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Abstract
Robotic welding and additive manufacturing (AM) processes have an intricate design space influenced by numerous config-
urable process parameters. Currently, the precise impact of each parameter or a combination of them on the variability and 
dimensions of deposited material is unclear due to the stochastic nature of the process, which is affected by factors like arc 
stability, temperature gradients and other in-process changes. In AM and various cases of welding like cladding, quantifying 
these variations is necessary for developing path planning strategies that produce components without defects. This study 
presents a framework that automates process data collection and scanning of the weld bead and analysis of the point cloud, 
based on the design of experiments principals towards building representative machine learning models. In comparison to 
alternative approaches, this framework incorporates spatial variation along the deposited length by utilising location-based 
binning of measurements, thereby enabling more detailed analysis of various deposition stages including arc ignition and 
extinction regions. The framework is tested with single pass bead-on-plate weld beads deposited with different process 
parameters followed by spatial–temporal matching. Variations were noted in relation to travel speed and welding current 
when subjected to identical heat input values. Machine learning models for prediction of height and width account for non-
linearities and are validated with additional experimental data. These models have demonstrated a high degree of accuracy 
in predicting in-process variations within the deposited material.

Keywords  Welding · Directed energy deposition (DED) · Laser profilometry · Point cloud · Machine learning (ML)

Abbreviations
AM	� Additive manufacturing
ANN	� Artificial neural network
CMT	� Cold metal transfer
COV	� Coefficient of variance
CTWD	� Contact to work distance
DBSCAN	� Density-based clustering algorithm
DED	� Directed energy deposition
GMAW	� Gas metal arc welding
GRU​	� Gated recurrent unit

LBFGS	� Limited memory Broyden–Fletcher–Gold-
farb–Shanno algorithm

MAPE	� Mean absolute percentage error
MIG	� Metal inert gas welding
ML	� Machine learning
MLP	� Multi-layer perceptron
PL	� Percentage length
R2	� Coefficient of determinant
RANSAC	� Random sample consensus
RMSE	� Root mean square error
WAAM	� Wire arc additive manufacturing

1  Introduction

Additive manufacturing (AM) is a compelling solution for 
highly customized and complex parts for end-use applications 
[1]. Due to inherent similarities between the directed energy 
deposition (DED) technology—a subset of additive manufac-
turing processes—and classical welding, there is a general 
trend in adapting governing welding standards in AM industry. 
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However, developing and defining process parameters remains 
a critical challenge among all these technologies. With a lack 
of general frameworks [2, 3], benchmarks [4], and guidelines 
[5] that allow comparative analysis of different parameters in 
a unified manner, the retained uncertainties impose challenges 
such as massive workforce requirement, substantial environ-
mental impact, time-consuming, and costly practices as well 
as slow innovation in materials, resulting in slower adoption 
of robotised welding and AM.

All established use-cases in welding and DED start with 
a fine-tuning of process parameters to establish a usable 
range of combined inputs for manufacturing [6–8]. For 
this purpose, studies have been conducted to determine the 
importance of various factors, including heat input, feed 
rate, travel speed, and dwell time [9]. However, the intricate 
control systems in modern welding (i.e., synergic processes) 
and DED machines make the analysis and conclusions on 
process variability unclear for practical applications, par-
ticularly considering the complex interconnection of factors 
linked to the physical phenomena such as thermal gradients, 
Marangoni flow, heat dissipation, and phase transformations.

Thus, the aim of this study is to propose and demonstrate 
a framework to analyse the impact of process parameters on 
the bead geometric features and dimensions (i.e., height and 
width). The framework prioritises the efficiency and practi-
cality to quantify and understand process variations in weld-
ing and DED processes, employing non-destructive metrol-
ogy methods and a robust ML (machine learning) method 
using a deep learning algorithm. To connect these methods, 
an algorithm streamlines the processing of raw data con-
verting point cloud into metrics for the surface analysis and 
modelling, and introducing a novel location-based approach 
to capture the spatial variation of the process.

Lastly, to test and demonstrate the framework, an experi-
mental campaign (considering variations in welding current 
and travel speed) is conducted for single weld beads using 
an integrated additive manufacturing system, which consists 
of a Fronius CMT welding torch powered by a TPS 400i 
and controlled by an ABB IRB-4600 robot and a RobTrack 
system [10]. A seam tracking sensor operating in profilom-
etry mode, controlled by a dedicated in-house developed 
software that collects and analyses the streamed data from 
the welding machine, robot and sensor. All components are 
fully integrated into the robotic DED cell to capture the sin-
gle weld-bead characteristics.

2 � Background

2.1 � Process parameters as “factors”

Modern welding machines offer numerous internal and 
external parameters for process adjustment. Internal 

parameters include those set within the machine, such as 
wire feed rate, welding current and voltage, shielding gas 
flow rate, and frequencies. External parameters are related 
to material physics or robot configuration, including torch 
travel speed, inter-pass temperature, cooling rate, contact-
tip-to-work distance (CTWD), wire diameter, torch angle, 
pre-heat temperature, substrate thickness, substrate mate-
rial and preparation, wire consumable, and shielding gas 
compositions.

In traditional gas metal arc welding (GMAW), key factors 
affecting microstructure and bead shape are heat input and 
energy density [11], which are widely employed in industries 
to assess weld quality. A significant issue with heat input is 
that its components (current, voltage, travel speed, and effi-
ciency) can be varied in different ways to achieve the same 
heat input value, yet their impact on bead geometry differs 
substantially [12, 13]. The ratio between the wire feed rate 
and travel speed is another factor that affects the bead shape, 
as there is a phenomenon known as humping effect, which 
is a consequence of an incorrect combination of travel speed 
and wire feed rate leading to material accumulation [14].

Concerning the substrate, Gudur et al. [15] observed how 
the initial temperature (pre-heat) can alter the bead geometry 
of Inconel 625 consumable, with an increase of width and 
penetration depth and decrease of height when pre-heated to 
500 °C. Ščetinec et al. [16] showed that CTWD and electri-
cal current have a nearly linear relationship, and Almeida 
[17] confirmed their effect on bead geometry.

The studies clearly show that identifying ideal conditions 
can be ultimately complex. Additionally, there is a notice-
able lack of agreement on the classification, ranking, and 
sensitivity to variations of these factors on the measured 
bead profile, with limited discussion on repeatability.

2.2 � Deposited bead morphology and dimensions 
as “responses”

A single deposited bead forms the fundamental unit of the 
layering process in directed energy deposition technology. 
Optimal defect free deposition strategies considering mul-
tiple beads and multiple layers are based on quantifying the 
deposited bead via its cross-section dimensions. Figure 1 
illustrates the main geometrical features of a single weld 
bead, namely: width (W), reinforcement height (H), penetra-
tion depth (D), toe angle (θ), reinforcement area (AD), and 
dilution area (AS).

2.3 � Correlation between factors and responses

In many instances, data-driven methods are utilised to fore-
cast these characteristics. Chan et al. [19] reported the use 
of backpropagation neural network models to predict vari-
ables such as bead width, bead height, penetration depth, 
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reinforcement area, dilution area, and a parameter dubbed 
bay angle and length.

Similarly, Xiong et al. [20] compared neural network and 
second-order polynomial regression models for weld cross-
section profiles, concluding that the neural network model 
outperformed due to its superior capability to approximate 
non-linearities. Likewise, Nalajam et al. [21] investigated 
forward and backward propagation neural networks to model 
the weld bead dimensions using process parameters for CMT 
welding, obtaining a dataset by cross-sectioning each weld 
bead in a transversal direction and conducting a macrostruc-
tural examination to obtain the measurements.

While most works focus on straight line deposition paths, 
Petrik et al. [22] developed an algorithm for 3D reconstruc-
tion of curved paths that takes the welding trajectory into 
account. Their approach yielded relevant results in path 
planning by considering the radii of curved paths and analys-
ing both multi-layer perceptron (MLP) and gated recurrent 
unit (GRU) models. They found similar convergence for the 
predictions when locations in the weld were represented as a 
4D vector input in the MLP model. In addition, Petrik et al. 
[22] show a predominance of neural networks with MLP 
architecture.

Advancements have focused on modelling bead-on-bead 
interactions [23, 24] and on the use of artificial intelligence 
methods for inspection and process control [25]. These stud-
ies demonstrate progress in linking factors and responses, 
yet often overlook variations along the deposition length, 
and have unclear methods from data gathering to model 
development. Thus, the proposed framework provides a 
systematisation of data collection, analysis, and modelling, 
enabling further studies like defect detection and evalua-
tion of the dimensional variability of stacked beads due to 
changes of the shape of the underlying material and vari-
ations on specific weld locations/paths. In contrast to the 
work conducted by Lettori et al. [26] that focuses on 3D 
scanning and data segmentation to evaluate the deposited 

geometry, the present work contributes a novel perspective 
by demonstrating the potential for automation using in situ 
laser profilometry and incorporating point cloud segmenta-
tion and machine learning for deeper analysis.

3 � Research methodology

From a wholistic perspective, the proposed framework in 
this study involves (i) an algorithm that processes surface 
data (point cloud) collected through a laser profilometer, 
(ii) a design of experiments to replicate various factor com-
binations and gather data in a controlled and statistically 
significant manner, (iii) modelling of the relation between 
factors and responses, and (iv) a validation test dataset to 
verify results. For this study, these constituents are config-
ured towards the analysis of bead-on-plate samples produced 
with CMT-GMAW and modelled with ML methods. They 
are defined as follows:

•	 Algorithm: An algorithm is defined to convert 3D point 
cloud into response metrics such as bead heights and 
widths along the deposition path;

•	 Experimental procedure: An experimental campaign is 
undertaken using the CMT-GMAW process, covering a 
range of selected process parameters (in this case travel 
speed and welding current). For each weld bead, a point 
cloud of the surface after welding is obtained through 
laser profilometry. Additionally, for comparison, manual 
measurements with a digital calliper and with Fronius 
WireSense technology [27] are performed;

•	 Regression models: A multi-layered perceptron neu-
ral network predicts weld bead dimensions (height and 
width). These predictions are validated by recreating the 
weld bead surface geometry and comparing it with actual 
measurements from a laser profilometer using an inde-
pendent validation test set.

4 � Algorithm for object detection and point 
cloud analysis

The algorithm comprises a sequence of steps that transforms 
data points from a Cartesian three-dimensional space into 
metrics for evaluating geometry. Figure 2 provides a sum-
mary of the algorithm that is subsequently described, con-
sidering the following assumptions:

(a)	 The object being evaluated is unknown;
(b)	 The point cloud data is uniformly distributed in space;
(c)	 Multiple objects might be present for evaluation;
(d)	 At least one reference can be identified within the point 

cloud (in this case, the substrate plane);

Fig. 1   Measurements of a weld bead profile, adapted from [18]
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(e)	 Noise or outliers may exist.

Assumptions (a), (c), and (e) suggest that the algorithm 
is adaptable for analysing various geometries beyond the 
specific case of single weld beads, whereas assumptions (b) 
and (d) limit its broader applicability. Overcoming assump-
tion (b) has two solutions, one is to simply find a stable data/
scanning acquisition rate according to the travel speed used. 
If not possible, data pre-processing methods such as those 
discussed by Prasad et al. [28] can be used. More concern-
ing is assumption (d), because there can be cases where the 
substrate plate is not within the raw point cloud data (e.g., 
in multiple layers deposited). To address this problem, some 
pre-processing is proposed in step 1.

Step 1: This step involves defining a reference for the 
measurements, which is considered as a plane equation 
mapping the surface on which objects are positioned 
(such as a table, a flat metal plate, or the substrate). The 
following scenarios can be considered:
First, when no reference can be identified in the raw point 
cloud data, an external calibration of the reference plane 
can be considered. For example, the robot cell can be 
placed on three reference points on the base material, 
and the relative position of these points can be used to 
calculate the plane equation. Then, knowing the relative 
position of the scanning equipment and the deposition 
equipment allows to calculate the relative position of the 
point cloud.
The second case involves considering non-flat references 
(e.g., welding on a curved surface). In this scenario, prior 
scanning of the surface before welding can serve as a 
ground truth by calculating the relative distance to an 
imposed reference plane (as done in the previous sce-
nario). This allows determining a correction matrix for 
height measurements that is added to measurements 
obtained in step 7.
The third scenario assumes that a flat reference can be 
found in the raw data, allowing the automatic determi-
nation of the plane equation by using the random sam-

ple consensus (RANSAC) method [29]. This technique 
attempts to fit a model (i.e., a plane equation) on subsam-
ples of the entire data set, where each iteration provides 
a chance to discover the optimal model. The RANSAC 
method is characterised by the number of data points in 
each subsample, the number of iterations it undergoes, 
and the cut-off distance (distance threshold) for accept-
ing points into the fitted model. For this application, 
each subsample includes the minimum number of points 
required to define a plane (three points), followed by 1000 
iterations with an assumed distance threshold of 0.5 mm.
The resulting plane equation follows the notation in 
Eq. (1), where a, b, c, and d are the calculated plane coef-
ficients. In this case, the central point of the plane is not 
considered because it is not required for height and width 
measurements:

Step 2: Without information on how the point cloud was 
obtained, misalignments between the scanning device 
and the object may occur, as shown in Fig. 3. This step 
involves verifying and correcting these alignments, par-
ticularly along the x-axis ( Rx ) and y-axis ( Ry ), by cal-
culating the relative angle between the plane normal 
(step 1) and the Cartesian axis, calculating the intrinsic 
rotations. The intrinsic rotations are computed following 
the xyz convention, as demonstrated in Eqs. (2), (3), and 
(4), where ( Px,Py,Pz ) is the original point from the point 
cloud, and ( NPx,NPy,NPz ) is the aligned point;

(1)ax + by + cz + d = 0

(2)Rx = −
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Fig. 2   Flow chart explaining the implemented point cloud processing algorithm. “S” stands for step
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Step 3: This step is optional but simplifies the analysis. 
In this step, the point cloud is translated such that the 
volume of data is aligned with the x- and y-axis, placing 
the y-axis at the centre of the point cloud volume, and 
setting the minimum x value to zero. This can be done 
with Eq. (5) where ( TPx, TPy, TPz ) is the point translated 
and ( NPxi

,NPyi
,NPzi

 ) is one of the points that was aligned 
in Step 2;
Step 4: This step verifies that the reference plane is par-
allel to the xy plane (normal = (0,0,1)) by recalculating 
the plane equation for the corrected point cloud obtained 
in step 3. Ideally, the plane should be represented with 
d = 0, but due to a 0.5 mm threshold distance, d is non-
zero, indicating a systematic bias. To correct this error, 
the correction factor ( CF ) is calculated as the difference 

(4)

⎡
⎢⎢⎣

NPx

NPy
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⎤
⎥⎥⎦
=

⎡
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between the mean z-coordinate of the points in the plane 
and d, as defined in Eq. (5);

Step 5: The point cloud is divided into reference plane 
points and non-reference plane points, with the latter 
potentially representing objects or features, as seen in 
Fig. 5;
Step 6: Involves identifying these objects using the 
DBSCAN clustering algorithm [30], which relies on two 
parameters: EPS (distance to neighbours) and the mini-
mum number of points in a cluster. To determine these 
values, a 4-distance graph is plotted to show the distance 
of the 4th neighbour for each data point (Fig. 4);
For most data points, the EPS is below 30 when consid-
ering a single bead. Thus, the clustering algorithm uses 

(5)
⎡
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Fig. 3   Illustration of misalign-
ments in scanned data that need 
to be corrected via step 2 of the 
algorithm

Fig. 4   Selection of EPS param-
eter by analysing the distance 
of each data point to the 4th 
closest data point for one of the 
weld beads in this case with 
5 mm/s (travel speed) and 150 
A (current)

Fig. 5   Segmentation of a point cloud into multiple objects, each colour represents an object and/or outliers
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an EPS of 30 and a minimum of four points per cluster. 
When applied to a multi-feature point cloud, it yields a 
list of clusters as shown in Fig. 5. Additionally, step 6 
filters out some outliers based on these parameter values, 
specifically these are points above the EPS considered.
Finally, steps 7 to 11 involve measuring the object's 
height (S7), boundary region/polygon (S8), centreline 
(S9), extreme positions or length (S10), and width (S11):
Step 7: In this step, the data points of the object are pro-
jected onto the cartesian xy plane by calculating the unit 
vector of the plane’s normal and the distance between 
each point and the plane. Hence, this distance can be 
taken as the height of the object, considering the correc-
tion factor from step 3 and, if available, the correction 
matrix from step 1. Accordingly, data filtering can be 
done: filtering by the maximum value in the transversal 
direction provides the longitudinal height variation of the 
sample, while filtering by a specific cross-section reveals 
the variation at that cross-section. In this algorithm, fil-
tering is done in step 11 to apply the binning concept 
explained in Section 5.2.
Step 8: The Alpha Shape Toolbox [31] is utilized to 
derive the bounding polygon of the flattened point cloud, 
defining the edges with straight lines rather than arcs 
(alpha shape). For the geometries tested, an alpha value 
ranging from 0.001 to 0.01 was sufficient to achieve pre-
cise representation, although adjustments may be neces-
sary depending on the geometry;
Step 9: In this step, the centreline of the projected point 
cloud is established using the linear regression method to 
find the orientation of the scanned object. The resulting 
centreline is represented by a line equation. A limitation 
of using the linear regression is that for non-symmetric 
objects (in the y-axis), the centreline is variable; in such 
cases, another method must be considered to find the cen-
treline, for example straight skeleton [32] or morphologi-
cal thinning;
Step 10: In this phase, the goal is to determine the extrem-
ities of the scanned object by intersecting the centreline 
with the bounding polygon and measuring the distance 
between the outermost points. This distance represents 
the length of the scanned object;
Step 11: In this step, multiple measurements are estab-
lished based on the length of the object (step 10). For 

each measurement, a point on the centreline serves as a 
reference for drawing a perpendicular line to the centre-
line, which intersects with the straight lines of the bound-
ing polygon (step 8), as depicted in Fig. 6. Analogous 
to measuring length, the distance between the farthest 
points is calculated to determine width measurements. All 
measurements can be saved as.txt or.csv files for further 
analysis.

5 � Results and analysis

5.1 � Experimental procedure

To demonstrate the framework, an experimental campaign 
was conducted using the set-up illustrated in Fig. 7, which 
consists of a robotic system as described in the introduc-
tion [18]. Single weld lines, each 100 mm in length, were 
produced on 200 × 350 × 10 mm3 substrate plates made of 
S235 structural steel, applying an M20 shielding gas mixture 
composed of 98% argon and 2% CO2, similar to the study 
conducted by Tankova et al. [33].

Initially, a scan of the surface without the weld bead was 
conducted to define the plane angles and general orientation. 
Then, for each sample, a single weld bead was deposited on 
the base plate, with the laser profiler actively acquiring the 
transversal bead profile at 25 frames/s during deposition. 
After welding, an additional scan was performed at a slower 
travel speed of 5 mm/s and same acquisition rate to obtain a 
more comprehensive and dense point cloud.

For this study, only scans acquired after welding were 
used for the comparative analysis to guarantee that the same 
density of points between samples is verified, ensuring com-
parable data. This method is limited by its reliance on post-
weld scanning data, but increasing the data acquisition rate 
relative to travel speed can address this issue.

Samples are defined in an experimental matrix designed 
to focus on key process parameters, namely the travel speed 
and welding current. These process conditions were selected 
from the perspective of initial fine tuning of process param-
eters (i.e., using an untested combination of wire and sub-
strate consumables), where the travel speed and welding cur-
rent or feed rate are predominantly adjusted. The selection 
of welding current rather than feed rate is connected to the 

Fig. 6   Measurement of widths 
and length along the weld bead
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synergic relationship of these parameters in CMT-GMAW, 
specifically increasing the welding current increases both 
the welding voltage and feed rate (Table 1). Thus, to avoid 
codependent variables as input factors, only the welding cur-
rent was selected due to the direct influence on heat input 
calculation and geometrical features [34]. Nevertheless, 
other codependent factors will also change accordingly, and 
as shown by Catalano et al. [35], they will have particular 
influence on the outcome of the CMT-GMAW welds in both 
thin-wall and single bead geometries.

The welding current was examined from 50 to 250 A in 
increments of 50 A, while the travel speed varied from 5 to 
30 mm/s in increments of 5 mm/s. In this way, the welding 
current is tested in the full range permitted by the welding 
equipment used for the wire consumable selected with five 
levels of variation evenly spaced; for the travel speed a broad 
range is selected to observe the stability and geometrical 
variation at a set travel speed, in this case again five levels 
of travel speed are tested. This allows for a square evenly 
spaced matrix that explores all interactions between lev-
els considered. Although methods like response surface or 
Taguchi design [36] would reduce the number of specimens 

needed for accurate prediction, the full factorial approach 
of evenly-spaced factors was selected to provide a compre-
hensive view of how process parameters effect on weld bead 
dimensions in a broad design space.

Due to concerns regarding the impact of plate distortion 
and variation in inter-pass temperature on sample morphol-
ogies (evidenced by Williams et al. [37]), the welds were 
deposited on six separate plates attached to the workbench. 
Bead deposition alternated among the plates, allowing each 
to cool to room temperature before the next weld on the 
same plate, thus ensuring identical starting conditions and 
reducing overall experimental time. This strategy ensures a 
cooling time of at least 60 s between welds. However, this 
approach introduced two additional issues: (1) calibrating 
the CTWD; and (2) variability in electrical resistance and 
inductance of the plates, which can affect welding consist-
ency. The resistance/inductance alignment procedure recom-
mended by Fronius was performed for each plate, resulting 
in a standard deviation of 0.108 mΩ in resistance and 0.041 
µH in inductance. The CTWD was calibrated with an initial 
stick-out to find the robot’s Cartesian coordinates at the point 
where the wire touches the plate, using Fronius’ WireSense 
technology.

In total, 30 beads were deposited, each representing a 
combination of process parameter. To evaluate the con-
sistency of the results, each combination was deposited in 
duplicate, resulting in 60 total samples. These samples are 
categorized into two data groups: WD1 (weld dataset 1), 
representing the first set; and WD2 (weld dataset 2) which 
is a repetition of WD1. Also, samples with the same com-
bination of parameters were deposited on the same plate. 
Table 1 indicates the specific welding voltage and feed rate 
associated with each welding current used, and Table 2 lists 
the parameters that remained unchanged during experiments.

Fig. 7   Experimental layout for WAAM (a: Fronius TPS 400i; b: GarLine laser profilometer with RobTrack system; c: ABB IRB-4600 robot), 
alongside the initial set of experimental samples WD1

Table 1   Synergic line CMT 3902 universal

Welding current [A] Welding voltage [V] Feed 
rate [m/
min]

50 13.2 1.7
100 13.8 3.4
150 15.6 5.8
200 17.3 10.2
250 18.2 13.9
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5.2 � Data analysis

5.2.1 � Data processing

The raw 3D point clouds were processed using the algorithm 
as described in Section 4. As expected, spatial variation was 
observed in the material deposition, particularly noticeable 
at the arc ignition and extinction points (see Fig. 9). Thus, 
for capturing this spatial variation, a binning concept is pro-
posed, defined by percentage length (PL) parameter.

The percentage length, as the name suggests, quantifies 
the percentage of the length of the deposited material that 
is used to determine the average values for height and width 
within the given segment, similar to a moving average. It 
is defined by the PL interval that dictates how much of the 
sample is considered in the calculated averages. For exam-
ple, if a 10% interval is used, then the “PL bin/value of 15%” 
represents average measurements between 10 and 20% of the 

bead length, as shown in Fig. 8b. The percentage representa-
tion allows for normalisation of the data that generalises to 
different lengths and conditions of deposition, based on the 
hypothesis that there are identifiable regions of variation.

Depending on the PL interval, there are implications on 
the data analysis. At one extreme, a PL interval of 100% is 
the average of all the longitudinal variations, while at the 
other extreme, approaching to 0%, it is the input point cloud 
data variation. In between, the resulting curves show differ-
ent levels of variability. Like the concept of surface rough-
ness, a higher PL interval represents the overall waviness 
smoothing of variations in successive measurements, while 
a low PL interval tends to capture finer local variations. As 
visible in Fig. 8a, where “PL interval 1%” (in blue) high-
lights many instantaneous variations, and “PL interval 20%” 
(in green) is closer to a flat curve.

This means that it important to define a PL interval in 
accordance with the specific application. If the objective is 
to identify local instabilities/anomalies, a lower PL interval 
is preferable. On the contrary, for modelling general mate-
rial deposition behaviour, a higher PL interval is preferred, 
because local and instantaneous variations can constitute 
noise in the training data.

For the present study, the later was the focus. Therefore, a 
higher interval of 10% was chosen for testing the framework. 
This decision was particularly relevant considering that the 

Table 2   Fixed parameters for deposition of DoE samples

Parameter Shielding 
gas flow [l/
min]

Stick-out 
[mm]

Pistol angle 
[°]

Synergic line

Value 15 15 90 CMT 3902 
Universal

Fig. 8   a Effect of different PL intervals on surface variability representation, and b example of the measured height profile obtained with the 
laser profilometer, overlayed with the average height in each discrete interval, in this case segmented by intervals of 10% of PL
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weld beads were deposited without defining ramp-up and 
ramp-down controls, with start and end currents set to 100% 
of the main process current setpoint by default. However, 
for applications that aim to generalise and enhance model 
predictions in the arc ignition and arc extinction regions, 
a refined PL interval or dynamic PL strategy is suggested, 
for example, using PL interval of 5% in the arc ignition and 
extinction regions and PL interval of 10% elsewhere.

5.2.2 � Height and width measurements

Figure 9 shows the progression of height (Fig. 9a) and width 
(Fig. 9b) measurements from 5 to 95% and depicts typi-
cal weld profiles observed during the experimental trials, 
not all weld beads are displayed to highlight differences in 
shape associated to variations of current and travel speed. 
By grasping these variations in cross-section dimensions, an 
improved tool path planning in DED can be attained. Addi-
tionally, identifying the sources of these variations assists 
users in pinpointing and adjusting the key factors to develop 
reliable location-specific process parameters. The height 
measurements in Fig. 9a highlights samples with decreasing 
welding current maintaining the same travel speed (5 mm/s) 
and also for the same current (150 A) with increasing travel 
speed (in orange), disregarding the weld bead with a travel 
speed of 5 mm/s and a welding current of 50 A due to the 
atypical pattern observed and discussed afterwords. Like-
wise, Fig. 9b focuses on width variation when increasing 
welding current with the same travel speed, yet the varia-
tion with travel speed is not plotted due to overlapping of 
measurements that make it difficult to decern the trend in 
shape variation.

To ensure clarity, each weld bead sample in the upcoming 
figures and charts follows the notation [Height or Width] _ 
[Travel Speed] _ [Current]_ [Repetition/dataset]. For exam-
ple, H_5_250_1 denotes the height for a weld with 5 mm/s 

travel speed and 250 A welding current from dataset WD1. 
Typically, the longitudinal weld profile features: (i) an ini-
tiation phase where the height and width rise and then fall, 
peaking at a PL of 15% for the height, (ii) a stable phase 
where the bead dimensions stay relatively constant, and (iii) 
an end phase where the height slowly declines towards the 
end crater, with the width also showing a slight decrease. For 
height, the variation in the initiation phase becomes more 
noticeable when increasing the welding current or reducing 
travel speed. Conversely, at higher speeds, this variation at 
the initiation region is less pronounced (Fig. 9a).

By examining each PL value using the coefficient of vari-
ation (COV) that quantifies the standard deviation relative to 
the average dimension, the three phases can be better identi-
fied as shown in Fig. 10. Looking at the average COV for 
both width and height measurements, it can be observed that 
from 25 to 75% the COV does not change significantly (see 
Fig. 10b). This interval is therefore considered a “stable” 
phase/region with average COV values of 0.029 for height 
and 0.021 for width. For other PL values, it is observed a 
tendency to increase the COV which is highest at the fur-
thest positions, indicating a change in how dimensions vary. 
Notably, PL bin of 15% corresponds to the peak height in 
most profiles, and PL bin of 85% shows higher height vari-
ability in welds with high current, such as those deposited 
at 5 mm/s and 250 A, as seen in Fig. 9.

Figure 11 illustrates the average height and width in 
the stable region. A positive correlation is found between 
heat input and height and width, indicating that higher 
welding current or lower travel speed results in increased 
bead height and width, this correlation is evidenced by a 
second-degree polynomial fitted line. However, this trend 
in height variation is not observed in welds with 50 A, par-
ticularly the weld with 50 A and 5 mm/s (calculated heat 
input of 0.132 kJ/mm) has a greater height than another 
weld with more than twice the heat input. A further study 

Fig. 9   Weld bead longitudinal profiles for samples in WD1 dataset: a height and b width
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is needed to understand this phenomenon. But, one pos-
sible explanation is that the variation in bead dimensions 
is caused by the combination of higher surface tension that 
prevents the liquid material from spreading laterally due to 
a faster cooling time and lower dilution (i.e., penetration 
area, as observed in [17] for CMT-GMAW and [38] for 
GMAW) associated with lower heat input (welding cur-
rent and voltage). Therefore, more material accumulates in 
the melt pool surface which results in a higher deposition 
height. A similar phenomenon is observed in [39], show-
ing for MIG welding that, depending on the feed rate, a 
lower heat input can lead to a higher height, supporting 
the hypothesis of material accumulation.

In both dimensions, a non-linear relationship is observed 
with the parameters that define heat input (current and travel 
speed). This analysis excluded welds with 50 A and speeds 
exceeding 5 mm/s since they showed humping effects. Fig-
ure 12a reveals a significant difference in how welding cur-
rent affects the weld bead height considering a specific travel 
speed: for example, at travel speeds of 5 mm/s and 15 mm/s, 
the increase in height due to a higher current is more pro-
nounced at a lower travel speed. The width (Fig. 12b) also 
displays a non-linear behaviour, where at a fixed travel speed 
below 200 A, changes in welding current proportionally affect 
the width. Yet, between 200 and 250 A, the width stays stable. 
Similar results were found for CMT-GMAW with stainless 
steel [35], indicating that, in terms of geometrical variations, 
travel speed and welding current/feed rate should be treated as 
separate input factors. In addition, these findings also suggest 
that the CMT-GWAW deposition process exhibits a general 
trend for the variation of the input factors, but this trend varies 
depending on the consumable combination used.

5.2.3 � Data comparison: variability of process 
and metrology method

Under ideal conditions, all datasets should have the same 
dimensions for the same welding conditions; however, this is 
not observed for the acquired data. This is a well-known prob-
lem that makes welding to be considered as a “special process” 
under ISO 9000 and ISO 3834 standards [40]. Hence, to quan-
tify the difference the mean dimension is calculated consider-
ing the specimens produced with the same parameters (WD1, 
and WD2) at the respective PL bins. Then, the relative differ-
ence of each measurement is compared to its mean dimension. 
Figure 13 exhibits this analysis for width and height. Overall, 
no observable pattern is found in the scatter of measurements, 
yet a variation of the measurements is found to be primarily in 
the range [− 0.2, + 0.2] mm, which corresponds primarily to a 
variation below 2% of relative percentage error.

Fig. 10   a Coefficient of variation of height and width in each PL 
bin and b average COV value in each PL bin considering width and 
height of all samples in WD1

Fig. 11   Comparison of average 
measurements for WD1 with 
calculated heat input: a height, 
b width
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Highlighting the variability of measurements, a pooled 
standard deviation of 0.0805 mm for height and 0.152 mm 
for width was calculated, when comparing samples pro-
duced with the same parameters. This indicates that there is 
more variability in width than in height. However, compar-
ing the coefficient of variation (COV), the relative error to 
the mean dimensions is approximately 3.2% for width and 
3.9% for height, both below 4%.

Additionally, the accuracy of the measurements obtained 
through the proposed workflow is compared with other 
metrology methods, such as digital callipers and Fronius 
WireSense. To facilitate this comparison, WD1 samples 

were targeted, allowing for the evaluation of different meas-
urement techniques on identical samples.

Figure 14a confirms that the shapes of measurements 
taken with the laser profilometer, and the WireSense are 
similar, despite minor discrepancies in their absolute 
values. By analysing all measured heights, a correction 
factor of − 0.4 mm was identified. After applying this fac-
tor to all the profilometer measurements, a strong match 
is observed between the two measurement methods, as 
shown in Fig. 14b. This demonstrates that both methods 
can be used to analyse the relative dimensions of the weld 
bead; because, although there is a difference in the abso-
lute measurement (as indicated by the 0.4 mm correction 

Fig. 12   Effect of welding cur-
rent and travel speed on weld 
bead dimension: a height and 
b width

Fig. 13   Relative error to the 
mean dimensions, for a width 
and b height
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factor), the relative differences in measurements along the 
deposited length are nearly identical. Still, it is relevant to 
note that measurements obtained with laser profilometers 
require significantly less time.

Figure 15 compares the heights measured by three methods 
for weld beads at 5 mm/s (WD1) with increasing welding cur-
rent at PL 55%. All methods show similar trends yet, present 5 
to 8% standard deviation in the measured values. More accu-
rate metrology methods, such as macro/microsection analysis, 
should be used to find the true measurement values.

6 � Regression model

6.1 � Model development

Since a key objective of this study is to automate and sys-
tematize the modelling of the relationship between process 

conditions and deposited dimensions, a machine learning 
paradigm is considered since incorporating a model search 
with a set pipeline makes the framework more flexible and 
scalable considering other factors and responses/metrics, 
while providing accurate estimates.

In advanced welding machines, arc ignition and extin-
guishing phases are usually configured separately and 
studied independently. However, in this research, the same 
parameters were used across all samples, allowing data from 
these regions to be included in ML training and validation. 
Data with welds that had defects or discontinuities were 
excluded from the selection; this process was performed 
manually, but it could be automated using established sta-
tistical metrics like standard deviation from the automati-
cally calculated mean values. For each bead, 10 measure-
ment locations along the deposition length were considered, 
making a total of 250 data points for training the height and 

Fig. 14   Comparison between 
different measurement methods: 
a weld bead deposited with 
5 mm/s and 150 A, and b when 
offsetting the height measured 
with the welding torch by 
0.4 mm. Series identified with 
WS were acquired using Fro-
nius WireSense, while others 
with a laser profilometer

Fig. 15   Comparison of meas-
ured height for samples with 
5 mm/s and varying current in 
PL bin 55%
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width models. These data points reflect specific segments of 
the weld bead specimens, influenced by the PL interval used.

Currently, a large PL interval is used to focus on the over-
all behaviour along the deposited length and to align the 
predicted bead dimensions with actual measurements. How-
ever, using this PL interval reduces prediction accuracy due 
to variability in the arc ignition and extinguishing regions. 
Therefore, models of the stable phase (PL between 25 and 
75%) with a PL bin of 15% were also trained to capture the 
peak height and evaluate this loss. These models use welding 
current, travel speed, and percentage length as factors, while 
bead height and width are the responses. An artificial neural 
network (ANN) with multi-layer perceptron architecture is 
implemented using Python’s scikit-learn library.

Prior to training, all factors were normalized to fall within 
the range [− 1, 1] to standardise them and regularize the 
parameter search space, thereby enhancing convergence. 
Next, a multi-layer perceptron model with three hidden lay-
ers was trained on 75% of the WD1 data points (selected 
randomly). The training process involved optimizing the 
coefficient of determination (R2) using the limited Memory 
Broyden–Fletcher–Goldfarb–Shanno (LBFGS) algorithm 
solver, applying L2 regularisation of 0.00001, utilising the 
hyperbolic tangent (tanh) activation function for the hidden 
layers and the identity function as the output function. These 
were the initial considerations on the tested MLP architec-
ture, defining the other hyperparameters with the default 
values outlined in scikit-learn library.

Next, a model search is conducted to find the optimum 
configuration of neurons in each hidden layer looking for 
highest coefficient of determination. The optimization is 
done sequentially, where an initial architecture with three 
hidden layers each with a single neuron is defined. Then, 
for each hidden layer, a search for the best R2 value (clos-
est to 1) is conducted, maintaining the number of neurons 
that give the best fit. The sole limitation is that each hidden 
layer can have a maximum of 100 nodes and a minimum of 
1 node, as a consequence when the best R2 is found before 
all hidden layers are optimized then it is possible to have 
an ANN architecture with single neurons in hidden lay-
ers, as seen in Table 3, specifically the width model that 
considers a PL 15–75% range.

Due to the optimisation, all models present an R2 for 
WD1 close to 1 (see Table 3) showing a close estimation 
of the true values, as seen by comparing the real and the 
predicted values in Fig. 16a–b. With models presenting a 
mean absolute percentage error (MAPE) below 1.5% in 
all models, and a root mean squared error (RMSE) below 
0.12 mm for all models, with the largest difference in 
RMSE observed by comparing the width and height mod-
els, where the width models present more than double the 
RMSE value of the height models considering the same 
PL bins. This difference in RMSE reflects a higher bias 
in width measurements that aligns with the uncertainty in 
the raw data from the experimental samples. The follow-
ing sources contribute to this uncertainty: (1) the relative 

Fig. 16   Comparison between 
actual measurements and 
predictions for height and width 
(WD1), a height and b width; 
as well as the corresponding 
fivefold cross-validations’ aver-
age R.2 and standard deviation 
(error bars). Blue represents the 
full model, and orange repre-
sents the model (15–75)

Table 3   Prediction model 
architecture, considering 
WD1: R2 (coefficient of 
determination), RMSE 
(root mean square error) in 
millimetres, MAPE (mean 
absolute percentage error)

Hidden layer 1 Hidden layer 2 Hidden layer 3 R2 RMSE [mm] MAPE [%]

Width (5–95) 98 43 44 0.9972 0.114 1.2
Height (5–95) 73 99 99 0.9969 0.041 1.4
Width (15–75) 54 1 1 0.9982 0.090 1.4
Height (15–75) 73 53 96 0.9977 0.037 1.3
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position of the scanning device to the measured object can 
introduce higher noise due to the shadow effect and laser 
distortion; and (2) since the width is proportionally higher 
than the height, variations and errors in the arc ignition 
and extinction also have higher impact on width.

The residuals, or the differences between actual and 
predicted values, are assessed to determine error ranges 
for specimens WD1, and WD2, and to search for patterns 
indicating systematic bias. In Fig. 17, height and width 
errors lack a discernible pattern. This is shown in the test-
ing R2 scores for height (WD1 = 0.9969, WD2 = 0.9881), 
which is slightly lower than the training dataset (WD1) but 
remain within a 1% difference. Similarly, width R2 scores 
are WD1 = 0.9972, and WD2 = 0.9899, also within a 1% 
difference.

Additionally, a fivefold cross-validation was performed 
by splitting the dataset (WD1) into five distinct training 
and testing sets, using a 75/25 train/test ratio to access the 
model’s generalisation. Figure 16 displays the average test 
R2 and the standard deviation for these test sets. The largest 
reduction in R2, about 0.025, is observed in the height model 
using the full PL range compared to the stable region model. 
Consistently, models excluding arc ignition and extinguish-
ing phases show better R2 scores (improved by 1–2%) and 
less variance (standard deviation of 0.002) compared to full-
range models (standard deviation between 0.012 and 0.014). 
This indicates a trade-off in accounting for the variability of 
the arc ignition and extinguishing regions, though it is less 
significant than initially expected. For models characterising 
these regions, using a smaller PL interval is recommended 
to gain more data points and better capture the transitions.

These validations show that the modelling strategy is suit-
able and valid with independent data sources, such as two 
sets of independent weld beads. However, the predictions 
must align with physical phenomena, predicting a shape 
representative of the deposition process. Since this shape 
varies with current and travel speed, Fig. 18 compares dif-
ferent parameter combinations (used for training) for meas-
ured and predicted dimensions (Fig. 18a refers to width, 
and Fig. 18b refers to height): (i) 5 mm/s and 150 A, (ii) 
20 mm/s and 150 A, and (iii) 5 mm/s and 250 A. The bead 
height generalization is acceptable, with minor discrepancies 
between actual measurements and predicted values, show-
ing 3–9% error in the mean height of the stable region. Yet, 
the model is somewhat less accurate in the arc ignition and 
extinguishing regions for the weld at 5 mm/s and 250 A due 
to higher transition slopes not captured with the PL inter-
val 10%. Additionally, the predicted and measured widths 
match the general trends, though with smaller variation in 
the profilometer data in the predicted data (e.g., in the weld 
with 5 mm/s and 150 A).

6.2 � Model validation

The models demonstrate a good capability to predict the 
spatial variation of the welding deposition process. However, 
there remains uncertainty regarding the model’s capabilities 
to generalise to unseen data, due to possible overfitting. To 
assess the generalisation, the model’s learning curves are 
evaluated. These learning curves are obtained by a cross-val-
idation dataset splitting strategy to define five datasets with 
different training and testing data points from the original 

Fig. 17   Residuals of predicted height and width for WD1, and WD2, and the respective distribution of residuals
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input. In this case, this was done via “ShuffleSplit” func-
tion, as done in the fivefold cross-validation in combination 
with the “learning_curve” function in scikit-learn library to 
obtain the coefficient of determinant with increasing number 
of training samples, tested up to a 75% training set size (the 
same proportion used to define the models).

Figure 19 displays the learning curves for both the width 
and height models, considering the 5–95% PL range and 
15–75% PL range. It also plots the average coefficient of 
determinant from the fivefold cross-validations. Analysing 
the originally trained architecture that used very limited L2 
regularisation (α = 0.0001), it is observed that the accuracy 
of training datasets remains high even with a limited training 
size, while the testing accuracy tends to increase converging 
towards the training accuracy when increasing the training 

size. This suggests that, with a limited number of samples, 
the models tend to overfit and, consequently, fail to general-
ise well the behaviour. However, when enough samples are 
provided, the model’s ability to generalise converges and 
stabilises.

Based on these learning curves, there is no significant 
indication of overfitting. Nevertheless, to further verify pos-
sible overfitting, learning curves that use the RMSE as the 
scoring metric are plotted in Fig. 20, to evaluate the error at 
the scale of the measured dimensions. Thus, in Fig. 20, it is 
observed that the initial architecture (α = 0.0001) does show 
signs of overfitting when comparing the training and testing 
curves, which is most critical in the full model (5–95%) for 
width.

Fig. 18   Comparison of predicted and measured a height and b width for: (i) 5 mm/s and 150 A, (ii) 20 mm/s and 150 A, and (iii) 5 mm/s and 
250 A (WD1)

Fig. 19   Learning curves of the models trained using the coefficient of determination as the scoring metric. In blue are the 5-95% PL models, and 
in orange are the 15-75% PL models
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A way to resolve this problem can be to increase the 
dataset as there is still potential to reduce the variance 
of the training and testing dataset. Another solution is 
to apply regularisation techniques (like dropout or L2 
regularisation). For this study, the application of L2 
regularisation was selected because the Python library 
used (scikit-learn) does not natively support dropout 
method, while L2 regularisation is in-build into the MLP 
pipeline.

The L2 regularisation is applied considering the α 
parameter, where a higher α means a higher penalisation 
of the weights of the ML model. Different values of α were 
tested for the ML models, finding that increasing the α to 
1 in the model trained without the arc ignition and extinc-
tion (15–75%) demonstrated the best generalisation (see 
Figs. 19 and 20), although with reduced accuracy. Similarly, 
the variance of 5–95% models with increased α also led to 
lower variance. In this case, an α value of 0.01 was used for 
the height model because α equal to 1 resulted in signs of 
underfitting.

Overall, the modelling approach considering the MLP 
architecture has been tested and demonstrated to be a valid 
approach, achieving high accuracy (high R2) with a good 
generalisation, depending on the level regularisation applied. 
However, further model tunning is necessary particularly 
considering the uncertainty in the deposited samples (i.e., 
variations during deposition of material), as this can con-
tribute to the bias found in the models, as observed in the 
learning curves.

6.3 � Model evaluation

This study focuses on evaluating the obtained prediction 
models rather than refining models with different PL inter-
vals and hyperparameters. The full models (PL 5–95%) 
were used to observe the complete weld bead length (shape 
and dimensions). To further validate the models, process 
parameters which were not considered in the initial study are 
tested, specifically (i) 12.5 mm/s with 125 A, (ii) 17.5 mm/s 
with 175 A, (iii) 12.5 mm/s with 225 A, and (iv) 22.5 mm/s 
with 225 A. These combinations fall within the original 
experimental matrix, but they were not used for training, 
making them ideal for testing the model accuracy and 
generalisation.

Figure 21 a and c compare the predicted height of the 
weld bead geometries to the measured data from the laser 
profilometer. Although the trend is similar, the predicted 
height is generally lower than the actual measurement. In the 
stable region (PL 25 to 75%), the weld with 125 A and the 
weld with 225 A are on average 0.092 mm and 0.077 mm, 
respectively, lower than the measured values (Fig. 21a). The 
other two welds (Fig. 21c) also underestimate height, in this 
case approximately by 0.126 mm for 225 A and 22.5 mm/s, 
and 0.170  mm for 175 A and 17.5  mm/s, in the stable 
region. More critically the height increase in the initiation 
region is largely underestimated in the weld with 225 A and 
22.5 mm/s.

The width measurements are shown in Fig. 21b and d. It 
is found that in general the predicted width shows a close 

Fig. 20   Learning curves of the models trained using the RMSE as the scoring metric. In blue are the 5–95% PL models, and in orange are the 
15–75% PL models
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approximation to the measured width in terms of evolu-
tion, where welds with the same current/travel speed ratio 
(Fig.  21d) represent different transitions in the arc ignition 
region caused by the higher amount of material accumu-
lated (humping phenomenon) associated with higher current 
and, consequently, higher feed speed. However, the weld 
with 12.5 mm/s and 225 A is visibly different in the stable 
region, where the prediction overestimates compared to the 
measured values. This observation is evident when examin-
ing Fig. 22 that compares the average measured width with 
the predicted width in the stable region. The relative error 
in measurements ranges from 0.5 to 5.2% of the bead width.

Figure 22 compares the measured and predicted mean 
dimensions (height and width). The poorest prediction was 
for the weld bead with 22.5 mm/s and 225 A, showing the 
largest error in width (0.229 mm) and the second largest 
in height (0.126 mm). Overall, the models provide reason-
ably accurate predictions within the process variability, yet 
the fact that with the same pre-defined process parameters 
there exists an observable variation of dimensions, as evi-
denced by comparing both datasets, means that improved 
predictions models that consider the range of deviation of 
the process itself are required; for this purpose, two sugges-
tions are made for further studies: the first is to incorporate 
the variations of specific process parameter (e.g. welding 
current) into the specific weld bead location (PL bins), the 
other suggestion is to explore more activation functions to 
fit specific phenomena (i.e., the arc ignition and extinction 
sections).

In addition, the framework proves to be efficient, because 
although the computation time was not focused in the study 
using a standard laptop computer (with an i7-12650H core 
CPU and a 16 GB of RAM) the model selection of the width 
and height models (5–95% PL) took approximately 2 h (1 h/

model), while running the point cloud processing algorithm 
took less than 1 min per sample (e.g., 33 s for one of the 
samples); which considering the samples’ deposition and 
scanning time (e.g., cooling of at least 1 min) means that 
the data acquisition and processing are close to real-time.

7 � Conclusions

The present work contributes to the systematization and 
generalization of the welding and DED processes measure-
ment and geometrical analysis, introducing a framework/
methodology for this purpose. This approach collects and 
matches temporal data from robotic welding and DED setup 
and spatial data from a non-contact linear laser profilom-
eter. Additionally, an advanced ML algorithm was proposed 
and validated towards accurate prediction of the weld bead 
height and width or defining the process parameters based 
on the expected bead shape design values. The study exam-
ined 30 different combinations of welding current and travel 
speed, covering a broad range of CMT-GMAW parameters. 
The main conclusions are summarized below:

•	 The automatic measurement algorithm for 3D point 
clouds proved to be an effective way to systematize the 
measurement process. It was designed to detail the essen-
tial steps for assessing geometrical data with minimal 
assumptions.

•	 To better capture weld bead variability, the weld was 
divided into segments and an averaging technique was 
applied. By examining the coefficient of variation within 
each segment the weld bead is categorized into arc igni-
tion, stable, and extinguishing regions. It was determined 

Fig. 21   Comparison of predicted and measured height and width along the length, considering varying travel speed and welding current combi-
nations
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that the stable region encompasses between 25% and 75% 
of the analysed sample, i.e., single line weld beads.

•	 The framework applies multi-layer perceptron method 
to developed and establish the process window. Each 
node assigns hyperbolic tangent activation function and 
performs a model search for optimising the number of 
perceptrons based on the R2 performance metric.

•	 The predicted weld bead dimensions shows accept-
able accuracy for process parameters tested outside the 
original design matrix, as demonstrated by comparing 
extrapolated results where the prediction errors (i.e., the 
differences between predicted and real values) are found 
within the range of variations observed in replicated sam-
ples. In addition, the spatial variation patterns are similar 
to those observed in the real samples. Still, the model’s 
prediction of the weld geometry at the arc ignition and 
extinguishing regions were somewhat compromised due 
to the coarse PL interval (10%) used.

Through the experimental campaign, the robustness of 
the framework has been demonstrated. Future work will 
focus on building models that combine the effect of more 
process parameters and conditions, exploring multi-layer 
depositions. This involves refining the PL intervals to repre-
sent varying levels of variability and tuning the ML models 
to improve generalisation. Additionally, although machine 
learning enables rapid modelling of deposited material 
behaviour, it is important to maintain the connection to the 
physical significance of welding conditions. To support this, 
data augmentation using validated ML models can be a use-
ful method for evaluating different hypotheses and formula-
tions regarding material behaviour.

Author contribution  Carlos Zhu: writing—original draft, visualiza-
tion, validation, methodology, investigation, formal analysis, writ-
ing—review and editing. Trayana Tankova: conceptualization, formal 
analysis, methodology, supervision, validation, writing—review and 
editing. Amin S. Azar: conceptualization, formal analysis, method-
ology, supervision, validation, writing—review and editing. Ricardo 
Branco: conceptualization, investigation, methodology, supervision, 
validation, writing—review and editing. Luís Simões da Silva: con-
ceptualization, investigation, methodology, supervision, validation, 
writing—review and editing.

Funding  Open access funding provided by FCT|FCCN (b-on). This 
work was partly financed by (1) FCT/MCTES through national 
funds (PIDDAC) under the R&D Unit Institute for Sustainability 
and Innovation in Structural Engineering (ISISE), under reference 
UIDB/04029/2020 (https://doi.org/10.54499/UIDB/04029/2020), and 
under the Associate Laboratory Advanced Production and Intelligent 
Systems (ARISE) under reference LA/P/0112/2020. (2) CEMMPRE 
projects under the references UIDB/00285/2020 and LA/P/0112/2020. 
(3) The doctoral grant 2021.05992.BD by the Portuguese Founda-
tion for Science and Technology (FCT) attributed to the first author 
(https://doi.org/10.54499/2021.05992.BD). (4) The AMCONSTRUC-
TION project, which is part of the UCPATRONAGE 2019 initiative 
and a joint effort between CEMMPRE (R&D Unit, The Centre for 
Mechanical Engineering, Materials and Processes) and ISISE (R&D 
Unit Institute for Sustainability and Innovation in Structural Engineer-
ing). (5) The Research Fund for Coal and Steel under grant agreement 
101112614 (IAMFat). (6) ROBIN project granted under ARISE Sup-
port Programme with sub-grant agreement ARISE_1OC_8.

Declarations 

Competing interests  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 ASTM, Wohlers Report 2023 Unveils Continued Double-Digit 
Growth.[Online]. Available:  https://​wohle​rsass​ociat​es.​com/​news/​
wohle​rs-​report-​2023-​unvei​ls-​conti​nued-​double-​digit-​growth/ 
Accessed: 07 Oct 2024

	 2.	 Tofail SAM, Koumoulos EP, Bandyopadhyay A, Bose S, 
O’Donoghue L, Charitidis C (2018) Additive manufacturing: sci-
entific and technological challenges, market uptake and opportuni-
ties. Mater Today 21(1):22–37. https://​doi.​org/​10.​1016/j.​mattod.​
2017.​07.​001

Fig. 22   Comparison of average 
dimensions with predicted 
dimensions in PL 25% and 75%

https://doi.org/10.54499/UIDB/04029/2020
https://doi.org/10.54499/2021.05992.BD
http://creativecommons.org/licenses/by/4.0/
https://wohlersassociates.com/news/wohlers-report-2023-unveils-continued-double-digit-growth/
https://wohlersassociates.com/news/wohlers-report-2023-unveils-continued-double-digit-growth/
https://doi.org/10.1016/j.mattod.2017.07.001
https://doi.org/10.1016/j.mattod.2017.07.001


The International Journal of Advanced Manufacturing Technology	

	 3.	 Chen Z, Han C, Gao M, Kandukuri SY, Zhou K (2022) A review 
on qualification and certification for metal additive manufactur-
ing. Virtual Phys Prototyp 17(2):382–405. https://​doi.​org/​10.​1080/​
17452​759.​2021.​20189​38

	 4.	 Srivastava S, Garg RK, Sharma VS, Sachdeva A (2021) Measure-
ment and mitigation of residual stress in wire-arc additive manu-
facturing: a review of macro-scale continuum modelling approach. 
Arch Comput Methods Eng 28(5):3491–3515. https://​doi.​org/​10.​
1007/​s11831-​020-​09511-4

	 5.	 Evans SI, Wang J, Qin J, He Y, Shepherd P, Ding J (2022) A 
review of WAAM for steel construction – manufacturing, material 
and geometric properties, design, and future directions. Structures 
44:1506–1522. https://​doi.​org/​10.​1016/j.​istruc.​2022.​08.​084

	 6.	 Le VT et al (2022) Prediction and optimization of processing 
parameters in wire and arc-based additively manufacturing of 
316L stainless steel. J Braz Soc Mech Sci Eng 44(9):394. https://​
doi.​org/​10.​1007/​s40430-​022-​03698-2

	 7.	 Karmuhilan M, Sood AK (2018) Intelligent process model 
for bead geometry prediction in WAAM. Mater Today Proc 
5(11):24005–24013. https://​doi.​org/​10.​1016/j.​matpr.​2018.​10.​193

	 8.	 Wang Z, Zimmer-Chevret S, Léonard F, Abba G (2021) Pre-
diction of bead geometry with consideration of interlayer tem-
perature effect for CMT-based wire-arc additive manufactur-
ing. Weld World 65(12):2255–2266. https://​doi.​org/​10.​1007/​
s40194-​021-​01192-2

	 9.	 Tomar B, Shiva S, Nath T (2022) A review on wire arc additive 
manufacturing: processing parameters, defects, quality improve-
ment and recent advances. Mater Today Commun 31:103739. 
https://​doi.​org/​10.​1016/j.​mtcomm.​2022.​103739

	10.	 Azar AS (2025) A method and system for determining and moni-
toring automated additive manufacturing process parameters. 
EP4566746A1. https://​paten​ts.​google.​com/​patent/​EP456​6746A1/​
en. Accessed Aug 2025

	11.	 Rosli NA, Alkahari MR, Abdollah MFB, Maidin S, Ramli FR, 
Herawan SG (2021) Review on effect of heat input for wire arc 
additive manufacturing process. J Market Res 11:2127–2145. 
https://​doi.​org/​10.​1016/j.​jmrt.​2021.​02.​002

	12.	 Mondal A, Saha MK, Hazra R, Das S (2016) Influence of heat 
input on weld bead geometry using duplex stainless steel wire 
electrode on low alloy steel specimens. Cogent Eng 3(1):1143598. 
https://​doi.​org/​10.​1080/​23311​916.​2016.​11435​98

	13.	 Khrais S, Al Hmoud H, Abdel Al A, Darabseh T (2023) Impact of 
gas metal arc welding parameters on bead geometry and material 
distortion of AISI 316L. JMMP 7(4):123. https://​doi.​org/​10.​3390/​
jmmp7​040123

	14.	 Yildiz AS, Davut K, Koc B, Yilmaz O (2020) Wire arc additive 
manufacturing of high-strength low alloy steels: study of process 
parameters and their influence on the bead geometry and mechani-
cal characteristics. Int J Adv Manuf Technol 108(11–12):3391–
3404. https://​doi.​org/​10.​1007/​s00170-​020-​05482-9

	15.	 Gudur S, Nagallapati V, Pawar S, Muvvala G, Simhambhatla S 
(2021) A study on the effect of substrate heating and cooling on 
bead geometry in wire arc additive manufacturing and its correla-
tion with cooling rate. Mater Today Proc 41:431–436. https://​doi.​
org/​10.​1016/j.​matpr.​2020.​10.​071

	16.	 Ščetinec A, Klobčar D, Bračun D (2021) In-process path replan-
ning and online layer height control through deposition arc current 
for gas metal arc based additive manufacturing. J Manuf Process 
64:1169–1179. https://​doi.​org/​10.​1016/j.​jmapro.​2021.​02.​038

	17.	 Almeida P (2012) Process control and development in wire and 
arc additive manufacturing. PhD Thesis, Cranfield University. 
[Online]. Available:  http://​dspace.​lib.​cranf​ield.​ac.​uk/​handle/​1826/​
7845. Accessed:  07 Oct 2024

	18.	 Pires JN, Azar AS, Nogueira F, Zhu CY, Branco R, Tankova T 
(2022) The role of robotics in additive manufacturing: review of 
the AM processes and introduction of an intelligent system. IR 
49(2):311–331. https://​doi.​org/​10.​1108/​IR-​06-​2021-​0110

	19.	 Chan B, Pacey J, Bibby M (1999) Modelling gas metal arc weld 
geometry using artificial neural network technology. Can Metall 
Q 38(1):43–51. https://​doi.​org/​10.​1179/​cmq.​1999.​38.1.​43

	20.	 Xiong J, Zhang G, Hu J, Wu L (2014) Bead geometry prediction 
for robotic GMAW-based rapid manufacturing through a neural 
network and a second-order regression analysis. J Intell Manuf 
25(1):157–163. https://​doi.​org/​10.​1007/​s10845-​012-​0682-1

	21.	 Nalajam PK, Varadarajan R (2021) Experimental and theoretical 
investigations on cold metal transfer welds using neural networks: 
a computational model of weld geometry. Exp Tech 45(6):705–
720. https://​doi.​org/​10.​1007/​s40799-​021-​00451-7

	22.	 Petrik J, Sydow B, Bambach M (2022) Beyond parabolic weld 
bead models: AI-based 3D reconstruction of weld beads under 
transient conditions in wire-arc additive manufacturing. J Mater 
Process Technol 302:117457. https://​doi.​org/​10.​1016/j.​jmatp​rotec.​
2021.​117457

	23.	 Banaee SA, Kapil A, Marefat F, Sharma A (2023) Generalised 
overlapping model for multi-material wire arc additive manufac-
turing (WAAM). Virtual Phys Prototyp 18(1):e2210541. https://​
doi.​org/​10.​1080/​17452​759.​2023.​22105​41

	24.	 Ding D, Pan Z, Cuiuri D, Li H (2015) A multi-bead overlapping 
model for robotic wire and arc additive manufacturing (WAAM). 
Robot Comput-Integr Manuf 31:101–110. https://​doi.​org/​10.​
1016/j.​rcim.​2014.​08.​008

	25.	 Mattera G, Nele L, Paolella D (2024) Monitoring and control the 
wire arc additive manufacturing process using artificial intelli-
gence techniques: a review. J Intell Manuf 35(2):467–497. https://​
doi.​org/​10.​1007/​s10845-​023-​02085-5

	26.	 Lettori J, Esposto C, Peruzzini M, Pellicciari M, Raffaeli R (2025) 
Geometrical characterization of circular multi-layered CMT 
WAAM specimens by 3D structured light scanning. Int J Adv 
Manuf Technol 136(11–12):5305–5334. https://​doi.​org/​10.​1007/​
s00170-​025-​15107-8

	27.	 Fronius International, ‘TPS/i WireSense: the welding wire as 
sensor’, 2020. [Online]. Available:https://​www.​froni​us.​com/​en/​
weldi​ng-​techn​ology/​info-​centre/​magaz​ine/​2020/​tpsi-​wire-​sense 
Accessed: 07 Oct 2024

	28.	 Prasad RK, Sarmah R,Chakraborty S (2019) Incremental k-means 
method’, in pattern recognition and machine intelligence vol 
11941. In:  Deka B, Maji P, Mitra S, Bhattacharyya DK,  Bora 
PK, Pal  SK (eds) Lecture Notes in Computer Science. Cham: 
Springer International Publishing, pp 38–46.  https://​doi.​org/​10.​
1007/​978-3-​030-​34869-4_5

	29.	 Fischler MA, Bolles RC (1981) Random sample consensus: a 
paradigm for model fitting with applications to image analysis and 
automated cartography. Commun ACM 24(6):381–395. https://​
doi.​org/​10.​1145/​358669.​358692

	30.	 Ester M, Kriegel H-P, Sander J, Xu X (1996) A density-based 
algorithm for discovering clusters in large spatial databases with 
noise. In: Knowledge Discovery and Data Mining. [Online]. 
Available: https://​api.​seman​ticsc​holar.​org/​Corpu​sID:​355163. 
Accessed Oct 2024

	31.	 Bellock KE (2021) Alpha Shape Toolbox. [Online]. Available:  
https://​pypi.​org/​proje​ct/​alpha​shape/. Accessed 07 Oct 2024  

	32.	 Felkel P, Alek SEAOZ (1998) Straight skeleton implementation. 
[Online]. Available: https://​api.​seman​ticsc​holar.​org/​Corpu​sID:​
14744​149. Accessed Oct 2024

https://doi.org/10.1080/17452759.2021.2018938
https://doi.org/10.1080/17452759.2021.2018938
https://doi.org/10.1007/s11831-020-09511-4
https://doi.org/10.1007/s11831-020-09511-4
https://doi.org/10.1016/j.istruc.2022.08.084
https://doi.org/10.1007/s40430-022-03698-2
https://doi.org/10.1007/s40430-022-03698-2
https://doi.org/10.1016/j.matpr.2018.10.193
https://doi.org/10.1007/s40194-021-01192-2
https://doi.org/10.1007/s40194-021-01192-2
https://doi.org/10.1016/j.mtcomm.2022.103739
https://patents.google.com/patent/EP4566746A1/en
https://patents.google.com/patent/EP4566746A1/en
https://doi.org/10.1016/j.jmrt.2021.02.002
https://doi.org/10.1080/23311916.2016.1143598
https://doi.org/10.3390/jmmp7040123
https://doi.org/10.3390/jmmp7040123
https://doi.org/10.1007/s00170-020-05482-9
https://doi.org/10.1016/j.matpr.2020.10.071
https://doi.org/10.1016/j.matpr.2020.10.071
https://doi.org/10.1016/j.jmapro.2021.02.038
http://dspace.lib.cranfield.ac.uk/handle/1826/7845
http://dspace.lib.cranfield.ac.uk/handle/1826/7845
https://doi.org/10.1108/IR-06-2021-0110
https://doi.org/10.1179/cmq.1999.38.1.43
https://doi.org/10.1007/s10845-012-0682-1
https://doi.org/10.1007/s40799-021-00451-7
https://doi.org/10.1016/j.jmatprotec.2021.117457
https://doi.org/10.1016/j.jmatprotec.2021.117457
https://doi.org/10.1080/17452759.2023.2210541
https://doi.org/10.1080/17452759.2023.2210541
https://doi.org/10.1016/j.rcim.2014.08.008
https://doi.org/10.1016/j.rcim.2014.08.008
https://doi.org/10.1007/s10845-023-02085-5
https://doi.org/10.1007/s10845-023-02085-5
https://doi.org/10.1007/s00170-025-15107-8
https://doi.org/10.1007/s00170-025-15107-8
https://www.fronius.com/en/welding-technology/info-centre/magazine/2020/tpsi-wire-sense
https://www.fronius.com/en/welding-technology/info-centre/magazine/2020/tpsi-wire-sense
https://doi.org/10.1007/978-3-030-34869-4_5
https://doi.org/10.1007/978-3-030-34869-4_5
https://doi.org/10.1145/358669.358692
https://doi.org/10.1145/358669.358692
https://api.semanticscholar.org/CorpusID:355163
https://pypi.org/project/alphashape/
https://api.semanticscholar.org/CorpusID:14744149
https://api.semanticscholar.org/CorpusID:14744149


	 The International Journal of Advanced Manufacturing Technology

	33.	 Tankova T, Andrade D, Branco R, Zhu C, Rodrigues D, Simões 
da Silva L (2022) Characterization of robotized CMT-WAAM 
carbon steel. J Constr Steel Res 199:107624. https://​doi.​org/​10.​
1016/j.​jcsr.​2022.​107624

	34.	 Feng Y, Fan D (2024) Investigating the forming characteristics of 
316 stainless steel fabricated through cold metal transfer (CMT) 
wire and arc additive manufacturing. Materials 17(10):2184. 
https://​doi.​org/​10.​3390/​ma171​02184

	35.	 Catalano AR, Tebaldo V, Priarone PC, Settineri L, Faga MG 
(2025) Cmt deposition of stainless steel: effects of process param-
eters on energy demand and microstructure. Prog Addit Manuf. 
https://​doi.​org/​10.​1007/​s40964-​025-​01022-7

	36.	 Mohd Mansor MS et al (2024) Integrated approach to wire arc 
additive manufacturing (WAAM) optimization: harnessing the 
synergy of process parameters and deposition strategies. J Mater 
Res Technol 30:2478–2499. https://​doi.​org/​10.​1016/j.​jmrt.​2024.​
03.​170

	37.	 Williams S, Gitto E, Jared B (2024) Interpass temperature impact 
on bead geometry of mild steel in wire-arc additive manufacturing. 
Manuf Lett 41:992–997. https://​doi.​org/​10.​1016/j.​mfglet.​2024.​09.​123

	38.	 Ibrahim IA, Mohamat SA, Amir A, Ghalib A (2012) The effect 
of gas metal arc welding (GMAW) processes on different weld-
ing parameters. Procedia Eng 41:1502–1506. https://​doi.​org/​10.​
1016/j.​proeng.​2012.​07.​342

	39.	 Lambiase F, Scipioni SI, Paoletti A (2022) Accurate prediction of 
the bead geometry in wire arc additive manufacturing process. Int 
J Adv Manuf Technol 119(11–12):7629–7639. https://​doi.​org/​10.​
1007/​s00170-​021-​08588-w

	40.	 Norrish J, Polden J, Richardson I (2021) A review of wire arc 
additive manufacturing: development, principles, process phys-
ics, implementation and current status. J Phys D Appl Phys 
54(47):473001. https://​doi.​org/​10.​1088/​1361-​6463/​ac1e4a

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.jcsr.2022.107624
https://doi.org/10.1016/j.jcsr.2022.107624
https://doi.org/10.3390/ma17102184
https://doi.org/10.1007/s40964-025-01022-7
https://doi.org/10.1016/j.jmrt.2024.03.170
https://doi.org/10.1016/j.jmrt.2024.03.170
https://doi.org/10.1016/j.mfglet.2024.09.123
https://doi.org/10.1016/j.proeng.2012.07.342
https://doi.org/10.1016/j.proeng.2012.07.342
https://doi.org/10.1007/s00170-021-08588-w
https://doi.org/10.1007/s00170-021-08588-w
https://doi.org/10.1088/1361-6463/ac1e4a

	Framework for automated measurement of material deposition in welding and directed energy deposition
	Abstract
	1 Introduction
	2 Background
	2.1 Process parameters as “factors”
	2.2 Deposited bead morphology and dimensions as “responses”
	2.3 Correlation between factors and responses

	3 Research methodology
	4 Algorithm for object detection and point cloud analysis
	5 Results and analysis
	5.1 Experimental procedure
	5.2 Data analysis
	5.2.1 Data processing
	5.2.2 Height and width measurements
	5.2.3 Data comparison: variability of process and metrology method


	6 Regression model
	6.1 Model development
	6.2 Model validation
	6.3 Model evaluation

	7 Conclusions
	References


