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Notation

In general, lowercase and uppercase italic type represent variables or functions.
Vectors and matrices are represented by a lowercase and uppercase Sans serif bold

type font. The page on which the symbol is introduced or explained is given in
brackets.

General Conventions
i, j, k indices
x, y, z spatial coordinates
z scalar
z vector
Z matrix
z low-dimensional vector
ẑ approximated vector
z̄ mean vector
z̃ linearized quantity
(·) specific parameter
〈(·)〉 mean quantity
‖(·)‖ absolute quantity
(·)T transpose
(·)−1 inverse, i.e. 1/(·)

(·)a posterior
(·)b background
(·)crl aligned to columns, rows or layers
(·)d Dirichlet condition
(·)e evaluation
(·)f Cauchy condition
(·)o observation
(·)p partitioned matrix
(·)t truth
(·)xyz towards an x, y or z direction
(·)∗ neighbouring grid cell
(·)i,j,k specific element within vector

Lowercase roman symbols
c coefficient [50]
d corrected snapshot [58]
f power factor [32]
h thickness aquifer [29]
h′ level correction [43]

k permeability [29]
kaa tensorial components within k [29]
nd number of Dirichlet conditions [40]
ne number of snapshots [58]
ng number of groups [70]
nl number of Lanczos vectors [82]
nm number of grid nodes [63]
no number of observations [92]
np number of patterns [60]
nq number of source terms [80]
nt number of time steps [70]
nu number of estimate variables [114]
q source/sink term [28]
r time-dependent coefficients [57]
t time [57]
tp preparation time [79]
te simulation time [105]
t∇ te to compute ∇J [105]
t∂ time to compute PDE [105]
u Darcy velocity [28]
w observational weight [92]
x general state vector [112]
y general estimated observation [112]

Uppercase roman symbols
A system matrix [64]
B operator [50]
C block conductance [48]
E snapshots [58]
E efficiency [80]
F projection matrix [116]
G covariance matrix [58]
H operator that maps the model field

to observation space [112]
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I identity [60]
J objective/cost function [92]
K hydraulic conductivity [57]
L set of Lanczos vectors [81]
M dynamics operator [112]
N matrix [65]
P set of patterns [60]
Prot set of rotated patterns [62]
Q summation of fluxes [50]
R vertical resistance [48]
R2 regression coefficient [80]
S storage coefficient [57]
T tridiagonal matrix [81]
T transmissivity [29]
V set of eigenvectors [59]
V grid block volume [31]
W weight matrix [92]

Lowercase greek symbols
α, β, γ factor [91]
αe factor for snapshots [96]
δ step size [96]
δφ head difference [31]
εφ relative head error [31]
εd relative dissipation error [31]
εu relative error of Darcian flow [31]
η gradient loop [95]
θ error of mass conservation [76]
ι Picard iteration [134]
κ pattern loop [95]
λ eigenvalue [59]
λ′ criterion [61]
µ snapshot simulation loop [95]
ξ upscaling factor [29]
o angle [62]
ρ participation factor [82]
% percentile [71]
σ variance [31]
τ original model simulations [120]
φ hydraulic head [28]
ϕ relative eigenvalue [59]
ϕe expected relative variance [60]
ϕh original relative variance [60]
ϕl reduced relative variance [60]
ϕr reconstructed relative variance [60]
ω distribution index [42]

Uppercase greek symbols
Γ Dirichlet condition [120]
Λ set of eigenvalues [59]
Ξ relative mass error [76]
Ω model domain [29]

Calligraphical
C fictitious model complexity [80]
F function [63]
L set of parameters [93]
R

n n-dimensional Euclidean space [60]
S model subspace [58]
X original model space [58]
Z zone definition [116]
∇ gradient of scalar [94]
∇• gradient of vector [28]

Acronyms
ADJ Adjoint [135]
AR Autoregressive [112]
CFA Common Factor Analysis [55]
CS Coherent Structures [55]
EOF Empirical Orthogonal Function [55]
FDM Finite Difference Method [135]
GEO Geometric Average [32]
GL Global-Local [35]
GPM Galerkin Projection Method [65]
HNF Head No-Flow [32]
IGPM Incremental GPM [137]
ISPM Incr. Sequential Proj. Method [140]
KL Karhunen-Loéve Decomposition

Method [133]
LG Local-Global [35]
MIPS Million Instructions Per Second [15]
NAP Dutch Ordnance Datum [63]
ODE Ordinary Differential Equation [63]
PCA Principal Component Analysis [55]
PDE Partial Differential Equation [55]
POD Proper Orth. Decomposition [55]
PTEN Prior Tensorial [35]
REV Representative Elem. Volume [35]
RMAE Relative Mean Absolute Error [74]
RRMSE Relative Root Mean-Square [74]
SSPM State-Space Projection Method [63]
SSPMa Alternative SSPM [65]
TEN Tensorial [34]
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14 Chapter 1: General introduction

PREDICTION OF SPECIFIC BEHAVIOR is one of the main issues that mankind can be
engaged in. It gives a sense of authority, which is an important reason why
children and adults like to watch reruns on television. Moreover, a reliable

prediction of your opponent’s behavior may mean the difference between winning
and losing, or surviving and dying. Therefore, people nowadays are sensitive of
elements in society that claim to predict a specific behavior in the future. As a re-
sult, an overwhelming number of scientific studies try to predict different kinds of
physical, and even emotional behavior by numerical simulations. It is like modern
witchcraft behind a computer without the risk of dying at the stake.

We can divide numerical simulation models into two groups of model struc-
tures. (1) Models with a structure that is purely based upon measured data for
a certain time window. These models predict a phenomenon by assuming that a
future behavior is similar to its behavior during the measured time window (e.g.
referred to as ‘black-box’ models or time-series models). An advantage of these
type of models is that no knowledge is necessary whatsoever of the interaction of
phenomena because this is captured by the data. Though they compute fast, a dis-
advantage is that we need measurements first before we are able to predict. (2) In
contrast, deterministic models are based upon physical descriptions of phenomena
and can be used instantaneously to predict. Nonetheless, also these descriptions
contain parameters that are often uncertain or valued by field experiments and/or
heuristic assumptions. However, they can be optimized by assimilating additional
measurements (data assimilation). Therefore, to develop a reliable prediction, mea-
surements are necessary as well.

To use one of the above mentioned numerical simulation models, we need to
describe our ‘reality’ (i.e. the reality that we can observe). Generally, this means
that we sample our ‘reality’ in a time- and/or spatial domain according to a mesh
of, for example rectangles or triangles, and neglect information that falls outside the
sampling frequency. Compared to the pixels on our television screen, our ‘reality’
is represented better whenever we increase the number of pixels. Unfortunately,
the number of pixels is limited as computer resources are limited (e.g. compu-
tational performance CPU, memory RAM and diskspace). The main object of the
research presented in this thesis is therefore to examine and develop alternative
methods with low-computational costs that conserve the detailed information of
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a high number of pixels. We have distinguished two methodologies that we have
applied to a numerical simulation of 3D groundwater flow. However, the method
implementations can easily be extended towards other fields of science.

• We have described an approach in which we simply reduce the number of
pixels and compute average quantities for our model parameters in such a
way that the resulting model optimally represents a solution of the original
model. This approach is known as upscaling.

• The second methodology is known as model reduction in which we use a deter-
ministic model structure to generate synthetic experimental data. With those
empirical data we build a reduced model with a structure comparable to a
‘black-box’ model. Basically, it rewrites a deterministic model to a ‘black-box’
model and reduces the complexity of the original deterministic model such
that its essential part remains in the ‘black-box’ model.

This chapter starts with the problem definition and a brief description of the two
techniques. It is followed by the research objectives and concludes with an outline
of the thesis.

1.1 Problem Definition
In 1965, Intel co-founder Gordon Moore predicted that the number of transistors
(i.e. integrated circuits) that can be fitted onto a square inch of silicon doubles ev-
ery twelve months (Moore’s Law [Moore, 1965]). Moreover, each time transistor
size shrinks, integrated circuits become cheaper and perform better. For example,
in 1965, a single transistor cost more than a euro. By 1975, the cost of a transistor had
dropped to less than a euro cent, while transistor size allowed for almost 100,000
transistors on a single die. From 1979 to 1989, processor performance went from
about 1.5 million instructions per second (MIPS), to almost 50 MIPS on the i486’s.
The next ten years it went to over 1,000 MIPS on the Intel r© Pentium r© III. Today’s
Intel r© processors, run at 3.2 GHz and higher, deliver over 10,000 MIPS, and can be
manufactured in high volumes with transistors that cost less than 1/10,000th of a
euro cent. Today’s microprocessors run everything from toys to traffic lights, and
a musical birthday card today has more computing power than the fastest main-
frames of a few decades ago. So, why should we bother about model reduction in
the first place?

Numerical modeling of physical processes requires a lot of computer resources.
These models are conceptual approximations that describe physical systems by use
of mathematical equations. The applicability or usefulness of these models de-
pends on how closely the mathematical equations approximate the physical sys-
tem being modeled. Moreover, it depends on the scale on which we study differ-
ent phenomena and that approximation scale is always related to the computing
power available. Furthermore, we need additional computing power to express
the uncertainties within a model through conceptual and mathematical errors. Due
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to Moore’s Law, scientific researchers approach every two years a different equi-
librium between ‘reality’ and its approximation by numerical simulations. Never-
theless, why should we wait another two years, if we can increase our computing
power by model reduction right now?

Model reduction is only possible whenever we sustain a different model formu-
lation with a limited application. The underlying mathematical model definition is
limited to its assumptions of physical processes, but if we consider the application
itself we observe that model results are ‘bounded’ or ‘structured’ caused by the
underlying mathematical formulations. Consider a car for which the structure is
given by a mathematical expression, in fact this is our model definition. Whenever
we move the car, which is the application of the model, we recompute its position
instead of reconstructing the entire car for each different location. Mathematically,
we need to capture its structure and formulate an equation to compute its position.
This phenomenon can be illustrated by considering the generalized equation for a
sphere (i.e. x2

i + x2
i+1, ..., x

2
n ≤ r2) for which we compute the solution for a particu-

lar valued r and n = 2 (i.e. a circle), see Figure 1.1a. We observe only that a part of
the rectangular-shaped 2D domain is occupied by possible solutions of x1, x2 for a
given value for r. The emptiness of space is in that case one minus the volume of a
circle divided by the volume of the coordinate system that surrounds it (i.e. a span),
so

emptiness of space =

(

1 −
πr2

4r2

)

· 100% (1.1)

which yields 21%. If we compute the emptiness of space for a sphere (n = 3), that
exists in a 3D domain (its volume is given by 4/3π3), the emptiness is increased
to 48% (see Figure 1.1b) and to 70% for a hypersphere (n = 4). Strangely enough,
whenever n approaches infinity, the volume of the nD sphere approaches zero, re-
gardless of the value of r. This is an important insight because we can consider r as
our typical application (i.e. the scenario that we want to compute with our model,

(a) Circle (b) Sphere

Figure 1.1: Presentation of (a) a circle in a 2D space and (b) a sphere in a 3D space.
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for example we compute another circle with a new value for the radius r) and the
coefficients xi as the unknowns in our mathematical model. In other words, the
emptiness of space is such enormous that it is hardly possible for example to hit a
high-dimensional hypersphere with a dart.

By truncating the emptiness of space we achieve a different definition of the orig-
inal model. As a result the new model formulation becomes optimal in the sense
that it contains no emptiness regarding the considered application. Since nowadays
models compute millions of unknowns, it is obvious that these model reductions
will save a huge amount of computational resources. These savings could espe-
cially benefit the process of parameter optimization because this requires an enor-
mous effort from the model. In this thesis we describe some methodologies to find
these type of new models.

1.2 Methodologies
This thesis describes two methodologies to reduce the computational demands of
large-scale numerical simulations models. Both methods reduce the ‘size’ of the
problem and through that, introduce some numerical discrepancy between the
original model and its derivative model. Both methods reduce the problem in its
spatial domain, the first method reduces it locally (i.e. it reduces the number of
pixels locally), the second method reduces the problem globally (i.e. according to
its behavior).

1.2.1 Upscaling
Reducing the number of pixels (upscaling) is the most straightforward approach in
decreasing the computational demands for a model in terms of storage capacity

Figure 1.2: Reduction of the pixel resolution (upscaling) of a picture that represents a baby face. The
upscaling factor increases from the first picture on the top row towards the right from 1 to 5. For the
bottom row, it increases from 10 to 50 with increments of 10. It is obvious that an upscaling of 5 can
be carried out without serious loss of information.
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and CPU requirements. It is unavoidable that the accuracy of the upscaled model is
always less than the original model, simply because we need to describe the same
amount of information by fewer pixels. Since the efficiency of a simulation model
often relates quadratically to the number of pixels, it is worthwhile to compute the
highest achievable efficiency that yields an acceptable loss in accuracy. Therefore
we need to define a mathematical algorithm that conserves most of the relevant
information and neglects the remaining part. Consider a problem that needs to
reduce the number of pixels for a picture of a baby face. We formulated a math-
ematical algorithm that expresses each upscaled pixel as the mean grey tint of all
original pixels within that upscaled pixel. Whenever we applied an upscaling fac-
tor of 5 we still obtained an accurate description of the baby face but we achieved an
efficiency of 52=25, see Figure 1.2. Moreover, higher efficiencies could be achieved
whenever we were satisfied with a global appearance of the baby face. In that case,
we lost details, but we kept insight in the global behavior. Therefore, the upscaling
factor had to be attuned to the model intentions. Moreover, a spatial distribution of
upscaling factors is also possible. In such cases we can apply a coarsening of pixels
for those areas only that possess no detail (for example the bald head of the baby),
and do not disturb the remaining areas.

In this thesis we will apply upscaling algorithms to the numerical simulation
of groundwater flow. Although this is quite different from the upscaling of a baby
face, the objective and consequences are similar.

1.2.2 Model Reduction
The second methodology is based upon model reduction. Roughly speaking, the
goal of model reduction is to replace initial data by data that are optimal in terms of
storage capacity. We achieve this by suppressing redundant data that exist within
multi-dimensional or multivariate data: information that is organized such that each
datum in the data set is identified with a point in R

n. It belongs therefore in the cat-
egory of data compression. Principal Component Analysis (PCA) is the most effective
way to analyze such multivariate data sets. It ‘breaks up’ the initial data sets into
different components (i.e. the principal components) that all together represent the
original data set again. The original data can be obtained again by multiplying the
principal components with appropriate weight factors (i.e. a linear combination).
Since each principal component represents a specific importance to the overall so-
lution, we can ignore those principal components that are of minor interest to the
solution. In this way, we represent our initial data set with even fewer principal
components, without a significant loss of accuracy.

The above mentioned method can best be illustrated by the following example.
Imagine that we want to compress the number of letters of the alphabet to reduce
the number of keys on a typewriter. Instead of 26 keys we try to find other, more
abstract letters to put on a typewriter, that can reconstruct each real letter by press-
ing these with different strengths. First, we represent or describe each letter within
the alphabet by a grid of 5 × 5 squares. Within the grid we draw the shape of each
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letter by assigning a value of one or a value of zero to the squares within the grid,
see Figure 1.3. We refer to these grids as snapshots which describe all possible ap-
pearances (i.e. the solutions) that need to be represented by the abstract letters (i.e.
the principal components).

Figure 1.3: Represented letters of the alphabet on a grid of 5 × 5 squares. Black is assigned to a value
of one, white to a value of zero.

Figure 1.4: Eigenletters that explain parts of the real letters of the alphabet. The relative importance
of each eigenletter decreases from the first picture on the top row towards the right, until the last
column on the bottom row. The eigenletters are valued between 0–1.3, a value that corresponds to a
colour on the greyscale between white and black.

When we apply the Principal Component Analysis to the letters, we find the ab-
stract letters, which we refer to as eigenletters that explain a particular part of any
letter of the alphabet (see Figure 1.4). The last two eigenletters are ‘empty’, be-
cause there was no more information left that was not yet captured by the previous
eigenletters 1–24. Moreover, when we analyzed the relative importance for each
eigenletter, we observed only that the eigenletters 1–16 explained some relevant
amount of information. They described > 99% of the information. Although it is
difficult to observe any correspondence between the eigenletters and the real let-
ters of the alphabet, the relative importance of each eigenletter is a good criterion
whether this eigenletter is necessary to reconstruct any letter of the alphabet. The
main thought of model reduction is now to focus on the important eigenletters
(modes) and neglect the other ones. In Figure 1.5 we have depicted the reconstruc-
tion of each letters of the alphabet by applying an optimal pressure (weight factors)
on the eigenletters in the sense that the error between the reconstructed letter and
the real one is minimal. We observe that this error is only zero when we use all 24
eigenletters. Nevertheless when we apply a filter which assigns black to the val-
ues between 0.85–1.15 and white to the remaining values, we can read already each
letter fairly well by 16 eigenletters, see Figure 1.6. So, in model reduction there is
always a relation between accuracy and efficiency, and high efficiencies can be ob-
tained whenever we can ignore a large number of modes. In the example with the
alphabetic letters we achieved an efficiency of 26/16=1.625.
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Figure 1.5: Reconstruction of the real letters of the alphabet by use of the eigenletters (Figure 1.4) and
weight factors that are optimal in the sense that the error between the real letters and the reconstructed
letters is minimal.
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Figure 1.6: Applying a filter upon the results in Figure 1.5 which assigns a black color to a value
between 0.85–1.15 and a white color to the remaining values.
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In this thesis, we will apply model reduction to the numerical simulation of
groundwater flow. We describe the implementation of the Principal Component
Analysis and develop several numerical models that compute the weights for the
principal components. Nevertheless, most of the concepts and mathematical elab-
orations are applicable to other fields of science.

1.3 Inverse modeling
The objective of inverse modeling is to find an optimal set of model parameters that
yield the lowest objective function value. This function could be for example an
elevation map of a mountainous area, see Figure 1.7. The optimal set of ‘model pa-
rameters’ will be in that case those coordinates that represent the lowest point of the
valley, that is where the mountain cabin is. Now, imagine a hiker that wants to re-
turn fastest from a particular location on the mountain to the cabin. Unfortunately,
he does not have an elevation map because that was too expensive. Moreover, there
are poorly visible sights, so he needs to reevaluate whether he is going downhill,
at every footstep. Imagine again that each footstep consumes the same amount of
time that a single model simulation does. So, the advantage of a low-dimensional
model, as described in the previous subsection, could really benefit the speed of the
hiker. Moreover, there is no guarentee that the hiker arrives at the right mountain
cabin. To ensure that the current cabin is the lowest one in the region, the hiker
needs to be ‘dropped’ at different places.

Figure 1.7: Inverse modeling is comparable to hiking through the mountains where one wants to
return to the bottom of a valley as fast as possible but at low-visible sights, unfortunately. The figure
shows the elevation, graduated from black to white, of the National Park Jotunheimen, Norway.
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1.4 Research Objectives
The main objective of the research presented in this thesis was to develop a math-
ematical formulation for 3D groundwater flow to achieve a solution with a negli-
gible loss of accuracy, at low-computational costs. More specifically, the primary
objectives were to investigate existing upscaling techniques and model-reduction
procedures and implement and qualify their performances specifically for high-
dimensional 3D real-world cases. Model reduction gave a negligible loss in accu-
racy and gained a rate of efficiency that was rather encouraging. In contrast, the
performance of upscaling techniques yielded rather poor results in terms of accu-
racy. Hence we focused on model reduction for the remaining part of this thesis.
Therefore, our secondary objectives were to investigate and implement possibilities
for model reduction and inverse modeling and describe their requirements and lim-
itations. Furthermore, we have extended this by developing a generic approach to
model reduction to reduce nonlinear (coupled) models.

1.5 Thesis outline
We start this thesis by stating some elementary definitions for the simulation of 3D
groundwater flow. Furthermore, the second chapter is mainly devoted to upscaling
methods for this type of model. It discusses a variety of methods for upscaling
the hydraulic conductivity (i.e. a measure for the permeability of the subsoil) that
are mentioned in literature. Moreover, it draws some attention to the upscaling of
boundary conditions (e.g. the interaction between groundwater and surface water
elements) which is a rather new approach. We applied both upscaling techniques
to several synthetic 2D cases that differ in their permeability distribution and to a
steady-state (i.e. time invariant) high-dimensional 3D real-world application of the
entire province of Noord-Brabant, the Netherlands. However, we were not able to
achieve reliable results in combination with high efficiencies. This was the main
reason to focus specifically on model reduction in the remaining part of this thesis.

In Chapter 3 we introduce and elaborate several approaches for model reduc-
tion in groundwater flow. The most promising ones use several simulations with
the original model (i.e. an empirical data which we call snapshots), to formulate a
reduced model that operates in fewer dimensions and computes more efficiently.
We illustrated the performance of three different methodologies in terms of effi-
ciency and accuracy and applied them to a transient 3D real-world case of the entire
province of Noord-Brabant, the Netherlands. Finally, we compare these techniques
with another methodology that makes no use of snapshots.

A new element in model reduction is its incorporation in inverse modeling. In-
verse modeling is known as computing the optimal set of model parameters that
yield the highest reliability of a model. Since this process is rather time consuming
we used in Chapter 4 a reduced model to find these optimal model parameters. We
applied it to several transient synthetic 1D cases and a transient 3D real-world case
near the village of Staphorst, the Netherlands.
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Chapter 5 gives a generic formulation for a reduced model that can be used
for inverse modeling of a variety of systems, such as atmospheric or oceanic sys-
tems. It yields a reduced model that is very time efficient and handles nonlinearities
(i.e. a physical concept whereby the solution itself influences the parameters in the
system) as well as models that are coupled (i.e. different models that exchange
boundary conditions). We have applied the method for several model inversions
of different 1D and 2D synthetic cases.

Finally, we improved the efficiency of the reduced model as described in Chap-
ter 4 by including the estimate variable into the reduced model, and compared its
performance and accuracy with the generic formulation as given in Chapter 5. We
applied them to several 2D synthetic cases and one 3D real-world case of the entire
province of Noord-Brabant, the Netherlands.





2
Limitations to Upscaling of
Groundwater Flow Models

Abstract. Different upscaling methods for groundwater flow models are investigated. A
suit of different upscaling methods is applied to several synthetic cases with structured and
unstructured porous media. Although each of the methods applies best to one of the syn-
thetic cases, no performance differences was observed if the methods were applied to a real
3D case. Furthermore, we focus on boundary conditions such as Dirichlet, Neumann and
Cauchy conditions, that characterize the interaction of groundwater with e.g. surface water,
recharge. It follows that the inaccuracy of the flux exchange between boundary conditions
on a fine scale and the hydraulic head on a coarse scale causes additional errors that are
far more significant than the errors due to an incorrect upscaling of the heterogeneity itself.
Whenever those errors were reduced, the upscaled model was improved by 70%. It thus
follows that in practice, whenever we focus on predicting groundwater heads, it is more
important to correctly upscale the boundary conditions than hydraulic conductivity.

This chapter is mainly adapted from Vermeulen, P.T.M, A.W. Heemink, & C.B.M. te
Stroet, Limitations to Upscaling of Groundwater Flow Models dominated by Surface

Water Interaction, Water Resources Research, submitted 2006
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ALTHOUGH FASTER COMPUTERS have been developed in recent years, they tend
to be used to solve even more detailed problems, e.g. examples of decreas-
ing problem scales are pollution problems, and conservation of small nature

conservation areas. One of the reasons is that the information scale has increased
enormously. For example, the online available database in the Netherlands con-
tains ≈ 400,000 drillings (≈ 10/km2) of the subsoil (0–100 m). This makes it pos-
sible to define an accurate description of the geology on a local scale (< 250 m).
Moreover, through modern observation techniques (e.g. landuse by satellite im-
ages, digital-terrain-models obtained by laser altermetry) we are able to map and
level the surface water most accurately (< 25 m), see Figure 2.1.

A recent development is that detailed numerical models are build that adress
small problem scales on a regional scale. They can be used for optimizing man-
agement problems that consider regional water problems. In many cases this will
yield enormous models that can not be resolved within acceptable time constraints.
It is worthwhile mentioning that the time efficiency of a simulation model can be
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Figure 2.2: Schematic showing fine- and coarse-scale grid blocks for (a) uniform upscaling of the
entire model domain, and (b) non-uniform upscaling of parts of the domain.

increased with (1) a more time-efficient solver [Mehl & Hill, 2001], and/or (2) a
reduced model that is capable of simulating the important behavior of the origi-
nal model [Vermeulen et al., 2004a,b]. The first technique requires extra computer
resources (i.e. memory and diskspace) and becomes impracticable whenever the
model under consideration contains too many nodes. The second method is re-
stricted because it assumes a limited application of the model, e.g. it can not com-
pute other scenarios than those that are closely related to the ones that were used
to compute the reduced model.

A coarsening of grid blocks in each direction (upscaling) reduces the compu-
tational times and diskspace significantly because they relate quadratically to the
coarsening. In this chapter we refer to this type of coarsening as uniform upscaling
because the entire model domain is subject to coarsening, see Figure 2.2a. However,
it reduces the overall scale of detail, and if that is not desired, the alternative is to
keep the fine-scale grid in the area of interest, and coarsen only those areas that are
further away from it. We refer to this as non-uniform upscaling, see Figure 2.2b. For
both of these coarsening approaches we need to obtain model parameters that are
referred to as upscaled, effective, equivalent and/or homogenized parameters. They are
defined such that they reproduce the global behavior of the aquifer while keeping
the local behavior as close as possible to ‘reality’. The term reality is here referred
to as that model solution that would have been obtained whenever we were able
to compute the entire model without coarsening. Unfortunately, the coarsening of
grid blocks is not without any consequence because detail will be lost that relates
to boundary conditions and subgrid heterogeneity of geology.

Excellent reviews on upscaling geology and hydraulic parameters are given by
Renard & de Marsily [1997]; Farmer [2002]; Sánchez-Villa et al. [1995]; Neuman & Fed-
erico [2003], among others. However, this literature does not provide a comparison
between different upscaling methods on a range of different hydraulic transmis-
sivity distributions. Moreover, many papers are devoted to upscaling of hydraulic
transmissivities in reservoir engineering [Durlofsky, 1991; Durlofsky et al., 1997; Chen
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et al., 2003; Wen et al., 2003; Holden & Nielsen, 2000]. These type of models are often
focused on an accurate prediction of oil production at the boundaries of the reser-
voir, and model impulses are rather simple as they are formed by an injector and
a producer. Moreover, the quality of these upscaled models is usually assessed by
comparing breakthrough times for two-phase flows (i.e. the oil pressure and wa-
ter saturations) for specified grid blocks with well injectors and well producers. In
groundwater hydrology, however, we have a densily distributed system of source
terms that influence the system throughout the model domain. To ensure that the
flow rate for these source terms is correct, we urge to have local agreement. Our
statement is that one can not simply upscale the surrounding and assume that these
source terms are met. Since this is common practice, especially in hydrologic mod-
eling, this chapter should be an eye-opener for those that construct models with an
overwhelming number of (nonlinear) source terms.

The objective of this chapter is to present a review of existing upscaling tech-
niques for hydraulic transmissivity and test their performances to single-phase
groundwater flow which is discretized by means of finite-differences (i.e. rectan-
gular volumes). It tries to answer for which type of media which upscaling method
performs best, and if there is a single method that performs ‘best’ in practice. Fur-
thermore, this chapter adresses the issue of upscaling boundary conditions and
quantifies the importance of this.

This chapter is structured as follows: Section 2.1 briefly gives the governing
equation that describes three-dimensional groundwater flows for the fine and coarse
blocks. It also defines several error criteria for quantifying the performances of
the upscaling methods. Section 2.2 is devoted to upscaling techniques for the hy-
draulic transmissivity and illustrates their performances to several synthetic cases.
Section 2.3 describes the consequences of block coarsening on Dirichlet, Neumann
and Cauchy conditions. Section 2.4 shows the overall performance of the upscal-
ing methodologies to a large-scale real-world application. Finally, conclusions and
recommendation are formulated in Section 2.5.

2.1 Governing Equations and Error Measures
2.1.1 Fine-Scale Equations
The equation that describes steady state incompressible, single-phase groundwater
flow in 3D porous media can be represented by the combination of the equation of
continuity (∇•u = −q) and Darcy’s Law (u = −K∇φ) [Strack, 1989]

∇• [K(x)∇φ] = q(φ) ; x ∈ Ω, (2.1)

where φ [L] is the hydraulic head, u is the Darcy velocity [LT−1] (also called specific
discharge), q is a source/sink term [T−1] that can be hydraulic head dependent, and
K is the hydraulic tensorial permeability [LT−1] for a fine-scale point x subject to
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domain Ω. The tensor can be represented by its matrix of components

K =







kxx kxy kxz

kyx kyy kyz

kzx kzy kzz






. (2.2)

From a macroscopic point of view [Bear, 1972] it can be shown that K is symmetric
(kxy = kyx, kxz = kzx, kyz = kzy) and positive definite (kxxkyykzz ≥ (kxy)2, (kxz)2,
(kyz)2; kxx, kyy, kzz > 0). This assures that energy is always dissipated during
flow. However, most of the models assume quasi 3D flow, i.e. the head gradi-
ent does not vary vertically within aquifers and does not vary horizontally within
aquitards (Dupuit-Forchheimer flows). As a consequence of this, the tensor com-
ponents kxz = kzx = kyz = kzy = 0 and the model is simulated by the quantity T

[L2T−1] which is the transmissivity defined as T = Kh, where h [L] is the thickness
of the aquifer/aquitard . A solution for these Dupuit-Forchheimer flows can be
obtained by means of a grid-centered finite-difference discretization [McDonald &
Harbaugh, 1988], elaborated in Appendix 2A.

2.1.2 Coarse-Scale Equations
It has been shown by Bourgeat [1984] under certain conditions (a uniform flow
through fractured media within an infinite domain), that the coarse-scale equa-
tion for the hydraulic head is of the same form as the fine-scale equation, but for
which the fine-scale hydraulic permeability tensor K is replaced by the coarse-scale
hydraulic permeability tensor K. This in itself is a significant finding, as a homog-
enized version of a partial differential equation is not necessarily of the same form
as the original equation (e.g. the homogenized version of the Stokes equation for
flow in dillute porous media is the Brinkman equation). The coarsening itself can
be given by

x = ξ · x ; x, x ∈ Ω, (2.3)

where ξ is the upscaling factor in two directions (x, y), and x is a coarse-scale point
within the identical domain Ω. We underline each coarse-scale variable to dist-
inghuish it from its fine-scale equivalents. Furthermore, K itself is positive defi-
nite and symmetric, just as the fine-scale hydraulic transmissivity [Mei & Auriault,
1989]. An important aspect of coarsening is that K becomes often anisotropic, even
if the original hydraulic transmissivity K is isotropic. Recently, numerical methods
became available that cope with the off-diagonal components in a tensor in a finite-
difference scheme [Aavatsmark et al., 1996; Lee et al., 1998; Anderman et al., 2002],
see Appendix 2B and the greybox on page 30. A final remark is that we want to
reproduce the fine-scale solution with a coarse-scale equation most optimally. The
discussion whether the upscaled hydraulic parameters reflect the intrinsic property
of the medium is not the purpose of this chapter.
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Numerical Model Schemes and Intrinsic Hydraulic Transmissivity
Numerical simulation of groundwater flow models involves partitioning of aquifers into
meshes of rectangles (finite differences) as done in e.g. MODFLOW [McDonald & Har-
baugh, 1988] or meshes of triangles or rectangles (finite elements) as done in e.g. MI-
CROFEM[Hemker & Nijsten, 1996]. An exception to these is the Multi-Layered Analyt-
ical Element Method [Strack, 1989] which devides the model domain into a collection
of analytical elements instead. In this thesis we use meshes of rectangles (grid blocks)
which gives us two options: (1) we compute the hydraulic head within the mesh at grid
nodes (node-centered scheme) or (2) at grid centroids (grid-centered scheme). The node-
centered scheme defines the hydraulic conductance between grid blocks as the arithmetic
mean of transmissivity. The grid-centered scheme uses the harmonic mean and the ‘true’
hydraulic conductance (intrinsic hydraulic transmissivity) will be probably somewhere
in between [Renard & de Marsily, 1997]. For a checker-board medium for which the intrinsic
hydraulic conductance is known as the geometric mean [Warren & Price, 1961], we observe
quit significant differences between the two schemes, see Figure 2.3. The node-centered
scheme is known as a upper-bound method [Penman, 1988]) as it overestimates the hy-
draulic conductance, the grid-centered scheme is known as a lower-bound method [Du-
vaut & Lions, 1976]) because it underestimates the hydraulic conductance. The differences
between the two schemes vanishes whenever we refine the mesh infinitly. Zijl & Trykozko
[2001] proposed to use both schemes for numerical simulations to capture the intrinsic
hydraulic transmissivity of the medium. Nevertheless, we focus only on the upscaling
of hydraulic transmissivity for lower-bound methods, because they are most frequently
used. Moreover, the discrepancy between the schemes becomes irrelevant when the ratio
between hydraulic transmissivities within a coarse grid block decreases, see Figure 2.4.
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2.1.3 Error Measures
A complete equivalence, however, between the fine and coarse-scale model is never
possible because the grid coarsening introduces numerical errors simply because
the degrees of freedom are reduced by ξ2, and the flow follows a different ‘path’.



2.1 Governing Equations and Error Measures 31

Ames [2002] stated that to prevent numerical dispersion, the size of the grid blocks
should be about the inverse of the gradient of the logarithm of transmissivity. This
error is negligible for the hypothetical case of uniform flow that is aligned to a net-
work. Therefore, several methods align their meshes to the local flow conditions
[Cao & Kitanidis, 1999; Mansell et al., 2000]. However, an accurate and efficient im-
plementation for a large-scale, multi-layered system is often limited because the
final mesh becomes a mixture of concessions that will not guarantee an overall im-
provement. In general, however, this error (numerical dispersion) will be smaller
than other errors discussed in the following sections. To quantify the error we use
three criteria:

1. Conservation of the Hydraulic Head: ultimately, the upscaled hydraulic head
φ should be equal to the spatial averaged hydraulic head on the fine scale:

δφ(x) = ‖φ(x) −
1

V (x)

∫

V (x)

φ(x)dx‖, (2.4)

where V (x) corresponds to a coarse grid block volume. However, we accept
larger errors for grid blocks that describe high variances on a fine scale, and a
relative error εφ can be defined as:

εφ(x) =
δφ(x)

2σ [x ∈ V (x)]
· 100%, (2.5)

where σ is the standard deviation of the fine-scale hydraulic heads within a
coarse grid block.

2. Conservation of Continuity: this requirement is especially important in trans-
port problems in which velocity plays a dominant role. It prescribes that the
upscaled Darcy flow u equals the averaged Darcy flow of the corresponding
fine-scale model [Renard & de Marsily, 1997]. Again, we define it as a relative
error:

εu(x) =

∥
∥
∥u(x) − 1

V (x)

∫

V (x) u(x)dx

∥
∥
∥

∥
∥
∥

1
V (x)

∫

V (x) u(x)dx

∥
∥
∥

· 100%. (2.6)

3. Conservation of Dissipation: this criterion is the equality of energy dissi-
pated by the hydraulic head [Bœ, 1994]. It is defined as the rate of dissipation
of mechanical energy per unit weight of fluid. The relative dissipation error
is given by:

εd(x) =

∥
∥
∥

[
−∇•φu

]
(x) − 1

V (x)

∫

V (x) [−∇•φu] (x)dx

∥
∥
∥

∥
∥
∥

1
V (x)

∫

V (x)
[−∇•φu] (x)dx

∥
∥
∥

· 100%. (2.7)



32 Chapter 2: Limitations to Upscaling of Groundwater Flow Models

Unfortunately, energy is lost when discretizing the flow domain, so that the
numerical dissipation is always larger than the exact dissipation for discrete
block-centered schemes. This leads to a K that should be larger than K for
isotropic homogeneous domains [Sánchez-Villa et al., 1995; Duvaut & Lions,
1976], see Figure 2.10.

2.2 Upscaling Hydraulic Parameters
This section describes the most common upscaling techniques as mentioned in lit-
erature, for the hydraulic permeability K, and the hydraulic conductances between
grid blocks. They can be roughly categoried into (semi) problem dependent and
problem independent techniques.

2.2.1 Power Averaging (GEO method)
It’s known, from analytical solutions, that the upscaled hydraulic permeability for
flow parallel to the strata is the arithmetic mean of the fine-scale hydraulic perme-
abilities, and for flow perpendicular to the strata, the harmonic mean, e.g. Wiener
[1912]; Matheron [1967], among others. Journel et al. [1986] proposed the general
equation

k(x) =

{

1

V (x)

∫

V (x)

[k(x)]f dV (x)

}1/f

, (2.8)

where f = -1 corresponds to the harmonic mean, f = 1 to the arithmetic mean. Des-
barats [1992] demonstrated that, for moderately heterogeneous two-dimensional
systems, the upscaled hydraulic transmissivity could be estimated accurately by
means of a spatially optimized f that best fits numerical simulations. However,
one of the few exact results, for two-dimensional flow, is the rule of geometric av-
eraging (f = 0) [Matheron, 1967]:

k(x) = exp

{

1

V (x)

∫

V (x)

ln [k(x)] dV (x)

}

. (2.9)

The rule of geometric averaging is only satisfied for a permeability that has an
isotropic log-normal distribution or a checkerboard binary design [Warren & Price,
1961], see Figure 2.3. Moreover, it holds only for uniform (parallel) flow fields and
is not satisfied for example for radial flow that is discretized by rectangles.

2.2.2 Darcian Methods (HNF method)
This approach is like laboratory measurements of local properties of the porous
medium, but by use of simulated experimental results. This method was first in-
troduced by Warren & Price [1961], and after all, it simply consists of numerically
simulating the experiment of Darcy upon a coarse grid block isolated from the total
model domain, see Figure 2.5. The advantage of Darcian methods is that the shape
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of hydraulic transmissivities affects the final upscaled hydraulic transmissivity, that
power averaging lacks (see Subsection 2.2.1).

The coarse-scale conductance Cc between adjacent blocks along the column di-
rection would now be obtained by simulating a coarse grid block with domain
Ω

c × Ω
r with ‘sealed-off’ boundary conditions along Ω

r and a constant pressure
drop along Ω

c. The conductance will be the ratio between the averaged local
flow and the averaged gradient in the coarse grid block [Rubin & Gómez-Hernández,
1990], so

Cc(x) =
〈uc〉Ωr

〈∇φc〉Ωc . (2.10)

The averaged quantities along the column direction are defined as:

〈uc〉 =
1

V (x)

∫

V (x)

uc(x)dx (2.11a)

〈∇φc〉 =
1

V (x)

∫

V (x)

∇φc(x)dx, (2.11b)

with x ∈ {Ωc×Ω
r}. The coarse-scale block conductance along the row direction C r

is derived analogously. Gomez-Hernandez & Journel [1990] suggested that ‘jacket-
cells’ (i.e. extension of the flow region larger than the coarse block, see Figure 2.5)
will improve the upscaled hydraulic transmissivity. It is possible that these extra
‘borderrings’ will improve the results [Wen et al., 2003], however, there is a sim-
ple example that illustrates the risk of using those ‘jacket cells’ or ‘borderrings’.
Consider a case in which a zero hydraulic transmissivity barrier divides a coarse
grid block into two pieces and extends unto the boundary of the coarse grid block.
Whenever no ‘jacket-cells’ were used, the upscaled hydraulic transmissivity be-
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comes zero. If they, however, were used some flow will be allowed, and an incorrect
non-zero hydraulic transmissivity results.

2.2.3 Homogenization (TEN & PTEN methods)
A disadvantage of Darcian methods (see Subsection 2.2.2) is that they yield an up-
scaled hydraulic transmissivity that depends on the imposed boundary conditions.
In contrast to this, homogenization is an upscaling method [Bensoussan et al., 1978],
that yields a homogenized hydraulic transmissivity that is independent of the cho-
sen boundaries. These boundary conditions assume that the region under study
is immersed in a large-scale pressure field and the system itself is surrounded by
periodic replications of itself on all sides [Durlofsky, 1991]. It seems an unrealistic
situation because no natural medium is periodic. However, there is no reason to
believe that these periodic boundary conditions are less arbitrary than ‘sealed-off’
type, uniform type of boundaries, or effective flux boundary conditions [Wallstrom
et al., 2002].

Periodic boundary conditions prescribe specific correspondences between pres-
sure and velocity on opposite faces of an isolated coarse grid block. This means
that the fluxes through opposite boundaries should be equal and opposite, and
the heads along that direction should be equal to each other minus a given drop
in pressure. Perpendicular to this, the heads for opposing boundaries should be
equal, see Appendix 2C. A model with these boundary conditions needs to be
solved twice, (†) with a hydraulic gradient in the column direction, and (‡) in the
row direction. From these solutions we compute the averaged velocities (Equa-
tion 2.11a) and pressure gradients (Equation 2.11b) and obtain the components of
the tensorial hydraulic permeability by solving:









〈∇φc〉† 〈∇φr〉† 0 0

0 0 〈∇φc〉† 〈∇φr〉†

〈∇φc〉‡ 〈∇φr〉‡ 0 0

0 0 〈∇φc〉‡ 〈∇φr〉‡

















kxx

kxy

kyx

kyy









= −









〈uc〉†

〈ur〉†

〈uc〉‡

〈ur〉‡









, (2.12)

where 〈·〉† represents the average quantities obtained by the first simulation, and
〈·〉‡ those from the second. A solution of Equation (2.12) yields always a symmetric
and positive definite tensor [Durlofsky, 1991]. Instead of flux averaging, we can
apply dissipation averaging and whenever they distinct less, it is a measure for the
necessity of periodic boundary conditions [Bensoussan et al., 1978].

Periodic boundaries are not completely generic as they assume periodicity for a
block scale which is not equivalent to the intrinsic property of the medium. Again,
‘borderrings’ can be expected to provide an improved tensorial hydraulic perme-
ability because the effects of larger-scale hydraulic transmissivity connectivity are
accounted for [Wen et al., 2003]. Nevertheless, the size of the grid block should es-
sentially capture the intrinsic property of the medium (Representative Elementary
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Volume REV). To approach this condition slightly, we introduce a different strat-
egy (PTEN) by applying periodic boundary conditions to all fine-scale grid blocks
and include 1 ‘jacket-cell’. We assume that the intrinsic property of the medium
could be described by those 3 × 3 cells. In reality this REV size should be space de-
pendent. The upscaled tensorial hydraulic permeability within a coarse-scale grid
block becomes the geometric mean as defined in Equation (2.9).

2.2.4 Local-Global Method (LG method)
The Local-Global method [Chen et al., 2003] is a slight adjustment to the previously
mentioned methods (see Subsection 2.2.2 and 2.2.3). It can be seen as a minimiza-
tion problem for which the upscaled hydraulic transmissivity minimizes the differ-
ences in the velocity fields generated by the coarse and fine scale [Holden & Nielsen,
2000]. The method can be briefly summarized by stating that the boundary condi-
tions for the local model domains are extracted from subsequent iterations of the
global solution. The local model domain is extended towards the centroid of the
neighbouring grid blocks, and the global heads φ are projected on the fine-scale
boundary domain, see Figure 2.5. Those boundary pressures φd for the local do-
main Ω

c
1 × Ω

r
1 are used to obtain pressures in between. We weigh them harmoni-

cally by their transmissivities, so the boundary pressure for the ith column, between
φd

1 and φd
2 along the x direction becomes

φd
i = φd

1 + (xi − xd
1)
φd

2 − φd
1

xd
2 − xd

1

∑

i Ti
Ti

; xd
1 < xi < xd

2 , (2.13)

where
∑

i Ti is the total harmonic transmissivity between xd
1 and xd

2 . Chen et al.
[2003] solved the local problem twice by assuming a global flow along the column
direction (interpolating φd

i linearly in one direction and harmonically in the perpen-
dicular direction), and a global flow along the row direction (reverse interpolation
of φd

i ). They stated that by doing so the upscaled hydraulic transmissivity will
be representative for more different cases. The LG method is efficient whenever
the effort put into the local flow simulations is less than a single simulation of the
original fine-scale model. Chen et al. [2003] suggested therefore to apply only these
simulations for areas with a significant drop in pressure.

2.2.5 Global-Local Methods (GL method)
As shown in the previous subsections, the upscaled hydraulic conductance is not
unique and depends on the local flow conditions. So, the best thing we can do is use
these local flow conditions to compute the upscaled conductances as the ratio be-
tween the averaged flux and averaged pressure gradient in each coarse-scale grid
block (Equation 2.10). The upscaled parameters are optimal for the used bound-
ary conditions and are, however, no guarantee that different flow conditions will
be simulated correctly [Bierkens & van der Gaast, 1998]. This is the main disadvan-
tage of this Global-Local strategy as it leads to the paradoxical situation where one
has to know a priori the local solution on a global scale, to determine the upscaled
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block hydraulic conductance. In this chapter, we assume that we have the ‘luxury’
of knowing the exact fine-scale solution and therefore the results obtained by this
method should be interpreted as being the best possible for this method.

2.2.6 Vertical Hydraulic Transmissivity
The 3D domain is often discretized as quasi-3D, which means that stratified layered
media are assumed. This is as a set of 2D models that exchange water vertically
over intermediate layers with poor hydraulic transmissivity without horizontal
flow components (Dupuit-Forchheimer flows). The assumption of quasi-3D flow
behavior holds if the vertical transmissivity of the separating layers (aquitards) is
very small compared to the horizontal transmissivity of the aquifers. For upscaling
3D flow, the amount of water that is vertically exchanged over a coarse grid block,
should be equal to the total exchange in the fine-scale model, so

C l
i

(

φ
i
− φ

i+1

)

=

∫

V (x)

[
C l
i (φi − φi+1)

]
(x)dx, (2.14)

where i denotes the model layer, and C l
i is the vertical conductance between two

overlaying aquifers i and i+ 1 (Equation 2.25). Again, it follows that the upscaled
vertical conductance is a function of the fine-scale solution. This could be easily
implemented for the GL method. For the LG method we have extended the local
model towards 3D to apply Equation (2.14). The other methods, however, compute
the vertical conductance as

Czc
k =

∫

V (xc)

Czz
K (x)dx (2.15)

which is only valid however, whenever d(φk − φk+1)/dx ≈ 0.

2.2.7 Examples
This subsection describes the performance of the upscaling techniques mentioned
in the previous subsections for different heterogeneous media. We denote the dif-
ferent techniques by their acronyms, given in their corresponding subsections.

Distributions of Hydraulic Transmissivity
We have defined three synthetic cases with different distributions of hydraulic
transmissivities. All of these cases are two-dimensional (102 columns by 102 rows)
and possess a Dirichlet condition around the entire model domain. In the middle
of the model we have positioned an extraction well with rate q = 100 m3day−1.
Since upscaling is most sensitive to the amount of distortion of the flow direction
compared to the axis of the network, we simulated a diagonal flow from the lower
left corner unto the upper right corner, by applying Dirichlet conditions around the
entire model domain. The first transmissivity field is that of a strong anisotropic
medium, see Figure 2.6a. It yields a strong preferential flow that is rotated 45o

clockwise to the axis of the network (Figure 2.7a). The second case, is a multi
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Figure 2.6: Different maps of the fine-scale hydraulic transmissivities; (a) an anisotropic medium
with T = 1 m2day−1 (black) and T = 100 m2day−1 (white), (b) a multi Gaussian random field
with lognormal distribution (http://www.math.umd.edu/∼bnk/bak/generate.cgi)
between T = exp(-2) m2day−1 (black) and T = exp(2) m2day−1 (white), and (c) a channelling
system with a dual hydraulic transmissivity identical to (a).
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Figure 2.7: Different maps of the hydraulic head that migrates by a 45o rotation through (a) an
anisotropic medium, (b) a multi Gaussian random field, and (c) a channelling system, see Fig 2.6a-c.

Gaussian random field (see Figure 2.6b) that has an irregular shaped drawdown
(Figure 2.7b). The last synthetic case is that of a dual hydraulic transmissivity sys-
tem that is derived from a real-world channelling system [Snepvangers & te Stroet,
2005] (Figure 2.6c). The flow field shows sharp irregular shaped discontinuities
(Figure 2.7c).

Results
We have applied a uniform upscaling and increased the size of the grid blocks sub-
sequently by the upscaling factors ξ = 2–20. We excluded the first and last row and
column to avoid the artifical shift of Dirichlet conditions caused by the grid coars-
ening, see forthcoming Subsection 2.3.1. We have computed the relative-mean-
absolute errors for the hydraulic head (

〈
‖εφ‖

〉
) for all these cases and plotted them

in Figure 2.8a-c.
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Figure 2.8: Graphs showing the relative-mean-absolute error
〈
‖εφ‖

〉
for different upscaling tech-

niques versus the upscaling factor ξ for (a) an anisotropic medium, (b) a multi Gaussian random
field, and (c) a channelling system, see Figure 2.6a-c.

• Anisotropic Medium The tensorial methods TEN and PTEN, yield the most
accurate results because the medium is anisotropic and diagonal preferential
flow is present, see Figure 2.8a. The PTEN method performs better than TEN

because it captures the intrinsic periodicity of the medium (i.e. 3 × 3 grid
blocks) instead of periodicity on a coarse block scale. The worst performance
for this medium is given by the HNF and GEO methods because they can not
cope with the anisotropic character of the flow field. The performance of HNF

increases with ξ, which sounds rather contradictory but can be explained be-
cause the effects of the ‘sealed-off’ boundaries reduces as the isolated block
increases. The GL method performs better because realistic boundary condi-
tions are used but it can not cope with the diagonal preference of the flow.
This is one of the reasons why the LG method differs so much from the GL

method.

• Multi Gaussian Medium The second case is most accurately upscaled by the
GL, LG and GEO method, see Figure 2.8b. It is expected that the latter per-
forms very well because the rule of geometric averaging is satisfied for a log-
normal medium. In contrast to the periodic medium, the tensorial methods
TEN, PTEN, and the Darcian method HNF were not able to yield reliable re-
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sults. Because they perform rather similar, we conclude that the off-diagonal
components of the tensors, for this type of medium, are relatively small com-
pared to the diagonal components. Now they all compute the harmonic mean
of transmissivity which is an underestimation of upscaled hydraulic trans-
missivity, see Figure 2.3.

• Channelling Medium This synthetic case is the only one where the HNF

method performs rather well, see Figure 2.8c. A reason for this is that the
system shows strong drops in pressure that are mainly aligned to the net-
work; the harmonic mean is therefore a good approximation of the hydraulic
conductance. At the same time, this phenomena causes the GEO method to
perform poorly. The PTEN performs rather inaccurate because it assumed an
REV size of 3 × 3 cells for the entire model domain. This is, however, incorrect
for most parts of the model field though it is difficult to express the correct
REVs for each grid block. In this context, the TEN method performs slightly
better because it uses an REV size which is based upon the coarse grid blocks,
which is often larger than 3 × 3 cells. Again, the performance of the LG and
GL methods are the best.

2.2.8 Conclusions
From the results obtained by the synthetic cases, it is obvious that the inaccuracy
of a coarsened model increases rapidly with the upscaling factor ξ. The smallest
upscaling factor of ξ = 2 results already in relative errors

〈
‖εφ‖

〉
> 10% and only

a limited number of upscaling algorithms manage to obtain reliable results, see
Table 2.1.

Table 2.1: Maximal upscaling factors ξ that yield ‘acceptable’ performances (
〈
‖εφ‖

〉
≤ 100%) for

different cases (Figure 2.6) and different upscaling algorithms for hydraulic transmissivity.
Heterogeneity Upscaling Techniques

GEO HNF TEN PTEN LG GL

Anisotropic 3,4,6–20 ≤ 20 ≤ 20
Multi Gaussian ≤ 10 ≤ 10 ≤ 10
Channelled ≤ 2 ≤ 5 ≤ 10

The anisotropic medium can be most successfully upscaled over a wide range of
upscaling factors with tensors, but however, an anisotropic medium (e.g. complex
crossbeddings, dipping layers not aligned to the coordinate system) that is perfectly
periodic is hypothetical and not realistic whatsoever. The multi Gaussian distribu-
tion can be best simulated with the GEO method. The channelling system with the
HNF method, though for very small upscaling factors. The LG and GL methods per-
form rather well for both media. Unfortunately, real-world media are a ‘mixture’ of
the mentioned hydraulic transmissivity fields, and hence there is no single ‘best’
upscaling method! This is also confirmed by a practical application in Section 2.4.
The best thing we can do is determining throughout the model domain which tech-
nique suits the local hydraulic transmissivity field most optimally. Moreover, the
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network configuration should be a function of the hydraulic transmissivity vari-
ance [Garcia et al., 1990] and/or existing periodic structures [Zijl & Trykozko, 2001]
which is, however, often impossible or difficult to implement for groundwater flow
models.

2.3 Upscaling Boundary Conditions
This subsection describes the consequences of grid coarsening to the behavior of
Dirichlet (constant), Neumann (linear) and Cauchy (nonlinear) conditions.

2.3.1 Dirichlet Conditions
Dirichlet conditions are ‘open’ boundary conditions that exchange Darcy flow ud

with the world outside the model domain Ω. It is modeled by defining a hydraulic
head on the boundary and the Darcy flow along the column direction becomes

ud = Cc
(
φd − φ

)
, (2.16)

where φd represents the ‘fixed’ head on the boundary. Whenever we apply a grid
coarsening we transform each coarse grid block into a Dirichlet condition when-
ever there is at least one fine-scale Dirichlet condition in it. Therefore the shape and
the individual boundary parameters Cc, φd need to be replaced by averaged quan-
tities, such that the upscaled Dirichlet conditions yield a similar Darcy flow ud by a
comparable flow field, so

ud ≈
nd

∑

i=1

ud
i (x) ; x ∈ x, (2.17)

where nd is the number of fine-scale Dirichlet conditions within a single coarse
grid block (e.g. nd = 3 within Figure 2.9). To approximate ud, we define a local fine-
scale model between the coarse grid block with fine-scale Dirichlet conditions and
its adjacent grid block along the column direction, see Figure 2.9a. The model is
determined by ‘sealed-off’ boundary conditions around its model domain Ω

c
1 ×Ω

r
1

except for each row at the utmost right column, see Figure 2.9b. The head at
the boundary is the averaged head for all fine-scale Dirichlet conditions within the
coarse grid cell φd, minus an arbitrary chosen ∆φ. The coarse-scale conductance Cc

along the column direction follows from

Cc = ud∆φ−1. (2.18)

The conductance along the row direction Cr is defined analogously. In this chapter
we refer to these computations as Dirichlet Simulations and we observed an impor-
tant improvement of the upscaled model in terms of dissipation, see Figure 2.10.
This can be explained because we artificially shifted the node of the coarse grid
block towards the centroid of gravity of the fine-scale Dirichlet conditions. How-
ever, because the actual flow at these Dirichlet conditions was radial, we overes-
timated the Darcy flow by assuming ‘sealed-off’ boundaries along the axis of the
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local fine-scale model. An improvement can be expected whenever we impose an
accurate representation of the hydraulic heads on the local boundary conditions
[Chen et al., 2003].
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2.3.2 Neumann Conditions
Neumann conditions are head-independent point sources (e.g. precipitation, ex-
traction wells) that guarantee a similar flux exchange for the fine-scale and coarse-
scale model. Nonetheless, the actual position of a Neumann condition can be
shifted in the coarse-scale model, simply because the node does not need to resem-
ble the actual well position. We can reduce this error by distributing the strenght of
the source terms q among neighbouring coarse grid blocks, such that they resemble
the centroid of gravity for the Neumann condition. We refer to these as Neumann
Displacements.

A simple method is to compute a distribution index ωi by a numerical exper-
iment where the model domain is determined by the centers of the coarse-scale
blocks that neighbour the specific Neumann condition, see Figure 2.11a-b. The
amount of water that will be released from each corner determines the correspond-
ing Neumann index ωi, and the strength for each neighbouring coarse grid block
becomes, qi = ωi ∗ q. The strategy shows some resemblance with the method pro-
posed by Durlofsky et al. [2000], however, they related the hydraulic conductances
to the Neumann condition instead.
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Figure 2.11: (a) Local model domain (Ωc × Ω
r) for encountering a displacement of a Neumann

condition (�) onto neighbouring nodes (×) within a coarse mesh. (b) Corresponding isolated fine-
scale model used to compute the Neumann indices ωi for each corner with Dirichlet conditions (∗).

Applying Neumann Displacements showed to improve an upscaled model sig-
nificantly (almost an order of magnitude), see Figure 2.12. More improvement
can be expected whenever the local fine-scale model is extended with ‘jacket-cells’
and/or simulated in 3D. However, it should be mentioned that the method can
have a drawback too because non-activeness within the local fine-scale model can
cause an unbalanced distribution of the Neumann indices. In the worst case, no
indices can be computed as all corner points are inactive on a fine scale.
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distance between the exact well location to the nearest coarse grid block, i.e. the ‘misfit’ (an upscaling
factor ξ = 20 was used for the simulations).

2.3.3 Cauchy Conditions
The most important boundary condition in low-land areas such as the Netherlands
is the surface-water system, see Figure 2.1. The flux qi between surface water and
groundwater is modeled as a Cauchy condition. Moreover, often this condition is
nonlinear, e.g. a drainageflux is limited to a specified drainage level, and infiltra-
tion from rivers occurs often easier than exfiltration. They can generally formulated
as:

∆hi = hf
i − φi, (2.19)

qi = Cf
i (∆hi) ∆hi, (2.20)

where hf is the level that determines eventually the value for C f
i which is the con-

ductance between the considered external force and the aquifer. Here it is a non-
linear function of ∆hi (Figure 2.13a). Most iterative solvers use a Picard iteration
that sequentially reformulates and solves a linear system after reexamining ∆hi.
Whenever we coarsen the grid blocks, this evaluation takes place between coarse-
and fine-scale parameters and yields an over- or underestimation of the interac-
tion, see ∆hi in Figure 2.13b. However, it is only possible to compute an averaged
coarse scale hj whenever a set of conductances C f

i on the fine scale are equal, which
is rarely the case. An alternative is to use the fine-scale solution (or a good approxi-
mation of it) φi and obtain a prior estimation of the coarse-scale solution φ̂

j
. We can

now approximate a corrected level h′i such that the coarse-scale solution exchanges
approximately the same flux within the external system, thus

∆h′i =
(

φ̂
j
− φi

)

(2.21)

q
i

= Ci

[(
hf
i + ∆h′i

)
− φ

i

]

≈ qi (2.22)
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Figure 2.13: (a) Schematic showing the pressure differences for the computation of a drainage flux
q1, q2 within a fine-scale model (a) and a coarse-scale model (b).

We refer to this method as Cauchy Corrections and we show in Section 2.4 that these
yield significant improvements for an upscaled real-world model.

2.3.4 Conclusions
The errors of upscaling boundary conditions emerge simply because we coarsen
a mesh, and the existing Dirichlet, Neumann and Cauchy conditions need to be
grouped together. This yields an inaccuracy that could be reduced by computing
average quantities that ensure that fluxes from boundary conditions are more-or-
less equal to those within the fine-scale model. However, they yield average cor-
rection factors that are based upon prior simulations and it is questionable whether
these average quantities remain valid for different scenarios. This is a new line of
research that has not been reported on before. As will shown in the following sec-
tion, errors caused by upscaling of boundary conditions are often much larger than
those of hydraulic parameters.

2.4 Real-World Case
2.4.1 Introduction
The real-world case is a regional steady-state three-dimensional groundwater flow
model that describes the entire region of the province of Noord-Brabant in the
Netherlands (≈ 10,700 km2). The model consist of 320 rows, 535 columns and 9
model layers, so the total number of nodes is 1,540,800. Each grid block is a square
with ∆x ≡ ∆y = 250 m. The first model layer contains the influence of an intense
surface water network that consists of ‘polders’ (i.e. a specific low-land area where
a ‘fixed’ surface-water level is maintained) and natural drainage systems situated
in higher areas. Absolute levels for these nonlinear boundary conditions were ob-
tained by accurate laser altrimetry. In Figure 2.14a we have depicted a map that
shows the irregularity of the boundary conditions and the highly-detailed solution
of the hydraulic head. The model is furthermore characterized by a detailed de-
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Figure 2.14: Map of the hydraulic head [m+MSL] within (a) model layer 1 and (b) model layer 9 for
the real-world case. Grayshade ranges from black = 5 m-NAP to white = 30 m+NAP.

scription of the precipitation and evapotranspiration rate. These were obtained by
combining data from rain gauge stations throughout the model domain with ac-
curate land use classification from satellite images. The subsurface modeling was
based upon thousands of drillings that were available for the region under consid-
eration (http:\\www.dinoloket.nl). The statistics of the hydraulic transmis-
sivities for the aquifers and the vertical resistances of the aquitards are given in
Table 2.2.

Table 2.2: Statistics for the horizontal transmissivities and vertical resistances for the regional
groundwater flow model of the province of Noord-Brabant in the Netherlands.

Transmissivities T [m2day−1] in the aquifers
Layer Minimum Maximum Mean St.Dev.
1 1.22 382.4 99.81 92.82
2 0.0 37,590 1,078 2,185
3 0.0 1,395,000 1,347 26,980
4 0.0 245,200 1,294 10,280
5 0.0 2,770 127.1 303.9
6 0.0 9,683 299.8 693.7
7 0.0 7,075,000 452.8 2,581
8 0.0 39,550 967.8 2,718
9 0.0 19,930 1,467 2,467

Vertical Resistances R [days] between aquifers
Layer Minimum Maximum Mean St.Dev.
1-2 1.29 206,600 3,232 8,007
2-3 5.37 307,700 16,040 37,910
3-4 0.47 98,430 2,660 10,020
4-5 0.45 56,150 702 2,552
5-6 1.65 304,900 1,930 13,490
6-7 0.47 1,042,000 9,187 55,730
7-8 0.47 854,700 13,260 67,410
8-9 2.99 30,880 1,274 3,631
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2.4.2 Results
We have sequentially solved the real-world case for different upscaling factors
2 ≤ ξ ≤ 10. We applied a variety of upscaling techniques for the hydraulic trans-
missivities (Subsection 2.4) and depicted the relative-mean error for the hydraulic
head in Figure 2.15a. As we expected, the hydraulic transmissivity field of the real-
world case is of such a ‘mixture’ of periodic media, multi Gaussian distributions
and sharp discontinuities that all upscaling methods perform almost identical. In
fact we should say: ‘just as bad’ because the smallest upscaling factor ξ = 2 yields
an error of

〈
‖εφ‖

〉
≈ 100% already. This means that the mean error of the pre-

dicted head for this scaling operation, is just as large as twice the total standard
deviation within the fine-scale solution (Equation 2.5). Furthermore, the relative-
mean-averaged error in Darcy flow 〈‖εu‖〉, does not distinguish significantly be-
tween the upscaling methods. A small upscaling of ξ = 2 yields an error in Darcy
flow of ≈ 30%, see Figure 2.15b. These bad performances are mainly caused by
significant errors caused by upscaling of the boundary conditions such as Dirich-
let, Neumann and Cauchy conditions. In Section 2.4 we suggested several tech-
niques for the upscaling of these conditions and we have added these techniques
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Figure 2.15: Graph (a-b) showing the inaccuracy of uniform upscaling for different upscaling tech-
niques for hydraulic transmissivities, (c) shows the improvement of the error through corrections
applied to Dirichlet, Neumann and Cauchy conditions, and (d) shows the error for different model
layers at the center of a fine-scale mesh surrounded by a coarsend mesh.
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and plotted their improvements in Figure 2.15c. Techniques that proved to work
rather well for synthetical problems, appear to be of low relevance for our real-
world case. The improvement given by Dirichlet Simulations is maximally 10% and
Neumann Displacements have, however, a negligible effect. In contrast to these, the
Cauchy Corrections have a significant effect and improve the coarsened model upto
≈ 70–80%! This again shows that reliable upscaling for groundwater flow mod-
els is only possible whenever we know the fine-scale solution. Since a fine-scale
solution can not be computed, however, it can be approximated by subsequently
solving a coarsened model with a local refinement (non-uniform upscaling, see Fig-
ure 2.2b), and collecting only the results from those fine regions to form a limited
part of the global solution. It is important that the models overlap to determine the
zone for which the solution can be copied. Again, it should be understood that this
type of upscaling needs to be carried out with care because there is a clear trade-off
between efficiency (ratio between the number of nodes in the upscaled model and
the fine-scale model) and accuracy of the hydraulic head in the fine-scale part of
the coarsend model. High efficiencies increase the error significantly, especially for
aquifers that have a significant resistance to the boundary conditions (in our case
that appeared to be ≈ 20,000 days), see Figure 2.15d.

2.5 Conclusions and Recommendations
This chapter describes the error caused by upscaling of meshes in groundwater
flow modeling that uses block centered finite-differences. The chapter consists of
two parts:

• Part I describes the upscaling of hydraulic transmissivities by means of the
most important and promising techniques mentioned in literature. For three
synthetic cases that all differ in their heterogeneity distribution, it is clear that
the different upscaling techniques have their preferences for which type of
distribution they perform optimally.

• Part II is devoted to the error that evolves through upscaling of boundary
conditions. This error emerges because we coarsen a mesh and reduce the
number of degrees of freedom. Therefore the existing Dirichlet, Neumann
and Cauchy conditions within a model need to be grouped. This yields an
inaccuracy that was, for several synthetic cases, successfully reduced to ac-
ceptable levels by computing average quantities that ensure that the fluxes
from the upscaled source terms are more-or-less equal to the fluxes in the
fine-scale model.

We applied the above mentioned techniques to a real-world three-dimensional case
and observed that the differences between the upscaling techniques for the hy-
draulic transmissivity were negligible. Since real-world media are a ‘mixture’ of
different distributions of heterogeneity, there is no single upscaling technique that
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performs best. In practice we should vary between different techniques through-
out the model domain which is, however, impractable and often impossible. More-
over, all techniques performed poorly. The techniques we introduced for the up-
scaling of Dirichlet and Neumann conditions were not relevant for this 3D case.
The main improvements were obtained by use of the Cauchy corrections that in-
creased the accuracy of the coarsened model for ≈ 70–80%! Nonetheless, it needs
the entire fine-scale solution which is often not available.

So, to achieve a reliable coarsend model, we need to know the fine-scale solu-
tion. This implies a paradoxical situation where one has to know the solution to
acquire it. A possible option is to use an a priori analysis of localized ‘small’ mod-
els to acquire this fine-scale solution. With these results an accurate global model
can be constructed for the current application, however, it is questionable for which
other applications than the one used to obtain an upscaled model from it, can be
still used. This topic is a new line of research that has not been reported on before.

2A A Standard Seven-Point Stencil
A standard seven-point stencil can be used to solve a 3D groundwater flow model
(Equation 2.1), and can be written as:

Cc
i− 1

2
,j,k[φi−1,j,k − φi,j,k] + Cc

i+ 1
2
,j,k[φi+1,j,k − φi,j,k]

+Cr
i,j− 1

2
,k[φi,j−1,k − φi,j,k] + Cr

i,j+ 1
2
,k[φi,j+1,k − φi,j,k]

+C l
i,j,k−1[φi,j,k−1 − φi,j,k ] + C l

i,j,k [φi,j,k+1 − φi,j,k] = q(φ)i,j , (2.23)

where φi,j,k denotes the hydraulic head in grid block i, j, k, and Cc, Cr are the har-
monic hydraulic block conductances between adjacent grid blocks along the col-
umn and row direction, respectively. Along the column direction these are defined
as:

Cc
i+ 1

2
,j,k =

2Ti,j,kTi+1,j,k∆yj
Ti,j,k∆xi+1 + Ti+1,j,k∆xi

, (2.24)

where T [L2T−1] is the transmissivity defined as the aquifer thickness h times the
hydraulic tensorial permeability along the column direction kxx. The block conduc-
tance along the row direction Cr is defined analogously. The vertical conductance
C l is defined as

C l
i,j,k =

∆xi∆yj
[

1
2h(k

zz)−1
]

i,j,k
+Ri,j,k +

[
1
2h(k

zz)−1
]

i,j,k+1

, (2.25)

where R [T] is the vertical resistance of an aquitard in between two aquifers. The
mentioned elaboration is extensively described by McDonald & Harbaugh [1988]
and implemented in the three-dimensional groundwater flow simulation program
MODFLOW.
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2B Finite Difference Simulation with Tensorial Hydraulic
Transmissivities

Several investigators have developed approaches for the incorporation of tensorial
hydraulic transmissivities into finite difference reservoir simulators. In this chap-
ter we refer to these as nine-points stencils because we incorporate only tensors
for the x, y plane and neglect the components that relate to the z direction, thus
kzx = kzy = kxz = kyz = 0. Recent methods [Aavatsmark et al., 1996; Edwards &
Rogers, 1998] are based upon a flux-continuous approach and reduce to the usual
seven-point stencil. A practical implementation of this is given by Lee et al. [1998].
In essence the method examines the fluxes in a ‘control volume’, that is a dual
mesh in between four neighbouring grid blocks denoted by their hydraulic heads
φ1, φ2, φ3, φ4, see Figure 2.16. However, if K is discontinuous between adjacent
grid blocks, then linear interpolation of pressure is not valid across the cell faces
because the pressure gradient is discontinuous. Continuous pressure are incorpo-
rated in the grid centered approximation by introducing a mean pressure φ̄i at the
face that divides neighbouring cells. To remove the ambiguity, however, in com-
puting the cell face fluxes, we assume that the pressure is constant within each
quadrant and is determined by the grid block center pressures φi. By reexpressing
the interface pressures φ̄i by the four cell centered pressures φi, the flux equation
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× ×

× ×

φ4 φ3

φ1 φ2

-

-

6 6

q1

q2

q3

q4

Quadrant 4 Quadrant 3

Quadrant 2Quadrant 1

φ̄2

φ̄3

φ̄1

φ̄4
•

•

•

•

Figure 2.16: Control Volume and associated variables that were used to construct the flux-continuous
finite-difference scheme (after Lee et al. [1998]).
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within each quadrant can be written in a matrix-vector form as:

Aq = −∆φ, with (2.26a)

A =









k̂yy
1 + k̂yy

2 −k̂xy
2 0 −k̂xy

1

−k̂xy
2 k̂xx

2 + k̂xx
3 −k̂xy

3 0

0 −k̂xy
2 k̂yy

3 + k̂yy
4 −k̂xy

4

−k̂xy
1 0 −k̂xy

4 k̂xx
1 + k̂xx

4









, (2.26b)

q =
[

q1, q2, q3, q4

]T

, and (2.26c)

∆φ =
[

φ2 − φ1, φ3 − φ2, φ3 − φ4, φ4 − φ1

]T

, (2.26d)

where k̂xx
1 denotes the xx component of the tensor within the first quadrant of the

control volume. They are normalized as

k̂xx = kxx ∆y∆x−1

detK
(2.27a)

k̂yy = kyy ∆x∆y−1

detK
(2.27b)

k̂xy = k̂yx = kxy (detK)
−1 (2.27c)

detK = kxxkyy − (kxy)2. (2.27d)

This normalization is necessary because we define B = A−1 and let

Cφ = q, (2.28)

where the linear coefficients in C for each quadrant i are defined as

ci,1 = −bi,1 − bi,4 (2.29a)

ci,2 = +bi,1 − bi,2 (2.29b)

ci,3 = +bi,2 + bi,3 (2.29c)

ci,4 = −bi,3 + bi,4. (2.29d)

This means that half of the total flow for an arbitrary reference location φ0 can now
be computed as the summation of the fluxes caused by pressure drops within the
four neighbouring grid blocks in the control volume, so

qi = −
4∑

l=1

ci,l (φl − φ0) . (2.30)

The total flux Q out of the grid block is a summation of the fluxes towards the
neighbouring eight grid blocks and is given by

Qi,j = q
(i,j)
1 + q

(i,j)
4 + q

(i−1,j)
2 − q

(i−1,j)
1 − q

(i−1,j+1)
3 − q

(i−1,j+1)
2 − q

(i,j+1)
4 + q

(i,j+1)
3

(2.31)
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where (·)(i,j) denotes the index of the grid blocks. The resulting block conductances
will be a summation of

Cc
i+ 1

2
,j = +c

(i,j)
1,2 + c

(i,j)
4,2 − c

(i,j+1)
4,3 + c

(i,j+1)
3,3 (2.32a)

Cr
i,j+ 1

2

= −c
(i−1,j+1)
2,2 − c

(i−1,j+1)
3,2 − c

(i,j+1)
4,1 + c

(i,j+1)
3,1 (2.32b)

Ccr
i+ 1

2
,j− 1

2

= c
(i,j)
1,3 + c

(i,j+1)
4,3 (2.32c)

Crc
i+ 1

2
,j+ 1

2

= c
(i,j+1)
3,2 + c

(i,j+1)
4,2 . (2.32d)

The eight flow terms yield a nine-point stencil that can not be solved by standard
numerical solvers used in groundwater. Edwards [2000] developed an operator split-
ting of the finite-difference equations. The method is based upon the splitting of
the nine-point stencil A(9) into a pentadiagonal matrix A(5) and a residual matrix. A
consistent splitting is done at flux level whereby each flow is splitted into a normal-
gradient component and a tangential-gradient component. It guarantees a diagonal
dominance, thus the residual matrix A(9−5) becomes

A(9−5) = A(9) − A(5). (2.33)

The system of hydraulic heads can now be solved by an iteration cycle whereby the
diagonal flow components will be updated after each iteration ι, so

A(5)φι = A(9−5)φι−1. (2.34)

The mentioned operator splitting has been recently implemented in the groundwa-
ter simulation model MODFLOW [McDonald & Harbaugh, 1988] to simulate horizon-
tal anisotropic behavior [Anderman et al., 2002].

2C Periodic Boundary Conditions
Suppose an isolated coarse grid block consists of 3 columns and 3 rows. To sim-
ulate periodic boundaries we have to add two extra columns and rows to express
the correspondences between opposing boundaries, see Figure 2.17. The harmonic
conductances between the columns 2–4 and between the rows 2–4 will be computed
as usual according to Equation (2.24). The first constraint of periodic boundaries is
that the horizontal flux inside the isolated block (between column 1 and 2) should
be equal to the flux outside the opposing boundary (between column 4 and 5). We
apply this constraint to all rows j at the left side of the isolated block (column 1), so
the hydraulic head at that particular position φ1,j is subject to

φ1,jC
c
1+ 1

2
,j = φ2,jC

c
1+ 1

2
,j +

[

(φn,j − φn−1,j)C
c
n− 1

2
,j

]

, (2.35)

where n expresses the total number of columns (five in Figure 2.17) and the con-
ductance Cc between the boundary and the adjacent node is expressed as:

Cc
1+ 1

2
,j =

4T2,j∆yj
T2,j∆x2

(2.36)
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Figure 2.17: Illustration of an isolated coarse grid block to apply periodic boundary conditions to.

because T1,j = T2,j and ∆x1 = 0 m. The elaboration along the row direction is
analogously. The second constraint of periodic boundaries is that the pressure drop
along the direction of flow is constant. This can be imposed on the system by simply
stating

φn,j = φ1,j + ∆φ, (2.37)

where ∆φ 6= 0 along the current direction of flow and ∆φ = 0 perpendicular to this
direction.



3
Low-dimensional Modeling of
Numerical Groundwater Flow

Abstract. Numerical models are often used for simulating groundwater flow. Written in
state-space form, the dimension of these models is of the order of the number of grid cells
used and can be very high (> million). As a result, these models are computationally very
demanding, especially if many different scenarios have to be simulated. In this chapter we
introduce a model reduction approach to develop an approximate model with a significantly
reduced dimension. The reduction method is based upon several simulations of the large-
scale numerical model. By computing the covariance matrix of the model results, we obtain
insight into the variability of the model behavior. Moreover, by selecting the leading eigen-
vectors of this covariance matrix, we obtain the spatial patterns that represent the directions
in state space where the model variability is dominant. These patterns are also called Empir-
ical Orthogonal Functions (EOFs). We can project the original numerical model onto those
dominant spatial patterns. The result is a low-dimensional model that is still able to repro-
duce the dominant model behavior.

This chapter is adapted from

(1) Vermeulen, P.T.M, A.W. Heemink, & C.B.M. te Stroet, Low-dimensional modeling of
numerical groundwater flow, Hydrological Processes, 18, 1487-1504, 2004

(2) Vermeulen, P.T.M, A.W. Heemink, & C.B.M. te Stroet, Reduced Models for Linear
Groundwater Flow Models using Empirical Orthogonal Functions, Advances in Water

Resources, 27, 57-69, 2004
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THE ACCESS TO DATA AND ITS ACCURACY, allows the use of numerical ground-
water models with a huge amount of grid cells (often> 1 million). Such large
and often transient models have long computational times. Apparently, the

advantage of digital data changes into a disadvantage when we need to evaluate
the model for many different cases, for example to optimize a pumping strategy.
Especially in such a case, our objective should not be to formulate a very accurate
mathematical model, but to formulate a model that is useful for the intended study.
The main idea of a reduction method is to seek a simpler model, that is able to
represent the numerical groundwater model for the intended study. From this per-
spective, Newman [1996a] stated: “We may wish to sacrifice some of the correctness
of the model to make the equations easier to solve, or to allow a faster computa-
tion”. Such a simple model falls in the category of spectral methods that represent
the solution to a problem as a truncated series of patterns and time-dependent coef-
ficients (i.e. a reduced model structure). There are different approaches mentioned
in literature to specify patterns, such as:

• Analytical patterns/functions can be used, such as Fourier functions, wavelets
or polynomials. The disadvantage of such functions is that they have to be
defined a priori and that they are non-economical regarding the amount of
analytical patterns required [Cazemier et al., 1998; Hooimeijer, 2001];

• More economical is the technique of computing patterns as an eigenvalue de-
composition of the system matrix differential equations (‘modal’ decomposi-
tion). Sahuquillo [1983] was one of the first to use a part of the eigenvalues
and eigenvectors of the system matrix, to compute the influence functions of
pumpage on the piezometric head. To compute them within the entire do-
main the complete set of eigenvectors is neccessary. When the number of
cells is relatively high this can be computed efficiently with the Lanczos al-
gorithm. This has been done for the groundwater flow equation [Dunbar &
Woodbury, 1989], in simulating groundwater flow in a dual-porosity media
[Zhang & Woodbury, 2000a], and in the solution of radionuclide decay chain
transport in dual-porosity media [Zhang & Woodbury, 2000b]. A significant re-
duction of the dimension of the problem can be obtained if the system matrix
contains relatively few dominant eigenmodes;
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• The last technique uses specific model results (empirical data) to define the
patterns. This data-driven technique produces a minimal set of patterns which
span a specific data set optimally. In fact, the basis formed by the patterns is
optimal in the sense that no other basis of the same dimension has a smaller
mean-square error [Holmes et al., 1996]. The EOF analysis has been used for
large data sets to find the dominators to depict the modes of variation [Rey-
ment & Jöreskog, 1993] and, caused by the limited number of patterns, the
behavior of a complex system can be analysed more easily. In Ghanem [1998],
these patterns are used to model the heterogeneity in random porous media
as a superposition of scales of heterogeneity that are statistically uncorrelated,
and in Hooimeijer [2001] they were used to represent a reduced morphologi-
cal model. In different fields of science, this pattern identification technique
is also called Coherent Structures (CS), Principal Component Analysis (PCA),
Common Factor Analysis (CFA) or Proper Orthogonal Decomposition (POD).

Hooimeijer [2001] gave an extensive overview of the existing pattern identifica-
tion techniques (data driven and analytical) and selected the EOF technique as be-
ing most suitable to develop a reduced morphological model. The original model
was not known explicitly and the best results were obtained with a linear auto-
regressive model in which the EOFs were multiplied by coefficients. These coeffi-
cient were fitted to the data, however, Hooimeijer [2001] stated: “It seems to be more
elegant and natural to project the original equations directly onto the EOFs. In or-
der for this method to work, the entire equation set of the original model must be
written in matrix format.” In this chapter we describe two different methodologies
that fullfill that condition; these are

1. the State-Space Projection Method (SSPM) which is a straightforward projection
of the state-space formulation of system equations written in matrix format
[Vermeulen et al., 2001, 2002]. Although the projection consumes more time to
complete, it has an advantage from a numerical point of view [Vermeulen et al.,
2004a]; We present aditionally the Alternative State-Space Projection Method
(SSPMa) which can be seen as an intermediate form between the SSPM and the
following method.

2. a more efficient and sophisticated method known as the Galerkin Projection
Method (GPM). It substitutes a reduced model structure into the partial differ-
ential equation (PDE) and projects the outcome on the patterns. This method
is not new and most of it has been mathematically proven by Newman [1996a].
The technique has been applied in a wide range of scientific fields, such as tur-
bulence and image processing [Sirovich, 1987], rapid thermal chemical vapor
deposition [Adomaitis, 1995], in fluid dynamics for a lid-driven cavity with a
rotating rod [Hoffman Jørgensen & Sørensen, 2000], in flow reactors governed
by nonlinear equations [Park & Cho, 1996], and heat transfer problems [Park
et al., 1999]. In groundwater hydrology, this projection technique has been
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described and applied by Vermeulen et al. [2003, 2004b] and in petroleum en-
gineering by Heijn et al. [2004].

We present these types of projection strategies to construct a low-dimensional
groundwater model, see Figure 3.1. It starts with the definition of scenarios that
need to be computed, e.g. different pumping strategies for extraction wells. With
these in mind we compute several model evaluations (i.e. the snapshots [Sirovich,
1987]) with the original high-dimensional model. These yield a truncated set of
patterns by means of a pattern identification technique (EOF) that forms the basis of
a low-dimensional model according to a chosen projection technique (SSPM, SSPMa

or GPM). We call these processes the preparation phase. For each of the scenarios
within the scenario definition, we can simulate the time-dependent coefficents by
means of the reduced model. We refer to this as the simulation phase that finally
yields results after a reconstruction phase. In practice, verification of the reduced
model can lead to a refinement of the snapshots and/or to the selection of more or
different patterns.

This chapter outlines briefly, in Subsection 3.1, the original model equations and
gives a description of the model-reduced methodology. Subsection 3.2 elaborates
extensively on the mathematical definition for the reduced models SSPM, SSPMa and
GPM, respectively. In Subsection 3.3 we illustrate the performance and differences
between the three methods by means of a real-world case. Finally, we give some
conclusions and recommendation in Subsection 3.5.

High-dimensional Model

Pattern Identification (EOF)

Projection SSPM/SSPMa /GPM

?

?

?

-

-

6

Low-dimensional Model

Scenarios Results

preparation phase

simulation phase reconstruction phase

yields snapshots

selected patterns

Figure 3.1: Model reduction methodology.
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3.1 Reduced Model Methodology
3.1.1 Formulation of Groundwater Flow
To describe groundwater flow in three dimensions with a uniform density and vis-
cosity, we use the partial differential equation based upon Darcy’s law and the
equation of continuity:

∂

∂x

(

Kxx∂φ

∂x

)

+
∂

∂y

(

Kyy ∂φ

∂y

)

+
∂

∂z

(

Kzz∂φ

∂z

)

− q + Cf
(
φ− hf

)
= S

∂φ

∂t
, (3.1)

where φ represents the hydraulic head [L], Kxx,Kyy,Kzz are the hydraulic perme-
abilities in x, y, z direction [LT−1], S is the specific storage coefficient, or volume of
water released from storage per aquifer per unit decline in head [L−1], t is time [T],
q is a fluid source/sink term, or the volumetric rate at which water is added to or
removed from the system [T−1], Cf represents the specific conductance between a
boundary condition (e.g. surface water) and the hydraulic head [(LT)−1], and hf is
the corresponding water level [L] in the boundary condition.

3.1.2 Formulation of a Reduced Model Structure
A reduced model structure is based upon the assumption that the hydraulic head
can be expressed in terms of a set of spatially distributed patterns with time-varying
coefficients (Rayleigh-Ritz procedure). Hence, this approximated hydraulic head φ̂

can be described by:

φ̂(x, y, z, t) = φb(x, y, z) +
∑

i

pi(x, y, z)ri(t) (3.2)

where pi is the ith pattern value [–], ri is the ith time-dependent coefficient [L],
and φb is the background hydraulic head [L]. For this type of model structure, the
spatial distribution of the patterns is captured once during the preparation phase.
During the actual simulation phase we need to compute only i coefficients r over
time t. The background hydraulic head φb is computed by means of those time-
independent boundary conditions. These conditions are not described by patterns
and can not be varied within the low-dimensional model.

A relationship exists between the patterns and the model parameterization de-
scribed by Kxx,Kyy,Kzz, S, Cf . Whenever one of those parameters is changed, we
need to identify a new reference head and a set of patterns. In Chapter 4, however,
a methodology is presented that handles these dependencies more efficiently.

3.1.3 Pattern Identification (EOF)
Among others, the pattern identification technique described here is known as
Proper Orthogonal Decomposition (POD) or Empirical Orthogonal Functions (EOFs).
It can be classified as one that examines the linear relationship between variables
with the aim of reducing the dimensionality of the problem. It falls into the cate-
gory of Spectral methods or Multivariate methods and can be seen as reconstructing or
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Definitions
A system is considered to be linear whenever the behavior of its state does not affect any
parameter that influences the system, and thus the state recursively. Otherwise we speak
of nonlinear systems. Linear systems can be solved ‘directly’ though nonlinear systems
need to be solved by a recursive algorithm (e.g. a Picard iteration or Newton iteration).
The algorithm reformulates a linear system for each iteration that is affected by nonlinear
terms. Another, more important advantage of linear systems is that they support the su-
perposition principle. This principle composes a signal by adding different signals mul-
tiplied by specific weight factors. The proposed reduced model structure (Equation 3.2)
uses this decomposition. The weight factors can be obtained by a linear or even nonlinear
reduced models.

modeling a ‘signal’ optimally in terms of patterns or modes. The methods consist of
computing a low-dimensional subspace S (described by patterns) for the original
high-dimensional model space X . Eventually, the application of a reduced model
is always limited to the quality of the subspace S and the number of patterns that
describes or spans it. Moreover, it is not possible to reconstruct a ‘signal’ different
from the ones used to derive the patterns. However, if we consider a linear system,
we are able to construct different ‘signals’ by the superposition principle.

To compute EOFs, we create an empirical data set in which ne snapshots of the
original steady-state or transient model are arranged in vectors φi. Each element
within a snapshot represents the hydraulic head (the ‘signal’) for a specific loca-
tion in the model. Since the reduced model computes only that part that needs
to be added to the background hydraulic head φb (Equation 3.2), we correct each
snapshot vector by substracting φb, so

di = φi − φb ; i ∈ {1, ..., ne}. (3.3)

We weigh each vector di with its vector length (i.e. normalising):

ei =
1

‖di‖
di ; i ∈ {1, ..., ne}. (3.4)

The necessity for weighing is because the irregularity that exists within a snapshot
is more important than its amplitude [Newman, 1996a]. For example a snapshot
that contains the influence for precipitation can become dominant due to its larger
vector components (factor loadings), compared to another snapshot vector that e.g.
represents the influence of a single extraction well. Eventually, the patterns (known
as basis functions) follow from an eigenvalue decomposition of a covariance matrix
G (‘outer product’, ‘tensor product’ or ‘autocorrelation tensor’) constructed from
the snapshots [Sirovich, 1987]:

G =
1

ne
EET, (3.5)

where the corrected snapshots are collected in the matrix E = [e1, e2, ..., ene ]. To
shorten the calculation time necessary for solving the eigenvalue problem for this
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often very high-dimensional covariance matrix, we define a different covariance
matrix G as the inner product (‘dot product’ or ‘sum of products’) of a matrix [Krysl
et al., 2001]:

G = ETE, (3.6)

and solve a ‘reduced’ eigenvalue problem:

Gvi = viλi ; i ∈ {1, ..., ne}, (3.7)

for which we transform the eigenvectors V = [v1, v2, ..., vne ] into patterns P by
[Golub & van Loan, 1989]:

P = EVΛ
− 1

2 , (3.8)

where Λ
− 1

2 is the square root of the inverse of a matrix with eigenvalues λi on the
main diagonal. The eigenvectors and eigenvalues are equal to those that would
have been obtained by an eigenvalue decomposition of G. In Figure 3.2a-c we have
depicted a graphical interpretation of the mentioned identification technique. In
fact, there is an infinite number of patterns (also known as ‘coordinate systems’)
that describe or span the snapshots, however, the linear basis from the eigenvalue
decomposition is optimal as it has a smaller mean-square error than any other linear
basis of the same dimensions [Holmes et al., 1996]. It is also known as the optimal
solution to an orthogonal regression problem.
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Figure 3.2: Hypothetic schematic example showing the pattern identification technique that consists
of (a) a set of snapshots (•) that are described or spanned by their original coordinate system (x× y).
The snapshots are (b) centered (zero-averaged for their background state) and (c) can be optimally
spanned by a different coordinate system (p1 × p2) in terms of a mean-square error.

The eigenvalues λi provide a measure for the relative ‘energy’ associated with
a corresponding eigenvector pi (i.e. a single EOF). This measure can also be inter-
preted as the relative amount of ‘time’ that the hydraulic head spends along the
corresponding pattern i. Its relative importance is given by:

ϕi =
λi

∑ne

j=1 λj
· 100% ; i ∈ {1, ..., ne}. (3.9)
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From a mathematical point of view, the reduced model should be able to reproduce
at least that amount of model variance as explained totally by the selected set of np

patterns. We call this the expected variance ϕe defined as:

ϕe =
np

∑

i=1

ϕi. (3.10)

The number of patterns np should be at least such that the expected variance is
more-or-less equal to the reconstructed variance ϕr:

ϕr = ϕh
(
ϕl
)−1

· 100%, (3.11)

whereϕh andϕl are the total variances computed with the high and low-dimensional
model, respectively. When ϕe 6= ϕr, the low-dimensional model lacks significant
patterns and more patterns should be added. We collect np patterns such that
their corresponding ϕ1 > ϕ2 >, ..., > ϕnp and they totally explain at least the
given ϕe amount of model variance. We store them as columns within the span
P = {p1,p2, ...,pnp}. This span is orthonormal, which means that all patterns are
perpendicular to each other and have a unit length (PTP = I). It can be interpreted
as a description or span of a high-dimensional coordinate system that is defined by
a limited amount of axes. This typical information is used to construct a numerical
model than can, however, operate only within the numerical subspace S ∈ R

np

described by the set of patterns. For example, when we use only pattern p1 to rep-
resent the snapshots, we reduce a two-dimensional system R

2 into a more efficient
one-dimensional one R

1, see Figure 3.3a. However, the error of a model that op-
erates within this one-dimensional space, occurs simply because the pattern is not
able to capture all snapshots accurately. Such an error is comparable to the linear
regression coefficient R2. Whenever we use p2 instead, which explains less variance
than p1, we observe that the ‘misfit’, and thus the error, increases, see Figure 3.3b.
Thus, the accuracy of a reduced model increases with the number of patterns in-
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Figure 3.3: Hypothetic schematic example showing the concept of model reduction in which (a) a
model is constructed that operates along the one-dimensional space of p1, and (b) along the one-
dimensional space of p2 which explains less snapshot variance than the former.
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Alternative Pattern Selection
Sometimes we need to simulate the hydraulic head most accurately near specific locations
only, e.g. near a well or within nature conservation areas. For those situations we define
an alternative selection criterion λ′

i that is expressed for each pattern i as the total of its
elements j within np selected locations throughout the model, so:

λ′
i =

np
∑

j=1

‖pi,j‖ ; i ∈ {1, ..., nm}. (3.12)

Instead of λi we can use λ′
i to sort the patterns and use this reorganization to determine

the set of patterns within the matrix P by means of Equation (3.9).

volved, and the highest accuracy is achieved by ϕe = 100%, however this yields
to lowest efficiency of the model. So, there is always a trade-off between efficiency
and accuracy. Though there are realistic situations in which the time efficiency in-
creases by ϕe = 99.9% without any decrease in accuracy. This particular aspect
depends on the distribution of ϕi, e.g. many patterns that describe a very small
amount of variance can be eliminated without affecting the quality of the reduced
model,

3.1.4 Physical Meaning of Patterns
Consider a one-dimensional problem dimensioned by 101 columns, an extraction
well in the middle and two Dirichlet conditions on opposing sides. We can deter-
mine the subspace S by computing the original model for several time steps and
vary the well strenght, see Figure 3.4a. This plot shows some of the solutions
of the original model. The pattern identification technique seeks for another ‘co-
ordinate system’ that spans these in terms of number of modes or patterns most
optimally. So, we remove the background state and normalize the snapshots to
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avoid that those with greatest variance and amplitude will dominate the results,
see Figure 3.4b. In Figure 3.5a we have plotted the factor loadings of the leading
six patterns. They have reduced the dimensionality of the problem from 101 onto 6,
however, the patterns are not easily to interpret. That is, whether they can be associ-
ated with realistic physical processes in the system. Richman [1986] mentioned that
a rotation of patterns increases the interpretability of the individual patterns. He
also demonstrated that unrotated patterns are primarily a function of the geometri-
cal shape of the (sub)domain and that they become intermixed as their eigenvalues
are very closely spaced. Basically, it means that the elements of the patterns should
contain mostly small values (i.e. a lot of zeros) such that they become simple in their
appearance (refered to as simple structures). In that particular case, each pattern af-
fects relatively a few components within φ, or alternatively each component φ is
affected by relatively few patterns. A popular scheme for rotation, is the Varimax
Rotation as suggested by Kaiser [1958]. The algorithm maximizes the overall vari-
ance by means of an iterative orthogonal rotation sequence that rotates two patterns
at a time while holding the other patterns constant, so

Prot = P

[

cos(o) − sin(o)

sin(o) cos(o)

]

, (3.13)

where o is the rotation angle. This rotation continues until the increase of the
overall variance drops below a preset value. We have depicted the rotated pat-
terns Prot in Figure 3.5b and the extraction well is more distinguishable. Somehow,
they become more comparable to analytical elements used and proposed by Strack
[1989]. Instead of representing only one feature (e.g. a single well or line element),
a pattern can represent combined features within distorted hydraulic permeability
fields. However, for the mentioned rotation sequence there is no other reason than
‘pattern interpretability’. It influences only the amplitude of the time-dependent
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coefficients, it does not affect the quality of the reduced model at the end.

3.2 Reduced Model Formulations
In the fortcoming subsections we describe two different formulations for a dynam-
ical model that simulates the time-dependent coefficients ri (Equation 3.2). We de-
fine an ordinary differential equation (ODE) that describes dr/dt:

F (Kxx,Kyy,Kzz, S) r − q =
dr

dt
, (3.14)

where q is a reduced term that expresses the boundary conditions within the re-
duced model, comparable to q in Equation (3.1), and F is a linear function that
depends on the system properties of the original model (i.e. the variables Kxx,
Kyy, Kzz, S). The function describes the internal relation of the coefficients ri. In
this chapter we discuss two strategies to compute dr/dt:

• the State-Space Projection Method (SSPM) which is a linear coordinate transfor-
mation of the original system equations written in matrix format (see Subsec-
tion 3.2.1). Although the projection consumes more time to complete, it has
an advantage from a numerical point of view, and it leads to a reduced model
that computes faster than the following method;

• the Galerkin Projection Method (GPM) which substitutes the original state vari-
able φ in the original PDE with the reduced model structure and projects the
outcome onto the patterns (see Subsection 3.2.2). This method can be thought
of as the more elementary method of the two, because it results in an ODE for
dr/dt before projection.

3.2.1 State-Space Projection Method
One way to solve the continuous formulation for groundwater flow is to discretize
the PDE in space and time by use of finite differences. We discretize the PDE (Equa-
tion 3.1) for each grid cell in a mesh that consists of nm nodes wherein each node is
indexed by a row (i), column (j) and layer (k) number. For each node we write an
equation that expresses the finite-difference approximation for the space and time
derivative of the hydraulic head, so

(
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where

Cc
i±1,j,k =

2∆xj∆z
2
kK

yy
i,j,kK

yy
i±1,j,k

Kyy
i,j,k∆zk∆yi±1 +Kyy

i±1,j,k∆zk∆yi
, (3.16a)

Cr
i,j±1,k =

2∆yi∆z
2
kK

xx
i,j,kK

xx
i,j±1,k

Kxx
i,j,k∆zk∆xj±1 +Kxx

i,j±1,k∆zk∆xj
, (3.16b)

C l
i,j,k±1 =

∆xj∆yi
Ri,j,k

. (3.16c)

The Cr, Cc, C l [L2T−1] are the confined harmonic mean hydraulic conductances
between nodes along the rows, columns and layers, respectively, ∆x,∆y,∆z [L] are
the dimensions of a grid cell along those directions, R [T] is the vertical resistance
between two aquifers. Since Equation (3.15) involves up to seven unknown values
of φ, the equations for the entire model grid must be solved simultaneously at each
time step ti. This entire set of equations can be summarized in matrix form as:

(

A −
1

∆t
S

)

φ(ti) = −
1

∆ti
Sφ(ti−1) +

[

q − Cfhf
]

(ti), (3.17)

where A is a heptadiagonal system matrix (operator) that contains all the conduc-
tances that affect φ. The set of equations are often solved by means of an iterative
procedure [McDonald & Harbaugh, 1988]. It is also possible to rewrite the equation
such that

φ(ti) = −
1

∆ti

(

A −
1

∆t
S

)−1

Sφ(ti−1) +

(

A −
1

∆t
S

)−1 [

q − Cfhf
]

(ti). (3.18)

The advantage of Equation (3.18) is that we find only the solution vector φ(ti) by
matrix multiplication. Though it is highly unusual that someone would ever sim-
ulate such formulation as it is computationally very demanding. Its ‘dreary’ char-
acteristic with the inverse of A − 1

∆tS can be overcome whenever we multiply the
entire equation with the selected set of patterns P. We call this linear operation a
projection or a change-of-coordinates in which the matrix PT acts as a reductor that re-
duces an nm dimensional vector into an np dimensional vector. P itself, however,
acts as a reconstructor that performs the reverse operation, so

r = PTφ, (3.19a)

φ = Pr. (3.19b)

To reduce a matrix we pre multiply it with PT and post multiply it with P. Equa-
tion (3.18) looks now as

r(ti) = −
1

∆ti
PT

(

A −
1

∆t
S

)−1

SPr(ti−1) + PT

(

A −
1

∆t
S

)−1

b(ti), (3.20a)

b = q − Cf
(

hf − φ
)

. (3.20b)



3.2 Reduced Model Formulations 65

Unfortunately, we cannot solve Equation (3.20a) as long as we need to compute the
inverse, therefore we rewrite it as:

r(ti) = −
1

∆t

[(

A −
1

∆t
S

)−T

P

]T

SPr(ti−1) +

[(

A −
1

∆t
S

)−T

P

]T

b(ti), (3.21)

and, instead of computing
(
A − 1

∆tS
)−T (i.e. the transpose of the inverse) com-

pletely, we define a matrix N with dimension [nm × np] as:

N =

(

A −
1

∆t
S

)−T

P, (3.22)

for which we solve each vector ni in N, so:
(

A −
1

∆t
S

)T

ni = pi , i ∈ {1, ..., np}. (3.23)

It should be noticed that it is not difficult to implement this as
(
A − 1

∆tS
)T

=
(
A − 1

∆tS
)

and hence we need to exchange the right-hand-side within Equation (3.17)
by pi. We can now rewrite Equation (3.21) as:

r(ti) = Ar(ti−1) +
(

NTb
)

(ti), (3.24a)

A = −
1

∆ti
NTSP. (3.24b)

We call this a reduced model that simulates a finite-difference approximation of
dr/dt (Equation 3.14) based upon a state-space formulation of groundwater flow.
The computation of r(ti) consists finally of a time-dependent projection of b(ti)

with NT[np × nm], and a multiplication of the previous coefficient r(ti−1) with a
reduced system operator A[np × np].

3.2.2 Galerkin Projection Method
The Galerkin Projection Method can be thought of as more elementary than the
SSPM method because it results in an ODE for dr/dt before the reduction algorithms.

Alternative Low-dimensional Model SSPMa

The reductor PT and reconstructor P can be applied directly to Equation 3.17, so:

(A − S) φ(ti) = Sφ(ti−1) + P
T
[

q − C
f
h

f
]

(ti), (3.25a)

A = P
T
AP, (3.25b)

S = −
1

∆ti
P

T
SP. (3.25c)

Because Equation 3.25a is low dimensional we can solve it directly instead of iteratively.
We refer to this method as the SSPMa and it is the least sophisticated method but easiest to
program. It can be seen as a intermediate formulation between the SSPM and the GPM.
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It substitutes the hydraulic head φ within the original PDE (Equation 3.1) by the
reduced model structure (Equation 3.2). This results in the formulation:

∂

∂x



Kxx
∂
(

φb +
∑np

i=1 piri

)

∂x



+
∂

∂y



Kyy
∂
(

φb +
∑np

i=1 piri

)

∂y



+

+
∂

∂z



Kzz
∂
(

φb +
∑np

i=1 piri

)

∂z



− q − Cf

[(

φb +

np

∑

i=1

piri

)

− hf

]

=

= S
∂
(

φb +
∑np

i=1 piri

)

∂t
. (3.26)

Eventually, we need an equation that describes dr/dt (Equation 3.14), and therefore
we rearrange Equation (3.26) such that r becomes isolated from the second order
spatial derivative, so:

np

∑

i=1









∂

∂x

(

Kxx ∂pi
∂x

)

︸ ︷︷ ︸
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i

+
∂

∂y

(

Kyy ∂pi
∂y

)

︸ ︷︷ ︸

ur
i

+
∂

∂z

(

Kzz∂pi
∂z

)

︸ ︷︷ ︸

ul
i

−Cfpi
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uf
i









ri =

= q − Cf
(
hf − φb

)
+

np

∑

i=1

Spi
︸︷︷︸

us
i

∂ri
∂t
. (3.27)

A main advantage in this formulation is that the entire term bracketed in the left-
hand-side of the equation, can be computed in advance. It should be noticed that
the elimination of φb herein is only sustained for these type of confined linear mod-
els as Kxx,Kyy,Kzz, S are all independent of φb. The removal of φb that affects
Cf is corrected by adjusting the surface water level hf by φb. Whenever we apply a
finite-difference approximation for the pattern derivative of space, we can compute
for each pattern pi the variables uc, ur, ul, uf , us for each grid cell i, j, k in the mesh
as:

uc
i,j,k,n = ∆x−1

j

(

Cc
i,j,k

pi,j,k,n − pi,j+1,k,n

1
2 (∆xj + ∆xj+1)

− Cc
i,j−1,k

pi,j,k,n − pi,j−1,k,n

1
2 (∆xj + ∆xj−1)

)

, (3.28a)

ur
i,j,k,n = ∆y−1

i

(

Cr
i,j,k

pi,j,k,n − pi+1,j,k,n

1
2 (∆yi + ∆yi+1)

− Cr
i−1,j,k

pi,j,k,n − pi−1,j,k,n

1
2 (∆yi + ∆yi−1)

)

, (3.28b)

ul
i,j,k,n = C l

i,j,k (pi,j,k,n − pi,j,k+1,n) − C l
i,j,k−1 (pi,j,k,n − pi,j,k−1,n) , (3.28c)

uf
i,j,k,n = Cf

i,j,kpi,j,k,n, (3.28d)

us
i,j,k,n = Si,j,kpi,j,k,n, (3.28e)
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with

Cr
i,j±1,k = (∆xj + ∆xj±1) /

(

∆xj
Kxx
i,j,k∆zk

+
∆xj±1

Kxx
i,j±1,k∆zk

)

, (3.29a)

Cc
i±1,j,k = (∆yi + ∆yi±1) /

(

∆yi
Kyy
i,j,k∆zk

+
∆yi±1

Kyy
i±1,j,k∆zk

)

, (3.29b)

C l
i,j,k±1 = (Ri,j,k±1)

−1, (3.29c)

where pi,j,k,n is the nth pattern value out of np [–] for grid cell i, j, k, and Cr, Cc, C l

are the specific confined harmonic mean hydraulic conductances [T−1] between
nodes along the rows, columns and layers, respectively. The entire Equation (3.27)
can now be summarized for the entire model mesh in matrix form, as:

(

Uc + Ur + Ul − Uf
)

︸ ︷︷ ︸

U

r = Us dr

dt
+ q − Cf

(

hf − φb
)

︸ ︷︷ ︸

b

(3.30)

where U has dimension [nm × np]. The mathematical dimension (i.e. number of el-
ements within a vector) within Equation (3.30) is still equal to the original amount
nm, though the number of the unknown elements in vector r is np. In words: we
have more equations than unknown variables. To eliminate all superfluous equa-
tions, we project the entire Equation (3.30) upon the selected set of pattern, so:

PTU
︸ ︷︷ ︸

A

r = PTUs
︸ ︷︷ ︸

S

dr

dt
+ PTb. (3.31)

This is an ODE for a reduced model for groundwater flow. We can solve it by ap-
plying an implicit Euler scheme to the time derivative of r, resulting in:

[

A −
1

∆ti
S

]

r(ti) = −
1

∆ti
Sr(ti−1) + PTb(ti). (3.32)

This formulation consists of three time-independent matrices A and S both with a
small dimension [np × np], and the projection matrix PT with dimension [np ×nm].
During the actual simulation b should be multiplied with PT and after that it is
easy to obtain the coefficients r(ti) because all matrices and vectors in the equation
are low dimensional.

3.2.3 Initial Conditions
For transient simulations the initial condition φ(t0) can be different from the back-
ground state φ

b. It is fairly easy to project φ(t0) upon the patterns as:

r(t0) = PT
[

φ(t0) − φb
]

, (3.33)
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where r(t0) is the initial condition for the low-dimensional model. It is only mean-
ingful if we can indeed span φ(t0) by the np selected patterns:

φ(t0) − φ
b = (cp)1 + (cp)2 + ...+ (cp)np , (3.34)

where ci are coefficients which should be found. Because φ0 is often a steady-state
solution of the full-dimensional model, it is neccessary to include at least steady-
state evaluations of the full-dimensional model in the snapshot vectors.

3.2.4 Discussion
In this subsection we discuss some mathematical limitations for the reduced model
formulations. These concern time discretization and the inclusion of numerical
errors.

Time Discretization
There is an important difference in the reduced model formulations that affects the
implementation of time steps.

• State-Space Projection Method (SSPM): within the mathematical formulation of
this method the time step ∆ti is included within the computation of the ma-
trices A and N (see Subsection 3.2.1). To avoid these ∆ti-dependent compu-
tations, as they completely undermine the gained computational effort, we
suggest a more practical solution. Hereby the concerned matrices are com-
puted for a specific ∆ti that is capable to follow the evolution of the desired
time steps; this could be the smallest ∆t within the simulation, e.g. 10 days.
Whenever ∆ti changes during the simulation into 30 days, we solve r for
the intermediate periods (10 and 20 days) without recomputing NTb (Equa-
tion 3.24a). This will hardly increase the computational time, and there is
another motivation to support this strategy. Inherent to the method of finite
differences, the evolution of φ in time (∂φ/∂t) is discretized linearly between
adjacent time steps and the smaller ∆t the more ∆φ/∆t = ∂φ/∂t;

• Galerkin Projection Method (GPM) and Alternative State-Space Projection Method
(SSPMa): a change in ∆ti does not affect the reduced model that severe as
within the SSPM. There is no limitation for a variation in ∆ti as the finite-
difference approximation of dr/dt has been computed after the actual projec-
tion (Equation 3.31). As a result, ∆t can be varied unlimited at low computa-
tional costs as it affects only low-dimensional matrices (Equation 3.32).

Numerical Errors
There is an important difference between the SSPM, SSPMa and GPM that concerns
the stage at which the actual projection is applied. The SSPMa and GPM can be
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summarized by the following sequence of equations:

Aφ = b
projecting

=⇒ PTAPPTφ = PTb ⇔ r =
(

PTAP
)−1

︸ ︷︷ ︸

ˆA

PTb, (3.35)

where A reflects the system matrix and b the model forcing terms. It should be
noticed that A is projected upon the patterns prior to the computation of an inverse.
This is very efficient because the dimension is first significantly reduced, but it can
lead to serious errors in Â. For this particular error the SSPM is more accurate, as
shown by the following sequence of equations:

φ = A−1b
projecting

=⇒ PTφ = PTA−1PPTb ⇔ r = PTA−1P
︸ ︷︷ ︸

A

PTb. (3.36)

The advantage of this SSPM is its inclusion of A−1. Therefore we assign A as the true,
and Â as an approximation through its a priori projection. The ‘extra’ mathematical
error caused by the difference between A and Â is negligible whenever

• we include all snapshot variance by use of the SSPMa or GPM. In other words:
the reduced model should explain ϕe = 100%. In practice this will be never
the case, as patterns with tiny eigenvalues are numerically ill defined. The
SSPM method introduces errors caused by these (unreliable) patterns, as they
contribute to the inverse at their full vector dimension (nm). The SSPMa and
GPM suffer less because the vector dimension of the unreliable patterns is
reduced significantly (np) before the inverse computation;

• we neglect the round-off errors because they accumulate with the number of
grid cells nm and patterns np. This error will play a more important role for
the SSPM as we need to solve PT

(
A − 1

∆tS
)−1 iteratively (Equation 3.23).

3.3 Real-world Case
3.3.1 Description of the Original Model
To evaluate the accuracy and suitablility of a low-dimensional model for ground-
water flow, we use a supra-regional model of the province of Noord-Brabant, the
Netherlands. This province is characterized by regional areas with free-floating wa-
ter tables (south, south-east) and regions with intense dewatering systems (north,
north-west). The latter dewaters and recharges in proportion to the difference be-
tween φ and hf . Hence, the model is strictly linear. Finally, an open boundary
condition has been modeled all around by applying Dirichlet conditions for each
model layer.

The underground is a complex system of succeeding high- (> 5,000 m2day−1)
and extremely low (< 10−6 m2day−1) hydraulic transmissivities. The model has
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(a) (b)

Figure 3.6: Spatial structure of (a) the hydraulic conductance Kxx∆z for model layer 1, and (b) the
vertical resistance R between model layer 1–2.

9 model layers which contain the highly permeable sediments (aquifers), see Fig-
ure 3.6a. The low hydraulic permeability in between the aquifers is processed as a
vertical conductance, see Figure 3.6b. Within each model layer (2–9) several wells
are active (770 in total). The model network consists of 107 columns and 64 rows,
each dimensioned 1 × 1 km. The entire model contains 61,632 model cells, in which
32,949 are active. All others are inactive (no-flow) through an irregular boundary
and/or several aquifers which thin out.

3.3.2 Purpose of the Low-dimensional Model
The main purpose of the reduced model was to evaluate whether it could simu-
late the long-term effects of change in precipitation/evaporation, together with the
impact of variable pumping rates for all extraction wells simultaneously for the
model layers 2–9. So, the reduced model should be able to vary ng = 9 groups
(recharge/evaporation and 8 layers with wells) independently. We want to com-
bine the groups randomly and simulate their combined effects for nt = 150 time
steps with ∆t = 10 days. To be able to do so, we need to find patterns which are
suitable to simulate at least those scenarios at the desired time scale.

3.3.3 Preparation Phase
Computing Snapshots
To find appropriate patterns to simulate the desired scenarios, we filled a data set
with an ensemble of snapshot vectors obtained by the original model. To minimize
the data set, we accounted for the linearity of the model. As a result of that, we
were able to compute a combined effect for different groups by combining their
individual responses (i.e. the principle of superposition). Whenever we consider a
steady-state simulation, we need to fill the data set with the steady-state responses
for each group; so ne = ng = 9. For our transient simulation we need the patterns
to capture the entire response behavior over time; so ne = α ·ng. For each group the
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factor α defines the number of snapshots that is neccessary to describe its response.
To determine which time steps are significant, we separately compute a ‘block’-
impulse response for each group. Depending on their gradient in φ between the
last two time steps, we select model cells with different percentiles (%) for that gra-
dient and plot their corresponding response. We observe that the response, caused
by the collection of wells within model layer 2 (Figure 3.7a), reaches its equilibrium
at t ≈ 300 days. At that time we assume that all (% = 99%) model cells have at
least reached their steady-state solution. We can represent the behavior of the re-
sponse efficiently by computing the full-dimensional model at only four time steps:
t1 = 10, t2 = 20, t3 = 70, t4 = 320 days. This time strategy does not satisfy the pre-
cipitation group which response reaches its steady state for % = 99% after t ≈ 5,000
days (Figure 3.7b). Its shape is different from Figure 3.7a and can be described
best by nine time steps: ∆ti+1 = 2∆ti with ∆t1 = 10 days. The chosen time steps
are not by definition the best, different combinations will improve or worsen the
performance of the low-dimensional model. The most important issue herein is
that the frequency should be high initially, and may be decreased as time elapses
to obtain a set that fully characterizes the impulse-response optimally [Park & Cho,
1996]. This happens slowly for the recharge component, as the phreatic storage co-
efficient is much larger (S = 0.27) than for confined aquifers where the wells are
mainly operating (S = 0.0007).

The background hydraulic head φb is computed with time-independent bound-
ary conditions. These are stored within qb and can be e.g. part of the precipitation,
wells, dewatering systems, and Dirichlet conditions. In our real-world case all de-
watering systems and the Dirichlet conditions along most of the boundaries within
each model layer are part of qb. The φb is included as a snapshot vector in the data
set, so ne = 42.
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Figure 3.7: Graphs showing the response caused by (a) wells within model layer 2, and (b) by precip-
itation. The responses are given for different model cells depending on their gradient in φ between the
last two time steps. Different time series are plotted for various percentiles (%) of that gradient.
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and the reconstructed variance ϕr.

Resulting Patterns
With the ne = 42 snapshot vectors from the previous subsection, we compute the
patterns (EOFs) as described in Subsection 3.1.3. The maximal explained variance
for a pattern (λ1 = 20.42%) declines rapidly (λ>9 � 1%), see Figure 3.8. The
number of patterns should be chosen such that ϕe is more-or-less equal to the re-
constructed variance ϕr. Otherwise, the low-dimensional model lacks significant
patterns, and yields unreliable model predictions. In our case, it is remarkable that
the behavior of the full-dimensional model can be described with ϕe = 99.780% by
only 10 patterns, see Figure 3.8. Apparently the spatial distribution of φ is complex
but its behavior in time is not complex at all [Sirovich, 1987; Park & Cho, 1996; Hoff-
man Jørgensen & Sørensen, 2000]. The cost of it in terms of accuracy is negligible,
see Subsection 3.3.4 for elaboration. The spatial distribution of a pattern with the

(a) p1, λ1 = 20.4240% (b) p19, λ19 = 0.00091%

Figure 3.9: Spatial distribution of (a) the most important pattern structure, and (b) the least impor-
tant pattern structure.
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largest eigenvalue (p1, λ1 = 20.42%, Figure 3.9a) shows a strong similarity to the
global model behavior, e.g. we can observe the impact of precipitation. For a less
important pattern (p19, λ19 = 0.00091%, Figure 3.9b), such physical processes can
be still recognized, though locally. If we look at patterns as if they represent such
physical processes, we should expect most of the coefficients r to be zero whenever
we compute q, for example only for precipitation (Figure 3.10). Unfortunately this
is not the case and almost all coefficients are inequal to zero; they range between -17
and 10. We conclude that the meaning of patterns is not directly related to physical
processes. We refer back to Subsection 3.1.4 in which is explained that rotation of
patterns may increase their interpretability.

When we look at the distribution of the coefficients r computed with a q for
the ng = 9 groups individually, we observe that all main coefficients vary for each
case (Figure 3.11). The absolute value of r is mainly caused by the magnitude of
the corresponding boundary condition; the wells in model layer 4 are significantly
larger than those in other layers. On the other hand, the coefficients ri>11 are much
less compared to ri≤11, which corresponds to their small λs.
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3.3.4 Simulation Phase
Accuracy
The accuracy of a reduced model is expressed as the relative-mean-absolute error
RMAE, and the relative-root-mean-square error RRMSE [Overschee van & de Moor,
1996]:

RMAE = 100 ·
1

nt

nt

∑

i=1

‖φ(ti) − φ̂(ti)‖

‖φ(ti) − φb‖
[%] , (3.37a)

RRMSE = 100 ·
1

nt

nt

∑

i=1

√
√
√
√
√
√

∥
∥
∥φ(ti) − φ̂(ti)

∥
∥
∥

2

∥
∥
∥φ(ti) − φb

∥
∥
∥

2 [%] . (3.37b)

Both errors give a percent error conditioned on the difference between φ and the
background hydraulic head φb. In this approach we accept larger errors as the dif-
ference between φ and φb increases. We have computed the RMAE and the RRMSE

for the SSPM, SSPMa and GPM over nt = 150 time steps, see Figures 3.12a-b. For
all methods the RMAE and RRMSE decline eventually whenever we include more
patterns. The strong reduction in RMAE and RRMSE between np = 9 and np = 10
can be explained because the reduced model simulates scenarios with 9 indepen-
dent groups (Subsection 3.3.2) and hence beyond that point, the accuracy gathers
strength. Of course, it is strongly related to the purpose of the reduced model, but
an error of RMAE= 0.5% and RRMSE= 1.0% should be acceptable. It should be re-
marked that the SSPM reaches this criterion at np = 16, whereas the GPM reaches
this accuracy at np = 22 and the SSPMa at np = 28. The latter are affected by the ad-
ditional numerical error (Subsection 3.2.4, item 1), that can increase the inaccuracy
temporary (e.g. np = 13) but declines eventually whenever np is enlarged. This is
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SSPM and GPM, and (b) the range for each coefficient rj over nt = 150 time steps for the SSPM.

supported because for np = 28 the RMAE becomes almost similar to the SSPM and
GPM. This does not occur with the SSPMa which is more sensitive to the inclusion of
unreliable patterns with small eigenvalues (np > 20, see Subsection 3.2.4 item 1–2).
A reason for this could be that the SSPMa uses pattern values itself, instead of the
pattern derivative of space.

To analyse the SSPM and GPM, we computed r directly from the results obtained
by the original model and marked them as the truth, so:

rt(ti) = PT
[

φ(ti) − φb
]

. (3.38)

To quantify how well each of the time-dependent coefficients r, computed with the
different projection methods, resembles rt we computed

ε(j) = 100×

√
√
√
√

∑nt

i=1

[
rtj(ti) − rj(ti)

]2

∑nt

i=1

[
rtj(ti)

]2 [%] (3.39)

for each coefficient rj separately. Whenever we plot ε(j) for the SSPM and GPM

(Figure 3.13a), we see that the coefficients rj ; j ∈ {18, ..., 28} show a large inac-
curacy (50–110%). They correspond to patterns with very small eigenvalues (ϕi <
0.001%, Figure 3.8) that are numerically unreliable. This phenomenon affects the
SSPM more seriously than the GPM. It should be noticed, however, that patterns
with tiny ϕ values contribute limited to the complete solution of φ̂, as their rj range
(maximum rj value minus minimum rj value) is significantly (almost two orders
of magnitude) smaller, see Figure 3.13b.

Mass Conservation
The results of a groundwater model are often used to determine the velocity vectors
which can be fed into a transport model. To evaluate whether the results, obtained
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(a) Error 〈θ〉 for model layer 1 (b) Error 〈θ〉 for model layer 9

(c) Error Ξ for model layer 1 (d) Error Ξ for model layer 9

Figure 3.14: Spatial distribution of the errors θ and Ξ over nt = 150 time steps with np = 19.

by a low-dimensional model are accurate enough, we compute an additional error
which quantifies the difference in mass distribution, so:

Ξk =
1

nt

nt

∑

i=1

θk(ti)
∑6

j=1 ‖(qj)k‖(ti)
· 100% ; k ∈ {1, ..., nm}, (3.40a)

θk(ti) =
6∑

j=1

‖(qj)k − (q̂j)k‖(ti), (3.40b)

where (qj)k is the flow [L3T−1] over six cell faces j for grid cell k and (q̂j)k is
the equivalent obtained by the reduced model. The error θk has been computed
as a time average for each grid cell k and plotted for model layer 1 and 9, see
Figure 3.14a-b. For a single grid cell the maximum value for θ is ≈ 1,560 and
≈ 2,121 m3day−1 for model layer 1 and 9, respectively. Most of the grid cells pos-
sess a value for θ which is considerable less. Whether this error in the mass balance
is small enough, such that the coupling with a transport model and/or particle
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tracking program is sustained, we computed the relative error Ξ (Equation 3.40a),
see Figure 3.14c-d. The value for Ξ is acceptable within most of the model domain
with some isolated peaks which are still less than ≈ 0.2%. Table 3.1 presents the
total water balance for the low- and full-dimensional model, subdivided for each
model layer. The error in the water balance is for each model layer within accept-
able ranges. Within the low-dimensional model there is ≈ 1.7·106 m3 more inflow
and ≈ 2.3·106 m3 more outflow which is only ≈ 0.16% of the total water balance.

Table 3.1: Total in- and outflow for the original and reduced model (np = 19).
Layer Original Model Reduced Model Difference [%]

In [106 m3] Out [106 m3] In [106 m3] Out [106 m3] ∆In ∆Out
1 770.9 -751.1 772.5 -753.1 0.201 0.264
2 446.1 -705.4 446.2 -705.4 0.039 0.003
3 182.8 -349.5 182.8 -349.7 0.033 0.056
4 143.3 -225.7 143.3 -225.7 0.007 0.027
5 121.9 -160.5 121.9 -160.5 -0.006 0.012
6 103.0 -206.2 103.0 -206.5 -0.001 0.008
7 85.3 -103.7 85.2 -103.7 -0.030 -0.003
8 117.9 -299.7 117.9 -299.8 -0.033 0.007
9 29.7 -139.8 29.7 -139.8 -0.099 -0.008

Total 2,000.9 -2,941.6 2,002.6 -2,943.9 0.084 0.079

Results
In Figure 3.15a we plotted the mean hydraulic head

φ̄ =
1

nt

nt

∑

i=1

φ(ti) (3.41)

over nt = 150 time steps, as computed with the original model and with the re-
duced model (Figure 3.15b). The model is based upon a SSPM with np = 16 patterns
and it is very well capable of simulating hydraulic heads within a complex distri-
bution of hydraulic transmissivities and external sources. It is interesting what
RMAE (Equation 3.37b) looks like as we compute it for each grid cell k as:

RMAEk = 100 ·
1

nt





∑np

i=1

∥
∥
∥φk(ti) − φ̂k(ti)

∥
∥
∥

∆φk



 [%] , (3.42a)

∆φk = max
(∥
∥φk(ti) − φb

k

∥
∥
)

; i ∈ {1, ..., nt}. (3.42b)

For each grid cell k the relative error RMAEk is weighed based on ∆φk , which is the
maximum fluctuation for grid cell k. The results of these computations are given for
model layer 1 in Figures 3.16a-b, and although the RMAE ≈ 0.5% (Figure 3.12a), we
see that RMAEk actually varies. The enlarged errors appear especially in the regions
with an intense dewatering system (RMAEk ≈ 2%) and near the main extraction
wells (RMAEk ≈ 6%). The disturbance of the hydraulic head by external sources is
less within model layer 9, and hence the RMAEk is significant reduced.
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Figure 3.15: Mean hydraulic heads for model layer 1 over nt = 150 time steps for (a) the original
model and (b) a reduced SSPM model (np = 16).

In Figure 3.17a we have plotted a time series for a specific grid cell i, j, k that has
RMAE(i,j,k) ≈ 6%. Most of the time φ̂ follows the behavior of φ accurately, but at sev-
eral time steps the difference is enlarged (e.g. t = 350 days; φ̂− φ ≈ 0.15 m). These
(temporary) errors are caused by a lack of patterns, as we explain only ϕe = 99%
with the selected set of np = 16 patterns. The absence of some or all of the rejected
patterns (ϕi ; i ∈ {17–28}) is the cause of this specific misbehavior - and we could
include them to decrease the error. It should be mentioned that this error occurs
only very locally within the model and most of the grid cells perform rather well
with a RMAEk � 6%. In Figure 3.17b we show a time series with RMAEk ≈ 0.5%.
Here, the reduced model simulates the behavior of the model almost perfectly.

(a) (b)

Figure 3.16: Spatial distribution of the relative-mean-absolute error RMAEk for (a) model layer 1 and
(b) model layer 9.
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Figure 3.17: Time series of φ and φ̂ (SSPM) for different grid cells in the model.

3.3.5 Efficiency
Preparation Time
The key concept of a reduced model is to compute time-independent matrices in ad-
vance and to compute as little as possible during the actual simulation. The SSPM,
SSPMa and GPM formulations differ, hence each requires a different computational
effort to prepare their matrices A, S, N. We have plotted the preparation time tp

for those methods and they are almost linearly related to np (Figure 3.18a). For an
acceptable reduced model tp ≈ 26 s (np = 16) and tp ≈ 13 s (np = 24) for the SSPM

and GPM, respectively. The SSPM consumes most time because the original model
needs to be solved np = 16 times. For all methods, tp summed with the total time
taken by the computation of the ne = 43 snapshots is still significantly less than one
simulation of the original model (≈ 240 s). Therefore it is wise to create a reduced
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Figure 3.18: Graph of the number of patterns np versus (a) the preparation time tp, and (b) the
efficiency E of the actual simulation.
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model for a limited range of scenarios, and recreate it whenever the specifications
(conductances and/or positions of external sources) for the scenarios changes. In
that case, fewer patterns are required for scenarios which benefits the simulation
time.

Simulation Time
To quantify the efficiencyE of the reduced models, we devided the total time taken
by the iterative procedure to solve φ(ti), by the total time taken by the reduced
models to solve r(ti). It results in an E ≈ 625 (np = 16) and an E ≈ 70 (np = 24)
for the SSPM and GPM, respectively. The SSPM method contains one matrix multi-
plication less and profits from the effort put in the preparation phase (see previous
Subsection). Although the efficiency decreases whenever we add more patterns
(Figure 3.18b), the gained time reduction remains enormeous for all methods.

With a hypothetical model we examined how E relates to np, nm, the number
of external sources nq, and the complexity of the original model C. We took a one-
layered model with constant grid cell dimensions and a constant conductance of
100 m2day−1 (C = 1). We put a Dirichlet condition on the left and right edges, and
recharge within each grid cell and distributed five independent extraction wells
throughout the model, so nq = nm. We have varied nm and np and found by
regression (regression coefficients R2 > 0.98) the following relationship for:

E(SSPM) = C
nm

nq
0.40(nm)0.48

5

np
and (3.43a)

E(GPM) = C
nm

nq
0.12(nm)0.41

5

np
. (3.43b)

The ratio nm/nq determines the efficiency that can be obtained by multiplying only
the non-zero elements within b (Equations 3.24a & 3.32). It is purely a gained time
reduction through an optimized multiplication routine which can be significant.
An important conclusion, however, is that the efficiency increases with nm and de-
creases with np. We have plotted a graph of the efficiency E for C = 1 and nq/nm =

1 in Figures 3.19a & 3.19b. Although E(GPM) is approximately one order of magni-
tude less thanE(SSPM), both methods remain still efficient when np increases (np ≈

100). The total efficiency is most likely higher for practical applications. Namely,
for our realistic case study it appeared that nm/nq = 7.1 and C ≈ 5.

3.4 Comparison of the EOF and Lanczos method
This subsection describes briefly the Lanczos model reduction method and gives
several synthetic examples to illustrate the differences between the Lanczos method
and the previous reduced models based on EOF.

3.4.1 Lanczos Vectors
The idea behind the Lanczos vectors [Lanczos, 1950] is that for general systems,
which are often diffuse in nature, the smallest eigenvalues Λ of the governing sys-
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tem matrices form the significant part of the solution [Dunbar & Woodbury, 1989],
so

AV = SVΛ, (3.44)

where A is known as the ‘stiffness’ matrix that holds the hydraulic conductances,
and S is known as the ‘capacity’ matrix that represents the storage coefficients.
For nonsymmetric matrices the Arnoldi method [Arnoldi, 1951] is developed. The
eigenvalue decomposition (3.44) is, however, difficult to implement as matrices are
often large. This is solved by the Krylov sequence which is recursive in nature and
gives an additional largest eigenvector after each step in the recursion. This avoids
the computational burden of determining all the eigenvalues at once and then sort
through them to find the smallest ones and discard the rest. Consequently, a scheme
that uses A−1 instead as the governing matrix will yield the smallest eigenvalues
therefore we rewrite Equation (3.44) as

A−1SL = LT (3.45)

where T is a tridiagonal matrix with good approximations of the reciprocal eigen-
values λ−1

i , thus

T =













α1 β2

β2 α2 β3

. . . . . . . . .
. . .

. . . βnl

βnl αnl













(3.46)
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where nl are the number of Lanczos vectors. The Lanczos vectors L = [l1, ..., lnl ]

describe an orthonormal basis for a Krylov space (LTSL = I). The Lanczos vec-
tors which are left out, represent a dynamic behavior within the model that dis-
sipate more quickly than others. These Lanczos vectors have been reported on
between 1987–1994 [Dunbar & Woodbury, 1989; Zhang & Woodbury, 2000a,b; Nour-
Omid, 1987].

Krylov/Lanczos Sequence
The Krylov sequence uses orthogonal transformations to compute the tridiago-
nal matrix T by a recursive scheme, that is, each recursion results in one
Lanczos vector li and one more row and column in T with the components
αi, βi. The S orthogonality requirement for a Lanczos vector results in an equa-
tion that yields a new Lanczos vector li that is based upon the previous Lanc-
zos vector li−1 and its corresponding components αi−1, βi−1, see Figure 3.20.

x = A−1[b − Aφ](t0)

l0 = 0
β1 = (xTSx)

1
2

l1 = xβ−1
1

y = Sl1

For i=1,2,...

r = A−1p − βili−1

αi = lTi Sx

x = x − αili

y = Mx

βi+1 = (xTSx)
1
2

Terminate loop if desired

li+1 = xβ−1
i+1

y = yβ−1
i+1

End i

Figure 3.20: Krylov/Lanczos Algorithm
[Dunbar & Woodbury, 1989]

The starting Lanczos vector l1 should con-
tain states that are of primary interest to the
problem under consideration. In this exam-
ple the first Lanczos vector is equal to a nor-
malized steady-state problem without the ini-
tial boundary conditions φ(t0). Even though
there are several references to A−1, the proce-
dure does not require this inversion of A. In-
stead of computing A−1p we can obtain the re-
sults by solving Ax = p for the original model.
An important issue for the Krylov/Lanczos se-
quence is the stoppping criterion. Dunbar &
Woodbury [1989] used a ‘participation factor’
ρi = lTi [b−Aφ] that describes the contribution
of the Lanczos vector to the initial forcing vec-
tor without Dirichlet conditions, thus b − Aφ.
Whenever li is orthogonal to b − Aφ, ρi = 0
and the recursion can be terminated; the re-
newed Lanczos vector is irrelevant for the cur-
rent forcing definitions. If more than one source is present, the vector b should contain a
sum of terms [Nour-Omid, 1987]. Finally, the Krylov/Lanczos sequence is subject to loss
of orthogonality through round-off errors. This can be monitored during the recursion by
computing lTi+1Sli. When loss of orthogonality has occurred the newly generated Lanc-
zos vector is orthogonalized against all preceding vectors by use of the Gram-Schmidt
procedure.

l
′
i = li −

lT1 Sli

lT1 Sl1
−, ...,−

lTi−1Sli

lTi−1Sli−1

(3.47)

where l′i is the orthogonalized renewed Lanczos vector. Experiences showed that this
partial reorthogonalization is usually required after 5–10 Lanczos steps.
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3.4.2 Lanczos Reduction Method
The Lanczos reduction method reduces the size of the original model by means
of a Rayleigh-Ritz procedure and is therefore comparable to the SSPM,SSPMa and
GPM methods. However, this method uses Lanczos vectors L to reduce the system,
instead of patterns P. So, we write the first-order differential equation for ground-
water as

Aφ − S
∂φ

∂t
= b − Aφ0, (3.48)

where Aφ0 corrects the right-hand-side vector b for initial conditions because they
took no part in the Lanczos recursion. We define an approximate head φ̂ as

φ̂ = φ0 + Lr. (3.49)

Multiplication of Equation (3.48) with LTSA−1 gives:

LTSA−1ALr − LTSA−1SL
∂r

∂t
= LTSA−1(b − Aφ0), (3.50)

which reduces to a low-dimensional ODE

r − T
∂r

∂t
= LTSA−1(b − Aφ0), (3.51)

because

A−1A = I (3.52a)

LTSL = I (3.52b)

T = LTSA−1SL. (3.52c)

This model operates in Lanczos space and could be easily solved by a time-integration
technique (e.g. Euler) such that

(

I −
1

∆t
T

)

r(ti) = −
1

∆t
Tr(ti−1) + LTSA−1[b(ti) − Aφ(t0)]. (3.53)

The system T could be easily decoupled by means of a further eigenvalue decom-
position of T [Dunbar & Woodbury, 1989]. The transient model starts with zero
initial conditions r(t0) = 0, however, if boundary conditions are time dependent,
the reduced model suggests that the right-hand-side vector needs to be evaluated
for each time step. In Dunbar & Woodbury [1989]; Zhang & Woodbury [2000b] differ-
ent procedures are described to avoid this. They decompose the time-dependent
vector into spatial and temporal components just like the Rayleigh-Ritz concept
for reduced models. Furthermore, they group the boundary conditions into parts
that have identical history patterns [Gambolati, 1993; Dunbar et al., 1994]. These
techniques are based on the principle of superposition and resemble strongly the
procedure described earlier for the computation of snapshots, see Subsection 3.3.3.
The Lanczos approach is very general because it yields patterns that are dependent
to the geometry of the current source terms but independent to the source strength
and time discretization.
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Figure 3.21: Computed hydraulic head φ for the synthetic case I & II.

3.4.3 Synthetic Cases
This subsection illustrates the performance and accuracy of the EOF and Lanczos
decomposition by means of two synthetic cases (Figure 3.21a-b). Both cases are one
dimensional (50 columns) and possess an extraction well in the middle (grid cell
25). For Case I the extraction rate was time-constant and equal to 100 m3day−1.
For Case II we defined the extraction rate as a random variable that varied between
-125 m3day−1 and 125 m3day−1.

We found five main patterns by means of an EOF analysis which explained to-
tally ϕe ≈ 100% of the model variance (Figure 3.22a). We computed five Lanczos
vectors and plotted them in Figure 3.22b. The corresponding participation factor ρ,
however, did not gave us a good criterion whether to terminate the Lanczos recur-
sion. Nevertheless, both reduced model were capable of reconstructing the original
‘signal’ very well (Figure 3.23). The Lanczos method is ‘least’ accurate at the loca-
tion of the extraction well and the EOF method is ‘most’ accurate at that position
instead. This can be explained because EOF modes are most sensitive to areas with
high variances. As a result those particular areas are well represented by the pat-
terns P. In contrast to this, Lanczos modes L will yield a maximum error in the first
several time steps, or the moment the extraction rate is changed for a particular lo-
cation. That is because the Lanczos vectors which are left out represent a dynamic
behavior within the model that dissipates more quickly than others. Therefore,
the accuracy of Lanczos modes will increase when the time discretization (∆t) is
increased.

The difference between the EOF method and the Lanczos method depicts more
clearly within Case II (Figure 3.21b). Since Lanczos vectors are independent of the
strength of steady-state boundary conditions, the leading Lanczos vectors are iden-
tical to those obtained in Case I. They differ only in their participation factors ρ, see
Figure 3.24a. Moreover, the accuracy of this type of model behavior is clearly less
predicted by these Lanczos modes (Figure 3.24b). The randomness of the extraction
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Figure 3.22: Computed EOF and Lanczos vectors for the synthetic case I & II.
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Figure 3.23: Computed total-absolute error TAE of the hydraulic head φ for the synthetic case I & II.
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total-absolute errors for the EOF and Lanczos methods for the synthetic cases I & II.

rates manifests a dynamic model behavior close to the well, that is not captured by
the Lanczos decomposition. In contrast to this, the EOF method is very well capa-
ble of simulating this behavior. The EOF modes differ significantly from the modes
obtained in Case I and describe the transient behavior rather than the steady-state
solution, see Figure 3.22c.

3.5 Conclusions and Recommendations
This chapter elaborates several methods to develop a reduced model of a linear
numerical groundwater flow model. We defined a reduced model structure that
consists of a set of spatial patterns with time-varying coefficients. The patterns
are called Empirical Orthogonal Functions (EOFs), and they span a subspace of
model results that captures most of the relevant information of the original model.
The time-varying coefficients are derived by projecting the original model onto the
orthogonal EOFs, starting from a partial differential equation (Galerkin Projection
Method GPM) or from a state-space formulation (State-Space Projection Method SSPM).
We have used the two different projection strategies to simulate different scenarios
with a realistic case study. Both methods were able to simulate the scenarios within
an acceptable accuracy constraint (relative-mean-absolute Error RMAE< 0.5%). To
obtain this accuracy we needed more patterns for a GPM (np = 24) than for a SSPM

(np = 16). This is caused by an additional error which affects only the GPM, but de-
creases whenever we include more patterns. Due to its mathematical formulation,
the SSPM is numerically more sensitive to round-off errors, especially with patterns
that explain a very small amount of variance (ϕi � 0.001%) of the original model.
Another consequence of its formulation is that the reduced model contains one
matrix multiplication less than the one created by a GPM. Therefore we achieved a
larger time reduction with a SSPM than with a GPM. Specific for the realistic case
study, explained in this chapter, we achieved an efficiency (time reduction) of ap-
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proximately 625 and 70, respectively. For both methods, the efficiency increases
with the number of grid cells and the complexity of the model.

We illustrated the differences between the EOF method and the Lanczos method
which lacks the use of snapshots. It decomposes the governing system matrices
and uses the smallest eigenvalues to reconstruct the significant part of the solution.
The Lanczos vectors are independent of the strength of steady-state boundary con-
ditions, however, they are less capable of reconstructing a behavior that reaches no
steady-state equilibrium. The EOF method is very well capable of simulating such
a behavior.

In future research we intend to focus on the possibility to apply the discussed
reduced model to non-linear 3D groundwater flow models. Experiences from other
sciences showed that the reduced model is also valuable in Reduced Order Kalman
Filters [Heemink et al., 2001] and parameter estimation [Delay et al., 2001; Park & Cho,
1996]. The latter is the main topic of the forthcoming chapters.





4
Inverse Modeling of

Groundwater Flow using
Model Reduction

Abstract. Numerical groundwater flow models often have a very high number of model
cells (� million). Such models are computationally very demanding, which is disadvan-
tageous for inverse modeling. This chapter describes a low-dimensional formulation for
groundwater flow that reduces the computational burden necessary for inverse modeling.
The formulation is a projection of the original groundwater flow equation on a set of orthog-
onal patterns (i.e. a Galerkin Projection). The patterns (Empirical Orthogonal Functions)
are computed by a decomposition of the covariance matrix over an ensemble of model so-
lutions. Those solutions represent the behavior of the model as a result of model impulses
and the influence of a chosen set of parameter values. For an interchangeable set of param-
eter values, the patterns yield a low-dimensional model, as the number of patterns is often
small. An advantage of this model is that the adjoint is easily available and most accurate
for inverse modeling. For several synthetical cases the low-dimensional model was able to
find the global minimum efficiently, and the result was comparable to that of the original
model. For several cases, our model even converged where the original model failed. Our
results demonstrate that the proposed procedure results in a 60% time reduction to solve
the groundwater flow inverse problem. Greater efficiencies can be expected in practice for
large-scale models, with a large number of grid cells, that are used to compute transient
simulations.

This chapter is adapted from Vermeulen, P.T.M, A.W. Heemink, & J.R. Valstar, Inverse
Modeling of Groundwater Flow using Model Reduction, Water Resources Research ,

41, W06003, doi:10.1029/2004WR003698, 2004
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GROUNDWATER MODELERS ARE CHALLENGED to simulate the natural system
with numerical models. Nowadays, these models consist of large model
networks that describe reality in more and more detail. As a consequence,

the computational demands are increased, which is especially undesirable for in-
verse modeling. Here we adjust a set of variables (e.g. parameter values) such
that they decrease the difference (objective function value) between the measured
and the computed heads. Extensive reviews of inverse models in geohydrology are
given in: Carrera & Neuman [1986]; Cooley [1985]; Yeh [1986], among others. Several
techniques compute sensitivities (i.e. the first derivatives of heads with respect to a
single estimate of parameters) [Cooley, 1985; Cooley & Hill, 1992; Hill, 1990; Mehl &
Hill, 2003] to find an approximate gradient of the objective function. Other, more
sophisticated and efficient techniques use the adjoint method [Courant & Hilbert,
1953; Townley & Wilson, 1985] to find the exact gradient for all estimates simultane-
ously. Beside these minimization methods there are different methods of assigning
parameter values. Most commonly they are assigned to predefined zones while
another, recently developed, technique applies parameter values according to in-
fluence functions (representer functions) [Bennet, 1992; Valstar et al., 2004]. Other
recently developed geostatistical techniques generate hundreds of possible solu-
tions with different structures of the estimate variables to address the notion of
uncertainty of the solutions [Delay et al., 2001; Ginn & Cushman, 1990; McLaughlin
& Townley, 1996]. It is beyond the scope of this chapter to compare the differences
between the mentioned techniques, as this chapter describes a different approach
that could affect the time efficiency of those techniques positively.

Roughly, the time efficiency can be increased by (1) use of a more time-efficient
solver [Mehl & Hill, 2001], (2) applying a coarse grid and/or a locally refined grid
[Mehl & Hill, 2003; Wen et al., 2003; Bennet et al., 1996], and/or (3) formulating a
low-dimensional model that is capable of simulating the important behavior of the
original model [Cazemier et al., 1998; Hoffman Jørgensen & Sørensen, 2000; Krysl et al.,
2001; Newman, 1996a; Park & Cho, 1996]. For groundwater hydrology Vermeulen et al.
[2004a,b] obtained such a model by selecting a set of patterns (Empirical Orthog-
onal Functions (EOF)) that are most representative of the behavior of the original
model. Recently, Delay et al. [2001] have used EOF analysis to determine the uncer-
tainty of a stochastic inversion method. In this chapter, the EOFs can be seen as a
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description of the subspace in which a possible solution of the original model exists.
For hydrological models, it appears that in many directions of the original space
the solution is constant. The shape of a well drawdown (its direction in space) will
not change dramatically for a change in its amplitude: it will not move around
the model domain. This phenomenon makes it possible to project the original par-
tial differential equation upon a given set of patterns to create a low-dimensional
model. Because often the number of patterns is small, such a model reduces the
computation time needed (with approximately 2–3 orders of magnitude, Vermeulen
et al. [2004b]). This makes the reduced model suitable for inverse modeling prob-
lems [Park et al., 1999], by which the model needs to be evaluated recurrently to find
the set of variables with the minimal valued objective function.

In our previous work [Vermeulen et al., 2004b], the patterns are representative for
the model behavior for one particular set of parameter values. In this chapter, the
patterns are extended such that they include the sensitivity with respect to different
sets of parameter values. The set of parameter values can now be sequentially
perturbed, while the set of patterns remains constant and yields a reduced model,
over and over again, which is accurate for that combination of parameter values.
Another advantage of the reduced model is that its adjoint, which is used to obtain
the gradient of the objective function, is easily available (in contrast to that of the
original model).

In this chapter we describe briefly the method to create a reduced model by
means of the Galerkin Projection in Section 4.1. Section 4.2 then explains the process
of inverse modeling by use of a reduced model. Finally, section 4.3 describes the
performance and the resulting reduction in computation time for a realistic three-
dimensional inverse modeling problem.

4.1 Methodology
4.1.1 Formulation of Groundwater Flow
Three-dimensional groundwater flow, with a uniform density and viscosity, can be
described by Darcy’s law and the equation of continuity. This yields the following
partial differential equation PDE [McDonald & Harbaugh, 1988]:

∂

∂x

[

αKxx ∂φ

∂x

]

+
∂

∂y

[

αKyy ∂φ

∂y

]

+
∂

∂z

[

αKzz∂φ

∂z

]

− γq = −βS
∂φ

∂t
(4.1)

where α, β, γ are estimates of parameters [–], Kxx,Kyy,Kzz are the hydraulic per-
meabilities [LT−1] along the x, y, z direction, respectively. φ is the hydraulic head
[L], S is the storage coefficient [L−1], t is time [T], and q is a fluid source/sink term
[T−1]. One way to solve Equation (4.1) is to use the finite-difference approach to
discretize the equation for a mesh of grid cells nm in space and to solve the entire
set of nm equations in discrete time.

In many situations, the model becomes more reliable when a value for α, β, γ
can be found that reduces the difference between a set of observations φo and its
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corresponding simulated valued φ. A quantity that determines this difference is
the sum of weighed squared residuals:

J =
1

ntno

nt

∑

i=1

no

∑

j=1

[
φo
j (x, y, z, ti) − φj(x, y, z, ti, α, β, γ)

]2
wj (4.2)

where J is the objective function [L2], φo
j (x, y, z, ti) is the jth observation out of no

for time step i located at position (x, y, z), and wj is the weight factor for observa-
tion j. There are several ways to find the optimal values for the estimate variables
that minimize J [Carrera & Neuman, 1986; Cooley, 1985; Tarantola, 1987; Press et al.,
1992]. In this chapter, we use a reduced model to limit the computation time of this
minimization problem.

4.1.2 Reduced Model
Model Structure
Assume that φ can be expressed as a linear combination that can be written by the
following equation:

φ̂(x, y, z, ti, α, β, γ) =
np

∑

i=1

pi [x, y, z, φj (Lj)] ri(α, β, γ, ti) (4.3)

where φ̂ is the approximated hydraulic head [L], pi is the ith pattern value out of
np [–], and ri is the ith time-dependent coefficient [L]. It should be noticed that
ri depends on the current values for the estimate variables α, β, γ and pi depends
on φ which is computed for several sets of estimate variables Lj ∈ {αj , βj , γj}. It
seems disadvantageous that the patterns need to be computed in advance, but for
the actual model simulation, this only concerns a limited number of coefficients ri.
For this reason the following ordinary differential equation is defined that describes
dr/dt:

F [αKxx, αKyy, αKzz, βS] r − γq =
dr

dt
. (4.4)

This equation contains a linear function F that depends on the system properties of
the original model (Kxx,Kyy,Kzz, S) and the estimate variables α, β. The variable
q is a reduced boundary condition [LT−1]. For inverse modeling, the function F is
recomputed for each perturbation of α and/or β. Thereafter, the actual simulation
of dr/dt and the evaluation of the objective function (Equation 4.2) yield a reduc-
tion in CPU time as this type of model has less dimensions than the original model
describing Equation (4.1).

Pattern Identification (EOFs)
Patterns (Empirical Orthogonal Functions) are the eigenvectors of a covariance ma-
trix that is computed from an ensemble of snapshot vectors [Park & Cho, 1996; Park



4.1 Methodology 93

et al., 1999; Hoffman Jørgensen & Sørensen, 2000; Vermeulen et al., 2004a,b]. Snap-
shots are ne

j specific result vectors φ
j
i that are obtained by the original model given

a set of estimate variables Lj . They are collected as vectors in a matrix Dj =

[φj1,φ
j
2, ...,φ

j
ne

j
]. This matrix contains the behavior of the original model with source

terms (e.g. wells, recharge and rivers) for a certain set of estimate variables Lj .
The original model is computed again for different sets of estimate variables and
the total collection of snapshot vectors (ne = ne

1 + ne
2 + ... + ne

j) becomes the ma-
trix E = [D1,D2, ...,Dj ] with dimension [nm × ne]. Following the procedure as
described in Section 3.1.3 on page 57, it yields a pattern pi as the normalized eigen-
vector of EET and its corresponding relative importance ϕi (Equation 3.9). A collec-
tion of pattern vectors pi are then stored as vectors within an orthonormal projection
matrix P with dimension [nm × np].

An important difference with the patterns elaborated earlier in Chapter 3 is that
the patterns here represent an ‘extended’ subspace S. They capture the influence
of the estimation variables on the hydraulic head too, and increase the application
of the reduced model for inverse modeling. Nonetheless, the dimension of the re-
duced model will increase but remains still significantly lower than the dimension
of the original model.

Reduced Model by means of a Galerkin Projection
The Galerkin Projection method finds an expression for F (Equation 4.4) by substi-
tuting the hydraulic head φ (Equation 4.1) by φ̂ (Equation 4.3), yielding:

np

∑

i=1

{
∂

∂x

[

Cx(α)
∂pi
∂x

]

+
∂

∂y

[

Cy(α)
∂pi
∂y

]

+
∂

∂z

[

Cz(α)
∂pi
∂z

]}

ri − γq =

= −βS
np

∑

i=1

pi
∂ri
∂t
. (4.5)

where Cx [T−1] and Cz [T−1] become

Cx(α)i = (∆xi + ∆xi+1) /

[
∆xi

(αKxxh)i
+

∆xi+1

(αKxxh)i+1

]

(4.6a)

Cz(α)i = αR−1
i (4.6b)

for a discretized mesh of grid cells i. Here h is the thickness of the aquifer, R [T]
is the vertical resistance between two aquifers. All of them can be affected by the
estimate variable α. The computation for Cy is identical to the computation of
Cx. It can be written in matrix notation, in which the second-order differential
of the pattern derivative of space can be computed in advance (more extensively
elaborated in Section 3.2.2 on page 65), so

U(α)r − γq = −βSP
dr

dt
, (4.7)
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where the matrix U [nm × np] is a function of the vector α, the matrix S [nm × nm]

and vector q [nm × 1] are influenced by the vectors β,γ, respectively. Equation (4.7)
still operates within R

nm

and all superfluous equations can be eliminated by mul-
tiplying (projecting) each term in by the projection matrix PT:

PTU(α)
︸ ︷︷ ︸

A(α)

r − PTγq
︸ ︷︷ ︸

q(γ)

= −PTβSP
︸ ︷︷ ︸

S(β)

dr

dt
. (4.8)

This low-dimensional ODE operates within R
np

and is solved for each time step ti
with an implicit Euler scheme for the time derivative of r:

[

A (α) −
1

∆t
S (β)

]

r(ti) = −
1

∆t
S (β) r(ti−1) − q(ti) (γ) . (4.9)

4.1.3 Inverse Modeling
The computed coefficients ri (Equation 4.9) are used to reconstruct φ̂ for the loca-
tions of observations. This results in an approximate objective function Ĵ :

Ĵ =
1

ntno

nt

∑

i=1

no

∑

j=1

{[

φo
j (x, y, z, ti) − φ̂j(x, y, z, ti, α, β, γ)

]

wj

}2

. (4.10)

A popular method to minimize the objective function Ĵ is to compute the gradient
∇Ĵj for each estimate variable j in which Ĵ declines at a certain location in pa-
rameter space (i.e. the current values of α,β,γ). The gradient can be obtained by
perturbing the nu estimate variables independently (by means of a finite-difference
approximation) and calculating the gradient of the objective function. This requires
nu +1 normal simulations with the model (i.e. a forward run). However, the gradi-
ent can be most efficiently obtained by the adjoint method [Courant & Hilbert, 1953].
This requires one forward run with Equation (4.9), and one reverse simulation (i.e.
one adjoint run) that leads to a reduced adjoint state variable λ [–] (elaborated in
Appendix 4B). The ∇Ĵ is obtained by:

∇Ĵ =
∆Ĵ

∆α
=

nt

∑

i=1

[λ(ti)]
T

[
∂A

∂α
r(ti)

]

;

∆Ĵ

∆β
=

nt

∑

i=1

[λ(ti)]
T

[

−
∂S

∂β

(
r(ti) − r(ti−1)

∆t

)]

;

∆Ĵ

∆γ
=

nt

∑

i=1

[λ(ti)]
T

[
∂q(ti)

∂γ

]

, (4.11)
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wherein

∂A

∂α
= PT

[
∂

∂x

(
∂Cx

∂α

∂P

∂x

)

+
∂

∂y

(
∂Cy

∂α

∂P

∂y

)

+
∂

∂z

(
∂Cz

∂α

∂P

∂z

)]

, (4.12a)

∂S

∂β
= PT ∂S

∂β
P, (4.12b)

∂q(ti)

∂γ
= PT ∂q(ti)

∂γ
. (4.12c)

Notice that the exchange of the variables α,β,γ appears in the dimensions of the
original model, before the projection with PT. Equation (4.12a) is elaborated in Ap-
pendix 4A). This is disadvantageous for the final efficiency (see Subsection 4.3.2),
but currently unavoidable.

Once ∇Ĵ is known, there are various methods to search along that gradient to
reach a minimum (i.e. a line search). In this chapter we implemented Variable Met-
ric Method (Quasi-Newton) [Press et al., 1992]. The method uses information from
the gradient to obtain an estimate of the second-order derivative of the objective
function (often addressed as the Hessian). This Hessian adjusts the gradient, and
from the acquired minimum along that renewed direction, the inverse modeling
sequence reiterates. The entire process can be enumerated as follows (Figure 4.1):
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Figure 4.1: Methodology for inverse
modeling by use of a reduced model.
Numbers refer to steps described in the
text.

(1) The original model is evaluated for spe-
cific situations (snapshots) that represent the
model behavior and the influence of the es-
timate variables. (2) From the snapshots a set
of orthogonal patterns (EOFs) is computed. (3)
A number of patterns is selected to fulfill the
expected model variance (ϕe) and with that
set of patterns a reduced model is created. (4)
The time-dependent coefficients obtained by
one single forward simulation are then used
for the adjoint run (backward run), to com-
pute the reduced adjoint state variable. This
variable provides the gradient of the objec-
tive function. (5) The reduced model is sim-
ulated several times to search along the ob-
tained gradient towards a minimum of the ob-
jective function (i.e. a line search). (6) Finally,
it depends on the progress of the inverse mod-
eling whether one needs to proceed to step 3
(gradient loop, η), 2 (pattern loop, κ) and/or 1
(snapshot simulation loop, µ).
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4.2 Application to a Synthetical
Problem
4.2.1 Problem Description
A one-dimensional synthetic model was considered that estimated the variable
α (affecting the transmissivity) which varies within two predefined zones (Fig-
ure 4.2). The zones were defined by the grid cells Z1 ∈ {1–50} and Z2 ∈ {52–101}.
The well rate varied randomly (-50 ≤ q ≤ 50 m3day−1) for the period 10 ≤ t ≤

1,000 days, and was kept constantly (q = -15 m3day−1) for the succeeding period
1,000 < t ≤ 2,000 days. The model was simulated with α ≡ β ≡ γ = 1 and ∆t =

10 days for each time step, yielding nt = 200 time steps in total. A set of synthetic
observations were obtained by recording φ at all time steps for the grid cells 25 and
76.

�
���

�φ ���	� φ ��

���φ � � φ ��

� � � �

� �

Figure 4.2: Synthetic problem under consideration: 101 grid cells along a single row with an ex-
traction well positioned in the middle and a Dirichlet condition on both edges. Each grid cell is
dimensioned by: ∆x = ∆y = 10 m with T = 100 m2day−1 and S = 0.21. The model is divided into
two zones Z1 and Z2 and two observation wells φo

1, φ
o
2, one observation within each zone.

4.2.2 Snapshot Simulation
In this subsection the snapshots are determined for the estimate variable α. The
procedure will be identical for the variables β, γ. First, the sensitivity of α can
be expressed by simulating the original model with different values for α [Park &
Cho, 1996]. A simple approach is to define a lower and upper boundary for each
estimate variable (i.e. a snapshot boundary value). These are not the true boundaries
of the variable, but they determine a range for which the snapshots are currently
representative. For example, these snapshot boundary values can be defined as:

αe
i = exp [ln (αi) ± δi] (4.13)

where δi is a step size that determines the width of the snapshot boundary for the
estimate variable αi. The log transformation is applied for reasons of convenience,
as the estimate variable αi is also log-transformed for the minimization process.

For the synthetical problem we defined the lower and upper snapshot bound-
ary values as α ≡ δ = 1. Several snapshot simulations were computed by sequen-
tially perturbing one variable and keeping the others at their lower boundary. This
yielded a nu + 1 set of estimate variables (L) defined by: L1 ∈ {αe

1 = 0.36;αe
2 =

0.36}, L2 ∈ {αe
1 = 0.36;αe

2 = 2.72}, L3 ∈ {αe
1 = 2.72;αe

2 = 0.36}. Mathemat-
ically, this method has a drawback: the pattern identification technique (Subsec-
tion 4.1.2) is sensitive to any correlation in the snapshots [Cazemier et al., 1998]. This
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occurs when a specific variable affects a limited zone and generates almost identical
values for φ for the remaining zones. The Latin Hypercube Sampling (LHS) method
reduces this correlation [Iman & Shortencarier, 1984]. It divides the range of each
estimate variable into i non-overlapping intervals on the basis of equal probability.
One value is randomly selected from each interval with respect to the probabil-
ity density in the interval. For the synthetic problem, the LHS method generated
nu = 2 sets of estimate variables valued by L1 ∈ {αe

1 = 0.41, αe
2 = 1.43} and

L2 ∈ {αe
1 = 0.94, αe

2 = 0.52}. These were used to compute two snapshot simula-
tions.

A single snapshot simulation i captured the influence of q (i.e. the boundary
condition and the computation of draw-down by a single well) with respect to
the variables in Li. A snapshot for the boundary condition was computed as the
steady-state solution, whereby q = 0 m3day−1. This snapshot φ1(Li) represents
the gradient through the system caused by the boundary condition on both ends of
the model (Figure 4.3). Thereafter, the extraction rate for the well increased instan-
taneously up to q = 50 m3day−1 and 4 snapshots were recorded at intermediate
time intervals t (t1 = 10, t2 = 40, t3 = 350, t4 = 5,000 days) until a new steady-
state situation was reached. The chosen time intervals were not by definition the
best as different combinations improved or worsened the reduced model at the
end. The most important point is that the recording frequency was high initially
and decreased as time elapsed. Eventually, these snapshots were captured for each
combination of estimate variables defined by L1 and L2, yielding ne = nu× 5=10
snapshots as indicated in Figure 4.3a. Finally, the snapshot φ1(Li) is substracted
from the corresponding snapshots (φj(Li); j ∈ {2–5}), such that they reflect the
influence of the well solely with respect to each combination of variables, see Fig-
ure 4.3b.
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Figure 4.3: Graph of the (a) selected snapshot vectors φi(Lj) and (b) the adjusted vectors di(Lj) for
two combinations of the estimate variables α computed with the original model.
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4.2.3 Resulting Patterns
The collection of ne = 10 snapshots yielded 9 patterns with eigenvalues ϕi >

0%. The maximal explained variance for a pattern is 84.27% and it declines rather
rapidly for the other ones. When we take five main patterns together, they ex-
plained already > 99.9% (Figure 4.4a). Within the spatial structure of p1 and p2 the
solution of φ is still recognizable. All other patterns (ϕi ≤ 5%) describe a numerical
behavior of the system that does not clearly reflect a hydrological phenomenon, see
Figure 4.4b. They can be rotated to increase their interpretability, see Subsection 3.1.4
on page 61.
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Figure 4.4: Graphs of the pattern vectors pi and their corresponding relative importance ϕi.

4.2.4 Sensitivity of Ĵ
Influence of the Number of Patterns
In Figure 4.5a the surface of the objective function J (Equation 4.2) is depicted. The
minimum of the objective function (min(J) = 0.34·10−4 m2) is located at α = 1.
The surface of the approximate objective function Ĵ (4.10) computed with np = 9
patterns is accurate for a significant area around the minimum of the function, see
Figure 4.5b. Although the minimum value is increased (min(Ĵ) = 0.59·10−1 m2), its
location is almost identical to min(J). It is remarkable that the resemblance between
the functions exceeds approximately 3 times the range of the snapshot boundary
values for the estimate variables (see Subsection 4.2.2). When α1, α2 were forced
towards more extreme values (-3 ≥ ln(αi) ≥ 3), the difference between J and Ĵ

increased, but the shape of the surface remained mostly similar. This can be seen
more clearly in a cross section of the objective function for ln(α2) equals zero, see
Figure 4.7a-b. The efficiency of a reduced model increases with a decrease in
the number of patterns np [Vermeulen et al., 2004b]. Therefore, it is a challenge to
reduce np such that the resulting approximate objective function is still accurate
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enough. As most of the variance occurs near the well, the variance is less near a
observation location. This offers the possibility of neglecting some tiny patterns
without severely affecting the shape of the objective function. In Figure 4.6a the
surface of Ĵ is depicted (np = 5; ϕe = 99.927%); thus each pattern in Figure 4.4b is
ignored. The surface shape still shows a strong resemblance with J , but min(Ĵ) =

6.5 m2 and is located at ln(α1) = 0.095, ln(α2) = -0.083. Nevertheless, with half
the number of patterns the optimal value is closely to its global minimum. From
this point, more patterns can be added to improve the estimation (pattern loop, κ).
There is a limitation, however, as with the amount of patterns (np = 3; ϕe = 99%)
one decreases the accuracy and reliability of the Ĵ , see Figure 4.6b.

Influence of the Snapshot Simulations
The accuracy of Ĵ can be traced back to the snapshot simulations (Subsection 4.2.2)
as they form the real bases on which the reduced model is founded. The chosen
snapshot boundary values (Equation 4.13) are herein most determined as one can
see by expanding δi = 4. It will increase the number of patterns and the range of
resemblance, but eventually it increases the difference at the minimum, (min(Ĵ) =

1.59 m2, see Figure 4.7c). For this synthetic problem this does not seem to be a
problem, but numerical experiences for more complex systems with many estimate
variables showed that δi ≥ 2 yielded unreliable objective functions. For such a wide
range of parameter values, the assumed linear relation over δ is not valid anymore.

It is unlikely that the initial value α0 is equal to the optimal value αt. When-
ever the initial snapshot simulation (δi = 1) is computed around ln(α1) = -4 and
ln(α2) = 0, the shape of Ĵ is only accurate for the interval -6 ≤ ln(α1) ≤ 1 (Fig-
ure 4.7d). The location of min(Ĵ) has been even shifted in case ln(α1) = 4, ln(α2) =

0 and δi = 1 (Figure 4.7e). These outcomes limit a reduced model to a certain band-
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width to estimate α. Therefore the reduced model needs to be updated after a
minimum for the current reduced model is achieved.

Minimization Experiments
This subsection extends the number of estimate variables for the one-dimensional
synthetic problem (Subsection 4.2.1) to nine, see Figure 4.8. The rate for each well
varied randomly and for each observation well a set of observations was obtained
by recording φ for all time steps. For twelve test cases (simulations 1–12) the initial
estimate variables (α0

i ) were varied randomly and corresponding snapshots were
computed as described in Subsection 4.2.2. It yielded ne = 9×4×9=324 snapshots.
The minimization procedure as outlined in subsection 4.1.3 was used to estimate
the optimal value for those estimate variables.

In Table 4.1 the results of the minimization are given. Both the original and
the reduced model succeeded in getting the correct optimal values for the estimate
variables (simulations 1–3). Their initial values (α0

i ) are within close reach (0.09–10)
of their optimal values (‖αt‖ = 1). They needed approximately η = 9–19 gradient
iterations. More gradient iterations (η = 22–32) were necessary for the reduced
model as the reach of α0

i increases (simulations 4–5). For specific values of α0
i the

original model was trapped by a local minimum, as the reduced model succeeded
in finding the global minimum (simulations 6–8). In this case, the reduced model has
the benefit of the lack of detail in the objective function. Another example is given
in simulation 9, in which both models fail to find the global minimum. Whenever
the reduced model starts the inverse modeling for this case, by rejecting initially the
less important patterns (i.e., their lumped contribution to the explained snapshot
variance is less than 1%), it proceeds eventually towards the global minimum, see
simulation 10. Unfortunately, this is not a rule of thumb as this strategy can work
the other way around, compare simulations 11–12. In the end, it can be said that
the reduced model is capable of finding an optimal solution for realistic values of
α (0.01–100). Beyond that, the method may fail, just like the original model, but it
may also succeed although the procedure is more ambiguous.
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Figure 4.8: Synthetic problem under consideration: 101 grid cells along a single row with a Dirichlet
condition on both edges. Each grid cell is dimensioned by: ∆x = ∆y = 10 m with T = 100 m2day−1

and S = 0.21. The model is divided into nine zones (Z1–Z9), each contains an observation well φo
i

and an injection and/or extraction well qi.
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Table 4.1: Several values for the prior estimate α0
i and the corresponding objective function value J0

[m2], and its value after η minimization steps for the original model (J) and the reduced model (Ĵ)†.

Simulation 1 2 3 4 5 6
α0

1 0.098 1.35 0.67 15.3 0.51 0.17
α0

2 0.11 3.39 0.76 3.97 0.63 7.65
α0

3 0.29 0.20 12 0.38 63 0.07
α0

4 1.70 2.03 0.90 0.64 0.84 3.24
α0

5 0.94 0.08 3.74 0.10 9.02 0.01
α0

6 2.54 2.80 4.01 0.41 10.1 5.58
α0

7 0.06 0.23 10.78 1.20 52.6 0.09
α0

8 1.65 4.31 0.84 1.60 0.74 11.4
α0

9 0.89 4.26 0.09 8.99 0.02 11.2
J0 534.22 101.85 48.68 44.82 115.3 410.46
J0(η) 0.004(10) 0.006(12) 0.008(12) 0.008(26) 0.001(22) 12.36(6)#

Ĵ(η/np), µ = 1 0.009(9/40) 0.01(15/35) 0.06(19/35) 10.51(6/34) 3.49(20/34) 0.30(20/38)
Ĵ(η/np), µ = 2 - - - 0.01(20/35) 0.04(12/32) 0.004(3/37)
Ĵ(η/np), µ = 3 - - - - - -

Simulation 7 8 9 10 11 12
α0

1 94.1 4.45 0.17 0.17 3.36 3.36
α0

2 9.95 2.05 0.01 0.01 4.28 4.28
α0

3 0.20 102.9 0.11 0.11 1066 1066
α0

4 0.48 1632 0.03 0.03 6 6
α0

5 0.02 10.96 5.80 5.80 103.4 103.4
α0

6 0.23 0.88 6.72 6.72 118.7 118.7
α0

7 1.37 373.5 0.01 0.01 859.2 859.2
α0

8 2.18 281.7 14.37 14.37 5.17 5.17
α0

9 38.9 7.38 70.2 70.2 0.06 0.06
J0 101.89 66.77 831.84 831.84 62.73 62.73
J0(η) 12.40(9)# 15.29(22)# 15.31(9)# 15.31(9)# 13.78(12)# 13.78(12)#

Ĵ(η/np), µ = 1 0.69(20/34) 10.05(20/19) 11.86(11/41) 12.03(14/18)+ 45.93(14/10)+ 5.45(20/24)
Ĵ(η/np), µ = 2 0.004(6/36) 6.67(10/33) 7.94(14/29) 0.79(20/17)∗ 9.94(15/15)∗ 2.82(7/38)
Ĵ(η/np), µ = 3 - 0.002(20/34) 7.70(4/33)# 0.009(4/39) 3.12(20/35)# 0.007(20/37)
† The reduced model is based upon a number of patterns (np) that describe ϕe = 100% of the snapshot
variance, unless stated otherwise; # Local minimum; + Here ϕe = 99.9%; ∗ Here ϕe = 99.99%.

4.3 Application to a Real-World Case
This section examines to what extent the reduced model can reduce the computa-
tion time needed for inverse modeling. For this purpose we consider a 3D problem
with a realistic parameterization based on a situation near the town Staphorst in
the Netherlands.

4.3.1 Description of the Original Model
The model area is approximately 30 km2 translated into nm = 34,224 grid cells
(92 rows and 93 columns) divided over 4 model layers. The model layers 1–3
have a closed boundary condition. Model layer 4 has an open boundary condition
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Figure 4.9: Distribution of (a) transmissivity T [m2day−1] and (b) the computed hydraulic head
φ [m] for time step 100. The locations of observations within model layer 1–4 are expressed by the
symbols •,♦,�,×, respectively.

(Dirichlet Condition). The underground is characterized by a detailed distribution of
transmissivities that vary between 0–50 (Figure 4.9a), 0–33, 330–540 and 625–1,370
m2day−1 for the model layers 1–4, respectively. The resistance for the aquitards in
between varies between 15–175, 280–520 and 310–1,000 days. The top of the hydro-
logical system is characterized by an area that has an intense surface water system
(modeled by a linear relationship between φ and the water level) and a surround-
ing area with a free-floating water table. The distribution of precipitation was com-
puted by detailed land survey images. There are ten independent extraction wells,
distributed throughout the district (Figure 4.9a). The model was simulated over a
period of nt = 200 time steps (∆t = 10 days), and a transient solution is given for
model layer 1 for time step 100 in Figure 4.9a. The estimate variable α was opti-
mized for three zones in model layer 4, for two zones in model layer 3, and for one
zone in model layer 2. This yielded six estimate variables (nu = 6). Furthermore,
no = 35 observation wells were selected that were measured for each time step, see
Figure 4.9b.

4.3.2 Results
Snapshot Simulation
The boundary conditions within the model were Dirichlet conditions (model bound-
ary), Cauchy conditions (surface water), and Neumann conditions (precipitation
and the extraction wells). To isolate the effects of these boundary conditions, each
snapshot simulation contained a steady-state solution without those boundary con-
ditions. Subsequently a transient impulse response with nine time steps was com-
puted for the precipitation (∆tk+1 = 2∆tk with ∆t1 = 10 days), and ten transient
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impulse responses were computed for each well, independently (∆t1 = 10, ∆t2 =

20, ∆t3 = 50, ∆t4 = 500 days). This yielded 1+9+(4×10)=50 snapshots for each
snapshot simulation. Each of them was carried out with another set of estimate
variables Li ∈ {αe

1, ..., α
e
6} that was generated by the LHS method (Subsection 4.2.2).

Eventually the total number of snapshots was ne = 6×50=300, which is 1.5 times
the number of total time steps for a single forward model simulation (nt = 200).

Table 4.2: Number of snapshot simulation loops (µ) and gradient loops (η) for inverse modeling of
six unknown estimate variables α for the original model (a) and the reduced model (b).

(a) Original Model
η α1 α2 α3 α4 α5 α6 J [m2]

0 1 1 1 1 1 1 27.47
14 0.13 7.40 0.05 19.80 0.22 0.22 0.00051

(b) Reduced Model
µ/η α1 α2 α3 α4 α5 α6 Ĵ [m2]

0/0 1 1 1 1 1 1 27.34
1/5 0.06 8.46 0.005 3.31 0.08 0.14 8.33

2/10 0.14 6.65 0.05 19.52 0.21 0.21 0.59
0.14 7.39 0.05 20.1 0.23 0.21 0.024

Accuracy of the Estimated Variables
First, the estimate variables were obtained by use of the original model. Within
η = 14 gradient loops, it resulted in a wide range of estimate variables values (Ta-
ble 4.2a) with min(J) = 0.00051 m2, see Figure 4.10a. Second, the estimate variables
were obtained by a reduced model, see Figure 4.10b and Table 4.2b. For the first
snapshot loop (µ = 1, δi = 1) a reduced model was constructed with ϕe = 99.9%,
np = 36 that was able to reduce the objective function and estimate the variables
towards the proper direction. After η = 5 gradient loops the objective function
became stable and another snapshot simulation was performed (µ = 2, δi = 1)
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around the current values of the estimate variables. Notice that the objective func-
tion increased initially (η = 6), as the current location in parameter space was not a
minimum anymore for the updated reduced model (ϕe = 99.99%, np = 63). Nev-
ertheless, the objective function decreased significantly after η = 10 gradient loops,
and the estimate variables were close to their optimal values. A final snapshot sim-
ulation was carried out (µ = 3, δi = 0.5), and the final reduced model (ϕe = 100%,
np = 103) yielded almost identical values for the estimated variables as found with
the original model. As the estimate variables did not change significantly within
this third snapshot simulation loop, the inverse modeling was terminated.

Time Efficiency
All computations for this chapter have been carried out on a Pentium 4 r© (2.4GHz)
processor and a single forward or backward run with the original model consumed
approximately te = 100 s (nt = 200), see Figure 4.11. It took approximately t∇ =

2 × te = 200 s to compute ∇J , and the entire parameter optimalization with the
original model took approximately 14×200= 2,800 s.

The time it took the reduced model to compute ∇Ĵ depended on the number
of patterns involved. It can be calculated as the sum of the time taken to construct
a reduced model (preparation time tp), twice the simulation time of the reduced
model (i.e. the forward and adjoint run; 2 × te) and the time t∂ to compute ∂A/∂α

(Equation 4.12a). The total time is dominated by t∂ which is almost quadratically
related to np as it involves two nested ‘do-loops’ over np, see Figure 4.11. As the
inverse modeling took np = 36 patterns for the first snapshots simulation loop (µ =

1), 63 and 103 for the following snapshot simulation loops (µ = 2,3), the final com-
putation time can be computed as 5×60 s 5×100 s 2×195 s = 1,190 s, see Table 4.2b
and Figure 4.12. Hence, the total inverse modeling, described in Subsection 4.3.2,
resulted in a final time reduction of 1-(1,190/2,800)× 100% ≈ 60%.
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4.4 Conclusions
This chapter describes a new reduced model for inverse modeling of groundwater
flow. The proposed model consists of a linear combination of a set of patterns and
time-varying coefficients. The patterns (Empirical Orthogonal Functions EOFs) de-
pend both on the response of the hydraulic head φwith respect to source terms (e.g.
wells and rivers) and system properties (e.g. horizontal/vertical conductances and
storage coefficients). These fields of system properties could be defined by zones
as done in this chapter and/or by stochastic simulation. By selecting the dominant
patterns, we have rewritten the original PDE into another one that operates within
the numerical space that is spanned by the selected patterns. Simulating this type
of model yields a reduction in CPU time as the number of state variables is small.
Since the patterns are based upon different parameter values, the resulting reduced
model accurately simulates a wide range for those parameter values. Another ad-
vantage is that the adjoint of the reduced model can be obtained fairly easy.

It is not possible to quantify a general rate of efficiency for the proposed pro-
cedure, as it depends strongly on the application. For example, the efficiency in-
creases whenever the estimate variable appears only to be the storage coefficient
and/or the recharge/well rate. The latter could really benefit the minimization
program MODMAN [Greenwald, 1998], which answers groundwater management
questions that maximize or minimize a user-defined objective function. The effi-
ciency increases even more when the number of time steps in the original model is
increased, see Figure 4.12. This makes this type of inverse modeling highly suitable
for long transient simulations. On the other hand, the method is strongly sensitive
with respect to the number of patterns (i.e. the complexity of the problem). Such a
model may possess many non-linearities between the hydraulic head and the exter-
nal source terms, that will increase the computation time of the adjoint dramatically.
Comparable to other inverse modeling techniques this could be disadvantageous,
even though such non-linearities may not affect the objective function at all.

In future research we intend to focus on the possibility to update the estimate
variables in the reduced model. This will truly increase the final efficiency as it will
eliminate the necessity to construct a reduced model each time an estimate variable
changes. This is the main topic of the next chapter.
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4A First Derivative of the Hydraulic Conductance
In Equation (4.12a) the first derivative of the hydraulic conductanceCx with respect
to the estimate variable α is used defined as

∂Cx
i

∂αi
=
∂Cx

i

∂Ti
·
∂Ti
∂αi

+
∂Cx

i

∂Ti+1
·
∂Ti+1

∂αi+1
. (4.14)

This can be computed with finite differences as

∂Cx
i

∂αi
=

∆xi (∆xi + ∆xi+1)

T 2
i

(
∆xi

Ti
+ ∆xi+1

Ti+1

)2 ·
Ti

exp(αi)
+

∆xi+1 (∆xi + ∆xi+1)

T 2
i+1

(
∆xi

Ti
+ ∆xi+1

Ti+1

)2 ·
Ti+1

exp(αi+1)
. (4.15)

For the sake of simplicity Cx
i (α) is denoted as Cx

i , and ∂T/∂α is equal to T/ exp(α)

as the estimate variable α is log transformed. To include this in the computation
of the second-order differential for the pattern derivative of space we compute the
elements within A as

∂Al,k
∂α

=
np

∑

m=l

np

∑

j=k

nm

∑

i=1

pm,i∆x
−1
i ·

(
∂Cx

i

∂αi

pj,i − pj,i+1

1
2∆xi + ∆xi+1

−
∂Cx

i−1

∂αi−1

pj,i − pj,i−1

1
2∆xi + ∆xi−1

)

.

(4.16)

4B Derivation of the Reduced Adjoint State Variable
In Equation (4.11) the reduced adjoint state variable λ is introduced to compute the
gradient of the objective function (∇Ĵ) with respect to the estimate vectors α,β,γ.
To derive λ, we write Equation (4.8) as:

Ar − S
dr

dt
+ q = 0. (4.17)

Then the objective function Ĵ is defined as:

Ĵ = Ĵ• + λ
T

[

Ar − S
dr

dt
+ q

]

(4.18)

This inclusion of Ĵ• ≡ Ĵ is necessary to include the state variable r of the reduced
model in the following expansion. To find an expression for ∆Ĵ , a first order Tay-
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lor’s series expansion is applied to the variables λ, r and α in (4.18), yielding:

∂Ĵ

∂Ĵ
∆Ĵ = λT


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
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︸ ︷︷ ︸

=0







+
∂λT

∂λT
∆λT






Ar − S

∂r

∂t
+ q

︸ ︷︷ ︸
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(4.19)

which simplifies to

∆Ĵ =
∂Ĵ

∂r
∆r + λT

[

A∆r −
1

∂t
S∆r

]

+ λT

[
∂A

∂α
∆αr −

∂S

∂β
∆β

∂r

∂t
+
∂q

∂γ
∆γ

]

. (4.20)

The reduced adjoint state variable λT is solved by letting:

∂Ĵ

∂r
∆r + λTA∆r − λT 1

∂t
S∆r = 0, (4.21)

which yields a simple expression as ∆r can be removed, and λT is solved backward
in time by an implicit Euler scheme:

(

A −
1

∆t
S

)T

λ(ti) = −
1

∆t
Sλ(ti+1) −

∂Ĵ

∂r
(ti) (4.22)

where

∂Ĵ

∂r
(ti) =

∂Ĵ

∂φ̂
(ti) ·

∂φ̂

∂r
(ti) (4.23a)

∂Ĵ

∂φ̂
(ti) = 2

no

∑

i=1

wi

[

φo
i (ti) − φ̂i(ti)

]

(4.23b)

∂φ̂

∂r
(ti) = −

np

∑

j=1

pj (4.23c)

yields a np-dimensional vector. An important difference between Equation (4.9)
and Equation (4.22) is the transpose sign T on the left-hand side of the equation.



5
Model-Reduced Variational

Data Assimilation

Abstract. This chapter describes a new approach to variational data assimilation. It does
not require an implementation of the adjoint of the tangent linear approximation of the origi-
nal model, though it has a comparable computational efficiency. In classical variational data
assimilation, the adjoint implementation is used to efficiently compute the gradient of the
criterion to be minimized. Our approach is based on model reduction. Using an ensem-
ble of forward model simulations, the leading EOFs are determined to define a subspace.
The reduced model is created by projecting the original model onto this subspace. Once
this reduced model is available, its adjoint can be implemented very easily and be used to
approximate the gradient of the criterion. The minimization process can now be solved com-
pletely in reduced space with negligible computational costs. If necessary, the procedure can
be repeated a few times by generating new ensembles closer to the most recent estimate
of the parameters. The reduced model based method has been tested on several nonlinear
synthetic cases for which a diffusion coefficient was estimated.

This chapter is adapted from Vermeulen, P.T.M & A.W. Heemink, Model-Reduced
Variational Data Assimilation, Monthly Weather Review, accepted, December 2005
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DATA ASSIMILATION is a methodology to combine the results of a large-scale
numerical model with the measurements available to obtain an optimal
reconstruction of the state of the system. It can be applied both for state

estimation and for model calibration. In this chapter we concentrate our attention
on calibration problems: the estimation of a large number of constant model pa-
rameters from data.

Variational data assimilation or ‘the adjoint method’ has been used very often
for model calibration, e.g. Carrera & Neuman [1986]; Lardner & Song [1995]; Ullman &
Wilson [1998]; Heemink et al. [2002]. The method is based on optimal control theory.
Here, a number of unknown ‘control’ parameters are introduced into the numerical
model. Using the available data, these control parameters are identified by mini-
mizing a certain objective function that measures the difference between the model
results and the data. To obtain a computationally efficient procedure, the function
is minimized with a gradient-based algorithm that determines the gradient by solv-
ing the adjoint problem. Variational data assimilation requires implementation of
the adjoint model. Even with the use of the adjoint compilers which have become
recently available [Kaminski et al., 2003] this is a tremendous programming effort
for existing model systems. This is a serious practical disadvantage that hampers
new applications of the method.

A number of existing data assimilation schemes are based on Kalman filtering.
The Ensemble Kalman Filter [Evensen, 1994] is based on a representation of the
probability density of the state estimate by a finite number of randomly generated
states. The scheme is very easy to implement and does not require the adjoint
implementation of the model. The Kalman filter can also be used for parameter
estimation problems by augmenting the state vector with the uncertain parameters
[Jazwinski, 1970]. Generally this approach performs well in case of noise parameters
that slowly vary in time (and, therefore, act like states). For constant parameters not
affected by noise however, the filter is biased [Ljung, 1979]. It is known [Jazwinski,
1970] that even for simple linear systems the Kalman filter tends to diverge from
the optimal results when the system is not controllable (i.e. when not all states are
affected by noise, which is the case for constant parameters).

In this chapter we introduce a new approach to variational data assimilation
with a comparable computational efficiency that does not require implementation
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of the adjoint of the original model. Our approach is based on model reduction. An
ensemble of forward model simulations is used to determine an approximation of
the covariance matrix of the model variability. A limited number of leading eigen-
vectors (EOFs) of this matrix are selected to define a model subspace. By projecting
the original model onto this subspace, an approximate linear model is obtained.
Once this reduced model is available, its adjoint can be implemented very easily
and the minimization process can be solved completely in reduced space with neg-
ligible computational costs. If necessary, the procedure can be repeated a few times
by generating new ensembles closer to the most recent estimate of the parameters.

The computational costs of the reduced model approach are dominated by the
generation of the ensemble of forward model simulations. To obtain an accurate
reduced model, however, often a significantly smaller simulation period can be
chosen for the ensemble of model simulations than that used in solving the mini-
mization problem. For the original model, the period chosen for the simulations is
related to the time scale of this model, while that chosen for the reduced model in
the minimization problem is the period over which data is available.

Model-reduced variational data assimilation is computationally very efficient if
the number of uncertain control parameters is much smaller than the dimension
of the state. Then the controllable subspace is very likely to be of low rank and
an accurate reduced model can indeed be obtained. An efficient implementation
can also be obtained when the number of data locations is much smaller than the
dimension of the state. Then the observable subspace (i.e. the one that can be
observed from the data) is very likely to be of low rank and as a result an accurate
reduced model can be obtained that is able to reproduce the model results at least
in the data locations.

Model-reduced variational data assimilation is more robust than the classical
approach. While the adjoint of the tangent linear approximation of the original
model produces the exact local gradient, the model reduction approach is based on
a statistically linearized model and tends to produce a spatially averaged gradient.
As a result, the model-reduced approach is less sensitive to local minima.

Our model-reduced approach was inspired by the work done in reduced-order
control, e.g. Ravindran [2002]; Antoulas, et al. [2004]; Atwell & King [2004]; Doren et al.
[2005]. In control problems, an additive low-dimensional control input is intro-
duced into the model and some performance measure is optimized by minimizing
a given performance index. We have modified this approach for large-scale param-
eter estimation problems, which generally result in highly nonlinear minimization
problems.

In this chapter we first summarize briefly in Subsection 5.1 the classical inverse
modeling methods (finite-difference method FDM and the adjoint method ADJ). In
Subsection 5.2 we describe in detail our model-reduced variational data assimila-
tion approach. A number of case studies are discussed in Subsection 5.3. Here, too,
the spatially varying diffusion coefficient in a diffusion model is identified. We fi-
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nally present a number of conclusions and some ideas for further improvement of
the method in Subsection 5.4.

5.1 Inverse Modeling
A discrete model for the evolution of an atmospheric, oceanic, or coupled system
from time ti−1 to time ti is governed by the equation

x(ti) = Mi [x(ti−1)] , (5.1a)

y(ti) = H [x(ti)] , (5.1b)

where x is the forecast state vector for an nm-dimensional domain,Mi is a dynamics
operator which includes the inputs. The dynamics Mi of the model evolution in a
computer simulation or prediction is commonly nonlinear and deterministic; H is
an operator that maps the model field to observation space, and y is the estimated
observation. We refer to such a model as autoregressive (AR) because the current
value of the state x(ti) depends, at least in part, on the prevous value x(ti−1). The
terminology ‘autoregressive’ rises to the fact that x has a regression on its own past.

In many situations, the forecast becomes more reliable when a set of model pa-
rameters within Mi can be found that reduces the misfit between a set of obser-
vations yo and its estimated observation value y. A quantity that determines this
difference is, for example, the weighed sum of squared residuals:

J (αj) =

nt

∑

i=1

[yo(ti) − y(ti)]
T

Wo [yo(ti) − y(ti)] , (5.2)

where Wo is the observational weight matrix and J is the objective function value
that is minimized with respect to a estimate variable αj , and nt is the number of
time steps in the discrete model. The presented discrete model (Equation 5.1a) can
now be rewritten as

x(ti) = Mi [x(ti−1), αj ] . (5.3)

There are several ways to find an optimal value for αj such that J is minimal
[Press et al., 1992; Tarantola, 1987]. Several techniques compute the gradient of J
(denoted as ∇J) as a finite-difference approximation of the sensitivity of J subject
to a perturbation of an estimate variable αj , so:

∇Jj ≡
∆J

∆αj
≈
J (αj + ∆αj) − J (αj)

∆αj
. (5.4)

A disadvantage of this method is that for each perturbed variable it requires a simu-
lation of the model, and an additional simulation for a reference simulation. From a
computational point of view, the method is therefore restricted to a limited number



5.2 Reduced Model Methodology 113

of variables. The adjoint or variational method [Courant & Hilbert, 1953] is more ef-
ficient as it simultaneously finds the gradient of the objective function with respect
to all variables:

∇Jj ≡
∆J

∆αj
=

nt

∑

i=1

− [λ(ti)]
T

[
∂Mi[x(ti−1)]

∂αj

]

, (5.5)

where λ(ti) is the solution of the adjoint model. It needs one forward simulation
and a second additional simulation backwards in time with the adjoint model. It is
independent of the number of variables to be estimated. However, implementation
of the adjoint method is very complicated. Besides that, the minimization can fail
as the objective function is not strictly convex and the exact gradient is sensitive to
local minima.

5.2 Reduced Model Methodology
5.2.1 Introduction
The model-reduced method used in this chapter falls into the category of spectral
methods. These methods describe the original state as a truncated series of known
basis functions and independent coefficients (i.e. the Galerkin method/Rayleigh-
Ritz method). Briefly, this type of model is based upon the simulation of specific
model configurations (i.e. the method of snapshots, [Sirovich, 1987]). By applying
functions that describe the variance in these snapshots, the superfluous state-space
dimensions can be eliminated. These functions are widely known as Proper Or-
thogonal Decompositions (POD) or Empirical Orthogonal Functions (EOF). Eventu-
ally, the model operates within the remaining dimensions R

np

in which np � nm,
and therefore consumes significantly less time. This type of model has been ex-
tensively mathematically described [Newman, 1996a,b] and successfully applied
within different fields of science, among others, the fields of turbulence and image
processing [Sirovich, 1987], rapid thermal chemical vapour deposition [Adomaitis,
1995], fluid dynamics [Hoffman Jørgensen & Sørensen, 2000] and groundwater flow
[Vermeulen et al., 2004a,b]. This concept was extended for a groundwater applica-
tion to handle an inverse modeling problem [Vermeulen et al., 2005a]. The method
was restricted to a single model system matrix that needs to be explicitly available.
In this chapter a quite generic approach is conducted that does not need this con-
straint.

5.2.2 Methodology
A disadvantage of the classical inverse methods is that they need to evaluate the
original model for each gradient computation, see Figure 5.1a. As a result, a lot of
effort is put into single gradient estimation. In contrast to this we propose to exploit
more of the information contained in the model simulation, by creating an approx-
imate linear reduced model. The flow chart (Figure 5.1b) shows that the original
model is used to generate several snapshots. These snapshots form the basis of a
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Figure 5.1: Flow chart of the methodology of inverse modeling by use of (a) the classical methods and
(b) a reduced model method. The number of gradient iterations are denoted by η and outer iteration
cycles by ζ.

reduced model for which it is easy to implement an adjoint algorithm. This model
is used to improve the parameters by repeating an inner loop η, until a minimal ob-
jective function value is found. This is optimal for the linearized reduced model but
can be sub-optimal for the original model. The outer loop ζ is entered again and
the reduced model is adjusted to reflect the updated parameters. This sequence
continues and converges when the maximal innovation of the parameters between
two adjacent ζ cycles is less than a given terminal criterion.

5.2.3 Reduced Model Structure
We start by linearizing the nonlinear high-order model (Equation 5.3) with respect
to the variable αj :

x̃(ti) = Mi

[
x̃(ti−1),α

b
]
+

nu

∑

j=1

∂Mi

[
xb(ti−1),α

b
]

∂α̃j
∆αj , (5.6)

where x̃ is the linearized state vector, nu is the number of estimate variables αj , α̃j
is the estimate variable used for the linearization, and xb is the background state
for which the corresponding estimate variables αb are linearized, thus

xb(ti) = Mi

[
xb(ti−1),α

b
]
. (5.7)

For a simple simulation model, the function ∂M/∂αj can be computed analyti-
cally and a comparable model is constructed in reduced resolution for an incremen-
tal 4D-VAR [Lawless et al., 2005]. However, for the majority of simulation models,
the partial differential can not be computed explicitly, and the function can be ap-
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proximated by

∂Mi

∂α̃j
≈
Mi

[
xb(ti−1), α

b
j + ∆α̃j

]
−Mi

[
xb(ti−1), α

b
j

]

∆α̃j
. (5.8)

Small values for ∆α̃j in here increase the accuracy for a limited range (ψj), whereas
large values can increase the overall accuracy for a wider range. A sign change will
perform a forward or backward approximation, illustrated in Figure 5.2. From a
practical point of view, the sign of ∆α̃j can depend on the direction of the parameter
update, and/or its size can decline during the iteration cycle η. The value for ψj
should depend more-or-less reciprocally on the chosen ∆α̃j .

A model can be reduced whenever the state x̃ can be reconstructed as the linear
combination

ˆ̃x(ti) = xb(ti) + Pr(ti), (5.9)

where ˆ̃x is the approximate linearized state, P is a matrix of basis vectors that span
a subspace S of the state space X , and r is a reduced time-varying state vector that
is computed by

r(ti) = Nir(ti−1) +

nu

∑

j=1

∂Ni

∂α̃j
∆αj , (5.10a)

where

Ni = PT ∂Mi[α
b]

∂xb(ti−1)
P, (5.10b)

∂Ni

∂α̃j
= PT ∂Mi[α

b
j ]

∂α̃j
P, (5.10c)



116 Chapter 5: Model-Reduced Variational Data Assimilation

where Ni is a reduced dynamics operator. It can be computed by Equation (5.10b),
however, in this chapter we assume that the vector function Mi is an unknown
quantity and therefore we elaborate another strategy to obtain the matrix Ni. This
model requires less computational time, as it simulates a reduced state within the
dimensions of a subspace S ∈ R

np

of the original state space X ∈ R
nm

with np �

nm. Note that r represents the response to a perturbation of αj , and Equation (5.10a)
is therefore refered to as a reduced perturbation model because r remains zero as
∆αj equal zero.

5.2.4 Pattern Identification
Pattern identification consists of computing a subspace S for the original model
space X . Among others, this technique is known as Proper Orthogonal Decompo-
sition (POD) or Empirical Orthogonal Functions. These functions can be consisely
described as eigenvectors of a covariance matrix constructed from empirical data
that are acquired by means of original model simulations. The application consid-
ered in this chapter prescribes a reduced model that includes a dependency on αj .
Hence, the snapshots should provide insight in the sensitivity of x ∈ X with respect
to αj ∈ Z . The projection matrix Z = {z1, ..., znu} spans the parameter space Z and
maps each estimate variable to the model field. Each element within the vector zi is
given a value of one to reflect zone i that is affected by αi; a zero value is assigned
to the remaining elements. As in the classic finite-difference method (Equation 5.4),
each sensitivity subject to αj is computed along this corresponding definition zj .
However, when we perturb a single parameter, it probably influences only a lim-
ited area within the entire model domain and yields a snapshot vector that contains
many elements that are close to zero. This strategy is disadvantageous for the qual-
ity of the basis vectors as the algorithm for this is sensitive to any correlation in
the snapshots [Cazemier et al., 1998]. To avoid this, the snapshots should reflect
the influence of all parameters simultaneously [Vermeulen et al., 2005a]. A practical
method for this is to apply a coordinate transformation by an orthonormal projec-
tion matrix F = {f1, ..., fnu}. The matrix can be chosen artificially, and transforms
∆α̃ into

∆β̃ = FTZ∆α̃. (5.11)

Instead of perturbing along the original definition of each variable zj∆α̃j (Equa-
tion 5.8), we perturbe along the vectors f j by ∆β̃j , see Figure 5.3. So a single
snapshot vector e becomes

ej(ti) =
∂Mi[x

b(ti−1), α
b
j ]

∂β̃j
≈
Mi

[

xb(ti−1),α
b + ∆β̃jfj

]

−Mi

[
xb(ti−1),α

b
]

∆β̃j
.

(5.12)

The collection of normalized snapshot vectors are then collected in a matrix E =

{e1(t1), ..., en(tnt)}. We solve the eigenvalue problem for the covariance matrix
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ETE and we scale each eigenvalue λi according to

ϕi = λi/sum(λ) × 100%. (5.13)

This expresses the relative amount of variance ϕi that each eigenvector pi repre-
sents. These steps are more extensively elaborated in Subsection 3.1.3 on page 57.
The basis becomes P = [p1,p2, ...,pnp ] and contains a selected set of eigenvectors.
The number of patterns np depends on the desired accuracy of the reduced model
and is expressed by the expected variance ϕe =

∑np

i=1 ϕi.

5.2.5 Generic Reduced Model Formulation
A reduced model operates within the subspace S that is spanned by P. The reduced
model formulation was initially presented in Equation (5.10a) and can be written
as a partitioned matrix

[

r

∆β

]

(ti) =

[

N Nβ

0 I

]

i

[

r

∆β

]

(ti−1), (5.14)

where ∆β is the projected prior estimate (Equation 5.11), N and Nβ are reduced
dynamics operators that can be computed by a linear transformation (i.e. a change
of coordinates) of ∂Mi/∂x

b
j and ∂M/∂β̃j (Equation 5.12) upon a set of basis vectors

P, so

Ni = PT ∂Mi[α
b]

∂xb(ti−1)
P, (5.15a)

N
β
i = PT

{
∂Mi[x

b(ti−1), α
b
1 ]

∂β̃1

, ...,
∂Mi[x

b(ti−1), α
b
np ]

∂β̃np

}

. (5.15b)
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For these applications, in which the operator Mi is not explicitly available, it can be
approximated by linearizing Mi with respect to xb by finite differences:

[
∂Mi[α

b]

∂xb(ti−1)

]

j

≈
Mi[x

b(ti−1) + εij ,α
b] −Mi[x

b(ti−1),α
b]

ε
(5.16)

where ε is the interval for which the partial differential is linearized, j; ∈ {1, ..., nm}

and ij is the jth column of the identity matrix I with dimension [nm×nm]. It approx-
imates the partial differential by slightly perturbing the functionMi in the direction
of each node j that is represented by εij . It yields a matrix ∂Mi/∂x

b(ti−1) (Jacobian)
which needs to be post multiplied with P. To avoid such a huge Jacobian, we do
not need it anyhow, we incorporate the post multiplication with P by perturbing
only along the pattern directions, so Equation (5.16) becomes

∂Mi[α
b]

∂xb(ti−1)
pj ≈

Mi

[
xb(ti−1) + εpj ,α

b
]
−Mi

[
xb(ti−1),α

b
]

ε
. (5.17)

The reduced operator Ni (Equation 5.15a) can now be written as:

Ni = PT

{
∂Mi[α

b]

∂xb(ti−1)
p1, ...,

∂Mi[α
b]

∂xb(ti−1)
pnp

}

. (5.18)

The dimension of the reduced model depends eventually on the number of es-
timate variables nu and the number of basis vectors np. Since the reduced model
is autoregressive and operates in the low-dimensional space R

nu+np

, it needs less
computational time compared to the original model that operates in R

nm

.

5.2.6 Adjoint of the Reduced Model
The results of the simulations are used to minimize an approximate objective func-
tion for the reduced model, defined as:

Ĵ (∆α) =

nt

∑

i=1

[

PT
(
yo(ti) −H [xb(ti)]

)
− r(ti,∆β)

]T

PTWoP
[

PT
(
yo(ti) −H [xb(ti)]

)
− r(ti,∆β)

]

, (5.19)

where the observation value yo(ti) is projected on the basis P and needs to be cor-
rected for the background state xb(ti) which is mapped on the observational space
by the operatorH because r yields a perturbation upon the background state (Equa-
tion 5.9). It seems, however, illogical to optimize

∆α = ZTF∆β (5.20)

instead of ∆β. The main reasons for optimizing ∆α are that it hardly affects the ef-
ficiency, distinguishes the method from others more clearly, and allows direct com-
parison of the gradient to other algorithms. The objective function (Equation 5.19)
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is minimized with respect to ∆αj by means of a reduced adjoint-based gradient
algorithm

∇Ĵj ≡
∆Ĵ

∆αj
=

nt

∑

i=1

[λ(ti)]
T −

{[

Nβ

0

]

i

FTd (zjαj)

}

, (5.21)

where zj is the jth vector in Z that maps the jth estimate variable on the model
field, F maps the estimate variables on the coordinate system that is affected by
∆βj , and λ(ti) is the reduced adjoint state model. The reduced adjoint state is
easy to implement through the linear character of the reduced model (elaborated in
Appendix 5A). Once the gradient is obtained, the reduced model (Equation 5.14)
is used again to explore the evaluation of Ĵ along the direction of the gradient (i.e.
a line search is carried out). From a new location along that direction, a different
gradient is determined (Equation 5.21). As both models are low dimensional, the
minimization requires a negligible amount of simulation time.

5.2.7 Efficiency
The efficiency of the minimization process is mainly influenced by

• Snapshots: The maximal number of snapshot simulations ne is equal to the
number of estimate variables times the number of time steps. However, it is
difficult to give a minimal number because there is a trade-off between the
effort put in the snapshot simulations and the ‘Ĵ-reduction capacity’ of the
reduced model evolved. For example, it is possible to start with half the max-
imal number of simulations such that the minimization procedure will first
focus on the main directions and add more snapshots as the process proceeds.

• Outer Iteration: The number of outer iterations ζ is influenced by the chosen
abortion criterion γ. It should be chosen not too small (γ ≥ 0.1), as this causes
jumping of sub-optimal posterior estimates around the optimal global solu-
tion. Since the reduced model probably overestimates αt

j through the applied
linearizations, it probably yields a redundancy of ζ whenever a threshold ψj
is applied. This threshold prevents the model from updating the variables to
extraordinary values, far beyond the background estimates αb

j , see Figure 5.2.

The next subsection will illustrate that high efficiencies can be achieved.

5.3 Synthetic Cases
5.3.1 Introduction
Generally, large-scale numerical models can be used to describe a particular trans-
port through a certain medium. The generic time-dependent diffusion equation
can be written as a partial differential equation for a discretised numerical scheme,
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so

S
∂x

∂t
= ∇2κx + q (x, t) ; x ∈ Ω, (5.22)

where κ [T−1] contains the diffusion coefficient, t ∈ [0,∞) [T] is the time, S [–] is
a storage coefficient, and q [LT−1] is a linear and/or nonlinear Neumann condition
that determines imposed fluxes. The operator ∇2 =

∑n
i=1 ∂

2/∂x2
i and is the Lapla-

cian for the current model domain Ω ∈ R
nm

. A solution to the partial differential
equation can be obtained by imposing certain boundary conditions and applying a
finite-difference approximation for the space and time derivative of x.

In the next subsections several synthetic cases are described. The main pur-
pose of this is to illustrate the methodology and to demonstrate its efficiency and
robustness compared to classic minimization algorithms, i.e. the method of finite
differences (Equation 5.4) and the adjoint-based method (Equation 5.5). The pa-
rameter minimization for each case is computed by the Variable Metric Method
(Quasi Newton) [Press et al., 1992] which adjusts the acquired gradient by an ap-
proximated Hessian. The iteration cycle is aborted when the maximal innovation
of the parameters

γ =

u∑

j

‖[αb
j ]
η − [αb

j ]
η−1‖ ≤ 0.1. (5.23)

Unless stated differently, the number of evaluations of the original model τ is used
to compare the different methods. This includes the number of evaluations that
were eventually needed for the line searches. Another quality criterium is the rela-
tive accuracy of the posterior estimate αa

j . This is determined by:

ε = 100% · ‖αt‖ −

√
√
√
√

1

nt

nt
∑

j=1

{ [
αa
j

]2
if αa

j ≥ 1
[
αa
j

]−2
if 0 < αa

j < 1,
(5.24)

where αt is the ‘true’ value for the estimate variable, which is equal to 1 for all
cases.

5.3.2 Problem Description
The synthetic cases in the following subsections increase in complexity with respect
to the number nu of estimate variables Z ∈ R

nu

. The corresponding network con-
sisted of a number of columns and rows dimensioned by ∆x ≡ ∆y = 10 m, and κ

and S were kept at 1 day−1 and 0.27 for the entire model domain Ω, respectively.
In each case, the estimate αj affected the parameter κ. Two linear Neumann con-
ditions were defined near the center of the model that varied randomly between
-2 ≤ q(ti); i ∈ {1, ..., nt} ≤ 2 mday−1. The time-invariant states for the Dirichlet
conditions were Γ(ti); i ∈ {1, ..., nt} = 0 m and located at the entire left side of
the model domain. Each case was simulated for 10 time steps with ∆ti = 10 days.
Finally, a set of synthetic measurements yo(ti); i ∈ {1, ..., nt} was generated for
different locations.



5.3 Synthetic Cases 121

10 20 30 40 50 60 70 80 90 100

1

columns

yo

?
q

?
q

?
Γ

?
Γ

?

Figure 5.4: Model network for Case I (Z ∈ R
1), the location of boundary conditions (q,Γ) and the

observation yo is given.

Case I - Z ∈ R
1

In this case, a one-dimensional model was discretised by 101 columns, and two
Neumann conditions that render the system, see Figure 5.4. The estimate variable
α1 was defined for the entire domain, so z1 = 1.

To illustrate the pattern identification procedure as described in Subsection 5.2.4,
the snapshots E were generated according to Equation (5.12). It should be noticed
that for this one-dimensional parameter case ∆α1 = ∆β1. The resulting snapshots
(np = 10) contained the variance of the original state vector related to the Dirich-
let and Neumann boundary condition, and a perturbation of the estimate variable,
see Figure 5.5a. In essence, the reduced model needs to represent only this model
behavior. The resulting patterns are depicted in Figure 5.5b and explained ϕe =

99.99% of the snapshot variance. Only four of them described some significant vari-
ance (ϕi > 1%). For this application we have defined ϕe = 99.99% which resulted
in six patterns. We neglected the others though most of the variance of the original
model could be described with respect to the boundary conditions and the estimate
variable. With the selected set of patterns P, a reduced model (Equation 5.14) was
constructed.

For several values of ∆α the approximate objective function Ĵ (Equation 5.19)
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Ĵ(∆α̃ = 0.01)
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Figure 5.6: Graph of the objective function J and Ĵ versus a guess value ∆α. The Ĵ is computed by
different reduced models by use of (a) a linearized state vector xb equal to the observation yo, and (b)
whereby xb 6= yo. Both models are defined by ϕe = 99.99%.

was evaluated, see Figure 5.6a. For reasons of comparison, the objective function J
(Equation 5.2) is also depicted. The shape of Ĵ is strictly parabolic because the re-
duced model is linear and the objective function is quadratic. Moreover, its shape is
sensitive to ∆α̃ and whenever we increase it, we observed that Ĵ becomes flattened,
see e.g. Ĵ(∆α̃ = 1). Nevertheless, the location of min(Ĵ) remains identical to that
of min(J). To improve the trajectory of the fit between the two objective functions,
a scaling of ∆α̃ can be applied according to the expected influence of the estimate
variables on the objective function. E.g., in this example α affects κ, and κ affects
x logarithmically. Hence a corresponding scaling operation is recommended, so
∆α̃ = log(∆α̃). It can be seen in Figure 5.6a that this scaling operation improves
the fit between J and Ĵ .

In realistic problems, the point of linearization is not identical to the optimal
parameters that yield the least error with the observations, i.e. xb 6= yo depicted
in Figure 5.6b. In this case a relative small value for ∆α̃ = 0.01 underestimated
the optimal location. A relative large log-transformed value for ∆α̃ = 1 shifted
the location of min(J) extraordinary. For the synthetic case, the relative small log-
transformed value ∆α̃ = 0.01 performed best. It can be stated that ∆α̃ relates to ε
(Equation 5.24), which is unfortunately not known beforehand. A relevant future
research direction is fine tuning this parameterization.
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Figure 5.7: Model network for Case II & III (Z ∈ R
42), the location of linear Neumann conditions

q, nonlinear Neumann conditions qf , Dirichlet conditions Γ, and observations yo are given. The
definition of the zones are given in the grid cell centers.

Case II - Z ∈ R
2

In this case, the diffusion Equation (5.22) is used to estimate two variables that affect
the parameter κ for two zones. Within each of these zones a synthetic observation
was created, see Figure 5.7a. The objective function J is depicted in Figure 5.8
for the range 0.1 ≤ log(αj) ≤ 3.1, in which the optimal value is located at αt =

1. For the situation in which the prior estimates were assumed to be α1 = 2.5 and
α2 = 0.3, this minimal value was eventually found after η = 11 iterations with the
original adjoint method (Equation 5.5), see Table 5.1a.

To optimize the prior estimates with the reduced model, we constructed a model
for αb

1 = 2.5 and αb
2 = 0.3. It yielded a reduced model with six patterns that describe

ϕe = 99.99% of the snapshot variance. Combined with two estimate variables,
the reduced model operated eventually in R

6+2, instead of R
42×2. This reduced

model decreased Ĵη significantly, and found a new sub-optimum at [αa
1]
η = 1.53

and [αa
2]
η = 0.84, see Figure 5.9a. The process reentered the outer loop ζ (Figure 5.1),

and hence the reduced model and the surface of Ĵ changed. The sub optimum from
the previous model Ĵη , did not appear to be an optimum for the updated model
and after another minimization loop, a different suboptimum was found again at
[αa

1]
η+1 = 0.97 and [αa

2]
η+1 = 1.037. This sequence was reiterated, and after η =

4 cycles the optimal values for αj were found, see Table 5.1b. Compared to the
classic methods, almost an identical number of simulations of the original model
were needed. For a different situation in which less variance was included (90.39%
≤ ϕe ≤ 95.62%), the reduced model still converged, see Table 5.1c. An explanation
for this is that for the latter case, the surface of Ĵ did not depend on the patterns
that were eliminated. These patterns describe some model variance, irrelevant to
the observations.
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Figure 5.9: Surface of Ĵ for subsequent outer iterations (a) ς = 1, (b) ς = 2, (c) ς = 3, (d) ς = 4
for log(α1) with respect to log(α2). The arrows represent the gradient ∇Ĵ . The reduced model is
linearized for αb

1 = 2.5 and αb
2 = 0.3 and explains ϕe = 99.99% model variance.
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Table 5.1: Results for Case II for a minimization of two estimate variables α1 and α2 with (a)
the classic methods and (b-c) a reduced model method. This is expressed by the number of gradient
iterations η, the number of outer iteration cycles ζ, the number of simulations with the original model
τ , the relative estimation error ε, and the innovation γ. For each ζ-cycle, Ĵb and Ĵa express the prior
and posterior objective function value, respectively.

(a) Original Model − †finite-difference gradient (Eq. 5.4); ‡adjoint gradient (Eq. 5.5)
η τ α1 α2 Jη ε γ R

n

0 2.50 0.30 0.4557 115.55 42
6† 26 1.01122 0.99225 0.3684·10−4 0.1597 0.496·10−3

11‡ 32 0.99988 1.00022 0.2274·10−7 0.4804·10−2 0.6366·10−3

(b) Reduced Model − ϕe = 99.99%
ζ τ α1 α2 Ĵb Ĵa ε γ R

n

1 7 2.50 0.30 0.3603 0.09657 194.63 1.50 8
2 14 1.5259 0.8353 0.1215 0.5471·10−2 37.14 0.974 8
3 21 0.9733 1.0373 0.4179·10−3 0.7051·10−4 3.24 0.5526 8
4 28 0.9996 0.9997 0.6218·10−6 0.5704·10−7 0.031 0.0375 8

(c) Reduced Model − 90.39 ≤ ϕe ≤ 95.62%
ζ τ α1 α2 Ĵb Ĵa ε γ R

n

1 4 2.50 0.30 0.3603 0.10736 194.63 1.50 4
2 8 1.4689 0.9198 0.1523 0.01125 29.27 1.031 4
3 12 1.0006 1.0028 0.1913·10−4 0.23437·10−5 0.1708 0.468 4
4 16 0.9992 1.0009 0.1996·10−6 0.18753·10−6 0.0873 0.00191 4

Case III - Z ∈ R
42

The efficiency and performance of the minimization problem depends for most of
the part on the dimension and complexity of the parameter space Z . Furthermore,
it relates to the identifiability of estimates and whether the prior estimate αj is
already near its optimal value αt

j . To illustrate this, we applied a parameter mini-
mization to a 42-dimensional parameter problem, so Z ∈ R

42. For this case, each
active cell (i.e. each grid cell without a Dirichlet condition) possesses an observa-
tion yo and is part of an individual zone zj , see Figure 5.7b. Furthermore, several
conditions qf were added that describe a flux that behaves nonlinearly to the state,
so:

qf(x, t) =

{

x · 0.1 ; if x ≤ 0

0 ; if x > 0
. (5.25)

To obtain insight in the robustness of the reduced model, we generated differ-
ent samples of prior estimates from which the objective function was minimized.
A constrained Monte Carlo sampling scheme was used known as the Latin Hyper-
cube Sampling (LHS) [McKay et al., 1979; Iman & Shortencarier, 1984] This method
divides the range of each αj into n non-overlapping intervals on the basis of equal
probability. One value is randomly sampled from each interval with respect to the
probability density in the interval. The values are then paired in a random manner
with the other valued αs. We sampled 5 times from 10 different log-normal distri-
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Figure 5.10: Graph of the relative error ε of the prior estimate versus the posterior estimate, for the
reduced model (ϕe = 99.99%) as well as for two classic methods.

butions N log(µ, σ), in which µ = 1 and σ2 ∈ {0.1,0.2–1,10}. For those samples, the
minimization results are depicted in Figure 5.10.

For relative simple disturbances of the prior estimate (ε ≤ 60%), each of the
methods described in this chapter succeeded in computing the correct posterior es-
timate value. Since the adjoint method yields an exact gradient, it is sensitive to
local disturbances in the surface of J and this is the main reason of failure when
ε > 1,000%. Although the finite-difference method is more sensitive to this phe-
nomenon, its robustness can be artificially increased by starting with a large finite-
difference step size and decreasing the step size while proceeding. Of course, these
results are specific for the current application, and can be rather different from an-
other applications. Nevertheless, the reduced model converged fairly constantly
and was not sensitive to the relative error ε of the prior estimate. The explanation
for this result is twofold: (1) the applied linearization ‘flattens’ the objective func-
tion, and (2) the reduced model describes a part of the total model variance, and
local disturbances in the objective function are mainly caused by less important and
local variances that are not present in the reduced model.

The efficiency of the reduced model is expressed by τ and represents the number
of model simulations of the original model and, as expected, τ increases with ε, see
Figure 5.11. This figure shows that for the reduced model τ is almost one order
of magnitude less than for the finite-difference method. Moreover, the reduced
model offers an efficiency comparable to the adjoint method, without the burden
of implementation of the adjoint.
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5.4 Conclusions
This chapter describes a new approach to the calibration of complex numerical sim-
ulation models. The main advantages of the proposed concept are that it is generic
in its kind, easy to implement, applicable to complex models that consists of mul-
tiple systems, and very time efficient compared to current classic minimization se-
quences.

The concept is based on the computation of a reduced model by use of a number
of simulations (i.e. snapshots) of the original model. Those snapshots describe the
variance of the original model with respect to its dynamics and parameters. By se-
lecting the main eigenvectors of the covariance of the snapshots, a reduced model is
created that operates within a reduced space. It models the effect of perturbations
of the parameters with a negligible amount of simulation time. As the adjoint al-
gorithm for this reduced model is easy to implement, the reduced model approach
is capable of finding the sub-optimal set of parameters that yields a minimal objec-
tive function value for the reduced model. With these parameters, the sequence is
reiterated until the parameter values converge.

The algorithm was tested on several nonlinear synthetic cases in which the dif-
fusion coefficient has been estimated in a diffuse type model. The results were com-
pared with two widely used minimization algorithms, the method of finite differ-
ences and the adjoint method. From several minimization problems that increased
in complexity, the reduced model always converged in contrast to the classic meth-
ods. These methods failed if the prior estimate was too distorted compared to its
true value. Moreover, the reduced model approach required more or less the same
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number of simulations of the original model as the adjoint method. Since the results
from the synthetical cases are promising, some issues can be addressed to improve
the method’s efficiency even more:

• Since the approximation of the Hessian is used to update the parameters
within the inner iteration cycle η, a comparable algorithm can be applied to
the outer iteration loop ζ.

• The accuracy of the reduced model is directly related to the step size and
direction of the linearization (Equation 5.8). These could be exploited during
the outer iteration by adding some intelligence.

• The patterns could be varied over time because this can reduce the overall
number of patterns. On the other hand, time propagating phenomena (e.g.
waves) are inefficiently described by POD [Hooimeijer, 2001]. For these cases,
the POD should be time varying and during the reduced model simulation,
the time-dependent coefficients should be transformed from the subspace de-
scribed by a POD for time step i into the subspace of the adjacent POD for time
step ti+1.

• To minimize the objective function, the reduced model needs only to forecast
the state accurately for the observations. Hence, it is possible to construct
only a reduced model for the observations. A main advantage in this is that
the effort of the algebraic computations (i.e. the eigenvalue decomposition
and linear transformations) is reduced, and eventually fewer patterns will be
needed.

5A Derivation of the Reduced Adjoint State Variable
In Equation (5.21), the reduced adjoint state variable λi+1 is introduced to compute
the gradient of the approximate objective function Ĵ with respect to each estimate
∆αj , so:

Ĵ(∆αj) = Ĵ•(∆αj) +

nt

∑

i=1

[λ(ti)]
T {rp(ti) − N

p
i [rp(ti−1)]} , (5.26a)

where Ĵ• ≡ Ĵ and the partioned matrix Np and vector rp are defined as

N
p
i =

[

N Nβ

0 I

]

i

(5.26b)

rp(ti−1) =

[

r

∆β

]

(ti−1), (5.26c)
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where ∆β represents a projected perturbation of the original perturbed estimate
variables (Equation 5.11). After a Taylor series expansion for the variables, λ(ti),
rp(ti), rp(ti−1) and ∆αj , the expression yields:

∆Ĵ =
nt

∑

i=1

[λ(ti)]
T

[

−N
p
i ∆rp(ti−1) + ∆rp(ti) +

∂r(ti)

∂∆αj
∆αj

]

+

[
∂J

∂rp(ti)

]T

∆rp(ti). (5.27)

The reduced adjoint state can be solved by re-expressing rp(ti−1) to be rp(ti):

− [λ(ti)]
T

Ni + [λ(ti−1)]
T

=

[
∂J

∂rp(ti)

]T

, (5.28)

which yields the reduced adjoint model λ(ti); i ∈ {nt, ..., 1} to be solved backwards
in time:

λ(ti−1) = NT
i λ(ti) + S(ti−1), (5.29a)

S(ti−1) =

[

∂J/∂r(ti−1)

∂J/∂∆β

]

, (5.29b)

∂J

∂r(ti−1)
= −2PTWoP

[

r(ti−1) − PT
{
yo(ti−1) −H [xb(ti−1)]

}]

(5.29c)

∂J

∂∆β
= 0, (5.29d)

where λ(tnt) equals zero. The gradient of ∆J/∆αj eventually becomes:

∆J

∆αj
=

nt

∑

i=1

[λ(ti)]
T ∂rp(ti)

∂∆αj
, (5.30a)

where

rp(ti)

∂∆αj
=
∂rp(ti)

∂βj
·
∂βj
∂αj

(5.30b)

rp(ti)

∂∆βj
= −

[

Nβ

0

]

i

(5.30c)

∂βj
∂αj

= FTd (zjαj) , (5.30d)

where F is a transformation matrix that maps the first derivative of the mapping by
means of zj of the jth estimate variable on the model field.





6
Inversion of Reduced

Nonlinear Incremental
Models

Abstract. Despite increasing computational resources many high-dimensional applica-
tions are impractical for model inversions. In this paper two methods are presented that
are promising for high-dimensional model inversion. The methods draw on POD (Proper
Orthogonal Decomposition) and yield reduced models that describe a truncated behaviour
of the original model. We utilize POD differently for the two methods that differ in efficiency
and implementation. The first method (IGPM) applies a POD to an existing partial differential
equation, the second method (ISPM) applies it to an auto-regressive formulation of a discrete
model. Both method were applied to several synthetic cases and a real-world case, and by
comparing them to classic inverse methodologies (i.e. the method of finite differences and
the adjoint method). The two POD methods appeared to be computationally robust and more
efficient for a wide range of prior estimates. Moreover, the implementation of an adjoint for
the ISPM method is easy.

This chapter is adapted from Vermeulen, P.T.M, A.W. Heemink, & C.B.M. Te Stroet,
Model Inversion of Transient Nonlinear Groundwater Flow Models using Model

Reduction, Water Resources Research, submitted 2006
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COMPUTING A MODEL that satisfies (inverts) a given observation optimally
is known as inverse modeling. It is widely accepted that a model becomes
thereby more reliable, though the model should be thoroughly reviewed to

ensure the reasonableness of the results. On the other hand, there are an infinite
number of objective functions (calibration criteria) to represent the error of calibra-
tion, and the computed calibration parameters are largely influenced by how this
objective function is formed. Hence, the results of the minimization are not unique,
and subject to the chosen objective function and the estimate variables. So, a sin-
gle model inversion should be embedded into another inversion cycle that varies
the calibration variables, e.g. conceptualization, model parameterizations [Poeter
& Hill, 1997]. Extensive reviews of inverse models in geohydrology are given in:
Carrera & Neuman [1986]; Cooley [1985]; Bennet [1992], among others. It is beyond
the scope of this chapter to compare the differences between the techniques, but it
is essential for all of them that the model inversions can be solved within a limited
amount of time.

With regard to groundwater modeling, the time efficiency can be increased by
(1) use of a more time-efficient solver [Mehl & Hill, 2001], (2) applying a coarse
grid and/or locally refined grid [Mehl & Hill, 2003; Wen et al., 2003] and/or (3)
formulating a reduced model. This chapter describes the last item, which falls in
the category of spectral methods. It is worthwhile mentioning that all methods can
benefit from parallel computing. For example, in hydrology this is being exploited
by Wu et al. [2002] and for reactive transport by Hammond et al. [2005]. Efforts to
couple models are being designed such that they can be partitioned on different
processors [Winter et al., 2004].

Model reduction represents the solution to a problem as a truncated series of
known basis functions and independent coefficients (Galerkin Method), thoroughly
elaborated by Newman [1996a,b]. Roughly speaking, the goal of these methods is
to replace the initial data by data that are optimal in terms of storage capacity. We
achieve this by suppressing redundant data that exists within multi-dimensional
data sets. It ‘breaks up’ the initial data sets into different components (i.e. the ba-
sis functions) that all together represent the original data set again. This can be
obtained by multiplying the components with appropriate coefficients. The ba-
sis functions are computed by use of the Proper Orthogonal Decomposition (POD)
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(also known as Principal Component Analysis (PCA), Empirical Orthogonal Func-
tions (EOFs), or Karhunen Loève decompositions (KL), although the original con-
cept goes back to Pearson [1901]). These functions represent the space of interest as
‘organized’ spatial features (coherent structures) that are optimal for reconstructing
and modeling a signal [Sirovich, 1987; Holmes et al., 1996]. By projecting the origi-
nal partial differential equation (PDE) upon a truncated series of basis functions
(Galerkin Projection), it yields a reduced model that is low dimensional because
the set of basis functions is often limited. Recently this type of model was intro-
duced in numerical groundwater flow modeling by Vermeulen et al. [2004a,b] (see
Chapter 3). It has been applied in other fields of science [Cazemier et al., 1998; Hoff-
man Jørgensen & Sørensen, 2000; Park & Cho, 1996]. Park et al. [1999] mentioned its
usefullness for model inversion and implemented a reduced adjoint model for the
minimization of a heat source function. Vermeulen et al. [2005a] implemented an
approach for linear groundwater flow in which the model inversion is performed
in reduced space and the results are then reconstructed to the original space to up-
date the reduced model (dual approach), see Chapter 4. Quite similar approaches
were conducted recently in optimal control design [Atwell & King, 2004; Doren et al.,
2005] and atmospheric modeling in which the minimization was done in observa-
tion space [Courtier, 1997]. The latter relates to the ‘balancing’ principle of systems
as it truncates spaces that have no influence on observations [Lee et al., 2000; New-
man & Krishnaprasad, 1998].

To make the reduced model even more time efficient, an ‘incremental’ approach
can be used in which the original nonlinear model equation is replaced by a re-
duced linear incremental system [Courtier et al., 1994; Lawless et al., 2005; Vermeulen
& Heemink, 2006a]. With this system we are able to find the minimum of an ob-
jective function by interchanging only the estimate variables within the reduced
model. This chapter describes two different implementations of these incremental
approaches for groundwater models (finite differences).

The chapter starts by overviewing the classical methodologies for inverse mod-
eling. Subsection 6.2 is devoted to the reduced model methodologies whereby two
different implementations of the POD are evaluated. In Subsection 6.3 a note is
given on their computational efficiency. In Subsection 6.4 several synthetic cases
are used to express the performance of the methodologies in terms of efficiency
and robustness. The subsection is followed by the results obtained by a real-world
case in Subsection 6.5. Subsection 6.6 gives conclusions and recommendations.
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6.1 Classic Methodology
6.1.1 Forward Model
The algorithms in this chapter are elaborated for three-dimensional groundwater
flow which can be described by:

3∑

i=1

∂

∂xi

[

Cxi(αj , x)
∂φ(x)

∂xi

]

− Cf(x, φ)φ(x) − q(x) − C f(x, φ)ht(x) = −S(x)
∂φ(x)

∂t
,

(6.1)

where φ is the hydraulic head [L] at location x in the computational domain x ∈

Ω, Cxi is the hydraulic conductance [L2T−1] aligned to xi which depends on an
estimate variable αj (Appendix 6A), S is the storage coefficient [–], t is the time
[T], q is a specific source term [LT−1] for a portion of the model domain x ∈ ∂Ωq,
and Cf [T−1] is the total sum of linear and/or nonlinear specific conductances for a
portion of the model domain x ∈ ∂Ωf that depends on φ(x) and hf(x) where hf is a
specific reference level [L].

The PDE (Equation 6.1) can be solved by means of a finite-difference discretiza-
tion for a mesh of grid cells nm in space and time with boundary conditions φd(x);
x ∈ ∂Ωd as done in McDonald & Harbaugh [1988]. This discretized model can be
written in matrix form as

A[α]φ(ti) = b(ti), (6.2a)

with

A[α] = C[α] −
1

∆t
S − [Cf ]ι(ti), (6.2b)

b(ti) = −
1

∆t
Sφ(ti−1) + q(ti) − [Cf ]ιhf(ti), (6.2c)

where φ ∈ R
nm

is a vector of the nodal hydraulic heads, C is a heptadiagonal coef-
ficient matrix that contains the hydraulic conductances C at the nodes of a spatial
network, S and [Cf ]ι are both diagonal matrices for the elements of the network in
which the latter depends in case of nonlinearity with respect to φ on an internal
iteration cycle ι (i.e. a Picard iteration), q and hf are vectors for source/sink terms
and reference levels, respectively.

6.1.2 Inverse Model
The objective function value J describes the weighed sum of squared residuals:

J(αj)
η =

nt

∑

i=1

(

{yo(ti) −H [φ(ti)]}
T

Wo {yo(ti) −H [φ(ti)]}
]

, (6.3)

where J is the objective function value for the ηth iteration subject to the jth esti-
mate variable αj , Wo is the observational weight matrix, yo(ti) are the observations
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for the ith time step out of nt, and H is an operator that maps the model field to
observation space. To minimize J , two classic methods are described concisely and
implemented for purposes of comparision with the reduced model methodologies
(see Subsection 6.2).

• The finite-difference method (FDM) approximates the first derivative of J with
respect to the variable αj [Cooley, 1985], see Equation (5.4). The method is
easy to implement, but a disadvantage is that its efficiency decreases with the
number of αs, see Figure 6.1a.

• A more sophisticated and time-efficient method computes the exact gradient
of J with respect to all αs, simultaneously. This method is known as the ad-
joint method (ADJ) or 4D-variational method [Courant & Hilbert, 1953; Townley
& Wilson, 1985], so:

[
∆J

∆αj

]η

=

nt

∑

i=1

{

λT(ti)

(
∂A

∂αj

)

φ(ti)

}

, (6.4)

where λ(ti) is called the adjoint model (concisely derived in Appendix 6B).
For each gradient computation it needs to solve the forward model (Equa-
tion 6.2a) and the adjoint model backwards in time (Equation 6.23), and is
independent of the number of αs, see Figure 6.1b. However, a disadvantage
is that the adjoint model is often hard to implement, especially when the for-
ward model contains nonlinearities.

The classic inversion methods put a lot of effort into a single gradient estimation
η that vanishes at the next iteration η+1. The proposed methodology in this chapter
puts this effort into model reduction.

(a) FDM

Initial Param. αb
j

Forward Model �
α perturbations

Gradient

Forward Model �
line search

improve param.

Optimal Param. αa
j

?

?

?

?

-
η

(b) ADJ

Initial Param. αb
j

Forward Model

Adjoint Model

Gradient

Forward Model �
line search

improve param.

Optimal Param. αa
j

?

?

?

?

?

-
η

Figure 6.1: Flow chart of classic inversion methods; (a) the finite-difference method (FDM), and (b)
the adjoint method (ADJ). The number of gradient computations is expressed by η.
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(a) High Dimensional

Initial Param. [αb
j ]0

Forward Model �

snapshots

POD

Transformation

Reduced Model

?

?

?

?

-

(b) Low Dimensional

∆αj = 0

Forward Model

Adjoint Model

Gradient

Forward Model �
line search

-

improve-param.

η ?

?

?

?

?

-

improve reduced model

ζ

[αb
j ]ζ+1 = ∆αa

j [αb
j ]ζ

Figure 6.2: Flow chart of the reduced model methodology that exists of (a) a high-dimensional part to
compute PODs that transform the original model into a reduced model and (b) a low-dimensonal part
used for the model inversion.

6.2 Reduced Model Methodology
6.2.1 Introduction
The Galerkin method is a discretization scheme for PDEs that is based upon the
assumption that the spatial distribution of the original state vector (φ ∈ R

nm

) is
very complex in contrast to its behavior in time. For these situations, an approxi-
mate state φ̂ [L] can be computed by separating the original state into a spatial and
time-variant component:

φ̂(x,αb + ∆α, ti) = φb(x,αb, ti) + P(x)r(∆α, ti), (6.5)

where φb(x,αb, ti) [L] is the background state as a function of the background
estimates α, r [L] is the reduced state equivalent of φ, and P [–] is a truncated set
of spatial basis vectors (i.e. the projection matrix) that span a subspace S of the
original state space X , see for elaboration Subsection 3.1.3 & 4.1.2. In this chapter
we derive different ‘incremental’ nonlinear models to simulate the coefficients r as a
function of a perturbation of the estimate variables ∆α. We apply a transformation
of the original set of equations by use of the PODs that yield an ordinary differential
equation (ODE) for r (refered to as ‘reduced model’), see Figure 6.2a. These models
can then be used, at low computational costs, to optimize a set of estimate variables
by minimizing an approximate objective function Ĵ :

Ĵ(∆αa
j )
ζ =

nt

∑

i=1

[

PT
{

yo(ti) −H [φb(ti)]
}

− r(∆αa
j , ti)

]T

PTWoP
[

PT
{

yo(ti) −H [φb(ti)]
}

− r(∆αa
j , ti)

]

, (6.6)

where ζ is the outer iteration index. An advantage is that the minimization of Ĵ
with respect to ∆αa

j can be done only with the reduced model (Figure 6.2b) and
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consumes a negligible amount of computation time as r ∈ R
np

with np � nm.
It yields an optimal set of posterior estimates [∆αa

j ]
η for the current ηth reduced

model that can still be sub optimal for the original model. Therefore, the outer
loop η + 1 is entered again with [αb

j ]
η+1 = [∆αa

jα
b
j ]
η which yields an updated set

of snapshots and a different reduced model. This iteration cycle continues until a
given termination criterion γ is met for the innovation of nu estimate variables, thus

nu

∑

j=1

∥
∥[αb

j ]
η+1 − [αb

j ]
η
∥
∥ ≤ γ. (6.7)

We describe two different formulations based upon (1) a transformation of the
governing PDEs (Incremental Galerkin Projection Method IGPM), and (2) a transfor-
mation of an autoregressive representation of the governing system of PDEs (Incre-
mental Sequential Projection Method ISPM). The last method is extensively elabo-
rated in Chapter 5. The two methods differ in their forward and backward (adjoint)
model formulations and above all, their snapshots requirements.

6.2.2 Incremental Galerkin Projection Method
Snapshots
In previous publications [Vermeulen et al., 2004a,b, 2005a] effort was put into the
computation of snapshots that unravel the model behavior for specific boundary
conditions subject to αb

j . For simple linear models this can be advantageous caused
by the superposition principle (see grey-box on page 58). However, for nonlinear
models this principle is not valid and another method that defines a snapshot dis-
tortion vector αe

i is needed. This distortion vector affects the parameter T in the
original model and yields a snapshot series E[αe

i ](ti); i ∈ {1, ..., nt} for the entire
time domain. After that, another vector αe

i+1 is defined that yields a different snap-
shot series (single estimation), see Figure 6.3a. From a mathematical point of view,
the subsequent vectors αe

i should be uncorrelated, and a method that can resolve
this is the Latin HyperCube Sampling (LHS) [Iman & Shortencarier, 1984], see Subsec-
tion 4.2.2 on page 96. The PDF used in this chapter is based upon a log-normal dis-
tribution of αb

j characterized by a log-transformed deviation factor exp(δj). Large
values for δj will increase the subspace S and yield a reduced model that is less
accurate but gives a broad averaged view of Ĵ . Tiny values for δj , however, de-

(a) Single Estimation

αe
3

αe
2

αe
1

(ti) −→

n
−
→

(b) Dual Estimation

αe
1 αe

2 αe
3

(ti) −→

n
−
→

Figure 6.3: (a) Single and (b) dual estimation methodology for the computation of n-snapshot simu-
lations for the time domain (ti); i ∈ {1, ..., nt}.
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crease the subspace and compute an accurate Ĵ for a limited parameter space. In
practice, the robustness of the method is improved when δj is sequentially evolved
as [δj ]

η+1 < [δj ]
η .

Forward Model
The linearization of the high-order model is performed by including an extra term
that expresses the dependency of the system dynamics on αb

j (elaborated in Ap-
pendix 6C). Linearization needs to be performed for a certain distortion vector αb

that yields a specific state, which we call the background state φb(αb) (i.e. a fixed
point approximation). This is the normal procedure and our adjustment is that we
interchange this background state recurrently by the current state φ to reflect the
current distortion vector αa. This expression is obviously superfluous to the orig-
inal model, but it yields eventually an incremental reduced model with respect to
∆αj . So, including the extra term, substituting the state vector with the Galerkin
method (Equation 6.5), and applying a finite-difference approximation in space and
time, Equation (6.1) becomes

3∑

i=1







∂

∂xi

[

Cxi([αb]η)
∂P

∂xi

]

︸ ︷︷ ︸

ni

+
np

∑

j=1

∂

∂xi

[
∂Cxi([αb]η)

∂α̃j

∂P

∂xi

]

︸ ︷︷ ︸

uij

∆αj







r(ti) −

−
1

∆t
SPr(ti) − [Cf ]ιPr(ti) = −

1

∆t
SPr(ti−1) + q(ti) − [Cf ]ιhf(ti), (6.8)

where α̃i is the interval for which the partial differential equation was linearized
(see Figure 5.2). The expression can be simplified by computing the second-order
differentials of the pattern derivative of space and store the results in N = {n1, ...,nn}

and Uj = {u1j , ...,unj}. More elaboration can be found in Subsection 4.1.2 on page
93 and the Equations 3.28a-c on page 66). Each term in Equation (6.8) can now be
projected by multiplication with the basis vectors PT, yielding their reduced equiv-
alents

N = PTN, (6.9a)

Uj = PTUj , (6.9b)

S = PTSP, (6.9c)
(

Cf
)ι

= PT(Cf)ιP, (6.9d)

q(ti) = PTq(ti), (6.9e)

hf(ti) = PThf(ti). (6.9f)
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It yields the following formulation of the IGPM:


N +

np

∑

j=1

Uj∆αj −
1

∆t
S − (Cf)ι



 r(ti) = −
1

∆t
Sr(ti−1) + q(ti) − (Cf)ιhf(ti),

(6.10)

for which the model is initialised by computing r(t0) = PTφ(t0) and defining a
prior incremental estimate ∆αb

j . The model is nonlinear for the matrix Cf , which
needs to be evaluated iteratively in the original dimensions and projected on the ba-
sis vectors repeatedly (Equation 6.9d). However, this computation needs to be done
only for that portion of the model domain x ∈ Ω

f . For large-scale models however,
it is doubtful whether this iteration is necessary, because of the projection these
slight adjustments within Cf will have a limited influence upon Ĵ . This is a heuris-
tic assumption that increases the efficiency of a reduced model even more. A final
remark is that a Dirichlet condition (i.e. a ‘constant head’ cell) should be modeled
as a linear boundary condition with a high conductance C f such that φ(ti) ≈ φd.

Adjoint Model
An implementation of the adjoint for the reduced model is comparable to that of
the original model and yields

∆Ĵj
∆αj

=
∑

i=1

[λ(ti)]
T

Ujr(ti), (6.11)

where λ(ti) [–] is the reduced adjoint model (elaborated in Appendix 6D) and
should be computed backwards in time to represent the reduced system dynamics
with respect to the partial derivative ∂Ĵ/∂r(ti). To ensure that Cxi +(∂Cxi/∂α̃b

j )∆αj
remains positive during the optimization procedure, ∆αj is log-transformed. As a
consequence, the matrix Uj needs to be recomputed now for each perturbation of
αj , which will decrease the overall efficiency of the method. We have avoided this
by linearizing the partial differential equation for αb

j . Due to this, the adjoint gra-
dient will become less accurate beyond this ‘fixed point’ and the matrix U

r
j should

be updated during the minimization. A simple procedure is to recompute only this
matrix when no further improvement of the objective function is achieved (i.e. the
ξ iteration). From the synthetic examples, however, the matrix Uj was still accurate
for a reasonable parameter space.



140 Chapter 6: Inversion of Reduced Nonlinear Incremental Models

6.2.3 Incremental Sequential Projection Method
Governing Equation
The method is extensively elaborated in Subsection 5.2 for a generic application.
It writes the original PDE (Equation 6.1) as an autoregressive model with an extra
term which linearizes the nonlinear model with respect to the estimate variable αj :

φ(ti) = Mi[α
b,φ(ti−1)] +

nu

∑

j=1

∂Mi[α
b,φb(ti−1)]

∂α̃j
∆αj , (6.12)

where Mi is the system dynamics operator, and a function of the background esti-
mate αb. It is defined as:

Mi[α
b,φ(ti−1)] = [Ap

i (α
b)]−1bp(ti), (6.13)

where Ap and bp could represent a collection of system matrices that are influenced
by a collection of different (non)linear boundary conditions, e.g. a coupled surface-
water model:

Ap =







Ai(α
b) 0 0

0 Ai+1(α
b) 0

0 0 An(α
b)







(6.14a)

bp(ti) =







bi

bi+1

bn







(ti). (6.14b)

Thus, the time-variant dynamics operator Mi which we are looking for represents
the system dynamics and the boundary conditions and source/sink terms within
the entire set of n models. It will be a full matrix with dimension

∑n
i=1[n

m]2i that
will be impossible to compute for realistic problems. However, in reduced space
this matrix can be obtained fairly easily as shown in the following subsection.

6.2.4 Snapshots
The usage of snapshots here is twofold; (1) they are needed to describe the model
behavior, and (2) they represent ∂Mi[φ(ti−1),α

b]/∂α̃j . The latter can be obtained
by the classic method of finite differences (Equation 5.4) which sequentially sam-
ples each estimate variable αj . As mentioned earlier, however, it is wise to perturb
all variables simultaneously (see Subsection 6.2.2). Hence, we introduced in Sub-
section 5.2.4 the partial differential ∂Mi[φ(ti−1),α

b]/∂β̃j , and instead of perturbing
along the vectors that map the estimate variables on the model field (zj∆α̃j), we
perturbe along fj∆β̃j :

ej = H

[

∂Mi[φ(ti−1),α
b]

∂β̃j

]

≈ H

[

Mi[φ(ti−1),α
b
j + ∆β̃jfj ] −Mi[φ(ti−1),α

b
j ]

∆β̃j

]

,

(6.15)
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where ∆β̃ is defined in Equation 5.11, and the vector f j is the jth vector of an or-
thonormal matrix F, and Mi[φ(ti−1),α

b
j + ∆β̃jfj ] is elaborated in Appendix 6E.

From a mathematical point of view, ∆β̃j should be chosen with care as it can in-
fluence the diagonal dominance of the operator Mi. Most iterative solvers should
satisfy that condition, which can potentially be satisfied by splitting the system ma-
trices into a diagonal dominant part and a remaining part [Edwards, 2000]. Finally,
the snapshot vectors ej will contain only, after an operation with H , the results
for the locations of observation no. An advantage is that the pattern identifica-
tion (Subsection 3.1.3) is efficient because the snapshot vectors are low dimensional
R
no

. Moreover, the snapshot vectors describe less variance yielding fewer patterns,
compared to those that were needed to describe the variance for the entire model
domain. However, the patterns P should contain nm elements to proceed with the
next subsection, though they are nonzero only for the locations of the observations.

6.2.5 Forward Model
The autoregressive model (Equation 6.12) can be projected by PT and notated as a
partitioned matrix yielding

[

r

∆β

]

(ti) =

[

N Nβ

0 I

]

i

[

r

∆β

]

(ti−1), (6.16a)

where

N
β
i = PT {e1, ..., enu} , (6.16b)

Ni = PTH

[
∂Mi[α

b]

∂φb(ti−1)

]

P. (6.16c)

The operator Ni can be rewritten as:

Ni = PT

{

H

[
∂Mi[α

b]

∂φb(ti−1)
p1

]

, ..., H

[
∂Mi[α

b]

∂φb(ti−1)
pnp

]}

. (6.17)

This has been extensively elaborated in Subsection 5.2.5. The reduced model is
eventually initialised by r(t0) = 0 and a projected prior estimate ∆β 6= 0. Because
the formulation of the model is autoregressive, it lacks the need for any Picard
iteration ι that emerges for nonlinear boundary conditions.

6.2.6 Adjoint Model
An important advantage of the ISPM is that an implementation of the adjoint is
relatively simple (elaborated in Appendix 5A) and yields the exact gradient

∆Ĵj
∆αj

=
∑

i=1

[λ(ti)]
T −

[

Nβ

0

]

i

FTzjdαj . (6.18)



142 Chapter 6: Inversion of Reduced Nonlinear Incremental Models

Since the reduced model operates with ∆βjs instead of ∆αjs, it is neccessary to
project zjdαj onto F. Furthermore, an improved fit between J and Ĵ can be ob-
tained by applying an appropriate scaling for the estimate variables. because the
estimate variable αj is log-related to the observation, the appropriate scaling here
is a log-transformation such that log(∆α̃j) 7→ ∆β̃j (Equation 5.11).

6.3 Computational Efficiency
The primary factors that determine the efficiency of the IGPM & ISPM are quantified
by the number of original model simulations τ which is influenced by the

• Snapshots

– The maximum number of snapshot simulations ne is equal to nu × nt.
However, it is difficult to mention the minimum number because there
is a trade-off between the effort put in the snapshot simulations and the
‘Ĵ-reduction capacity’ of the evolved reduced model. For example, it is
possible to start with half the maximum number of simulations such that
the minimization procedure will focus itself on the main directions first,
and add more snapshots as the process proceeds.

– More efficiency can be obtained by interchanging αe
i during the model

simulation (dual estimation), see Figure 6.3b. Unfortunately, this is not
possible for the ISPM because all snapshots are needed for the computa-
tion of ∂Mi[φ(ti−1),α

b]/∂β̃j (Equation 6.15).

– Especially, for the ISPM it is more time efficient to avoid the time depen-
dency of matrix Ni (Equation 6.17). This can easily be done by applying
a constant time-discretization ∆t(ti); i ∈ {1, ..., nt} = c and linearizing
the nonlinear conductance matrix Cf for the initial state φb[αb](t0). The
error that arises will affect the objective function, however, it is mainly
averaged away after projection.

• Outer Iterations

The number of outer iterations is determined by the chosen termination cri-
terion γ (Equation 6.7). It should be chosen not too small (γ ≥ 0.1), as this
causes jumping of sub-optimal posterior estimates around the global opti-
mal solution. Since the reduced model probably overestimates αt

j caused by
the applied linearization, it probably yields a redundancy of η whenever a
treshold ψj is applied. It prevents the model from updating the variables to
extraordinary values, far beyond background estimation αb

j that was used for
the linearization.
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6.4 Examples
6.4.1 Introduction
This section illustrates the IGPM & ISPM by means of twin experiments in which ob-
servations are generated from a run of the original model defined to be the ‘truth.’
We have used a synthetic 2D model to generate a set of observations (first experi-
ment). This model consisted of a network of 7 columns by 7 rows with ∆x ≡ ∆y =

10 m, T = 100 m2day−1, and S = 0.27 for the entire model domain. The left side of
the model was determined by Dirichlet conditions (φd = 0 m). A drainage element
that behaved nonlinearly was active along the entire fourth column for which the
flux qf was computed as

qf(x, φ) =

{

φ(x) < hf(x) ; 0

φ(x) ≥ hf(x) ; Cf [φ(x) − hf(x)]
, (6.19)

where hf is a drainage level [L] (hf(ti); i ∈ {1, ..., nt} = -1 m), andC f is the drainage
conductance (Cf = 10 m2day−1). The system was simulated for 10 time steps with
∆t(ti); i ∈ {1, ..., nt} = 10 days. We have applied the IGPM & ISPM (ϕe = 99.99%)
to this problem in order to minimize Ĵ from an incorrect prior estimate (second
experiment). For all cases the observational weight matrix Wo = I. We used the
Quasi-Newton method to proceed during the minimization [Press et al., 1992], and
we aborted the outer iteration cycle η by γ = 0.1. For purposes of comparison,
we have also implemented the FDM (∆α̃j = 0.01, see Equation (5.4)) and the ADJ

method. Unless stated differently, the number of evaluations of the original model
τ is used to compare the different methods. This included the number of evalua-
tions that were needed for the necessary line searches.

6.4.2 Case I
Configuration
For this particular case, we defined two observation wells yo

i and two pumping
wells qi that varied randomly in strength such that -2 < qi(ti); i ∈ {1, ..., nt} < 2
mday−1. Two zones were defined for which the prior estimates were α0

1 = 0.1, α0
2 =

10, see Figure 5.7a.

Results
The ADJ method minimized J within η = 9 gradient iterations and consumed in
total τ = 30 original model simulations, see Figure 6.4a. The surface of Ĵ , as com-
puted by IGPM (Figure 6.4b1) resembles the surface of J near the locations for which
the snapshots were computed (denoted by the black stars). The inaccuracy in-
creases further away because the snapshots and the applied linearization subject
to αb

j , are both representative for a limited space (approximated by the grey circle
with radius ψ). Nevertheless, a sub-optimal minimum was found (after another ξ
iteration denoted by the term ‘Proj.’ in Figure 6.4b1). An additional second outer
iteration η was eventually carried out to obtain the closest fit between apriori es-
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Figure 6.4: The surface of log(J) and the accompanying gradient (arrows) for the minimization of
two prior estimates (log(α1) and log(α2) presented on the y-axis and x-axis, respectively) that starts
at the • and ends in the ◦. An ADJ for the original model is depicted in (a), in (b1-2) the results from
a IGPM minimization are plotted, and in (c1-3) the ISPM performance is illustrated. The grey-area
within the figures (b1-2) and (c1-3) depict the domain of the reduced model in estimation space (ψ),
and the black stars ? represent the chosen combinations of variabes within the snapshots.

timated and the ‘truth,’ see Figure 6.4b1-2. The surface of Ĵ for the ISPM methods
looks quite different compared to the others (Figure 6.4c1) because it evolves from
a linear model for which αj was log-transformed before the projection. Therefore,
the log Ĵ yields a perfect quadratic function for which the innovation of the vari-
ables needs to be restricted (grey area with radius ψ) because the model tends to
overestimate the variables. So, instead of approaching the minimum mainly from
one direction, it approaches the ‘truth’ by decreasingly jumping around it from side
to side. Hence, it needs more outer iterations η to find the optimal solution, see
Figure 6.4c2–3.

Because the IGPM needs to describe the variance on the locations of observa-
tions and on the locations where a boundary condition exists, it results in a ten-
dimensional model. This is still significantly less than the original dimensions, but
the ISPM method needs only two dimensions as it describes the estimate variables
subject to the observational variance that exists within two observations. Above
all, both methods IGPM and ISPM used τ = 4 and τ = 9 original simulations respec-
tively, which is less than the original ADJ that consumed τ = 30.
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Figure 6.5: Minimization efficiencies for different methodologies (FDM, ADJ, IGPM & ISPM), ex-
pressed in the number of model evaluation τ , for 33 samples of 42 incorrect prior estimates.

6.4.3 Case II
Introduction
To obtain insight in the efficiency and robustness (i.e., to be able to find the correct
posterior estimates) of the methods, 33 samples of α0

j were generated by means of
the LHS method [Iman & Shortencarier, 1984] from which J and Ĵ were minimized.
The quality of these minimizations were determined by the relative error ε between
the prior estimate and the posterior estimate (Equation 5.24). Since the ‘truth’ is
‖αa‖ = 1, the equivalent ε0 expresses the error of the prior estimates.

Configuration
The identical model configuration as described for Case I was extended with 42
observations throughout the model, see Figure 5.7b.

Results
The robustness (the ability to find the correct posterior estimates) of the methods
is mutually comparable for slight errors of the prior estimate, see Figure 6.5. The
IGPM and ISPM appear to be more robust for increased values for ε0 because they
compute a ‘rough’ surface of the objective function that makes them less sensitive
to local minima. They are based on a statistically linearized model that tends to
produce a spatially averaged gradient. For all methods τ increases with ε0 and both
the IGPM & ISPM need less τ compared to the FDM and ADJ methods. The IGPM

is approximately two times more efficient than the ISPM because the latter needs
additional model evaluations to determine the coefficients of the system dynamics.
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These results are specific for the synthetic case considered, and will be influenced in
practice by a number of factors (e.g. the number of nodes, the number of estimate
variables, the number of observations and the complexity of the nonlinearity inside
the system). It is reasonable to suggest that all methods will be equally influenced
by these factors and that the IGPM & ISPM remain their efficiencies for other cases.

6.5 Real-world Case
6.5.1 Configuration
This case has a realistic configuration that describes the entire region of the province
of Noord-Brabant in the Netherlands (≈ 10,700 km2). The model consist of 64 rows,
107 columns and 9 model layers, so the total number of nodes is 61,632. The first
model layer contains the influence of an intense surface water network that con-
sists of wet-lands and natural dewatering systems situated in higher areas. Ab-
solute levels for these nonlinear boundary conditions were obtained by accurate
laser altermetry. The model is further characterized by a detailed description of the
precipitation and evapotranspiration rate. These were obtained by combining rain
gauge stations throughout the model domain with accurate land use classification
from satellite images.

6.5.2 Results
We have minimized an objective function with respect to a change in transmissivity
within each model layer (Equation 6.20). It was based upon 234 synthetic measure-
ments distributed throughout the model and observed for 36 time steps. For the
various minimization techniques as described in this chapter, the evolution of the
objective function value for this minimization is depicted in Figure 6.6. All method-
ologies were able to find the correct values for the estimate variables but they differ
significantly in efficiency. The results found here, for a realistic case, are similar to
the results described for the synthetic cases in the previous subsections. That is:
most efficient is the IGPM method; it is almost twice as efficient as the ISPM method.
The IGPM method is less efficient than the ADJ method. However, the former is easy
to program and twice as efficient as the FDM method.

6.6 Conclusions
In this chapter two different methodologies have been described for solving non-
linear inverse modeling problems. They were derived by a linear transformation,
known as a ‘change of coordinates’, that projects a system of equations from a
high dimension into a low dimension described by patterns (POD). These PODs
were based upon several evaluations of the original model that provided insight in
the observational behavior, subject to the chosen estimate variables. By truncation
of unimportant patterns, which represented a tiny amount of model behavior, it
yielded a low-dimensional model. The first model was based upon a projection of
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methodologies (FDM, ADJ, IGPM & ISPM) versus the number of model evaluation τ .

the original PDE (IGPM method) and the second model resulted from a projection of
an autoregressive representation of the original system (ISPM). Both methods were
applied to several synthetic cases and they appeared to be more computationally ef-
ficient than the classic inverse methodologies (method of finite differences and the
adjoint method). The advantage of the IGPM method is that it conserves the system
dynamics in reduced space and is therefore more accurate, from a mathematical
point of view. On the other hand this can be disadvantageous too, as it includes
some analytical derivatives that are inconvenient to program and nonlinear aspects
that causes an extra inner-iteration loop. In this perspective the ISPM is more flex-
ible and faster because it can handle these nonlinearities more effectively. Above
all, both methods operate in fewer dimensions than the original model and have
the ability to become more robust than the classic inverse methodologies, because
they focus on the main directions in observational space and tend to become less
sensitive to local distortions of the objective function. This should be examined in
future.
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6A Hydraulic Conductance
In Equation (6.1) the hydraulic conductance is introduced that is aligned with a
direction xi. For a location x ∈ Ω this can be computed as

Cxi(x) = [∆wi(x) + ∆wi(x
∗)]

[
∆wi(x)

αjT (x)
+

∆wi(x
∗)

αjT (x∗)

]−1

, (6.20)

where ∆wi [L] is the width of the grid cell along the ith direction, T [L2T−1] is the
transmissivity, and (·)∗ denotes the neighbor grid cells along the current direction
i.

6B Derivation of the Original Adjoint Model
Equation (6.4) introduces the adjoint model λ(ti) that can be concisely elaborated
by stating that:

J = J• +
nt

∑

i=1

[λ(ti)]
T[Aφ(ti) − b(ti)], (6.21)

where J• ≡ J . By applying a Taylor’s series expansion for the variables φ(ti),
φ(ti−1), αj , and λ(ti) it yields the expression:

∆J =

nt

∑

i=1

[λ(ti)]
T

{

A∆φ(ti) −
1

∆t
S∆φ(ti−1) +

∂A

∂αj
φ(ti)∆αj

}

+
∂J

∂φ(ti)
∆φ(ti),

(6.22)

from which a model can be derived that simulates the adjoint state vector back-
wards in time so:

AT
λ(ti) = −

1

∆t
Sλ(ti+1) − 2Wo [yo(ti) − Hφ(ti)] . (6.23)

Eventually, the corresponding gradient becomes:

∆J

∆αj
=

nt

∑

i=1

[λ(ti)]
T

(
∂A

∂αj

)

φ(ti). (6.24)

The time dependency of A is caused by the nonlinear conductance (Cf)ι (Equa-
tion 6.2b).

6C Derivation of the First Derivative of the Hydraulic
Conductance

Within the elaboration of the reduced Galerkin model, the partial derivative of the
hydraulic conductance Ci with respect to the estimate variable ∆αj is introduced.
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For each location x ∈ Ω and a specific direction i this can be expressed as:

∂Ci(x)

∂αj
=
∂Ci(x)

∂T b(x)
·
∂T b(x)

∂αj
, (6.25)

and with (Equation 6.20) this yields:

∂Ci(x)

∂αj
=

∆wi(x) [∆wi(x) + ∆wi(x
∗)]

[T b]2(x)
[

∆wi(x)
Tb(x)

+ ∆wi(x∗)
Tb(x∗)

]2 · T b(x) +

+
∆wi(x

∗) [∆wi(x) + ∆wi(x
∗)]

[T b]2(x∗)
[

∆wi(x)
Tb(x) + ∆wi(x∗)

Tb(x∗)

]2 · T b(x∗), (6.26)

where the background transmissivity is defined as:

T b = [αb
j ]
ηT, (6.27)

that depends on the background estimation αb
j for the current outer iteration cycle

η.

6D Derivation of the Reduced Incremental Adjoint Model
The formulation of a reduced adjoint model for Equation (6.10) can be concisely
derived by a Taylor’s series expansion for the variables λ, r(ti), r(ti+1) and αj . It
yields eventually a reduced adjoint model:



N +

nu

∑

j=1

Uj∆αj −
1

∆t
S − Cf





T

λ(ti−1) = −
1

∆t
Sλ(ti) +

∂Ĵ

∂r
(ti−1), (6.28)

that needs to be solved backwards in time whereby

∂Ĵ

∂r(ti−1)
= −2Wo

[

PT
(

yo(ti−1) −H [φb(ti−1)]
)

− r(ti−1)
]

, (6.29)

where the reduced weight matrix Wo is computed as:

Wo = PTWoP. (6.30)

Eventually, the gradient can be obtained by applying

∆J

∆αj
=

nt

∑

i=1

[λ(ti)]
T

Ujr(ti). (6.31)
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6E Perturbation of the Hydraulic Conductance with a
Pattern Direction

In Equation (6.15) the operator is defined as Mi[φ
b,αb

j + ∆β̃jfj ] for each location
x ∈ Ω. It can be computed for the elements Cij(x) in matrix A ∈ Ap ∈ Mi as:

Cij(x) = [∆wi(x) + ∆wi(x
∗)]

[

∆wi(x)

T b
j (x) + {∆β̃fT b(x)}j

+
∆wi(x

∗)

T b
j (x∗) + {∆β̃fT b(x∗)}j

]−1

, (6.32)

where T b
j is defined in Equation (6.27) and the usage of (·)∗ is explained in Ap-

pendix 6A.
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NUMERICAL MODELING OF PROCESSES has become the main application of com-
puting power for research in different fields of science. In general we can
say that the accuracy of these models relates to the scale on which phenom-

ena are studied. So, the smaller the scale the more accurate the model may become.
Unfortunately, it is impossible to decrease the scale repeatedly without facing a dra-
matic increase of the need for diskspace and computation times. Therefore, there
is a need for alternative methods that simulate such models more efficiently. The
main objective of this thesis was to develop techniques that represent the origi-
nal model with a negligible loss of accuracy, but at low-dimensional costs. Within
this frame, we searched for generic methodologies that can serve different appli-
cations. We described two methods that reduce the problem in its spatial domain;
(1) a method which reduces the problem locally by increasing the scale, we call this
upscaling; and (2) a method which reduces the problem globally by reducing its
freedom of movement with respect to its behavior, we call this model reduction.

7.1 Upscaling
Reducing the number of computational nodes (upscaling) is the most straightfor-
ward approach in decreasing the computational demands for a model. However,
the accuracy decreases as well because the same amount of information is described
with fewer computational nodes. The main challenge is to define the algorithms for
upscaling that conserve the accuracy best and ignore only those parts of the model
that are irrelevant. In this thesis we developed and applied several algorithms for
upscaling the numerical simulation of groundwater flow. We can divide them into
two categories that compute an equivalent of the

1. Transmissivity Field.
We applied different methods to a variety of transmissivity fields. These
methods varied between numerical experiments and statistical assumptions.
It appeared that each of these techniques performed only optimally for that
typical distribution for which they were developed. However, when we ap-
plied these techniques to a real-world case, we observed that differences be-
tween the upscaling techniques were negligible. Moreover, all techniques
performed rather poorly and unacceptable errors arose already with small
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upscaling factors. We obtained the best results by attuning the upscaled pa-
rameters to the corresponding flow field.

2. Boundary Conditions.
We addressed the issue that water, which exchanges between external bound-
ary conditions (e.g. surface water) and the model itself, should be identical,
no matter what level of upscaling is applied. Such an error emerges because
we reduced the number of computational nodes in our model, which creates
the need for boundary conditions to be grouped together. This problem was
solved by interchanging the original boundary conditions by those that ex-
change a similar amount of water. Nonetheless, the main condition for this
method was that we had to acquire the entire flow field.

The above mentioned results implied that to obtain a most accurate coarsened
model, we needed the original flow field. A practical solution to solve this, is to
obtain the original flow field by collecting different flow fields from a number of
models. From each of these a different area was collected that was excluded from
upscaling. It remains questionable whether other flow fields than the one used to
obtain an upscaled model can still be simulated in the future. This makes it neces-
sary to adjust the upscaled parameters again that annul the gained computational
effort. This was one of the reasons to focus for the rest of the thesis on the second
method: model reduction.

7.2 Model Reduction Methodologies
Roughly speaking, the goal of model reduction is to reconstruct a specific behav-
ior that is optimal in terms of storage capacity and computational effort. We can
achieve this by suppressing any redundancy in the behavior by applying a Princi-
pal Component Analysis, which is comparable to data compression. It “breaks up” a
specific behavior into different components (i.e. the principal components) from
which the original behavior can be resolved again by multiplying the principal
components with appropriate weight factors. Consequently, the principal compo-
nents serve a specific behavior. Whenever this changes into extraordinary values,
they become incorrect. Within this thesis we developed several mathematical ex-
pressions to compute the weight factors. This yielded a variety of different models
that we refer to as reduced models. Each of them serves a different purpose in which
we distinguish scenario analysis and inverse modeling.

7.2.1 Scenario Analysis
A main purpose of a reduced model is scenario analysis. This model is used fre-
quently to evaluate the consequences of different interferences. For this particular
application the reduced model methodology consists of the following two steps:
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Evaluation of the Principal Components
It takes relatively much effort to determine the behavior of a model by model sim-
ulations to which we refer to as snapshots. It takes a thorough knowledge of the un-
derlying model as well as a solid survey of future scenarios. Moreover, the choices
that are made to compute the snapshots determine the quality of a reduced model
eventually. To minimize the number of snapshots we considered the principle of su-
perposition to be valid. This principle accounts for effects of individual interferences
that can be added up to form a lumped effect of several interferences. The princi-
pal components are computed for these snapshots so that they represent the main
behavior of the model most optimally with the smallest number of components.

Formulation of a Reduced Model
The principal components enable us to apply a transformation of a model with
many computational nodes into a model with fewer computational nodes. We refer
to the latter type of model as reduced model. It operates within a different coordi-
nate system and therefore their state variables are not comparable anymore to the
original ones. We call them weight factors and we have developed two different
formulations to compute them. Briefly summarized these are the:

• State-Space Projection Method (SSPM).
This method reduces the original system of equations written in matrix nota-
tion by a matrix multiplication with the principal components. The method
is generic and simple to implement;

• Galerkin Projection Method (GPM).
This method substitutes the state variables within the differential equation by
the linear combination of the principal components and their corresponding
weight factors. The outcome is projected again onto the principal components
to form a reduced system of differential equations. The method can be seen
as the more elementary of the two.

We applied the two strategies to simulate different scenarios with a realistic
three-dimensional groundwater problem. Both methods could simulate the scenar-
ios within a tight accuracy constraint. Their efficiency was approximately two or-
ders of magnitude. Besides that, the GPM was slightly less efficient than the SSPM. A
disadvantage of both strategies is the existence of nonlinearity in the model, i.e. the
state variables influence the system of equations and vice versa. This undermines
the validity of the principle of superposition and force us to increase the number of
snapshots to capture all crossterms between scenarios. It is questionable whether
the exposure of nonlinearity is such that an approximation by a linear reduced
model becomes unacceptable. For these cases the value of a fast approximation
should be weighed by the value of a slow and more accurate solution.
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7.2.2 Inverse Modeling
A new element in model reduction is its incorporation in inverse modeling. Inverse
modeling is defined as computing the optimal set of model parameters that yields a
minimal error of the model compared to measurements (i.e. the minimal objective
function value). For this specific purpose the reduced model methodology consists
of two steps:

Evaluation of the Principal Components
We computed snapshots that describe the behavior of the model as well as its re-
lationship to a change of specific model parameters. In this way we simulated
the model as if it was formulated for a specific time window, and subsequently
interchanged several values for the model parameters. This results in an increased
number of snapshots and probably more principal components than those obtained
by the scenario analysis. An important advantage is that there are more degrees of
freedom left in the acquired reduced model that can be used to perform the inverse
modeling.

Formulation of a Reduced Model
The following formulations for a reduced model have in common that they mini-
mize a reduced objective function. They yield a set of model parameters that are
optimal for the current reduced model, but can still be sub-optimal to the origi-
nal model. From here the entire determination of a reduced model is restarted, so
that it reflects the updated set of parameters. This sequence continues until a given
termination criterion is met for the innovation of the selected parameters. We dis-
tinguished three different reduced-model formulations to perform this procedure:

• Galerkin Projection Method (GPM).
This method (see page 159) prescribes that the updating of each model pa-
rameter is performed within the original model. This concept is most accu-
rate but undermines the efficiency of a reduced model because it is relatively
computational demanding to reformulate a reduced model repeatedly.

• Incremental Galerkin Projection Method (IGPM).
This method is an extension of the GPM in which we added an extra differen-
tial (the increment) that expresses the analytical dependence of the state to a
set of model parameters. Such a formulation is more efficient than the GPM,
although it involves a significant programming effort.

• Incremental Sequential Projection Method (ISPM).
This method computes solely the current state from the previous one (i.e. an
auto-regressive model). We have added a differential (the increment) that ex-
presses the numerical dependence of the state to a set of model parameters.
Such a model is simple and efficient and the corresponding adjoint model is
easy to implement. The novel aspect is that such a model is acquired rela-
tively easily with the principal components. The methodology is generic and
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therefore applicable to different simulation models that behave (non)linearly
and/or include coupled systems.

We have tested the above mentioned reduced models on twin experiments.
First, we generated observations by simulating the original model. Second, we
distorted the initial model parameters and used the observations to recover the ini-
tial model parameters by use of a reduced model. We compared these results to
similar experiments that were performed with: (1) the method of finite differences
(FDM) that is easy to program but less efficient, and (2) the adjoint method (ADJ)
that is hard to program but more efficient. In most of the experiments the reduced
models recovered the initial set of parameters unanimously. They appeared to be
more efficient than the FDM method and moreover, the IGMP and ISPM approxi-
mated the efficiency of the ADJ method. The main drawback of the last method is
its programming effort and because of that, the ISPM is an improved alternative.

Peter Vermeulen



Samenvatting en Conclusies
Model-Gereduceerd Invers Modelleren

HET NUMERIEK SIMULEREN van wetenschappelijke processen is een belang-
rijke toepassing geworden van de sterk toegenomen rekenkracht van com-
puters. We kunnen stellen, dat de nauwkeurigheid hiervan gerelateerd is

aan de schaal waarop we het proces bestuderen. Hoe kleiner de schaal, hoe gro-
ter de kans dat het model hier ook nauwkeuriger van zal worden. Helaas is het
onmogelijk om de schaal onbeperkt te verkleinen, zonder hiervan direct de nade-
len te ondervinden van de toegenomen benodigde opslag- en rekencapaciteit. Het
noodzaakt hierom naar alternatieve methoden te zoeken, die meer efficiënt zijn.
Het hoofddoel van dit proefschrift was daarom ook, om verschillende methodes te
ontwikkelen, die het oorspronkelijke model konden vervangen door één met een
grotere rekensnelheid en zonder noemenswaardig verlies van nauwkeurigheid. We
hebben hierbij gezocht naar generieke methodieken die kunnen dienen voor ver-
schillende toepassingen. We hebben twee hoofdthema’s beschreven die beide het
probleem in de ruimtelijke betekenis reduceren: (1) een methode die het probleem
lokaal reduceert door de schaal ter plekke te vergroten, dit noemen we opschalen; en
(2) een methode waarmee we het probleem globaal reduceren door de bewegings-
ruimte van het model te beperken, dit noemen we modelreductie.

Opschalen
Het verminderen van het aantal rekenknooppunten (opschalen) is de meest voor
de hand liggende werkwijze om het rekenproces van een model te versnellen. De
nauwkeurigheid van een opgeschaald model is hierdoor altijd minder, omdat we
nu met minder rekenknooppunten dezelfde hoeveelheid informatie moeten be-
schrijven. Een belangrijke uitdaging ligt nu in het bepalen van die opschalings-
regels, die de nauwkeurigheid het best conserveren en alleen de minder relevante
delen van een model verwaarlozen. In dit proefschrift hebben we verschillende
opschalingsregels ontwikkeld en toegepast op het numeriek simuleren van grond-
waterstroming. We kunnen deze methoden onderscheiden in twee categorieën die
de opgeschaalde equivalent berekenen van de

1. Hydraulische Doorlatendheid van de Ondergrond.
We hebben hierbij verschillende opschalingsregels toegepast voor een ver-
scheidenheid aan doorlatendheidsverdelingen. Deze methodes variëerden
tussen numerieke experimenten en statistische aannamen. Hieruit volgde,
dat iedere opschalingsregel het best presteerde voor alleen die typische ver-
deling van de doorlatendheid, waarvoor de opschalingsregel ook ontwikkeld
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was. De verschillen tussen de opschalingsregels verdwenen nagenoeg, zo-
dra we deze toepasten op een realistisch probleem. Het bleek zelfs, dat alle
opschalingsregels reeds slechte resultaten opleverden bij een kleine opscha-
lingsfactor. Om het opschalen toch zo goed mogelijk te doen, dienen we de
equivalente doorlatendheid af te stemmen op het bijbehorende stromingspa-
troon.

2. Externe Randvoorwaarden van het Model.
Een voorwaarde voor opschalen is, dat de uitwisseling tussen de externe
randvoorwaarden (bijvoorbeeld het oppervlaktewater) en het model na op-
schalen, ook overeen moet komen met deze in het oorspronkelijke model. Een
fout hierin ontstaat, doordat het verminderen van het aantal rekenknooppun-
ten ons noodzaakt om externe invloeden te groeperen. Deze fout kan gere-
duceerd worden door equivalente opgeschaalde randvoorwaarden te bere-
kenen, die gelijke uitwisseling waarborgen, zoals die in het oorspronkelijk
model ook voorkomt. Voorwaarde hiervoor was, dat het gehele stromingspa-
troon, op de oorspronkelijke schaal aanwezig diende te zijn.

Bovenstaande resultaten impliceren beiden, dat een nauwkeurig opgeschaald
model alleen verkregen kan worden door gebruik te maken van het aanwezige
stromingspatroon. Een praktische invulling hiervoor is om dit stromingspatroon te
verkrijgen door van verschillende, lokaal opgeschaalde modellen hun stromings-
patronen ‘bijeen te rapen’, waarbij telkens dát deel overgenomen wordt, dat geen
onderdeel was van een zekere opschaling. Het zal altijd dubieus blijven of een der-
gelijk opgeschaald model nauwkeurig genoeg blijft voor de simulatie van andere
stromingspatronen. Dit noodzaakt namelijk wederom een aanpassing van de op-
geschaalde parameters, dat uiteindelijk de gewonnen rekensnelheid volledig teniet
doet. Dit was één van de redenen om ons in de rest van het proefschrift te richten
op het tweede onderdeel: modelreductie.

Gereduceerd Model
Ruw gezegd, is het doel van modelreductie erop gericht om een bepaald gedrag
zodanig te herschrijven, zodat deze minder opslag en rekentijd vergt. We kunnen
dit verkrijgen door het toepassen van een Principal Component Analysis, dat verge-
lijkbaar is met data compressie. Het ‘breekt’ een bepaald gedrag in een minimum
aan componenten van waaruit het oorspronkelijke gedrag, of afgeleiden hiervan,
herleid worden door de voornaamste componenten te vermenigvuldigen met de
juiste gewichtsfactoren. De componenten dienen hierom een vooraf gedefinieerd
doel en wanneer dit significant verandert, verliezen ze hun geldigheid.

De berekening van de gewichtsfactoren is in dit proefschrift afgeleid voor ver-
schillende wiskundige formuleringen en leverde een variëteit aan modellen op, die
ieder worden aangeduid als gereduceerd model. Ieder van hen diende een ander doel
waarbinnen we het onderscheid hebben gemaakt tussen scenario analyse en invers
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modelleren.

Scenario Analyse
Een belangrijke toepassing van modelreductie is scenario analyse. Hierbij dient
het model regelmatig geëvalueerd te worden om de consequenties van bepaalde
ingrepen te kwantificeren. Voor deze specifieke toepassing bestaat een gereduceerd
model uit de volgende twee stappen:

1. Bepaling van de Voornaamste Componenten.
Het kost relatief veel tijd om het gedrag van een model, door middel van
modelsimulaties (momentopnamen) te berekenen. Het vergt bovendien een
gedegen kennis van het onderliggende model en een helder overzicht van
de toekomstige scenario’s. Daarnaast bepalen de keuzes die hierin gemaakt
worden in belangrijke mate de kwaliteit van het gereduceerde model. Om de
hoeveelheid momentopnamen te minimaliseren zijn we uitgegaan van het su-
perpositie beginsel, dat toestaat dat individuele effecten van ingrepen opgeteld
kunnen worden om zodoende een totaal effect te kunnen vormen. De voor-
naamste componenten worden voor deze momentopnamen berekend waar-
mee we het belangrijkste gedrag van het model zo optimaal mogelijk, dus
met een minimaal aantal componenten, vertegenwoordigen.

2. Formulering van een Gereduceerd Model.
De voornaamste componenten stellen ons in staat om een model met veel re-
kenknooppunten, te transformeren naar een model met weinig rekenknoop-
punten. Dit laatste noemen we een gereduceerd model en aangezien deze,
na de transformatie binnen een ander coördinatensysteem opereert, zijn haar
oplossingen niet meer gelijk aan deze van het oorspronkelijke model. We noe-
men ze dan gewichtsfactoren en voor de berekening hiervan hebben we een
tweetal formuleringen beschreven. Kort samengevat zijn dit de

• State-Space Projection Method (SSPM).
Deze methode reduceert het aantal rekenknooppunten door deze, weer-
gegeven in matrix- en vectornotatie, te vermenigvuldiging met de voor-
naamste componenten. De methode is generiek en eenvoudig te imple-
menteren;

• Galerkin Projection Method (GPM).
Deze methode vervangt de toestandsvariabele in de oorspronkelijke dif-
ferentiaalvergelijking door een lineaire combinatie van de voornaamste
componenten met haar gewichtsfactoren. Het resultaat hiervan wordt
geprojecteerd op de componenten en resulteert in een gereduceerde dif-
ferentiaalvergelijking. De methode is hierom meer elementair dan de
SSPM, maar vergt meer aanpassingen in de bestaande modelcode.
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We hebben beide strategieën toegepast op een realistisch grondwaterstromings-
model en beiden waren in staat om een verscheidenheid aan scenario’s te bere-
kenen, zonder noemenswaardig verlies van nauwkeurigheid. Hun efficiëntie be-
droeg bijna twee ordes van grootte waarbij de GPM hierbij minder efficiënt was dan
de SSPM. Een nadeel van beide strategieën kan echter de eventuele aanwezigheid
van niet-lineariteiten zijn; een situatie waarbij de toestandsvariabele het systeem
beı̈nvloedt en andersom. Hierdoor is het superpositie principe niet langer geldig en
zijn meer voornaamste componenten nodig om alle kruistermen tussen de scena-
rio’s te kunnen beschrijven. Het is echter de vraag of het effect van niet-lineariteit
zich dermate manifesteert, dat een gereduceerd lineair model te onnauwkeurig
wordt. De waarde van een snelle schatting moet in dat geval afgewogen worden
tegen de langdurige inspanning van een ‘correcte’ numerieke berekening.

Invers Modelleren
Een nieuwe ontwikkeling op het gebied van modelreductie is haar toepassing in
het invers modelleren. Dit is een berekeningswijze waarbij een combinatie van
modelparameters wordt berekend die optimaal is, omdat de fout van het model
ten opzichte van een aantal metingen, de doelfunctie, hierbij minimaal is. Voor
deze specifieke toepassing bestaan de onderdelen voor een gereduceerd model uit
de:

1. Bepaling van de Voornaamste Componenten.
We creëren hier momentopnamen die zowel het gedrag van een model verte-
genwoordigen alsook een verandering van bepaalde modelparameters. Hier-
voor simuleren we het model zoals het gedefinieerd is voor een specifiek
tijdsinterval en verwisselen we herhaaldelijk de waarde van de geselecteerde
modelparameters. Dit resulteert in een grotere reeks van momentopnamen
en hoogstwaarschijnlijk ook in een groter aantal voornaamste componenten,
dan die benodigd waren bij de scenario analyse. Belangrijk voordeel hierbij
is, dat het gereduceerde model meer graden van vrijheid kent, die gebruikt
kunnen worden voor de invers modellering.

2. Formulering van een Gereduceerd Model.
De gereduceerde modellen die hierna beschreven worden, hebben alledrie ge-
meen, dat ze in staat zijn om een gereduceerde doelfunctie te minimaliseren.
Ze leveren een combinatie van parameters die optimaal zijn, maar eventu-
eel nog sub-optimaal kunnen zijn voor het oorspronkelijke model. De gehele
bepaling van een gereduceerd model herhaalt zichzelf, zodat deze de aange-
paste parameters reflecteert, waarna het de doelfunctie eventueel verder kan
verlagen. Dit proces herhaalt zichzelf totdat de verbetering van de modelpa-
rameters minder is dan een opgegeven afbreekcriterium. Voor de uitwerking
van deze procedure hebben we een drietal gereduceerde modellen geformu-
leerd, dit zijn de
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• Galerkin Projection Method (GPM).
Bij deze methode (zie pagina 159) wordt iedere aanpassing van een mo-
delparameter in het oorspronkelijke model gedaan. Hierna wordt het
gereduceerde model opnieuw geformuleerd. Dit is nadelig voor de re-
kentijd, aangezien het relatief veel tijd kost om een gereduceerd model
herhaaldelijk te moeten formuleren.

• Incremental Galerkin Projection Method (IGPM).
De methode is een uitbreiding van de GPM waarbij we een extra diffe-
rentiaal toevoegen (de increment) die de analytische afhankelijkheid van
de toestandsvariabele naar de modelparameters vertegenwoordigt. Een
dergelijke methode kent een grotere efficiëntie dan de GPM, maar bete-
kent nog steeds aan aanzienlijke programmeerinspanning.

• Incremental Sequential Projection Method (ISPM).
Deze methode berekent de nieuwe toestand uitsluitend op basis van de
vorige (een auto-regressief systeem). We hebben hieraan een extra diffe-
rentiaal toegevoegd, die de numerieke afhankelijkheid van de toestand
naar de modelparameters vertegenwoordigt (de increment). Het model
is eenvoudig, efficiënt en haar adjointmodel is eenvoudig te implemen-
teren. Het hernieuwde aspect hierbij is, dat we dit type model op rela-
tief eenvoudige wijze kunnen verkrijgen, voor een willekeur aan (niet)-
lineaire (gekoppelde) modellen, door gebruik te maken van de voor-
naamste componenten.

We hebben deze strategieën toegepast op tweeledige experimenten. Hierbij heb-
ben we eerst met het oorspronkelijke model een synthetische meetset gegenereerd.
Daarna hebben we deze gebruikt om een aangebrachte verstoring van de initiële
modelparameters te herstellen met een gereduceerd model. De resultaten hiervan
hebben we vergeleken met deze, die we verkregen door soortgelijke experimen-
ten uit te voeren met: (1) de eindige-verschillen methode (FDM) die eenvoudig te
implementeren, maar weinig efficiënt is, en (2) de adjointmethode (ADJ) die lasti-
ger te implementeren, maar zeer efficiënt is. Alle gereduceerde modellen vonden
in verreweg de meeste experimenten de juiste initiële modelparameters terug. Te-
vens bleken ze alle drie meer efficiënt dan de FDM methode en kwamen de IGPM en
ISPM hierbij zelfs in de buurt van de ADJ methode. Bij deze laatste staat haar lastige
implementatie vaak in de weg, waardoor vooral de ISPM een verbeterd alternatief
is.

Peter Vermeulen
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