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Introduction
The complex fluid mechanics of many animals that swim or fly
is governed by the non-linear formation, shedding and dynamics
of vortices (e.g. Dickinson et al., 2000). These vortices can
potentially affect performance through their interactions with
wings, fins or tails (e.g. Birch and Dickinson, 2003). The nature
of the interactions is related to the kinematics of the wing, fin or
tail, though the precise relationship is not yet known. This
relationship is better understood for vibrating cylinders.
Williamson and Roshko (Williamson and Roshko, 1988) reported
in their inspirational paper how the vortex-wake topology of a
vibrating cylinder depends on both the dimensionless amplitude,
(A*, Eqn 2) and the dimensionless wavelength (�*, Eqn 1), which
is analogous to the dimensionless stride length and the inverse of
the reduced frequency. Williamson and Roshko showed that
synchronization (lock-in) can occur between the driving
frequency of a vibrating cylinder and multiples (n) of the natural
von Kármán (eigen-) frequency of the vortical flow.
Synchronization resulted in periodic vortex wakes shed by the
vibrating cylinder. The synchronization region consists of two
bands of periodic wakes; in between, the wake is mostly
aperiodic. Both synchronization bands are approximately elliptic
in the parametric space spanned by A* and �*: A*=S��n ·��0*�–��*2,
in which �0* is the dimensionless wavelength based on the von
Kármán frequency [independently found by Lentink (Lentink,
2003) and Ponta and Aref (Ponta and Aref, 2005)]. The first band

is related to the von Kármán frequency itself (�0*�5; A*=0), the
second to a third of that frequency (�0*�15; A*=0) (Note �0 is
proportional to the inverse of frequency). Similar computational
fluid dynamic studies of two-dimensional plunging foils (Lewin
and Haj-Hariri, 2003; Lentink and Gerritsma, 2003) showed that
the wake and fluid forces that act on a foil can be either periodic
or aperiodic. Lentink and Gerritsma (Lentink and Gerritsma,
2003) found evidence for the existence of chaotic modes. The
actual mode depends on the dimensionless wavelength and
amplitude of the foil. The simulations showed that the near-wake
dynamics (wake mode) of the foil directly affect the character of
the fluid forces (periodic versus aperiodic) that act on the foil.
Hence these results suggest that kinematics potentially have a
significant influence on the periodicity of the wake of a flapping
foil and its corresponding propulsive and lifting forces.

Here we studied the possible significance of vortex dynamics
as a physical constraint to animal locomotion in fluids. A two-
dimensional flapping foil is a simplified model of animal wings,
fins or tails. We aimed to visualize and quantify the vortex-wake
interactions of such a two-dimensional flapping foil as a function
of its kinematics. To this end we decided to flap our foil in a
soap-film tunnel: a thin layer of water between two molecular
layers of soap molecules, driven by gravity (Rutgers et al., 2001).
Gharib and Derango (Gharib and Derango, 1989) have
demonstrated that a soap tunnel is effective for studying a wide
range of two-dimensional flow phenomena. To our knowledge
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Summary
The fluid dynamics of many swimming and flying animals involves the generation and shedding of vortices into the wake. Here
we studied the dynamics of similar vortices shed by a simple two-dimensional flapping foil in a soap-film tunnel. The flapping foil
models an animal wing, fin or tail in forward locomotion. The vortical flow induced by the foil is correlated to (the resulting)
thickness variations in the soap film. We visualized these thickness variations through light diffraction and recorded it with a
digital high speed camera. This set-up enabled us to study the influence of foil kinematics on vortex-wake interactions. We varied
the dimensionless wavelength of the foil (�*=4–24) at a constant dimensionless flapping amplitude (A*=1.5) and geometric angle
of attack amplitude (A�,geo=15°). The corresponding Reynolds number was of the order of 1000. Such values are relevant for
animal swimming and flight.

We found that a significant leading edge vortex (LEV) was generated by the foil at low dimensionless wavelengths (�*<10). The
LEV separated from the foil for all dimensionless wavelengths. The relative time (compared with the flapping period) that the
unstable LEV stayed above the flapping foil increased for decreasing dimensionless wavelengths. As the dimensionless
wavelength decreased, the wake dynamics evolved from a wavy von Kármán-like vortex wake shed along the sinusoidal path of
the foil into a wake densely packed with large interacting vortices. We found that strongly interacting vortices could change the
wake topology abruptly. This occured when vortices were close enough to merge or tear each other apart. Our experiments show
that relatively small changes in the kinematics of a flapping foil can alter the topology of the vortex wake drastically.
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Couder et al. (Couder et al., 1989) were the first to actively drive
an object similar to a flapping foil in a soap film. In their
pioneering work they studied the vortical flow generated by a
vibrating cylinder that moved through a static soap film. As far
as we are aware, the present study is the first to consider a
flapping foil in a soap tunnel.

Earlier flapping foil studies have demonstrated both the value
and effectiveness of a two-dimensional approach for gaining new
insight into animal locomotion (Triantafyllou et al., 1993;
Dickinson, 1994; Wang, 2000a; Wang, 2000b; Miller and Peskin,
2004). We foresee, nevertheless, that a full study of vortex
dynamics as a physical constraint to animal locomotion would
require an extension to three dimensions. In three dimensions the
vortex dynamic complexity is further increased (e.g. Buchholz
and Smits, 2006; von Ellenrieder et al., 2003) by processes such
as vortex stretching (Guyon et al., 2001). High Reynolds
numbers also facilitate three-dimensional instabilities that can
result, for example, in coherent vortices with a turbulent structure
(e.g. Van Dyke, 1982). Note, however, that two-dimensional
vortex dynamic mechanisms are a sub-set of three-dimensional
vortex dynamics. This makes two-dimensional flapping foil
studies intrinsically valuable for our understanding of how
vortices generated by animals that swim or fly interact with each
other and the animal.

Here we focused on the two-dimensional dynamics of vortices
shed by a flapping foil in forward motion as a function of
dimensionless wavelength. This enabled us to gain more insight
into the generation and dynamics of leading-edge vortices (LEVs)
and vortex-wake interactions.

Materials and methods
Parameterization of the flapping foil

Similar to others (Triantafyllou et al., 1993; Dickinson, 1994;
Wang, 2000a; Wang, 2000b; Miller and Peskin, 2004), we
modelled the kinematics of wings, fins and tails with a two-
dimensional sine-shaped excursion and rotation of the foil with a
phase difference of 90°. The five main scaling variables of such a
foil are: (1) the flapping frequency f of the excursion and rotation,
which are equal to the animal’s flapping frequency; (2) the
excursion amplitude A, typically taken at the radius of gyration or
75% of an animal’s wing, fin or tail semi-span; (3) the geometric
angle of attack amplitude A�,geo, taken at the same span-wise
position as the excursion amplitude A; (4) the (average) forward
speed of the foil U�, which is equivalent to the animal’s forward
speed; and (5) the chord length of the foil l, which represents the
average chord length of an animal wing, fin or tail (we will describe
foil shape in the next section).

Non-dimensionalization allowed us to objectively quantify the
scale effects (Guyon et al., 2001) of a flapping foil. We followed
an approach described in Lentink and Gerritsma (Lentink and
Gerritsma, 2003) that is consistent from hovering fight, with zero
dimensionless wavelength, to fast forward flight, for which
the dimensionless wavelength approaches infinity. The resulting
non-dimensionalization is defined below and illustrated in Fig.·1.
The dimensionless wavelength (�*) represents the number of foil
lengths travelled forward during one stroke:

in which U� is the free-stream velocity, f the flapping frequency
and l the foil length. The non-dimensional amplitude A* represents

U� �* = ,
fl

(1) 

the amplitude of the foil excursion A with respect to the foil length
l:

The amplitude-based Strouhal number StA is equal to the ratio of
dimensionless amplitude (A*) and dimensionless wavelength (�*)
and scales with the maximum induced angle of attack at mid-stroke
(see Fig.·1 and Eqn 4):

The effective angle of attack amplitude A�,eff is equal to the angle
of attack amplitude induced by the flapping foil minus the
geometric angle of attack amplitude A�,geo:

A�,eff = arctan(2�·StA) – A�,geo . (4)

The time-averaged velocity Uave of the flapping foil can be
approximated as follows (Lentink and Gerritsma, 2003):

Based on this average velocity we define the time-averaged
Reynolds number Re, which represents the relative importance of
inertia versus viscosity:

in which:

where � is the kinematic viscosity. In our model we chose the
dimensionless wavelength (�*) and amplitude ratio (A*) as
independent variables following Williamson and Roshko
(Williamson and Roshko, 1988), to which we needed to add the
angle of attack amplitude. The other parameters (StA and Re) can
therefore be expressed as a function of �*, A* and Re� (Eqns 3–6).

Foil shape and flapping mechanism
The foil is a flat plate and its kinematics is generated with a
crankshaft mechanism. The foil has a thickness t of 0.3·mm and

U�l
 Re� = ,

�
(7) 

 Re = Re�  1 + (4StA)2 , (6) 

 Uave �  U2 + (4Af)2 . (5) �

A*
 StA = .

�*
(3) 

A
 A* = .

l
(2) 
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Fig.·1. A graphical representation of the non-dimensional parameters of a
sinusoidally flapping foil: dimensionless wavelength �*, amplitude ratio A*,
amplitude-based Strouhal number StA, geometric angle of attack amplitude
A�,geo, effective angle of attack amplitude A�,eff, and stroke-averaged
Reynolds number Re.
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length l of 3·mm; hence it has a relative thickness of 10%. It is
made out of a thin piano-steel wire bent into an ‘L’ shape. The
horizontal part of the L functions as the foil in the soap film while
the vertical part is mounted to the mechanism. The foil is mounted
such that its axis of rotation is located at approximately 1/4 foil
length (with respect to the leading edge). The leading edge of the
foil is naturally rounded as a result of bending the wire, while the
trailing edge is more or less blunt (flat) as a result of cutting the
wire.

Our custom-built flapping mechanism is illustrated and
described in Fig.·2. It consists of a crankshaft that generates both
the stroke amplitude and a 90° out-of-phase angle of attack
amplitude. The stroke amplitude is reduced with a pantograph and
the angle of attack amplitude is reduced with a series of pulleys. A
crankshaft mechanism cannot generate pure sinusoidal stroke
amplitudes (Fig.·3). The angle of attack amplitude is, however, very
close to being sinusoidal. In our experiments we applied
A�,geo=15°. All deviations from purely sinusoidal kinematics are
therefore as follows: the root mean square (r.m.s.) deviation of the
excursion is 9.4% of A*, and the r.m.s. deviation of A�,geo is 0.4%.
Note that the resulting stroke kinematics is not fully symmetric
(Fig.·3).

Soap-film tunnel set-up
The present soap-film tunnel design (Fig.·4) is based on a gravity-
driven, constant flow design by Rutgers et al. (Rutgers et al., 2001).
The ratio of the soap-film width to thickness is of the order of
10·000 (Rutgers et al., 2001). The vortices generated in a soap film
are therefore roughly 1000·times wider than they are thick,
indicating that the flow field is essentially two-dimensional. As a

result, a soap film is ideally suited for studying the two-dimensional
vortical field behind a flapping foil. The corresponding vorticity
field is directly correlated to minute thickness variations in the soap
film (Chomaz and Costa, 1998; Rivera et al., 1998; Chomaz, 2001).
These thickness variations can be visualized as they diffract light
transmitted by a monochromatic lamp (Rutgers et al., 2001). We
used a high-frequency, low pressure, SOX lamp (Philips) as light
source. The resulting diffraction patterns were recorded time-
resolved with a Redlake® (Redlake MotionPro, San Diego, CA,
USA) high-speed camera system at 800·frames·s–1 and a shutter
time of 1/1600·s. This visualization and capturing technique
enabled us to time-resolve the dynamics of the vorticity field
effectively: little experimental and computational time is required
for generating and interpreting the flow field of a soap tunnel in
order to study complex vortex dynamic flows as a function of foil
kinematics. Additionally, the flow visualizations have a certain
artistic appeal.

The most important physical variables of the soap film in our
experimental set-up are its flow velocity, U�, and kinematic
viscosity, �. The viscosity of a soap film is not exactly known.
However, accurate measurements by Martin and Wu (Martin and
Wu, 1995) show that the viscosity, for a solution similar to ours, is
approximately 1�10–6·m2·s–1 (4% Dawn dishwashing detergent).
We adopted this value for our solution of approximately 2% Dawn
dishwashing detergent (Procter & Gamble, professional line). The
soap-film velocity varies over the width of the film from zero at
the walls (due to the no-slip condition) to maximum velocity in the
middle. In air the resulting velocity profile obtained in a soap tunnel
corresponds to a plug-like profile (Rutgers et al., 2001). We
determined the variation of the flow velocity over the amplitude
range of the flapping foil with particle-tracking velocimetry (PTV)
of small pollutants in the soap film. The flow velocity was
determined at three locations; at the start, middle and end of the
stroke, of which the maximum standard deviation was 12%. The
accuracy of the frequency measurement was better than 3% while
the length of the foil was measured with an accuracy of
approximately 5%.

Applied foil kinematics and soap-tunnel settings
We chose to study the influence of dimensionless wavelength on
vortex-wake interactions inspired by a two-dimensional numerical
study of insect flight (Lentink and Gerritsma, 2003). In this study
of a plunging foil, a chaotic mode was found for �*=4 at Re=150.
Similar simulations for �*=6 (Lentink, 2003) revealed a periodic
mode. A plunging foil is, however, a limited model of insect flight
and animal locomotion in general – the main reason being that
thrust generation is minimal for zero geometric angle of attack
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Fig.·2. Flapping mechanism as mounted on the soap-tunnel framework
(further illustrated in Fig.·4). The flapping mechanism consists of a crank
mechanism that generates a stroke and angle of attack amplitude that are
90° out of phase with respect to each other. The angle of attack amplitude
is reduced with a series of pulleys. The stroke amplitude is reduced with
the aid of a pantograph. The flapper is driven by a DC motor. We mounted
a special dial-plate with one microswitch (four are drawn) on the motor
housing. This switch is pressed by a disk with a small knob in a phase we
predetermined with the dial; in this way the camera can be triggered in a
specific phase of the stroke. The angle of attack and stroke amplitude can
be varied independently by changing the distance between the motor and
the sled, indicated by ʻset distanceʼ, and the arm length of the crankshaft
(ʻset crank amplitudeʼ), which is hidden under the motor house in its current
position. Finally, the angle of the stroke plane of the foil can be set with
respect to the free-stream direction by rotating the whole crank mechanism,
which is indicated by ʻset body angleʼ; in this study it is zero (as drawn).
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Fig.·3. Stroke kinematics generated with our flapping mechanism. The
stroke kinematics deviates with magnitude +/–d from a sine with amplitude
A.
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amplitude. This is due to a minimal frontal surface area for the
pressure difference to act on in the forward direction (Lentink and
Gerritsma, 2003). Therefore, we chose to fix the angle of attack
amplitude in this study to a more realistic value, A�,geo=15°. This
value facilitates the generation of significant thrust (note that the
corresponding time-averaged lift is approximately zero if the near
flow field is symmetric). The stroke amplitude of the foil was
adopted from the numerical study; A*=1.5. Such amplitude has
relevance for insects and bird wings and fish fins and tails, but is
not related to a specific animal (because time time-averaged lift is
approximately zero, the present study relates best to forward
swimming and climbing flight, e.g. during vertical take-off).
Intrigued by the numerically found dependence of wake mode on
dimensionless wavelength, we decided to study the wake patterns
and the LEV as a function of dimensionless wavelength for
4��*�24. We fixed the soap-film speed to approximately
U�=0.20·m·s–1. As a result, the time-averaged Reynolds number
ranged between 600 and 900, the lowest obtainable range in our
facility. These Reynolds numbers were 4–6 times higher than in the
numerical study (Lentink and Gerritsma, 2003; Lentink, 2003).

Results
We have visualized and subsequently classified the vortical wakes
of our flapping foil as a function of dimensionless wavelength

inspired by the nomenclature developed by Williamson and
Roshko (Williamson and Roshko, 1988) for vibrating cylinders.
In this approach, the number of single vortices (S) and vortex
pairs (P) are identified per stroke (period). However, such a
classification is almost never fully objective. The shedding of tiny
vortices, which usually merge immediately with larger vortices,
can make the flow analysis tedious. Williamson and Roshko, for
example, had to work around the coalescence of many small and
large vortices in some cases. This approach is nevertheless
suitable for describing and sorting out the relationship between
the shedding of leading- and trailing-edge vortices (LEVs and
TEVs) and the subsequent formation of the wake as a function of
dimensionless wavelength.

For all experiments we started at zero flapping frequency, which
we subsequently increased monotonically to obtain the desired
dimensionless wavelength. In this way we avoided hysteresis loops.
Similar to earlier findings for hovering insect flight (Dickinson,
1994), we found that the LEV is unstable at all dimensionless
wavelengths in two dimensions. We defined a LEV as unstable
when it moved from the leading edge towards the trailing edge
during the stroke. We restricted ourselves to scoring whether the
LEV was generated and whether its centre passed the trailing edge
before stroke reversal. If a LEV did not pass the trailing edge we
refer to it as ‘attached’. We further described the wake structure as
a function of vortices shed at the leading and trailing edge of the
foil. We loosely refer to a ‘bifurcation’ when the wake switches
between two seemingly co-existing wake patterns at a constant
wavelength [an introduction to bifurcations can be found in
Addison (Addison, 1997)]. We found an array of wake patterns and
vortex interactions, which we will illustrate starting at �*=24 and
ending at �*=4.

Vortex wake for �*=12–24
The effective angle of attack amplitude was low at these high
dimensionless wavelengths, A�=7°–23°, hence no LEVs or TEVs
were formed during a stroke (Fig. 5A). Although a minute LEV
started to become visible at �*=12, it remained negligible
compared with the ones found for lower dimensionless
wavelengths. The basic wake pattern emerged from a wake
instability that resulted in the roll-up of the shear layer behind the
foil into an alternating row of vortices. This wake shed along the
sinusoidal path of the flapping foil is similar to the von Kármán
vortex street shed by a cylinder; hence our name wavy von
Kármán wake: WK. The Reynolds number was close to 600 and
the specific parameters in Fig.·5A are: �*=24, A*=1.5, A�=7° and
Re=600.

Vortex wake for �*=8.6–10
At these dimensionless wavelengths, A� ranged from 29° to 33° and
as a result LEVs and TEVs were generated, which formed in most
cases a pair when shed (Fig. 5B). Due to the high dimensionless
wavelengths, however, the initial vortices were shed long before
the end of the stroke, enabling the flow to generate and shed a
secondary LEV and/or TEV within the same stroke. During the
upstroke two LEVs and two TEVs were formed, which formed two
vortex pairs (2P), in contrast to the downstroke when one LEV and
two TEVs were generated, which formed a single vortex (S) and a
vortex pair (P). The net result was a 3P+S vortex wake that evolved
out of the vortices (3LEVs+4TEVs) shed during a flap period. At
�*=8.6 a bifurcation was observed: the vortex wake switched
between the current 3P+S and a 2P+2S mode (Fig.·6, bifurcation
1). LEVs were in all cases shed before the end of the stroke. The
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Fig.·4. The soap-film tunnel is mounted in an inclined frame and driven by
gravity. It consists of three sections: a divergent section (i), the constant
width (60·mm) test section in which the foil flaps (ii) and a convergent
section (iii). The soap reservoir (a) produces a constant head by using an
overflow. The soap flows from the reservoir (a) through a tuning valve (b)
and an oval nozzle made out of a plastic pipette (c). At the pipette (c) the
soap film starts: it runs down, driven by gravity, between two 1·mm thick
Nylon wires (d) into tunnel sections (i–iii). The Nylon wires are pulled apart
with 0.2·mm Dynema fishing lines (e). Finally the soap is collected in a
reservoir (f) and is drained into the main soap reservoir and pumped (P)
back again to the top reservoir (a).
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Reynolds number for this range of �* was again close to 600 while
the parameters of Fig.·5B are: �*=10, A*=1.5, A�=29° and Re=600.

Vortex wake for �*=6.8–8.6
For these dimensionless wavelengths A� ranged from 33° to 39°,
and the vortices became increasingly larger due to the higher
effective angle of attack (Fig. 5C). We find that one LEV and two
TEVs were formed and shed during both the up- and downstroke.
These vortices (2LEV+4TEV) organized into a 2P+2S wake. For
lower dimensionless wavelengths, the wake evolved from a 2P+2S
into a 2P+S mode. The dimensionless wavelengths at which this
happened have, however, not been determined. LEVs were in all
cases shed before the end of the stroke. The Reynolds number range
was 600–700 while the parameters resulting in Fig.·5C are: �*=7.9,
A*=1.5, A�=29° and Re=600.

Vortex wake for �*=6.3–6.8
The effective angle of attack amplitude started at 39° and ended at
41° for this range of �* (Fig. 5D). During the upstroke one LEV
and two TEVs were shed, which formed a P+S. During the
downstroke one LEV and one TEV were shed, which formed a P.
The final result was a 2P+S wake pattern. LEVs were again shed
before stroke reversal. The single vortex was subsequently merged
with a vortex pair downstream. We observed a bifurcation between
the 2P+S and 2P modes at �*=6.3 (Fig.·6, bifurcation 2). The
Reynolds number for this range of �* was close to 700 while the
parameters of Fig.·5D are: �*=6.8, A*=1.5, A�=39° and Re=700.

Vortex wake for �*=5.4–6.3
The effective angle of attack amplitude ranged from 41° to 45° in
this case (Fig. 5E). During each flapping period two LEVs and two
TEVs were shed, which evolved into a 2P wake pattern. At these
low dimensionless wavelengths the LEVs and TEVs stayed
attached to the wing long enough to prevent the development of
secondary vortices during a stroke. We did not identify a
bifurcation between the current and the next mode found at lower

Fig.·5. Visualization of the evolution of vortex-wake topology and the
attachment of the LEV for decreasing dimensionless wavelength �*. The
wake dynamics evolves from a wavy von Kármán wake (WK) into an
aperiodic wake densely packed with large interacting vortices (A–G, left:
overview wake, right, zoomed in on LEV). The soap film flows from left to
right and all images have been taken mid-stroke during the downstroke.
The leading edge vortex is indicated by LEV, a vortex pair by P, a single
vortex by S, vortex tearing by t, and vortex merging by m. Note that the
naming of the wakes is simplified and should be taken as a guideline: we
have neglected a few tiny vortices that are shed at some advanced ratios
for simplicity. (Note: A, �*=24; B, �*=10; C, �*=7.9; D, �*=6.8; E, �*=6.3; F,
�*=4.5; G, �*=4.0.)
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Fig.·6. Summary of vortex-wake topologies, the attachment of the LEV and
the number of shed LEVs and TEVs as a function of dimensionless
wavelength �*. Note that the effective angle of attack amplitude A� strongly
increases with decreasing �*, which in part explains the increasing vortex
size. The more densely packed wake at low �* is a direct result of the
smaller distances between the shed vortices. Solid lines (1–3) indicate
bifurcations found in one movie sequence. Filled and open circles are for
easy distinction between modes only.
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dimensionless wavelengths. The LEVs stayed attached to the wing
until stroke reversal, while the Reynolds number ranged from 700
to 800. The parameters that resulted in Fig.·5E are: �*=6.3, A*=1.5,
A�=41° and Re=700.

Vortex wake for �*=3.9–4.6
As A� further decreased from 49° to 53° we encounted the strongest
vortex-wake interactions (Fig. 5F,G). At the beginning of the
downstroke, the LEV created during the upstroke was still attached
to the foil. This LEV interacted with the newly developing TEV
and finally these vortices either merged or were torn apart when
they came within critical distance. This merging m and tearing t
had a significant influence on the wake formation and resulted in
a strongly asymmetric P+S wake mode. In the same wake some
tiny vortices were shed that either merged or were torn apart due
to mutual interactions. The parameters of Fig.·5F are �*=4.5,
A*=1.5, A�=49° and Re=800.

Within this range of dimensionless wavelengths we found two
co-existing wake modes that were sensitive to small disturbances,
resulting in bifurcations (Fig.·6, bifurcation 3). The second wake
mode was an aperiodic variant of the first, which is illustrated in
Fig.·5G (�*=4.0, A*=1.5, A�=52° and Re=900). The overlap of the
two modes is probably due to a combination of experimental
challenges, as they occurred at the highest frequencies obtainable,
and dynamical complexity. The LEV was ‘attached’ for all these
dimensionless wavelengths, while the Reynolds number ranged
from 800 to 900.

Discussion
The ‘attachment’ of the LEV, the number of shed LEVs and TEVs,
and the resulting wake patterns and bifurcations of the flapping foil
as a function of dimensionless wavelength are summarized in
Fig.·6.

Attachment of the LEV
The two-dimensional LEVs generated by our flapping foil were
unstable at all dimensionless wavelengths. The LEVs grew stronger
due to the higher effective angle of attack amplitudes at low �*.
For such �* we define the LEV as ‘attached’ because its centre has
not yet travelled past the trailing edge at stroke reversal (Fig.·6).
‘Attachment’ of LEVs at low �* is beneficial for both lift and thrust
generation because the low pressure core of the LEV can act on the
wing during the full stroke (Dickinson, 1994; Ellington et al.,
1996). Note that the position of such LEVs is stable with respect
to the leading edge in three-dimensional models of hovering insects
due to three-dimensional flow effects such as span-wise flow
(Ellington et al., 1996; Lentink and Dickinson, 2005).

Vortex-wake formation and interactions
Our experimental analysis shows that the wake topology depends
in part on the number of LEVs and TEVs shed in the wake (Fig.·6).
The vortex modes were found to bifurcate between subsequent
modes in three instances. These bifurcations influenced only small
(single) vortices at high dimensionless wavelengths (Fig.·6,
bifurcations 1 and 2). Hence we consider these bifurcations to be
weak. At low dimensionless wavelengths it involved, however,
vortex merging and tearing, which altered the vortex-wake
topology drastically (Fig.·6, bifurcation 3). We consider such
bifurcations and the corresponding vortex interactions to be strong.
Compared with weak bifurcations, strong bifurcations appeared
more sensitive to disturbances and the wake modes switched more
abruptly.

The number of shed vortices (LEVs and TEVs) decreased with
dimensionless wavelength because they had relatively less time to
develop and shed from the foil. At very low dimensionless
wavelengths, the barely shed LEVs will be hit by the foil during
stroke reversal, resulting in strong foil–vortex interactions. The
similarly strong vortex merging (Cerretelli and Williamson, 2003;
Leweke et al., 2001) and tearing interactions depend critically on
the timing of vortex shedding, because it determines the spacing of
the vortices in the wake.

Asymmetric and aperiodic vortex wakes
We expect that both wake asymmetry and wake aperiodicity could
be relevant to animal locomotion. The wakes presented here
resulted from slightly asymmetric stroke kinematics. This makes it
difficult to rigorously determine the influence of vortex interactions
on the asymmetry of a wake. Numerical studies (e.g. Lewin and
Haj-Hariri, 2003; Lentink and Gerritsma, 2003) convincingly show,
however, that asymmetric wakes can arise from symmetric foil
kinematics. The orientation of the asymmetric wakes (e.g. in
Fig.·5F; with respect to the horizontal axis) depends on the start-
up condition and is sensitive to large disturbances. For �*=3.9–4.6
we found strong vortex-wake interactions that resulted in an
aperiodic mode. This corresponds with the chaotic mode found
numerically for a roughly similar plunging foil by Lentink and
Gerritsma (Lentink and Gerritsma, 2003). Using the current set-up
we were, however, unable to determine whether the aperiodic mode
is chaotic (Addison, 1997).

Vortex-wake synchronization?
We found almost exclusively periodic vortex wakes in this study.
We did not find a (confined) synchronization ‘band’ for our
flapping foil similar to those found for cylinders (Williamson and
Roshko, 1988). We think this could be due to two reasons: first,
the number of experiments that we were able to perform with our
set-up in the parameter space of the flapping foil (�*, A*, A�,geo)
was smaller; and second, such ‘bands’, or regions, might well be
very complex in shape for a flapping foil, because a translating
(non-flapping) foil has a range of natural vortex-shedding
frequencies as a function of angle of attack (�) (e.g. Katz, 1981;
Dickinson and Götz, 1993) instead of a single shedding frequency
(like cylinders have). We conclude that the role of vortex-wake
synchronization in the wake of a flapping foil remains to be
determined, in both two dimensions and three dimensions, for a
wide range of flapping kinematic parameters and more realistic
wing, fin and tail morphologies.

Finally, we observed in our two-dimensional experimental set-
up that relatively small changes in the kinematics of a flapping foil
can alter the topology of its vortex wake drastically. Numerical
simulations have shown that the corresponding fluid mechanic
forces can change drastically too (e.g. Lewin and Haj-Hariri, 2003;
Lentink and Gerritsma, 2003). The possible relevance of similar
vortex-wake bifurcations for animals that swim or fly could be
studied, inside and outside of the behavioural envelope of the
animal, with realistic three-dimensional robotic animal models (e.g.
Ellington et al., 1996). We hypothesize that such a study might
provide new insight into the influence of vortex-wake dynamics on
the swimming and flight behaviour of animals.

List of abbreviations and symbols
�* dimensionless wavelength
�0* dimensionless wavelength based on von Kármán frequency
A flapping amplitude

Research article

THE JOURNAL OF EXPERIMENTAL BIOLOGY



273Vortex interactions of a flapping foil

A* dimensionless flapping amplitude
A�,eff effective angle of attack amplitude
A�,geo geometric angle of attack amplitude
d amplitude deviation from sinusoidal kinematics
f flapping frequency
l foil length
n multiple (of the natural von Kármán frequency)
Re time-averaged Reynolds number of a flapping foil
Re� Reynolds number of a flapping foil based on U�

StA amplitude-based Strouhal number
t thickness of foil
Uave time-averaged velocity of the flapping foil
U� forward velocity of the flapping foil; equivalent to free-stream

velocity

We would like to thank Jos van den Boogaard for helping us with the construction
and design of the soap tunnel, Maarten Rutgers for advice and good soap, Bas
van Oudheusden for co-supervising F.T.M. at the TU Delft, and the Delft
Aerospace Engineering workshop for building the flapping mechanism. Finally we
would like to thank Andrew Biewener, Geoff Spedding and Ulrike Müller for
valuable comments.

References
Addison, P. S. (1997). Fractals and Chaos: An Illustrated Course. Bristol: Institute of

Physics Publishing.
Birch, J. M. and Dickinson, M. H. (2003). The influence of wing-wake interactions on

the production of aerodynamic forces in flapping flight. J. Exp. Biol. 206, 2257-2272.
Buchholz, J. and Smits, A. J. (2006). On the evolution of the wake structure

produced by a low aspect ratio pitching panel. J. Fluid Mech. 546, 433-443.
Cerretelli, C. and Williamson, C. H. K. (2003). The physical mechanism for vortex

merging. J. Fluid Mech. 475, 41-77.
Chomaz, J. M. (2001). The dynamics of a viscous soap film with soluble surfactant. J.

Fluid Mech. 442, 387-409.
Chomaz, J. M. and Costa, M. (1998). Thin film dynamics. In Free Surface Flows

(CISM Courses and Lectures 391) (ed. H. C. Kuhlmann and H. J. Rath), pp. 44-99.
New York: Springer.

Couder, Y., Chomaz, J. M. and Rabaud, M. (1989). On the hydrodynamics of soap
films. Physica D 37, 384-405.

Dickinson, M. H. (1994). The effects of wing rotation on unsteady aerodynamic
performance at low Reynolds numbers. J. Exp. Biol. 192, 179-206.

Dickinson, M. H. and Götz, K. G. (1993). Unsteady aerodynamic performance of
model wings at low Reynolds numbers. J. Exp. Biol. 174, 45-64.

Dickinson, M. H., Farley, C. T., Full, R. J., Koehl, M. A. R., Kran, R. and Lehman,
S. (2000). How animals move: an integrative view. Science 288, 100-106.

Ellington, C. P., Van den Berg, C., Willmott, A. P. and Thomas, A. L. R. (1996).
Leading-edge vortices in insect flight. Nature 384, 626-630.

Gharib, M. and Derango. P. (1989). A liquid film (soap film) tunnel to study two-
dimensional laminar and turbulent flows. Physica D 37, 406-416.

Guyon, E., Hulin, J. P., Petit, L. and Mitescu, C. D. (2001). Physical Hydrodynamics.
Oxford: Oxford University Press.

Katz, J. (1981). A discrete vortex method for non-steady separated flow over an airfoil.
J. Fluid Mech. 102, 315-328.

Lentink, D. (2003). Influence of airfoil shape on performance in insect flight. MSc
thesis, Delft University of Technology, The Netherlands.

Lentink, D. and Dickinson, M. H. (2005). Structure, stability and strength of leading
edge vortices in insect flight. Comp. Biochem. Physiol. 141A, S139.

Lentink, D. and Gerritsma, M. I. (2003). Influence of airfoil shape on performance in
insect flight. AIAA Paper AIAA-2003-3447, www.aiaa.org.

Leweke, T., Meunier, P., Laporte, F. and Darracq, D. (2001). Controlled interaction
of co-rotating vortices. Proceedings of the 3rd ONERA-DLR Aerospace Symposium,
ODAS.

Lewin, G. C. and Haj-Hariri, H. (2003). Modelling thrust generation of a two-
dimensional heaving airfoil in a viscous flow. J. Fluid Mech. 492, 339-362.

Martin, B. and Wu, X. L. (1995). Shear flow in a two-dimensional couette cell: a
technique for measuring the viscosity of free-standing liquid films. Rev. Sci. Instrum.
66, 5603-5608.

Miller, L. A. and Peskin, C. S. (2004). When vortices stick: an aerodynamic transition
in tiny insect flight. J. Exp. Biol. 207, 3073-3088.

Ponta, F. L. and Aref, H. (2005). Vortex synchronization regions in shedding from an
oscillating cylinder. Phys. Fluids 17, 011703.

Rivera, M., Vorobieff, P. and Ecke, R. E. (1998). Turbulence in flowing soap films:
velocity, vorticity, and thickness fields. Phys. Rev. Lett. 81, 1417-1420.

Rutgers, M. A., Wu, X. L. and Daniel, W. B. (2001). Conducting fluid dynamics
experiments with vertically falling soap films. Rev. Sci. Instrum. 72, 3025-3037.

Triantafyllou, G. S., Triantafyllou, M. S. and Grosenbaugh, M. A. (1993). Optimal
thrust development in oscillating foils with application to fish propulsion. J. Fluids
Struct. 7, 205-224.

Van Dyke, M. (1982). An Album of Fluid Motion. Stanford: The Parabolic Press.
von Ellenrieder, K. D., Parker, K. and Soria, J. (2003). Flow structures behind a

heaving and pitching finite-span wing. J. Fluid Mech. 490, 129-138.
Wang, Z. J. (2000a). Two dimensional mechanism for insect hovering. Phys. Rev. Lett.

85, 2216-2218.
Wang, Z. J. (2000b). Shedding and frequency selection in flapping flight. J. Fluid

Mech. 410, 323-341.
Williamson, C. H. K. and Roshko, A. (1988). Vortex formation in the wake of an

oscillating cylinder. J. Fluids Struct. 2, 355-381.

THE JOURNAL OF EXPERIMENTAL BIOLOGY


