Delft University of Technology, In Partial Fulfilment of the Requirements For the Bachelor of Computer Science and Engineering

Creating a TPM based smart contract for the Medical
Supply Chain in Hyperledger Fabric

Author: Kevin Nanhekhan!,
Responsible Professor & Supervisor: Kaitai Liang
EEMCS, Delft University of Technology, The Netherlands
Ik.r.nanhekhan@student.tudelft.nl, 2kaitai.liang@tudelft.nl

2

January 23, 2022

Abstract

Smart contracts play an important role within the blockchain by ensuring that valid trans-
actions are being recorded. However, there are critical concerns regarding the security and
privacy of data within these blockchain applications. This research provides information on
how the integration of the Trusted Platform Module can achieve more security in a blockchain
application built on Hyperledger Fabric. Despite the implemented prototype and Trusted
Platform Module functions working separately, combining the two into one working prototype
was not successful. Tests analysis has been performed showing that the prototype performs
worse due to higher latencies and has no security vulnerabilities. However, these are not con-
clusive statements, as not only the prototype did not work fully but the analysis tools were
lacking. Recommendations have been made to use the described process of this research for
future research and also the development of more analysis tools.

1 Introduction

Blockchain is a term nowadays often associated with cryptocurrencies like Bitcoin and Ethereum
[23]. However, it also has an immense impact on various big sectors like Finance, Supply Chain
and Healthcare [9]. It is defined as a decentralised, distributed database consisting of blocks linked
together through cryptography that records all transactions where the integrity is continuously
verified [23] [32]. In this way, there is no need for a central entity as the security is guaranteed
through the strength and computing power of the entire network participating in the blockchain.
Smart contracts play an important part in blockchain transactions. They are defined as event-
driven programs executed and enforced by the peers (network participants) containing a public
interface that handles the relevant events [I8] 22]. The transactions with the proper payload in-
voke these interfaces where all valid transactions are recorded on the blockchain. In comparison
to conventional contracts, smart contracts have the advantages of reducing risks, cutting down
administration and service costs and improving the efficiency in business processes [32].

The Medical Supply Chain is an example that falls under the aforementioned big sectors with
already working applications that benefit from the use of blockchain technology. A few examples
for this are HealthVerity [8], the Mediledger Network [7] and Medicalchain [24]. However there
are critical concerns regarding the practical deployment of blockchains which focus on security and
privacy of data and computations within the applications [9, 22]. For example, malicious behaviour
like frauds and attacks [32] can exploit the blockchain transactions and lead to leakage of millions
of client records. To tackle these concerns, research is currently done on increasing the security
of blockchains through integrating cryptographic functionality of trusted hardware. Trusted

hardware can be seen as hardware mechanisms that use cryptographic algorithms to securely
attest aspects of the system configuration [21]. This is to detect and respond to tampering, provide
protection of the system storage and also ensure the integrity of the software.

Related works. While not abundant, various research has already been done on this topic of
integrating trusted hardware with smart contracts by taking a critical look at the challenges and
issues [3| 4, [5 [I7]. Many of these articles, journals and papers focus on the problems but these do
not necessarily go into the fine details of how the integration of the trusted hardware’s functionality
with the smart contracts has been done. Additionally, as this is still a niche topic, the results and
measurements on the performance and security are bound to be limited.

Contribution. To address this lack of knowledge and data in the literature, it is thus not only
important for this research to look at only the theoretical side by doing a literature review but
also the practical side by creating a simple prototype. For this prototype, a basic Medical Supply
Chain will be implemented, because as mentioned before a lot of extra security can be added. To
limit the scope of the research, in terms of the various trusted hardware that can be used, only
one was chosen. The options of trusted hardware being: Physical Unclonable Function [16], Intel
Software Guard Extensions [20], Device Identifier Composition Engine [28] and Trusted Platform
Module [29]. Here Trusted Platform Module also known as TPM was chosen, with the reason
being that nowadays most personal computers and notebook manufacturers use it in their products
[10]. In addition, there is a lot of documentation regarding TPM readily available online. Thus
with this all in mind, the main focus of this research is

"How to use the trusted hardware TPM to protect the execution of smart contracts?"

To make answering the main question easier, it will be broken up into the following sub-questions:

1. How does the execution of a smart contract within a ledger work?
2. What are the different functionalities of a TPM?
3. How can the functionalities of a TPM be integrated with a smart contract?

4. How can the performance of the secure smart contract be assessed?

Organisation. The structure of the paper is as follows. In section [2] the methodology focusing
on how the research has been conducted will be explained. Section [3] provides a brief overview
of the blockchain framework used and the TPM. How the prototype has been designed, will be
illustrated in section [4 where the actual implementation will be described in section[5} The results
based on certain performance metrics will be stated in section [6] where also discussion follows from.
The responsible research in section [7] will reflect on the ethical aspects of the research and also the
reproducibility. Finally, the paper ends in section [§] with the conclusions of this research and some
future recommendations.

2 Methodology

Before focusing on the aims set in the previous section, this section provides an explanation of
what has been done and also elaborates on the various choices made.

2.1 Literature review

Before starting the research, a Technology Roadmap has been created on the various stages of
the research. This has been adjusted each week resulting in the final version which can be found

in Appendix [A] As seen from this, the initial weeks of this research focused on doing literary
research to gain a better understanding of the subject. To gather the various literature (jour-
nals/papers/articles), the following search terms were mainly used: ‘Smart contracts’, "Trusted
hardware’, "TPM’ and ’Trusted computing’. Search engine Google Scholar, as well as journal
databases like Springer, Science Direct, ACM and IEEE were used for this purpose. Only liter-
ature from within the period 2005-2021 were used as smart contracts and trusted hardware are
more well-researched during this time period.

2.2 Coding Tools

Besides the theoretical aspect, there was also a focus on various options regarding the prototype.
To start off, the prototype needed to be run on a blockchain framework so therefore Hyperledger
Fabric version 2.4.1 [I3] was used as a basis. Hyperledger Fabric utilises Docker [I9] to run the
different components in its application, so for this research version 20.10.7 is used. For this project,
a laptop with Windows 10 operating system was used. As the Hyperledger fabric is Linux based,
the virtual machine Hyper-V [26] was used as it is a native Windows hypervisor, offering a quick
create option for Ubuntu 20.04 and also has an option for using a virtualised TPM. This is opposed
to using Windows Subsystem for Linux which, despite also supporting virtualisation and Ubuntu
20.04, does not support interaction with the TPM. Hyperledger Fabric has support for multiple
programming languages which are: Go, Javascript, Java and Typescript. The framework was
initially built on Go and uses it as the default language where a lot of code examples are provided
in Hyperledger Fabric’s documentation. Hence the choice fell on programming the application and
smart contract in Go (version 1.17.6). With this choice comes also the use of the open-source Go
library Go-TPM (version 0.3.2) [I5] for simple interaction with the TPM. Lastly, besides using
the terminal to monitor the blockchain network, Hyperledger Explorer [12] was integrated for
its simple Graphical User Interface.

2.3 Benchmark Tools

Creating a working prototype on its own is not sufficient as research results, hence empirical data
needed to be gathered. For measuring the performance, Hyperledger Caliper (version 2.2)
[IT] was used as it allows for the use of custom benchmark tests. Measuring the security of the
prototype proved to be a lot more difficult because of the limited options. In spite of the fact various
analysis tools exist for measuring blockchains, these are used for different chaincode programming
languages (like EVM bytecode or Solidity) [25]. Thus the options were restricted to the static
analysis tools Revive-cc [27]|, Chaincode Analyzer [14] and Chaincode Scanner [6]. Nevertheless,
Chaincode Scanner at the time of this research was no longer available and the Chaincode Analyzer
did not manage to run due to outdated dependencies which left Revive-cc as the sole option.

3 Background

In this section, a brief overview of Hyperledger Fabric will be given as well as the different TPM
functionalities explored based on the gathered literature. Additionally, this section also serves to
answer the subquestions in their respective subsections.

3.1 Hyperledger Fabric

Components. Hyperledger Fabric is known as a permissioned blockchain where users need prior
approval and be authenticated before using the network, opposed to permissionless blockchains
[13]. Also, the platform is an open-source modular blockchain framework that allows for pluggable
modular components ranging from consensus algorithms to cryptographic libraries. The program

Docker is used to run each component in its own container environment. The most important
components forming the foundation are:

Channel: Partition of the Hyperledger Fabric network where only joined Peers can interact.
Data shared through the channel is ensured to be isolated and confidential.

Ledger: Series of blocks on which transaction details are recorded. Each channel has one
ledger where all joined Peers keep a copy of the ledger.

Client: Application using the Hyperledger Fabric SDK that acts on behalf of the user by
invoking a transaction to the Hyperledger Fabric network.

Committing Peer: Node updates the local ledger based on the validity of blocks sent by
the Orderer Peer.

Endorser Peer: Node that receives transaction proposals from the Client, maintains a
ledger and runs the chaincode containers to do read/write operations to the ledger.
Anchor Peer: Node which other peers from different organisations can discover and com-
municate with.

Orderer Peer: Node that endorses transactions, orders them and distributes them to all
committed peers on a channel.

Chaincode: Technical container of smart contracts installed on each peer and invoked by an
Orderer on specific channels. Chaincode is most often used as a synonym for smart contracts.
Certificate Authority: A trusted entity that is responsible for issuing and revoking Public
Key Infrastructure-based certificates. These certificates are used to represent the different
entities within the Hyperledger Fabric network.

Organisation 1

(5) Transaction Ordering & (7) Validate Transaction "
New Block creation & Update local ledger nehor =eer

(6) New Block o
Distribution Committing

Peer

(2) Transaction Simulation

Anchor Peer

(6) New Block
Distribution

Committing Peer

Orderer

Endorser peer

(4) Transaction|
submission

(1) Transaction Proposal (1) Transaction Proposal

(3) Endorsement Response (3) Endorsement Response

Client

Figure 1: Sequence Diagram of the Transaction flow within a Hyperledger Fabric channel

Transaction Flow. Hyperledger Fabric uses endorsement policies with a majority vote to ensure
which chaincode can be executed and endorsed within the channel of a network [13,[31]. After that,
the transaction flow can start (see figure [1)) where a user tries to invoke a transaction through the
Client. A transaction proposal is sent to the different Endorser peers who validate the transaction
by executing the installed Chaincode which generates a response that is endorsed with the peer’s
certificate and sent back. Having received an approved transaction, the Client sends this to the
Orderer peer. The Orderer properly orders all transactions and sends a new block to all the
organisations in the channel. Each transaction is then verified whether these are signed by the
appropriate Endorser peers. If valid, then the committing peers update their local copy of the
ledger.

3.2 Functionalities of the TPM

The TPM has various functionalities from which a distinction can be made. These are Secure
storage, Platform measurement and reporting and Platform authentication [30].

Secure storage. One can store data securely by using keys generated by the TPM [I0]. The
TPM consists of a Hashing engine, RSA key generation, RSA signing and encryption and also a
Random number generator which can be used in the generation of keys |30} 2].

Platform measurement and reporting. Platform Configuration Registers (PCR) play a vital
role. These are registers in the TPM that can compute hashes or also known as measurements of
a component and store it [2]. These measurements can be extended which means that the current
PCR value is the accumulation of all the measurements it has stored. The PCR value can be used
as an authentication signal by for example assuring the state of a platform to a third party or
ensuring data is only accessible to authorised software [30].

Platform authentication. At the time of manufacturing, a special unique public/private key
pair called the Endorsement Key (EK) has been set. Additionally, when taking ownership of a
TPM, another special key is generated called the Storage Root Key (SRT). The EK and SRT are
long-term keys and since these are identifiable are not meant for the signing but only for encrypting
[30]. In order to do signing of application-specific data with the TPM, Application Identity Keys
(AIK) can be generated. AIK ’s opposed to SRT and EK can be proven to be generated by a TPM
but not which TPM to ensure user privacy [2]. This is done through the use of privacy certification
authority (privacy CA) where EK can be used to prove an AIK is from a TPM without revealing
which TPM. In addition, another way is by using Direct Anonymous Attestation (DAA) which is
based on group signatures. DAA has the advantage over privacy CA by allowing the key creator
to choose whether EK and AIK have any association or their relation is completely anonymous.

TPM versions. At the current moment a modern version called TPM 2.0 is already in use.
Tpm 2.0 shares the same functionalities as its predecessor TPM 1.2 except with some additional
functionality and improvements [2] as listed below in table

Functionality TPM 1.2 TPM 2.0
Algorithm agility Sha-1 hash algorithm Virtually any hashing algorithm
Authorisation Needs owner authorisation Uses clever policy decision to de-

cide authorisation

Key Loading

time-consuming private-key de-
cryption

quick symmetric-key operation

Fragility PCRs

Brittle PCR because sealing to
PCR value approved by particular
PCR value

Non-Brittle PCR because of sealing
to PCR value approved by a partic-
ular signer

Management

Difficult to give authorisation for
different roles

Built-in different authorisations,
policies and hierarchies

Identifying Resources

By handle where the user could be
tricked into authorising a different
action

By name of which the resource is
cryptographically bound to

Table 1:

Differences functionality between TPM 1.2 and TPM 2.0.

4 Experimental Design

The design of the prototype and how the TPM is to be integrated will be illustrated in this section.
The third subquestion will be partially answered here in a theoretical manner.

4.1 Designing the Medical Supply Chain

Concept For the prototype, a simplified Medical Supply Chain was created. This design is based
on the Commercial Paper example from the fabric-samples repository (provided by Hyperledger
Fabric), as these contain many similarities between how the application and chaincode work. The
idea for the Medical Supply Chain was to have a pharmacy network called MedStore, which provides
authorised participants among others with the important options to issue, request and approve
medical supplies. MedStore network can for example be used throughout the country where every
channel created could represent a city where multiple participants reside. There are two distinct
types of participants, namely, Customers and Regulators. Customers can perform various actions
such as checking all available medical supply, request and cancel a request for a medical supply
and also checking their own history. Regulators on the other hand can issue a new medical supply,
approve or reject a customer’s request and also check the transaction history in various manners.
The duty of the regulators is thus to not only (re)supply the stock of medical supplies but also to
act as an administrative figure within the network by monitoring the transactions and taking the
necessary actions. The number of peers participating in the network has been kept to two. The
prototype could be extended to include more peers such as private organisations that handle the
same as Customers. However, the general structure has been kept simple as the prototype just
serves as a basis for integrating the TPM.

Folder structure. As seen in figure [2] the prototype is struc- Medical-Supply
tured as follows. On the top layer, customers and regulators have

. li
each their own respective and similarly-formatted folders contain- Hcaliper
ing the application file, the smart contract (chaincode) and lastly EEJCUStomers
a configuration folder with a setup file (shell script) for connecting application

to the network. Both chaincode folders contain the exact same
files to comply with the endorsement policies Hyperledger Fabric
uses. The setup files use the peer lifecycle chaincode [13] to
automatically package, install, approve and allow invocation of the setup.sh
chaincode on a channel. When running the application, the peers

fchaincode

[Iconfiguration

. . flexplorer
will be enrolled where a wallet and keystore folder will be gener-
ated in the organisation folder containing the peers’ identity used EEJreguIators
for invoking the smart contract. Besides the organisation folders, mapplication
there are the networkDeploy script for starting up the test network : .

. . fchaincode
(creating the peers, orderer node and necessary certificates) and g _ _
networkClean script for stopping the network. Lastly, there are [configuration
the folders explorer for starting Hyperledger Explorer to monitor setup.sh
the network and caliper for running Hyperledger Caliper’s bench- networkDeploy.sh
mark tests.

networkClean.sh

4.2 Designing the TPM’s integration Figure 2: Folder structure

As mentioned in section [3] Hyperledger Fabric is known as a prominent enterprise blockchain
platform where it is been proven to be very secure against attacks from outside the network |5l [IJ.
Even so, that does not mean it does not have its share in security limitations, for example against
peers that have already joined a channel in the network. When such a peer acts malicious and

works together with adversaries outside the network, confidential data on the ledger is in danger.
This is known as a Wormhole Attack.

Checksum. To mitigate a small part of this problem, a checksum will be added as a field to
the medical supply object. This checksum is a hash of the object’s information and will only be
initiated at the time a medical supply has been issued by a Regulator. Whenever a transaction
occurs that affects such a medical supply, before being submitted the checksum will be used to
verify the contents have not been tampered with by comparing it to a recalculated checksum.

Anonymity Furthermore, the identities of the users can be known, therefore it is best for them
to be anonymous. Hyperledger Fabric already provides a built-in function for the smart contract
to get a hashed identity of the smart contract invoker (peer). Nonetheless, the function is not
very useful for the prototype as certain functions allow for its users to provide a name themselves
(for example for using a pseudo name). Here it is thus not viable to expect the customers and
regulators to fill in a hashed version of their enrolled identity. So instead of purely relying on the
Hyperledger Fabric’s hashed identity, the TPM is going to be used to hash the provided names
within the smart contract. As other blockchain applications might not have access to the in-built
function like Hyperledger Fabric does or want to authenticate their users in a different way, this
can serve as an example to show how TPM can be used as an alternative option.

Authentication. The use of Random number generators in smart contracts have been proven to
be problematic in certain applications when run by different peers [3I]. However, an advantage can
be taken from that non-deterministic nature for the purpose of generating unique keys. As users
provide their names to invoke certain transactions, it is best to add an additional authentication
method to avoid the risk of impersonation. Here the idea is for the user to first invoke the smart
contract with the name they want to use to get a unique key. The key and name are stored on the
ledger, where every endorsed transaction requires this combination before being submitted. This
way a malicious peer can not impersonate a different user as it does not have a unique key.

5 Experimental Work

This section will expand upon how the prototype was implemented and also show the function
implementation of the TPM. This section will finish answering the third subquestion from a prac-
tical aspect. Not every aspect of the implementation will be discussed, so all code has been made
available at the following Github repository: https://github.com/Kevin-RN/medical-supply

5.1 Implementing the Medical Supply Chain

Algorithm 1 Pseudocode of the Medical Supply class

1: class MEDICAL SUPPLY
2 medName : STRING > medicine name
3 medNumber : STRING > medicine number
4 disease: STRING > disease to cure
5: expiration: STRING > expiration date
6 price: STRING > medicine price
7 holder: STRING > current holder
8 state: STRING > medicine status
9: class: STRING > unique namespace
10: key: STRING > unique ledger key

11: end class

https://github.com/Kevin-RN/medical-supply

Object class The medical supply class, as seen in Algorithm [I] is a core part of the proto-
type’s transactions. State field is used as enumeration of the current status of the medical supply
(being either Available, Requested or Send). Class field is used for a unique namespace (e.g.
org.medstore.medicalsupply) within the chaincode in case multiple other classes are implemented.
Key field is the most crucial field since that is used to store and query the medical supply from
the ledger. A unique key is generated by combining the string "MedStore" with the medicine
name and number (e.g. MedStore: Aspirin:00001). Normally using the in-built query function with
empty parameters would allow for querying multiple entries on the ledger. However, that does not
work at the current version of Hyperledger fabric as null characters (\u0000) are added in between
composite keys resulting in no entries retrieved. Hence the string "MedStore" has been added so
all medical supplies share part of the key which makes querying multiple entries possible.

Algorithm 2 Pseudocode of the Issue function before TPM integration

1: function Issue(ctz, medname, mednumber, disease, expiration, price)

2: error = Check whether invoker is from the Regulators organisation

3: if error 2 NULL then > Check if no errors occurred
4: return error that invoker is not authorised

5: end if

6: medicine = Create new medicine from provided arguments

7 Set medicine to Available

8: Add medicine to the ledger through ctx > context transaction handler
9: if error # NULL then

10: return error that adding medicine did not work

11: end if

12: return medicine

13: end function

Chaincode Functionality. Various functions have been implemented for the smart contract,
these have been listed in Appendix [Bl A small subset of these functions is only meant for Regula-
tors. So whenever these functions are invoked, the organisation of the transaction invoker (peers),
retrieved through an in-built function of Hyperledger Fabric, will be verified. An example can be
seen in the Issue function of figure[Il Another thing that can be seen from this figure is the use
of the Context Transaction Handler. This is used in Hyperledger Fabric to submit transactions to
and from the ledger. Querying entries from the ledger could only be done using keys and not on
fields of stored objects. Hence functions implemented for retrieving multiple entries had to first
get all entries from the ledger and then perform a filter based on criteria (e.g. status is available)
through the use of for loops.

5.2 Integration of the TPM into the Medical Supply Chain

A few remarks are in order before going into the specifics of the TPM implementation. Trying to
access TPM can only be done after taking ownership of one of the two folders it utilises. This is
done with the sudo chown <user> <folder>. The folder ’/dev/tpm0’ can only be accessed by
one at a time whereas ’/dev/tpmrm0’ by multiple. For the prototype it is expected multiple peers
will call transactions concurrently hence accessing the TPM is done through the ’/dev/tpmrm0’.

Hashing. Through the Go-TPM library, various TPM functions are available. One of them is
a hash function, which as seen in figure [3] hashes the input using the SHA-256 algorithm. To
use the checksum, two functions were added inside the Medical Supply class. These are used for
initialising the checksum and verifying the checksum. Initialising the checksum is only used for
functions such as InitLedger and Issue (see Appendix , where a new Medical Supply object has
been created. The verifying checksum function is used whenever a medical supply is retrieved to
check if it has not been altered. In the case medical supply are not valid, they will not be used (not
returned or change state) during the transaction but still remain on the ledger. Since the TPM

Algorithm 3 Pseudocode of the tpmHash function

1: function TpMHasH(input)

2: update input to be all lowercase

3: rwc, err = open tpm2 on the /dev/tpmrmO path

4: if error # NULL then

5: return error that tpm couldn’t be opened

6: end if

7 dataToHash = convert input string to byte array

8: hashdigest, hashError = use the tpm2 hash function using SHA-256 algorithm on the dataToHash
9: if hashError # NULL then

10: return error occurred while hashing

11: end if

12: return hashDigest
13: end function

hash function is already in place it can be reused for hashing the user name to provide anonymity.
Thus besides where a checksum is needed, the hash function will also be called when a customer
invokes a transaction where a user name is required, like requesting a medical supply.

Algorithm 4 Pseudocode of the tpmKey function

1: function TPMKEY (input)

2 rwc, err = open tpm2 on the /dev/tpmrmO path

3 if error # NULL then

4 return error that tpm couldn’t be opened

5: end if

6: randByte, error = generate random bytes using tpm?2

7 if error # NULL then

8 return error that generating random bytes failed

9 end if

10: parentHandle, err = generate primary key using random bytes

11: if error 2 NULL then

12: return error that creating primary key failed

13: end if

14: flush parentHandle from tpm2 to free memory

15: privateKey, publicKey, error = Create key using parentHandle and randByte
16: if error #2 NULL then

17: return error that creating key failed

18: end if

19: createdKey — load privatekey, publickey and randByte as object in tpm2
20: dataBlob = byte array
21: initVector = byte array
22: tpmKey, error = use Encrypt Symmetric on createdKey with dataBlob, initVector and randByte
23: if error # NULL then
24: return error that creating symmetric encryption key failed
25: end if
26: return string of tpmkey

27: end function

TPMAuth. A new class called TPMAuth was created which works similar to the medical supply
class. The key used for the ledger is a combination of the "TPMAUTH" string and the user name.
With this new class comes an extra field tpm key for each smart contract function. The user now
not only provides their username but also a tpm key to authenticate themselves first before being
able to invoke these functions. For this purpose the function TPMKeyGen (see Appendix |B|) was
created which when invoked will create a TPMAuth object based on a tpm key (generated by
function seen in figure {4)) and a hash of the user-provided string. The function returns the tpm key
to the user which needs to be stored to use later on. For convenience, the implemented application
automatically stores and reads this tpm key from a temporary file. Every stored hash user name is
unique so trying to create a new TPMAuth based on a previously provided user name will result in
an error. Furthermore retrieving from the ledger will only be done to verify whether the provided
tpm key and username are valid before invoking the smart contract function. This means a user
can not request to see his stored tpm key on the ledger as that would be exploitable.

5.3 Limitations and problems of the Prototype

}
fmt.Printf("Input g: I has n", tpmHash)

TERMINAL

Figure 3: Working example of only the prototype Figure 4: Standalone example to show TPM functions

Working prototype. As seen from figures [3]and [d] the prototype and the TPM functions work
separately from one another. In spite of that, attempting to combine the TPM functions into the
prototype proved to be quite problematic. The prototype was not able to fully work with TPM
integrated due to Docker, which Hyperledger Fabric uses to run its components, not being able
to access the TPM folder location. Docker cannot access the folder location as it runs in its own
environment separate from the local system. A solution was attempted in two ways, by mounting
the folder location to the docker containers and by using chaincode as an external service instead
of installed on each peer. However, due to lack of time and knowledge on these, this was not
accomplished within the time frame of this research.

Chaincode limitations. Besides not having a fully working prototype, as mentioned in previous
sections, the prototype is not extensive enough to be fully useful in a practical setting as the smart
contract logic is flawed. For example, the transactions return entire objects with their unique
ledger key to the peers. A different example would be that transaction input was not checked to
be the correct format. Random text on the expiration field could be filled in when issuing a new
medical supply. For these reasons, this prototype should not be considered for practical usage.
Still, for the context of this research it is adequate enough, as the purpose of this research is to
show how a blockchain application can become more secure through having TPM integrated.

Dependency limitations. The application is not very optimal in not only its implementation
but also the dependencies. The current version of Hyperledger Fabric is still undergoing changes
for improvements. This also goes for the Go-TPM and TPM2-Tools library for interacting with
the TPM as the entire spec of TPM 1.2 and TPM 2.0 spec are not yet completely implemented.
Lastly, the helper libraries which have been utilised can perform worse than other libraries or
re-implementing the functions themselves.

10

6 Experimental outcome

This section presents the results obtained from performance and security analysis. Each subsection
of these analyses will be accompanied by a discussion. This section will answer the fourth and
final subquestion.

6.1 Performance analysis

Performance test settings. Before utilising Hyperledger Caliper [11]] for conducting a perfor-
mance analysis on the prototype, custom benchmark tests had to be created. These tests are set
up to initialise the ledger (adding the medical supply), perform the transaction (e.g. requests)
and afterwards clear the ledger (deleting the medical supply). All transactions are set to run for
a total length of a minute each and have five workers run concurrently invoking the transactions.
By setting these with a time limit, information can be gathered on the latency and the number of
transactions invoked. Hyperledger Caliper has been run a total of five times where the averages of
the measurements were taken and put in table[2] Average results were taken for accuracy reasons,
where the total amount of testing runs to be used was done up to five, as otherwise it would
become too computationally intensive for the machine it was run on. It should be noted that
during testing, due to high load the transactions querying multiple entries from the ledger could
not manage to finish in time resulting in time-out errors. Re-running these individually, instead
of all at once, was done for it to resolve this issue.

Function Name Amount | Send | Max Min Avg Through
invoked | Rate | Latency (s) | Latency (s) | Latency (s) | put
Issue 1,120 18.8 1.14 0.10 0.35 18.8
Request 21,181 358.0 0.08 0.01 0.02 357.0
CancelRequest 22,095 374.4 0.08 0.01 0.02 374.4
ApproveRequest 19,664 333.1 0.11 0.01 0.02 333.1
RejectRequest 22,357 378.8 0.09 0.01 0.02 378.7
CheckHistory 3,549 60.1 0.23 0.02 0.10 60.0
CheckUserHistory 2,945 49.8 0.40 0.03 0.12 49.7
CheckAvailableMedicine 3,270 55.2 0.36 0.03 0.11 55.2
CheckRequestedMedicine 3,181 53.7 0.29 0.03 0.13 53.5
SearchMedicineByName 5,260 53.6 0.22 0.03 0.07 53.3
ChangeStatus 21,242 359.9 0.08 0.01 0.02 359.9
ChangeHolder 21,102 357.6 0.07 0.01 0.02 357.5

Table 2: Average performance results over five runs before the TPM integration

Prototype before TPM changes. From table[2]it can be seen that each transaction is relatively
fast with the highest latency being around an average of 6.39 seconds. A distinction can be made
between transactions that have a high amount of being invoked with lower latency and transactions
that are the opposite with a low amount of being invoked and higher latency. This is to be expected
as the latter is the type of transaction that queries all entries from the ledger and filters on certain
criteria (e.g. on only available medical supply). The Issue transaction is the only exception as
it has the worst performance compared to other transactions that handle a single medical supply
object or even multiple. This can be reasoned to be the fact that other transactions only query
an existing entry from the ledger and update it, whereas the Issue transaction creates one from
scratch and adds it to the ledger. Here Issue transaction would take more time to compute which
causes a delay in its latency, which on its turn causes less to be invoked within the test time limit.

11

Function Name Run 1 Run 2 Run 3 Run 4 | Run 5 Run 6 Run 7 | Run 8 | Run 9 Run 10

TPM Hash 5.98 4.63 4.72 6.16 5.97 8.69 4.86 4.78 4.20 5.19

TPM Key Genera- 153.88 165.92 150.55 144.34 145.69 148.48 144.69 157.66 145.57 149.49
tion

Table 3: Performance TPM functions over ten runs measured in miliseconds

. Max Min Avg
Function Name Latency (s) | Latency (s) | Latency (s)
Issue 1.34 0.25 0.54
Request 0.37 0.16 0.17
CancelRequest 0.29 0.16 0.17
ApproveRequest 0.29 0.16 0.17
RejectRequest 0.17 0.16 0.17
CheckHistory 0.45 0.17 0.25
CheckUserHistory 0.61 0.19 0.29
CheckAvailableMedicine 0.45 0.16 0.27
CheckRequestedMedicine 0.51 0.17 0.27
SearchMedicineByName 0.61 0.23 0.31
ChangeStatus 0.25 0.16 0.02
ChangeHolder 0.26 0.16 0.02

Table 4: Rough estimation of the average performance results over five runs with TPM integration

Rough estimation with TPM. As mentioned in section [5] the prototype could not run with
TPM integrated where performance testing would be impossible. Nonetheless, the performance
of the prototype without the actual call to the TPM but with TPMAuth class and checksum in
place can be measured. A hard-coded result will be returned instead of utilising TPM functions for
creating the hash and key. As seen from table [3] the run-time over ten runs can be measured from
the TPM hashing and key generating functions on their own. Taking the total of these results and
adding them to the various latencies provides a rough estimation of how well the prototype with
TPM would perform. This has been presented in table [} The rough estimation does not cover
the number of transactions invoked, the send rate and the throughput as these are calculated
differently. Assumed is however that these values have a negative correlation with the various
latencies based on table 2l With this assumption in mind, it can be seen that compared to table
the prototype with TPM would perform slightly worse. It is worth bearing in mind that the
transactions which query multiple entries will have a bigger latency. A checksum needs to be
computed for each entry which the rough estimation does not take into account since the average
run-time for the TPM hash was only added once.

6.2 Security analysis

S revive
: global variable detected: handleNames; should not use global variables, will lead to non-deterministic behaviour
: global variable detected: tpmPath; should not use global variables, will lead to non-deterministic behaviour

:1: global variable detected: defaultEKTemplate; should not use global variables, will lead to non-deterministic behaviour
: global variable detected: defaultKeyParams; should not use global variables, will lead to non-deterministic behaviour
:1: global variable detected: unrestrictedKeyParams; should not use global variables, will lead to non-deterministic behaviour

Figure 5: Revive-cc vulnerability results on the terminal

Revive-cc is a statistical analysis tool, so running the chaincode was not necessary to measure secu-
rity. Before the integration of TPM, the Revive-cc [27] showed no vulnerabilities in the chaincode.
After the integration of TPM on the other hand, running Revive-cc showed several vulnerabilities
on the chaincode (see figure[5)). These vulnerabilities concern the use of global variables and were

12

quickly resolved by changing these to local variables. Rerunning Revive-cc resulted in no vulner-
abilities shown anymore. Although the prototype shows no difference before and after the TPM
integration, this does not mean it can be used as conclusive evidence regarding the use of the TPM
for security. Revive-cc can only detect up to six kinds of vulnerabilities: Blacklisted chaincode
imports, Global state variables, Goroutines, Phantom read of the ledger, Range over map, Read
after write. Hence quite limited in its capability to determine security. Moreover, it is a static
analysis tool meant just for scanning files. Thus it cannot perform security analysis at run-time.
Lastly, while it can be said that the prototype is somewhat secure against the few vulnerabilities
it has been tested for, depending on a Revive-cc is not enough.

7 Responsible Research

As is part of most research, this section will cover the ethical aspects of the research and also look
at the reproducibility of what has been done.

7.1 Ethical aspects

Ethical literature. All the studies used for this research come from scientific databases that
provide peer-reviewed work. This selection of studies has been chosen based on keywords mentioned
in section [2] The sources that are not from studies are either open-source libraries, frameworks
documentation or official sites of the applications that have been used or mentioned. Every scientific
insight has been referenced where their respective author and/or source is listed in the reference
list.

Ethical code. The prototype implemented was done to show how trusted hardware like TPM
can make a smart contract, used for example in a Medical Supply Chain, more secure. This is
to inform blockchain developers of the security possibilities of trusted hardware. The prototype
does not rely on real-time data, nor does it rely on private information as it was run on a local
system. Even though pseudocode has been described, the prototype is just a simplified version
that can not be used in a practical setting. Furthermore, this research poses minimal risk as the
TPM integration follows a general format to mitigate security limitations that have already been
described in other literature. Even more, these solutions are at the current moment still theoretical
and not applied in practice. Therefore, this research will not affect current programs in place, by
for example exploits of malicious users as these systems are more likely to be sophisticated.

7.2 Reproducibility

Fully reproducing the research from scratch could prove to be difficult, as a lot of errors were
encountered in utilising Hyperledger Fabric and TPM. Not a lot of online documentation and
forums covered these errors. Hence an attempt was made in this paper to describe every step
of the process in a detailed yet concise manner. A brief overview of the Hyperledger Fabric as
well as TPM functions has been provided to inform the reader on the core topics of this research.
Furthermore, the research has been described in such a way that the reader can follow along in
the steps taken. A Technology Roadmap is included in Appendix [A] to show what task has been
done on a per week basis. As seen in this report, an explanation of the code has been used to show
a general way of how TPM functions can be utilised. This comes accompanied by code fragments
written in pseudocode to avoid being language-specific. So readers with no experience with the
programming language Go can follow along. Not all code has been described but it is fully available
at the Github repository: https://github.com/Kevin-RN/medical-supply.

13

https://github.com/Kevin-RN/medical-supply

8 Conclusions and Future Work

Due to the presence of critical concerns regarding security and privacy, this paper presented the
need for blockchain applications to be more secure and how trusted hardware can fill in that gap by
being integrated with smart contracts. Thus, the main focus was to research how trusted hardware
like Trusted Platform Module (TPM) can protect the execution of smart contracts. Preparation
has been done for this research by doing a literature review and exploring various coding and
benchmark tools for a prototype. For the prototype, a simple Medical Supply Chain prototype
was created in the blockchain framework Hyperledger Fabric. The cryptographic functionality of
the TPM was used to make the prototype more secure. For the design, details have been given on
how TPM is to be used to mitigate the problem of a Wormhole Attack. While the prototype and
TPM functions managed to work separately, the goal of combining the two to create a working
prototype with TPM integrated did not succeed. This is due to Docker not being able to access
the TPM as it is separate from the local machine. Several attempts have been tried but were not
accomplished within the time frame of this research.

Despite this major problem, an attempt was made in gaining some results. The performance
result is that the prototype with TPM integrated will perform worse where transactions that
query multiple entries will have the highest latencies. These results should be taken with a grain
of salt as a rough estimation was used and not an exact measurement. Furthermore, it should
be noted that these performance tests were run on a local Hyperledger Fabric network. A delay
is therefore to be expected for similar implementations on a public network. As for the security
analysis, no insightful results were to be gained due to the tool’s limited capability. As no other
tools are available for security analysis, no conclusive statements can be made on the security
effectiveness of TPM for this research.

Future Work. Wahile a working prototype and test results to back that up did not manage to
succeed, this research still managed to partially achieve the main goal by describing the process
involved. In future work, this process can be helpful for exploring the possible options of solving
the main problem by adjusting either Docker or using chaincode as a external service. Another
recommendation that can be made for future work involves the creation of more analysis tools.
This is due to the lack of tools available and compatible with Hyperledger Fabric. With this comes
the benefit of more research being able to evaluate the benefits of having TPM but also other
types of trusted hardware integrated. Lastly comes the recommendation that different trusted
hardware usages should be explored for improving security. In conclusion, if the aforementioned
recommendations are to be followed, that would not only benefit similar research but also practical
deployment of blockchain applications.

14

References

[1] Nitish Andola, Raghav, Manas Gogoi, S. Venkatesan, and Shekhar Verma. Vulnerabilities on
hyperledger fabric. Pervasive and Mobile Computing, 59:101050, 2019.

[2] Will Arthur and David Challener. A Practical Guide to TPM 2.0: Using the Trusted Platform
Module in the New Age of Security. Apress, USA, 1st edition, 2015.

[3] Zijian Bao, Qinghao Wang, Wenbo Shi, Lei Wang, Hong Lei, and Bangdao Chen. When
blockchain meets sgx: An overview, challenges, and open issues. IEEE Access, 8:170404—
170420, 2020.

[4] Marcus Brandenburger and Christian Cachin. Challenges for combining smart contracts with
trusted computing, 2018.

[5] Marcus Brandenburger, Christian Cachin, Rudiger Kapitza, and Alessandro Sorniotti.
Blockchain and trusted computing: Problems, pitfalls, and a solution for hyperledger fab-
ric, 2018.

[6] ChainSecurity. Chaincode scanner, 2020. Available: https://hyperchecker.chainsecurity.com/ .
[7] Chronicled. Mediledger, 2019. Available: https://www.mediledger.com/.
[8] Curisium. Healthverity, 2022. Available: https://healthverity.com/.

[9] Batsayan Das, Srujana Kanchanapalli, and Vigneswaran R. Enhancing security and privacy
of permissioned blockchain using intel sgx. 2020.

[10] Kenneth Ezirim, Wai Khoo, George Koumantaris, Raymond Law, and Irippuge Perera.
Trusted platform module — a survey. 2012.

[11] The Linux Foundation. Hyperledger caliper, 2022. Available:
https://hyperledger.github.io/caliper/.

[12] The Linux Foundation. Hyperledger explorer, 2022. Available:
https://www.hyperledger.org/use/explorer.

[13] The Linux Foundation. Hyperledger fabric main documentation., 2022. Available:
https://hyperledger-fabric.readthedocs.io/en/latest /whatis.html.

[14] FujitsuLaboratories. Chaincode analyzer, 2020. Available:
https://github.com/FujitsuLaboratories/ChaincodeAnalyzer.

[15] Google. Go-tpm module, 2021. Available: https://pkg.go.dev/github.com/google/go-tpm.

[16] Jorge Guajardo. Physical Unclonable Functions (PUFs), pages 929-934. Springer US, Boston,
MA, 2011.

[17] Thomas Hardjono and Ned M. Smith. An attestation architecture for blockchain networks.
CoRR, abs/2005.04293, 2020.

[18] Bin Hu, Zongyang Zhang, Jianwei Liu, Yizhong Liu, Jiayuan Yin, Rongxing Lu, and Xiaodong
Lin. A comprehensive survey on smart contract construction and execution: paradigms, tools,
and systems. Patterns, 2(2):100179, Feb 2021.

[19] Docker In. Docker documentation, 2022. Available: https://docs.docker.com/ .

15

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]
28]

[29]

[30]

[31]

[32]

Intel. Intel software guard extensions., 2021. Available:
https://software.intel.com/content /www /us/en/develop/topics/software-guard-
extensions.html.

Cynthia E. Irvine and Karl Levitt. Trusted hardware: Can it be trustworthy? In Proceedings
of the 44th Annual Design Automation Conference, DAC 07, page 1-4, New York, NY, USA,
2007. Association for Computing Machinery.

Merit Kolvart, Margus Poola, and Addi Rull. Smart Contracts, pages 133-147. Springer
International Publishing, Cham, 2016.

Shu Yun Lim, Pascal Tankam Fotsing, Abdullah Almasri, Omar Musa, Miss Laiha Mat Kiah,
Tan Fong Ang, and Reza Ismail. Blockchain technology the identity management and authen-
tication service disruptor: A survey. International Journal on Advanced Science, Engineering
and Information Technology, 8(4-2):1735, 2018.

Medicalchain SA. Medicalchain, 2020. Available: https://medicalchain.com/en/.

Sarwar Sayeed, Hector Marco-Gisbert, and Tom Caira. Smart contract: Attacks and protec-
tions. IEEE Access, 8:24416-24427, 2020.

Scooley. Introduction to hyper-v on windows 10. Available: https://docs.microsoft.com/en-
us/virtualization /hyper-v-on-windows/about, .

sivachokkapu. Revive cc, 2020. Available: https://github.com/sivachokkapu/revive-cc.

Trusted Computing Group (TCG). Device identifier composition engine, 2021. Available:
https://trustedcomputinggroup.org/work-groups/dice-architectures,/ .

Trusted Computing Group (TCG). Trusted platform module (tpm), 2021. Available:
https://trustedcomputinggroup.org/work-groups/trusted-platform-module/.

Allan Tomlinson, Keith Mayes, and Konstantinos Markantonakis. Introduction to the TPM,
pages 155-172. 12 2008.

Kazuhiro Yamashita, Yoshihide Nomura, Ence Zhou, Bingfeng Pi, and Sun Jun. Potential risks
of hyperledger fabric smart contracts. In 2019 IEEE International Workshop on Blockchain
Oriented Software Engineering (IWBOSE), pages 1-10, 2019.

Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Weili Chen, Xiangping Chen, Jian Weng, and
Muhammad Imran. An overview on smart contracts: Challenges, advances and platforms.
Future Generation Computer Systems, 105:475-491, 2020.

16

sanss| Bujujewsas pue s1o11s X1

no

BIuod enuod yews + uopeadd
ya1easal azjjeulq a|dwys 10} 1810]dx] wen Penuos 1 + uoneanddy

yews ay) 10} sJs3] ppy Ajddng jeaipapy 2iseq juawsaduwy

A Appendix: Technology Roadmap

1abpapadAiy ppy

s)|nsa1 Bununseaw loy 1adijes 1ebpapadiy ppy fjeuonouny wdl s1eibsiu)

5183 ylewyouag ubisag sased 1sa) ubisag

12enuod pews + uonedjddy WdL1 yum Bupoeisul
Aiddng jeaipapy si1seq juswajduwy 1s9] 01 1duos ajduns sjean)

ouqe 1abpapadiy
pue p-1adAy suiyoew penpia dn Bumes

fnoas 10y 191U PRWS
Wd1 Buneibayui uo ubisag + uoneajdde Kjddns jesipapy ay; ubisag

wawdojaaag

BuiuBisag/Buiuoisip

wawdojaaag

BuiuBisag/Buiuoisip

uonesedaid
pue Bujuue|d

Figure 6: Technology roadmap of the research

17

B

Appendix: List of implemented chaincode functionality

List of chaincode functionality implemented in the prototype which the peers within the MedStore
network can invoke. These functions contain the changes made by integrating TPM such as added
fields for the user name and tpm key.

TPMKeyGen(username) - Generates tpm key, creates new TPMAuth object with the key and
hashed user and stores it on the ledger. Returns error when TPMAuth already exists on the ledger.

InitLedger(username, tpm key) - Adds a base set of available medical supply to the ledger.

Issue(medicine name, medicine number, disease, expiration, price, username, tpm key) - Issues
a new available medical supply to be added to the ledger. Returns error when invoker is not a
Regulator or if adding medical supply to ledger failed.

Delete(medicine name, medicine number, username, tpm key) - Deletes a medical supply from the
ledger. Returns error when invoker is not a Regulator or if deleting medical supply from the ledger
failed.

Request(medicine name, medicine number, username, tpm key) - Sends a request for a medical
supply on the ledger. Returns error when medical supply is not available or if requesting it failed.

CancelRequest(medicine name, medicine number, username, tpm key) - Cancels a request for a
medical supply on the ledger. Returns error if retrieving or cancelling failed.

ApproveRequest(medicine name, medicine number, username, tpm key) - Approves a requested
medical supply. Returns an error if invoker is not a Regulator, medical supply could not be found
or if accepting request failed.

RejectRequest(vmedicine name, medicine number, username, tpm key) - Rejects a requested
medical supply. Returns error if invoker is not a Regulator, medical supply could not be found or if
rejecting request failed.

CheckHistory (username, tpm key) - Gets an overview of all medical supplies on the ledger. Returns
error if there is no medical supply found on the ledger or invoker is not a Regulator.

CheckUserHistory (username, tpm key) - Gets an overview of all requested and sent medical
supply of an user. Returns an error if no medical supply is found on the ledger belonging to the
user.

CheckAvailableMedicine() - Gets an overview of all available medical supplies. Returns error if
there is no available medical supply found on the ledger.

CheckRequestedMedicine(username, tpm key) - Gets an overview of all requested medical sup-
plies. Returns an error if there is no requested medical supply found on the ledger or invoker is not
a Regulator.

SearchMedicineByName(medicine name,) - Searches all available medical supplies given a medicine
name. Returns error if no medical supply by provided name is found on the ledger.

ChangeStatus(medicine name, medicine number, status, username, tpm key) - Manually change
the state of a medical supply. Returns error if invoker is not a Regulator or changing status failed.

ChangeHolder (medicine name, medicine number, holder name, username, tpm key) - Manually
change the current holder of a medical supply. Returns error if invoker is not a Regulator or changing
holder failed.

18

	Introduction
	Methodology
	Literature review
	Coding Tools
	Benchmark Tools

	Background
	Hyperledger Fabric
	Functionalities of the TPM

	Experimental Design
	Designing the Medical Supply Chain
	Designing the TPM's integration

	Experimental Work
	Implementing the Medical Supply Chain
	Integration of the TPM into the Medical Supply Chain
	Limitations and problems of the Prototype

	Experimental outcome
	Performance analysis
	Security analysis

	Responsible Research
	Ethical aspects
	Reproducibility

	Conclusions and Future Work
	Appendix: Technology Roadmap
	Appendix: List of implemented chaincode functionality

