUMULATION

6.3.1. DISCRETE, RANDOM ERROR ACCUMULATION (MULTI-QUBIT CASE)
Following the model described in Section 6.2 and illustrated in Figure 6.1 and Figure 6.2,

we define the gate pairs Zt , (X t ,Yt ) for t = 0,1,2, . . . ,τ and suppose that Z0 = z0 with

probability one where z0 = (x0, y0) is deterministic and given a priori. Note in particular

that if the initial state is prepared without error, then ρ0 = σ0 and consequently z0 =
(I⊗n , I⊗n). If on the other hand the initial state is e.g. prepared incorrectly as y0 |ψ0〉
instead of |ψ0〉, then z0 = (I⊗n , y0).

THE CASE OF RANDOM CIRCUITS

We consider first the scenario that each next gate is selected randomly and independently

from everything but the last system state. This assumption is satisfied in e.g. the random-

ized benchmarking protocol [180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190]. The

probabilities Pz0 [D t > δ] and Pz0 [max0≤s≤t Ds ≤ δ] can then be calculated once the initial

states |ψ0〉, |Ψ0〉 and the transition matrix are known. Here, the subscript z0 reminds us

of the initial state the Markov chain is started from.

Let the transition matrix of the Markov chain {Zt }t≥0 be denoted element-wise by

Pz,w , P[Zt+1 = w |Zt = z] for z = (x, y), w = (u, v) ∈ G 2
n . The transition matrix satisfies

P ∈ [0,1]|Gn |2×|Gn |2 and the elements of each of its rows sum to one. Let

P (t )
z0,w ,P[Zt = w |Z0 = z0] = (P t )z0,w (6.4)

stand in for the probability that the process is at state w at time t starting from Z0 = z0.

Note that the second equality follows from the Markov property [179].

Example 1: Consider the situation that the error depends on the last gate. The transi-

tion probability Pz,w for z = (x, y), w = (u, v) ∈G 2
n can then be calculated as follows. For

the faultless computation, a gate U = ux−1 that transfers the density matrix xρ0x† to

uρ0u† is randomly chosen according to a gate probability vector κ. For the possibly faulty

computation, an error that transfers the density matrix yσ0 y† to vσ0v†, after the gate

U = ux−1, is Λ= v y−1xu−1. Let ζ(Λ= v y−1xu−1|ux−1) denote the probability that the er-

ror Λ= v y−1xu−1 occurs given that the gate U = ux−1 just occurred. The transition matrix

then satisfies P[Zt+1 = w |Zt = z] = κ(U = ux−1)ζ(Λ= v y−1xu−1|ux−1) component-wise.

Example 2: If we assume that errors and gates are independently generated, then the

transition matrix satisfies P[Zt+1 = w |Zt = z] = κ(U = ux−1)ζ(Λ= v y−1xu−1) component-

wise.
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We are now after the probability that the distance D t is larger than a threshold δ. We

define thereto the set of δ-bad gate pairs by

B
|Ψ0〉
|ψ0〉,δ ,

{
(x, y) ∈G 2

n

∣∣‖xρ0x† − yσ0 y†‖d > δ
}

(6.5)

for |ψ0〉 , |Ψ0〉 ∈S n ,δ≥ 0, as well as the hitting time of any set A ⊆G 2
n by

TA , inf{t ≥ 0|Zt ∈A } (6.6)

with the convention that infφ=∞. Note that TA ∈N0 ∪ {∞} and that it is random. With

definitions (6.5), (6.6), we have the convenient representation

Pz0 [ max
0≤s≤t

Ds ≤ δ] = 1−Pz0 [ max
0≤s≤t

Ds > δ] = 1−Pz0 [T
B

|Ψ0〉
|ψ0〉,δ

≤ t ] (6.7)

for this homogeneous Markov chain. As a consequence of (6.7), the analysis comes down

to an analysis of the hitting time distribution for this coupled Markov chain (Figure 6.3).

0

Figure 6.3: Schematic diagram of the hitting time T
B

|Ψ0〉
|ψ0〉,δ

.

Results. Define the matrix B |Ψ0〉
|ψ0〉,δ ∈ [0,1]|Gn |2×|Gn |2 element-wise by

(
B |Ψ0〉
|ψ0〉,δ

)
z,w ,

Pz,w if w 6∈B
|Ψ0〉
|ψ0〉,δ,

0 otherwise.
(6.8)

Let the initial state vector be denoted by ez0 , a |Gn |2 ×1 vector with just the z0-th element

1 and the others 0. Also let 1A denote the |Gn |2 ×1 vector with ones in every coordinate

corresponding to an element in the set A . Let the transpose of an arbitrary matrix A be

denoted by AT and defined element-wise (AT)i , j = A j ,i . Finally, we define a |Gn |2×1 vector

d |Ψ0〉
|ψ0〉 =

(‖xρ0x† − yσ0 y†‖d
)

(x,y)∈G 2
n

enumerating all possible Schatten d-norm distances.

We now state our first result:
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Proposition 1 (Error accumulation in random circuits). For any z0 ∈ G 2
n , δ ≥ 0, t =

0,1, . . . ,τ<∞: the expected error is given by

Ez0 [D t ] = eT
z0

P t d |Ψ0〉
|ψ0〉 . (6.9)

Similarly, the probability of error is given by

Pz0 [D t > δ] = eT
z0

P t 1
B

|Ψ0〉
|ψ0〉,δ

, (6.10)

and is nonincreasing in δ. Furthermore; if z0 6∈B
|Ψ0〉
|ψ0〉,δ, the probability of maximum error

is given by

Pz0 [ max
0≤s≤t

Ds > δ] =
t∑

s=1
eT

z0

(
B |Ψ0〉
|ψ0〉,δ

)s−1(P −B |Ψ0〉
|ψ0〉,δ

)
1

B
|Ψ0〉
|ψ0〉,δ

, (6.11)

and otherwise it equals one. Lastly, (6.11) is nonincreasing in δ and nondecreasing in t .

The probability in (6.11) is a more stringent error measure than e.g. (6.10) is. The event

{max0≤s≤t Ds < δ} implies after all that the error D t has always been below the threshold

δ up to and including at time t . The expected error Ez0 [D t ] and probability Pz0 [D t > δ]

only concern the error at time t . Additionally, (6.11) allows us to calculate the maximum

number of gates that can be performed. That is, Pz0 [max0≤s≤t Ds > δ] ≤ γ as long as

t ≤ t?δ,γ ,max
{

t ∈N0
∣∣Pz0 [ max

0≤s≤t
Ds > δ] ≤ γ

}
. (6.12)

In words: at most t?
δ,γ gates can be applied before an accumulated error of size at least δ

occurred with probability at least γ.

Proof of (6.10). It follows from (6.5), mutual exclusivity and (6.4) that

Pz0 [D t > δ] =Pz0 [Zt ∈B
|Ψ0〉
|ψ0〉,δ] = ∑

w∈B
|Ψ0〉
|ψ0〉,δ

Pz0 [Zt = w] = ∑
w∈B

|Ψ0〉
|ψ0〉,δ

(P t )z0,w . (6.13)

The right-hand side equals (6.10) in matrix notation. To obtain the expression for the

expectation, directly apply the definition of expectation for a discrete random variable:

Ez0 [D t ] = ∑
(x,y)∈G 2

n

‖xρ0x† − yσ0 y†‖DPz0 [Zt = (x, y)]. (6.14)

Using (6.4) and the definition of d |Ψ0〉
|ψ0〉 , this gives the result.

Proof of (6.11). If z0 ∈B
|Ψ0〉
|ψ0〉,δ, then Pz0 [T

B
|Ψ0〉
|ψ0〉,δ

= 0] = 1. If z0 6∈B
|Ψ0〉
|ψ0〉,δ, then use (6.8) to

write

Pz0 [T
B

|Ψ0〉
|ψ0〉,δ

= s] =Pz0 [Z1 6∈B
|Ψ0〉
|ψ0〉,δ, . . . , Zs−1 6∈B

|Ψ0〉
|ψ0〉,δ, Zs ∈B

|Ψ0〉
|ψ0〉,δ]

= ∑
z1 6∈B

|Ψ0〉
|ψ0〉,δ

· · · ∑
zs−1 6∈B

|Ψ0〉
|ψ0〉,δ

∑
zs∈B

|Ψ0〉
|ψ0〉,δ

Pz0 [Z1 = z1, . . . , Zs = zs ]

= eT
z0

(
B |Ψ0〉
|ψ0〉,δ

)s−1(P −B |Ψ0〉
|ψ0〉,δ

)
1

B
|Ψ0〉
|ψ0〉,δ

(6.15)
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in matrix notation. The result follows after summing (6.15) for s = 0,1, . . . , t −1 by mutual

exclusivity.

Note finally that for arbitrary δ2 > δ1, we have that B
|Ψ0〉
|ψ0〉,δ2

⊆ B
|Ψ0〉
|ψ0〉,δ1

. As a conse-

quence,

Pz0 [T
B

|Ψ0〉
|ψ0〉,δ2

≤ t ] ≤Pz0 [T
B

|Ψ0〉
|ψ0〉,δ1

≤ t ]. (6.16)

This establishes that Pz0 [T
B

|Ψ0〉
|ψ0〉,δ

≤ t ] is nonincreasing in δ. By positivity of the summands,

Pz0 [T
B

|Ψ0〉
|ψ0〉,δ

≤ t ] is nondecreasing in t .

Lower bound. For general B
|Ψ0〉
|ψ0〉,δ, the explicit calculation of (6.11) can be numerically

intensive. It is however possible to provide a lower bound of lower numerical complexity

via the expected hitting time of the set B
|Ψ0〉
|ψ0〉,δ.

Lemma 2 (Lower bound for random circuits). For any set A ⊆G 2
n , the expected hitting

times of a homogeneous Markov chain are the solutions to the linear system of equations

Ez [TA ] = 0 for z ∈ A , Ez [TA ] = 1+∑
w 6∈A Pz,wEw [TA ] for z 6∈ A . Furthermore; for any

z0 ∈G 2
n , δ≥ 0, t = 0,1, . . . ,τ<∞:

Pz0 [ max
0≤s≤t

Ds > δ] ≥ 0∨
(
1−

Ez0 [T
B

|Ψ0〉
|ψ0〉,δ

]

t +1

)
. (6.17)

Here a ∨b ,max{a,b}.

Proof of (6.17). The first part is a standard result, see e.g. [31, p. 202]. The second part

follows from Markov’s inequality, i.e.,

Pz0 [ max
0≤s≤t

Ds ≤ δ] =Pz0 [T
B

|Ψ0〉
|ψ0〉,δ

> t ] ≤
Ez0 [T

B
|Ψ0〉
|ψ0〉,δ

]

t +1
. (6.18)

That is it.

As a consequence of Lemma 2, Pz0 [max0≤s≤t Ds > δ] ≥ γwhen t ≥ Ez0 [T
B

|Ψ0〉
|ψ0〉,δ

]/(1−γ)−
1, and in particular Pz0 [max0≤s≤t Ds > 0] > 0 when t ≥ Ez0 [T

B
|Ψ0〉
|ψ0〉,0

]. The values in the right-

hand sides are thus upper bounds to the number of gates t?
δ,γ one can apply before δ error

has occurred with probability γ:

t?δ,γ ≤ Ez0 [T
B

|Ψ0〉
|ψ0〉,0

]∧
(Ez0 [T

B
|Ψ0〉
|ψ0〉,δ

]

1−γ
−1

)
(6.19)

for δ≥ 0,γ ∈ [0,1]. Here, a ∧b ,min{a,b}.
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Limitations of the method: types of quantum noise channels. The approach taken in

this chapter is a hybrid between classical probability theory and quantum information

theory. The results of this chapter are therefore not applicable to all quantum channels

and it is important that we signal you the limitations.

As an illustrative example, consider the elementary circuit of depth τ= 1 with n = 1

qubit, in which the one gate is restricted to the Clifford group {C1, . . . ,C24}, say. For such

an elementary circuit, this chapter describes a classical stochastic process that chooses

one of twenty-four quantum noise channel F (1), . . .F (24) say according to some arbitrary

classical probability distribution {pi (ρ)}, i.e.,

ρ0 → ρ1 =F (ρ0) =



F (1)(ρ0) =C1ρ0C †
1 w.p. p1(ρ0),

F (2)(ρ0) =C2ρ0C †
2 w.p. p2(ρ0),

. . .

F (24)(ρ0) =C24ρ0C †
24 w.p. p24(ρ0).

(6.20)

Here, the classical probability distribution {pi (ρ)} may be chosen arbitrarily and depend

on the initial quantum state ρ0 as indicated. For this elementary quantum circuit of depth

τ= 1 with n = 1 qubit, (6.20) characterizes the set of stochastic processes covered by our

results in its entirety.

For example, Proposition 1 cannot be applied to the deterministic process

ρ0 → ρ1 =
{
E (1)(ρ0) = (1−p)ρ0 +pY ρ0Y † w.p. 1, (6.21)

nor to the deterministic process

ρ0 → ρ1 =
{
E (2)(ρ0) = (1−p)ρ0 + p

2 Uρ0U † + p
2 U †ρ0U w.p. 1. (6.22)

Here, p ∈ (0,1) can be chosen arbitrarily and U = e−iπY /4 is a Clifford gate. The reason

is that
(
F (1) 6= F (2) 6= · · · 6= F (24)

) 6= (
E (1) = E (2)

)
by the unitary freedom in the operator-

sum representation [3, Thm. 8.2]. A meticulous reader will now note that the example

quantum channels E (1), E (2) are however averages of two particular stochastic processes

F . That is: if p I = 1−p, pY = p, then E (1)(ρ) = E[F (ρ)]; or if p I = 1−p, pU = pU † = p
2 ,

then E (2)(ρ) = E[F (ρ)].

An alternative way to understand what is going on, is to consider that we are describing

the time-evolution of a density matrix and that a density matrix expresses a subjective

state of knowledge. The classical model described in this paper assumes that your best

description of the system at each intermediate time step is a pure state and this is not

the case in quantum channels E (1), E (2). Your best description of the system at each

intermediate time step is a pure state e.g. in randomized benchmarking when you are

drawing classical random variables to randomly choose a quantum gate and are being
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informed of their outcomes. Note finally that the expectation and probability operators

in this paper are with respect to a classical stochastic process that drives a random choice

of quantum gates and that quantum measurements are thus not being modeled.

On how to construct the P matrix. Both Proposition 1 and Lemma 2 rely on construct-

ing the P matrix. For illustrative purposes, we have written a script that will generate a

valid P matrix after a user inputs a vector describing (gate-dependent) error probabilities.

The code is publicly available on TU/e’s GitLab server at https://gitlab.tue.nl/
20061069/markov-chains-for-error-accumulation-in-quantum-circuits.

Additionally, we discuss an example in Appendix E.3 for which we construct the P matrix

as well as evaluate the lower bound in (6.11).

An average over the trajectories of the Markov chain. It is noteworthy that the results

in Proposition 1 are averages over all noise trajectories that can be generated by the

Markov chain. Consider e.g. (6.10), which reads in matrix notation:

Pz0 [D t > δ] = eT
z0

P t 1
B

|Ψ0〉
|ψ0〉,δ

= ∑
w∈B

|Ψ0〉
|ψ0〉,δ

(P t )z0,w . (6.23)

Expanding the matrix power, the right-hand side equals∑
z1∈G 2

n

∑
z2∈G 2

n

· · · ∑
zt−1∈G 2

n

∑
w∈B

|Ψ0〉
|ψ0〉,δ︸ ︷︷ ︸

Term I

Pz0,z1 Pz1,z2 · · ·Pzt−1,w︸ ︷︷ ︸
Term II

(6.24)

= Ez0 [1[Z1 ∈G 2
n , . . . , Zt−1 ∈G 2

n , Zt ∈B
|Ψ0〉
|ψ0〉,δ]]. (6.25)

Here, Term I enumerates all possible length-t trajectories of the Markov chain that start at

some state z0 ∈G 2
n and end at any state w ∈B

|Ψ0〉
|ψ0〉,δ. Term II is the probability that the spe-

cific trajectory z0 → z1 → z2 →···→ zt−1 → w occurs in this Markov chain. Consequently,

(6.25) is the expectation (average) of the random variable 1[Z1 ∈ G 2
n , . . . , Zt−1 ∈ G 2

n , Zt ∈
B

|Ψ0〉
|ψ0〉,δ] as indicated.

THE CASE OF NONRANDOM CIRCUITS

Suppose that the gate sequence Uτ = {U1, ...,Uτ} is fixed a priori and that it is not gener-

ated randomly. Because the gate sequence is nonrandom, we have now that the faultless

state ρt = X tρ0X †
t is deterministic for times t = 0,1, . . . ,τ. On the other hand the poten-

tially faulty state σt = Ytρ0Y †
t is still (possibly) random.

We can now use a lower dimensional Markov chain to represent the system. To

be precise: we will now describe the process {Yt }t≥0 (and consequently {σt }t≥0) as an

inhomogeneous Markov chain. Its transition matrices will now be time-dependent and

https://gitlab.tue.nl/20061069/markov-chains-for-error-accumulation-in-quantum-circuits
https://gitlab.tue.nl/20061069/markov-chains-for-error-accumulation-in-quantum-circuits
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given element-wise by Qy,v (t ) =P[Yt+1 = v |Yt = y] for y, v ∈Gn , t ∈ {0,1, . . . ,τ−1}. Letting

Q(t )
y,v ,P[Yt = v |Y0 = y] stand in for the probability that the process {Yt }t≥0 is at state v at

time t starting from y , we have by the Markov property [179] that

Q(t )
y,v = ( t∏

s=1
Q(s)

)
y,v for y, v ∈Gn . (6.26)

Note that the Markov chain modeled here is inhomogeneous, which is different from

Section 6.3.1. In particular, the time-dependent transition matrix Q(t) here cannot be

expressed in terms of a power P t of a transition matrix P on the same state space as in

Section 6.3.1.

Example 3: Consider the situation that the probability that an error occurs depends

on which gate was applied last. If we assume that P[Λt+1 = λ|Yt = y] = ζy,Ut+1 (λ) are

given distributions for y ∈Gn , t ∈ {0,1, · · · ,τ−1} on λ ∈Gn , we can alternatively write the

elements of the transition matrices as

Qy,v (t ) =P[Yt+1 = v |Yt = y]

= ∑
λ∈Gn

P[Yt+1 = v |Yt = y,Λt+1 =λ]P[Λt+1 =λ|Yt = y]

= ∑
λ∈Gn

1[λUt+1 yρ0 y†U †
t+1λ

† = vρ0v†]ζy,Ut+1 (λ). (6.27)

Here, we have used the law of total probability.

Example 4: If errors occur independently and with probability P[Λt+1 = λ] = ζ(λ),

then

Qy,v (t ) =∑
λ∈Gn 1[λUt+1 yρ0 y†Ut+1

†λ† = vρ0v†]ζ(λ).

Results. Now define the sets of (δ, t )-bad gate pairs by B
|Ψ0〉,t
|ψ0〉,δ ,

{
x ∈Un

∣∣‖ρt−xσ0x†‖d >
δ
}

for |ψ0〉 , |Ψ0〉 ∈S n , t ∈ {0,1, . . . ,τ}, δ≥ 0. Also define the matrices B |Ψ0〉,t
|ψ0〉,δ ∈ [0,1]|Gn |×|Gn |

element-wise by (
B |Ψ0〉,t
|ψ0〉,δ

)
y,v ,

Qy,v (t ) if v 6∈B
|Ψ0〉,t
|ψ0〉,δ,

0 otherwise,
(6.28)

for t = 0,1, . . . ,τ. Recall the notation introduced above Proposition 1. Similarly enumerate

in the vector dρt the Schatten d-norms between any of the possibles states of σt and the

faultless state ρt . We state our second result:

Proposition 3 (Error accumulation in nonrandom circuits). For any y0 ∈Gn , δ≥ 0, t =
0,1, . . . ,τ <∞: the expected error is given by Ey0 [D t ] = eT

y0

(∏t
k=1 Q(k)

)
dρt . Similarly, the

distribution of error is given by

Py0 [D t > δ] = eT
y0

( t∏
k=1

Q(k)
)
1

B
|Ψ0〉,t
|ψ0〉,δ

. (6.29)
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Furthermore; if y0 6∈B
|Ψ0〉,0
|ψ0〉,δ , the distribution of maximum error is given by

Py0 [ max
0≤s≤t

Ds > δ] =
t−1∑
s=0

(
eT

y0

( s∏
r=0

B |Ψ0〉,r
|ψ0〉,δ

)× (
Q(s +1)−B |Ψ0〉,s+1

|ψ0〉,δ
)
1

B
|Ψ0〉,s+1
|ψ0〉,δ

)
, (6.30)

and otherwise it equals one.

Proof of (6.29). From B
|Ψ0〉,t
|ψ0〉,δ’s definition and mutual exclusivity it follows immediately

that

Py0 [D t > δ] =Py0 [Yt ∈B
|Ψ0〉,t
|ψ0〉,δ] = ∑

v∈B
|Ψ0〉,t
|ψ0〉,δ

Py0 [Yt = v] (6.31)

for |ψ0〉 , |Ψ0〉 ∈S n ,δ≥ 0. Using (6.26) and continuing from (6.31), we obtain

Py0 [D t > δ] = ∑
v∈B

|Ψ0〉,t
|ψ0〉,δ

eT
y0

( t∏
k=1

Q(k)
)

y,v . (6.32)

This simplifies to (6.29) in matrix notation. To obtain the expression for the expectation,

apply the same arguments as were used for Proposition 1, but use (6.26) instead.

Proof of (6.30). We can again explicitly calculate the result using a hitting time analysis,

but the expressions expand due to the time-dependency of B
|Ψ0〉,t
|ψ0〉,δ. If y0 ∈B

|Ψ0〉,0
|ψ0〉,δ , then

Py0 [max0≤r≤s Dr > δ] = 1. Otherwise

Py0 [{ max
0≤r≤s−1

Dr ≤ δ}∩ {Ds > δ}] (6.33)

=Py0 [Y1 6∈B
|Ψ0〉,1
|ψ0〉,δ , . . . ,Ys−1 6∈B

|Ψ0〉,s−1
|ψ0〉,δ ,Ys ∈B

|Ψ0〉,s
|ψ0〉,δ] (6.34)

= ∑
y1 6∈B

|Ψ0〉,1
|ψ0〉,δ

· · · ∑
ys∈B

|Ψ0〉,s
|ψ0〉,δ

Py0 [Y1 = y1, . . . ,Ys = ys ] (6.35)

= ∑
y1 6∈B

|Ψ0〉,1
|ψ0〉,δ

· · · ∑
ys−1∈B

|Ψ0〉,s−1
|ψ0〉,δ

∑
ys∈B

|Ψ0〉,s
|ψ0〉,δ

s−1∏
r=0

Qyr ,yr+1 (r ).

Recalling (6.28), we can equivalently write (6.35) in matrix notation as

Py0 [{ max
0≤r≤s−1

Dr ≤ δ}∩ {Ds > δ}] = eT
y0

(s−1∏
r=1

B |Ψ0〉,r
|ψ0〉,δ

)(
Q(s)−B |Ψ0〉,s

|ψ0〉,δ
)
1

B
|Ψ0〉,s
|ψ0〉,δ

. (6.36)

Summing (6.36) over s = 0,1, . . . , t −1 completes the proof by mutual exclusivity.

On how to construct the Q matrix. The script that we created that can generate exam-

ple P matrices, can also generate valid Q matrices after the user inputs a vector describing

(gate-dependent) error probabilities. Recall that this code is available on TU/e’s GitLab

server here: https://gitlab.tue.nl/20061069/markov-chains-for-error-acc
umulation-in-quantum-circuits.

https://gitlab.tue.nl/20061069/markov-chains-for-error-accumulation-in-quantum-circuits
https://gitlab.tue.nl/20061069/markov-chains-for-error-accumulation-in-quantum-circuits
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STATE SPACE REDUCTION IN STABILIZER CIRCUITS

The set of stabilizer gates [213] for a state |ψ〉 is defined as the set of gates M ∈Gn \I⊗n that

satisfy M |ψ〉 = e iγ |ψ〉 for some γ ∈R. Since e iγ is a global phase that cannot be observed,

M |ψ〉 = e iγ |ψ〉 can also be understood as part of an equivalence class M |ψ〉 ≡ |ψ〉. The

state |ψ〉 in M |ψ〉 ≡ |ψ〉 is called the stabilizer state [214]. For one qubit and in case of the

Pauli group, examples include |0〉, |1〉 and |±〉 = (1/2)(|0〉± |1〉). Remark 4 shows that there

exist 2n stabilizer states for any gate M ∈Gn \ I⊗n . Its proof is relegated to Appendix E.4.

Remark 4. For any gate M ∈Gn \ I⊗n there are 2n states |ψ0〉 that satisfy M |ψ0〉 = e iγ |ψ0〉
for some γ ∈R.

The advantage of starting a quantum circuit from a stabilizer state is that the state

space is smaller. It moreover can be proved that, under the assumptions of Section 6.2,

when starting initially from a stabilizer state, all states reached during the quantum

computation will themselves be stabilizer states. Define the set of reachable density

matrices from an initial state |ψ0〉 ∈S n , by

R|ψ0〉 ,
{

g |ψ0〉
∣∣g ∈Gn

}
. (6.37)

The exact number of reachable states can be calculated by the method in Appendix

E.7. Taking the Clifford group gates on two qubits as an example, the number of gates

|C2| = 11520. However, there are just 60 reachable states if the initial state is |00〉. The

proof of Remark 5 can be found in Appendix E.5.

Remark 5. Given a gate M ∈Gn \ I⊗n and a state |ψ0〉 ∈Sn such that M |ψ0〉 = e iγ |ψ0〉
for some γ ∈ R, then for any state |ψ1〉 ∈ R|ψ0〉 there exists an H ∈ Gn \ I⊗n such that

H |ψ1〉 = e iγ |ψ1〉.

A consequence of Remark 5 is namely that for any reachable state |Ψ〉 there are at

least two different gates Mi ,M j ∈Gn whose corresponding states Mi |ψ0〉 and M j |ψ0〉
are equivalent (up to a phase) to same state |Ψ〉, since Mi |ψ0〉 ≡M j |ψ0〉 ≡ |Ψ〉 if we let

|Ψ〉 = Mi |ψ0〉 and M j = H Mi . The number of reachable states |R|ψ0〉| is thus upper

bounded by 1/2|Gn | when starting from a stabilizer state.

6.3.2. CONTINUOUS, RANDOM ERROR ACCUMULATION (ONE-QUBIT CASE)
In this section, we analyze the case where a single qubit:

1. receives a random perturbation on the Bloch sphere after each s-th unitary gate

according to a continuous distribution ps (α) and

2. depolarizes to the completely depolarized state I /2 with probability q ∈ [0,1] after

each unitary gate,
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by considering it an absorbing random walk on the Bloch sphere. The key point leveraged

here is that the trace distance is invariant under rotations. Hence a sufficiently symmetric

random walk distribution will give the error probabilities.

Model. Let R0 be an initial point on the Bloch sphere. Every time a unitary quantum

gate is applied, the qubit is rotated and receives a small perturbation. This results in a

random walk {Rt }t≥0 on the Bloch sphere for as long as the qubit has not depolarized.

Because the trace distance is invariant under rotations and since the rotations are applied

both to ρt and σt , we can ignore the rotations. We let ν denote the random time at which

the qubit depolarizes. With the usual independence assumptions, ν∼ Geometric(q).

Define µt (r ) for t < ν as the probability that the random walk is in a solid angle Ω

about r (in spherical coordinates) conditional on the qubit not having depolarized yet.

That is,

P[Rt ∈S |ν> t ],
∫
S
µt (r )dΩ(r ). (6.38)

We assume without loss of generality that R0 = ẑ. From [193], the initial distribution is

then given by

µ0 =
∞∑

n=0

2n +1

4π
Pn(cosθ). (6.39)

Here, the Pn(·) denote the Legendre polynomials. Also introduce the shorthand notation

Λn,t ,
t∏

s=1

∫ π

0
Pn(cosα)dps (α) (6.40)

for convenience. As we will see in Proposition 6 in a moment, these constants will turn out

to be the coefficients of an expansion for the expected trace distance (see (6.42)). Recall

that here, ps (α) denotes the probability measure of the angular distance for the random

walk on the Bloch sphere at time t (see (i) above). In particular: if pt (α) = δ(α) for all t ≥ 0

meaning that each step is taken into a random direction but exactly of angular length α,

then Λn,t = (Pn(cosα))t . From [193], it follows that after t unitary quantum gates have

been applied without depolarization having occurred,

µt =
∞∑

n=0

2n +1

4π
Λn,t Pn(cosθ). (6.41)

Results. In this section we specify D t as the trace distance. We are now in position to

state our findings:

Proposition 6 (Single qubit). For 0 ≤ δ≤ 1, t ∈N+: the expected trace distance satisfies

E[D t ] = 1
2 − (1−q)t

(
1
2 +2

∞∑
n=0

Λn,t

(2n −1)(2n +3)

)
. (6.42)
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The probability of the trace distance is given by

P[D t ≤ δ] =1[ 1
2 ∈ [0,δ]]

(
1− (1−q)t ) (6.43)

+ (1−q)t
∞∑

n=0
(2n +1)Λn,t

n+1∑
r=1

(−1)r+1δ2r Cr−1

(
n + r −1

2(r −1)

)
. (6.44)

Here, the Cr denote the Catalan numbers. Alternative forms include:

P[D t ≤ δ|ν> t ] = δ2
∞∑

n=0
(2n +1)Λn,t 2F1(−n,n +1,2;δ2), and (6.45)

P[D t ≤ δ|ν> t ] = δ2
∞∑

n=0
(2n +1)Λn,t

n!

(2)n
P (1,−1)

n (1−2δ2) (6.46)

with 2F1(a,b,c ; z) the Hypergeometric function, (·)n the Pochhammer symbol and P (α,β)
n (x)

the Jacobi polynomials. Finally; the probability of maximum trace distance is lower

bounded by

P[ max
0≤s≤t

Ds ≤ δ|ν> t ] ≥ 0∨
(
1− t +δ2

t∑
s=1

∞∑
n=0

(2n +1)Λn,s
n!

(2)n
P (1,−1)

n (1−2δ2)
)
. (6.47)

Proof of (6.42). By the law of total expectation, we have

E[D t ] = E[D t |ν> t ]P[ν> t ]+E[D t |ν≤ t ]P[ν≤ t ].

Since ν∼ Geometric(q), we have that

P[ν> t ] = 1−P[ν≤ t ] = (1−q)t .

Note additionally that D t = 1/2 whenever t ≥ ν. Therefore

E[D t ] = E[D t |ν> t ](1−q)t + 1
2

(
1− (1−q)t )= 1

2 +
(
E[D t |t < ν]− 1

2

)
(1−q)t .

We now calculate E[D t |ν> t ] using (6.41) and the Bloch sphere representation:

E[D t |ν> t ] =
∞∑

n=0

2n +1

4π
Λn,t

∫ π

0
2πsinθ sin

θ

2
Pn(cosθ)dθ (6.48)

=
∞∑

n=0

2n +1

2
Λn,t

∫ 1

−1

√
1−x

2
Pn(x)dx. (6.49)

Also recall two facts about the Legendre polynomials: the recurrence relation in [215]

states that

Pn(x) = 1

2n +1

(
P ′

n+1(x)−P ′
n−1(x)

)
, (6.50)

and Rodrigues formula [216, (8.6.18)] states that

Pn(x) = 1

2nn!

dn

dxn (x2 −1)
n

. (6.51)
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Using (6.50), (6.51) and integration by parts, we then obtain∫ 1

−1

√
1−x

2
Pn(x)dx = 1

2n +1

(
−

∫ 1

−1

Pn+1(x)

2
p

2−2x
dx +

∫ 1

−1

Pn−1(x)

2
p

2−2x
dx

)
. (6.52)

We have by [217, (12.4)] that the generating function of the Legendre polynomials is given

by
∞∑

m=0
Pm(x)sm = 1p

1−2xs + s2
. (6.53)

Based on (6.53) with t = 1 and the orthogonality of Legendre polynomials,∫ 1

−1

Pn(x)p
2−2x

dx =
∫ 1

−1
Pn(x)

∞∑
m=0

Pm(x)dx =
∞∑

m=0

∫ 1

−1
Pn(x)Pm(x)dx = 2

2n +1
. (6.54)

Here, we have used Lebesgue’s dominated convergence theorem with |Pn(x)| ≤ 1 ∀n.

Therefore, continuing from (6.49) using (6.52) and (6.54),

E[D t |ν> t ] =
∞∑

n=0

2n +1

2
Λn,t

(
−

∫ 1

−1

Pn+1(x)

2
p

2−2x
dx +

∫ 1

−1

Pn−1(x)

2
p

2−2x
dx

)
=

∞∑
n=0

2n +1

2
Λn,t

−4

(2n −1)(2n +1)(2n +3)
. (6.55)

Simplifying gives the result.

Proof of (6.44). Similar to above we have by the law of total probability that

P[a ≤ D t ≤ b] =P[a ≤ D t ≤ b|ν≤ t ]P[ν≤ t ]+P[a ≤ D t ≤ b|ν> t ]P[ν> t ],

and we note now that P[a ≤ D t ≤ b|ν≤ t ] =1[ 1
2 ∈ [a,b]]. Therefore

P[a ≤ D t ≤ b] =1[ 1
2 ∈ [a,b]]

(
1− (1−q)t )+P[a ≤ D t ≤ b|ν> t ](1−q)t . (6.56)

We now calculate P[a ≤ D t ≤ b|ν> t ]; again using (6.41). Let 0 ≤ a ≤ b ≤ 1. From the

equivalence of the events{
a ≤ D t ≤ b

}= {
2arcsin(a) ≤Θt ≤ 2arcsin(b)

}
,

where Θt denotes the polar angle of Rt , it follows that

P [a ≤ D t ≤ b] = (
1− (1−q)t )1[ 1

2 ∈ [a,b]] (6.57)

+ (1−q)t
∞∑

n=0

2n +1

4π
Λn,t

∫ 2arcsinb

2arcsin a
2πsinθPn(cosθ)dθ. (6.58)

Now let 0 ≤ δ≤ 1. Continuing from (6.58), since cos(2arcsinδ) = 1−2δ2 for δ ∈ [0,1] and

letting cosθ = x,

P [D t ≤ δ|ν> t ] =
∞∑

n=0

2n +1

4π
Λn,t

∫ 2arcsinδ

0
2πsinθPn(cosθ)dθ (6.59)

=
∞∑

n=0

2n +1

2
Λn,t

∫ 1

1−2δ2
Pn(x)dx. (6.60)
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By the explicit representation of Rodrigues’ formula [216, (8.6.18)],

P [D t ≤ δ|ν> t ] =
∞∑

n=0

2n +1

2
Λn,t

∫ 1

1−2δ2

n∑
k=0

(
n

k

)(
n +k

k

)( x −1

2

)k
dx (6.61)

=
∞∑

n=0
(2n +1)Λn,t

n∑
k=0

(
n

k

)(
n +k

k

)
(−1)k

k +1
δ2(k+1). (6.62)

Finally, let r = k +1, such that

P [D t ≤ δ|ν> t ] =
∞∑

n=0
(2n +1)Λn,t

n+1∑
r=1

(
n

r −1

)(
n + r −1

r −1

)
(−1)r−1

r
δ2r (6.63)

=
∞∑

n=0
(2n +1)Λn,t

n+1∑
r=1

(−1)r−1δ2r Cr−1

(
n + r −1

2(r −1)

)
.

Proof of (6.47). This follows directly after applying De Morgan’s law and Boole’s inequality,

i.e.,

P[ max
0≤s≤t

Ds ≤ δ|ν> t ] =P
[ t⋂

s=0

{
Ds ≤ δ

}∣∣∣ν> t
]

(6.64)

=P
[( t⋃

s=0

{
Ds > δ

})c ∣∣∣ν> t
]
= 1−P

[ t⋃
s=0

{
Ds > δ

}∣∣∣ν> t
]

≥ 1−
t∑

s=0
P[Ds > δ|ν> t ] = 1− t +

t∑
s=0

P[Ds ≤ δ|ν> t ]. (6.65)

6.4. SIMULATIONS

In this section, we investigate and validate our results numerically. This section also

serves to illustrate the models. We also compare our results to the following traditional

error calculation and fitting method.

Fit method using just a depolarizing channel First, one readily calculates the expected

trace distance of a depolarizing quantum channel [3, p. 378]

ρ0 → ρ1 = E (ρ0) = µ

2
I + (1−µ)ρ0 w.p. 1 (6.66)

when repeated t ∈N+ times as a function of its decay parameter µ ∈ [0,1]. To see how,

note that after t applications of this depolarizing channel, the quantum state would

be E t (ρ) = 1
2 (1− (1−µ)t )I + (1−µ)tρ w.p. one. The trace distance after t depolarizing

channels is thus

D t = 1
2 (1− (1−µ)t ) w.p. 1. (6.67)
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Next, one fits (6.67) to experimental or numerical data using e.g. the method of least

squares. This curve follows the data as well as it can (but not necessarily perfect) and the

corresponding fit parameter µfit is returned.

It is insightful to consider the difference between (6.66), (6.67) and the result in Propo-

sition 6. Proposition 6 namely models a different type of error channel, specifically one in

which the qubit can depolarize at each step according to a classical probability µ ∈ [0,1].

Substituting Λn,t = 0 for all n, t so that the random perturbations of the model in Sec-

tion 6.3.2 are neglected and only depolarization is included, this model tells us that E t (ρ)

equals either ρ w.p. (1−µ)t or I /2 w.p. 1− (1−µ)t . Consequently, under this model,

D t =
0 w.p. (1−µ)t

1
2 w.p. 1− (1−µ)t ,

E[D t ] = 1
2 (1− (1−µ)t ). (6.68)

6.4.1. ERROR ACCUMULATION IN RANDOMIZED BENCHMARKING

We will first consider error accumulation in single-qubit randomized benchmarking. In

each randomized benchmarking simulation experiment, the initial state is set to |1〉 and

subsequently τ−1 gates are selected one by one from the Clifford group C1 uniformly

at random. Finally, based on the experimental setup in [180], we add a τ-th gate that

transfers the state to |0〉 in the absence of errors. For simplicity we specify d = 1 and thus

discuss the trace distance throughout this section.

PAULI AND CLIFFORD CHANNEL ERRORS

We consider two kinds of error models: Pauli channels and Clifford channels. For the

Pauli channel model, let the probability that no noise occurs be P(Λ= I ) = 1− r and the

probabilities of every noise type occurring be P(Λ = X ) = P(Λ = Y ) = P(Λ = Z ) = r /3,

where r ∈ [0,1]. For the Clifford channel model, let the probability of no noise occurring

be P(Λ = I ) = 1− r and the probabilities of every other gate type occurring equal r /23.

In Figure 6.4 the parameter r is set to 1/100. Two error thresholds δ are considered:

δ = 1/10 (a, c and d) and δ = 1/5 (b). The insets show the influence of parameter r on

the probability of error in (6.10) and the probability of maximum error in (6.11) at time

t = 100. The results in Figure 6.4 illustrate the theoretical results for the probability of

error (6.10), the expectation of the trace distance and the probability of maximum error

(6.11) and their validity is supported by these simulations. Figure 6.4 also illustrates that

different error models lead to different error accumulation behaviors. The two sample

curves in Figure 6.4a and Figure 6.4b (the solidly drawn step functions) show the trace

distance D t between the faultless state ρt and the faulty state σt in two independent

randomized benchmarking experiments. The dashed lines indicate our fits of (6.67)

to the sample average of the numerical data. Note that the numerical sample average
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of the trace distance in Figure 6.4a can be fitted perfectly – this is because under the

present assumptions, the trace distance here is in fact geometrically distributed. The

case depicted in Figure 6.4b is however different and does not satisfy a simple geometric

distribution and we can see that the traditional fit method disagrees in the limit. This is

because we are dealing with two different error models.
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Figure 6.4: The error accumulation based on Pauli and Clifford channels in randomized benchmarking. Two

error thresholds δ are considered, δ= 1/10 (figures a, c, d) and δ= 1/5 (figure b). The simulation results are

calculated from 1000 independent randomized benchmarking experiments. The dashed, black curves are fits of

(6.67) to the sample averages of the numerical data. The resulting fit parameters are µfit ≈ 0.013 (figure a) and

µfit ≈ 0.018 (figure b), respectively.

INFLUENCE OF THE INITIAL STATE ON PAULI ERROR ACCUMULATION

In this section we consider the influence of the initial state on Pauli error accumulation.

We ignore the last gate of randomized benchmarking for simplicity. Each gate is selected

one by one from the Pauli group uniformly at random. The error model described above

is considered again and the parameter r is set to 1/5.



6.4. SIMULATIONS

6

93

Figure 6.5 shows the state transition diagram for two different initial states: |ζ0〉 =p
7/10 |0〉+p

3/10 |1〉 and |ξ0〉 =
p

4/5 |0〉+p
1/5 |1〉. Recall that for the Pauli group of a

single qubit, there are in total |P |2 = 16 state pairs, which correspond to the sixteen

nodes depicted in Figure 6.5. More precisely, each of the nodes represents one of the 16

two-dimensional states {(I , I ), (I , X ), (I ,Y ), (I , Z ), (X , I ), ..., (Z , Z )}. The initial state pair

(ρ0,σ0), which here satisfies ρ0 =σ0, corresponds to state 1 in Figure 6.5. The bad state

pairs that constitute B
|ζ0〉
|ζ0〉,δ and B

|ξ0〉
|ξ0〉,δ, which have a trace distance over δ = 1/5, are

indicated in red. Each edge depicts the possibility of the two-dimensional Markov chain

to jump between the two connected nodes. Note that the number of bad state pairs can

be affected by the choice of initial state. Figure 6.6 shows the probability of maximum

error in (6.11) and the maximum number of tolerant gates in (6.12) for the same two

different initial states: |ζ0〉 (upper) and |ξ0〉 (bottom). Figure 6.5 and Figure 6.6 illustrate

too that the choice of initial state can affect the probability P[max0≤s≤t Ds > δ] and the

maximum number of tolerant gates t?
δ,γ. Finally, when starting from the initial state |ζ0〉,

in this simple case, (6.11) reduces to

P[ max
0≤s≤t

Ds > 1/5] = 1− (
1− 2

3 r
)t ,

while when starting from the initial state |ξ0〉 we have

P[ max
0≤s≤t

Ds > 1/5] = 1− (1− r )t .

Figure 6.5: State transition diagram for different initial states: |ζ0〉 (left) and |ξ0〉 (right) and the error threshold

δ= 1/5. The red nodes show the bad state pairs in B
|ζ0〉
|ζ0〉,δ and B

|ξ0〉
|ξ0〉,δ, respectively, in which the trace distances

are larger than δ.

6.4.2. ERROR ACCUMULATION IN NONRANDOM CIRCUITS

Here we illustrate error accumulation rates in two nonrandom circuits. The first is a

periodical single-qubit circuit that repeats a Hadamard, Pauli-X , Pauli-Y and Pauli-Z

gate k = 25 times and the second a two-qubit circuit that is repeated k = 5 times; see
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Figure 6.6: Pauli channel error accumulation on single-qubit randomized benchmarking when starting from

different initial states: |ζ0〉 (top) and |ξ0〉 (bottom). The error threshold is set to δ= 1/5.

also Figure 6.7. Here the controlled-NOT gate CNOT = (
(1,0,0,0); (0,1,0,0); (0,0,0,1);

(0,0,1,0)
)
. Consider also the following two error models in which the errors depend on

the gates:

(i) For the single-qubit circuit, presume P[Λ= I ] = 0.990,P[Λ= Z ] = 0.010.

(ii) For the two-qubit circuit, when labeling the qubits by A and B , suppose

P[ΛA = I ] = 0.990, P[ΛA = X ] = 0.006,P[ΛA = Y ] = 0.003, P[ΛA = Z ] = 0.001;

P[ΛB = I ] = 0.980, P[ΛB = X ] = 0.002,P[ΛB = Y ] = 0.014, P[ΛB = Z ] = 0.004. (6.69)

In order to evaluate Proposition 3, we set the error threshold δ= 1/10.

The theoretical and simulation results on the two circuits are shown in Figure 6.7.

Note that the simulation curves almost coincide with the theoretical curves; the deviation

is only due to numerical limits. Furthermore, because different gates influence error ac-

cumulation to different degrees, the periodical ladder shape occurs in Figure 6.7. Observe

furthermore that this periodical ladder shape is not captured by the fit method that only

takes into account the decay of t applications of a single depolarizing channel.
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Figure 6.7: Theoretical and simulation results for error accumulation on a single-qubit circuit (figures a, c and e)

and a two-qubit circuit (figures b and d). The numerical results are calculated from 2000 independent runs and

almost indistinguishable from the formulae. The dashed, black curve in figure e is a fit of (6.67) to the data. The

fit parameter is µfit ≈ 0.011.
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6.4.3. CONTINUOUS, RANDOM ERROR ACCUMULATION IN A SINGLE QUBIT

We now simulate the accumulation of continuous errors without depolarization (q = 0) in

a single qubit. Here, the noise is assumed to lead to a random walk on the Bloch sphere

that takes steps of a fixed angle α= 1/10 and therefore pt (α) = δ(α). The threshold δ is

set to be 1/10. The theoretical mean trace distance E[D t ] and probability P[D t ≤ δ] are

calculated using (6.42) and (6.44). The theoretical results and simulations are shown in

Figure 6.8. Note again that the traditional fit method disagrees at large t : this happens

here because α 6= 0.
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Figure 6.8: Continuous error accumulation in one qubit. The numerical results are from 2000 independent

runs of our simulation. The dashed, black curve in the left figure is a fit of (6.67) to the data. The resulting fit

parameter is µfit ≈ 0.019.
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6.5. MINIMIZING ERRORS IN QUANTUM CIRCUIT THROUGH OP-

TIMIZATION
The rate at which errors accumulate may be different for different quantum circuits that

can implement the same algorithm. Using techniques from optimization and (6.30), we

can therefore search for the quantum circuit that has the lowest error rate accumulation

while maintaining the same final state. To see this, suppose we are given a circuit Uτ =
{U1,U2, . . . ,Uτ}. For given ρ0 this brings the quantum state to some quantum state ρτ.

Other circuits may go to the same final state and have a lower probability of error at time

τ. We will therefore aim to

minimize
G1,...,Gτ∈Gn

u({G1, . . . ,Gτ})

subject to Gτ · · ·G1 =Uτ · · ·U1.
(6.70)

Here, one can for example choose for the objective function u(·) the probability of error

(6.29), or probability of maximum error (6.30). To solve (6.70), we design a simulated

annealing algorithm in Section 6.5.1 to improve the quantum circuit.

The minimization problem in (6.70) is well-defined and has a few attractive features.

For starters, the minimization problem automatically detects shorter circuits if the proba-

bility of error when applying the identity operator I⊗n is relatively small. The optimum

may then for example occur at a circuit of the form

GτGτ−1Gτ−2 · · ·G2G1 = I⊗nGτ−1I⊗n · · · I⊗nG1, (6.71)

which effectively means that only the two gates Gτ−1G1 are applied consecutively. The

identity operators in this solution essentially describe the passing of time. Now, critically,

note that while the minimization problem does consider all shorter circuits of depth

at most τ, this does not necessarily mean that the physical application of one specific

group element G ∈Gn is always the best. Concretely, in spite of the fact that any quantum

circuit of the form Gτ · · ·G1 =G ∈Gn performs the single group element G ∈Gn , it is not

necessarily true that

u({G , I⊗n , . . . , I⊗n}) < u({G1, . . . ,Gτ}). (6.72)

The reason for this is that the error distribution on the direct group element G may

be worse than using a circuit utilizing multiple other group elements. In other words,

the optimal circuit need not always be the ‘direct’ circuit, but of course it can be. (In

Section 6.5.2 we also consider the situation in which an experimentalist can only apply a

subset A ⊆Gn that need not necessarily be a group and in such a case the direct group

element G may not even be a viable solution to the experimentalist if G 6∈A .) Typically,

the minimization problem will prefer shorter circuits if the probability of error when
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applying the identity operator I⊗n is relatively small and the error distributions of all gate

distributions are relatively homogeneous.

6.5.1. SIMULATED ANNEALING

We will generate candidate circuits as follows. Let {G [η]
1 , . . . ,G [η]

τ } denote the circuit at

iteration η. Choose an index I ∈ [τ−1] uniformly at random, choose G ∈G uniformly at

random. Then set

G [η+1]
i =


G if i = I ,

G [η]
I+1G [η]

I G← if i = I +1,

G [η]
i otherwise.

(6.73)

Here, G← denotes the (left) inverse group element, i.e., G←G = I⊗n . The construction

thus ensures that

G [η+1]
I+1 G [η+1]

I = (
G [η]

I+1G [η]
I G←)

G =G [η]
I+1G [η]

I (6.74)

so that the circuit’s intent does not change: G [η+1]
τ · · ·G [η+1]

1 =G [η]
τ · · ·G [η].

We will use the Metropolis algorithm. Let

E = {
{G1, . . . ,Gτ}|Gτ · · ·G1 =Uτ · · ·U1

}
(6.75)

denote the set of all viable circuits. For two arbitrary circuits i , j ∈ E , let

∆(i , j ),
τ−1∑
s=1

1[is 6= js , is+1 6= js+1] (6.76)

denote the number of consecutive gates that differ between both circuits. Under this

construction, the candidate-generator matrix of the Metropolis algorithm is given by

qi j =
 1

(τ−1)|G | if ∆(i , j ) ≤ 1

0 otherwise.
(6.77)

Since the candidate-generator matrix is symmetric, this algorithm means that we set

αi , j (T ) = exp
(− 1

T max{0,u( j )−u(i )}
)

as the acceptance probability of circuit j over i .

Here T ∈ (0,∞) is a positive constant. Finally, we need a cooling schedule. Let M ,

sup{i , j∈E |∆(i , j )≤1}{u( j )−u(i )}. Based on [179], if we choose a cooling schedule {Tη}η≥0 that

satisfies Tη ≥ τM
lnη , then the Metropolis algorithm will converge to the set of global minima

of the minimization problem in (6.70).

Lemma 7. Algorithm 2 converges to the global minimizer of (6.70) whenever Tη ≥ τM/lnη

for η= 1,2, · · · .
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Algorithm 2: Pseudo-code for the simulated annealing algorithm described in

Section 6.5.1.
Input: A group G , a circuit {U1, . . . ,Uτ} and number of iterations w

Output: A revised circuit {G[w]
1 , . . . ,G[w]

τ }

1 begin

2 Initialize {G[0]
1 , . . . ,G[0]

τ } = {U1, . . . ,Uτ};

3 for η← 1 to w do

4 Choose I ∈ [τ−1] uniformly at random;

5 Choose G ∈G uniformly at random;

6 Set JI =G , JI+1 =G
[η]
I+1G

[η]
I G←, Ji =G

[η]
i ∀i 6=I ,I+1;

7 Choose X ∈ [0,1] uniformly at random;

8 if X ≤αG[η] ,J (Tη) then

9 Set G[η+1] = J ;

10 else

11 Set G[η+1] =G[η];

12 end

13 end

14 end

6.5.2. EXAMPLES

GATE-DEPENDENT ERROR MODEL

We are going to improve the one-qubit circuit in Figure 6.7 using Algorithm 2. The gates

are limited to the Clifford group C1 and the errors will be limited to the Pauli channel. The

error probabilities considered here are gate-dependent and can be found in Appendix

E.6. The cooling schedule used here will be set as Tη =C /ln(η+1) and the algorithm’s

result when using C = 0.004 is shown in Figure 6.9. Figure 6.9 illustrates that the improved

circuit can indeed lower the error accumulation rate. The circuit with the lowest error

accumulation rate that was found is shown in Appendix E.9.

GATES IN A SUBSET OF ONE GROUP

The gates that are available in practice may be restricted to some subset A ⊆ G not

necessarily a group. Under such constraint, we could generate candidate circuits as

follows: Let {G [η]
1 , . . . ,G [η]

τ } denote the circuit at iteration η. In each iteration, two neigh-

boring gates will be considered to be replaced by two other neighboring gates. There are

m ≤ (τ−1) neighboring gate pairs (G [η]
1 ,G [η]

2 ), . . . , (G [η]
m−1,G [η]

m ) that can be replaced by two

different neighboring gates. Choose an index I ∈ [m−1] uniformly at random and replace

(G [η]
I ,G [η]

I+1) by any gate pair from {(G̃1,G̃2) ∈A 2 |G [η]
I G [η]

I+1 = G̃1G̃2} uniformly at random.

Pseudo-code for this modified algorithm can be found in Appendix E.8. It must be noted

that this algorithm is not guaranteed to converge to the global minimizer of (6.70) (due to

limiting the gates available); however, it may still find use in practical scenarios where
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Figure 6.9: Circuit optimization when using Algorithm 2. The error probabilities are gate-dependent. Note that

the probability of maximum error (6.30) decreases as the number of iterations η increases when using Algorithm

2 (C = 0.004). Here we started from the one-qubit circuit in Figure 6.7.

one only has access to a restricted set of gates.

We now aim to decrease the probability of maximum error (6.30) by changing the

two-qubit circuit shown in Figure 6.7. The error model is the same as that in Section 6.4–B.

The set of gates available for improving the circuit is here limited to {I , X ,Y , Z , H ,C NOT }.

The result here for the two-qubit circuit is obtained by again using the cooling schedule

Tη =C /ln(η+1) but now letting the parameter C = 0.002. Figure 6.10 shows that a more

error-tolerant circuit can indeed be found using this simulated annealing algorithm. The

improved circuit is shown in Appendix E.9.

DEUTSCH–JOZSA ALGORITHM

Let us give further proof of concept through the Deutsch–Jozsa Algorithm for one classical

bit [200, 201]. This quantum algorithm determines if a function f : {0,1} → {0,1} is

constant or balanced, i.e., if f (0) = f (1) or f (0) 6= f (1). It is typically implemented using

the quantum circuit in Figure 6.11. If no errors occur in this quantum circuit, then the first

qubit would measure |0〉 or |1〉 w.p. one if f constant or balanced, respectively. If errors

occur in this quantum circuit, then there is a strictly positive probability that the first

qubit measures |1〉 or |0〉 in spite of f being constant or balanced, respectively and thus for

the algorithm to incorrectly output that f is constant or balanced. This misclassification

probability ν of the algorithm depends on the underlying error distributions and can be
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Figure 6.10: Circuit optimization when using Algorithm 6. The set of gates available is chosen limited to

{I , X ,Y , Z , H ,C NOT }. Note that the probability of maximum error (6.30) decreases as the number of iterations

η increases when using Algorithm 6 (C = 0.002). Here we started from the two-qubit circuit shown in Figure 6.7.

calculated by adapting (6.29)’s derivation.
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I

Figure 6.11: The Deutsch–Jozsa Algorithm for one classical bit in quantum circuit form.

We suppose now that errors occur according to a distribution in which two-qubit

Clifford gates are more error prone than single-qubit gates, see Appendix E.10 for the

details. We can then revise the quantum circuit in Figure 6.11 using a simulated annealing

algorithm in Appendix E.11 that aims at minimizing (6.70) by randomly swapping out

poor gate pairs for better gate pairs. This simulated annealing algorithm, like any other, is

sensitive to the choice of cooling schedule [179], here set as Tη =C
(
γ/η+ (1−γ)/ ln(η+1)

)
with C > 0, γ ∈ [0,1]; the integer η indexes the iterations. Figure 6.12 shows the ratio

Θ , νoriginal circuit/νrevised circuit as a function of C ,γ for fa(x) = x, fb(x) = 1− x, fc (x) =
0, fd (x) = 1 where x ∈ {0,1}. Note that Θ ≥ 1 always, ≥ 1.60 commonly and sometimes

even ≥ 2.20.
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Figure 6.12: For every pair (C ,γ) here, Θ was calculated using a Monte Carlo simulation with 105 independent

repetitions for the best circuit found throughout w = 103 iterations of the annealing algorithm. This simulated

annealing algorithm, like any other, is sensitive to the choice of cooling schedule [179], here set as Tη =C
(
γ/η+

(1−γ)/ ln(η+1)
)

with C > 0, γ ∈ [0,1]; the integer η indexes the iterations. Panels a-d respectively show the

ratio Θ, νoriginal circuit/νrevised circuit as a function of C ,γ for fa (x) = x, fb (x) = 1−x, fc (x) = 0, fd (x) = 1 where

x ∈ {0,1}. u(·) was set to the misclassification probability for a, c; and to (6.30) for b, d.
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6.6. CONCLUSION
In conclusion, we have proposed and studied a model for discrete Markovian error

accumulation in a multi-qubit quantum computation, as well as a model describing

continuous errors accumulating in a single qubit. By modeling the quantum computation

with and without errors as two coupled Markov chains, we were able to capture a weak

form of time-dependency, allow for fairly generic error distributions and describe multi-

qubit systems. Furthermore, by using techniques from discrete probability theory, we

could calculate the probability that error measures such as the fidelity and trace distance

exceed a threshold analytically. To combat the numerical challenge that may occur

when evaluating our expressions, we additionally provided an analytical bound on the

error probabilities that is of lower numerical complexity. Finally, we showed how our

expressions can be used to decide how many gates one can apply before too many errors

accumulate with high probability and how one can lower the rate of error accumulation

in existing circuits by using techniques from optimization.





7
CONCLUSION

7.1. MAIN CONTRIBUTIONS

This dissertation addresses the challenge of inferring network properties based on the

population-based observations, the application of epidemic models and reporting delays

in the forecast of the COVID-19 pandemic and reduce mortality, the way to approximate

the Markovian SIS epidemic processes in complex networks and the method to model

the error accumulation in quantum circuits and lower the rate of error accumulation in

existing circuits through simulated annealing.

In Chapter 2, we conceptually evaluate the feasibility and limitation to deduce network

properties based on prevalence data from the SIS model, which has an important guiding

significance for future works on inferring network properties based on real prevalence

data. Even if the full knowledge of epidemic states (the state time-series of each node) is

available, the exact network reconstruction for large networks still seems infeasible since

the maximum-likelihood network reconstruction for SIS processes is NP-hard. If we just

have the prevalence, the rough network reconstruction is only workable for very small

networks. For large networks, there can be different networks with very similar prevalence

curves and the exact reconstruction is impossible. However, our results show that it is

feasible to estimate some network properties for large networks. The network rewiring

algorithm SARA is mainly to identify the network type. If the network type is known, one

can generate multiple graphs with the same network type. The graph whose prevalence

is close to the benchmark can be further selected. The metrics of the above-selected

graph can thereby estimate the metrics of the underlying network that are sensitive to the

105
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prevalence.

In Chapter 3, we find a conflict between the COVID-19 data and the compartmental

epidemic models, indicating reporting delays in real data. We further modeled the re-

porting delays and proposed a correlation-based method to infer the reporting delays

for different countries. Significant reporting delays of recoveries are discovered in real

data for several countries. We finally forecast the pandemic trends by considering the

reporting delays to improve accuracy.

In Chapter 4, we discover that reducing connections between two populations can de-

lay the death curve but cannot reduce the final mortality. We propose a merged SIR model,

which advises elderly individuals to interact less with their non-elderly connections at

the initial stage but interact more with their non-elderly relationships later, to reduce the

final mortality. Finally, immunizing elderly hub individuals can also significantly decrease

mortality.

In Chapter 5, we propose a spectral clustering SIS approximation (SCSA) method,

which combines the spectral clustering of the huge Markov graph and the birth-and-

death approximation, to reduces the huge 2N state space of the Markov chain to a smaller

number of states. We discover that the relationship between the approximation error ε

and the number of clusters c roughly obeys ε ∼ c−α, where α ∈ ( 1
4 , 4

5 ). The exponent α

tends to be larger if the network has a higher link density. Besides, the approximation

error decreases faster for networks with higher randomness. These rules can be applied

to roughly decide how much state space is required to make sure the approximation error

is smaller than a threshold based on the features of a specific network.

The results in Chapter 6 cover (and go beyond the state-of-the-art analytical results

for) the commonly-used randomized benchmarking protocol. Our bridging of techniques

from probability theory and operations research to the domain of quantum computing

looks to be a new angle. Finally, it opens up the exciting yet challenging avenue of

“quantum operations research”: a thus far undeveloped area that will be necessary to

achieve practical quantum computing. Essentially, we can compute more and for longer

with present technologies by combining operations research with quantum computing.

7.2. DIRECTIONS FOR FUTURE WORK

There are many interesting questions that can be further investigated based on this

dissertation in future works:

– Chapter 2 attempts to infer the network properties only based on the prevalence data. In

the future, additional known knowledge, e.g., population distribution, may be available

and helps the inference of the network properties.

– Chapter 3 reveals that the reporting delays of infections and recoveries in many coun-
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tries are significant, largely increasing the difference between the reported data and the

epidemic models. It is promising that the forecast performance of many advanced model-

based forecast methods, e.g., Kalman filter [218], the Network-Inference-Based Prediction

Algorithm (NIPA) [7, 219], meta-population or agent-based network models [220], can all

be improved by considering the reporting delays.

– Based on our results in Chapter 3 and previous studies, the death data is usually more

timely than the infected and recovered data. However, there are more fluctuations in real

death data since the number of daily deceased cases in many regions is very small. Thus

the best way to forecast the pandemic is to apply all infection, recovery and death data

and considering the reporting delays of each data.

– Our work in Chapter 3 suffers from some restrictions in real data. It would be valuable

to collect more accurate and comprehensive real data about the reporting delays. Nowa-

days, the real published data about delays, especially the delays of recoveries, are rare.

Although some countries published data about delays, the accuracy of these data is still

questionable since it is difficult to accurately measure the time point that a person is

infected or recovered in reality.

– Future works based on Chapter 4 may consider real contact networks, real population

flow networks, multi-layer networks and time-varying networks in modeling the spreading

processes.

– Chapter 5 studies the Markovian SIS epidemics on complex networks. However, in

realistic the spreading processes could be non-Markovian. Thus it would be valuable to

investigate whether the Poisson processes can well describe the realistic infection and

curing processes.

– For large networks, SCSA cannot be applied because the computation time is too large.

It would be valuable to study the way to reduce the computational complexity of SCSA

in the future so that our analysis can be extended to many realistic networks. Here, we

provide three intriguing ideas:

• Use fast spectral clustering [221] to reduce the computational complexity.

• Use the similarity-based algorithms based on the local structures, e.g., common

neighbor, to cluster the infinitesimal generator matrix Q efficiently.

• Instead of directly clustering the infinitesimal generator matrix Q, find metrics

related to the underlying network that correlated with the spectral clustering results.

Gerrit and Luca [222] proposed a method to group the states based on counting

nodes and counting edges. We further did related researches from the view of the

cut-set [32, 223, 224] (see details in Appendix D.7).
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– Chapter 5 mainly considered the error accumulation on finite state space. The accumu-

lation of errors when using a universal gate set would need to be modeled using stochastic

processes that live on infinite state spaces. Such an approach looks to be connected to

the modeling of random walks on manifolds.

– The expressions in (6.11) and (6.30) are, essentially, generalized forms of a geometric

distribution. For particular groups and error models, it may be that this expression is

well-approximated by a standard geometric distribution (which would be of substantially

lower numerical complexity). It would be interesting to investigate whether a reduction

of (6.11) and (6.30) occurs, or whether an approximation can be found, for particular

quantum systems.

– With that idea in mind, note that the hitting time of the set B
|Ψ0〉
|ψ0〉,δ is naturally related to

its size relative to the size of the group Gn . As the number of qubits increases, both of these

sets grow in size. Investigating the growth relation between these two sets for particular

groups via techniques from analytical combinatorics [225] may reveal an asymptotic

distributional law for the errors in quantum computations with many qubits.

– The availability of an analytical expression for the accumulation of errors allows us

to proceed with second-tier optimization methods. For example, to achieve practical

quantum computing in the near future, any quantum computer architecture would have

some classical control mechanism that routinely takes operational decisions: which gate

do we apply next, do we now apply an error correction procedure, etc. Each of these

operations has its own cost associated with it, e.g., in the form of classical compute time

or the loss of ancillary qubits. Using techniques from decision theory [226], we can weigh

the long-term effects of different operations through the available analytical expressions

and we could overall achieve more efficient computations in the future. Essentially, we

could then compute more with fewer qubits.
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A.1. INFERRING NETWORK METRICS GIVEN THE NETWORK TYPE

Metric
Mean absolute error (MAE) Mean squared error (MSE)

Treatment group Control group Treatment group Control group

E [D] 0.381 1.34 0.239 2.69

E [D2] 4.79 17.5 38.7 4.67×102

λ1 0.372 1.31 0.219 2.55

E [H ] 0.201 0.435 6.46×10−2 0.297

E [1/H ] 1.90×10−2 3.73×10−2 5.74×10−4 2.17×10−3

dmax 1.46 2.50 3.71 9.95

CG 6.54×10−3 8.31×10−3 7.46×10−5 1.12×10−4

µN−1 0.177 0.312 6.54×10−2 0.173

ρD 3.44×10−2 3.46×10−2 1.82×10−3 1.89×10−3

N 95.0 1.00×102 1.39×104 1.53×104

Table A.1: MAE and MSE of different network metrics when the benchmark networks are ER networks. The

effective infection rate is set as τ= 1 and the initial state y0 = 0.2. The mean errors are obtained by averaging

over 1000 ER benchmark networks.
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Metric
Mean absolute error (MAE) Mean squared error (MSE)

Treatment group Control group Treatment group Control group

E [D] 0.434 1.36 0.458 2.97

E [D2] 0.757 16.2 13.1 4.95×102

λ1 9.12×10−2 1.41 7.34×10−2 3.50

E [H ] 0.190 0.627 6.03×10−2 0.625

E [1/H ] 1.63×10−2 4.62×10−2 4.51×10−4 3.32×10−3

dmax 1.05 2.45 2.01 9.35

CG 1.89×10−2 2.35×10−2 6.58×10−4 9.60×10−4

µN−1 8.63×10−2 0.629 2.24×10−2 0.703

ρD 3.42×10−2 4.06×10−2 1.88×10−3 2.61×10−3

N 91.2 1.04×102 1.31×104 1.59×104

Table A.2: MAE and MSE of different network metrics when the benchmark networks are WS networks. The

parameter settings are the same as Tab. A.1.

Metric
Mean absolute error (MAE) Mean squared error (MSE)

Treatment group Control group Treatment group Control group

E [D] 3.60×10−2 1.44 7.19×10−2 3.72

E [D2] 6.57 31.9 85.3 1.62×103

λ1 0.820 2.36 1.09 8.46

E [H ] 0.123 0.332 2.55×10−2 0.177

E [1/H ] 1.49×10−2 3.44×10−2 3.69×10−4 1.83×10−3

dmax 13.6 15.1 3.08×102 3.69×102

CG 1.84×10−2 1.98×10−2 5.75×10−4 6.15×10−4

µN−1 9.14×10−2 0.551 4.27×10−2 0.520

ρD 2.39×10−2 3.16×10−2 9.53×10−4 1.55×10−3

N 97.3 1.01×102 1.47×104 1.55×104

Table A.3: MAE and MSE of different network metrics when the benchmark networks are BA networks. The

parameter settings are the same as Tab. A.1.
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Metric
Mean absolute error (MAE) Mean squared error (MSE)

Treatment group Control group Treatment group Control group

E [D] 0.151 0.300 0.216 2.86

E [D2] 17.9 35.2 5.37×102 1.88×103

λ1 1.83 2.73 5.17 11.2

E [H ] 2.38×10−2 0.137 3.61×10−2 0.141

E [1/H ] 1.70×10−2 2.92×10−2 4.51×10−4 1.32×10−3

dmax 18.7 23.6 5.46×102 8.52×102

CG 2.34×10−2 2.71×10−2 8.57×10−4 1.17×10−3

µN−1 0.124 0.173 2.60×10−2 4.90×10−2

ρD 2.74×10−2 3.02×10−2 1.19×10−3 1.42×10−3

N 94.6 1.02×102 1.37×104 1.56×104

Table A.4: MAE and MSE of different network metrics when the benchmark networks are SF networks. The

parameter settings are the same as Tab. A.1.





B
APPENDIX TO CHAPTER 3

B.1. QUALITATIVE EXPLANATION FOR THE FORMATION MECH-

ANISM OF THE LOOP PATTERNS

The peak locations of the recovery data ∆R̃[k +1] and infection data Ĩ [k] cut the time

series into three "phases", which are marked by different colors. We provide a qualitative

explanation for the formation mechanism of the loop patterns based on these "phases"

in Figure B.4c: (i) the fraction of new reported recoveries ∆R̃[k +1] and reported active

infections Ĩ [k] are all growing with the day k, but the fraction of reported active infections

Ĩ [k] grows earlier than the fraction of new reported recoveries ∆R̃[k +1], which leads to a

small ∆R̃[k+1] to Ĩ [k] ratio at the beginning; (ii) the fraction of new recoveries ∆R̃[k+1] is

increasing but the fraction of reported active infections Ĩ [k] is decreasing; (iii) the fraction

of new reported recoveries ∆R̃[k+1] and the fraction of reported active infections Ĩ [k] are

all decreasing, but the fraction of reported active infections Ĩ [k] decreases earlier than the

fraction of new reported recoveries ∆R̃[k+1], which leads to a large ∆R̃[k+1] to Ĩ [k] ratio.

These three "phases" lead to the blue points moving in a counter-clockwise direction and

form the loop pattern in the end.

B.2. MODELING THE REPORTING DELAYS
Based on the above observations and inspired by the widespread reporting delays of infec-

tions [14], we hypothesize that reported data, not only the infections but also recoveries

and deaths, are subject to delays. The fraction Y [k], which can be the fraction of new
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infections, recoveries or deaths, is contained in [0,1] and measured per day. Hence, the

analysis is in discrete day k. The basic observation lies in a time delay T between the new

real value ∆Y [k] and the reported value with delays ∆Ỹ [k], which translates to

∆Ỹ [k] =∆Y [k −T ] . (B.1)

We further assume that the reporting delay T and the new value ∆Y are independent.

We argue that independence between T and ∆Y is reasonable, although both random

variables are weakly positively correlated. Indeed, the larger the fraction ∆Y , the more

people need to be checked and the longer the reporting may take. If the checking capacity

is sufficiently large, we may assume approximate independence.

We implicitly assume that the new reported value ∆Ỹ [k] only differs from reality in

the time delay T . The delay T must be non-negative, i.e. T ≥ 0, because the real event

∆Y [k] occurs at discrete day k and its reporting occurs at k +T ≥ k, which cannot be

earlier than the day k. Moreover, the delay T is also an integer, else Eq. (B.1) demands

us to take the integer value [T ] of T = [T ]+〈T 〉, where the fractional part 0 ≤ 〈T 〉 < 1. We

avoid that complication and consider T as a discrete random variable. If T is discrete,

then all involved random variables are discrete. Before proceeding, we thus approximate

∆Y (t ) at continuous time k −1 < t ≤ k, by ∆Y [k] = ∫ k
k−1∆Y (u)du. Furthermore, the

mean-field approximation only writes the equations for the average fraction of infected

nodes and we refer to [31, p.454] for the relation between the Markov process and its

mean-field approximation.

The basic observation in Eq. (B.1) contains the real fraction ∆Y and the delay T .

Hence, we use the law of total probability [31, p.23],

Pr
[
∆Y [k −T ] ≤ y

]= ∞∑
m=0

Pr
[
∆Y [k −T ] ≤ y

∣∣T = m
]

Pr[T = m] ,

If we assume that ∆Y [k] and T are independent (for any k), then

Pr
[
∆Y [k −T ] ≤ y

∣∣T = m
]= Pr

[
{∆Y [k −T ] ≤ y}∩ {T = m}

]
Pr[T = m]

= Pr
[
∆Y [k −m] ≤ y

]
.

Thus,

Pr
[
∆Y [k −T ] ≤ y

]= ∞∑
m=0

Pr
[
∆Y [k −m] ≤ y

]
Pr[T = m] .

Since we confine to a mean-field analysis and are only interested in the average fractions,

we better take the expectation operator E [.] instead of the probability Pr[.] operator:

E [∆Y [k −T ]] =
∞∑

m=0
E [∆Y [k −m]]Pr[T = m] , (B.2)
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which is readily obtained from the former equation by using the definition of the mean

(e.g. [31, (2.36)]) E [∆Y [k −T ]] = ∫ 1
0 Pr

[
∆Y [k −T ] > y

]
d y . Finally, we simplify the nota-

tion as ∆Ỹ [k] = E
[
Yrep [k]

]
and arrive at our approximative observation hypothesis for

the average fraction of infected, recovered or deceased individuals

∆Ỹ [k] =
∞∑

m=0
Pr[T = m]∆Y [k −m] . (B.3)

Let the day k = 0 denote the day that the first infected individual appeared, which

indicates that the fractions ∆D[k −m] = 0, ∆I [k −m] = 0 and ∆R[k −m] = 0 for all m > k.

Under this situation, for new infections, recoveries and deaths, Eq. (B.3) reduces to

∆Ỹ [k] =
k∑

m=0
Pr[T = m]∆Y [k −m], (B.4)

where Pr[T = m] denotes the probability that the report of a case is delayed with m days.

B.3. REPORTING DELAYS FOLLOWING THE SAME DISTRIBUTION
Lemma 8. The proportional relationships

∆R[k +1] = γr I [k] and ∆D[k +1] = γd I [k], (B.5)

will still hold after the reporting delays if the reporting delays TD , TI and TR follow the

same distribution, which means that the parameters of all three delay distributions are

exactly the same.

Proof. If the reporting delays TD , TI and TR follow the same distribution, which means

that

Pr[TD = m] = Pr[TI = m] = Pr[TR = m] = Pr[x = m] for m = 1,2, · · · (B.6)

based on (B.4) and (B.6), the fraction of reported active infections leads to

Ĩ [k] =
k∑

τ=0
(∆Ĩ [τ]−∆R̃[τ]−∆D̃[τ]) (B.7)

=
k∑

τ=0

τ−1∑
η=0

Pr[x = η]
(
∆I [τ−η]−∆R[τ−η]−∆D[τ−η]

)
(B.8)

=
k−1∑
η=0

Pr[x = η]I [k −η]. (B.9)

If the spread of COVID-19 follows the SIRD model, we have that

∆R[k +1] = γr I [k] and ∆D[k +1] = γd I [k]. (B.10)
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Combining (B.4), (B.6), (B.9) and (B.10), we have that

∆R̃[k +1] =
k∑

η=0
Pr[TR = η]∆R[k −η] =

k∑
η=0

Pr[x = η]∆R[k −η] (B.11)

= γr

k−1∑
η=0

Pr[x = η]I [k −η] = γr I [k], (B.12)

∆D̃[k +1] =
k∑

η=0
Pr[TD = η]∆D[k −η] =

k∑
η=0

Pr[x = η]∆D[k −η] (B.13)

= γd

k−1∑
η=0

Pr[x = η]I [k −η] = γd I [k]. (B.14)

B.4. SIMULATION RESULTS FOR DIFFERENT DELAY DISTRIBU-

TIONS
We assume that probability distributions for infections, recoveries and deaths are the

same functional. To determine the family of reporting delay distributions that best suit

our data, we consider three different two-parameter discrete distributions [114] below:

(I) Negative binomial distribution. The probabilities that a deceased, infected or recovered

individual is reported after m ∈N days are

Pr[T = m] =
(

m + r −1

m

)
(1−p)m pr . (B.15)

The negative binomial distribution with parameters r > 0 and p ∈ [0,1] has mean value

E [T ] = r (1−p)/p and variance V ar [T ] = r (1−p)/p2.

(II) Pólya-Aeppli distribution (also called the geometric Poisson distribution). The prob-

abilities that a deceased, infected or recovered individual is reported after m ∈N days

are

Pr[T = m] =


∑m
j=1 e−λ λ j

j ! (1−θ)m− jθ j
(m−1

j−1

)
, m > 0

e−λ, m = 0
. (B.16)

The Pólya-Aeppli distribution with parameters λ> 0 and θ ∈ [0,1] has mean value E [T ] =
λ/θ and variance V ar [T ] =λ(2−θ)/θ2.

(III) Neyman type A distribution. The probabilities that a deceased, infected or recovered

individual is reported after m ∈N days are,

Pr[T = m] = µme−ξ

m!

∞∑
j=0

(ξe−µ) j

j !
j m . (B.17)
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The Neyman type A distribution with parameters ξ> 0 andµ> 0 has mean value E [T ] = ξµ

and variance V ar [T ] = ξµ(1+µ).

Fig. B.3, Fig. B.4 and Fig. B.5 show the different delay distributions and corresponding

time series and loop patterns.

B.5. REPORTING DELAYS ON SYNTHETIC DATA FROM DIFFER-

ENT COMPARTMENTAL MODELS

The Susceptible-Infectious-Recovered-Dead (SIRD) model and their extensions are widely

applied to describe the dynamics of the COVID-19 pandemic. These compartmental

models are often described by the ordinary differential equations, which are valid in

case of sufficiently large populations (the thermodynamic limit). Here we present four

common-used compartmental models as follows.

1. The SIRD model [5, 2] is one of the simplest models to describe the outbreak

of COVID-19. The SIRD model consists of four compartments: the fraction of

susceptible individuals (S), the fraction of active infected individuals (I ), the fraction

of recovered individuals (R) and the fraction of deceased individuals (D). There are

transition rates between compartments. Specifically, the transition rate from S to I

is βSI , where β denotes the infection rate; the transition rates from I to R and D

are respectively γr I and γd I , where γr denotes the recovery rate and γd denotes

the deceased rate. The SIRD model can be formulated as the following systems of

ordinary differential equations (ODEs) [5, 2]:



d I

d t
=βI S − (γr +γd )I ,

dR

d t
= γr I ,

dD

d t
= γd I ,

(B.18)

and it holds that S + I +R +D = 1.

2. The infection rate β in the SIRD model can be time-varying due to the changes in

humidity [119] and policies (e.g., the social distance, quarantine, city-wise lock-

down [227] and wearing masks). The SIRD model [96] can then be extended by

considering a time-varying infection rate β(t ). The SIRD model with a time-varying
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infection rate β(t ) can be formulated as the following ODEs [96]:

d I

d t
=β(t )I S − (γr +γd )I ,

dR

d t
= γr I ,

dD

d t
= γd I ,

S + I +R +D = 1.

(B.19)

3. The exposed state is also considered in some works. The SIRD model is then

expanded to the Susceptible-Exposed-Infectious-Recovered-Dead (SEIRD) model

[5, 2]. The Susceptible-Exposed-Infectious-Recovered-Dead (SEIRD) model can be

formulated as the following ODEs [5, 2]:

dE

d t
=βI S −σE ,

d I

d t
=σE − (γr +γd )I ,

dR

d t
= γr I ,

dD

d t
= γd I ,

S +E + I +R +D = 1,

(B.20)

where σ denotes the incubation rate.

4. By considering the population flow between regions, researchers propose the SIRD

model on the human mobility network [7, 219]. The SIRD process on the human

mobility network with N regions can be expressed as follows [7, 219],

d I

d t
= diag(S)BI −diag(γr +γd )I ,

dR

d t
= diag(γr )I ,

dD

d t
= diag(γd )I ,

S + I +R +D = u,

(B.21)

where the elements of matrix B denote the transition rates between regions, which

is given by

B =


β11 β12 ... β1N

...
...

. . .
...

βN 1 βN 2 ... βN N

 , (B.22)
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the state vectors S, I , R and D are respectively

S = (S1[t ],S2[t ], · · · ,SN [t ]), I = (I1[t ], I2[t ], · · · , IN [t ]), (B.23)

R = (R1[t ],R2[t ], · · · ,RN [t ]), D = (D1[t ],D2[t ], · · · ,DN [t ]), (B.24)

the recovered and mortality rate vectors γr and γd are respectively

γr = (γr,1,γr,2, · · · ,γr,N ), γd = (γd ,1,γd ,2, · · · ,γd ,N ), (B.25)

the vector u denotes the all-one vector and diag(∗) denotes the diagonal matrix with

elements of a vector ∗. The population-flow network B can also be time-varying

due to the city-wise lockdown.

By analyzing the commonality in the above compartmental epidemic models men-

tioned above and under the discrete-time approximation, we have the following rela-

tionships between the fractions of ∆R, ∆D at the day k +1 and the fraction of I at day

k:

∆R[k +1] = R[k +1]−R[k] = γr I [k], (B.26)

and

∆D[k +1] = D[k +1]−D[k] = γd I [k], (B.27)

where γr and γd respectively denote the recovered and mortality rates.

Fig. B.6-Fig. B.11 show the reported time series and loop patterns for different com-

partmental models and different delay distribution types. For the SIRD model and the

SIRD model with a time-varying infection rate β(t), the initial state is that 10−4 of all

individuals are infected and the others are susceptible. For the SEIRD model, the initial

state is that 10−4 of all individuals are infected, 10−2 of all individuals are exposed and the

others are susceptible. Three different types of delay distributions are considered: the

negative binomial distributions, the Neyman type A distributions and the Pólya-Aeppli

distributions. Peak shifts and loop patterns are discovered in all compartmental models

and delay distributions.

B.6. INFER DELAY INFORMATION USING SYNTHETIC AND REAL

DATA

We do 107 random search on the parameters of delay distributions. Each time we uni-

formly random choose mean reporting delays E [TI ], E [TR ] and E [TD ] in range [0,30].

For the negative binomial distributions, the parameters pD , pR and p I are uniformly

randomly chosen in range [0,1]. For the Pólya-Aeppli distributions, the parameters θD ,

θR and θI are also uniformly randomly chosen in range [0,1]. For the Neyman type A
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Regions λI θI λR θR λD θD

Italy 2.8741 0.4193 2.0701 0.0719 0.1787 0.6750

Spain 1.0803 0.1632 1.2673 0.0553 0.1713 0.6574

Wuhan 0.4661 0.0186 2.6485 0.1377 0.0681 0.0154

Turkey 0.6803 0.0264 2.6537 0.1763 0.0135 0.0146

Hubei 0.1745 0.0075 2.2779 0.1866 0.0033 0.0015

Romania 0.3902 0.0204 0.0026 0.0008 0.0632 0.8985

Germany 0.4122 0.0230 0.0028 0.0007 0.1878 0.1371

Denmark 1.0399 0.0387 0.8382 0.4240 0.0081 0.0045

Table B.1: Inferred distribution parameters.

distributions, the parameters ξD , ξR and ξI are uniformly randomly chosen in range

[0,
p

30]. The guessed data with no delays can be deduced given the reported data and

the guessed distributions. The corresponding product ρ(∆R̄,∆D̄)ρ(Ī ,∆R̄)ρ(Ī ,∆D̄) can be

further calculated.

Table B.2 shows the inferred mean differences and the maximal products

ρ(∆R̄,∆D̄)ρ(Ī ,∆R̄)ρ(Ī ,∆D̄) for 8 countries or regions. The maximal products

ρ(∆R̄,∆D̄)ρ(Ī ,∆R̄)ρ(Ī ,∆D̄) obtained based on the Pólya-Aeppli distributions are all larger

than these values optimized based on the negative binomial or Neyman type A distri-

butions, revealing that the Pólya-Aeppli distribution can describe real reporting delay

distributions better.

B.7. FORECAST THE COVID-19 PANDEMIC

The COVID-19 pandemic is predicted based on the Algorithms 3 and 4. Algorithm 3 is to

forecast the future infected fractions without considering the effect of reporting delays.

Algorithm 4 is to forecast the future infected fractions considering the reporting delays.

B.8. DATA AVAILABILITY

The data sources of COVID-19 cases for each country/region are as follows:

1. China: National Health Commission of the People’s republic of China (http://en
.nhc.gov.cn/) and the health commission of every Chinese province. The data start

from January 10, 2020 and end on March 15, 2020. We consider 31 cities including

Wuhan and 30 other cities (in and out of Hubei province) that are close to Wuhan from

the view of human mobility. The human mobility data are obtained via the Baidu map

(https://qianxi.baidu.com/). There are 16 cities of these 31 cities located in Hubei

http://en.nhc.gov.cn/
http://en.nhc.gov.cn/
https://qianxi.baidu.com/
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Algorithm 3: Forecast the real pandemic without considering the
reporting delays

1: Input: fraction of daily reported infected cases ∆Ĩ [1], ...,∆Ĩ [n].

2: Output: predicted fraction of infections ∆Î [n +1], ...,∆Î [n +npred].

3: Smooth the data by Matlab toolbox smoothdata.

4: Set the initial value of the loss function Θs ← 1; the initial infection rate βs ← 0.01; the

initial removed rate (the sum of recovered rate and deceased rate) γs ← 0.01; the

initial infected fraction Is [0] ← 0.01; for β= 0.01,0.02, ...,1 do

for γ= 0.01,0.02, ...,1 do

for k = 0,1, ...,100 do
5: I [0] = 10−2−k/25;

6: Numerically solve the equations of SIR model based on the parameters

I [0], β and γ and obtain an infection curve ∆I [1], ...,∆I [n +np ].

7: Scale the simulated curve ∆I [1], ...,∆I [n +np ] to data

∆Î [1], ...,∆Î [n +np ] by letting ∆Î [i ] =∆I [i ]×∆Ĩ [1]/∆I [1] for day

i −1,2, · · · ,n +np .

8: Calculate the lose function Θ=
√

1

n

∑n−1
k=0(∆Î [k]−∆Ĩ [k])2. if Θ<Θs

then
9: Θs ←Θ; Is [0] ← I [0]; βs ←β; γs ← γ.

end

end

end

end

10: Obtain the best forecast results based on the optimized parameters Is [0], βs and γs .
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Algorithm 4: Forecast the real pandemic considering the
reporting delays

1: Input: fraction of daily reported infected cases ∆Ĩ [1], ...,∆Ĩ [n]; fraction of daily

reported deceased cases ∆D̃[1], ...,∆D̃[n]; fraction of daily reported recovered cases

∆R̃[1], ...,∆R̃[n]; prediction time npred.

2: Output: predicted fraction of infections ∆Î [n +1], ...,∆Î [n +npred].

3: Smooth the data by Matlab toolbox smoothdata.

4: Infer delay distribution for infected cases TI using the reported data ∆Ĩ , ∆R̃ and ∆D̃ .

5: Obtain the inferred data ∆Ī [1], ...,∆Ī [n] by removing the effect of reporting delays.

6: Set the initial value of the loss function Θs ← 1; the initial infection rate βs ← 0.01; the

initial removed rate (the sum of recovered rate and deceased rate) γs ← 0.01; the

initial infected fraction Is [0] ← 0.01; for β= 0.01,0.02, ...,1 do

for γ= 0.01,0.02, ...,1 do

for k = 0,1, ...,100 do
7: I [0] = 10−2−k/25;

8: Numerically solve the equations of SIR model based on the parameters

I [0], β and γ and obtain an infection curve ∆I [1], ...,∆I [n +np ].

9: Scale the simulated curve ∆I [1], ...,∆I [n +np ] to data

∆Î [1], ...,∆Î [n +np ] by letting ∆Î [i ] =∆I [i ]×∆Ī [1]/∆I [1] for day

i −1,2, · · · ,n +np .

10: Calculate the lose function Θ=
√

1

n

∑n−1
k=0(∆Î [k]−∆Ī [k])2. if Θ<Θs

then
11: Θs ←Θ; Is [0] ← I [0]; βs ←β; γs ← γ.

end

end

end

end

12: Obtain the best forecast results based on the optimized parameters Is [0], βs and γs .

13: Add the reporting delays on the forecast data.
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province: Wuhan, Xiaogan, Huanggang, Ezhou, Xianning, Jingzhou, Huangshi, Xiangyang,

Suizhou, Xiantao, Jingmen, Yichang, Shiyan, Tianmin, Enshi and Qianjiang. The rest 15

Chinese cities out of Hubei are listed as follows: Xinyang, Changsha, Shanghai, Beijing,

Chongqing, Nanyang, Zhumadian, Zhengzhou, Jiujiang, Yueyang, Shenzhen, Guangzhou,

Nanchang, Chengdu and Anqing.

2. Denmark: Statens Serum Institut (https://www.kl.dk). The data start from February

27, 2020 and end on May 16, 2020.

3. Turkey: Ministry of Health (Turkey) (https://covid19.saglik.gov.tr/). The data

start from March 11, 2020 and end on May 16, 2020.

4. Italy: Dipartimento della Protezione Civile (http://www.salute.gov.it/portale/
home.html). The data start from Feb 21, 2020 and end on May 4, 2020.

5. Spain: Ministry of Health (Spain) (https://www.mscbs.gob.es/en/home.htm). The

data start from February 25, 2020 and end on May 15, 2020.

6. Germany: Robert Koch-Institut (RKI) (https://www.rki.de/DE/Content/InfAZ/
N/Neuartiges_Coronavirus/Fallzahlen.html) and new situation reports of the RKI

(https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situati
onsberichte/Gesamt.html). The data start from March 1, 2020 and end on May 19,

2020.

7. Romania: Ministry of Health (Romania) (http://www.ms.ro/comunicate/). The

data start from February 26, 2020 and end on May 23, 2020.

8. South Korea: Korea Centers for Disease Control and Prevention (https://www.cdc.
go.kr/). The data start from February 18, 2020 and end on April 8, 2020.

9. UK: The pandemic data are from the World Health Organization (https://covid1
9.who.int/). The reporting delay data for deaths are from the National Health Service

(NHS) in England (https://www.england.nhs.uk/statistics/statistical-wo
rk-areas/covid-19-new-deaths/). The date we considered is the cases that were

reported from Apr 2 to Apr 4, 2020. The mean and variance of the reporting delays for

infections are obtained from the paper [30]. We generated the delay distribution using

the mean and variance based on the Pólya-Aeppli distributions since Table 3.2 reveals

that many real reporting delays prefer the Pólya-Aeppli distributions.

https://www.kl.dk
https://covid19.saglik.gov.tr/
http://www.salute.gov.it/portale/home.html
http://www.salute.gov.it/portale/home.html
https://www.mscbs.gob.es/en/home.htm
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Fallzahlen.html
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Fallzahlen.html
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Gesamt.html
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Gesamt.html
http://www.ms.ro/comunicate/
https://www.cdc.go.kr/
https://www.cdc.go.kr/
https://covid19.who.int/
https://covid19.who.int/
https://www.england.nhs.uk/statistics/statistical-work-areas/covid-19-new-deaths/
https://www.england.nhs.uk/statistics/statistical-work-areas/covid-19-new-deaths/
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Figure B.1: Time series of the fractions of reported active infections Ĩ [k], new reported recoveries ∆R̃[k +1] and

new reported deaths ∆D̃[k +1] for Turkey (figure a), South Korea (figure b) and China (figure c). The fractions of

new reported deaths for South Korea are too small to be seen effectively. The peak locations are remarkably

different.
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Figure B.2: Data points between the fraction of reported active infections Ĩ [k] and the fraction of new reported

recoveries ∆R̃[k +1] or deaths ∆D̃[k +1] for South Korea, Italy, Wuhan, Turkey, Hubei and Chinese cities out of

Hubei. Loop patterns instead of straight lines are observed. Symbol color (from light to dark) show the day k

changing from day 0 to day 57. Data points between Ĩ [k] and ∆R̃[k +1] evolve in a counter-clockwise direction,

while data points between Ĩ [k] and ∆D̃[k +1] evolve in a clockwise direction.



B

126 B. APPENDIX TO CHAPTER 3

0 2 4 6 8 10

Delay

0

0.2

0.4

0.6

0.8

P
ro

b
a

b
il

it
y

Negative binomial distribution

Neyman type A distribution

0 10 20 30

Delay

0

0.1

0.2

0.3

0.4

P
ro

b
a

b
il

it
y

0 10 20 30 40 50

Delay

0

0.01

0.02

0.03

0.04

0.05

0.06

P
ro

b
a

b
il

it
y

0 10 20 30 40 50

Delay

0

0.02

0.04

0.06

0.08

P
ro

b
a

b
il

it
y

0 5 10 15 20

Delay

0

0.2

0.4

0.6

0.8

P
ro

b
a

b
il

it
y

0 5 10 15 20

Delay

0

0.2

0.4

0.6

0.8

P
ro

b
a

b
il

it
y

Negative binomial

Pólya-Aeppli

Neyman type A

Negative binomial

Pólya-Aeppli

Neyman type A

Figure B.3: Delay distributions considered in Fig. B.4. The upper figures from left to right are respectively

delays of deceased, infected and recovered data corresponding to Fig. B.4a-c. The bottom figures are delays

distributions for Fig. B.4d-f. The mean delays in each subplot are the same. The distribution curves from

different types are usually very different.
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Figure B.4: Time series of the fractions of reported active infections Ĩ [k], new reported recoveries ∆R̃[k +1]

and new reported deaths ∆D̃[k +1]. The synthetic data are generated based on the SIRD model and the delay

distributions (the negative binomial distributions, the Pólya-Aeppli distributions and the Neyman type A

distributions). The infection rate β = 0.5, the recovered rate γr = 0.2 and the mortality rate γd = 0.05. The

dashed lines show the peak locations. Fractions smaller than 10−5 are ignored. The right distributions are delay

distributions considered in the simulation.
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Figure B.5: Data points between the fraction of reported active infections Ĩ [k] and the fraction of new reported

recoveries ∆R̃[k +1] or deaths ∆D̃[k +1]. Loop patterns, instead of straight lines, which are expected for the

data with no delays, are observed. The red and blue arrows show the evolution directions of the data points with

time.
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Figure B.6: Peak shift after reporting delays following the negative binomial distributions. Three different

kinds of epidemic models are considered: the SIRD model, the SIRD model with a time-varying infection rate

β(t ) = 0.5−0.003t and the SEIRD model. Figures a, d and g show the curves of real data ∆R[k +1], ∆D[k +1] and

I [k]. The other figures show the curves after reporting delays and reveal that the peaks of curves are significantly

shifted. Fractions smaller than 10−5 are ignored.
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Figure B.7: The loop patterns for synthetic reported data for reporting delays following the negative binomial

distributions. The shape and evolution direction (clockwise or counter-clockwise direction) of loop patterns

can be different for different reporting delays and different epidemic models.
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Figure B.8: Peak shift after reporting delays following the Pólya-Aeppli Distributions. Three different kinds

of epidemic models are considered: the SIRD model, the SIRD model with time-varying infection rate β(t) =
0.5−0.003t and the SEIRD model. Figures a, d and g show the curves of real data ∆R[k +1], ∆D[k +1] and I [k].

The other figures show the curves after reporting delays and reveal that the peaks of curves are significantly

shifted. Fractions smaller than 10−5 are ignored.
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Figure B.9: The loop patterns for synthetic reported data for reporting delays following the Pólya-Aeppli

distributions. The shape and evolution direction (clockwise or counter-clockwise direction) of loop patterns

can be different for different reporting delays and different epidemic models.
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Figure B.10: Peak shift after reporting delays following the Neyman type A Distributions. Three different

kinds of epidemic models are considered: the SIRD model, the SIRD model with time-varying infection rate

β(t ) = 0.5−0.003t and the SEIRD model. Figures a, d and g show the curves of real data ∆R[k +1], ∆D[k +1] and

I [k]. The other figures show the curves after reporting delays and reveal that the peaks of curves are significantly

shifted. Fractions smaller than 10−5 are ignored.
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Figure B.11: The loop patterns for synthetic reported data for reporting delays following the Neyman type A

distributions. The shape and evolution direction (clockwise or counter-clockwise direction) of loop patterns

can be different for different reporting delays and different epidemic models.
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Figure B.12: Forecast the COVID-19 pandemic by the SIRD model considering and neglecting the the reporting

delays. Each panel shows the RMSE between the forecast results and the real reported data when we forecast

the future prevalence on different dates.
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Figure B.13: The ratio between RMSE2 and RMSE1 for all 8 regions. The improvements of the forecast accuracy

for Spain, Italy, Turkey and Denmark are more significant than the other regions.
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Figure B.14: Good and bad forecast results for each country. The improvements of forecast accuracy by

considering the reporting delays are significant for some dates, but not significant for some other date.
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Figure B.15: Scatter plots between the ratio RMSE2/RMSE1 and ρ(I ,R)ρ(I ,D) (a), E [TI ](b),

E MSE2/RMSE1(c), RMSE2(d) or RMSE1(e) for all 8 countries or regions. It indicates that there are

some correlations between the mean reporting delays E [TI ] and the ratio RMSE2/RMSE1, indicating that the

bigger is the reporting delays, the worse we do, with the exception of Denmark. Besides, we also observe that

the closer the objective function O (Y ) to 1, the smaller is the forecast error.
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Figure B.16: Scatter plots between the error RMSE2 and ρ(I ,R)ρ(I ,D) (a), E [TI ](b), E MSE2/RMSE1(c),

RMSE2(d) or RMSE1(e) for all 8 countries or regions. It shows that the better the SIRD model fit, the better is

the forecast.
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Figure B.17: We study the synthetic data. To get rid of the effect of the epidemic parameters, we generate 103

different synthetic data ∆Y with the length of time series n = 101 by the SIRD model. For each time series,

the infection rate β, the recovered rate γr and the mortality rate γd are uniformly randomly chosen in range

[0.5,1], [0.1,0.4] and [0,0.1], respectively. The parameters of the reporting delay distributions are the same as

Fig. B.4a-c. We fit the data for the first 15, 20, 25 or 30 days (the training dataset) and forecast the rest days’

prevalence (the test dataset). In figures a and b, we fit the prevalence of the first 20 days (the training dataset)

and forecast the prevalence of the other 81 days by considering and ignoring the reporting delays. It shows

that the forecasting results turn to be much worse if we neglect the reporting delays. In figures c-h, we further

separately fit the prevalence of the first 15, 20, 25 or 30 days and forecast the rest data. The forecast error is

measured by RMSE. The figures show the mean RMSE of 103 independent experiments. The upper and bottom

figures separately show the results for the fraction of reported new infections ∆I and the fraction of reported

new removed (recovered or deceased) cases ∆R +∆D. All results show that the negligence of the reporting

delays results in a much greater error. The errorbar denotes the standard error (SE). There are mainly two

possible reasons to explain why the improvement of forecast accuracy for the real data is less significant than

the synthetic data: 1. the SIRD model is one of the most basic epidemic models and there are many more

complicated epidemic models that could describe the COVID-19 pandemic more accurately; 2. the reporting

delays for some regions can be not constant over time. A more realistic epidemic model and a deeper study

of the reporting delays can be the future works to further improve the forecast accuracy by considering the

reporting delays.
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C.1. THEORETICAL EXPLANATION OF THE DEATH-RELATED CURVE

FEATURES
In Equations (4.1), we have that

d In(t )

d t
=βnnSn(t )In(t )+βenSn(t )Ie (t )−δn In(t ) (C.1)

= (βnn In(t )+βen Ie (t ))Sn(t )−δn In(t ). (C.2)

Since non-elderly individuals are the majority in the whole population and the virus

spreads from non-elderly individuals, it holds that In(t ) À Ie (t ) at the initial stage of the

spreading. Moreover, the infection rates satisfy βnn Àβen and thus we have βnn In(t ) À
βen Ie (t), which indicates that elderly infections have little impact on the non-elderly

susceptible individuals and the initial infection curve In(t ) for non-elderly individuals is

close to the result in standard SIR model:

dSn(t )

d t
=−βnnSn(t )In(t ),

d In(t )

d t
=βnnSn(t )In(t )−δn In(t ),

dRn(t )

d t
= δn In(t ).

(C.3)

This explains why curve features for non-elderly individuals are little affected by parame-

ters ε and κ. When time t → 0 and the inter-population infection rate βne → 0, the fraction
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for non-elderly infectious individuals is close to the exponential function

In(t ) ≈ In(0)e(βnn Sn (0)−δn )t . (C.4)

Substitute (C.4) into the equation d Ie (t )/d t = βne Se (t)In(t)+βee Se (t)Ie (t)−δe Ie (t) in

(4.1) and we have that,

d Ie (t )

d t
≈βne Se (t )In(0)e(βnn Sn (0)−δn )t +βee Se (t )Ie (t )−δe Ie (t )

≈βne Se (0)In(0)e(βnn Sn (0)−δn )t + (βee Se (0)−δe )Ie .
(C.5)

We simplify the above equation by letting a = βne Se (0)In(0), b = βee Se (0)−δe and m =
βnnSn(0)−δn :

d Ie

d t
≈ aemt +bIe (t ). (C.6)

By solving the above equation and combining the fact that Ie (0) = 0, the fraction of elderly

infectious individuals when time t → 0 is

Ie (t ) ≈ a(emt −ebt )

m −b
. (C.7)

This equation is the difference of two exponential functions, indicating that the initial

curve for elderly individuals cannot be well described by an independent SIR model.

Besides, at the initial stage of spreading, the growth rate of Ie (t) decreases with the

deceasing of βne . A slower growth of Ie (t) at the initial stage will delay the further

curve and peak position. Figure C.1 shows the values βee Ie (t) and βne In(t) in equa-

tion d Ie (t )/d t =βne Se (t )In(t )+βee Se (t )Ie (t )−δe Ie (t ). It reveals that the value βne In(t )

dominates only at the very initial stage and the value βee Ie (t ) dominates the later stage.

When the infection rate between two groups is relatively small, the later curve for elderly

people will be close to the independent SIR model:

dSe (t )

d t
=−βee Se (t )Ie (t ),

d Ie (t )

d t
=βee Se (t )Ie (t )−δe Ie (t ),

dRe (t )

d t
= δn Ie (t ).

(C.8)

Robert Schaback [228] proved that, for the independent SIR model, when the initial

value Se (0) ≈ Ne and Se (0)βee > δe , the upper bound of the peak position for the fraction

of infectious individuals is
δe

Ie (0)βee
log

(
Se (0)βee

δe

)
. (C.9)

The largest peak position can be obtained when βee is slightly larger than δe /Ne (0).
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Figure C.1: The curves of βee Ie (t) (green curves) and βne In (t) (orange curves) for the two-population SIR

model with parameters βnn = 0.2, ε= 0.01 and κ= 4. The value βee Ie is much larger than βne In after the very

initial stage.
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D.1. THE ARGUMENT OF THE EIGENVALUES OF THE EXACT IN-

FINITESIMAL GENERATOR MATRIX Q
We consider ER random networks with network size N = 10 and link probability p =
0.1,0.2, · · · ,0.9. For each graph, we choose the effective infection rate τ = xτ(1)

c where

the NIMFA epidemic threshold τ(1)
c is smaller than the true epidemic threshold τc . We

consider x = 0.1,0.2,0.3, · · · ,10 and let the curing rate δ= 1. Figure D.1 show the argument

of the eigenvalues of the infinitesimal generator matrix Q for the ER random networks

with mean degree E [D] = 0.9, E [D] = 4.5 and E [D] = 8.1 and effective infection rates

τ= 5τ(1)
c and τ= 10τ(1)

c . It indicates that the real parts dominate the eigenvalues.
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Figure D.1: Probability distributions of the real and imaginary parts of the eigenvalues of the infinitesimal

generator matrix Q. In all cases, the imaginary parts are very small compared to the real parts.
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D.2. PSEUDO-CODE OF SPECTRAL CLUSTERING SIS APPROXI-

MATION (SCSA)

Algorithm 5: Pseudo-code of spectral clustering SIS approximation (SCSA)

Input :Adjacency matrix A, infection rate β, curing rate δ, number of clusters r

Output :approximated prevalence ỹ(t )

1 Add a small self-infection rate ε to the SIS process and compute the infinitesimal

generator matrix Q.

2 Calculate the eigenvalues and eigenvectors of the weighted Laplacian matrix −Q.

3 Perform k-means clustering based on the real part of the eigenvectors

corresponding to the r smallest eigenvalues.

4 Combine states with the same number of infected nodes and the same cluster into

one combined state. Compute the transition rate between any two partitioned

states using Eq. (5.4).

5 Generate the approximated prevalence by (5.5).

D.3. APPROXIMATION WITH AND WITHOUT THE BIRTH-AND-DEATH

RESTRICTION
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Figure D.2: The birth-and-death process restriction is important in SCSA, especially for the prevalence before

and after the metastable state.
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D.4. PERFORMANCE ANALYSIS OF SCSA
The spectral clustering method reduces the error ε, but also increases the size of the

partitioned infinitesimal generator Q̃. To access the quality of SCSA, we compare the

SCSA results with a random clustering method, which places each state in a uniform

random cluster. As shown in Fig. D.3, with the same size of the partitioned state space,

the approximate accuracy of SCSA is significantly higher than the random clustering

benchmark.
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Figure D.3: A comparison of the spectral clustering SIS approximation with the random clustering approximation.

The approximate accuracy of the spectral clustering based results is significantly higher than the random

clustering based results.

The red line in Fig. D.4 shows the error ε of the spectral clustering SIS approximation

when the size of the state space is 14. It is infeasible to go through all possible clustering

results even for small graphs and thus we randomly select 105 possible clustering ways

with the same size of the state space to check the approximation performance of SCSA.
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Figure D.4: Histogram of the mean squared error ε of 105 randomly selected clustering results. We focus on one

graph with 6 nodes and 12 links as shown in the insert. The red line shows the error of the spectral clustering SIS

approximation when the size of the state space is 14. We randomly select 105 possible clustering ways with the

size of the state space equals 14. It reveals that the spectral clustering SIS approximation result is close to the

upper bound of the approximation accuracy.
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D.5. APPROXIMATION ERROR FOR NETWORKS WITH DIFFERENT

LINK DENSITIES

a d

e

c f

b

ER WS networksnetworks

Figure D.5: Mean squared error ε between the approximated prevalence and the exact prevalence for the ER

random networks with network size N = 10 and different number of links: L = 14 (a), L = 24 (b) and L = 34 (c)

and for the WS networks with average degree E [D] = 3 (d), E [D] = 5 (e) and E [D] = 7 (f). Note that all plots have

a horizontal logarithmic scale. The effective infection rate τ= 5τ(1)
c . The mean and percentiles of the error are

obtained by considering 1000 randomly generated networks. The curing rate equals δ= 1.
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D.6. APPROXIMATION ERROR FOR NETWORKS WITH DIFFERENT

NETWORK SIZES
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eb
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f

Figure D.6: Mean squared error ε between the approximated prevalence and the exact prevalence for the ER

random networks with different network sizes. The average degree is E [D] = 4. The mean and percentiles of the

error are obtained by considering 1000 randomly generated networks. The curing rate equals δ= 1.

D.7. NUMBER OF INFECTIOUS LINKS

To understand why spectral clustering works well, we propose the number of infectious

links that partially describes the accuracy improvements of the spectral clustering method.

The number of infectious links is closely related to the cut-set, which is defined as the

number of infectious links at time t , evolves and defines the prevalence [32, 223, 224]. To
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Figure D.7: Mean squared error ε between the approximated prevalence and the exact prevalence for the WS

networks with different network sizes. The average degree is E [D] = 4. The mean and percentiles of the error are

obtained by considering 1000 randomly generated networks. The curing rate equals δ= 1.
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calculate the number of infectious links. We consider two network infection states in the

infinitesimal generator matrix Q with the same number of infections (in the same layer of

the state transition rate diagram as shown in Fig. 5.3). We consider two link types: one is

the link with a susceptible node at one end and an infected node at another end (name as

S-I link); another is the link with infected nodes at both end (name as I-I link). The S-I

link can be transferred into the I-I link by one time infection. There are different S-I links

and I-I links in different states. For any two states, the number of infectious links is the

defined as the number of links that are S-I links in one state but are I-I links in another

state. To be specific, for networks infection states A and B, we consider any link that is S-I

link in state A but is I-I link in state B, or that is I-I link in state A but is S-I link in state B.

The diagram to calculate the number of infectious links is shown in Fig. D.8.

S-I link

I-I link

link that is S-I link 

in one state but is I-I link

in another state

susceptible node (S)

infected node (I)

State A State B

Figure D.8: Illustration of the number of infectious links between two network infection states A and B. The

example network has 10 nodes and 20 links, with 4 susceptible nodes (green) and 6 infected nodes (red), but the

location of the infected nodes is different for states A and B. We focus on two link types: the S-I links connect a

susceptible node to an infected node and I-I links connect two infected nodes to each other. S-I links can be

transferred into I-I links if an infection takes place over that link. Now, the number of infectious links between

state A and B is the number of links that are S-I links in state A but I-I links in state B or links that are I-I links in

state A but S-I links in state B.

We apply the receiver operating characteristic (ROC) curves to measure the perfor-

mance of the number of infectious links to classify whether two states are in the same

cluster. We consider 100 randomly generated ER networks with 10 nodes and 20 links. We

randomly select 10 two states from the Markov chain with the same number of infected

nodes and use the spectral clustering algorithm to determine if these states belong to

the same cluster. The ROC curves of the number of infectious links are compared with

the ROC curves of the common infected nodes between two states. The area under the

receiver operating characteristic (AUROC) is a metric to evaluate classification perfor-

mance. Figure D.9 indicates that the number of infectious links can better predict the

spectral clustering results. The number of infectious links partially explained the spectral

clustering results. Future more works could discover better metrics to obtain the clusters
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that are close to the spectral clustering results, which can inspire more accurate heuristic

approximation approaches of the SIS network epidemic.

number of infected nodes = 5 number of infected nodes = 6

number of infected nodes = 7

a b

c

spreading links

AUROC = 0.539

AUROC = 0.585

AUROC = 0.523

AUROC = 0.627

AUROC = 0.520

AUROC = 0.694

Figure D.9: Receiver operating characteristic (ROC) curves of the number of infectious links and the number of

common infected nodes to predict whether two states are in the same cluster. The simulations are averaged

over 100 randomly generated ER networks with 10 nodes and 20 links. Out of 10 nodes, we consider states with

(a) 5 infected nodes, (b) 6 infected nodes and (c) 7 infected nodes. The effective infection rate is τ= 5τ(1)
c , the

curing rate δ= 1 and the number of clusters r = 5.
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E.1. THE CLIFFORD GATES ARE A GROUP

The fact that Cn is a group can be verified by checking the necessary properties:

Binary operation. Suppose A,B ∈Cn . Thus for all σ ∈±P∗
n , AσA† ∈±P∗

n and BσB † ∈±P∗
n ;

and moreover A(BσB †)A† ∈±P∗
n . Let σ ∈±P∗

n be arb. and note that we have shown that

(AB)σ(AB)† ∈±P∗
n . Thus AB ∈Cn .

Associativity. This is for free because matrix multiplication is associative.

Identity. I⊗n ∈Cn because it is unitary and for all σ ∈±P∗
n , I⊗nσ(I⊗n)† =σ.

Inverses. Suppose C ∈ Cn , such that for any σ ∈ ±P∗
n we have that CσC † ∈ ±P∗

n . This

implies that for any ω ∈±P∗
n , we can find a σ ∈±P∗

n such that ω=CσC † (isomorpishm).

Conclude that because C is unitary, C−1ω(C−1)† = C †ωC = C †CσC †C = σ ∈ P∗
n . Hence

C−1 ∈Cn .

E.2. RELATION BETWEEN THE ERROR PROBABILITIES WHEN US-

ING THE TRACE DISTANCE AND FIDELITY

Let t be such that 0 ≤ t ≤ τ and let ω ∈ {D t ≤ ε} = {1−D t ≥ 1−ε}. By [3, (9.110)], we have

that 1−Ft ≤ D t ≤
√

1−F 2
t for all t ≥ 0. Consequentially 1−D t ≤ Ft ≤

√
1−D2

t for all t ≥ 0.

On every such ω, we thus also have that Ft ≥ 1−ε. We have shown that {D t ≤ ε} ⊆ {Ft ≥
1−ε}, which proves the first statement. For the second statement, we similarly note that

{min0≤s≤t Fs ≥ 1−ε} ⊇ {min0≤s≤t (1−Ds ) ≥ 1−ε} = {max0≤s≤t Ds ≤ ε}.
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E.3. AN EXAMPLE EXPLICIT CALCULATION OF THE RESULTS IN

PROPOSITION 6 AND LEMMA 2
In order to calculate the results of Proposition 6 or Lemma 2, one requires a transition

matrix P . For the example of randomized benchmarking in Section 6.4.1 with Pauli

channels {I , X ,Y , Z } only, when enumerating the two-dimensional states

G 2
1 = {

(I , I ), (I , X ), (I ,Y ), (I , Z ), (X , I ), (X , X ), ..., (Z , Z )
}

(E.1)

lexicographically along both the rows and columns (so as indicated), the transition matrix

P is represented as follows:

P =
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(E.2)

Probability distribution of the maximum trace distance. Using (E.2), we can evaluate

Proposition 1’s results. When starting from the initial state |ζ0〉, (6.11) simplifies (after

some algebra) to

P[ max
0≤s≤t

Ds > 1/5] = 1− (
1− 2

3 r
)t . (E.3)

Similarly when starting from the initial state |ξ0〉, (6.11) leads to

P[ max
0≤s≤t

Ds > 1/5] = 1− (1− r )t . (E.4)

Lower bound. Using (E.2), we can also evaluate the lower bound in Lemma 2. When

the initial state |ζ0〉 =
p

7/10 |0〉+p
3/10 |1〉, the expected hitting time of B

|Ψ0〉
|ψ0〉,1/5 turns

out to be given by Ez [T
B

|Ψ0〉
|ψ0〉,1/5

] = 3/(2r ). The lower bound in (6.17) therefore reads

Pz0 [ max
0≤s≤t

Ds > 1/5] ≥ 0∨
(
1− 3

2r (t +1)

)
. (E.5)
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Here a ∨b ,max{a,b}. Alternatively, when the initial state |ξ0〉 =
p

4/5 |0〉+p
1/5 |1〉, the

expected hitting time of B
|Ψ0〉
|ψ0〉,1/5 can be calculated to be Ez [T

B
|Ψ0〉
|ψ0〉,1/5

] = 1/r . The lower

bound is thus given by

Pz0 [ max
0≤s≤t

Ds > 1/5] ≥ 0∨
(
1− 1

r (t +1)

)
. (E.6)

Comparison of the probability distribution of the maximum trace distance to its lower

bound The lower bounds and exact results with r = 0.2 are shown in Figure E.1.
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Figure E.1: Lower bounds and exact probabilities P[ max
0≤s≤t

Ds > 1/5] with r = 0.2 for initial state |ζ0〉 (left) and

|ξ0〉 (right).

On how to construct a P or Q matrix. To assist you in constructing a transition matrix

P or Q, which are needed for the results in Section 6.2, we have written an R script that

can generate such matrices. The script generates a transition matrix when you a scenario

with Pauli and Clifford channels and with error probabilities that are either dependent or

independent of the gate: all you as user have to do, is to input a vector of (gate-dependent)

error probabilities. The code of this script can be found at https://gitlab.tue.n
l/20061069/markov-chains-for-error-accumulation-in-quantum-circuits.

Additionally, for as long as the following public service remains available, the script can

be tried out at https://bevanschooten.shinyapps.io/qbiterrors/.

E.4. NUMBER OF STABILIZER STATES FOR A GATE
For n qubits, any gate M ∈ Gn \ I⊗n can be represented using a 2n ×2n unitary matrix.

Recall that any unitary matrix of finite size is unitarily diagonalizable since every unitary

https://gitlab.tue.nl/20061069/markov-chains-for-error-accumulation-in-quantum-circuits
https://gitlab.tue.nl/20061069/markov-chains-for-error-accumulation-in-quantum-circuits
https://bevanschooten.shinyapps.io/qbiterrors/
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matrix is normal [229]. A 2n×2n matrix that is diagonalizable must have a set of 2n linearly

independent eigenvectors [229].

The initial states |ψ0〉 that can satisfy M |ψ0〉 = e iγ|ψ0〉 are the eigenvectors of the

matrix M with eigenvalue λ = e iγ. For any unitary matrix A with eigenvalue λ and

eigenvector v , A† A = A A† = I , v†v = v† A† Av = λ†v†vλ = λ†λv†v . Also recall that any

eigenvector ||v || 6= 0 by definition [229] and thus it always holds that |λ| = 1. So M |ψ0〉 =
λ |ψ0〉 = e iγ |ψ0〉.

E.5. A STABILIZER STATE FOLLOWS AFTER A STABILIZER STATE

By assumption and the definition in (6.37), for any state |ψ1〉 ∈ R|ψ0〉, ∃Z ∈ Gn : |ψ1〉 =
Z |ψ0〉 since Gn is a group. we have furthermore that ∃H ∈Gn \ I⊗n : H Z =Z M . Then

|ψ1〉 =Z |ψ0〉 = e−iγZ M |ψ0〉 = e−iγH Z |ψ0〉 = e−iγH |ψ1〉. So H |ψ1〉 = e iγ |ψ1〉.

E.6. GATE-DEPENDENT ERROR MODEL

In Table E.1, we provide the precise error probabilities used in Section 6.4. The specific

values were simply randomly generated to result in an inhomogeneous example; we spent

no time post-selecting these values.

E.7. METHOD TO FIND ALL REACHABLE STABILIZER STATES

All reachable stabilizer states can be found given the finite unitary group Gn of gates (and

noise) and the initial stabilizer state |ψ0〉. Given an initial stabilizer state |ψ0〉, the reduced

states can be found by the following steps. First list all gates (and noise) {M1,M2, · · · ,Mn}

in group Gn . All reachable states are then {M1 |ψ0〉 ,M2 |ψ0〉 , · · · ,Mn |ψ0〉}. At last, any

two states Mi |ψ0〉 and M j |ψ0〉 that satisfies Mi |ψ0〉 = e iγM j |ψ0〉 will fall into the same

state.

E.8. PSEUDO-CODE FOR GATE-LIMITED SIMULATED ANNEAL-

ING

In Algorithm 6, we present the pseudo-code for the simulated annealing algorithm when

restricting to a subset of available gates.

E.9. IMPROVED QUANTUM CIRCUITS

In Figure E.2, we present the circuits with the lowest error accumulation rates found by

our implementations of the two simulated annealing algorithms.
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Table E.1: The specific error probabilities. Here, C1,C2, . . . ,C24 denote the single-qubit Clifford gates and refer

specifically to the representation of these gates in [180] and [182].

Gate P[Λ= I |Ci ] P[Λ= X |Ci ] P[Λ= Y |Ci ] P[Λ= Z |Ci ]

C1 0.990 0.003̇ 0.003̇ 0.003̇

C2 0.965 0.0123̇ 0.0103̇ 0.0123̇

C3 0.983 0.0043̇ 0.0083̇ 0.0043̇

C4 0.977 0.0083̇ 0.0103̇ 0.0043̇

C5 0.969 0.0113̇ 0.0073̇ 0.0123̇

C6 0.984 0.0063̇ 0.0043̇ 0.0053̇

C7 0.979 0.0043̇ 0.013̇ 0.003̇

C8 0.987 0.0043̇ 0.0033̇ 0.0053̇

C9 0.979 0.003̇ 0.0093̇ 0.0083̇

C10 0.985 0.0053̇ 0.0053̇ 0.0043̇

C11 0.980 0.0073̇ 0.003̇ 0.0093̇

C12 0.975 0.0083̇ 0.0063̇ 0.0103̇

C13 0.974 0.0113̇ 0.0063̇ 0.0083̇

C14 0.975 0.0073̇ 0.0063̇ 0.0113̇

C15 0.972 0.013̇ 0.0093̇ 0.0053̇

C16 0.980 0.0043̇ 0.0093̇ 0.0063̇

C17 0.979 0.0063̇ 0.0093̇ 0.0053̇

C18 0.982 0.0103̇ 0.0043̇ 0.003̇

C19 0.977 0.0063̇ 0.0043̇ 0.0123̇

C20 0.976 0.0113̇ 0.0073̇ 0.0103̇

C21 0.975 0.0073̇ 0.073̇ 0.0103̇

C22 0.967 0.0073̇ 0.0073̇ 0.0103̇

C23 0.974 0.013̇ 0.0063̇ 0.0063̇

C24 0.978 0.0123̇ 0.0053̇ 0.0043̇
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Algorithm 6: Pseudo-code for gate-limited simulated annealing.

Input: A group Gn , a set A ⊆Gn , a circuit {U1, . . . ,Uτ} and number of iterations w

Output: A revised circuit {G [w]
1 , . . . ,G [w]

τ }

1 begin

2 Initialize {G [0]
1 , . . . ,G [0]

τ } = {U1, . . . ,Uτ};

3 for η← 1 to w do

4 Collect all m neighboring gates {(G [η]
1 ,G [η]

2 ), . . . , (G [η]
m−1,G [η]

m )} with at least

one replaceable candidate neighboring gates {G [η+1]
w ∈A ,G [η+1]

w+1 ∈A };

5 Choose I ∈ [m −1] uniformly at random;

6 Replace (G [η]
I ,G [η]

I+1) by any gate pair in {(G̃1,G̃2) ∈A 2 |G [η]
I+1G [η]

I = G̃2G̃1}

uniformly at random and then obtain the new circuit J ;

7 Choose X ∈ [0,1] uniformly at random;

8 if X ≤αG [η],J (Tη) then

9 Set G [η+1] = J ;

10 else

11 Set G [η+1] =G [η];

12 end

13 end

14 end
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Figure E.2: (left) The entire improved one-qubit circuit with circuit length τ = 100 obtained by Algorithm 2

(C = 0.004). (right) The entire improved two-qubit circuit with circuit length τ= 50 obtained by Algorithm 6

(C = 0.002).

E.10. ERROR DISTRIBUTION

Recall that Qy,v (t) = P[Yt+1 = v |Yt = y]. In the experiment of Figure 6.12, we assume a

gate-dependent error model in which only single qubit errors occur that are (condition-

ally) i.i.d. on both qubits: that is

P[Λt+1 =λ|Yt = y] =
ζUt+1 (λ1)ζUt+1 (λ2) if λ= (λ1,λ2) ∈C ⊗2

1

0 otherwise,
(E.7)

for a set of distributions {ζg |g ∈C2}, say. It now follows from the law of total probability

that

Qy,v (t ) = ∑
(λ1,λ2)∈C ⊗2

1

1[(λ1 ⊗λ2)Ut+1 yρy†U †
t+1(λ1 ⊗λ2)† = vρ0v†]ζUt+1 (λ1)ζUt+1 (λ2).

(E.8)

Now, specifically, the error probabilities for e.g. the first qubit are set in the numerical

experiment as shown in Table E.2. The error probabilities for the second qubit are set

similarly so. Note that not applying a gate gives the lowest error rate; applying a single-

qubit gate results in a medium error rate; and applying a two-qubit gate gives the largest

probability that an error may occur.
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Table E.2: The error probabilities for the first qubit as set in the numerical experiment that generates Figure 6.12.

The error probabilities for the second qubit are set similarly so.

Case g = I ×C1: Case g ∈ (C1\I )×C1: Case g ∈C2\C ⊗2
1 :

ζg (λ1) =



0.990 if λ1 = I ,

0.006 if λ1 = X ,

0.003 if λ1 = Y ,

0.001 if λ1 = Z ,

0 otherwise.

ζg (λ1) =



0.950 if λ1 = I ,

0.030 if λ1 = X ,

0.015 if λ1 = Y ,

0.005 if λ1 = Z ,

0 otherwise.

ζg (λ1) =



0.900 if λ1 = I ,

0.060 if λ1 = X ,

0.030 if λ1 = Y ,

0.010 if λ1 = Z ,

0 otherwise.

E.11. PSEUDO-CODE FOR THE SIMULATED ANNEALING ALGO-

RITHM THAT IMPROVES THE QUANTUM CIRCUIT THAT IM-

PLEMENTS DEUTSCH–JOZSA’S ALGORITHM
The algorithm that was used to generate the improved circuits for Figure 6.12 is shown in

Algorithm 7.
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Algorithm 7: Pseudo-code for the simulated annealing algorithm that improves

the quantum circuit that implements Deutsch–Jozsa’s Algorithm for one classical

bit.
Input: A circuit {U1, . . . ,Uτ} with U1, . . . ,Uτ ∈C2 and number of iterations w

Output: A revised circuit {G[w]
1 , . . . ,G[w]

τ }

1 begin

2 Initialize {G[0]
1 , . . . ,G[0]

τ } = {U1, . . . ,Uτ};

3 for η← 1 to w do

4 Choose I ∈ [τ−1] uniformly at random;

5 Choose B ∈ {−1,+1} uniformly at random;

6 Choose G ∈C1 ⊗C1 uniformly at random;

7 if B =−1 then

8 Set JI =G , JI+1 =G
[η]
I+1G

[η]
I G←, Ji =G

[η]
i ∀i 6=I ,I+1;

9 else

10 Set JI+1 =G , JI =G←G
[η]
I+1G

[η]
I , Ji =G

[η]
i ∀i 6=I ,I+1;

11 end

12 Choose X ∈ [0,1] uniformly at random;

13 if X ≤ exp
(−(1/Tη)max{0,u(J )−u(G[η])}

)
then

14 Set G[η+1] = J ;

15 else

16 Set G[η+1] =G[η];

17 end

18 end

19 end
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