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Previous literature has highlighted many opportunities for digital technologies, such as the Internet of
Things (IoT) and data analytics, to enable circular strategies, i.e., strategies which support the transition
to a circular economy (CE). As one of the key circular strategies for which the digital opportunities are
apparent, maintenance is selected as the focus area for this study. In the field of maintenance, IoT and
data analytics enable companies to implement condition-based maintenance (CBM), i.e., maintenance
based on monitoring the actual condition of products in the field. CBM can lead to more timely and
efficient maintenance, better performing products-in-use, reduced downtime in operations, and longer
product lifetimes. Despite these benefits, CBM implementation in practice is still limited. The aim of this
research is thus to understand the challenges related to CBM implementation in practice, and to extract
solutions which companies have applied to address these challenges. Towards this aim, a multiple case
study is conducted at three original equipment manufacturers (OEMs). A framework is derived which
allows for a broad analysis of challenges and solutions in the cases. We identify 19 challenges and 16
solutions and translate these into a set of actionable recommendations. Our findings contribute to the
field of CBM with a comprehensive view of challenges and solutions in practice, from the OEM’s point of
view. Moreover, we contribute to CE literature with a concrete case study about IoT-enabled circular
strategy implementation.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The circular economy (CE) has been defined as “an economy that is
restorative by design, andwhich aims to keep products, components and
materials at their highest utility and value, at all times” (Webster, 2015)
[pp.16]. Design and business model strategies for the CE include
product lifetime extension strategies (maintenance and repair) and
looping strategies (reuse, remanufacturing, and recycling). While
looping strategies are core to the actual circulation of products and
materials, product lifetime extension strategies have a higher po-
tential to reduce environmental impact (European Commission,
2008), as they keep products close to their original function and
value (Potting et al., 2017). Based on this logic, maintenance and
repair strategies are given higher priority than looping strategies in
ngemarsdotter).

ier Ltd. This is an open access artic
the EU waste directive (European Commission, 2008). Moreover,
previous research has shown that increased maintainability and
reparability of products in turn also benefits reusability and rema-
nufacturability (Takata et al., 2004). As such, maintenance and repair
are key strategies to explore for companies aiming to provide circular
products and services. In this paper, we focus specifically on main-
tenance and its implementation in practice.

One of the most important trends in maintenance management
is digitalization (Akkermans et al., 2016). Based on the Internet of
Things (IoT) and data analytics, the condition of products in the
field can be monitored continuously and remotely, enabling opti-
mized condition-based maintenance (CBM). Condition monitoring
also enables better insight into remaining product lifetime, degra-
dation status, and environmental factors (Ren et al., 2019), which
can be used to improve looping strategies (Bressanelli et al., 2018;
Ellen MacArthur Foundation, 2016; Ellen MacArthur Foundation,
McKinsey & Company, Google, 2019; Spring and Araujo, 2017;
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http://creativecommons.org/licenses/by/4.0/
mailto:e.k.ingemarsdotter@tudelft.nl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jclepro.2021.126420&domain=pdf
www.sciencedirect.com/science/journal/09596526
http://www.elsevier.com/locate/jclepro
https://doi.org/10.1016/j.jclepro.2021.126420
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jclepro.2021.126420


E. Ingemarsdotter, M.L. Kambanou, E. Jamsin et al. Journal of Cleaner Production 296 (2021) 126420
Ondemir and Gupta, 2014). However, actual implementation of
condition-based looping strategies in practice remains low
(Alcayaga et al., 2019; Ingemarsdotter et al., 2019).

As for all circular strategies, design is a key enabler of successful
maintenance (Mulder et al., 2012). Original Equipment Manufac-
turers (OEMs) can intentionally design their products to facilitate
CBM, for example by ensuring the integration of sensors needed to
derive reliable insights about a product’s condition. Previous liter-
ature has shown successful examples of OEMs monitoring their
customers’ products remotely and offering CBM as part of a service-
based value proposition (Lightfoot et al., 2011; Rymaszewska et al.,
2017). However, this is far from common practice and many OEMs,
while seeing the business opportunity of offering CBM, still struggle
with its implementation (Bouskedis et al., 2020; March and
Scudder, 2017).

Previous literature highlights a gap between the current focus of
academic research and the real-world challenges that companies
face when implementing CBM. As such, there is a need for more
practice-oriented research in this field (Fraser et al., 2015). Simi-
larly, recent papers in the field of CE highlight a need for more case
studies of IoT-enabled circular strategies (e.g., CBM), to better un-
derstand implementation challenges in practice (see, for example,
Antikainen et al., 2018; Cattelan Nobre and Tavares, 2016;
Pagoropoulos et al., 2017; Ingemarsdotter et al., 2020). Specifically,
authors from both fields call for a wider understanding of imple-
mentation challenges beyond purely technological aspects (e.g.,
Kirchherr et al., 2017; Coleman 2017; Lee, 2020a).

In this paper, we aim to understand the challenges that OEMs
face when implementing CBM as part of the value proposition to
their customers. More specifically, we study the challenges that
they facewhen developing an IoTartefact for CBM and the solutions
that they have applied to address these challenges. Towards this
aim, we develop a framework, which takes a wide perspective on
CBM implementation by integrating technological, organizational,
and user-related aspects. The framework is used to analyse the
cases. This way, we aim to contribute to CBM literature with
empirically grounded insights from the OEM’s perspective, beyond
a purely technological focus. Moreover, we see CBM as one of the
most commonly implemented IoT-enabled circular strategies, for
which we were able to gain access to real-world company cases. As
CBM shares key characteristcs with other IoT-enabled circular
strategies, in particular condition-based reuse and remanufactur-
ing, our aim is that the findings extracted from this paper will also
be valuable for CE literature beyond maintenance.

The remainder of the paper is structured as follows. Section 2
first introduces the concept of CBM, including key steps and tech-
nologies (Section 2.1). Thereafter, we present previous literature on
challenges and solutions in CBM implementation and argue for the
need for an integrated perspective, considering technological,
organizational, and user-related aspects (Section 2.2). Section 3
describes the research methods, while Section 4 explains how the
integrated framework was developed based on previous literature.
Section 5 presents the cases, and Section 6 presents the identified
challenges and solutions. In Section 7, we discuss the results in
relation to previous literature, and translate our findings into a set
of recommendations for practitioners. Finally, Section 8 states the
main conclusions of the paper and presents suggestions for future
research.

2. Background

2.1. Introduction to condition-based maintenance

CBM has been defined as “preventive maintenance which include
assessment of physical conditions, analysis and the possible ensuing
2

maintenance actions” (British Standards Institution, 2017). If
implemented successfully, CBM can reduce the number of unnec-
essary preventivemaintenance activities asmaintenance only takes
place if the data shows signs of abnormalities (Jardine et al., 2006).
Moreover, CBM has environmental advantages resulting from, for
example, extended operational product lives, more intensive use of
products, and reduced transportation of maintenance personnel
and spare parts (Johansson et al., 2019).

Jardine et al. (2006) distinguish between three key steps in
CBM: data acquisition, data processing, and maintenance decision
making. Data acquisition includes collection and sorting of data
about products in the field, both condition monitoring data (e.g.,
vibration data, acoustic data, oil analysis data, temperature, pres-
sure, ormoisture data) and so called event data, i.e., what happened
to the product in a particular situation, or which maintenance tasks
were performed on the product. Event data often requires manual
data entry. Condition monitoring data can be collected both auto-
matically through sensors or other measurement techniques, or
manually through for example daily oil quality checks (Ahmad and
Kamaruddin, 2012). While the definition of CBM does not explicitly
require automatic sensor-enabled data collection for condition
monitoring, this is often implicitly assumed in the current tech-
nological context. The data processing step includes data cleaning,
analysis and interpretation. In the decision-making step, mainte-
nance policies are selected, and maintenance actions are carried
out, based on the derived insights.

CBM can be categorised into four types, according to the level of
data analytics performed: descriptive, diagnostic, predictive and
prescriptive analytics (Baum et al., 2018). According to Baum et al.
(2018), descriptive analytics aims to understand events based on
historical data, whereas diagnostic analytics investigates why an
event took place. In predictive and prescriptive analytics, mathe-
matical models are used to predict future outcomes and to pre-
scribe optimal interventions, respectively. The term ‘predictive
maintenance’ has been gaining traction in literature, with many
studies highlighting its business opportunities (e.g., Bouskedis
et al., 2020; March and Scudder, 2017). In this paper, we use the
term CBM to includemaintenance activities based on data analytics
at any of the four levels.

An extensive body of literature has been built up around
mathematical models and data analytics methods for CBM. Two
closely related research areas can be identified: research into the
selection of optimal maintenance policies, and research into data
analytics for failure diagnostics and prognostic. Maintenance policy
optimization is usually based on cost, reliability, or availability and
considers parameters such as the products’ degradation patterns,
the resources available for maintenance, and the consequences of a
potential stand-still (Alaswad and Xiang 2017). Recently, attention
has also been paid to understanding dependencies between
different components in complex systems, and how that might
influence the optimal choice of maintenance policy for the system
as a whole (Olde Keizer et al., 2017).

Component-level diagnostic and prognostic approaches have
been reviewed in multiple papers, e.g. by Atamuradov et al. (2017),
Jardine et al. (2006), and Lei et al. (2018). Although different cate-
gorisations have been suggested in literature, three types of ap-
proaches are often put forward: model-based (or physics-based),
data-driven, and hybrid approaches (Atamuradov et al., 2017;
Kwon et al., 2016). Below, we briefly describe model-based and
data-driven approaches. Hybrid approaches are defined as combi-
nations of these two, with the aim to use the advantages of both.

Model-based approaches use mathematical models to describe
degradation processes. Condition monitoring data is fed to the
model, which calculates a predicted state. These kinds of models
can be relatively accurate, also for long-term predictions, but



E. Ingemarsdotter, M.L. Kambanou, E. Jamsin et al. Journal of Cleaner Production 296 (2021) 126420
requires in-depth knowledge about the physics of degradation for
the specific product (Jardine et al., 2006; Shimomura et al., 1995).
Moreover, the applicability of these degradation models in practice
is sometimes limited by the complexity of the real-world system in
which individual components operate. Examples of use cases
where model-based approaches are common and effective include
condition monitoring of bearings and of the structural health of
materials (e.g., in bridges) (Atamuradov et al., 2017).

Data-driven approaches are instead based on analysing condi-
tion monitoring data to detect anomalies and translate such
anomalies into insights about potential faults. This way, degrada-
tion models are built up from the data, often using machine
learning techniques (Heng et al., 2009). Data-driven approaches
require less expert knowledge about how the product or compo-
nent fails, but instead requires more computational power than
model-based approaches, as well as access to large amount of high
quality data. The accuracy of the model depends directly on the
amount and quality of the data that is used to build it (Atamuradov
et al., 2017). In practice, challenges arise as the collected data is
often heterogeneous and disperse. Research into new algorithms
for prognostics evolves at a fast speed, see e.g., Stetco et al. (2019) or
Kumar et al. (2020).

There is still a need to improve the available diagnostic and
prognostics approaches to achieve high levels of accuracy in real
world settings, especially in long-term predictions. Alaswad and
Xiang (2017) highlight that most research has focused on single-
component systems, and that more work is needed to understand
the condition of complex products and systems with multiple
different components. For example, they mention the need to
model dependencies between degradation processes in different
components, as well as possible human errors related to CBM.

2.2. Previous research on challenges and solutions in CBM
implementation

Despite the abundance of technical literature, companies still
struggle to effectively implement CBM in practice (van de Kerkhof
et al., 2016; Tiddens, 2018). Based on a survey of 98 Swedish
companies, Ylip€a€a et al. (2017) found that maintenance personnel
still mainly carry out reactive repairs, rather than proactive main-
tenance. Similar findings have been reported by Jin et al. (2016) and
Chinese and Ghirardo (2010), based on data from the United States
and Italy, respectively. Further, Veldman et al. (2011) and Tiddens
(2018) noted that, among the companies who have set up CBM
implementation projects, many do not follow systematic processes.
As such, we note that there is a gap between the challenges faced by
companies wanting to implement CBM and the advanced solutions
presented in literature.

Other researchers have also highlighted such a gap and called
for more empirically-based research which can actually help solv-
ing “real problems in industry” (Fraser et al., 2015). Olde Keizer et al.
(2017) note that the fact that CBM implementation in practice is
lagging behind could, at least partly, be explained by the
complexity of real-life systems compared to the simplified systems
often studied in academia. Other technical challenges related to
implementing CBM in real-life settings include the lack of failure
data from products in the field, making it challenging to develop
robust diagnostics and prognostics (Jin et al., 2016; Goyal and Pabla,
2015). Selcuk (2017) and Rastegeri et al. (2013) both highlight
technology selection as a critical factor for CBM implementation,
including, for example, which components to monitor, which
measurement techniques to use, and what types of data analytics
models to apply. Stecki et al. (2014) conclude that challenges to
widespread CBM implementation exist across all technical levels,
from data collection, through data analysis to decision support.
3

Related to this, Rastegari et al. (2013) highlight competence
building around data collection and analysis as a critical challenge.

Some research is available which aims to support companies in
overcoming these technical implementation challenges. For
example, Lee et al. (2014) and Tiddens (2018) presented methods
for selecting critical components to monitor as well as algorithms
to use when processing the data. Stecki et al. (2014) formulated
recommendations for how to set up an effective CBM program,
highlighting the need to understand the risks to which a system is
exposed, as well as to analyse and define failure dependencies.
Mourtzis et al. (2020) presented a framework which used
Augmented Reality (AR) technology to support effective real-time
communication and data exchange between service technicians
in the field and expert engineers located remotely.

However, technical aspects only form one of several important
dimensions in CBM implementation (Lee, 2020a). A recent Deloitte
report emphasises the importance of looking beyond technology
and focus more on processes and organizational changes needed
for successful CBM implementation (Coleman, 2017). Similarly, Lee
(2020b) argues that the biggest challenge of Industrial AI (including
CBM) is not a lack of suitable technology, but rather how to create
real value from a combination of technologies in a resource efficient
and collaborative way. Selcuk (2016) highlights organizational
challenges related to the fact that CBM implementation is a multi-
disciplinary undertaking with implications for, for example, hard-
ware, software, personnel, and training requirements.

With this in mind, our research takes a wide perspective on CBM
implementation, including technological, organizational and user-
related aspects. A small set of previous papers take a similar direc-
tion. Veldman et al. (2011) identified challenges in CBM imple-
mentation related to a lack of strict procedures, and a lack of
employee training to support correct execution. More recently, Jin
et al. (2016) highlighted barriers related to costs, workforce and
level of skills, organizational and technology readiness, and
complexity of system design changes. They also saw a need for clear
strategies to motivate and train personnel, create incentives, and
ensure interdepartmental collaboration. Bokrantz et al. (2020)
identified implementation challenges for CBM related to, for
example, costs and cultural resistance. Rastegari et al. (2013)
concluded that one of the main challenges when changing the
company culture from reactive to proactivemaintenance strategies is
a lack of management support. Golightly et al. (2018) studied human
and organizational factors in CBM implementation and derived high-
level recommendations related to company culture, effective pro-
cesses, resource deployment, and collaboration. In Section 7, we
discuss how our findings relate to these previous papers.

3. Method

We conducted a multiple case study at three original equipment
manufacturers (OEMs). Case study methodology is suitable when
studying “a contemporary phenomenon within its real-life context”
(Yin, 2014). This aligns with the aim of this research, i.e., to un-
derstand challenges and solutions related to CBM implementation
in practice. In each of the studied cases, we were interested in
challenges and solutions related to developing and implementing
the technical artefact needed to realise CBM (the ‘IoT artefact’).
Below, we describe how the cases were selected, and how data was
collected and analysed. Section 4 describes how we developed the
integrated framework which was used to analyse the data.

3.1. Case selection

To be considered a relevant case for this study, three criteria had
to be fulfilled. Firstly, the case should be embedded within the
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context of a manufacturer of high value, complex products. This
ensured comparability between the cases, and is based on the
notion thatmaintenance costs for such products are high in relation
to production costs, compared to other types of products (Mulder
et al., 2012). Secondly, the case should describe an, at least partly,
implemented CBM solution. Thirdly, the CBM solution should be
part of a maintenance service delivered to the end user of the
product. The type of product that was studied for each of the
selected cases is presented in Table 1. More detailed descriptions of
the cases are given in Section 5.
3.2. Data collection

Semi-structured interviews were conducted with company
representatives (Table 2) using an interview guide. The interview
guide is presented in Table A.1 in Appendix A. The interviews,
which were audio-recorded, took place between April and July
2019, each lasting between 40 and 75 min. The aim was to inter-
view at least one person from the R&D department who had
experience in IoT and/or data analytics, and one from the mainte-
nance or aftermarket department. This way, we could capture the
views of actors involved in developing the IoT artefact as well as
actors using it. For Case B, no one from the maintenance or after-
market department could be accessed. However, a user experience
(UX) designer could provide insights into how themaintenance and
customer support staff used the CBM solution.
3.3. Data analysis

The data analysis process is shown in Fig.1. The audio recordings
of the interviews were transcribed, and then coded using the
software ATLAS.ti. The transcriptions were broken down into
“quotes”, and in a first step, each quote was coded based on the
framework which is used to analyse the data (presented in Section
4). More specifically, each quote was coded as a challenge or so-
lution in a specific ‘alignment type’ (explained in Table 4). For
example, the following quote was coded as a ‘challenge’ in the
‘Work system-Context’ alignment type because it shows how the
regulatory context surrounding the work system needs to be in
alignment with the work system:

… first of all, what we need from a legal perspective is that we need
permission from the end user that we can log their data. So this is a
constraint, without that the use case is gone … (Int-C4)

In a second coding step, challenges and solutions in an align-
ment type were further grouped into sub-categories. The example
above was put into the sub-category ‘Data privacy concerns’
together with seven other quotes. These sub-categories were eli-
cited by observing commonalities between quotes with the same
first level code. This was an iterative process involving all authors
and as a final step the interview datawas revisited to ensure that all
quotes were coded as one of the identified challenges or solutions
(second level codes). After this, 19 challenges and 16 solutions
remained. Τhese are the main results of this research and are
presented in Section 6.
Table 1
Products studied in the three cases.

Case A Forklifts
Case B Industrial robots
Case C Heat pumps

4

4. Framework development

To analyse the cases, we needed a structured representation of
(1) the IoT artefact that the companies had to produce to realise
CBM and (2) the surrounding organizational and user-related as-
pects needed to achieve this. This was achieved through adapting
and combining two frameworks: the new technology stack (Porter
and Heppelman, 2014) and the work system framework (Alter,
2013). The new technology stack (Fig. 2) provides a way to
describe an IoT artefact as a ‘stack’ with three main layers: the
product layer, the connectivity layer, and the cloud layer. The work
system framework (Fig. 3) provides a frame for describing the
system needed to produce a product or a service.

Below, we first briefly present the two frameworks. Then, we
describe how we take the work system framework as a starting
point, and adapt it by (1) making simplifications where possible, (2)
using the new technology stack to detail the product/service to be
produced by the work system, and (3) contextualising the de-
scriptions of thework system elements, and the required alignment
between them, to fit the context of this paper.

4.1. Frameworks from literature

The new technology stack presented by Porter and Heppelmann
(2014) shows the layered nature of IoT artefacts. As depicted in
Fig. 2, it distinguishes between threemain layers: the product layer,
the connectivity layer, and the product cloud layer. The product
layer consists of hardware-level and product-level software. The
connectivity layer enables communication between the product
and the cloud layer. The cloud layer consists of a product data
database, an application platform, a data analytics engine, and
cloud-level applications (Porter, 2015).

Thework system framework represents a ‘work system’, defined
as a “system in which human participants and/or machines perform
work using information, technology, and other resources to produce
specific products/services for specific internal and/or external cus-
tomers”. The term ‘work’ is defined as “the application of human,
informational, physical, and other resources to produce products/ser-
vices” (Alter, 2013) [pp. 75].

As seen in Fig. 3, the work system framework includes nine el-
ements: participants, information, technologies, processes/activ-
ities, product/service, customers, infrastructure, environment, and
strategies. The definitions as given by Alter (2013) for each of the
nine elements are presented in Table A.2 in Appendix A.

For a work system to successfully reach its goal, i.e., to produce
the product/service for the intended customers, the elements of the
work system should be ‘in alignment’with each other. Five distinct
types of alignment are shown in Fig. 3 as arrows linking elements
together. For example, participant-processes/activities alignment
implies that “the knowledge, skills, interests, and motivation of the
participants should fit with the processes and activities in the work
system, and the processes and activities should be appropriate for
attributes of the participants” (Alter, 2013) [pp. 79]. While not
explicitly shown in the work system framework, the work system
as a whole should also be in alignment with the company-level
strategy, infrastructure and environment.

4.2. Integrated framework

To develop the integrated framework, we take the work system
framework as a starting point and adapt it to fit the context of this
paper. We first simplify by renaming the element ‘Processes/Ac-
tivities’ to ‘Activities’ and combining the three elements ‘Strategies’,
‘Infrastructure’, ‘Environment’ into one category named ‘Context’.

Thereafter, we detail to the ‘product/service’ to be produced by



Table 2
Interviews conducted per case company.

Case # Role Interviewee ID Total amount of data collected

A 7 R&D manager Int-A1 6 h
Service manager Int-A2
Product specialist with aftermarket responsibilities Int-A3
R&D manager Int-A4
Manager Software System Solutions Int-A5
Manager ‘Technology Solutions’ Int-A6
Head of Group, Embedded software Int-A7

B 4 Program manager digital services Int-B1 4 h 20 min
Senior principle scientist Int-B2
Senior R&D Engineer Int-B3
User experience designer Int-B4

C 4 Senior project manager, R&D Int-C1 3 h 50 min
Systems architect Int-C2
Technical support Int-C3
Senior data analyst Int-C4

15 14 h 10 min

Fig. 1. Steps in the data analysis process.
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the work system. We use the new technology stack (Fig. 2) to
represent the IoT artefact needed to enable CBM. In order to also
include services produced by the work system, and offered to the
users of the IoT artefact, we add a service layer on top of the
technology stack. This service layer might include, for example,
software maintenance, updates, and support.

Based on the above, we formulate the descriptions of the work
system elements according to Table 3. We identify the maintenance
personnel as the main customers in the work system, since they are
the main users of the product/service. This includes roles such as
service technicians, service managers, and customer support
personnel. However, we acknowledge that there can also be other
users of the IoT artefact, for example the end customer (the user of
the product to be maintained), or the internal R&D department.

The integrated framework distinguishes between six alignment
types, numbered 1e6 in Fig. 4. These alignment types correspond to
the five alignment types represented by arrows between work
system elements in the work system framework (Fig. 3), and one
extra alignment type corresponding to alignment between the
work system and its surrounding context. In the context of this
paper, we characterize the six alignments types by explaining what
is considered satisfactory alignment within each type, as described
in Table 4.

5. Case descriptions

5.1. Case A: forklifts

Company A manufactures and sells forklifts to end customers
who are operators of, e.g., warehouses andmanufacturing facilities.
5

Company A also provides maintenance services to their customers
as part of short or long-term rental contracts.

In the recent years, Case A has developed a cloud application
that provides the end customers with information about the fork-
lifts they use. Drivers can log in to the application to record driving
times, and managers can see productivity data. The application can
also be used by maintenance and support personnel to support
troubleshooting (IntA3). Through the application, the maintenance
personnel can extract reports which show how many hours the
forklift has run, as well as the recent error codes that the forklift has
produced.

Regarding data analytics to support CBM, the company has
started to recruit experts, but is still in an early phase of
development.

Looking forward, the interviewees saw the need to develop a
failure model, which could prescribe maintenance activities to
minimise breakdowns (IntA1). This will require additional data
collection from the forklift’s operational phase (IntA2,IntA1). The
future vision for the cloud application also includes a stronger focus
on service planning and coordination, such as automatic dis-
patching of jobs to service technicians based on their location and
competence (IntA2).

5.2. Case B: industrial robots

Company B manufactures and sells industrial robots to a broad
range of customers, e.g., in the automotive industry. The company
has in-house service technicians who provide maintenance ser-
vices to the end customers who have opted for that. There is also a
support organization, which assists customers remotely.
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The company has offered services based on connectivity as an
add-on to the robots for about 10 years (IntB4). They have devel-
oped a web-based application where both the end customer and
internal maintenance personnel can log in and get information
about the connected robots including alarms and error codes
(IntB4). Internally, the main user of the application is the support
personnel, who can log in to see and download recent alarms
recorded by the robot.

Regarding data analytics, several research projects have been
carried out to develop failure diagnostics and prognostics for CBM
(IntB3). Moreover, a central data analytics team has been formed to
support the different business units.

Looking forward, there is an ongoing project to update the
application. The project will make sure that the application is
transferred to a new company-central cloud platform and that the
user experience is improved (IntB4). Moreover, the vision for the
6

future includes an increased focus on failure predictions, and on
prescribing timely maintenance actions (IntB4). Also, there is an
ambition to extend the scope of CBM to include the tools used by
the robot, or even the whole production line made up of multiple
robots.

5.3. Case C: heat pumps

Company Cmanufactures and sells heat pumps to both property
managers, and individual households. The company does not offer
maintenance-as-a-service directly, but has a long (ca 10 years)
warranty which covers maintenance costs. Third party installers
perform the actual maintenance activities, with help from the
company’s support organization (IntC1). There is a drive in the
company to reduce maintenance costs, and increase customer
satisfaction through increased uptime.



Fig. 3. The work system framework, adopted from Alter (2013).

Table 3
Elements of the integrated framework, adapted from Alter (2013).

Work system
element

Description

Product/Service An IoT artefact which supports CBM. The IoT artefact has a product layer, a connectivity layer, a cloud layer, and a service layer.
Customers The main customers of the product/service are service technicians, service management, and customer support. Other customers can be, for example,

the end user of the physical product and the R&D department.
Activities Activities needed to produce the product/service include, but are not limited to, the design and development of cloud applications, data analytics

models as well as the setup of data collection, transfer and storage. Activities also include the development of services such as software maintenance,
updates, and support.

Participants Participants involved in the activities are, for example, user interface designers, application developers, data analysts, and embedded software
engineers.

Information Information used by the participants in the activities includes feedback from the customers, as well as data collected by products in the field.
Technologies Technologies used by the participants when performing the activities include tools for data collection, transfer, and processing.
Context Using Alter’s definitions for Infrastructure, Environment, and Strategies (see Table A.2 Appendix A), the context includes the overarching strategies of

the company in which the work system is embedded, the organizational, cultural, competitive, technical, regulatory, and demographic environment
surrounding the work system, as well as resources used within the work system, but managed outside it.
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Almost all heat pumps currently sold can be connected to the
internet. However, the company only collects data from customers
if the service technicians cannot solve the problem and therefore
contact customer support. Then, the company sends a request to
the customer asking for permission to monitor their system for
fault diagnosis purposes (IntC1). If accepted, the customer support
can see the error codes produced by the heat pump. It is also
possible to activate additional data logging, if needed (IntC4).

Regarding data analytics, the company has started to move to-
wards predictive analytics, by putting together a specific team in
charge of developing data-drivenmodels to predict failures (IntC4).

Looking forward, there is an ongoing project to develop an
application for the service technicians to be able to troubleshoot
more easily, receive alarms remotely, and better plan and prepare
for maintenance visits (IntC1). The project also involves extending
the data available to the customer support team (IntC2).
7

6. Results

A total of 19 challenges and 16 solutions were extracted from the
case data. The challenges and solutions are distributed across the
six alignment types in the framework, as seen in Fig. 5 and Fig. 6,
respectively. Below, we describe the observed challenges and so-
lutions per alignment type, illustrated by examples from the cases.
6.1. Information-Activities alignment

The challenges within this alignment type relate to collecting
the right data at an appropriate quality. In all three cases, data is
being collected from products in use. However, the data is not al-
ways appropriate and useful for the purpose of CBM (IntA1).
Limited accuracy and time resolution of the collected data were
mentioned as specific challenges (IntC2, IntB1), as was the fact that
the data did not include all the parameters known to affect the



Fig. 4. Integrated framework for analysing the company cases, based on Alter (2013) and Porter and Heppelmann (2014).

Table 4
Explanation of satisfactory alignment, for each alignment type in the integrated framework.

Alignment type Explanation

1. Information-Activities The information that goes into the activities provides satisfactory input to the participants to perform the activities needed to produce the
product/service.

2. Participants-Activities The participants are able and willing to perform the activities needed to produce the product/service.
3. Technologies-Activities The technologies available to the participants enable them to perform the activities needed to produce the product/service.
4. Activities-Product/

service
The activities are well coordinated and aligned towards the goal of delivering a consistent product/service.

5. Customer-Product/
service

The product/service satisfies the needs of all relevant customers, and the customers are able andwilling to use the product/service as intended.

6. Work system-Context The surrounding context supports the goal of the work system.
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product’s condition (IntA1, IntB3, IntC3). In Case C, the latter issue
has partly been solved through a strategy to collect more data than
initially needed (IntC1, IntC4). However, this solution is difficult to
scale up since it requires large amount of data to be transferred,
stored, and processed (IntC4).

Moreover, both high quality metadata and labelled data are
difficult to collect. Metadata here refers to information about a
product in the field other than the actual monitoring parameters
(e.g. the size of a house in which a heat pump is installed), and can
be important for interpreting the data recorded by the system
(IntC2, IntB1). Labelled data is a dataset that contains ‘labels’ about
what actually happened in the field (e.g., if the product stopped
working). Such labels are needed to perform supervised machine
learning and build data-driven prognostic models (IntB3, IntC4). A
8

specific issue is that metadata and data labels often have to be
entered manually, for example by an installer or the end user. The
interviewees pointed out a lack of ability and/or incentive among
installers and end users to input this information accurately, and in
a format that would allow for automatic processing (IntC2).

In Case C, the company has partly solved the challenge of lacking
metadata, by asking installers to input metadata through a mobile
application when an installation is registered to the warranty
program (IntC2, IntC4). Still, many installers either do not report
any metadata at all, or report inaccurate information. To collect
labelled data, Case A and B monitor products in their own opera-
tions, for which they have insight into the products’ condition
(IntA6, IntB3). Case B also performs tests of their products in lab
environments (IntB3). For Case B, faults that happen at the



Fig. 5. Challenges per alignments type, as extracted from the studied cases. The numbering used is ‘X.CY’, where X is the number of the alignment type (1e6), ‘C’ stands for
challenge, and Y is the number of the specific challenge.
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customer site during the warranty period are well documented
(IntB3) and Case C performs field tests at customer sites when new
products are released (IntC1, IntC2). However, to understand
product degradation over time, it would be necessary to collect
labelled data from the field throughout the whole life of the
product. Case C has tried to achieve this through building a web
application for service technicians to enter labels about products’
condition during maintenance activities. However, the technicians
often do not use it, or do not input the data accurately enough
(IntC4).
6.2. Participants-Activities alignment

The challenges within this alignment type relate to a lack of
time, resources, and experience in the organization needed to meet
CBM-specific requirements. CBM requirements are sometimes
overlooked if the R&D department is already overloaded with other
product requirements (IntB3, IntA3, IntA7). It is especially difficult
for the R&D team to develop new infrastructure, such as a cloud
platform, while working on sharp development projects (IntB3).
Moreover, due to lacking experience with data-driven approaches,
some employees do not even consider that these technologies
could be of interest (IntB3, IntA1). One way to improve this situa-
tion is to work actively with awareness-building in the organiza-
tion, supporting employees in seeing the value and opportunities of
9

data (IntB3).
In Case B and C, time and resource issues in the R&D team have

been reduced by appointing a specific group to manage the cloud
platform centrally in the organization. This way, each business unit
can build applications in the cloud platform, get support from the
central function, and learn from each other (IntC1, IntB3). Similarly,
Case B and C have established specialized data analysis teams who
support and share knowledge between different business units
(IntB3, IntC1).

Another identified solution is to ensure sufficient collaboration
between people with more traditional product expertise, and
people with data-specific competences. One example is that, when
developing failure models, data analysts are supported by product
experts about known causes for failure, and important parameters
influencing degradation (IntB2, IntB3, IntC4). Another example is
that collaboration between hardware development and software
development is necessary when software-related requirements
imply a need for additional data collection, which in turn leads to a
need for changes to the physical product (IntB1).
6.3. Technology-Activities alignment

The challenges within this alignment type relate to limited
flexibility and scalability of data collection and to a lack of tools
available for developers. Limited flexibility in data collection means



Fig. 6. Solutions per alignment type, as extracted from the studied cases. The numbering used is ‘X.SY’, where X is the number of the alignment type (1e6), ‘S’means solution, and Y
is the number of the specific solution.
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that it would be difficult to change what data was collected from
the products over time. An interviewee from Case Bmentioned that
if they wanted to add another parameter to be monitored from
products in the field, it would require an update of the complete
product-level software. This might not be accepted by the end
customers, since software updates always involve a risk of intro-
ducing new errors. This challenge has been partly solved in Case A,
where the data handling unit on the products can be updated
separately from other product-level software, enabling collection of
additional data without impacting other functionality (IntA6). In
Case B, there is an ongoing program to modularize the product-
level software (IntB3).

As the number of connected products increase, the scalability of
data collection, transfer and processing also becomes a challenge
(IntC4). Moreover, one interviewee from Case B highlighted the lack
of easy-to-use technical tools and developer environments which
could help simplify data access and analysis (IntB3). Both these
challenges have been partly solved in both Case B and Case C,
through the development of a central IoT platform. The IoT plat-
forms can be used by different business units to build the appli-
cations they need. The platforms also offer benefits such as
increased data security (IntC2), higher sampling rate, and real time
data availability (IntB4).
10
6.4. Activities-Product/service alignment

The challenges within this alignment type relate to a lack of
processes, roles, and responsibilities in the organization to effec-
tively deliver a CBM solution. For example, one interviewee
mentioned that there is “no real ownership of the delivery of useful
information to the maintenance team”, and that this responsibility
should be made explicit, and assigned to a certain role in the
development process (IntA1). More specifically, we found a lack of
structure in deciding what data to collect for CBM. Data collection is
mainly driven by what is technically possible rather than what is
actually needed (IntB4, IntA4, IntA1, IntA2). Similarly, the error
codes coming from the products in Case A and C are not developed
to guide service personnel when assessing a product’s condition, or
to proposemaintenance actions (IntA1). Instead, the error codes are
defined by the software developers for the purpose of testing
certain programmed functions (IntA1, IntC3).

The above-mentioned challenges have been partly addressed in
Case B by appointing a project manager to lead CBM projects across
business functions. Requirements from users of the cloud-level
application are collected in a common ‘backlog’ and sent to the
respective teams who implement the request, ensuring feedback of
user needs to both software and hardware development (IntB4).
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Case B and C have started to address the challenge of lacking
structure for deciding what data to collect by (1) prioritizing data
from components which fail more often, and which are known to
have a high impact for the customers if they fail (IntB3) and (2) by
involving the customer support department to help decide which
data to collect based on their experience of common issues in the
field (IntC3).

6.5. Customer-Product/service alignment

The challenges within this alignment type relate to a lack of user
understanding and a limited acceptance among users to adopt CBM
solutions. A core challenge is to translate the needs of the service
personnel to the data engineers. Reasons for this lacking under-
standing are, for example, limited interest and ambition of
responsible individuals (IntA7), or that actors are ‘stuck’ in estab-
lished ways of working (IntA1). In Case A, the service team
expressed that the data engineers do not take the time to under-
stand how theywork (IntA2). On the other hand, the data engineers
pointed out that communication was hindered by the fact that the
service technicians do not fully understand the specificities of big
data analytics (IntC4). One interviewee highlighted that service
technicians do not even think about setting requirements for the
usefulness of the information that they receive, because they are
used to their current way of troubleshooting products (IntA1).

Some solutions were found in relation to these problems. In
Case B, the application development team perform dedicated user
observations and interviews in order to understand the users’
needs and pain points. This way, insights are extracted about what
information would be useful, and how it should best be presented
to the user (IntB4). In Case A and C, the service organization and the
development organization hold regular meetings to discuss how to
improve product maintainability (IntA3, IntA2, IntC3). While this
provides a platform for communication about design for mainte-
nance, the requirements discussed are mainly related to physical
product features and not CBM-specific.

A specific challenge is that the CBM solutions do not deliver
information in a user-friendly way (IntA3). For example, the service
personnel might not understand why certain error codes appear,
what they mean, or what action to take based on this information
(IntA2, IntA1, IntB4). The same error code can also mean different
things for different product models (IntA7). Moreover, support
technicians are overloaded with alarms and have difficulties
prioritizing between them (IntB4). The interviewees discussed
ways to make error codes more understandable. In Case A, the
embedded software developers include an information file to all
software packages, explaining the error codes. They also use a
certain structure for numbering the error codes, and try to keep this
structure across product models (IntA7). In Case C, an interviewee
mentioned that they always try to make error messages as self-
explanatory as possible (IntC2). Case B have focused on reducing
unnecessary terminology, using more visuals, and using more
consistent terminology (IntB4).

With regards to the limited acceptance and ability among ser-
vice technicians to adopt data-driven approaches (IntB4), a specific
challenge is the limited trust in failure detection and prediction
algorithms (IntC4). An interviewee highlighted the importance of
keeping the number of ‘false alarms’ from algorithms low, in order
to enable higher acceptance rates among service technicians. In-
terviewees also mentioned that some service technicians are
lacking the skills to take advantage of data-driven approaches
(IntC2), pointing out a need for additional training (IntA3).

Another challenge is to properly identify and target all relevant
users of the IoT artefact. For Case A, a cloud-level application was
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initially developed for the end customer, partly disregarding the
needs of the service organization (IntA5, IntA6). In Case B, a cloud-
level applicationwas developed to serve the customer service team
(IntB3, IntB4), assuming that they would be the main users. This
assumption turned out to be true for small customers, who did not
perform any maintenance themselves, but not for big customers
(IntB3). Further, there might be other potential users of the IoT
artefacts, who are not yet considered. For example, an interviewee
from Case A saw the need to add a specific interface towards the
back-office service department (IntA2), and in both Case A and B,
interviewees saw an opportunity to develop a specific interface
towards R&D (IntA5, IntB3).

In Case B, interviewees also discussed that the current CBM
solution only monitors the condition of the core part of the product.
However, to provide real value to the end customer, the CBM so-
lution should include the whole product, and even the system in
which it operates. In Case B, this would mean a solution which
considers the condition of the robot itself, the different tools that
the robot uses, and potentially evenmultiple robots in a production
line (IntB1, IntB3, IntB4).

6.6. Work system-Context alignment

The challenges within this alignment type relate to conflicting
objectives in the organization, uncertainty about the business case
for CBM, and data privacy issues. All three cases have an IoT strategy
in place at the top-management level. On this level, the companies
are thus committed to ensuring that their products can be con-
nected to the internet (IntC1, IntB1, IntA4). However, this top-level
vision does not always translate into actual changes in work prac-
tices regarding CBM. Conflicting objectives manifest themselves
through, for example, that CBM advocates struggle to get buy-in
from the organization (IntA1, IntC2) and that reducing production
costs is prioritized over reducing maintenance costs (IntA2, IntA1).
In Case A, some customers also still pay per service visit, and per
spare parts exchanged (IntA3). This creates a mind-set among
people in the organization that they make money when they
replace parts for customers, which dis-incentivized maintenance
optimization.

A possible solution to these issues is to introduce organization-
wide key performance indicators (KPIs) that steer toward mainte-
nance optimization and CBM. Case C has introduced a KPI to
minimise the number of maintenance visits per installed product
(IntC1) while Case A has a KPI to minimise downtime in their
customers’ operations (IntA5, IntA6).

The challenge of finding a business case for CBM relates to how
customers perceive the value of the service (IntC2). Many cus-
tomers are, for example, more concerned about the buying price of
a product than the maintenance costs (IntA2). In Case C, the in-
terviewees said that since their products do not have regulated
scheduled service events, many customers do not see the value of
optimized maintenance (IntC2). It is especially challenging to
communicate the customer value of prescribed, precautionary
maintenance activities, which take place before the customer de-
tects any issues with the product (IntC4).

Another challenge for CBM implementation is that data privacy
regulations are becoming stricter. Interviewees from all cases
describe that they work carefully to comply with data privacy
regulations. In Case C, an interviewee highlighted that the changing
regulations create a careful attitude, among both employees and
customers, which might prevent the use of data which could be
compliant and useful (IntC2). This was especially true for large
customers, who are particularly concerned about IT security and
confidentiality of data (IntB3).
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7. Discussion and recommendations

The results show that CBM implementation comes with a wide
range of challenges, confirming the previously noted importance of
taking a broad and systemic perspective when studying CBM in
practice (Golightly et al., 2018; Veldman et al., 2011). It is note-
worthy that all three cases display challenges within each of the six
alignment types. Moreover, the challenges and solutions within an
alignment type are sometimes interrelated with challenges and
solutions in another alignment type. As such, targeted in-
terventions within one alignment type can also impact other parts
of the system.

Below, we discuss the findings, per alignment type, in relation to
previous literature.We combine the challenges and solutions found
into a set of 17 recommendations for OEMs aiming to implement
CBM (Fig. 7). Each recommendation is formulated to be concise and
actionable. Fig. 7 shows how each recommendation links to the
challenges and solutions identified in the cases. This way, in-
terrelations within and across alignment types are made explicit.
As such, Fig. 7 could support companies in taking concrete action
towards more successful CBM implementation, without losing the
‘big picture’.

Firstly, the results show that conflicting objectives in the orga-
nization is a challenge in CBM implementation (6.C1). This has also
been noted by Bokrantz et al. (2020) who saw a need for clear
leadership, visions and goals. Rastegari et al. (2013) further pointed
out management support as one of the main challenges in CBM
implementation. We found that a company-wide strategy for IoT in
general is helpful for CBM implementation (6.S1), but that CBM-
specific goals and KPIs are important additions (6.S2), confirming
similar conclusions by Bouskedis et al. (2020). Based on these in-
sights, we formulate two recommendations:

1. Create a common vision in the organization for CBM.
2. Put in place KPIs which support CBM.

The case companies also struggled to clarify the business case
for CBM (6.C2), due to uncertainty about how the CBM solution
would benefit themselves and their customers. This challenge has
been reported previously by, e.g., van de Kerkhof et al. (2016) and
March and Scudder (2017). We further note that the CBM offering
might have to be adapted to the needs of different customer types.
Specifically, some customers might, for data privacy reasons, prefer
to manage their own data storage and processing. As data privacy
issues among customers is increasing, and as data privacy regula-
tions are becoming stricter (6.C3), companies need build expertise
in this area. Based on the above, we formulate the following
recommendations:

3. Clarify the businesses case for CBM.
4. Build expertise in data privacy.

The results further display a need to improve the usefulness of
CBM solutions (5.C2, 5.C3, 5.C4, 5.C5). The case companies strug-
gled to identify and sufficiently target all relevant users of the IoT
artefact (5.C2) and to decide on a suitable scope the CBM solution in
relation to the context in which it operates (5.C3). The latter con-
textualises the argument made in CBM literature about the
importance of developing CBM solutions for multi-component
systems (e.g., Alaswad and Xiang, 2017; Olde Keizer et al., 2017).
Moreover, we found a challenge in making the IoT artefact’s in-
terfaces user friendly (5.C4), indicating a need for more focus on
user interface design (5.S4). This confirms previous findings from,
e.g., Golightly et al. (2018) who highlighted the importance of user
interface design for CBM. Questions about how to make more
12
intuitive interfaces toward service technicians in CBM have also
been explored in the field of augmented reality (e.g., Egger and
Masood, 2020).

The layered view of the IoT artefact presented in our framework
further highlights the need to translate insights from user research
into design decisions at each layer of the technology stack. Specif-
ically, we identified a need for improved communication between
maintenance personnel and data engineers about CBM re-
quirements (5.C1). This relates to the challenge within the
activities-product alignment type, which showed a lack of coordi-
nation of CBM projects across the layers of the IoT artefact (4.C1).
Based on the above-mentioned insights, we formulate the
following recommendations:

5. Ensure sufficient communication between data engineers and
maintenance personnel.

6. Investigate the processes and needs of all relevant users of the
IoT artefact.

7. Actively decide on a suitable scope for the CBM solution.
8. Ensure that the IoT artefact delivers information in a user-

friendly way.

An interesting challenge found with regards to usability of the
CBM solution was the barrier among service personnel to trust
data-driven approaches (5.C5). Akkermans et al. (2016) observed a
similar challenge, noting that data-driven approaches are “not in
the genes” of service technicians. In our study, we found that
increased transparency and explicability of algorithms might be
important for acceptance, something that has also been mentioned
by Bokrantz et al. (2020). Our results did not expose any clear so-
lutions here, but we note that this challenge relates to the identified
solution about continuously spreading awareness in the organiza-
tion about the possibilities of data-driven approaches (2.S3). Based
on these insights, we formulate the following recommendation:

9. Combine algorithm explicability efforts with training of main-
tenance staff to lower the acceptance barrier for data-driven
approaches.

The companies also faced challenges related to developing the
IoT artefact as one entity. The development of solutions at different
layers of the technology stack were generally not well-coordinated
(4.C1, 4.C2, 4.C3). We also found a need to clarify roles and re-
sponsibilities among the actors in this process (4.C3), something
that has been previously noted by, e.g., Ciocoiu et al. (2017). Based
on this, we formulate the following recommendation:

10. Set up clear roles and responsibilities for CBM projects,
across the layers of the IoT artefact.

Moreover, our results showed a lack of structured processes for
deciding which data should be collected (4.C2). This challenge has
been noted bymultiple other authors (e.g., Lee et al., 2009; Tiddens,
2018; Rastegari et al., 2013) and relates directly to challenges of the
Information-Activities alignment type, indicating that the data
collected is not always fit for the purpose of CBM (1.C1). Based on
this, we formulate the following recommendation:

11. Establish a structured process for deciding which data to
collect, and at what quality.

We saw that CBM implementation can be facilitated by building
technical solutions which allow for flexible data collection over
time (3.C1, 3.S1), and to provide easy-to-use tools for developers
(3.C3, 3.S2). Flexible data collection solutions are important as they



Fig. 7. 17 recommendations for companies wanting to implement CBM, based on the challenges and solutions found from the cases in this research (alternating colouring of the
connecting lines for readability).
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allow for learning through trial and error, and for adding new pa-
rameters to be monitored when needed (3.S1). Moreover, a flexible
data collection solution can help companies avoid the sub-optimal
solution of collecting more data than they really need (1. S1), a
strategy which has limited scalability (3.C2), and can lead to data
overload (Akkermans et al., 2016; Jonsson et al., 2010). Based on the
above, we formulate the following recommendations:

12. Build flexible and scalable data collection solutions that
allow for adaptability over time.

13. Provide easy-to-use tools to support developers with data
access and processing.

We also found that the R&D departments struggled to find the
time to develop CBM solutions (2.C1), and that they had limited
experience of working with software development and data ana-
lytics (2.C2). To overcome these challenges, companies can focus on
awareness-building around data-driven approaches (2.S3), and
ensure collaboration between data analysts and product experts
(2.S2). The latter has been mentioned previously by, e.g., Åkerman
et al. (2018) and Hiruta et al. (2019). Based on these insights, we
formulate the following recommendations:

14. Build data competences and awareness among employees,
customers and partners.

15. Ensure collaboration between specialized data analysts and
people with deep domain knowledge.

Finally, we found that the data collected by the case companies
was not always fit for the purpose of CBM (1.C1). This relates
directly to the lack of structured processes for decided what data to
collect (4.C2, covered in recommendation 11). Specifically, high
quality metadata and labelled data was lacking (1.C2, 1.C3), partly
due to a lack of ability and incentive among installers, service
technicians and end customers to input metadata and data labels
with sufficient accuracy. As such, this relates to the need to increase
the awareness about the value of data-driven approaches (2.S3,
covered in recommendation 14) and to the challenge of limited
acceptance among maintenance personnel for data-driven ap-
proaches (5.C5, covered in recommendation 9). Based on these
insights, we add two final recommendations to the list:

16. Incentivise and facilitate metadata collection.
17. Incentivise and facilitate data labelling.

Having presented these recommendations, two important lim-
itations of the research should be mentioned. Firstly, the results
build on insights from three company cases. This is a limited data
set and more research is thus needed to confirm the findings in
other cases. Secondly, the case selection criteria were formulated so
that the companies should have an at least a partly implemented
CBM solution in place. Had the selection been more strictly limited
to advanced cases of CBM implementation, it is possible that other
or additional insights could have been captured.
8. Conclusions and future research

The aim of this research was to understand the challenges
related to CBM implementation in practice and to extract solutions
which companies have applied to address these challenges. To-
wards this aim, we conducted a multiple case study at three
manufacturers who had partly implemented CBM. We proposed an
integrated framework, which takes a broad perspective on CBM
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implementation, integrates technological, organizational and user-
related elements, and explicitly considers the need for alignment
between these elements. Using the framework to analyse the three
cases, we identified 19 challenges and 16 solutions, spanning across
the different alignment types. Based on this, we proposed a set of 17
actionable recommendations for practice. Moreover, we showed
that some challenges and solutions are interrelated across the
different alignment types. This implies that, when proposing a
solution to a specific CBM implementation challenge, it is impor-
tant to also assess its effects on other parts of the system. In the
discussion of our findings, we facilitated this by making the in-
terrelations between challenges and solutions explicit.

Our study contributes to the field of CBM with a comprehensive
view of implementation challenges and solutions in real-world
implementation, from the OEM’s point of view. It also contributes
with an analysis framework that can be used to derive such insights
in other cases. Further, we contribute to CE research by adding a
concrete case study to the emerging literature about IoT-enabled
circular strategies, which has so far predominantly focused on
opportunities rather than implementation.

Future research could build on the findings presented here to
study more cases of IoT-enabled circular strategy implementation,
eventually building a knowledge base around how to best realise
the opportunities of IoT for CE in practice. In particular, given the
strong analogies between maintenance and reuse/remanufactur-
ing, the recommendations proposed heremight also be relevant for
OEMs aiming to implement condition-based reuse and/or rema-
nufacturing. To verify this, future research is needed to understand
specific challenges and solutions of such strategies.
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Table A.1
Interview guide used to collect data from the cases

Questions to R&D
Context � What was the idea when designing the CBM solution, what should it be able to do, and for whom?

� Was the maintenance service already in place before the development of the CBM solution? How did IoT change the service proposition?
� Who owns the cost and benefit of the CBM solution? Do end customers pay a fee for the CBM service?
� Who owns the data collected from the CBM solution?

Function � What functionalities does your CBM solution currently have?
� How is this functionality supporting improved maintenance, according to you?
� What information and knowledge can be obtained from your CBM solution?
� Who uses the your CBM solution, and in what way?
� Which information and knowledge is used by whom?
� What are current limitations to the solution according to you?

Process Development of the CBM solution
� Who initiated the project?
� Who was involved in the development process?
� Did you use some kind of defined design/development process for developing the CBM solution? If yes, what does that entail?
� Which were the main activities in the development process?
Requirements collection
� Whose needs did you consider when collecting requirements?
� How and when did/do you collect requirements from the users of the CBM solution?
� How and when did/do you collect needs from maintenance personnel to identify requirements?
Design decisions made
� How did you decide what information to show the users of the system, and how to visualise it?
� How did you decide what data to collect and how to analyse it?
Evaluation activities
� How was the solution evaluated throughout the development process?
� Did you have to make changes to this after the system had been used for a while? Can you describe that process?
� How do you work with continuous improvement of the CBM solution?
Improvement potential
� What are your future development plans for the CBM solution? Why is this needed?

Questions to maintenance personnel
Process � Was the maintenance department involved in the development of the CBM solution? Can you describe how?

� Do you think you/your group should have been more involved in the development of the system? Why/Why not?
� Do you have a process for providing feedback to R&D about improvements that you would like to see for the CBM solution?

Use of the CBM solution � What kind of maintenance activities do you do?
� How do you use the CBM solution?
� Has your work changed since the CBM solution came in place? How?

Improvement potential � Is the information that you get from the CBM solution relevant?
� Is the information that you get from the CBM solution reliable?
� Is the information that you get from the CBM solution sufficient for you to make the decisions that you want to make?
� Does the solution integrate well with other systems that you are using?
� If you could change something about the solution as it is now, what would it be?

Table A.2
Definitions of the nine elements of work systems (directly from Alter, 2013 page 81)

Processes and activities occur in a work system to produce products/services for its customers. The use of the term “processes and activities” recognizes that the work
being performed may not be a set of clearly specified steps. Many important work systems perform organized activities that rely heavily on human judgment and
improvisation, are semi-structured, and are better described as a set of related activities.

Participants are people who perform work within the work system. Customers are often participants in work systems, especially in service systems.

All work systems use or create information, which in the context of work system analysis is expressed as informational entities that are used, created, captured,
transmitted, stored, retrieved, manipulated, updated, displayed, and/or deleted by processes and activities.

Technologies include both tools that are used by work system participants and automated agents; that is, hardware/software configurations that perform totally
automated activities

Products/services consist of information, physical things, and/or actions produced by a work system for the benefit and use of its customers.

Customers are recipients of a work system’s products/services for purposes other than performing work activities within the work system. Customers of a work system
often are also participants in the work system.

Environment includes the relevant organizational, cultural, competitive, technical, regulatory, and demographic environment within which the work system operates,
and that affects the work system’s effectiveness and efficiency. Organizational aspects of the environment include stakeholders, policies and procedures, and
organizational history and politics, all of which are relevant to the operational efficiency and effectiveness of many work systems.

Infrastructure includes relevant human, information, and technical resources that are used by the work system but are managed outside of it and are shared with other
work systems. From an organizational viewpoint rather than a purely technical viewpoint, infrastructure includes human infrastructure, informational infrastructure,
and technical infrastructure.

Strategies that are relevant to a work system include enterprise strategy, department strategy, and work system strategy. In general, strategies at the three levels should
be in alignment, and work system strategies should support department and enterprise strategies.

E. Ingemarsdotter, M.L. Kambanou, E. Jamsin et al. Journal of Cleaner Production 296 (2021) 126420

15



E. Ingemarsdotter, M.L. Kambanou, E. Jamsin et al. Journal of Cleaner Production 296 (2021) 126420
References

Åkerman, M., Lundgren, C., B€arring, M., Folkesson, M., Berggren, V., Stahre, J.,
Engstr€om, U., Friis, M., 2018. Challenges building a data value chain to enable
data-driven decisions: a predictive maintenance case in 5G-enabled
manufacturing. Procedia Manufacturing 17, 411e418. https://doi.org/10.1016/
j.promfg.2018.10.064.

Ahmad, R., Kamaruddin, S., 2012. An overview of time-based and condition-based
maintenance in industrial application. Comput. Ind. Eng. 63, 135e149. https://
doi.org/10.1016/j.cie.2012.02.002.

Akkermans, H., Besselink, L., van Dongen, L., Schouten, R., 2016. Smart moves for
smart maintenance findings from a delphi study on ‘maintenance innovation
priorities’ for The Netherlands. Available from: https://research.utwente.nl/en/
publications/smart-moves-for-smart-maintenance-findings-from-a-delphi-
study-on.

Alaswad, S., Xiang, Y., 2017. A review on condition-based maintenance optimization
models for stochastically deteriorating system. Reliable Engineering & System
Safety 157, 54e63. https://doi.org/10.1016/j.ress.2016.08.009.

Alcayaga, A., Wiener, M., Hansen, E. Towards a framework of smart-circular sys-
tems: an integrative literature review. J. Clean. Prod.. 221: 622-634. http://doi.
org/10.1016/j.jclepro.2019.02.085.

Alter, S., 2013. Work system theory: overview of core concepts, extensions, and
challenges for the future. J. Assoc. Inf. Syst. Online 14, 72e121. https://doi.org/
10.17705/1jais.00323.

Antikainen, M., Uusitalo, T., Kivikyt€o-Reponen, P., 2018. Digitalisation as an enabler
of circular economy. Procedia CIRP 73, 45e49. https://doi.org/10.1016/
j.procir.2018.04.027.

Atamuradov, V., Medjaher, K., Dersin, P., Lamoureux, B., Zerhouni, N., 2017. Prog-
nostics and health management for maintenance practitioners - review,
implementation and tools evaluation. Int. J. Prognostics Health Manag. 8.
https://www.phmsociety.org/node/2246.

Baum, J., Laroque, C., Oeser, B., Skoogh, A., Subramaniyan, M., 2018. Applications of
big data analytics and related technologies in maintenancedliterature-based
research. Machines 6, 54. https://doi.org/10.3390/machines6040054.

Bokrantz, J., Skoogh, A., Berlin, C., Wuest, T., Stahre, J., 2020. Smart Maintenance: a
research agenda for industrial maintenance management. International Journal
of Produciton Economics 224, 107547. https://doi.org/10.1016/
j.ijpe.2019.107547.

Bouskedis, A., Apostolou, D., Mentzas, G., 2020. Predictive maintenance in the 4th
industrial Revolution : benefits , business opportunities , and managerial im-
plications. IEEE Eng. Manag. Rev. 48, 57e62. https://doi.org/10.1109/
EMR.2019.2958037.

Bressanelli, G., Adrodegari, F., Perona, M., Saccani, N., 2018. Exploring how usage-
focused business models enable circular economy through digital technolo-
gies. Sustainability 10, 639. https://doi.org/10.3390/su10030639.

British Standards Institution, 2017. BSI Standards Publication BS EN 13306:2017
Maintenance - Maintenance Terminology. Available from: www.bsigroup.com.

Cattelan Nobre, G., Tavares, E., 2017. Scientific literature analysis on big data and
internet of things applications on circular economy: a bibliometric study. Sci-
entometrics 111, 463e492. https://doi.org/10.1007/s11192-017-2281-6.

Chinese, D., Ghirardo, G., 2010. Maintenance management in Italian manufacturing
firms matters of size and matters of strategy. J. Qual. Mainten. Eng. 16, 156e180.
https://doi.org/10.1108/13552511011048904.

Ciocoiu, L., Siemieniuch, C.E., Hubbard, E.M., 2017. From preventative to predictive
maintenance: the organisational challenge. Proc. Inst. Mech. Eng. - Part F J. Rail
Rapid Transit 231, 1174e1185. https://doi.org/10.1177/0954409717701785.

Coleman, C., Damofaran, S., Deuel, E., 2017. Predictive maintenance and the smart
factory. Deloitte. Available from: https://www2.deloitte.com/content/dam/
Deloitte/us/Documents/process-and-operations/us-cons-predictive-
maintenance.pdf.

Egger, J., Masood, T., 2020. Augmented reality in support of intelligent
manufacturing e a systematic literature review. Comput. Ind. Eng. 140, 106195.
https://doi.org/10.1016/j.cie.2019.106195.

Ellen MacArthur Foundation, 2016. Intelligent assets: unlocking the circular econ-
omy potential. Available from: https://www.ellenmacarthurfoundation.org/
publications.

Ellen MacArthur Foundation, McKinsey & Company, Google, 2019. Artificial intel-
ligence and the circular economy. Available from: https://www.
ellenmacarthurfoundation.org/publications.

European Commission, 2008. Directive 2008/122/EC of the European Parliament
and of the Council on Waste. Available from: https://eur-lex.europa.eu/legal-
content/EN/TXT/?uri¼CELEX:32008L0098.

Fraser, K., Hvolby, H.H., Tseng, T.L.B., 2015. Maintenance management models: a
study of the published literature to identify empirical evidence a greater
practical focus is needed. Int. J. Qual. Reliab. Manag. 32, 635e664. https://
doi.org/10.1108/IJQRM-11-2013-0185.

Golightly, D., Kefalidou, G., Sharples, S., 2018. A cross-sector analysis of human and
organisational factors in the deployment of data-driven predictive mainte-
nance. Inf. Syst. E Bus. Manag. 16, 627e648. https://doi.org/10.1007/s10257-017-
0343-1.

Goyal, D., Pabla, B.S., 2015. Condition based maintenance of machine tools d a
review. CIRP Journal of Manufacturing Science and Technology 10, 24e35.
https://doi.org/10.1016/j.cirpj.2015.05.004.

Heng, A., Zhang, S., Tan, A.C.C., Mathew, J., 2009. Rotating machinery prognostics:
16
state of the art, challenges and opportunities. Mech. Syst. Signal Process. 23 (3),
724e739. https://doi.org/10.1016/j.ymssp.2008.06.009.

Hiruta, T., Uchida, T., Yuda, S., Umeda, Y., 2019. A design method of data analytics
process for condition based maintenance. CIRP Annals 68, 145e148. https://
doi.org/10.1016/j.cirp.2019.04.049.

Ingemarsdotter, E., Jamsin, E., Kortuem, G., Balkenende, R., 2019. Circular strategies
enabled by the Internet of Things-a framework and analysis of current practice.
Sustainability 11 (20), 5689. https://doi.org/10.3390/su11205689.

Ingemarsdotter, E., Jamsin, E., Balkenende, R., 2020. Opportunities and challenges in
IoT-enabled circular business model implementation e a case study. Resour.
Conserv. Recycl. 162, 105047. https://doi.org/10.1016/j.resconrec.2020.105047.

Jardine, A.K.S., Lin, D., Banjevic, D., 2006. A review on machinery diagnostics and
prognostics implementing condition-based maintenance. Mech. Syst. Signal
Process. 20, 1483e1510. https://doi.org/10.1016/j.ymssp.2005.09.012.

Jin, X., Weiss, B.A., Siegel, D., Lee, J., 2016. Present status and future growth of
advanced maintenance technology and strategy in US manufacturing. Int. J.
Prognostics Health Manag. 7. https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC5207222/.

Johansson, N., Roth, E., Reim, W., 2019. Smart and sustainable eMaintenance: ca-
pabilities for digitalization of maintenance. Sustainability 11, 3553. https://
doi.org/10.3390/su11133553.

Jonsson, K., Holmstr€om, J., Lev�en, P., 2010. Organizational dimensions of e-main-
tenance: a multi-contextual perspective. International Journal of System
Assurance Engineering and Management 1, 210e218. https://doi.org/10.1007/
s13198-011-0043-z.

Kirchherr, J., Reike, D., Hekkert, M., 2017. Conceptualizing the circular economy: an
analysis of 114 definitions. Resour. Conserv. Recycl. 127, 221e232. https://
doi.org/10.1016/j.resconrec.2017.09.005.

Kumar, A., Gandhi, C.P., Zhou, Y., Kumar, R., Xiang, J., 2020. Latest developments in
gear defect diagnosis and prognosis: a review. Measurement 158, 107735.
https://doi.org/10.1016/j.measurement.2020.107735.

Kwon, D., Hodkiewicz, M.R., Fan, J., Shibutani, T., Pecht, M.G., 2016. IoT-based
prognostics and systems health management for industrial applications. IEEE
Access 4, 3659e3670. https://doi.org/10.1109/ACCESS.2016.2587754.

Lee, J., 2020a. How to establish industrial AI technology and capability. In: Industrial
AI: Applications with Sustainable Performance. Springer, Singapore. https://
doi.org/10.1007/978-981-15-2144-7_5.

Lee, J., 2020b. Killer applications of industrial AI. In: Industrial AI: Applications with
Sustainable Performance. Springer, Singapore. https://doi.org/10.1007/978-981-
15-2144-7_5.

Lee, J., Chen, Y., Atat, H. Al, AbuAli, M., Lapira, E., 2009. A systematic approach for
predictive maintenance service design: methodology and applications. Int. J.
Internet Manuf. Serv. 2, 76. https://doi.org/10.1504/IJIMS.2009.031341.

Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L., Siegel, D., 2014. Prognostics and health
management design for rotary machinery systemsdreviews, methodology and
applications. Mech. Syst. Signal Process. 42, 314e334. https://doi.org/10.1016/
j.ymssp.2013.06.004.

Lei, Y., Li, N., Guo, L., Li, N., Yan, T., Lin, J., 2018. Machinery health prognostics: a
systematic review from data acquisition to RUL prediction. Mech. Syst. Signal
Process. 104, 799e834. https://doi.org/10.1016/j.ymssp.2017.11.016.

Lightfoot, H.W., Baines, T., Smart, P., 2011. Examining the information and
communication technologies enabling servitized manufacture. Proc. IME B J.
Eng. Manufact. 225, 1964e1968. https://doi.org/10.1177/0954405411399019.

March, S.T., Scudder, G.D., 2017. Predictive maintenance: strategic use of IT in
manufacturing organizations. Inf. Syst. Front 21, 327e341. https://doi.org/
10.1007/s10796-017-9749-z.

Mourtzis, D., Siatras, V., Angelopoulos, J., 2020. Real-time remote maintenance
support based on augmented reality (AR). Appl. Sci. 10, 1855. https://doi.org/
10.3390/app10051855.

Mulder, W., Blok, J., Hoekstra, S., Kokkeler, F., 2012. Design for Maintenance -
guidelines to enhance maintainability, reliability and supportability of indus-
trial products. Available from: https://research.utwente.nl/en/publications/
design-for-maintenance-guidelines-to-enhance-maintainability-reli.

Olde Keizer, M.C.A., Flapper, S.D.P., Teunter, R.H., 2017. Condition-based mainte-
nance policies for systems with multiple dependent components: a review.
European Journal of Operations Research 261, 405e420. https://doi.org/10.1016/
j.ejor.2017.02.044.

Ondemir, O., Gupta, S.M., 2014. Quality management in product recovery using the
Internet of Things: an optimization approach. Comput. Ind. 65, 491e504.
https://doi.org/10.1016/j.compind.2013.11.006.

Pagoropoulos, A., Pigosso, D.C.A., McAloone, T.C., 2017. The emergent role of digital
technologies in the circular economy: a review. Procedia CIRP 64, 19e24.
https://doi.org/10.1016/j.procir.2017.02.047.

Porter, M.E., 2015. How smart, connected products are transforming companies.
Harvard Business Review. Available from: https://hbr.org/2015/10/how-smart-
connected-products-are-transforming-companies.

Porter, M.E., Heppelmann, J.E., 2014. How smart, connected products are trans-
forming competition. Harv. Bus. Rev. 3. Available from: https://hbr.org/2014/11/
how-smart-connected-products-are-transforming-competition.

Potting, J., Hekkert, M., Worrell, E., Hanemaaijer, A., 2017. Circular Economy:
Measuring Innovation in the Product Chain - Policy Report. Retrieved from.
https://www.pbl.nl/sites/default/files/downloads/pbl-2016-circular-economy-
measuring-innovation-in-product-chains-2544.pdf.

Rastegari, A., Salonen, A., Bengtsson, M., Wiktorsson, M., 2013. Condition based
maintenance in manufacturing industries: introducing current industrial

https://doi.org/10.1016/j.promfg.2018.10.064
https://doi.org/10.1016/j.promfg.2018.10.064
https://doi.org/10.1016/j.cie.2012.02.002
https://doi.org/10.1016/j.cie.2012.02.002
https://research.utwente.nl/en/publications/smart-moves-for-smart-maintenance-findings-from-a-delphi-study-on
https://research.utwente.nl/en/publications/smart-moves-for-smart-maintenance-findings-from-a-delphi-study-on
https://research.utwente.nl/en/publications/smart-moves-for-smart-maintenance-findings-from-a-delphi-study-on
https://doi.org/10.1016/j.ress.2016.08.009
http://doi.org/10.1016/j.jclepro.2019.02.085
http://doi.org/10.1016/j.jclepro.2019.02.085
https://doi.org/10.17705/1jais.00323
https://doi.org/10.17705/1jais.00323
https://doi.org/10.1016/j.procir.2018.04.027
https://doi.org/10.1016/j.procir.2018.04.027
https://www.phmsociety.org/node/2246
https://doi.org/10.3390/machines6040054
https://doi.org/10.1016/j.ijpe.2019.107547
https://doi.org/10.1016/j.ijpe.2019.107547
https://doi.org/10.1109/EMR.2019.2958037
https://doi.org/10.1109/EMR.2019.2958037
https://doi.org/10.3390/su10030639
http://www.bsigroup.com
https://doi.org/10.1007/s11192-017-2281-6
https://doi.org/10.1108/13552511011048904
https://doi.org/10.1177/0954409717701785
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/process-and-operations/us-cons-predictive-maintenance.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/process-and-operations/us-cons-predictive-maintenance.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/process-and-operations/us-cons-predictive-maintenance.pdf
https://doi.org/10.1016/j.cie.2019.106195
https://www.ellenmacarthurfoundation.org/publications
https://www.ellenmacarthurfoundation.org/publications
https://www.ellenmacarthurfoundation.org/publications
https://www.ellenmacarthurfoundation.org/publications
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32008L0098
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32008L0098
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32008L0098
https://doi.org/10.1108/IJQRM-11-2013-0185
https://doi.org/10.1108/IJQRM-11-2013-0185
https://doi.org/10.1007/s10257-017-0343-1
https://doi.org/10.1007/s10257-017-0343-1
https://doi.org/10.1016/j.cirpj.2015.05.004
https://doi.org/10.1016/j.ymssp.2008.06.009
https://doi.org/10.1016/j.cirp.2019.04.049
https://doi.org/10.1016/j.cirp.2019.04.049
https://doi.org/10.3390/su11205689
https://doi.org/10.1016/j.resconrec.2020.105047
https://doi.org/10.1016/j.ymssp.2005.09.012
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5207222/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5207222/
https://doi.org/10.3390/su11133553
https://doi.org/10.3390/su11133553
https://doi.org/10.1007/s13198-011-0043-z
https://doi.org/10.1007/s13198-011-0043-z
https://doi.org/10.1016/j.resconrec.2017.09.005
https://doi.org/10.1016/j.resconrec.2017.09.005
https://doi.org/10.1016/j.measurement.2020.107735
https://doi.org/10.1109/ACCESS.2016.2587754
https://doi.org/10.1007/978-981-15-2144-7_5
https://doi.org/10.1007/978-981-15-2144-7_5
https://doi.org/10.1007/978-981-15-2144-7_5
https://doi.org/10.1007/978-981-15-2144-7_5
https://doi.org/10.1504/IJIMS.2009.031341
https://doi.org/10.1016/j.ymssp.2013.06.004
https://doi.org/10.1016/j.ymssp.2013.06.004
https://doi.org/10.1016/j.ymssp.2017.11.016
https://doi.org/10.1177/0954405411399019
https://doi.org/10.1007/s10796-017-9749-z
https://doi.org/10.1007/s10796-017-9749-z
https://doi.org/10.3390/app10051855
https://doi.org/10.3390/app10051855
https://research.utwente.nl/en/publications/design-for-maintenance-guidelines-to-enhance-maintainability-reli
https://research.utwente.nl/en/publications/design-for-maintenance-guidelines-to-enhance-maintainability-reli
https://doi.org/10.1016/j.ejor.2017.02.044
https://doi.org/10.1016/j.ejor.2017.02.044
https://doi.org/10.1016/j.compind.2013.11.006
https://doi.org/10.1016/j.procir.2017.02.047
https://hbr.org/2015/10/how-smart-connected-products-are-transforming-companies
https://hbr.org/2015/10/how-smart-connected-products-are-transforming-companies
https://hbr.org/2014/11/how-smart-connected-products-are-transforming-competition
https://hbr.org/2014/11/how-smart-connected-products-are-transforming-competition
https://www.pbl.nl/sites/default/files/downloads/pbl-2016-circular-economy-measuring-innovation-in-product-chains-2544.pdf
https://www.pbl.nl/sites/default/files/downloads/pbl-2016-circular-economy-measuring-innovation-in-product-chains-2544.pdf


E. Ingemarsdotter, M.L. Kambanou, E. Jamsin et al. Journal of Cleaner Production 296 (2021) 126420
practice and challenges. In: 22nd International Conference on Production
Research. ICPR 2013. https://www.diva-portal.org/smash/get/diva2:1157514/
FULLTEXT01.pdf.

Ren, S., Zhang, Y., Liu, Y., Sakao, T., Huisingh, D., Almeida, C.M.V.B., 2019.
A comprehensive review of big data analytics throughout product lifecycle to
support sustainable smart manufacturing: a framework , challenges and future
research directions. J. Clean. Prod. 210, 1343e1365. https://doi.org/10.1016/
j.jclepro.2018.11.025.

Rymaszewska, A., Helo, P., Gunasekaran, A., 2017. IoT powered servitization of
manufacturing-an exploratory case study. International Journal of Production
Econonomics 192, 92e105. https://doi.org/10.1016/j.ijpe.2017.02.016.

Selcuk, S., 2017. Predictive maintenance, its implementation and latest trends. Proc.
IME B J. Eng. Manufact. 231, 1670e1679. https://doi.org/10.1177/
0954405415601640.

Shimomura, Y., Tanigawa, S., Umeda, Y., Tomiyama, T., 1995. Development of self-
maintenance photocopiers. AI Mag. 16, 41e53. https://doi.org/10.1609/
aimag.v16i4.1170.

Spring, M., Araujo, L., 2017. Product biographies in servitization and the circular
economy. Ind. Market. Manag. 60, 126e137. https://doi.org/10.1016/
j.indmarman.2016.07.001.

Stecki, J.S., Rudov-Clark, S., Stecki, C., 2014. The rise and fall of CBM (condition based
maintenance). Key Eng. Mater. 588, 290e301. https://doi.org/10.4028/www.
scientific.net/KEM.588.290.

Stetco, A., Dinmohammadi, F., Zhao, X., Robu, V., Flynn, D., Barnes, M., Keane, J.,
Nenadic, G., 2019. Machine learning methods for wind turbine condition
17
monitoring: a review. Renew. Energy 133, 620e635. https://doi.org/10.1016/
j.renene.2018.10.047.

Takata, S., Kimura, F., Van Houten, F.J.A.M., Westk€amper, E., Shpitalni, M.,
Ceglarek, D., Lee, J., 2004. Maintenance: changing role in life cycle management.
CIRP Annals 53, 643e655. https://doi.org/10.1016/S0007-8506(07)60033-X.

Tiddens, W.W., 2018. Setting sail towards predictive maintenance - developing tools
to conquer difficulties. PhD thesis. In: The Implementation of Maintenance
Analytics. University of Twente. https://research.utwente.nl/en/publications/
setting-sail-towards-predictive-maintenance-developing-tools-to-c.

van de Kerkhof, R.M., Akkermans, H.A., Noorderhaven, N.G., 2016. Knowledge lost in
Data : organizational impediments to condition-based maintenance in the
process industry. In: Zijm, H., Klumpp, M., Clausen, E., ten Homel, M. (Eds.),
Logistics and Supply Chain Innovation. Springer International Publishing
Switzerland, p. 2016. https://doi.org/10.1007/978-3-319-22288-2.

Veldman, J., Klingenberg, W., Wortmann, H., 2011. Managing condition-based
maintenance technology: a multiple case study in the process industry.
J. Qual. Mainten. Eng. 17, 40e62. https://doi.org/10.1108/13552511111116240.

Webster, K., 2015. The Circular Economy - A Wealth of Flows. Ellen MacArthur
Foundation Publishing, Cowes, UK.

Yin, R.K., 2014. Case Study Research: Design and Methods, fifth ed. SAGE Publica-
tions, Thousand Oaks, CA.

Ylip€a€a, T., Skoogh, A., Bokrantz, J., Gopalakrishnan, M., 2017. Identification of
maintenance improvement potential using OEE assessment. Int. J. Prod.
Perform. Manag. 66, 126e143. https://doi.org/10.1108/IJPPM-01-2016-0028.

https://www.diva-portal.org/smash/get/diva2:1157514/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1157514/FULLTEXT01.pdf
https://doi.org/10.1016/j.jclepro.2018.11.025
https://doi.org/10.1016/j.jclepro.2018.11.025
https://doi.org/10.1016/j.ijpe.2017.02.016
https://doi.org/10.1177/0954405415601640
https://doi.org/10.1177/0954405415601640
https://doi.org/10.1609/aimag.v16i4.1170
https://doi.org/10.1609/aimag.v16i4.1170
https://doi.org/10.1016/j.indmarman.2016.07.001
https://doi.org/10.1016/j.indmarman.2016.07.001
https://doi.org/10.4028/www.scientific.net/KEM.588.290
https://doi.org/10.4028/www.scientific.net/KEM.588.290
https://doi.org/10.1016/j.renene.2018.10.047
https://doi.org/10.1016/j.renene.2018.10.047
https://doi.org/10.1016/S0007-8506(07)60033-X
https://research.utwente.nl/en/publications/setting-sail-towards-predictive-maintenance-developing-tools-to-c
https://research.utwente.nl/en/publications/setting-sail-towards-predictive-maintenance-developing-tools-to-c
https://doi.org/10.1007/978-3-319-22288-2
https://doi.org/10.1108/13552511111116240
http://refhub.elsevier.com/S0959-6526(21)00640-5/sref69
http://refhub.elsevier.com/S0959-6526(21)00640-5/sref69
http://refhub.elsevier.com/S0959-6526(21)00640-5/sref70
http://refhub.elsevier.com/S0959-6526(21)00640-5/sref70
https://doi.org/10.1108/IJPPM-01-2016-0028

	Challenges and solutions in condition-based maintenance implementation - A multiple case study
	1. Introduction
	2. Background
	2.1. Introduction to condition-based maintenance
	2.2. Previous research on challenges and solutions in CBM implementation

	3. Method
	3.1. Case selection
	3.2. Data collection
	3.3. Data analysis

	4. Framework development
	4.1. Frameworks from literature
	4.2. Integrated framework

	5. Case descriptions
	5.1. Case A: forklifts
	5.2. Case B: industrial robots
	5.3. Case C: heat pumps

	6. Results
	6.1. Information-Activities alignment
	6.2. Participants-Activities alignment
	6.3. Technology-Activities alignment
	6.4. Activities-Product/service alignment
	6.5. Customer-Product/service alignment
	6.6. Work system-Context alignment

	7. Discussion and recommendations
	8. Conclusions and future research
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A
	References


