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Abstract
Background and Objectives
Early neuroprognostication in children with reduced consciousness after cardiac arrest (CA) is
a major clinical challenge. EEG is frequently used for neuroprognostication in adults, but has
not been sufficiently validated for this indication in children. Using machine learning techni-
ques, we studied the predictive value of quantitative EEG (qEEG) features for survival
12 months after CA, based on EEG recordings obtained 24 hours after CA in children. The
results were confirmed through visual analysis of EEG background patterns.

Methods
This is a retrospective single-center study including children (0–17 years) with CA, who were
subsequently admitted to the pediatric intensive care unit (PICU) of a tertiary care hospital
between 2012 and 2021 after return of circulation (ROC) and were monitored using EEG at
24 hours after ROC. Signal features were extracted from a 30-minute EEG segment 24 hours
after CA and used to train a random forest model. The background pattern from the same EEG
fragment was visually classified. The primary outcome was survival or death 12 months after
CA. Analysis of the prognostic accuracy of the model included calculation of receiver-operating
characteristic and predictive values. Feature contribution to the model was analyzed using
Shapley values.

Results
Eighty-six children were included (in-hospital CA 27%, out-of-hospital CA 73%). The
median age at CA was 2.6 years; 53 (62%) were male. Mortality at 12 months was 56%;
main causes of death on the PICU were withdrawal of life-sustaining therapies because of
poor neurologic prognosis (52%) and brain death (31%). The random forest model was
able to predict death at 12 months with an accuracy of 0.77 and positive predictive value of
1.0. Continuity and amplitude of the EEG signal were the signal parameters most con-
tributing to the model classification. Visual analysis showed that no patients with a back-
ground pattern other than continuous with amplitudes exceeding 20 μV were alive after
12 months.

Discussion
Both qEEG and visual EEG background classification for registrations obtained 24 hours after
ROC form a strong predictor of nonsurvival 12 months after CA in children.
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Introduction
Each year 15,000 children experience an in-hospital cardiac
arrest (IHCA) and approximately 6,000 an out-of-hospital
cardiac arrest (OHCA) in the United States.1-3 Mortality is
still high; approximately 89% of children with OHCA and
58% of children with IHCA die before hospital discharge.4-7

Predicting precise long-term outcomes in children who have
reached return of circulation (ROC) is a great challenge,
particularly in those who remain unconscious after 24 hours.
This is compounded by a lack of standardization for pediatric
neuroprognostication in postanoxic coma.8,9 It is crucial to
predict neurologic outcome as accurately as possible in these
children to discuss further steps of treatment and to inform
parents correctly. An inaccurate prediction of long-term
outcome could lead to premature withdrawal of life-sustaining
treatment or, at the other end of the spectrum, severely dis-
abled children with persistent vegetative state, with a high
impact on caregivers and resources.10

The EEG is frequently used for neuroprognostication, demon-
strating significant sensitivity and specificity in predicting neu-
rologic outcomes in adults with postanoxic encephalopathy.11,12

However, the application of EEG in pediatric neuro-
prognostication faces unique challenges, particularly the
lack of adequately validated prognostic patterns for chil-
dren.8 While some studies have identified EEG background
patterns associated with neurologic outcomes at hospital
discharge after cardiac arrest (CA), these lack standardized
description, limiting their clinical utility.13-16 All EEG record-
ings in these studies were visually assessed, which is time-
consuming and requires the expertise of an experienced
electroencephalographist. Moreover, high inter-rater variability
has been reported for visual EEG interpretation.17 Visual
analysis of EEG inherently overlooks critical signal character-
istics such as complexity and functional connectivity, which
require mathematical preprocessing to assess. This limitation
excludes potentially valuable information that cannot be
detected through visual inspection alone.

To overcome the limitations of traditional visual EEG anal-
ysis, we explored the use of quantitative EEG (qEEG) com-
bined with machine learning (ML) techniques. qEEG
provides a mathematical and objective assessment of EEG
signals, offering detailed insights that visual analysis misses.
Training ML algorithms on qEEG features is an effective
technique to predict the outcome in postanoxic encephalop-
athy in adults.18-20 In contrast to the extensive literature on

prognostication in adults, only 1 study used qEEG in a similar
role after pediatric CA,21 which used a limited set of qEEG
features without comparing its prognostic accuracy with visual
EEG assessmentwhile a recent study evaluated the use of a single
qEEG feature (suppression ratio) for prediction of cerebral in-
jury.22 This highlights a significant research gap and underscores
the need for comprehensive studies that evaluate the full po-
tential of qEEG and ML in pediatric neuroprognostication.

We hypothesized that a more comprehensive set of qEEG
features—encompassing time, frequency, connectivity, and
entropy domains—will more accurately capture the complex
dynamics of EEG signals. Such a set, analyzed through ML,
can improve the prediction of outcomes of children after CA.
Accordingly, the primary objective of this study was to iden-
tify EEG background patterns at 24 hours after ROC that
correlate with survival 12 months after arrest. To achieve this,
we adopted a dual approach: integrating the identification of
relevant qEEG features by ML with parallel visual EEG
analysis. This methodology aims to combine the objective
precision of qEEG with the more nuanced insights provided
by expert visual analysis, offering a comprehensive un-
derstanding of EEG’s predictive value for post-CA outcomes
in children.

Methods
Standard Protocol Approvals, Registrations,
and Patient Consents
This retrospective study was performed at the pediatric in-
tensive care unit (PICU) and clinical neurophysiology de-
partment of the Erasmus MC Sophia Children’s Hospital in
Rotterdam, a tertiary care university hospital, which provides
health care to children in the southwest part of the Nether-
lands (referral area 4 million inhabitants, approximately 25%
of the Dutch population). The Erasmus MC Ethical Review
Board approved the study protocol (MEC-2019-0259 and
MEC-2021-0145). The need to obtain informed consent was
waived.

Patients
All children aged 0–17 years with IHCA or OHCA between
2012 and 2021 who were subsequently admitted to our PICU
after ROC and were monitored using EEG 24 hours after
ROC were eligible for inclusion. CA was defined as un-
responsiveness with absent palpable pulse for at least 1 min-
ute. Children with preexisting severe neurologic deficits

Glossary
ACNS = American Clinical Neurophysiology Society; AUC = area under the curve; CA = cardiac arrest; cEEG = continuous
EEG; ESR = EEG silence ratio; GPD = generalized periodic discharge; IHCA = in-hospital cardiac arrest; ML = machine
learning;OHCA = out-of-hospital cardiac arrest; PCPC = pediatric cerebral performance category; PICU = pediatric intensive
care unit; qEEG = quantitative EEG; ROC = return of circulation; SHAP = Shapley Additive Explanations.
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(defined as a prearrest Pediatric Cerebral Performance Cat-
egory [PCPC]23 score of >3, retrospectively derived by chart
review [M.H.]); traumatic OHCA; or intracranial lesions such
as intracranial hemorrhage, brain tumor, or meningitis as
a cause of arrest were excluded.

Outcomes
The PCPC score determined 12 months after CA and di-
chotomized to survival (PCPC 1–5) and death (PCPC 6)
was our primary measure of neurologic outcome. The de-
cision to dichotomize was made before study initiation,
based on findings of our previous work6; most of the chil-
dren either survived with a good neurologic outcome or died
before discharge. In our center, pediatric CA survivors are
included in our multidisciplinary outpatient follow-up pro-
gram (standard of care) with scheduled standardized visits
(including at 12 months after CA) until the age of 18 years.
The PCPC score was determined during a visit to this out-
patient clinic, staffed by an experienced pediatric intensivist
(C.B.) and pediatric neurologist (M.H.). When no follow-up
visit took place, these outcomes were collected from notes in
the patient records (e.g., based on hospital visits with other
physicians).

EEG Registration
Between 2012 and 2016, EEGs after CA were performed
based on clinical need as determined by the treating physi-
cians. Recognizing the importance of systematic monitoring,
since 2017, local guidelines recommend continuous EEG
(cEEG) in all children with impaired consciousness after CA.
All EEG recordings were analyzed retrospectively. EEG was
recorded with an OSG BrainRT system (Rumst, Belgium)
adhering to the International 10-20 System for electrode
placement, with 11–19 electrodes depending on head cir-
cumference and a sampling rate of 256 Hz. Data were
exported from BrainRT software in EDF+ format24 for further
analysis in a data structure that adheres to the EEG-BIDS
specifications.25

Quantified EEG Analysis
For qEEG analysis, we selected a 30-minute data segment at
24 hours after CA (from −15 to +15 minutes). This time
frame was considered optimal for assessing brain function
using EEG, based on findings in adult post-CA studies.26 All
patients were sedated at this time point. The raw data were
filtered using a noncausal finite impulse response bandpass
filter with a lower and upper passband edge at 0.5 and 35 Hz,
respectively. A notch filter at 50 Hz was used to remove the
remaining line noise. Epochs were visually inspected to
identify and remove major artifacts and bad channels. In-
dependent component analysis was used to identify and
remove ECG artifacts. The resulting artifact-free epochs were
re-referenced to a common average reference and split into
subepochs with a duration of 20 seconds and overlap of 10
seconds, yielding an average of 158 epochs per patient (range
38–179). All preprocessing was performed using the MNE
library in Python.27

A set of 27 qEEG features was selected based on the results of
previous studies in adults20,28,29 (Table 1), considering their
power to describe a time signal in the time, frequency, con-
nectivity, and entropy domains. These features were first
calculated per epoch for each individual channel, and channel
values were then averaged to generate a single value per fea-
ture per epoch. The feature calculations were performed in
MATLAB version R2022a.30

Random Forest Classifier
The calculated EEG features per epoch were used as input
for a random forest classifier, with the primary clinical out-
come (PCPC 12 months after diagnosis, dichotomized to
survival/death) as the output label. In summary, the data set
was split into test and training samples using a stratified
K-fold cross-validator (Python Scikit-learn31) with a 5-fold
split and a train/test ratio of 80/20. Stratification was used to
preserve the ratio between outcome classes in the test and
training subsets, with epochs from each patient exclusively
allocated to either the test or training set to prevent data
leakage. A grid search algorithm was used to find the optimal
parameters for the random forest model. The model returns
for each epoch a probability estimate between 0 and 1 for
unfavorable outcome. To reduce the number of false pos-
itives, a probability of 0.7 was used as a threshold to label an
epoch as unfavorable. Performance of the model was
assessed with receiver operator characteristics analyses, in-
cluding area under the curve (AUC), recall, and precision. A
patient was predicted to have an unfavorable outcome if over
99% of all epochs for that patient were classified as unfavorable
(eFigure 1). Enhancing our model’s interpretability and eval-
uating the contribution of different EEG features to prognostic
classification, we performed a Shapley Additive Explanations
analysis (SHAP, Python Shap32). This approach allowed us to
assign a score to the contribution of each feature to the clas-
sification per epoch, strongly increasing the explainability of the
model.

Visual EEG Analysis
To complement the quantitative analysis, the same 30-
minute epochs were used for visual assessment. Two expe-
rienced clinical neurophysiologists (D.S., R.v.d.B.) who were
blinded to the clinical outcome, independently reviewed
each segment. They classified the EEG background patterns
according to the American Clinical Neurophysiology Society
(ACNS) Critical Care EEG terminology33 and the Dutch
national protocol for the prognosis of postanoxic encepha-
lopathy in adults. In case of disagreement, both neuro-
physiologists convened to reach consensus. Interobserver
agreement was analyzed using Cohen κ. The EEG back-
grounds were categorized into 8 distinct patterns: (1)
unusable due to artifacts, (2) continuous background pat-
tern with amplitudes exceeding 20 μV, (3) continuous
background but with suppressed amplitudes (<20 μV), (4)
burst-suppression pattern with nonidentical bursts, (5)
burst-suppression pattern with the first 500 milliseconds of
each burst visually identical, (6) generalized periodic
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discharges (GPDs) intermixed with other activity (nonflat
background), (7) GPDs on a background with no other
cerebral activity, and (8) isoelectric background with no
discernible cerebral activity. To gain more insight into the
classification of the random forest model, the categorization of
the background pattern as other than continuous with

amplitudes exceeding 20 μV was compared with prediction of
unfavorable outcome by the model.

Data Availability
Anonymized data and code will be made available upon re-
quest from qualified investigators.

Table 1 Description of Calculated EEG Features Included for Training the Random Forest Classifier

EEG feature Feature description Ref.

Amplitude features quantify the various aspects of the EEG signal’s amplitude, which reflects the strength and variability of brain activity

Amplitude descriptive
statistics

Theminimal, maximal, average, and range of amplitude per epoch inmicrovolts, calculated on the absolute values of the
signal after applying a slidingwindowmoving averagewith awindow length of one-fourth of the sample rate of the signal

30

Line length Line length is defined as the running sum of the absolute differences between all consecutive samples within
a predefined window

45

Regularity Regularity of the amplitude of a signal. A signal with low amplitude and short period of higher amplitudes (suppression,
burst) has a value close to zero. Signals with higher continuous amplitudes have a higher regularity value

18

Complexity features are a measure of the regularity and unpredictability of EEG data. Lower values of these features indicate a more predictable
and regular signal (e.g., an isoelectric or diffusely slow pattern) while higher values suggest greater complexity and irregularity (e.g., a continuous
EEG pattern with varying frequencies)

Approximate entropy The approximate entropy calculates the predictability of future amplitude values in the EEG by considering the preceding
amplitude values

30

Sample entropy Quantification of the uncertainty of stochastic signals in the frequency domain 46

Tsallis entropy Quantification of the uncertainty of stochastic signals in the frequency domain. It captures the complexity and regularity
of a signal by analyzing the different frequency components of the signal

47

Connectivity features provide insight into the functional organization of brain networks, for example, how different brain regions communicate. A
high connectivity is characterized by synchronized, phase-consistent EEG signals between brain regions (electrodes) while more independent
signals have low connectivity

Phase-lag index Measure for the asymmetry of the distribution of phase differences between signals recorded from different brain
regions. A PLI value close to 0 suggests weak or no functional connectivity while a value close to 1 indicates strong phase
consistency and stronger functional connectivity

48

Coherence Measure of the similarity between the PSD of 2 signals, indicating the degree of synchrony. Calculated separately for
alpha, beta, theta, and delta band frequency components

30

Continuity features describe how continuous the EEG signal is and range from0 to 1. High values for BSR and/or ESR indicate that a large proportion
of the EEG signal is suppressed or flat while a low value indicates a continuous signal. A feature value around 0.5 indicates a burst-suppression
pattern

BSR The fraction of time in which the amplitude of the EEG signal is <5 μV

ESR Intervals of suppression of >240 milliseconds during which the EEG signal is <5 μV 49

Frequency features in EEG analysis measure the power and distribution of brain activity across different frequency bands

Absolute power The average spectral power in frequency components of the signal based on a periodogram, calculated separately for
alpha, beta, theta and delta band frequency ranges

30

Relative power The relative spectral power in the alpha, beta, and theta frequency bands relative to the spectral power in the delta
frequency band

SEF90 The frequency below which 90% of the total power of the signal is contained

Hjorth features provide a concise characterization of EEG signals, describing overall power, signal regularity, and frequency variations

Hjorth activity The variance of a time signal. Activity increases for a signal with higher frequencies 50

Hjorth complexity The change in frequency and similarity to a sine wave. Hjorth complexity compares the similarity of the signal with a sine
wave (a value of 1 means that the signal is more similar to a sine wave)

Hjorth mobility Hjorth mobility is a measure of the SD of the power spectrum

Abbreviations: BSR = burst-suppression ratio; ESR = EEG silence ratio; PLI = phase-lag index; PSD = power spectral density; SEF = spectral edge frequency.
In all cases where features are calculated for separate spectral frequency bands, these are defined as delta (0.5–4Hz), theta (4–8Hz), alpha (8–12Hz), and beta
(12–30 Hz).
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Results
Patient Sample
Of a total of 459 children in our data set with CA between
2012 and 2021 (IHCA n = 246 [54%] and OHCA n = 213
[45%]), 393 achieved ROC (86%), of which 153 (39%) un-
derwent cEEG monitoring. Of those monitored, 86 EEGs
(56%) met our inclusion criteria and were analyzed further
(see Figure 1 for a detailed description of inclusions). The
median age of the 86 included children at the time of CA was
2.6 years, and 62% were male. Main causes of CA were
drowning and circulatory failure. Twelve months after CA, we
observed a mortality rate of 56%; all children died before
hospital discharge; the causes of death were predominantly
withdrawal of life-sustaining therapies because of a poor
neurologic prognosis (56%), followed by brain death (31%,
Table 2).

qEEG Results
The median time to initiate cEEG monitoring after CA was
just over 10 hours (interquartile range 2.5–23.7 hours). Of

Figure 1 Flowchart of Patient Inclusion and Exclusion
Criteria

This diagram illustrates the patient population screened for inclusion in our
study and reasons for exclusion. cEEGmonitoringwasmore often used after
OHCA compared with IHCA, likely because a larger proportion of the chil-
dren with IHCA regained consciousness before monitoring could com-
mence. cEEG = continuous EEG; IHCA = in-hospital cardiac arrest; OHCA =
out-of-hospital cardiac arrest; ROC = return of circulation.

Table 2 Patient Cohort Characteristics

Age at CA, y, median (range) 2.6 (0.0–17.4)

Male sex, n (%) 53 (62)

Location of CA, n (%)

Out of hospital 63 (73)

In hospital 23 (27)

Cause of arrest, n (%)

Drowning 18 (21)

Circulatory failure 16 (19)

Respiratory failure 8 (9)

Airway obstruction 7 (8)

SIDS 7 (8)

Arrhythmia 7 (8)

Strangulation 6 (7)

Septic shock 4 (5)

Other 6 (7)

Cause unknown 7 (8)

Time between CA and start EEG, h, median (range) 10.5 (2.5–23.7)

Survival to hospital discharge, n (%) 38 (44)

PCPC after 12 mo, n (%)

1 12 (14)

2 8 (9)

3 12 (14)

4 6 (7)

5 0 (0)

6 48 (56)

Cause of death (determined after 12 mo), n (%)

WLST-neuroa 25 (52)

Brain death 15 (31)

Circulatory failure 4 (8)

Indirect causesb 3 (6)

Respiratory failure 1 (2)

Abbreviations: CA = cardiac arrest; PCPC = Pediatric Cerebral Performance
Category; SIDS = sudden infant death syndrome.
This table details the demographic and clinical profile of the 86 patients
whose EEG datawere included in the analysis. Data are presented as n (%) or
median (range).
a WLST-neurodenotes thewithdrawal of life-sustaining therapies because of
poor neurologic prognosis.
b Indirect causes of death encompass events not directly stemming from the
CA, for example, pulmonary hypertension due to preexisting pathology or
complications of treatment such as intracranial hemorrhage during extra-
corporeal membrane oxygenation.
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the 86 recordings available at T = 24, 2 were excluded be-
cause of excessive artifacts that hindered the accurate anal-
ysis of background patterns (Figure 1). A random forest
model trained on EEG features obtained from the remaining
84 recordings at 24 hours after resuscitation was able to
predict outcome after 12 months with an AUC of 0.90
(Figure 2). When integrating the prediction per epoch into
an outcome per patient, the model obtained an accuracy of
0.77. All patients for whom the model predicted an un-
favorable outcome indeed died within 12 months (positive
predictive value and specificity = 1). However, the ability of
the model to predict survival was lower because its pre-
diction of a good outcome turned out to be false in 19 of 56
patients (negative predictive value of 0.66). The model did
not predict an unfavorable outcome in all patients who died.
This depended on the cause of death, with the model cor-
rectly predicting an unfavorable outcome in 27 of 39 de-
ceased patients with a neurologic cause of death (a recall of
0.69). By contrast, it correctly predicted death only in 1 of 8
patients with a non-neurologic cause of death (recall of
0.13). For the population as a whole, the precision and recall
for unfavorable outcomes are 1.0 and 0.60, respectively,
resulting in an F1 score of 0.75.

To understand the contribution of specific EEG signal
parameters on the model’s predictions, we conducted
a SHAP analysis. Among the features analyzed, the most

discriminating for predicting survival after 12 months are the
minimal amplitude per EEG epoch and EEG silence ratio
(ESR), a measure for signal continuity (Figure 3, A and B).
Specifically, epochs with low minimal amplitude, indicative
of low-voltage or even isoelectric EEG segments, strongly
contribute to a prediction of poor outcome (shown in more
detail in eFigure 2A). Similarly, a high ESR value, found in
burst-suppression or isoelectric EEG backgrounds, signifi-
cantly tilt the model toward predicting unfavorable outcome
(eFigure 2B). Overall, EEG features related to amplitude
and continuity contribute highly to the outcome of the
model, whereas features encoding frequency, complexity,
and connectivity have a lower impact (Figure 3, A and B).
The distribution of SHAP values summarized in Figure 3C
shows a nonuniform pattern, indicating distinct trajectories
toward predicting either survival or death (illustrated in
eFigure 3).

Visual EEG Results
To further investigate the relation between outcome and
EEG background pattern, we also conducted a visual analysis
of all EEG data used as training input for the random forest
model. At 24 hours after CA, the EEG background pattern in
most of the patients (59%) was classified as continuous with
amplitudes above 20 μV (Table 3). Interobserver agreement
on the classification of EEG background patterns was high,
as indicated by a Cohen κ of 0.91. Interobserver disagree-
ment focused on the distinction between identical and
nonidentical bursts and differentiating between short bursts
and GPDs.

There is a strong correlation between the EEG background
pattern 24 hours after CA and outcome after 12 months.
Specifically, of the 51 children with a continuous back-
ground pattern with amplitudes above 20 μV, 37 (73%)
were still alive at 12 months. Conversely, in the group of 33
children with any of the alternative background patterns,
not a single child survived (specificity = 1, Figure 4).

The agreement between EEG background patterns classified
as other than continuous with amplitudes exceeding 20 μV,
compared with the prediction of the random forest model is
substantial, with a Cohen κ of 0.77, also reflected in a com-
parable accuracy of 0.83 (visual analysis) vs 0.77 (qEEG
analysis). Disagreement mainly occurs in patients with either
a continuous background or a burst-suppression pattern (see
eFigure 4). In some patients with a continuous background
pattern with normal amplitudes, a minority of epochs has
either relatively low background amplitude or large fluctua-
tions in amplitude, mimicking a low-voltage or burst-
suppression pattern (illustrated in eFigure 5). On the other
hand, some EEGs with a burst-suppression background pat-
tern contain frequent or long bursts that last the whole du-
ration of an epoch. In these cases, because of the high level of
continuity and high amplitudes, the model does not predict an
unfavorable outcome for these patients (examples shown in
eFigure 6).

Figure 2 Random Forest Model Performance Using Quan-
titative EEG Features for 12-Month Mortality
Prediction

The receiver-operating characteristic curve shows the true-positive rate as
a function of the false-positive rate for the prediction of survival after
12 months for each EEG epoch, with an average AUC of 0.90 (± SD in gray)
across 5 different training folds, suggesting robust predictive capability.
AUC = area under the curve.
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Figure 3 SHAP Value Analysis of the 10 Most Predictive Features in the Random Forest Model for 12-Month Survival
Prediction

Panel A: For each of the EEG features included in the random forestmodel, the average absolute SHAP value is shown, with higher values indicating a stronger
contribution to the classification. See Table 3 for explanation of the features. Panel B presents a summary plot, showing the impact of each feature on the
model’s predictions. The colors represent feature values, with red indicating high values and blue indicating low values. The horizontal axis shows the SHAP
value, which reflects how much each feature influences the model’s output, shifting the prediction from the baseline risk of an unfavorable outcome in the
entire population. Featureswith a positive SHAP value increase the likelihoodof a prediction of unfavorable outcomewhile a negative SHAP value reduces this
likelihood. For example, a high minimal amplitude (first row, in red) reduces the likelihood of a prediction of unfavorable outcome, while a low minimal
amplitude (first row, in blue) strongly increases this likelihood. A similar though opposite pattern is seen for the ESR in the second row, where low values (blue,
indicating a continuous EEG) are associatedwith a reduced likelihood of prediction of unfavorable outcomewhile high values (red, indicating a discontinuous
EEG) increase this likelihood. Panel C: This decision plot maps the contributions of the top 10 features to themodel’s prediction per EEG epoch, with each line
depicting the prediction path for a single epoch. Starting at the bottom from a baseline risk of approximately 0.6, the plot shows how each feature
incrementally increases or decreases the predicted risk. Blue lines indicate trajectories for epochs with a predicted favorable outcome and red lines for an
unfavorable outcome. All 3 panels are based on the classifications of individual EEG epochs. Through these plots, we can dissect the model’s reasoning,
making the predictive processmore interpretable. Decision plots for subsets of epochs based on true outcome, visual EEGbackground category, and cause of
death are shown in Figure S3. BSR = burst-suppression ratio; ESR = EEG silence ratio; SHAP = Shapley Additive Explanations.

Table 3 Results of Visual Analysis of EEG Background Patterns

EEG background pattern at T = 24 after CA, n (%) Total (N = 86) OHCA (N = 63) IHCA (N = 23)

Unusable due to artifacts 2 (2) 2 (3) 0 (0)

Continuous background pattern with amplitudes ≥20 μV 51 (59) 32 (51) 19 (82)

Continuous but suppressed background pattern (<20 μV) 2 (2) 1 (2) 1 (4)

Burst-suppression pattern with nonidentical bursts 6 (7) 5 (8) 1 (4)

Burst-suppression pattern with identical bursts 5 (6) 5 (8) 0 (0)

GPDs on a nonflat background 1 (1) 1 (2) 0 (0)

GPDs on a flat background 1 (1) 1 (2) 0 (0)

No cerebral activity 18 (21) 16 (25) 2 (9)

Abbreviations: CA = cardiac arrest; GPD = generalized periodic discharge; IHCA = in-hospital cardiac arrest; OHCA = out-of-hospital cardiac arrest.
This table presents an overview of the results of visual analysis of the EEG background patterns at 24 hours after CA, comparing patterns across the entire
patient cohort and divided by location of arrest (IHCA vs OHCA).
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Discussion
This retrospective study of EEG acquired 24 hours after CA in
84 unconscious children examined the relationship between
background patterns and survival outcomes after 12
months. A random forest model trained on specific qEEG
features was able to predict an unfavorable outcome with
high specificity, based mainly on continuity and amplitude
of the EEG signal. These findings were confirmed through
visual analysis, using a classification according to the ACNS
Critical Care EEG criteria. In both approaches, we found
that a discontinuous and/or low-amplitude EEG back-
ground pattern at 24 hours after resuscitation was strongly
associated with death by 12 months. Based on both the
random forest classifier and the visual background classi-
fication, none of the surviving children were incorrectly
predicted to have an unfavorable outcome. This is essential
in clinical settings because erroneous predictions of un-
favorable outcomes could lead to premature withdrawal of
care in a patient who might otherwise have had a good
outcome. The findings highlight the potential of combining
the objective qEEG analysis, supported by a ML algorithm,
with the clinically well-established visual analysis of EEG to
enhance the precision of neurologic prognostication in
pediatric CA.

The contrast in EEG backgrounds between survival and death
observed in our study appears more distinct compared to
previously published results.13,16 These studies reported that
some patients can fully recover, despite an initially abnormal,
even flat EEG background pattern. This discrepancy may
stem from the timing of EEG. Studies on the prognostic value
of EEG background patterns in adults, which benefit from
larger cohorts, have shown that the significance of specific
patterns changes during the first 48 hours after resuscitation.
A notable example is a discontinuous background pattern

with normal amplitudes, which suggests a favorable prognosis
when observed within the first 12 hours after CA, whereas the
same pattern after 24 hours is associated with an unfavorable
outcome.34 In children, the background pattern has been
reported to be more stable.35 In line with the recom-
mendations in the Dutch national adult guideline on prog-
nostication in postanoxic coma, in this study, automated and
visual analysis of the EEG was performed 24 hours after re-
suscitation, a timing that may capture these critical prognostic
shifts.

Another critical factor influencing the differences with
previously published studies is the more severely affected
patient population in our study, with a larger fraction of
patients with OHCA vs IHCA, increased prevalence of
isoelectric EEG background patterns, and a higher mor-
tality rate. Between 2012 and 2016, cEEG was not the
standard of care in unconscious children after CA; this
might have created a selection bias in the first 5 years of the
study. It is highly probable that more severely affected
children were the ones being monitored. These findings
underscore the importance of considering patient de-
mographics and EEG timing in interpreting the prognostic
value of EEG patterns. Besides, the causes of CA were
diverse, with drowning as the most common cause. The
question arises as to whether our findings can be extrapo-
lated to encompass all causes of CA.

A key strength of this study is that it blends the results of
qEEG analysis as input to a ML model, specifically a random
forest classifier, with the nuanced visual analysis performed
by experienced clinical neurophysiologists. While more
complex prediction models using deep learning algorithms
may offer better predictive performance,36 they often lack
explainability—a critical aspect when decisions about con-
tinuation of treatment in a child after CA depend on the

Figure 4 Relationship Between EEG Background Pattern 24Hours After Cardiac Arrest and Survival Status After 12Months

This bar plot shows the survival status of children
12 months after resuscitation, with the color in-
dicating the background pattern of EEG registered
24 hours after cardiac arrest. None of the children
with a pattern other than continuous with normal
amplitudes are still alive after 12 months.
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interpretability of the predictive model. By contrast, the
random forest model offers a distinct advantage in this
regard because the contribution of each EEG feature to
prediction of a specific outcome can be reconstructed for
each individual EEG epoch, allowing identification of
EEG background patterns with prognostic significance. The
ability to explain and understand predictions made by the
model is not just a technical advantage, but a clinical ne-
cessity, ensuring that treatment decisions are well-informed
and tailored to the situation of the individual patient.

One notable challenge in the use of qEEG parameters as
training input for the model lies in the initial selection of fea-
tures, which is based on our prior expectations regarding their
predictive capabilities. This approach overlooks EEG features
which may not be readily observed by a human reviewer, but
could still hold significant prognostic value. In addition, this
method only analyzes 1 short EEG fragment at a time, ignoring
processes that take place over longer time scales, such as
alternations between long bursts and suppressions. Conse-
quently, this could lead to a suboptimal utilization of all the
information potentially contained within the EEG signal. To
mitigate this risk, we used a broad set of features from different
signal domains—including frequency, entropy, and connec-
tivity measures—to ensure a more holistic approach. Refining
the process of feature selection to capture an even broader
spectrum of the EEG’s informational content remains a pivotal
point of attention for future research, as is including features
from other modalities (such as MRI37). The use of different
modalities could also mitigate the inherent limitations of EEG
in detecting prognostic indicators unrelated to neurologic
function, improving prediction of prognosis in children with
a non-neurologic cause of death.

A significant limitation of this study is the small sample size,
similar to other published investigations of pediatric CA. The
limited number of training samples available can lead to model
overfitting—where the model becomes too tailored to the
training data, diminishing its generalizability—and validation in
an independent data set is an essential next step. Moreover,
special caution should be taken when interpreting the prog-
nostic value of background patterns, which are scarce in our
population, such as low-voltage or GPDs. All EEG registrations
were performed in sedated patients, with levels of sedative
drugs similar across all patients. The effect of sedation, espe-
cially propofol, has been described in detail in adult post-CA
patients.38 Although the effects on visual background classifi-
cation are limited, sedation with propofol can lead to slight
reductions in EEG amplitude and continuity, and similar
changes are seen with midazolam.39,40 This could make it more
difficult to translate the findings of our ML model to centers
where different sedation protocols are used. Moving forward, it
is imperative to seek larger, independent data sets for validation
to ensure the robustness of the findings in this study.

In this study, the primary goal was to assess outcome using
a simple assessment tool (PCPC), a widely recognized tool

for evaluating pediatric neurologic outcome after CA,
which we further simplified into binary categories (survival
or death) for training the random forest model. It is de-
sirable to train this model on a more detailed PCPC score,
preferably classifying on individual PCPC outcome labels.
Still, the PCPC is a crude score, and a more detailed as-
sessment of long-term neurobehavioral outcome is needed
to provide clinicians and caretakers with information to
guide treatment and supportive care.41 Future research
could use a methodology similar as described in this study
to identify EEG signal features that correlate with specific
levels of cognitive outcomes, offering a more nuanced un-
derstanding of patient prognosis and potentially aiding in
the development and evaluation of targeted therapeutic
strategies.

A key issue with studies investigating prognostic accuracy is
the risk of a self-fulfilling prophecy, where prediction of
outcome increases its probability.42-44 To address this issue,
we meticulously designed our study to minimize bias. All
analyses of EEG, both quantitative and visual, were con-
ducted offline, and the results were not available to the
clinical team during the period where decisions regarding
withdrawal of care were taken. The clinical neuro-
physiologists performing the visual analysis were blinded to
patient outcome. However, the attending neurologists and
intensive care physicians had access to the raw EEG data
during stay of the patient in the PICU. In all cases where
a decision to withdraw life-sustaining therapies was taken
based on expected poor neurologic prognosis, this decision
was primarily based on the results of neurologic examination
(absence of brain stem reflexes) and Glasgow Coma Scale
M1 (no motor response), as described in detail in a previous
study.6

In summary, our analysis showed that EEG background pat-
terns with discontinuous or low-amplitude activity 24 hours
after CA had a high specificity for mortality. This conclusion is
supported by both a ML model and traditional visual classi-
fication methods. Given the predominance of patients with
OHCA and a higher mortality rate in our study cohort
compared with other published reports, care should be taken
when extrapolating these findings to other populations. The
distinct characteristics of our cohort underscore the need for
tailored prognostic assessments in CA cases. Future research
should explore the applicability of the EEG patterns across
diverse patient demographics to enhance the precision of
post-CA prognosis and inform clinical decisions and care
strategies.
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