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Abstract The Dupuit solution for interface flow toward the coast in a confined aquifer is compared to a
new exact solution, which is obtained with the Hodograph method and conformal mapping. The position
of the toe of the interface is a function of two dimensionless parameters: the ratio of the hydraulic gradient
upstream of the interface where flow is one-dimensional over the dimensionless density difference, and the
ratio of the horizontal hydraulic conductivity over the vertical hydraulic conductivity. The Dupuit interface,
which neglects resistance to vertical flow, is a very accurate approximation of the exact interface for iso-
tropic aquifers. The difference in the position of the toe between the exact and Dupuit solutions increases
when the vertical anisotropy increases. For highly anistropic aquifers, it is proposed to add an effective
resistance layer along the bottom of the sea in Dupuit models. The resistance of the layer is chosen such
that the head in the Dupuit model is equal to the head in the exact solution upstream of the interface
where flow is one-dimensional.

1. Introduction

Seawater intrusion in coastal aquifers may be simulated as interface flow when the transition zone between
the freshwater and saltwater is relatively thin. A convenient approach for the simulation of interface flow is
the adoption of the Dupuit approximation [e.g., Strack, 1976; Cheng et al., 2000; Bakker, 2003; Pool and Car-
rera, 2011]. In Dupuit interface models, the resistance to vertical flow is neglected within an aquifer, so that
the vertical head distribution is hydrostatic. As a result, the spatial dimension of the problem is reduced by
one. It is emphasized that the resulting flow field is still three-dimensional, as the vertical component of the
flow may be computed from continuity of flow [Strack, 1984; Bakker, 1998]. Application of Dupuit interface
models for the simulation of regional flow in coastal aquifers is increasing since the release of the Seawater
Intrusion Package (SWI2) for MODFLOW2005 [Bakker et al., 2013]. The question that arises is how accurate
the Dupuit interface is, especially in vertically anisotropic aquifers, and how the coastal boundary can be
represented most accurately in Dupuit models such as MODFLOW/SWI.

The performance of the Dupuit approximation for interface flow is assessed in this paper by considering the
problem of uniform flow toward the coast in a vertical cross section of a confined aquifer, where the sea
bottom is approximated as horizontal (Figure 1). Bear and Dagan [1964] presented a solution to this prob-
lem for isotropic aquifers through application of the hodograph method and conformal mapping. They did
not succeed in obtaining a solution in closed form. Their solution includes an integral that must be eval-
uated numerically and includes parameters that are difficult to evaluate for many cases, without further
enhancements, using standard computer precision. Strack [1995] presented the solution to a much more
complicated problem by including a drain in the freshwater zone. De Josselin de Jong [1965] solved the
related problem of interface flow to a drain along the confining top of an infinitely thick aquifer; this solu-
tion reduces to the much simpler Glover [1959] solution when the discharge of the drain is set to zero.
Kacimov and Obnosov [2001] presented an analytic solution for the shape of the interface for the problem
of Figure 1 when the seabottom makes an arbitrary angle with the horizontal using the method of
Polubarinova-Kochina.

In this paper, an exact solution to the flow problem of Figure 1, including vertical anisotropy, is obtained in
closed form, using a different mapping than Bear and Dagan [1964], and the solution is written in a form
that is amenable to numerical evaluation for a large range of realistic parameters. Furthermore, it is shown
that the position of the toe of the interface is a function of only two dimensionless parameters. The exact
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solution is used to assess the accuracy of the
Dupuit solution. Finally, a coastal boundary
condition for Dupuit interface models is pro-
posed to improve results for vertically aniso-
tropic aquifers.

2. Problem Description

Consider steady interface flow in a vertical cross
section of a horizontal confined aquifer of thick-
ness H (Figure 1); the saltwater is stagnant. A
Cartesian x, y coordinate system is adopted
with its origin at the coastline; the y axis points

vertically upward (z is used for complex coordinates). The aquifer extends to infinity to the left and right. The prin-
cipal directions of the hydraulic conductivity tensor are horizontal and vertical, and the corresponding principal
components are kx and ky, respectively. The top and bottom of the confined aquifer are impermeable except
below the sea, where the seabottom is represented by a horizontal constant-head boundary. The vertical datum
is chosen such that the equivalent freshwater head along the sea bottom is zero. In the left part of the aquifer,
the freshwater flow is confined, and the groundwater discharge toward the coast is equal to Qc [L2/T]

Qc5kx Hgc (1)

where gc equals the absolute value of the head gradient upstream in the confined part of the aquifer, where
flow is one-dimensional; for brevity, gc will simply be referred to as ‘‘the upstream gradient’’ in this paper.
The dimensionless density difference ms is defined as

ms5ðqs2qf Þ=qf (2)

where qs is the density of saltwater and qf is the density of freshwater. The distance between the toe of the
interface and the coastline is called d and the length of the outflow zone along the bottom of the sea is
called L. The tip of the interface is the point where the interface intersects the sea bottom.

The components of the specific discharge vector in the freshwater zone may be written as

qx52kx
@h
@x

qy52ky
@h
@y

(3)

where h is the freshwater head defined as [e.g., Post et al., 2007]

h5
p

qf g
1y (4)

where p is the pressure and g is the acceleration of gravity. Application of continuity of flow gives the fol-
lowing differential equation for the head in the freshwater zone

@
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A scaled n; g coordinate system is used to transform the differential equation to Laplace’s equation [e.g.,
Bear and Dagan, 1965]

@2h

@n2 1
@2h
@g2

50 (6)

where

n5x=
ffiffiffi
a
p

g5y (7)

where a is the anisotropy ratio defined as
a5kx=ky (8)

The components of the specific discharge vector in the scaled domain are

x
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Figure 1. Interface flow in a vertical cross section of a confined aquifer.
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(9)

where the isotropic hydraulic conductivity k in the scaled domain equals

k5

ffiffiffiffiffiffiffiffiffi
kx ky

q
(10)

The flow in the scaled domain is related to the flow in the physical domain as

qx5qn qy5qg=
ffiffiffi
a
p

(11)

As flow in the scaled domain is governed by Laplace’s equation, the problem may be written in terms of a
complex potential X [e.g., Strack, 1989]

X5U1iW (12)

where

U5kh (13)

is the specific discharge potential and W is the stream function. The components of the specific discharge
vector in the scaled domain are related to the specific discharge potential as

qn52
@U
@n

qg52
@U
@g

(14)

and the complex specific discharge function W is defined as

W5qn2iqg52
dX
dz

(15)

where z5n1ig is the complex coordinate in the scaled domain. In the scaled domain, the specific discharge
potential U equals zero along the seabed (the outflow zone). The stream function is chosen to be zero along
the impermeable top boundary of the aquifer and equals Qc along the bottom of the aquifer and the
interface.

3. Exact Solution

An exact solution to the problem of Figure 1 is obtained with the Hodograph method [e.g., Bear and Dagan,
1964; Verruijt, 1970; Bear, 1972; Strack, 1989]. Boundary segments are labeled as follows (Figure 2a). Seg-
ment A – B is the interface. Segment B – C is the outflow zone. Segment C – D is the impermeable upper
boundary of the confined aquifer, where point D lies at n521. Segment D – A is the impermeable bottom
boundary of the aquifer. The boundary of the scaled flow domain in the complex potential plane is shown
in Figure 2b. The boundary of the scaled flow domain in the W plane is shown in Figure 2c while the inverse
of the W plane, the W21 plane, is shown in Figure 2d. The boundary in the W21 domain consists of straight
line segments, which is much easier to deal with than a boundary consisting of straight line segments and
circular arcs [e.g., Bakker, 2000].

Both the X and W21 planes are mapped onto an auxiliary complex t plane. The real parts of both X and W
are constant and equal to zero along B – C, while the imaginary parts are piecewise constant along the
other segments. This makes it promising to choose the t plane as the quarter plane shown in Figure 2e,
where point B is at infinity and point C is at the origin so that segment B – C lies along the positive imagi-
nary axis and the other segments along the positive real axis. The only other point that is fixed in the map-
ping is point A, which is put at t 5 1. The location of point D is dictated by the mapping and lies along the
real axis at t5s between points C and A. Note that, even without solving the problem, it may be concluded
that the outflow along the seabed varies from qg5kms (i.e., qy5kyms) at point B to infinity at point C [see, e.g.,
Strack, 1989, Example 46.1].

Details of the solution are given in Appendix A, where special care is taken to write the equations in forms
that are suitable for evaluation on a computer. The solution is obtained in parametric form as x(t), y(t), and
XðtÞ:
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where FðtÞ is given by (A11) and s is given by (A4). Note that both the normalized x, y location and the nor-
malized head and stream function are fully determined by only two dimensionless parameters: the ratio of
the upstream gradient gc over the dimensionless density ms, and the anisotropy ratio a5kx=ky . The easiest
way to evaluate the solution is by specifying the head and stream function of the point of interest, compute
the corresponding value of t with the inverse of (17) and then use that t value to compute the x, y location
with (16). Details are given at the end of the Appendix A.

4. Dupuit Solution

The Dupuit solution is obtained with the Strack potential [Strack, 1976]. In the standard application of the
Dupuit approximation, the head along the coastline is set equal to sea level (zero in this case) and the inter-
face is at the top of the aquifer. The solution is straightforward and is presented here without further deriva-
tion. The Strack potential Us for uniform flow toward the coast is

Us52Qcx (18)

where the relationship between the potential and the head is

Us5
1
2

kx h2
d=ms hd � msH

Us5kx Hhd2
1
2

kxmsH2 hd � msH

(19)

where hd is the head in the Dupuit solution. The distance between the toe and the coastline in the Dupuit
solution is called dd. At the toe, x52dd and hd5msH, which means the potential equals Us5

1
2 kxmsH2, so that

dd

H
5

ms

2gc
(20)

Note that in regular confined flow (no interface flow), hd5msH is reached when dd=H5ms=gc , which is exactly
twice as large as for confined interface flow. The vertical elevation of the interface f is obtained from the
head with the Ghyben-Herzberg relation

Figure 2. (a) Scaled domain, (b) X plane, (c) W plane, (d) W21 plane, and (e) t plane.
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f52hd=ms hd � msH (21)

5. Comparison of the Exact and Dupuit Solutions

Flow nets are computed for two anisotropy ratios a 5 1 (isotropic) and a 5 20 and for two upstream gra-
dients: gc50:002 and gc50:005; the dimensionless density is ms50:025 for all cases, as is reasonable for sea-
water [e.g., Post et al., 2007]. The flow nets are shown in Figure 3. The position of the toe of the interface
moves to the coast and the length of the outflow zone increases when the term gc=ms increases and/or the
anisotropy ratio increases. Note that the interface is horizontal at the toe (W 5 0, Figure 2c), but the inter-
face curves up quickly so that this is not visible in the figures. The larger value of gc is larger than the gradi-
ent in most coastal aquifers, but the solution is valid for any combination of gc=ms50:2, for example a much
more realistic gradient of gc50:001 and an aquifer filled with brackish water with ms50:005.

For the same four cases, the exact interface is compared to the Dupuit interface (Figure 4). The length of
the outflow zone is zero in the Dupuit solution for all cases. The exact interface (black for a 5 1 and blue for
a 5 20) is always deeper than the Dupuit interface (red), and the toe of the Dupuit interface is always farther
inland (i.e., conservative). The Dupuit interface is a very good approximation of the two isotropic cases.
When a 5 20, it is still a reasonable approximation when gc=ms50:08, but less so when gc=ms50:2.

A graph is created of the distance d between the toe of the interface and the coastline as a function of gc=

ms for two different anisotropy ratios (Figure 5a). The toe according to the Dupuit solution is shown with red
dots (dots are used rather than a line, else the Dupuit and exact isotropic case virtually overlap). The Dupuit
solution is a very good approximation of the toe of the exact solution for the isotropic case (black line) and
is a good but conservative estimate for the cases with an anisotropy ratio of 20. The difference in toe loca-
tion between the Dupuit solution and the exact solution is shown in Figure 5b and is less than 10 percent
of the aquifer thickness for the isotropic case for all values of gc=ms . For a high anisotropy ratio of 20, the dif-
ference is less than half an aquifer thickness when gc=ms < 0:075 and less than one aquifer thickness when
gc=ms < 0:15. Note that the latter value of gc=ms corresponds to a large gradient of gc50:00375 when the
aquifer is filled with seawater (ms50:025), but a much smaller gc50:0015 for brackish aquifers with 40 per-
cent seawater (ms50:01).

The heads of the exact solution and the Dupuit solution are compared for the case that gc=ms50:2 in Figure
6 (this is the case of Figure 3d). Heads are plotted along the top of the aquifer (solid lines) and along the
bottom of the aquifer and interface (dashed lines) for the isotropic case (black lines) and the case with

Figure 3. Flow nets for (a) gc=ms50:08 and a 5 1, (b) gc=ms50:08 and a 5 20, (c) gc=ms50:2 and a 5 1, and (d) gc=ms50:2 and a 5 20. Hori-
zontal and vertical scales are equal.
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a 5 20 (blue lines). The head along the bottom/interface is always larger than at the top of the aquifer, as
expected. The red dots in the graph indicate the head in the Dupuit solution, which is very close to the
head at the top of the aquifer for the isotropic case. The green dots represent a Dupuit solution with a dif-
ferent coastal boundary condition, which will be explained in the next section. The horizontal dotted line

indicates the head along the inter-
face corresponding to the toe.
Upstream of the toe, the head at
the top and bottom of the aquifer
converge to the same line with a
gradient of minus gc. There is a con-
sistent difference of approximately
0:12msH between the Dupuit head
(red dots) and the exact head for
this case with a 5 20 (blue lines).

6. Dupuit Model With
Effective Resistance Layer
Along Seabed

As the resistance to vertical flow is
neglected in a Dupuit model, the
length of the outflow zone is zero
and the thickness of the freshwater
zone is smaller everywhere as com-
pared to the exact solution.
Although this means that the
Dupuit solution is conservative, it
also results in a consistent error in
head (Figure 6). This error is negligi-
bly small for isotropic aquifers, but
can become significant when both
the term gc=ms and the anisotropy

Figure 4. Exact interface (black is a 5 1 and blue is a 5 20) and Dupuit interface (red) for (a) gc=ms50:08 and a 5 1, (b) gc=ms50:08 and
a 5 20, (c) gc=ms50:2 and a 5 1, (d) gc=ms50:2 and a 5 20. Horizontal and vertical scales are equal.

Figure 5. (a) Distance d between interface toe and coastline versus upstream gradi-
ent gc divided by dimensionless density difference ms for two anisotropy ratios a and
the Dupuit solution. (b) Difference between d for exact and Dupuit solutions.
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ratio are large. This is undesirable,
as the error in head affects the
entire model. If the upstream
boundary condition is head-
specified rather than flux specified,
the Dupuit model will underesti-
mate the flow toward the coast.

It is proposed to change the
boundary condition along the
coast in Dupuit models by lumping
the vertical resistance of the aquifer
in an effective resistance layer
along the bottom of the sea, as
shown in Figure 7. The vertical
component of the specific dis-
charge vector qy through the resist-
ance layer (the outflow) is
computed as

qy5ðhd2hsÞ=c (22)

where hs is the head in the sea (set
to zero in this paper), and c is the
effective resistance of the resist-

ance layer (to be determined later). The approach of adding an effective resistance layer is inspired by the
work of Anderson [2003, 2005], who added an effective resistance layer to the bottom of a lake to simulate
accurately the interaction between groundwater and surface water with a Dupuit model.

A Dupuit solution for the problem shown in Figure 7 was presented by Bakker [2006]. For the case that the
toe of the interface is upstream of the coastline and the resistance layer is longer than the outflow zone,
the solution is (written in terms of the variables used in this paper):
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H
6kx c

x
H

2
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0 � x � Ld
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� �
11 x � 2dd

(23)

where Ld is the length of the outflow zone in the Dupuit solution with an effective resistance layer

Ld

H
5

18gc

ms

� �1=3 kx c
H

� �2=3

(24)

and dd is the distance between the toe and the coast line in the Dupuit solution with an effective resistance
layer

dd

H
5

ms

2gc
12

3
2

g2
c

m2
s

kx c
H

� �2=3
" #

(25)

Note that dd=H equals ms=ð2gcÞ (equation (20)) when c equals zero.

The effective resistance c is computed such that that the head obtained from the exact solution is the same
as the head computed with the Dupuit solution upstream of the toe, where the flow is one-dimensional.
The two heads are set equal at the location x5x� where the head h of the exact solution is twice the head
at the toe

Figure 6. Head along the top of the aquifer (solid lines) and bottom of the aquifer or
interface (dashed lines) for the exact solution for the case that gc=ms50:2. Red dots
represent Dupuit solution. Green dots represent Dupuit solution for a 5 20 with
effective resistance layer along seabed.
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hðx�; 0Þ52msH (26)

The Dupuit head hd (last equation of
(23)) is set equal to 2msH at x5x�

2gc

ms

x�

H
1

dd

H

� �
1152 (27)

Substitution of (25) for dd and some
algebra gives a formula for the effec-
tive resistance c normalized through
division by the vertical resistance of
the aquifer H=ky

cky

H
5

2m2
s

3g2
c a

31
2gcx�

msH

� �3=2

(28)

The value of x� may be computed by first computing the value of t with (A13) using X̂52mskH, then com-
puting z with (A12) and finally x� is obtained from the inverse of (7). As an example, the head is computed
for the case of Figure 3d. Use of an effective resistance layer results in no upstream head difference
between the exact solution and the Dupuit solution, as shown with the green dots in Figure 6.

The normalized effective resistance is a function of the ratio gc=ms and of the anisotropy ratio and is plotted
in Figure 8. The flux toward the coast likely varies along the coastline in a three-dimensional model of a
coastal aquifer. As the effective resistance is a function of the flux, it may be necessary to select an average
value for the range of fluxes that may be expected. It is emphasized that the addition of the resistance layer
to the model, as shown in Figure 7, is only needed when the anisotropy factor is high.

Addition of the effective resistance layer along the seabottom negates any error in the head upstream of the
toe where flow is one-dimensional. It also improves the position of the toe and it adds an outflow zone to the
Dupuit solution. The length of the outflow zone is similar to the length of the outflow zone of the exact solu-
tion (Figure 9), but the shape is different. At the tip of the interface, the upward flux is qy5kyms in the exact
solution, as stated earlier, and the horizontal flux is zero, so that the interface is vertical. In the Dupuit solution
with the effective resistance layer, the flux is zero at the tip, and hence the interface is horizontal.

7. Conclusions and Discussion

A new closed-form exact solution is presented for interface flow in confined coastal aquifers with an aniso-
tropic hydraulic conductivity. The sea bottom is approximated with a horizontal constant-head boundary.

The dimensionless location of the toe
of the interface is a function of just
two dimensionless parameters: the
ratio of the upstream gradient gc

over the dimensionless density differ-
ence ms, and the anisotropy ratio
a5kx=ky . The existing Dupuit solution
to the same problem is written in
terms of the Strack potential where
the interface is set to the top of the
aquifer at the coastline. The Dupuit
solution is a very accurate approxi-
mation of the exact solution for iso-
tropic aquifers. For anisotropic
aquifers, the difference between the
interface toe of the exact and Dupuit
solutions increases but the difference
remains less than 1:5H when gc=ms

< 0:2 (Figure 5).

x

Qc
H

stagnant
saltwater

freshwater

interface

qy

dd Ld

Figure 7. Proposed boundary condition along seabed in Dupuit models. The effec-
tive resistance c of the resistance layer (gray) represents the resistance to vertical
flow.

Figure 8. Vertical resistance c of effective resistance layer as a factor times the ver-
tical resistance of the aquifer (H=ky ).
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Bear and Dagan [1964] concluded that the Ghyben-Herzberg relationship (and thus a Dupuit model) is a
good approximation for isotropic aquifers when pkmsH=Qc > 8, which translates to gc=ms < p=8 � 0:39. This
value is equivalent to gc � 0:01 when ms50:025, corresponding to a toe location of d � H, which means
seawater intrusion is almost negligible. So in practice, the conclusion is the same as the one reached in this
paper: a Dupuit interface is very accurate for isotropic aquifers filled with seawater.

A new coastal boundary condition is proposed so that Dupuit interface models of anisotropic aquifers do
not result in a consistent error in the head upstream of the interface where flow becomes one-dimensional.
Application of the new coastal boundary for Dupuit interface models results in an outflow zone along the
sea bottom, which is required in, for example, the SWI2 package for MODFLOW [Bakker et al., 2013]. The
new boundary condition lumps the resistance to vertical flow into an effective resistance layer at the bot-
tom of the sea. The resistance c of this effective resistance layer is a function of the ratio gc=ms and of the
anisotropy ratio a (Figure 8). The effective resistance depends on the flow, which may vary along the coast
in regional Dupuit models of seawater intrusion, especially when vertical pumping wells are located near
the coast. Vertical wells are commonly located as far as possible from the coast to reduce the possibility of
seawater intrusion, so that the flow at the coastline is predominantly normal to the coastline. For such cases,
a practical solution is to use an average value for c based on the range of flow values that may be expected
in the model. Further research is needed to assess the accuracy of the proposed effective resistance in
regional models with vertical wells pumping along the coast.

Appendix A: Derivation of the Exact Solution

The exact solution to the problem shown in Figure 2 is derived following the approach outlined in Strack
[1989]. The boundaries of the domains in the X and W21 planes (Figures 2b and 2d) have the same shape.
They are purely imaginary along B – C, and their imaginary parts are piecewise constant along the other
segments. W jumps from 0 to Qc at t5s and =W21 jumps from 0 to 1=ðkmsÞ at t 5 1. The conformal mapping
of these domains onto the t plane may be obtained using image wells as [e.g., Anderson, 2005]

X5
2Qc

p
ln

t2s
t1s

� �
1Qci (A1)

1
W

5
21
pkms

ln
12t
11t

� �
(A2)

The value of s can be obtained by requiring that W215H=Qc at t5s, which gives

Figure 9. Exact interface (black is a 5 1 and blue is a 5 20) and Dupuit interface with effective resistance layer (red) for (a) gc=ms50:08 and
a 5 1, (b) gc=ms50:08 and a 5 20, (c) gc=ms50:2 and a 5 1, (d) gc=ms50:2 and a 5 20. Horizontal and vertical scales are equal.
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12s
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2pms

gc
ffiffiffi
a
p 5a (A3)

where the new variable a is introduced for convenience and it is used that Qc5kx Hgc . An expression for s
may be obtained from (A3) after some algebra as

s511e (A4)

where

e5
22ea

11ea
(A5)

which can be evaluated accurately for very small values of a.

An expression for z is obtained from [e.g. Strack, 1989]

z5

ð
2

1
W

dX
dt

dt (A6)

Substitution of the derivative of (A1) for dX=dt and (A2) for W21 in (A6) and combining terms gives

z5
2Qc

p2kms
FðtÞ (A7)

where

FðtÞ5
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ln ð12tÞ
t2s

2
ln ð12tÞ

t1s
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ln ð11tÞ
t2s

1
ln ð11tÞ

t1s

� �
dt (A8)

All four terms in the integrand of (A8) turn into a combination of logarithms and dilogarithms, the latter
being defined as [e.g., Strack, 1989, Appendix B)

Li2ðtÞ52

ðt

0

ln ð12sÞ
s

ds (A9)

All terms in the integrand of (A8) have the same form and may be integrated asðt
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where b is an arbitrary constant. Integration of (A8) now gives

F5 ln ð12sÞln ðt2sÞ2ln ð11sÞln ðt1sÞ2ln ð11sÞln ðt2sÞ1ln ð12sÞln ðt1sÞ
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� �
1Li2

t1s
11s

� �
1Li2

t2s
212s

� �
2Li2

t1s
211s

� � (A11)

The solution for the complex coordinate z(t) in the scaled domain may now be written as

z
H

5
2gca
p2ms

FðtÞ2Fð0Þ½ � (A12)

where (1) is substituted for Qc and (10) for k.

The easiest way to evaluate the solution is to specify the value of X of interest, compute the corresponding
value of t with the inverse of (A1), and use that value of t to compute z with (A12). For example, if X̂ is the
value of interest, the value of t may be computed from (A1) as

t5 12
2ec

11ec

� �
s (A13)

where

c52pX̂=Qc1pi (A14)

Computation of z requires evaluation of the dilogarithms in the function F (A11), which may be evaluated,
for example, with the equations given in Appendix B of Strack [1989].
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The presented solution suffers from a problem that is known as the crowding effect in conformal mapping.
As stated, the location of point D is at t5s511e and is dictated by the mapping. As it turns out, e is very
small and s is very close to 1 for smaller values of gc=ms. For example, for the case gc=ms50:08 (Figure 3),
e � 1 � 10217. This makes it difficult to evaluate ln ð12sÞ, or ðt2sÞ when t is close to 1, using standard com-
puter precision. The function F may be evaluated for values of s very close to 1 when three terms are modi-
fied. First, the terms ð12sÞmust be replaced by 2e. Second, the term ln ðt2sÞ may be written as

ln ðt2sÞ5ln
t2s
t1s

� �
1ln ðt1sÞ (A15)

where an accurate value of the first logarithm to the right of the equal sign may be obtained directly from
(A1) when the desired value of X is specified. And third, the terms t2s in the arguments of the dilogarithms
can be obtained directly from (A13) as

t2s5
22ec

11ec
s (A16)
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