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Abstract  
 

The mining industry is a significant contributor to greenhouse gas emissions and operational costs. The 

transportation of materials within mining operations, especially using diesel-powered trucks, accounts 

for a substantial portion of both emissions and costs. Optimizing fuel consumption in this context is 

crucial for environmental sustainability and financial efficiency. 

While there is some existing research on minimizing fuel consumption in mining operations, most of 

these studies prioritize production over fuel efficiency. Additionally, there is a lack of solutions 

addressing real-time dispatch problems while also minimizing fuel consumption.  

This thesis proposes the development of a model to optimize truck speeds in mining operations, with 

the primary goal of reducing fuel consumption. The focus is on minimizing waiting times for trucks at 

loading stations by adjusting their speeds using a metaheuristic algorithm, specifically Simulated 

Annealing (SA). 

To achieve this, a discrete event simulation (DES) model made in HaulSim to replicate a simplified 

mining site in Nevada, USA. The simulation includes Caterpillar 793 series trucks. The SA algorithm is 

applied to find optimal truck speeds, with the aim of reducing fuel consumption with the same level of 

production. 

The hypothesis is that lowering truck speeds in mining environments with queueing trucks can 

significantly reduce fuel consumption. The study explores how speed optimization impacts efficiency 

across different mining conditions, identifies the most effective optimization techniques, and 

quantifies potential fuel savings. The research reveals a 27-32% reduction in fuel consumption across 

various truck scenarios. However, these findings should be interpreted cautiously due to limitations in 

data constraints and modelling simplifications. 

In conclusion, the study highlights the effectiveness of SA in optimizing truck speeds and the potential 

for substantial fuel savings in mining operations. We recommend the integration of Artificial Neural 

Networks (ANNs) for a more nuanced approach to fuel consumption estimation and optimization, 

considering factors like road maintenance intervals and payload.  This synergistic approach, combining 

metaheuristics and machine learning techniques, aligns with sustainable practices in the mining 

industry and offers promising avenues for further research and application. 
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1 Introduction 
 

Mining has played a crucial role in the development of human civilization with signs of mining activity 

as old as human settlements. Still to this day the mining industry is an essential part of today's society. 

The demand for raw materials is growing at an unprecedented rate, driven by factors such as energy 

used, population growth, urbanization, and the increasing complexity of modern technology. Without 

mining, it would be impossible to produce many of the goods and services that modern society relies 

on. 

As the world’s population is projected to reach around 10 billion by 2050, the demand for raw materials 

such as energy resources, minerals, and metals is also rising (United Nations, 2019). People’s 

consumption patterns have changed significantly over the years, with more people having access to 

various goods and services. For example, electronics, household appliances, and cars have become 

more popular, and they all need minerals and metals to be manufactured. The increased consumption 

of these goods has driven up the demand for raw materials. Recycling can help to provide some of the 

raw materials needed, but its effect depends on the type of commodity. Some products are very long-

lasting and can be used for a long time. For example, around 68% of all nickel ever produced is still in 

use today (nickelinstitute.org), also some commodities are better recyclable than other, some have 

such a low economic value that recycling is not feasible or too energy intensive.  

However, as the demand for raw materials grows, it becomes increasingly difficult to access them. 

Many of the easily accessible resources have already been depleted, and mines must now go deeper 

and extract lower-grade ore to meet the growing demand (Rocky Mountain Institute, 2019). This has 

led to a significant increase in the energy and costs required to extract these resources, which presents 

challenges for the mining industry. 

The depletion of easily accessible resources also has other consequences. The extraction of minerals 

and metals from lower-grade ore requires more energy, which leads to higher greenhouse gas (GHG) 

emissions and a greater environmental impact. It also means that the mining industry must become 

more innovative and find new ways to extract minerals and metals more efficiently, with less impact 

on the environment.  

Greenhouse gas emissions are a major contributor to climate change, which poses a significant threat 

to the environment and human well-being. The mining sector together with the oil industry is seen by 

the public as one of the biggest emitters of greenhouse gas. According to the CEEC the mining sector 

uses 3.5% of the global energy consumption. A large portion of the energy consumption of mining 

operation is due to material handling and transportation. Load and haul operation can contribute up 

to 60% to the total GHG emission of a mine (Zhang et al. 2022) as truck and loader frequently still run 

on diesel. This part of the mining sector will also take a lot of years to electrify and will contribute to 

the growing demand in raw materials. Beside the GHG emission reducing diesel consumption can also 

have financial benefits, diesel consumption can contribute to 50% of operation costs (Zhang et al. 

2022).  

One approach which will be used in this thesis is to optimize truck speed to safe fuel. A lot of studies 

have been done on the fuel consumption of mining trucks and which parameters have the most 

influence. According to Siami-Irdemoosa et al. (2015) waiting time of diesel trucks are the main 

contributor to unnecessary fuel consumption. Another study by Soofastaei et al. (2018) identifies 

payload/gross weight vehicle, speed (s) and total resistance (TR) as the three main parameters that 
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influence fuel consumption (FC). Also, a lot of studies have been done about how to optimize dispatch 

strategies but most of those studies are more concerned with the increase in production. 

Metaheuristic and mathematical algorithms have gained prominence in the mining industry, with 

large-scale mines realizing substantial operational cost savings through enhanced efficiency. As mines 

expand and incorporate an increasing number of parameters, traditional mathematical algorithms, 

such as linear programming, often become impractical due to extended computational timeframes. 

Consequently, this thesis explores the application of metaheuristic algorithms, specifically focusing on 

optimizing truck speeds to minimize fuel consumption. While several algorithms were evaluated, the 

methodology and results will exclusively address the Simulated Annealing (SA) optimization. 

The dataset employed in this research was generated using a discrete event simulation (DES) model, 

specifically through Haulsim, which is recognized as a robust mining simulation software. This 

simulation replicates a simplified model of a mining site located in Nevada, USA. The Haulsim 

framework for this study incorporates two loaders and multiple trucks from the Caterpillar 793 series. 

The scope of the simulation is confined to a single production shift, and the loading and dumping 

events are strictly defined within this timeframe. A crucial aspect of this study is the optimization 

process, which aims to eliminate excessive waiting times. This optimization is strategically focused on 

modulating the operational speeds of the trucks, thereby achieving a reduction in fuel consumption. 

 

1.1 Hypotheses  
Based on comprehensive vehicle modelling and established principles of physics, it is proven that 

vehicles moving at reduced speeds consume less fuel. The thesis proposes that reduced fuel 

consumption can be achieved by advising an optimal speed for the trucks given the mine circumstance. 

In a mining environment where trucks have to wait in queues, an optimization can be made by reducing 

the speed of the trucks, thereby consuming less fuel during production. 

 

1.2 Research question: 
Can a model for optimizing the hauling speed of mobile equipment be created to eliminate 

unnecessary waiting times in mining operations, with the ultimate goal of reducing overall fuel 

consumption? 

 

1.2.1 Sub questions 
 

• How does speed optimization impact efficiency across various mining conditions? 

• Which optimization technique is most appropriate for the specific case study? 

• What quantifiable fuel savings can be realized by employing optimization techniques to 

reduce truck speeds? 

• How do different optimization parameters affect the outcomes of the proposed algorithm? 

• In what scenarios or conditions within the mining environment does the optimization 

demonstrate the highest effectiveness for both speed reduction and fuel savings? 
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1.3 Scopes and Limitations  
 

1.3.1 Scope  
 

This thesis focuses on developing and applying an optimization model, which reduces the waiting time 

of trucks at the loaders. The reduction in waiting time will be achieved by reducing the speed of the 

trucks through a meta-heuristic algorithm, specifically Simulated Annealing (SA). Optimizing truck 

speeds in mining operations aims to minimize fuel consumption. The research is based on a custom-

designed mine simulation using Haulsim, a robust mining simulation tool. The key aspects of this study 

include: 

• Analysing the influence of truck speed on fuel consumption in mining environments. 

• Implementing the SA algorithm to find optimal truck speeds. 

• Examining the impact of different truck configurations (varying numbers of trucks) on fuel 

consumption and operational efficiency. 

• Assessing the potential fuel savings through speed optimization in simulated mining scenarios. 

1.3.2 Limitations: 
 

While this research aims to provide insights into optimizing fuel consumption in mining operations, 

several limitations must be acknowledged: 

• Data Constraints: The data for this study is sourced exclusively from Haulsim simulations, 

which may not perfectly mimic real-world mining operations. Limitations in data export 

capabilities (e.g., inability to export location-based data to Excel or CSV) have necessitated the 

use of averages for optimization, potentially affecting the granularity and precision of the 

results. 

• Modelling Simplifications: The study focuses primarily on Total Resistance (TR) and speed as 

the key variables for modelling fuel consumption in heavy-duty machinery. This simplification 

might overlook other significant factors that influence fuel consumption, such as payload, road 

conditions, and weather. 

• Algorithmic Limitations: The use of the SA algorithm, while effective in certain scenarios, 

introduces randomness that may not always lead to optimal solutions. Additionally, the 

performance and accuracy of the algorithm in larger truck configurations and complex 

operational scenarios may vary. 

• Generalization of Results: The findings, particularly the fuel savings percentages, are based on 

simulated scenarios and may not directly translate to real-world mining operations. The 

study's conclusions should therefore be interpreted with caution when applying them to actual 

mine sites. 

• Scope of Research: This research predominantly focuses on diesel-powered trucks. With the 

advent of electric trucks and changing technological landscapes, the optimization strategies 

and findings might not be directly applicable to these newer technologies. 

• Economic Considerations: While the study identifies potential fuel savings, it does not fully 

explore the trade-offs between these savings and the additional costs that may arise, such as 

increased labour or capital investment in more efficient technologies. 
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In summary, the research presented in this thesis offers valuable insights into fuel optimization in 

mining operations using metaheuristic algorithms. However, the findings are subject to the mentioned 

limitations and should be considered within the context of the simulated environment and specific 

parameters employed in this study. 

 

This thesis will have to following eight chapters.   

1. Introduction: This chapter provides background information, research questions, and the 

context of the research. 

2. Literature Review: This chapter provides an overview of existing literature relevant to the 

research questions. 

3. Methodology: This chapter describes the research methods and procedures used in the study. 

4. Results: This chapter presents the results of the research. 

5. Discussion: This chapter interprets the results, discusses the implications of the findings, and 

provides recommendations for future research. 

6. Conclusion: This chapter summarizes the main findings, limitations of the study, and the 

significance of the research. 

7. Recommendation: This chapter outlines practical, actionable suggestions derived from the 

research findings, addressing their application in relevant fields and proposing future 

directions for research or practice.  

8. References: This chapter includes a list of all the sources cited in the thesis. 
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2 Literature review 
 

2.1 Computer-aided mine design & Machine learning capabilities 
Computer-aided mine design has revolutionized the mining industry by enhancing efficiency, safety, 

and environmental sustainability. One of the pivotal techniques that have been instrumental in this 

transformation is linear programming. According to Gholamnejad et al. 2020, linear programming has 

been employed to optimize the extraction sequence in open-pit mining. This mathematical modelling 

technique helps in determining the most efficient way to allocate limited resources, such as equipment 

and labour, to achieve the desired output, such as maximizing profits or minimizing costs. 

In addition to linear programming, metaheuristic algorithms have emerged as powerful tools in mine 

planning and design. These algorithms are used for solving complex optimization problems that are 

computationally infeasible to solve through exact methods. Denby and Schofield, in their 1994 study, 

illustrated the utilization of Genetic Algorithm (GA) for optimizing open-pit mine production planning. 

The standout feature of their approach was their capacity to tackle both the ultimate pit limit and long-

term planning issues in tandem. By selecting appropriate genetic parameters, the methodology 

demonstrated its efficacy in generating commendable outcomes for a small block model within a 

reasonable timeframe.  

A study by Paithankar & Chatterjee (2019), employing a hybrid method using real-world mineral 

deposit data and benchmark instances. The method, which incorporates Genetic Algorithms (GA), was 

applied to two sets of problems based on copper and gold deposits, taking geological uncertainty into 

account. The study conducted a sensitivity analysis of various GA parameters, including population 

size, crossover probability, mutation probability, and parametric diversification. It was observed that 

increasing the population size stabilized the results and reduced the gap from the optimal solution but 

at the cost of increased execution time. Additionally, the study highlighted the significance of weights 

in source and sink arcs. It was found that incorporating weights for both source and sink nodes as 

opposed to only the source node had a case-specific impact on the final solution, contingent on the 

spatial distribution of the material. Another aspect explored was the approach to solving the problem, 

comparing solving it in stages to solving all periods simultaneously. The latter added complexity and 

was sensitive to small changes in initial periods. The study concluded that solving the problem in stages 

was more effective, ensuring a directed search and a better net present value. The hybrid method 

demonstrated robustness in solving real-world open-pit mine production scheduling under uncertain 

scenarios. The method did not rely on an initial solution and was adaptable for deterministic models 

or various uncertainty modelling approaches, as well as additional scheduling constraints.  

For short-term planning in mining, the study by Mousavi et al. 2016 tackled the Open Pit Block 

Sequencing (OPBS) problem, which is essential for optimizing extraction sequences. Three 

metaheuristic methods, namely Simulated Annealing (SA), Tabu Search (TS), and a hybrid of TS and SA, 

were employed and compared against a traditional mixed-integer programming (MIP) solver, CPLEX. 

The findings indicated that the metaheuristic algorithms not only demonstrated minimal deviation 

from the objective value compared to CPLEX but also executed significantly faster. Importantly, the 

study showed that large-scale instances, which proved infeasible with CPLEX, could be effectively 

addressed using the metaheuristic algorithms within a reasonable timeframe. The hybrid TS-SA 

algorithm, in particular, exhibited superior performance, especially for large-scale instances. The study 

underscored the limitations of traditional solvers and highlighted the effectiveness of metaheuristic 

algorithms in handling the complexities of the OPBS problem.  
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In a 2015 study by Saghatforoush et al., Artificial Neural Networks (ANN) were utilized to predict fly 

rock and back-break, which are common environmental impacts of blasting in mining. The study 

analysed 97 blasting operations at the Delkan iron mine in Iran. The ANN model proved to be highly 

accurate in its predictions. Additionally, the study introduced a novel approach using Ant Colony 

Optimization (ACO), an algorithm inspired by ant foraging behaviour, to optimize blasting parameters. 

The integration of ANN with ACO led to significant reductions in fly rock and back-break by 61% and 

58% respectively. In essence, the combination of ANN and ACO presented a powerful and efficient 

method for predicting and optimizing the environmental impacts of blasting operations.  

In the 2014 study by Abousleiman & Rawashdeh, an exploration of two metaheuristic algorithms, Ant 

Colony Optimization (ACO) and Particle Swarm Optimization (PSO), was undertaken to solve an energy-

efficient routing problem for electric vehicles (EVs). It was highlighted that traditional algorithms like 

Dijkstra's algorithm fell short when applied to EVs due to their energy regeneration capabilities, which 

can result in negative edge costs. ACO, inspired by the natural behaviour of ants in finding the shortest 

path, was relatively simple to implement. However, to make it suitable for energy-efficient routing in 

EVs, a conversion from the shortest path to the energy-optimized path was necessary. In contrast, PSO 

required a more involved adaptation from its original form and was somewhat more complex to set 

up. Despite this, it demonstrated a notable advantage in terms of speed, solving the problem in under 

400 milliseconds compared to ACO’s approximate 1.8 seconds. The performance of these algorithms 

was evaluated on a virtual map with 10 nodes and 13 routes. Both ACO and PSO converged rapidly to 

the optimal solution. The study concluded with the affirmation that ACO and PSO are effective 

metaheuristic algorithms for energy-efficient routing in electric vehicles. 

Despite meta heuristics algorithm for optimization, machine learning has the remarkable ability to 

learn and make predictions from data, and its applications are virtually limitless and will play a role in 

future mining related prediction such as fuel consumption, reserve estimation and capital costs. In a 

study conducted by Guo et al. in 2021, various forms of AI were utilized to predict Mining Capital 

Cost (MCC) for open-pit mines. The study used a dataset consisting of 74 observations, which was 

divided into an 80-20 train-test split. In this study, three Artificial Neural Network (ANN) models, 

Random Forest (RF), Support Vector Machine (SVM), and Classification and Regression Tree (CART) 

models were developed and evaluated. For the ANN models, the structure was determined through 

trial and error, and back-propagation was used for training. The ANN models developed included 

ANN 5-9-1, ANN 5-8-8-1, and ANN 5-12-7-1. The RF model was developed with a forest of 2000 trees, 

and hyperparameters were optimized using a grid search technique. The CART model was developed 

using a complexity parameter, and its optimal value was determined through a grid search. The SVM 

model employed a radial basis kernel function, and its hyperparameters, cost (C) and sigma (σ), were 

optimized through trial and error. The models were assessed based on Root Mean Square Error 

(RMSE), R-squared (R2), and Mean Absolute Error (MAE) on both the training and testing datasets. 

Among the models, the ANN models emerged as the most effective, with ANN 5-12-7-1 standing out 

with an RMSE of 138.103, MAE of 114.589, and R2 of 0.990 in the testing phase. The SVM model also 

showed promising results, while the CART model lagged in performance. 

 

 

 
 



Floris Vis 4604784 Master Thesis 
 15 

2.2 Dispatch strategies  
 

2.2.1 Dispatch strategies 
Truck dispatching problems are not exclusive to mining operations. Other areas like shipping, package 

delivery and emergency services all have a fleet management system in place to operate efficiently. In 

other literature dispatching problem may also be referred to as Vehicle Routing Problem (VRP). 

Transportation of hauled materials is often one of the biggest operational costs in open pit mines. 

Enormous amounts of material have to be transported to a different location. Most of this relocation 

of material is done by diesel mining trucks, which is why truck dispatching management has a 

significant influence on the schedule and production but also on the total efficiency of the mine. Poor 

mine management can lead to queues at dump locations or truck bunching, which increases the 

operation cost. An optimal fleet management system can also lead to a smaller mining fleet Mirzaei-

Nasaribad et al. (2023) which also has an impact on the capital expenditure (CAPEX).  

Truck dispatching can be done in the single stage approach or in the multistage approach. The single 

stage approaches any constraints or production targets are not taking into account, truck allocation is 

done by some ‘rule of thumb’ method. Multi-stage approach is divided into two stages, the upper stage 

is a truck and shovel allocation model with the schedule and production targets as constraints. This 

stage is often accomplished with a form of linear programming (LP, MIP or SP). The lower stage is the 

real time truck assignment optimization, where the goal is to minimize the deviation from the upper 

stage. According to Subtil (2011) using a form of mathematical modelling to solve the lower stage 

would be very time consuming because of the many constraints created by the real-time aspect. The 

model should be able to runs every time something changes which has influence on the availability on 

equipment like trucks and shovels, but also on the availability of locations like dump or production 

sites.  

The optimization in Chaowasakoo et al. (2017) study three different truck dispatching strategies are 

used, the 1-truck-for-n-shovels dispatch strategy, which is still the most used strategy because of easy 

implementation. The m-trucks-for-1-shovel dispatch strategy and the m-trucks-n-shovel dispatch 

strategy. Where the first strategy is to be considered a single stage approach, strategy two and three 

are based on a multi-stage approach. In Chaowasakoo’s paper the m-trucks-for-1-shovel has to worst 

results with a 27% lower production than scheduled. However, the method had an 8% higher 

production rate than the realized production. According to Alarie and Gamache this strategy is myopic 

and lack a global vision because the optimization only considers 1 shovel at the time. Currently only 

one commercial dispatch software system is using this technique. Both the 1-truck-for-n-shovels 

dispatch method and the m-trucks-n-shovel dispatch method can be optimized with four different key 

objectives which are shown in the table below: 

Table 1: Heuristic truck dispatching methods (Chaowasakoo, 2017) 

 

The result for the 1-truck-for-n-shovels method is between 1.2 and 1.7 million bcm’s which are around 

the same as the actual production and the plan respectively. According to Alarie and Gamache this 
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truck dispatch strategy is myopic. A lack of global vision is missing because only one truck at each time 

instead is considered. The best results by far are m-trucks-for-n-shovels method with at least 60% more 

production with every heuristic method. The difference in production with different key objective is 

also very small compared to the other dispatching method. This suggest that the total utilization of the 

truck and shovels is higher. The study of Mirzaei-Nasaribad et al. (2023) compares the key performance 

index’s (KPI’s) production, utilization, and fuel consumption of 3 heuristic optimizations with a 

mathematical model. Heuristic methods do not always give the optimal solution and are not 

guaranteed to give the same outcome every time. Nevertheless heuristic methods have been quite 

popular in the literature because of their easy implementation and they do not need strong 

computation power. The result of the mathematical model were found in less than a minute with a 

strong but normal laptop. These results suggest that mathematical models are possible for real time 

truck dispatching. The production difference between the mathematical model and heuristic 

optimizations falls within the range of 0.4% to 4%. The difference is negligible when a suitable heuristic 

model is employed. However, developing a mathematical model for an m-trucks-for-n-shovel dispatch 

strategy and comparing it to various heuristic models may be challenging. This dispatch strategy is best 

suited for smaller operations or closed systems since larger numbers of trucks and shovels can 

significantly increase computation time. The problem with real-time dispatch solutions involving 

mathematical models and m-trucks-for-n-shovel dispatch strategies may not be solvable within a 

reasonable timeframe, limiting its practicality in the industry. A perfect truck dispatching system 

according to Alarie and Gamache (2002) is a multi-stage dispatching system where the upper stage of 

multistage systems computes a guideline by solving a mathematical program, which is then used as a 

reference by the lower stage for real-time dispatching decisions. Compared to single stage systems, 

the mathematical program considered by the upper stage can factor in a range of complex variables 

such as blending requirements at crushers, stripping ratios, and capacity constraints at shovels. 

Additionally, constraints arising from practical considerations and mine manager requirements can 

also be added. Multiple guidelines can be determined based on production constraints, such as 

maximizing production, minimizing costs, or even maximizing profit if relevant data is available. 

However, the guideline must be formulated in a way that does not require a homogeneous fleet in the 

lower stage. A study by Zhang et al. 2022 used a MIP model to optimize the upper stage of the 

autonomous mine fleet schedule. In this study the real-time speed was controlled to minimized fuel 

consumption. They also develop a real-time scheduling system based on their proposed model and 

solution method. This system performs well in the stochastic and dynamic mine environment, making 

it suitable for short-term decision-making. The fuel consumption was based on static data which only 

considered 3 stages full, empty, and idle. Also, the speed vs fuel consumption data was not dynamic. 

 

2.2.2 Gap analysis: dispatch strategies 
For many years, mining corporations have been scaling up the size of their trucks as a strategy to 

enhance efficiency and reduce the cost per ton. Additionally, various mining techniques have evolved 

to accommodate the large-scale mining operations prevalent today. However, with the impending 

regulations on carbon emissions, continuing to increase the scale of diesel mining equipment will not 

be feasible. There is a pressing need for innovative, computer-aided mine design to keep pace with 

modern advancements. Such computerized mine design systems have demonstrated their efficacy in 

boosting production levels and ensuring better utilization of equipment. Although existing literature 

on dispatch systems in mining covers aspects like production rates, scheduling, and equipment 

utilization, there is a conspicuous absence of studies focusing on reducing fuel consumption. This is a 

critical oversight, considering that fuel expenses, particularly for diesel-powered mining trucks, 

constitute a significant portion of operational costs in mining. In an era characterized by escalating 
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energy prices and heightened environmental consciousness, it is imperative to explore alternative 

optimization strategies to sustain and expand mining operations. Optimization focused on fuel 

consumption can be particularly beneficial in mining operations where various bottlenecks, such as 

grinding and milling, shipping, stockpiling, or even market demand, can adversely affect profits. By 

incorporating these factors, the optimization of fuel consumption can also assist in establishing more 

informed production constraints. This holistic approach not only contributes to reducing operational 

costs through fuel savings but also ensures a more efficient and streamlined process that takes into 

account the various challenges and constraints faced by mining operations. 

The majority of literature on dispatch systems in mining tends to follow a similar sequence of 

techniques. Initially, a form of linear programming (such as Mixed Integer Programming or Sequence 

Goal Programming) is employed to optimize production. Subsequently, metaheuristic algorithms are 

utilized to execute the dispatch strategy. This approach has been established as effective in achieving 

near-optimal production levels. However, it is important to note that fuel consumption and production 

are positively correlated; an increase in either speed or payload will enhance production but will also 

lead to higher fuel consumption. To address this, an objective function aimed at minimizing fuel 

consumption, with production targets serving as constraints, can be employed following the 

aforementioned logic. Nonetheless, fuel consumption can be a multifaceted function, which may lead 

to the introduction of numerous constraints due to the various parameters that need to be considered. 

Employing a series of metaheuristic algorithms can be a viable solution to this complexity.   
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2.3 Fuel consumption in mining trucks 

2.3.1 Fuel consumption  
The International Energy Agency (IEA) outlined an industry carbon budget in 2014, which requires 

mining companies, similar to those in other industries, to achieve a 58% reduction in emissions by 2050 

compared to their 2010 levels (Rocky Mountain Institute, 2019). However, meeting this emission 

reduction target is challenging due to the expected increase in mineral demand, coupled with the 

growing difficulty of mining. The demand for minerals is being fuelled by factors such as a rising global 

population, increasing average wealth, and a shift toward low-carbon technologies like wind turbines, 

electric vehicles (EVs), and solar panels. In addition, mining companies typically extract easier-to-mine 

and higher-grade ores first, resulting in decreasing head grades and yields, and hence, requiring a 

larger tonnage to be moved over longer distances (Rocky Mountain Institute, 2019). According to the 

RMI globally, there are approximately 28,000 large mine hauling trucks currently in operation, which 

are predominantly powered by diesel. These haulers consume an average of 900,000 Liters of diesel 

per year and account for 30% to 50% of their mines' total energy consumption. The collective emissions 

of these mining trucks result in 68 million tons of CO2 (MtCO2) being released annually, equivalent to 

the entire greenhouse gas footprint of Finland or New Zealand. Despite the advantages of low capital 

expenditure, flexibility, and a well-established supply chain, diesel haulers present long-term risks, 

including the emission of various pollutants and susceptibility to diesel fuel price volatility. A higher 

efficiency can prevent millions of tons of CO2 entering the atmosphere. A higher efficiency in mining 

trucks even if they ever switch to renewables like electric or hydrogen powered mining trucks will still 

be very beneficial. A volatile diesel price like we have seen the last couple years can also have great 

impact on the operational costs as diesel accounts according to literature for around 50% of the 

operation costs in an open pit mine, (Zhang et al. 2022, Subtil et al. 2011).  

The study of vehicle fuel consumption and emissions has been a popular research topic, and various 

energy usage models for vehicles have been developed in the past. Heavy-duty vehicles differ 

significantly from light-duty vehicles in terms of engine performance, aerodynamic drag coefficient, 

power-to-weight ratio, and tire characteristics. Therefore, they require a different set of parameters 

for precise modelling Hunt et al. 2011. Mining vehicles are designed to operate at low speeds, with 

blocky shapes that lack aerodynamic features and contribute to increased air resistance. As mining 

trucks carry enormous loads, rolling resistance has a more significant impact on their fuel consumption 

than air resistance. Factors such as payload, road conditions, and tire pressure are crucial parameters 

that influence fuel consumption in mining vehicles. In the guidelines of mine haul road design by 

Tannant & Regensburg (2001), all the important parameters on rolling resistance on haul road are 

shown. Tannant & Regensburg point out that a higher rolling resistance result is a lower overall speed, 

which directly results in a lower production, another factor which influence the economics of the mine 

is the fact that lower speeds result in a lower gear shift which consumes more fuel over the same 

distance. A study by Algere et al. (2021) showed that the rolling resistance can be back-calculated from 

truck dispatch data. The rolling resistance was calculated with the truck specific speed–Rimpull–

gradeability curve on road segments with a continual grade profile. Another method is using the 

cooper’s equations developed by cooper in 2008. The two methods show good results, the 

performance of trucks is greatly influenced by the condition of haul roads. Having a real-time indication 

of haul road conditions can result in significant economic benefits by maintaining consistent 

production and minimizing fuel consumption, without requiring excessive maintenance. 

 

According to a study conducted by Soofastaei et al. 2016, the fuel consumption of haul trucks is 

determined by various parameters, which have been classified into the following main groups: Fleet 
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management, mine planning, modern technology, haul roads, design, weather conditions and fuel 

quality. The most significant parameters that impact energy consumption are payload, speed, and 

Total resistance. The study investigated the optimal payload for minimum diesel consumption and the 

best truck ratio (BTR) for a fixed production of 20 million tonnes of material moved. BTR is defined as 

the ratio of actual energy consumed to the theoretical best use of energy by haul trucks. Furthermore, 

the study revealed that the truck model and the condition of the haul road also influence BTR and fuel 

consumption. The total resistance is the sum of the rolling resistance and the grade resistance. Where 

the grade resistance is the resistance against gravity as the hauled material usually has to be 

transported up to the surface. The rolling resistance is composed of several factors like road condition, 

tyre pressure, current precipitation etc. A complete list is shown in the appendix. Another study that 

predicts fuel consumption was done by Siami-Irdemoosa and Dindarloo (2015). The study focused on 

two input parameters, namely payload and stage within a cycle time, which consists of five stages: 

loading time (LT), idled while loaded (LS), loaded travel time (LTR), empty travel time (ETR), and idled 

while empty (ES). To predict fuel consumption for one cycle, an artificial neural network was developed 

utilizing these six parameters. The results of the study indicate that empty idle time (ES) of trucks is a 

major contributor to unnecessary fuel consumption in surface mines. Other studies have also 

demonstrated the negative impact of ES on production rates in mining. Therefore, it is important to 

implement proper remedies to reduce the negative effects of ES on both production and energy 

consumption. Another study by Wang et al. 2021 on fuel consumption concluded that fuel 

consumption during queueing cannot be ignored. This study utilizes a truck dispatching system to 

introduce a highly accurate volumetric fuel consumption meter that enables the precise measurement 

of real-time and cumulative fuel consumption for open-pit mine trucks. In order to improve the 

accuracy of the fuel consumption pattern and prediction model, a multi-dimensional mine truck fuel 

consumption database was constructed, taking into consideration the aspects of road design, mine 

truck status, and personnel operation. Regression analysis was employed to explore the fuel 

consumption pattern for multi-dimensional features. Another observation by Wang et al 2021 which 

was also shown in Soofastaei et al. 2016 is that different mining trucks have different fuel consumption 

indexes which all have a different optimal payload and speed. This often lacking in the literature 

because homogeneous fleet are used. According to Bajany 2017 When dealing with trucks and shovels 

of varying transportation and capacity, differences in power, traction, and inter-truck time can arise 

within a fixed period. In mines these variations in inter-truck time affect the shovels' utilization time 

and consequently, their fuel consumption. Additionally, a truck's loading time is directly proportional 

to its capacity and the shovel's capacity, leading to fuel consumption that is a function of the loader's 

capacity when loaded. Therefore, in the case of a fleet with diverse equipment, technical specifications 

must be considered when optimizing haulage operations in open-pit mines. Also shown in the study 

by Soofasteai, Vehicles exhibit varying performance levels in terms of fuel consumption, depending on 

their payload ratios and weight ratio, which is the GWV (Gross Vehicle Weight) divided by the payload. 

Another study by Soofasteai et al. 2016 show that payload variance has significant impact on 

production and fuel consumption. Loading is a stochastic process and is influenced by factors as bench 

geology, blast design, muck pile fragmentation, operator efficiency, weather conditions, utilization of 

trucks and shovels, mine planning, and equipment selection. To load a truck effectively, the shovel 

operator must aim for an optimal payload. This optimal payload is defined in different ways but always 

aims to maximize the amount of material carried by the haul truck while minimizing payload variance. 

The range of payload variance is determined by the truck's capacity and power, and it greatly affects 

productivity in large surface mines due to long distances which the mining trucks have to travel, this is 

referred to as truck bunching and can decrease production and fuel efficiency drastically. Based on the 

findings of Soofateai et al. (2016), there is a significant increase in fuel consumption when comparing 

0 standard deviations (std) to 30 std, which results in a 260% increase in L/(h*ton). While these are the 
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two extreme points on the charts, even a moderate increase from 5 σ to 10 σ results in a 17% increase 

in fuel consumption.  

In a paper by Alamdari et al. in 2022, a comparative analysis of five different machine learning 

techniques to determine the most effective method for predicting fuel consumption was made. The 

techniques evaluated included multiple linear regression (MLR), random forest (RF), support vector 

machine (SVM), artificial neural network (ANN), and kernel nearest neighbour (KNN). 

The researchers found that all the tested techniques yielded r2 values ranging from 0.8 to 0.9, 

indicating their suitability for fuel consumption prediction. Among these techniques, MLR showed the 

lowest correlation of 80% with the following formula: 

𝑓𝑢𝑒𝑙 𝑐𝑜𝑛𝑜𝑚𝑝𝑢𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 (
𝐿

ℎ
) = 11.112 + 1.111 ∗ 𝑃 + 0.728 ∗ 𝑠 + 7.10 ∗ 𝑇𝑅 

Equation 1: MLR of fuel consumption index 

Where: 

P = payload (ton) 

s = speed (km/h) 

TR = Total resistance (%) 

The best correlation was produced by the ANN, which achieved a 90% correlation and was configured 

with one hidden layer consisting of 20 nodes. 

 

2.3.2 Gap analysis: fuel consumption 
Predicting fuel consumption using machine learning algorithms such as Multi Linear Regression (MLR), 

K-Nearest Neighbors (KNN), and Artificial Neural Networks (ANN) has demonstrated promising results. 

However, there is a noticeable gap in the literature regarding practical implementation strategies. 

Additionally, mining companies often make substantial capital investments in procuring mining 

equipment, which makes replacing or upgrading equipment an impractical solution in the near term. 

One of the most effective and easily implementable strategies for reducing fuel consumption is 

minimizing idle time of the equipment. Furthermore, an Artificial Neural Network (ANN) approach, as 

suggested by Soofesteai, can be integrated into both the upper and lower stages of dispatch planning 

to optimize fuel consumption. This approach can be particularly beneficial in ensuring more sustainable 

and cost-effective mining operations. 

 

 

2.4 Rolling resistance 
The literature on the relation between rolling resistance and speeds in sometime a little bit 

controversial. According to Świeczko-Żurek et al. (2017) the force of rolling resistance is the coefficient 

of rolling resistance times the vertical load. Laboratory measurements by ISO standards have resulted 

that the Crr is constant with the increase of velocity within normal operation ranges. The same 

conclusion was found by a study from Taghavifar & Mardani in 2013 where five different vertical loads 

were tested at 3 different inflation pressures. A literature study done by Ydrefors et al. (2021) calls a 

lack of harmony in the rolling resistance research. According to this study, "When driving at lower or 

moderate speeds and suddenly accelerating, you might notice that your tires experience more energy 
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loss (known as hysteresis loss) and increased resistance when rolling. This is because, at slower speeds, 

the tires tend to deform more, and a sudden speed increase doesn't let them adapt immediately. 

However, when you pick up speed. The tires heat up due to the increased spinning forces and become 

less flexible. This, surprisingly, helps counteract the energy loss and resistance. So, in most cases, you'll 

find that your overall rolling resistance slightly increases as you speed up. But in some situations, 

especially after the tires have warmed up, you might experience a slight decrease in resistance. It 

should be noted that the findings from the aforementioned studies may not be directly applicable to 

mining contexts, given the distinct differences in road conditions and payload characteristics. Adair et 

al. (2015) observed a clear linear relationship between the coefficient of rolling resistance (Crr) and 

speed in a mining environment. Nonetheless, the increase from low to very high operational speeds 

results in only a slight change in the Crr. The variability in calculating rolling resistance in a typical mining 

setting can eclipse the linear growth associated with increasing speeds, which might account for the 

discrepancies in the literature's interpretations. 

 

2.5 Research gap: 
The first gap identified in the literature is the lack of concrete results showing the effectiveness of 

minimizing fuel consumption in dispatch strategies in open-pit mines. While previous studies have 

touched on the option to minimize fuel consumption, most of these optimizations prioritize 

production, and there is a lack of literature providing concrete evidence of the effectiveness of 

prioritizing fuel consumption. 

The second gap is the lack of solutions for real-time dispatch problems that considering fuel 

consumption. While there are many studies focused on fuel consumption in open-pit mines, there are 

few that provide solutions to tackle the real-time dispatch problem while also minimizing fuel 

consumption. 

Finally, while one study found an optimal dispatch strategy with fuel consumption as a mean priority, 

the fuel consumption was simplified, and the trucks were only modelled with three stages: full, empty, 

and idle. This oversimplification limits the applicability of the study to real-world scenarios where fuel 

consumption may be more complex. Thus, there is a gap in the literature for more accurate and 

practical modelling of fuel consumption in dispatch strategies in open-pit mines. 
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3 Methodology 
 

After establishing the theoretical framework and reviewing relevant literature in the previous 

sections, this chapter now turns its attention to the methodology employed to address the research 

questions posed.  

3.1 Research Design: 
In this research, the selected design can be characterized as computer-simulation experiment, 

focusing on the investigation of dispatch strategies to minimize fuel consumption in truck and haul 

mining operations by optimizing truck speeds to reduce idle time, trucks that are blocked during 

travel and queues at dumps and loaders.  

The motivation behind this research is to address the substantial fuel consumption associated with 

mining truck operations. Reducing fuel usage not only presents an opportunity for cost savings but 

also contributes significantly to the reduction of carbon emissions, thus aligning with sustainability 

objectives. 

3.2 Data Collection: 
Data collection relies on information sourced from Haulsim, a specialized mining simulation tool. 

Haulsim boasts an extensive library of truck and loader options that can be readily incorporated into 

simulations. Furthermore, it comes equipped with pre-defined variable parameters such as loading 

time, spotting time, and dumping time which can be adjusted accordingly. Additionally, the software 

takes into account the significant influence of engine power concerning payload and the type of terrain 

encountered, thereby dynamically adapting vehicle speed to real-life conditions. Haulsim generates 

structured Excel files, documenting every action within mining operations. Notably, this data lacks 

location-based information regarding truck positions on the mine road. To enhance data usability, 

Python is employed for data processing, Python, is a versatile and widely used programming language 

and serves as the linchpin of our data processing. Known for its simplicity, readability, and robust data 

manipulation capabilities, Python is an ideal choice for handling complex data tasks. In the realm of 

advanced data analysis and machine learning, we harness the power of TensorFlow, an open-source 

library developed by Google. TensorFlow's flexibility and scalability are instrumental in our research, 

particularly in the application of Artificial Neural Networks (ANN) to model complex data relationships. 

Additionally, we explore metaheuristics, a class of optimization algorithms, within the Python 

ecosystem. Python's extensive libraries and packages make it conducive for implementing and 

experimenting with metaheuristic algorithms. These metaheuristics aid in optimizing mining truck 

speed strategies, contributing to the depth and breadth of our research analysis. 
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3.3 Data Source  
For this research, we rely on a synthetic dataset from Haulsim, a specialized mining simulation tool. A 

mining site was replicated to collect data and test the hypotheses. The mine was simplified to reduce 

the noise that was provided in the data. The mine features two source points and two destination 

points. We've chosen this tool because it suits our research's specific focus on analysing truck speeds 

within mining operations. 

 

3.3.1 Haulsim Features 
Haulsim offers an extensive library of mining trucks and loaders that can be easily integrated into 

simulations. It comes with predefined variable parameters like loading time, spotting time, and 

dumping time, which we can adjust to match specific operational conditions. Haulsim also accounts 

for the significant influence of engine power, payload capacity, and terrain type, allowing it to 

dynamically adapt vehicle speeds to mimic real-life scenarios. It's worth noting that Haulsim generates 

structured Excel files that document every action within mining operations. However, these files lack 

location-based data regarding truck positions on the mine road. 

 

3.3.2 Data Collection Methods 
Haulsim operates as a discrete event simulation, providing a robust mining environment. This 

simulation tool's versatility allows us to accelerate time, condensing an 8-hour shift into just 3 seconds 

of simulation. Importantly, Haulsim provides accessible reports on key parameters, such as material 

movement, haul and loading states, and loader or truck utilization percentages, all without requiring 

us to download the entire dataset. However, for more in-depth analysis, the raw data can be extracted 

into an Excel or CSV file for further processing. 

 

3.3.3 Data Variables 
Mining software involves numerous variables. In this research, our focus centres on the choice of 

mining trucks. Specifically, we've opted for the CAT 793F as our truck model. This choice aligns with 

the widespread use of the CAT 793F in Australian mining operations, a fact well-documented in fuel 

consumption literature. To ensure accurate fuel consumption calculations, we've selected the same 

truck models used in these studies. Additionally, the compatibility of the chosen truck model with 

loaders and its ability to meet the ideal 3 to 5 passes for full loading, as recommended by the SME 

Mining Handbook, led us to select the CAT back shovel 6060 as the loader model. These initial details 

provide insight into our data collection process, highlighting Haulsim's capabilities and explaining the 

reasoning behind our choice of truck and loader models.  

In this study, Haulsim incorporates preconfigured dump and load parameters for every truck and 

loader. The default settings, as provided below, were employed in this research: 

Furthermore, Haulsim offers the flexibility to adjust the distribution characteristics, including options 

such as right-skewed, left-skewed, normal, or uniform distributions. Additionally, users can modify the 

spread, minimum, and maximum values to simulate various scenarios. For this thesis, we made slight 

adjustments to the spot time for loading and dumping to explore their potential impacts. Additionally, 

we examined a scenario where large dump time could lead to queues at the dumping sites. But this 

had little effect on the performance of the mine or the bunching of the trucks. The default settings for 

the loaders were used. 
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Figure 1: Variables for each type of truck 

The snapshot below displays the raw data generated by the HaulSim simulation software. While 

HaulSim produces additional raw data in other sheets, these are not utilized in this thesis. Specifically, 

the relevant data is extracted from the 'equipment state' sheet. It's worth noting that there are several 

other columns in the raw data, such as operation cost, electricity cost, TKPH, etc., but these variables 

are not considered in this thesis. Furthermore, the fuel burn columns are excluded from the analysis 

because HaulSim provides either a fixed fuel consumption value in liters per hour or a linear value in 

liters per hour determined by the payload. Given the primary focus of this thesis on vehicle speed, 

these values are considered nonessential and including them in the analysis would result in 

overestimating fuel consumption, especially since the trucks are operating for longer durations. 

 

Figure 2: A snapshot of how the data is structured.  
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3.4 Haulsim mining layout 
 

In the figure shown below, the locations of the sources, destination (dump site), and ancillary facilities 

are illustrated. To ensure simplicity and accurate routing of trucks, trucks from Source 01 are directed 

to Destination 01, while trucks from Source 02 are routed to Destination 02. The optimal cycle time for 

Source 01 to Destination 01 is 30.56 minutes with a standard deviation of 0.99, and for Source 02 to 

Destination 02, it is 41.62 minutes with a standard deviation of 0.94. This calculation is based on the 

maximum allowed speed without any other trucks causing queues or bunching. The results will be 

discussed in greater detail, elaborating on these values. Nevertheless, due to deviations in cycle times, 

a greater number of trucks are choosing Route 4 to balance the utilization of both loaders. 

 

Figure 3: Top view of mine layout  

The simulation model utilizes the CAT 793F truck for several reasons. This choice is based on its 

widespread use in the mining industry and its prominent presence in fuel consumption literature. 

Opting for this particular truck ensures the closest alignment with real-world calculations. Some of the 

literature refers to the CAT 793D model. In the interest of simplification for this thesis, trucks are 

regarded as homogenous entities. The CAT 793F/D, which represents the subsequent model in the CAT 

793 series, boasts a marginally larger engine capacity and enhanced capability to operate under more 

adverse conditions. 

The CAT 793F truck has a nominal payload capacity ranging between 218 and 240 tons, with a mean 

of 225 tons. The net engine power, as cataloged by HaulSim, is 1848 kW. The operational speeds, 

contingent upon payload and weight considerations, are determined by the rimpull curve specific to 

this truck, as illustrated in the figure below. It's worth noting that manually interpreting a rimpull curve 

can introduce a margin of error of a few kilometres per hour. In Appendix, we provide a code that 

offers a more precise estimation for uphill scenarios. 
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For instance, with a rolling resistance (RR) value of 2, a grade resistance (GR) of 10, and a maximum 

payload resulting in a gross weight vehicle (GWV) of 385 tons, the calculated velocity is 12 km/h.  

.  

Figure 4: Rimpull curve CAT793D (Soofastaei, 2018) 

The selected loader type is the CAT 6060 backhoe shovel. According to the HaulSim library, the mean 

payload per fill is 45 tons, with 5% variation. This payload capacity implies that all trucks can be 

efficiently loaded in 5 passes, which falls within the ideal range of 3 to 5 passes as recommended by 

the SME mining handbook (Darling, 2011). 

Additionally, it's worth noting that operating at the upper end of this pass spectrum may result in 

slightly longer loading times. This aspect is particularly valuable for demonstrating the effectiveness of 

the speed optimization approach, as it could potentially lead to larger queues at the loader due to the 

extended loading duration.  
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             Figure 5: CAT793F source: CAT  Figure 6: CAT 6060 backhoe shovel  source: CAT   

3.4.1 The road network  
The road network utilized in this study has been adapted and simplified from a mining site located in 

the United States. The road network data extracted from Haulsim requires preprocessing. The roads 

are initially represented as discrete points rather than continuous lines. To address this, a Python-

based processing method was applied to transform these points into road segments which are 

subsequently employed in subsequent calculations. The figure below illustrates the route layout of the 

mine. Within this network, there are 8 distinct routes identified, with 6 of them being unique, while 

the remaining 2 are simply the reverse of these unique routes. For clarity, we focus on the 6 unique 

routes below. 

During each shift, Routes 1, 2, 5, and 6 are exclusively employed at the start and end of a shift, most 

vehicle movement occurs along Routes 3 and 4. These two routes share a segment, which is further 

divided into 5 subsegments, spanning a total distance of 2.62 kilometres. Within these segments, 

Routes 3 and 4 converge, prohibiting overtaking and presenting a significant operational challenge in 

this specific case. 

Furthermore, the image below depicts the mine's topography, where different colours indicate varying 

grades, ranging from a minimum of 0.0% to a maximum of approximately 11%. 

 

Figure 7: Routes in the case study mine 
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Figure 8: Road grades in in the case study mine 
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3.5 Data processing 
 

In the Haulsim simulation, a maximum of three trucks is allowed to stand in queue at any given time. 

Trucks that exceed this limit are flagged by the simulation as 'Travel Empty Blocked,' as illustrated in 

the figure below. 

The appendix contains code that modifies the state of trucks based on three conditions being met: 

'state' equal to 'Travel Empty Blocked,' 'Elapsed Time (min)' being longer than 3 minutes, and 'Distance 

Travelled (km)' being less than 0.3. These three conditions are carefully combined to ensure that the 

state change is intentional and not accidental. 

The state of 'Travel Blocked' can be somewhat confusing because the loaders are not entirely 

stationary; they do cover distance, but at a slower pace than their maximum speed. 

 

 

Figure 9: In Haulsim queued trucks. 

After changing the state that were misidentified, the data can be inspected with the code from 

Appendix. The results are shown below in Figure: 
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Figure 10: Example of the percentage of time spent by trucks in a particular state. 

The states of particular interest for optimization are "Queued at Loader" and "Idle Time." In certain 

mining operations, similar optimization principles can be applied to "Queued at Dump," but in this 

particular case, reducing loaded truck speeds without compromising production efficiency is 

unfeasible. This limitation arises from the characteristics of this mine, where loaded trucks can only 

operate at approximately one-third of the speed of empty vehicles. 

The maximum speed of a truck is determined by its rimpull curve, which factors in variables such as 

the grade, rolling resistance, and gross weight of the vehicle (GWV) to determine the speed at which 

a specific truck can effectively operate. Due to the combination of high payload and steep grades, 

loaded trucks inherently operate at slower speeds. This, coupled with the extended loading time 

compared to unloading, leads to more frequent instances of queuing at the loader rather than at the 

dump site. 

Some portion of the observed idle time is attributed to the first truck of a shift completing its task, but 

it's worth noting that in a real-world, non-simulated environment, this would not contribute 

significantly to idle time beyond the initial shift transition.  

The raw data is subjected to processing to distinguish between loaded and empty runs of the trucks, 

accounting for loading and unloading activities during the transitions between these phases. Within 

these runs, the optimal speed of a truck is already determined through the following formula:  

𝐵𝑒𝑠𝑡 𝑐𝑎𝑠𝑒 𝑠𝑝𝑒𝑒𝑑 (
𝑘𝑚

ℎ
) =

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑘𝑚)

(𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 + 𝑞𝑢𝑒𝑢𝑒 𝑡𝑖𝑚𝑒 + 𝑖𝑑𝑙𝑒 𝑡𝑖𝑚𝑒) (𝑚𝑖𝑛)
∗ 60 

Equation 2: Best case speed  
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Importantly, this best-case speed calculation considers only the current run and does not factor in the 

presence of other trucks following behind. 

To maintain consistent production levels, only the truck speed between the loading and unloading 

phases is taken into consideration. This approach ensures that production remains unaffected by 

trailing vehicles. It's worth noting that simulation results cannot be applied back to HaulSim. 

Consequently, any modifications to dump and loading times will yield unpredictable outcomes that 

cannot be verified. 

 

Figure 11: Example of difference in speeds between original speed and best case 

The base case has been established through the HaulSim simulation, and the best-case scenario has 

already been computed. Both scenarios yield identical production within the same time frame. 

However, the key distinction between the two scenarios lies in the truck speed and the subsequent 

consequences, such as idle times and queue durations. 

The raw data undergoes a division into loaded and empty runs, with the loading and unloading phases 

serving as the distinguishing markers. This division is crucial to ensure that the relevant parameters 

align accurately with each stage of the truck's journey. 

After the initial data processing steps, the resulting dataframes comprise the following columns: 

• Truck ID: Uniquely identifies each truck. 

• Run: Tracks and enumerates the individual runs for each truck. 

• simtime_start: Marks the departure moment from the unloading point for empty trucks. 

• Unloading Time (min): Records the duration of the unloading process just before the truck 

starts its journey. 

• simtime_end: Indicates the moment when the truck is in the process of being loaded. 

• Weight: Specifies the weight of the truck, including an additional quantity (in tons) for loaded 

trucks. 

• Distance (km): Logs the distance covered during that particular run. 

• Original Speed (km/h): Captures the average speed of trucks in the initial solutions. 

• Slowest Possible Speed (km/h): Pinpoints the lowest attainable speeds that still guarantee 

production requirements are met. 
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In the second stage of data processing, after inspecting the road segments and shared segments, new 

columns are appended to the dataset. Most of this additional data is route-specific and serves to 

identify the operational characteristics of the trucks. The columns are crucial for the optimization of 

the trucks. The python code of all the extra columns added to the data frame are detailed in Appendix 

and include: 

• Arrive at Loader (min): Specifies the time at which the truck arrives at the loader. 

• Route: Indicates the current route in which the truck is operating. 

• Pattern: Represents the pattern of routes followed by the truck during its operation. 

• Arrival time (shared zone): Records the expected arrival time of the truck at the shared zone. 

• Departure time (shared zone): Documents the departure time from the shared zone. 

• on_road_trucks: Quantifies the number of trucks traveling in the same direction as the truck 

in question, located ahead of it as it initiates its run. 

• on_road_trucks_same_route: Specifies the count of trucks traveling in the same direction, 

operating on the same route, and positioned ahead of the truck as it commences its run. 

 

 

3.6 Limitation  
 

HaulSim stands as a powerful mining software with a wide array of capabilities. Mining companies have 

the option to integrate their own data into the software, encompassing elements such as topology, 

road networks, schedules, and fleets. However, generating certain aspects from scratch can introduce 

uncertainties when attempting to translate them into real-life scenarios. It's important to note that 

HaulSim has limitations in handling location data. Stationary locations are assigned initial coordinates, 

and while the road network is location-based, the precise tracking of truck locations during their travel 

on the road network is not supported within the raw data. 

Due to this limitation, only average truck speeds are utilized for analysis. Moreover, the varying length 

of road segments, with differences often in the order of tens of meters, poses challenges in data 

interpretation, and even minor errors can lead to significant deviations. To address this, hard-coded 

distances were implemented to delineate the shared zone of route 3 & 4. However, this approach 

comes with complexities, especially when trucks are in close proximity, where a mere difference of 

tens of meters per second can impact the distinction between bunching and smooth operational flow.  
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3.7 Optimization 
Now that the framework is established, it's time to delve into the optimization discussion. As 

demonstrated earlier, the optimization boundaries are already defined. The upper bound is 

determined by the data generated by the HaulSim software, while the lower bound corresponds to the 

best-case scenario. The optimization aims to minimize the collective queue time of all trucks. This 

approach is grounded in the rationale that if trucks can be held in a queue, they can also operate at 

reduced speeds, leading to decreased fuel consumption. While the outcome of the optimization is 

measured in terms of total queue time, it's important to note that the optimization process involves 

reducing the speed of the trucks. The total queue time is derived by computing 'simtime_end,' which 

signifies the conclusion of a 'run' and the point when a truck commences loading, and then subtracting 

the time it takes for the truck to arrive at the loader. The 'simtime_end' for each truck is predetermined 

and remains unalterable, as any changes to this parameter could potentially disrupt production and 

would not correlate with the upper and lower bounds of the optimization problem. On the other hand, 

the truck's arrival at the loader is contingent upon its average driving speed. Slower truck speeds lead 

to later arrivals at the loader, resulting in a reduced time difference between arrival and 'simtime_end,' 

ultimately contributing to a shorter queue time. 

 

The upper bound is determined by the HaulSim software, encompassing all the parameters previously 

discussed. It represents the simulated queue time in the simulation, reflecting the base-case conditions 

and optimized settings within the given simulation environment. This upper limit serves as a 

benchmark for evaluating the performance of any alternative scenarios or optimization strategies. In 

this context, the upper bound is represented by the base case scenario generated by HaulSim. This 

base case serves as the upper limit because, as we optimize the truck speed – a parameter logically 

expected to decrease as the goal of the optimization is to minimize total queue time, we refer to the 

base case as the upper bound. 

  

The lower bound, occasionally described as the slowest speed possible in the python code, represents 

the minimum speed at which a truck can travel so that as it arrives at the loader, when the loader 

completes its task with the preceding truck. In such operations, the key bottleneck lies in the loader's 

performance and utilization. Should the truck speeds drop below the best-case scenario, it would result 

in underutilized loaders, ultimately leading to a loss in production efficiency.  

 

3.7.1 Bunching 
Truck bunching significantly complicates this problem, as it prevents trucks from simply operating at 

their slowest possible speeds without causing congestion and impeding the overall process. While 

some trucks may be capable of attaining their best speeds, others must queue strategically to maintain 

productivity levels and avoid potential bottlenecks. Consequently, assigning an optimal truck speed 

that prevents bunching becomes the critical constraint in this optimization process. 

In this thesis 2 type of bunching are identified:  

Type 1 bunching can be described as follows: Each truck possesses both a start time and an arrival time 

at the loader. It is of utmost significance that when trucks follow the same route, the sequence of their 

start times mirrors the sequence of their arrival times at the loader. This condition plays a pivotal role 

in guiding the optimization process towards a more balanced reduction in truck speeds. When the 



Floris Vis 4604784 Master Thesis 
 34 

disparities between start times and arrival times become too pronounced, it signifies that trucks are 

attempting to overtake one another towards the end of their runs. 

Type 2 bunching can be described as follows: Initially, all trucks follow a predefined sequence of 

arrivals. However, due to speed adjustments, this sequence may undergo changes, particularly when 

trucks are on different routes. In shared road segments where both routes converge and overtaking is 

prohibited, Type 2 bunching occurs when the sequence of trucks arriving at the shared zone differs 

from the sequence in which they depart from it, owing to the new assigned speeds. This constraint 

holds significant influence in steering the optimization process, as a considerable portion of trucks may 

violate it if random speed assignments are employed. 

 

3.7.2 Pre-optimized adjustments  
Trucks within the HaulSim simulation often do not operate at their maximum speeds due to the 

presence of preceding trucks on the same route, typically occurring within shared zones. In these 

scenarios, trucks exhibit closely timed arrivals and departures at the shared zones. It's important to 

note that HaulSim, within the simulation itself, adjusts truck speeds. However, for the purposes of this 

thesis, only average speeds are considered. Consequently, some trucks are already grouped together 

in the bunching identification process. For the optimization of the trucks' speed, this is not an issue 

because the trucks that are behind other trucks will operate at a lower speed, which is what the 

optimization tries to accomplish. 

To resolve this, the algorithm makes an initial adjustment to the truck with the highest index in each 

identified bunching pair before the primary algorithm begins. This initial adjustment serves the 

purpose of aligning the starting point of the primary algorithm with the desired direction, effectively 

addressing the issue of initial bunching pairs to avoid initial penalties. 
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3.7.3 Metaheuristic  
Metaheuristics are advanced optimization algorithms designed to tackle complex problems where 

conventional methods might not suffice. These high-level, problem-independent strategies guide the 

search towards optimal or near-optimal solutions. By balancing exploration of the solution space with 

the refinement of known solutions, metaheuristics can navigate challenges and find solutions that 

other methods might miss. Their versatility makes them invaluable tools in a wide array of applications, 

from scheduling to machine learning (Du & Swamy 2016). 

One of the standout features of metaheuristics is their generality. Unlike many algorithms that are 

tailored for specific problems, metaheuristics can be applied to a vast array of optimization challenges. 

This adaptability is paired with an iterative approach. Typically, these algorithms commence with an 

initial solution and then, through repeated iterations, refine and enhance the quality of this solution. 

A key element in many metaheuristics is their inherent stochastic nature. By incorporating elements 

of randomness, they can escape the confines of local optima, ensuring a more comprehensive 

exploration of the solution space. This randomness, however, doesn't mean they operate without 

direction. On the contrary, they often employ sophisticated strategies to balance exploration which 

can be seen as searching new areas of the solution space with exploitation as refining known good 

solutions (Ezugwu et al. 2021). 

There are various kind of metaheuristics. Some, like Simulated Annealing and Tabu Search, focus on 

refining a single solution. Others, such as Genetic Algorithms or Particle Swarm Optimization, operate 

on a whole population of solutions, enhancing multiple candidates with each iteration (Boussaïd et al. 

2013). 

While the flexibility and effectiveness of metaheuristics make them a popular choice for many 

optimization problems, they are not without their challenges. For instance, they don't guarantee an 

optimal solution, or even the same solution and their performance can sometimes be sensitive to the 

specific settings of their parameters. 

Yet, despite these challenges, the applicability of metaheuristics is vast. From the realms of scheduling 

tasks in factories to routing data in networks, and even in areas like finance and machine learning, 

these algorithms have proven their worth time and again. In essence, in the vast landscape of 

optimization, metaheuristics stand out as versatile and powerful tools, ready to tackle the challenges 

of today's complex problems. 
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3.7.4 Simulated annealing    
 

Simulated Annealing (SA) is a stochastic optimization algorithm that draws inspiration from the 

annealing process in metallurgy, which involves gradual cooling to enhance stability and reduce 

imperfections. SA combines elements of the Monte Carlo simulation technique and the Metropolis 

Algorithm (Delahaye et al., 2019). Monte Carlo methods, within the realm of optimization, entail 

randomly sampling solutions from the solution space and assessing their quality. Meanwhile, the 

Metropolis algorithm mimics physical annealing and relies on the Metropolis acceptance criterion to 

determine whether to accept a new state. 

𝑃(0,1) <  𝑒−
𝐸𝑗−𝐸𝑖

𝑇 =  𝑒
𝐸𝑖−𝐸𝑗

𝑇   

Equation 3: Acceptance criteria Simulated Annealing algorithm. 

Where: 

P (0,1) = random change between 0 and 1  

Ei = energy (or cost) of the current state  

Ej = energy (or cost) of the next state  

T = temperature  

In the Simulated Annealing (SA) algorithm, the exponential function ex serves as a foundational 

component guiding the solution acceptance criterion. Notably, this function is always non-negative, 

with its value at x=0 being 1. When the cost function for the next state is lower, the resulting 

acceptance probability exceeds one, ensuring that the new state is invariably accepted. Within the SA 

framework, this exponential curve is instrumental in determining the acceptance probability of a 

proposed solution. Specifically, if a candidate solution presents a reduced energy level a paramount 

consideration in optimization contexts it is consistently accepted. 

However, when the energy of the new system is higher, the algorithm looks to the temperature 

parameter. Temperature serves as a measure of the algorithm's willingness to explore less favourable 

states in the search for the global minimum. As the system temperature remains high, the ex curve 

approaches the y-axis, and the likelihood of accepting configurations with higher energy increases. 

This characteristic serves as a fundamental feature of SA optimization, and it offers a clear advantage 

over conventional Monte Carlo simulations. SA performs exceptionally well in navigating complex 

solution spaces, skillfully avoiding the challenges of local minima. This capability is harnessed by 

systematically lowering the temperature throughout the optimization process. 
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3.8 Simulated Annealing optimization.  
 

As explained in the preceding section, SA serves as a potent optimization technique capable of 

overcoming local minima. This optimization approach is highly suitable for the current thesis because 

it effectively navigates past local minima by accepting slightly less favourable results. To prevent truck 

bunching, trucks can be adjusted to operate at slightly higher speeds, which can be accommodated by 

allowing other trucks to slow down. This strategic approach enables trucks to escape local minima, 

ultimately leading to a collective reduction in queue times across the system to achieve the optimal 

total queue time. The whole code of the simulated annealing can be found in the appendix. 

The optimization process commences with an initial solution derived from the original speeds obtained 

from HaulSim. To prevent initial bunching, minor adjustments are applied to selected trucks. The 

optimization code accommodates several configurable parameters where the first 5 are key to any SA 

optimization: 

• T: The initial temperature of the system. 

• T_min: The temperature at which the algorithm terminates. 

• alpha: The cooling rate that controls the temperature reduction. 

• max_operations: The maximum number of operations allowed within each temperature stage. 

• max_solutions: max best solution, (not really needed but algorithm got stuck sometimes)  

The cost function in this context of the algorithm calculates the cost associated with a particular set of 

truck speeds. It quantifies how "good" or "bad" a given solution is in the context of the optimization 

problem. In this specific case, the cost function is designed to minimize the total queue time of trucks. 

While it also keeps the trucks from bunching.  

Here's a breakdown of the steps involved in the cost function: 

1. Adjust truck speeds: It starts by adjusting the speeds of the trucks based on the proposed 

changes. 

2. Calculate adjusted arrival times: Using the adjusted speeds, it calculates the arrival times of 

each truck at the loading point (loader) after traveling a certain distance. 

3. Calculate adjusted arrival times in shared zones: It calculates the arrival times of trucks at 

shared zones, considering the distances and speeds for each truck. This step also involves 

taking into account the minimum arrival times for trucks on different routes. 

4. Calculate adjusted departure times in shared zones: Similar to the arrival times, it calculates 

the departure times of trucks from shared zones based on their adjusted speeds. 

5. Check for bunching: It identifies two types of bunching scenarios: Type 1 (Loader Sequence) 

and Type 2 (Shared Zone Sequence). Bunching occurs when trucks on the same route do not 

follow the same sequence of start times and loader arrival times or when trucks on different 

routes have different sequences of arrival and departure times at shared zones. 

6. Calculate queue times: It computes the queue times for each truck, which is the time spent 

waiting at the loader before being loaded. 

7. Calculate the total queue time: The cost function sums up the queue times of all trucks to 

obtain the total queue time for the entire system (with penalties if bunching occurs). 

With the initial parameters set and the cost function defined, the Simulated Annealing (SA) 

optimization loop can commence. Within this loop, there are a few additional parameters that warrant 

a brief introduction. Notably, the line where adjustments are calculated (adjustments = 

np.random.uniform(-2.5, 0.5, size=5)) determines the specifics of speed adjustments for the trucks, 
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including the range of adjustments (-2.5 to 0.5) and the number of trucks whose speeds are adjusted 

simultaneously (size=5). These parameters influence the exploration of the solution space and 

performance during the SA optimization. 

1. Initialization: 

• Initialize the current speeds (current_speeds) with the original speeds from the HaulSim 

data. 

• Set various parameters, including (T), (T_min), (alpha), (max_operations), (max_solutions). 

2. Outer Loop (while T > T_min): 

• Continue until the temperature drops below the minimum temperature (T_min). 

3. Inner Loop (for i in range(max_operations): 

• Repeat a maximum of max_operations times within each temperature stage. 

4. Generate Proposed Speeds: 

• Create a set of proposed_speeds by making random adjustments to a subset of truck 

speeds from the current speeds (current_speeds). 

5. Limit Proposed Speeds: 

• Ensure that the proposed speeds do not go below a certain minimum speed (min_speeds) 

by taking the maximum between proposed and minimum speeds. 

6. Calculate Costs: 

• current_cost: Cost associated with the current truck speeds (current_speeds). 

• proposed_cost: Cost associated with the proposed speeds (proposed_speeds). 

7. Calculate Delta: 

• Determine delta as the difference between proposed_cost and current_cost. This 

represents how much the cost changes with the proposed speed adjustments. 

8. Accept or Reject Proposed Solution: 

• Decide whether to accept or reject the proposed speeds based on delta and a random 

factor (np.random.rand()). If delta is negative (improved solution), it is accepted. Even if 

delta is positive, there's a chance to accept it probabilistically. 

9. Update Best Solution: 

• If the proposed solution is accepted, it becomes the new current solution 

(current_speeds). If its cost is lower than the best-known cost (best_cost), it becomes the 

new best solution, and best_speeds is updated accordingly. 

10. Stopping Conditions: 

• If the maximum number of improved solutions (max_solutions) is reached, terminate the 

SA process early. 

• If no more improved solutions can be found within the current temperature stage (i.e., no 

more accepted solutions with negative delta), reduce the temperature T using the cooling 

rate alpha, and proceed to the next temperature stage. 

11. Repeat:   

• step 3 -11 while T is above T_min 
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Figure 12: Flowchart of the SA algorithm 

The algorithm aims to explore the solution space gradually, searching for better solutions while 

considering both cost improvement (delta) and a probabilistic acceptance criterion based on 

temperature. Overall, the SA algorithm seeks to optimize the truck speeds to minimize the total queue 

time by iteratively adjusting speeds and gradually reducing the temperature. It balances exploration 

(acceptance of non-improving solutions) and exploitation (acceptance of improving solutions) to 

navigate complex solution spaces and potentially escape local minima. The goal of the SA optimization 

is to find a set of truck speeds that minimize this total queue time. Therefore, the cost function returns 

a value that represents the total queue time associated with the proposed truck speeds. The SA 

algorithm aims to minimize this cost function by adjusting truck speeds iteratively until an optimal (or 

near-optimal) solution is found. 
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3.9 Fuel consumption 
 

The understanding of fuel consumption in conventional vehicle use is a well-established aspect within 

the multitrillion-dollar automotive industry. This comprehension is largely consistent worldwide, given 

that most cars operate on asphalt roads at similar speeds. However, when it comes to mining trucks, 

they operate at significantly lower speeds, resulting in substantially reduced air resistance compared 

to typical road trucks. This difference in air resistance is particularly impactful when these trucks are 

fully loaded and operate at very low speeds, as the effect of air resistance increases exponentially with 

velocity. Furthermore, mining trucks often exhibit a much greater weight, sometimes reaching up to 

10 times the weight of standard trucks. Consequently, the significance of rolling resistance far 

surpasses that of air resistance. Additionally, these trucks are frequently used on roads with a high 

coefficient of rolling resistance, such as sandy or gravelly surfaces. Our comprehension of rolling 

resistance is not as comprehensive as our understanding of air resistance. While this disparity may not 

be apparent in controlled laboratory settings, it becomes highly significant in real-world scenarios due 

to the dynamic and variable road conditions that vehicles encounter during their operations. These 

changing road conditions have a substantial impact on the fuel consumption performance of vehicles. 

In the literature review, it is evident that most scientific papers have provided a consistent scientific 

response regarding the influence of speed on rolling resistance. However, those papers do not 

uniformly assert that there is no observed increase in rolling resistance (Crr) with an increase in speed. 

However, it is essential to emphasize that this conclusion is derived from studies conducted in non-

mining environments, where vehicle weight and road conditions differ substantially. In a study by Adair 

et al. (2015), a notable correlation between speed and rolling resistance is discernible. It is worth 

noting that rolling resistance increases by a modest 0.1 when the speed is raised from 10 to 40 km/h. 

While this finding may not be particularly striking, it is indeed a discernible trend in the data. However, 

different studies may interpret these findings differently, and further research may yield varying 

perspectives on this relationship.  

 

Figure 13: Rolling resistance coefficient vs speed (Adair et al. (2015)) 
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In a study conducted by Soofastaei et al. in 2015, a fuel consumption index was established, expressing 

the FC index in units of liters per tonne per kilometer (l/tonne*km). It is noteworthy that most 

publications by Soofastaei predominantly present graphs utilizing the FC index in units of liters per 

tonne*hour (l/tonnehr). Furthermore, these graphs frequently feature Gross Vehicle Weight (GVW) 

on the x-axis, often illustrating data line for both 10 and 15 km. However, due to the relatively small 

differences observed, it becomes challenging to apply these findings directly to our case, as the 

potential reductions in fuel consumption are offset by the extended travel time taken by trucks to 

reach their destinations. 

 

The data utilized for this thesis is presented in the figure below:  

 

Figure 14: Fuel consumption index (L/(ton*km)) vs speed (Soofastaei et al. 2015)  

An exponential fitting approach was employed to derive three distinct fuel consumption curves, each 

corresponding to different total resistance levels. These curves are expressed by the following 

mathematical formulas: 

𝐹𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 (
𝐿

𝑡𝑜𝑛 ∗ 𝑘𝑚
) 𝑎𝑡 𝑇𝑅 10 = 0.00510 ∗  𝑒0.10337∗𝑆 + 0.01807 

𝐹𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 (
𝐿

𝑡𝑜𝑛 ∗ 𝑘𝑚
) 𝑎𝑡 𝑇𝑅 12 = 0.00609 ∗  𝑒0.10024∗𝑆 + 0.03505 

𝐹𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 (
𝐿

𝑡𝑜𝑛 ∗ 𝑘𝑚
) 𝑎𝑡 𝑇𝑅 15 = 0.00254 ∗  𝑒0.12891∗𝑆 + 0.07544 

Equation 4: Fuel consumption index at TR 10, 12 and 15 

As depicted in the figure, the rise in speed exhibits an exponential pattern, leading to noteworthy fuel 

economy improvements. To harness this relationship, an exponential fit was generated using the raw 
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data, incorporating the total resistance (TR) as a variable. Although the exact translation of this trend 

to low total resistance consumption remains somewhat uncertain due to limited data, for the purposes 

of this thesis, an assumption has been made. To facilitate calculations, the formula that considers total 

resistance as a variable is presented below: 

𝐹𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 (
𝐿

𝑡𝑜𝑛 ∗ 𝑘𝑚
) = 0.0039 ∗ 𝑒0.1143∗𝑆 + (0.0103 ∗ 𝑇𝑅) − 0.00834  

Equation 5: Fuel consumption index with TR and speed variable  

Based on the available data, this formula appears to be the most suitable. However, it's important to 

note that the model has been trained specifically for total resistance (TR) values of 10, 12, and 15. 

Given the similarity in shapes of the fitted curves, adjustments have been made to the formula to 

enhance its applicability to lower TR values. This modification is aimed at offering a more accurate 

representation of fuel consumption across various total resistance (TR) and speed levels. To achieve 

this, adjustments have been made to the formula to account for specific TR variations, as will be 

elucidated later. These adaptations are visually represented by the inclusion of TR lines in the 

accompanying figure, along with their corresponding formulas: 

𝐹𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 (
𝐿

𝑡𝑜𝑛 ∗ 𝑘𝑚
) = 0.0039 ∗  𝑒0.1143∗𝑆 + (0.00413 ∗ 𝑇𝑅)  

Equation 6: Adjusted fuel consumption index with TR and speed variable  

 

Figure 15: Altered fuel consumption index (L/(ton*km)) vs speed for different TR’s   

Dealing with grade and its resulting Total Resistance (TR) calculations presents challenges. A negative 

grade can lead to a negative TR, which, however, does not correspond to negative fuel consumption, 

especially for diesel trucks. Diesel trucks cannot emit negative fuel. While the situation may differ with 
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electric trucks who can regenerate power, it's important to note that this thesis primarily focuses on 

diesel trucks. 

To address this issue, the TR function has been modified to handle negative values as well. An adapted 

TR function is presented and utilized in the calculations in the figure below. This modified TR function 

tends to slightly overestimate TR, as observed in the figure. Conversely, the figure above tends to 

slightly underestimate Fuel Consumption (FC). The combination of these equations and adjustments 

aims to closely emulate fuel consumption in various scenarios. This approach strives to provide both 

logical values for low or negative TRs and a close approximation for TR values that align with the 

available data. 

 

Figure 16: Modified TR function 

Considering the detailed modifications and fuel consumption formulas outlined previously, the 

"Results" section will provide a more lucid understanding of the derivations of specific figures and 

metrics. Within this section, we will present heatmaps that represent fuel consumption at varying 

speeds. It's crucial to note that the fuel consumption index is expressed in Litres / (km × ton) To derive 

the absolute fuel consumption, both the weight or payload and the distance travelled must be 

integrated into the calculations. 

An essential assumption made in our analysis is the addition of supplementary weight to the trucks. 

This is incorporated because trucks must have a baseline weight for the calculations to remain logical 

and meaningful. If a truck weighs 150 tons plus its payload, the fuel consumption is specified per ton 

moved of the payload. In our calculations, however, we assume the truck to be 50 tons. This adaptation 

ensures that even empty trucks have a weight to calculate with. The reduction in weight is 

implemented so that the weight of the trucks does not become too dominant in the calculations.  
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It is good to acknowledge that the fuel consumption calculations are based on certain assumptions. 

The extraction of data, limited to cases with TR values above 10, can yield fuel consumption 

calculations that may not directly correlate with real-world scenarios. This is particularly evident in 

situations such as the downhill sections of the mine, where the grade leads to negative TR calculations. 

Nevertheless, with the incorporation of specific assumptions, all translations are consistently applied 

across different speeds. This uniform approach serves to demonstrate an approximation of the 

percentage of diesel saved, offering insights into the potential fuel conservation under various 

conditions.  
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4 Results  
 

4.1 Results of SA optimization 
In this section, we'll delve into the outcomes of the application of the SA optimization method. This 

technique reduces the waiting time of trucks at the loading point by adjusting their speeds. Once we've 

determined the optimized truck speeds, we can compute fuel consumption and estimate overall 

savings. Additionally, we'll conduct a sensitivity review on specific factors within the optimization to 

discern their influence on this simulation. In each scenario, two loaders are consistently present. 

However, the number of trucks varies across different scenarios. Despite these variations, production 

remains consistent, and the production time is unchanged. The loader's utilization is seen as the 

limiting factor in the operation. All numbers which are represented in the table below can have a very 

small alteration of less than half of a percent because of the random factors in the simulation. 

Table 2: Production of mine 

Production  60000 tons 

Simulation time  9 hours  

Loaders 2 

 

The table below presents the six distinct truck scenarios, each accompanied by its initial queue time 

and a corresponding diagram illustrating the initial queue size. Over the subsequent four pages, the 

results for the initial queue sizes of loaders 1 and 2 are displayed, spanning all the various truck 

combinations. It's worth noting that due to the mechanics of Haulsim and the optimization approach 

of the model, there will always be a queue time. This persists even if the trucks operate at their slowest 

possible speeds. This phenomenon is attributed to the first pass delay inherent in the simulation 

environment. 

Table 3: Number of trucks, initial queue time  

Number of trucks Initial queue time Split  

22 665 12/10 

26 2381 15/11 

30 4139 17/13 

34 5819 19/15 

38 7420 22/16 

42 9065 24/18 

 

The first graph in figures 17 and 19 show the results for the 22-truck scenario. The graphs indicate that 

truck queue time is not fully optimized, even though there is little queue time. The data shows 

instances of two trucks in the queue, and specifically on Route 4, there is a notable period of no queue 

time, which suggests that a loader is not being fully utilized in this scenario. Subsequent graphs within 

Figures 17, 18, 19, and 20 suggest full utilization of loaders, as evidenced by the consistently non-zero 

queue sizes. As depicted across these figures, the queue size largely fluctuates around an equilibrium, 

with a maximum deviation of +1 and a minimum of -1 for the majority of the simulation duration. 

Moreover, the results indicate that an increase in the number of trucks correlates with a considerable 

augmentation in the overall queue size.  
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Figure 17: Initial Queue size route 3 (22,26,30) trucks 
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Figure 18: Initial Queue size route 3 (34,38,42) trucks 
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Figure 19: Initial Queue size route 4 (22,26,30) trucks 
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Figure 20: Initial Queue size route 4 (34,38,42) trucks 
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The Simulated Annealing (SA) algorithm, used to optimize the speed of the trucks, is a probabilistic 

technique used for approximating the global optimum of a given function. Due to its inherent 

randomness, SA may not always yield identical outcomes in successive runs. This stochastic nature 

allows SA to escape local minima, providing a more comprehensive search for optimal solutions. 

However, it's worth noting that while SA can often bypass local minima, there's no guarantee it will 

always find the global optimum. Additionally, it's essential to consider the key parameters that 

significantly influence the SA optimization process. Proper parameter tuning can greatly enhance the 

algorithm's efficiency and accuracy in finding optimal solutions. Two critical metrics are pivotal for the 

results: the final queue time and the duration required for the algorithm to compute the solution. 

These calculations were performed on an Intel(R) Core (TM) i7-6700HQ CPU @ 2.60GHz 2.59 GHz. 

However, it's noteworthy that this laptop, being eight years old, has experienced some performance 

degradation over time. 

The results specify the boundaries, both maximum and minimum, for the number of trucks this 

particular model can effectively manage under the current conditions. In the case of the 22-truck 

model, it didn't optimize in the same fashion as other configurations. This 22-truck setup exemplifies 

what we label as an "under-trucked mine." the loaders aren't being fully utilized. Observations indicate 

that there are moments when one of the loaders experiences idle time, leading to situations with no 

queue. This also suggests that trucks cannot further decrease their speed without affecting production 

levels. Due to the stochastic nature of truck selection, a more favourable result might be achievable. 

Yet, it's essential to ensure that truck bunching doesn't occur, as it would adversely affect the 

optimization, leading to penalized outcomes. The 22-truck scenario was tested multiple times, but no 

improvement was observed from the initial run. This suggests that the model doesn't guarantee a 

feasible solution in situations with insufficient trucks. The table below presents the parameters that 

are used to determine the initial solutions of the SA optimization for the different truck scenarios. 

Table 4: Initial parameters SA optimization  

Starting temperature (T)  10 

Minimum temperature (T_min) 0.001 

Cooling rate (alpha) 0.9 

Max operation in a temperature stage 275 

Max speed adjustment above  +0.5 

Max speed adjustment down  -2.5 

Adjustment size  5  
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Figure 21: Optimized queue route 3 (26, 30) trucks  

Figures 21 and 22 presents the outcomes for the 26 and 30 truck scenarios. As depicted in the SA 

optimization figures, the queue size does not exceed one, indicating the optimization's efficacy in 

minimizing queue time for these scenarios. While the results might appear indistinguishable and 

challenging to discern at first glance, a closer examination of the subsequent numerical data will 

highlight the distinctions between the two scenarios. 
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Figure 22: Optimized queue route 4 (26, 30) trucks 
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Figure 23: Optimized queue route 3 & 4, 34 trucks 
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Figure 24: Optimized queue route 3 (38, 42) trucks & route 4, 38 trucks 

 

Figure 25: Optimized queue route 4, 42 trucks 

In the figures 23, 24 and 25, we observe the results for the 34, 38, and 42 truck scenarios. Interestingly, 

the outcomes of the first two scenarios are almost identical. As we increase the number of trucks, it 

becomes evident that the speed optimization algorithm struggles to reach the desired optimal 

outcome. Particularly in the 34-truck scenario, the algorithm performs relatively well, with seldom 

more than one truck in queue, except on a few occasions. However, with larger truck configurations, 

the model's efficiency isn't as pronounced as with the smaller ones. This diminished performance can 

be traced back to two main factors: firstly, the initial queue is notably large in both scenarios, so even 

though a significant chunk of the queue time is eliminated, a considerable queue still persists. 

Secondly, the minimum achievable speeds decrease substantially as the queues grow longer. This 

scenario sets a broader boundary within which the algorithm operates. Given the algorithm's inherent 

randomness, this can sometimes lead to larger differences and potential truck bunching. However, it's 

worth noting that by adjusting some parameters, a more favourable outcome might still be attainable, 

as alternative parameters might help the algorithm sidestep early settling into a local minimum. The 
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table presented below outlines the outcomes of the SA optimization based on the initial parameters. 

To account for the inherent randomness of the algorithm, each configuration has been executed a 

minimum of three times and the results given are average. 

Table 5: initial and optimized queue time for different truck scenarios 

Truck scenario Initial queue 
time (min) 

Optimized queue 
time (min) 

Solving time (s)  Shovel idle 
time (min) 

Shovel 
idle (%) 

22 665 NA NA 149 13.9 

26 2381 277 729 136 12.8 

30 4139 262 753 133 12.6 

34 5819 322 738 134 12.7 

38 7420 1479 699 134 12.7 

42 9065 3468 723 133 12.5 

 

The solving time for the SA optimization is independent of the number of trucks and is primarily 

influenced by its initial parameters. A statistical analysis of the optimization times suggests a 

distribution that approximates a normal distribution. The data has a mean solving time of 

approximately 736 seconds, with a standard deviation of about 45 seconds. The observed times range 

from a minimum of 649 seconds to a maximum of 864 seconds. 

 

 

Figure 26: Initial vs optimized queue time 

 

4.2 Sensitivity analysis  
In the subsequent section of this thesis, we will adjust the SA optimization parameters to examine their 

impact on the results. Given the inherent probabilistic nature of SA, it's paramount to understand that 

the algorithm is deeply dependent on its parameters to navigate towards optimal solutions. The 

selection of these parameters profoundly affects the algorithm's performance, its rate of convergence, 

and the performance of solutions it yields. The parameters of SA optimization, such as the initial 

temperature, cooling rate, and the number of iterations, among others, dictate the algorithm's 
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exploration and exploitation balance. A well-tuned parameter set can enable the algorithm to 

effectively navigate the solution space, avoiding local minima and converging to a near-optimal or 

optimal solution. 

The preliminary results of the thesis can be categorized into two distinct groups: the truck cases of 26, 

30, and 34 trucks, which all could be optimized to sub-optimality solution, and the scenarios involving 

38 and 42 trucks which still had considerable total queue times. For the first group, fine-tuning the 

parameters to bring the algorithm closer to near-optimal performance has a marginal impact on the 

algorithm's efficacy. However, it does increase the computational time required for resolution. Given 

that a near-optimal solution has already been identified for this group, the focus shifts to enhancing 

the algorithm's speed and examining the interplay between near-optimal performance and the 

algorithm's processing speed. 

Conversely, in the initial solutions for the larger truck scenarios, the algorithm did not pinpoint a near-

optimal solution. While it managed to significantly reduce idle time, there remained evident avenues 

for enhancement. The computational times for these solutions were consistent, barring the inherent 

randomness of the algorithm. Modifying the parameters to increase the processing speed for these 

larger scenarios might inadvertently lead to even less favourable outcomes. Nevertheless, the 

parameters governing the search space can be expanded. While this adjustment may necessitate 

increased computational time, it offers a promising likelihood of yielding superior results. 

During the initial temperature phase, there exists an opportunity to expand the search space. Given 

the elevated temperature, there's an increased probability of accepting less favourable solutions, 

which can be instrumental in evading local minima. In this segment of the results, the parameters are 

fine-tuned to identify a near-optimal solution for the larger truck configurations.  

Three key parameters will be examined to discern their impact on the results. Firstly, by elevating the 

initial temperature, the algorithm possesses an augmented likelihood of accepting suboptimal 

solutions, thereby broadening the solution space, and potentially enhancing the prospects of superior 

outcomes. A heightened initial temperature, given a consistent cooling rate (alpha), inherently leads 

to a greater number of solutions being explored. 

Secondly, the minimum temperature, denoted as Tmin, can be reduced to delve deeper into the 

prevailing solution domain of the local search space. At exceedingly low temperatures, the algorithm 

is less inclined to accept inferior solutions, compelling it to meticulously navigate within the current 

local search space. 

Lastly, the system's cooling rate, termed as alpha, dictates the temperature's decrement rate. With 

0<α<1, a larger alpha value signifies a more gradual cooling process, characterized by prolonged stages 

at elevated temperatures, thereby expanding the search space. 

It's imperative to note that modifications to all three parameters lead to an increase in the number of 

temperature stages, invariably exerting upward pressure on the algorithm's computational time. 



Floris Vis 4604784 Master Thesis 
 57 

 

Figure 27: Average queue time and solving time with different parameter changes.  

As depicted in Figure 27, alterations to the parameters of the SA optimization algorithm can 

significantly influence its performance. The graph demonstrates that the magnitude of influence from 

these parameter changes remains consistent across scenarios. However, within this consistency, there 

are distinct variations. For instance, an increased starting temperature has a minimal impact on the 

42-truck scenario but presents a more pronounced effect in the 38-truck scenario. Notably, in the 38-

truck scenario, a near-optimal solution is already achieved using the initial parameters and an alpha 

value of 0.95. In contrast, for the larger 42-truck scenario, a near-optimal solution is attained only after 

adjusting all parameters. For the 42-truck scenario it's worth mentioning that while most results closely 

approached an optimal solution, one iteration produced a solution of 1700, which is five times higher. 

Such discrepancies can be attributed to the inherent randomness of the algorithm, and adjusting 

parameters can reduce the chances of these variations. 

It's noteworthy that the algorithm's solving time exhibits no correlation with the results within 

specified parameters, nor does it correlate with the number of trucks. However, there's a pronounced 

correlation between the increase in solving time and the model's performance when parameters are 

altered. This observation aligns with expectations, especially considering that the number of 

temperature stages is determined by the subsequent formula:  

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑠𝑡𝑎𝑔𝑒𝑠 =  
ln (

𝑇_𝑚𝑖𝑛
𝑠𝑡𝑎𝑟𝑡 𝑇)

ln (𝑎𝑙𝑝ℎ𝑎)
 

Equation 7: Number of temperature stages  

In the table below the result of the amount of temperature stage are shown. 

Table 6: Temperature stages with given parameters 

Start temperature  Minimum temperature  Cooling rate (alpha) Number of temperature 
stage 

10 0.001 0.9 87 

20 0.001 0.9 94 

10 0.0001 0.9 109 

10 0.001 0.95 180 

20 0.0001 0.95 238 
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The correlation coefficient between the number of temperature stages and the solving time is 0.99. 

This indicates that, aside from the inherent randomness that can influence solving time, there is a 

direct correlation with the number of stages. There exists a robust correlation between the number of 

temperature stages and the algorithm's performance. For the 38-truck scenario, a near-optimal 

solution is typically achieved within 180 temperature stages. In contrast, the 42-truck scenario 

frequently approaches a near-optimal solution around 238 temperature stages. To evaluate the 

algorithm's performance, random parameters are chosen that yield 238 temperature stages. These 

parameters range from being proximate to, to deviating significantly from, the initial set of 238 

parameters. The table with the random parameter is given below: 

Table 7: Random parameter with same temperature stage 

 Start temperature Minimum 
temperature 

Cooling rate 
(alpha) 

Number of 
temperature stages 

Initial stage 20 0.0001 0.95 238 

Stage 1 10 0.0001 0.953 238 

Stage 2 10 0.00000001 0.916611 238 

Stage 3 100000 0.00001 0.907785 238 

 

Al the results were tested and yielded similar solving times in the figure below are the spreads of the 

results given: 

  

Figure 28: Boxplots of final queue time 

From Figure 28, it can be inferred that merely relying on the number of temperature stages does not 

consistently ensures that the algorithm approaches a near-optimal solution. While outliers exist in 

every stage, for the 42-truck scenario, an algorithm with an increased number of temperature stages 
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does enhance the likelihood of achieving a near-optimal solution. However, this augmentation is 

accompanied by extended solving time, which may not be preferable in many contexts. Notably, each 

stage did succeed in obtaining a near-optimal solution, suggesting that the proximity to a near-optimal 

solution is significantly influenced by the number of temperature stages. 

 

In the subsequent section of the results, attention is directed towards the smaller truck scenarios, 

which already achieved a near-optimal solution using the initial parameters of the SA optimization. As 

observed in the previous section, the cooling rate, alpha, significantly impacts the number of 

temperature stages, which in turn influences the algorithm's solving time. The table below illustrates 

the effects of a reduced cooling rate on the number of temperature stages. 

Table 8: Temperature stage with different cooling rates 

Start temperature  Minimum temperature  Cooling rate (alpha) Number of temperature 
stage 

10 0.001 0.9 87 

10 0.001 0.8 41 

10 0.001 0.7 26 

10 0.001 0.6 18 
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A reduced cooling rate is anticipated to decrease the algorithm's solving time, but it may also impact 

its efficacy in minimizing the total queue time. The figure below showcases the final queue time across 

various truck scenarios.  

  

Figure 29: Final queue time with different alpha (truck scenario 26, 30 and 34) 

  

Figure 30: Average solving times with different alpha (truck scenario 26, 30 and 34) 

In the depicted figure, it is evident that the solving time decreases as α diminishes. Similar to prior 

observations, the truck scenarios do not influence the solving time. Only the SA optimization 

parameter exerts an effect on this metric. 

Furthermore, figure 29 illustrates that for an α value of 0.9, all scenarios consistently yield near-optimal 

solutions. However, for the 34-truck scenario, the model's performance begins to wane when α is 

reduced below 0.9. In the 30-truck scenario, there is a gradual increase in queue time at an α of 0.7, 

and the model ceases to provide near-optimal solutions when α falls to 0.6. Remarkably, the 26-truck 

scenario maintains near-optimal performance even at an α of 0.6, suggesting its potential compatibility 

with lower alpha which results in faster algorithms.  
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Upon examining the aggregate data, a distinct correlation emerges between the solving time and the 

number of trucks. As the number of trucks increases, the solving time correspondingly rises. This can 

be attributed to the fact that the algorithm necessitates more iterations to reach the lower bound of 

its operational framework. A higher truck count in the system invariably leads to elongated queue 

times, implying that trucks can operate at even lower speeds than a scenario with fever trucks, 

consequently escalating the overall duration of the algorithm. However, various parameters 

concerning speed adjustment were evaluated. Surprisingly, a pronounced reduction in speed did not 

enhance the performance. In fact, outcomes with considerably reduced truck speeds underperformed 

compared to the baseline parameters. This indicates that excessive reductions in speed might induce 

issues such as bunching or entrapment in sub-optimal local minima, leading to less than ideal results. 

 

In all scenarios, a near-optimal solution is achievable. Table 9 presents the outcomes, showing a 

comparison of the average optimized speeds against the optimal speeds. 

Table 9: Original vs optimized average speed for the empty runs in different truck scenarios.  

Number of trucks Average original speeds (km/h) Average optimized speeds (km/h) 

26 40.93 23.11 

30 41.66 16.78 

34 41.29 13.05 

38 41.96 10.80 

42 42.07 9.09 
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4.3 Fuel consumption 
For the fuel consumption calculations in this sub-chapter, we employ the 34-truck scenario as a basis. 

It's important to note that the figures might vary, with fuel consumption per truck increasing when 

there are fewer trucks. As shown in chapter 5.4. The disparity between the original and optimized fuel 

consumption tends to widen with an increasing number of trucks, primarily because a greater number 

of trucks implies the potential for slower optimal speeds. However, excessively increasing the truck 

count in the mine can introduce additional associated costs, and it's essential to maintain a certain 

speed for the trucks to operate efficiently. 

The calculations for fuel consumption were conducted using the formulas of equation number 3 

presented in the methodology section. For the initial three computations, the fuel consumption, 

delineated at specific TR levels, aligns most closely with data found in existing literature. The 

subsequent graphs in figure 31 display the fuel consumption calculations for TR levels 10, 12, and 15. 

The 'original speed' denotes the velocities recorded in the Haulsim simulation. The 'slowest speed' is 

identified as the optimal speed achievable, as calculated by Equation 2. The 'optimized speeds' are 

generated through SA optimization. In near-optimal solutions, these optimized speeds will be close to 

the best speeds and result in similar levels of fuel consumption.  

 

 

Figure 31: Fuel consumption (original vs slowest vs optimized) at different TR’s  
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Figure 31 exclusively illustrates the fuel consumption of the descending trucks, as these are the trucks 

subject to optimization. Notably, there is a substantial reduction in fuel consumption during the 

descent of these trucks. In mines where ore transportation is primarily upward, the fuel consumed 

during ascent constitutes a significantly larger fraction of the total fuel consumption. The subsequent 

graphs in figure 32 provide a comparison of total fuel consumption between the original and optimized 

scenarios. 

 

 

 

Figure 32: Total fuel consumption for different TR’s 
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The total fuel savings at TR 10, 12 and 15 are recorded at 23%, 19%, and 20% respectively. It's 

imperative to note that these savings are based on a scenario of constant TR, which does not accurately 

mirror real-world conditions; assuming an opposing grade would be an unrealistic representation.  

 

In order to model fuel consumption variations due to grade changes, a fuel emission heatmap was 

developed. This was achieved by employing Formula 17 to adjust the TR and Formula 16 to calculate 

fuel consumption, with TR and speed serving as variables. These calculations are further elucidated in 

the methodology section. Shown in figures 33 and 34. The two heatmaps represent the optimized and 

original speeds. Owing to the fact that a majority of the empty runs are downhill, there is a diminished 

fuel emission on the mine's steep roads, with more pronounced emissions observed on the extended 

flat terrains. 

 

Figure 33: Empty runs fuel consumption heatmap optimized speeds  
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Figure 34: Empty runs fuel consumption heatmap original speeds 

The two heatmaps figures 33 and 34 exhibit striking similarities, as both pertain to the empty runs. As 

illustrated in the subsequent figure, which displays the fuel emission map for the mine's loaded runs, 

there's a markedly increased fuel consumption for these runs. This elevated consumption is observed 

despite the trucks operating at merely a third of the original speed of the empty trucks. Such 

heightened fuel usage can be attributed to the steep gradients and substantial payloads with which 

they operate. 

In Figure 35, the figure illustrates the fuel consumption associated with loaded runs, revealing a 

notable disparity when compared to empty runs. This increase can be attributed to the fact that 

loaded trucks must contend with the opposing force of gravity, leading to an increase in their total 

resistance (TR). Moreover, the presence of a payload effectively more than doubles the weight of the 

trucks, further accentuating the fuel consumption differential between loaded and empty runs. 

It is noteworthy that the fuel consumption calculations for loaded runs yield a higher degree of 

accuracy than those for empty runs. This enhanced accuracy is primarily attributable to the fact that 

loaded trucks operate with total resistances (TR) that align more closely with the provided data. 

Additionally, they operate within the specified speed range, contributing to the improved precision 

of fuel consumption estimations. 
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Figure 35: Loaded runs fuel consumption heatmap original speeds 

In the table below the total fuel consumption of all the truck are given.  

Table 10: Total fuel emissions of heatmaps  

 Fuel emission (L) 

Loaded run original speeds 67805 

Empty runs original speeds 33333 

Empty runs optimized speeds  2310 

Fuel saving on only empty runs  93.1% 

Fuel saving total  30.7% 
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4.4 Fuel saving comparison 
 

In every optimized truck scenario, the loaders were fully utilized, rendering the integration of 

additional trucks into the system suboptimal. This research incorporated extra trucks solely to explore 

the boundaries of the algorithm's capabilities and to facilitate a robust comparison. It also considered 

the impact of varying parameters within the Simulated Annealing (SA) optimization algorithm. 

Moreover, an increase in the number of trucks led to extended queuing times, which in turn could lead 

to reduced optimized speeds. According to the methodology employed for data extrapolation, this 

deceleration is likely to result in diminished fuel consumption, thereby contributing to greater 

economic savings. In the next section of the results the fuel consumption saving of the different truck 

scenarios will be compared.  

Table 11: Fuel consumption in Liters at specific TR’s in different truck scenarios 

Truck scenario 26 30 34 38 42 

TR = 10 empty runs 
original speeds 

17103 18082 17189 17418 17413 

TR = 10 empty runs 
optimized speeds 

3378 2112 1654 1423 1304 

TR = 10 loaded runs 
original speeds 

34077 34152 34125 33939 34044 

TR = 12 empty runs 
original speeds 

18689 19668 18716 18918 18900 

TR = 12 empty runs 
optimized speeds 

4435 3049 2522 2244 2104 

TR = 12 loaded runs 
original speeds 

46170 46263 46221 46015 46141 

TR = 15 empty runs 
original speeds 

26641 28439 27024 27457 27508 

TR = 15 empty runs 
optimized speeds 

5753 4390 3899 3627 3506 

TR = 15 loaded runs 
original speeds 

61903 62009 61950 61722 61873 

 

Figures 36 and 37 illustrate the fuel savings accrued solely from the unladen journeys of the truck, 

where the saving are represented as a percentage of only the empty runs and as a percentage of the 

total emitted fuel. The data presented in these figures indicate a positive correlation between the 

number of trucks and the magnitude of fuel savings. Notably, an anomaly is observed in the scenario 

involving 30 trucks at TR 10; this deviation can be attributed to that in this instance the lowest possible 

speed is reached, which, in turn, corresponds to an optimal solution in terms of fuel efficiency. The fuel 

savings ff the empty runs at a TR of 10 increase from 80% to 93.5% which result in a total saving 

increase from 27% to 31%.   



Floris Vis 4604784 Master Thesis 
 68 

 

Figure 36: Percentage of savings for empty runs  

 

Figure 37: Total fuel consumption saving for different truck scenarios. 
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Table 11 presents the fuel consumption data derived from the heatmaps, where the consumption is 

calculated based on the speed and TR’s associated with specific road segments. The observed 

discrepancies with the specific TR’s can be attributed to the fact that the underlying formula was 

originally developed for scenarios characterized by high TR values. The formulas, as originally 

formulated, would result in negative values when applied to low TR scenarios. As outlined in the 

methodology, these formulas have been revised to preclude negative values, a modification that may, 

in some cases, lead to an overestimation of fuel consumption. The resulting savings are shown in 

figures 38 and 39. 

Table 12: Fuel emitted on heat map in Liters for different truck scenarios. 

Truck scenario 26 30 34 38  42 

Empty runs 
original speed  

5498 3306 2310 2224 2048 

Empty runs 
optimized speed  

32785 35232 33333 34494 34745 

Loaded runs 
original speed  

67712 67853 67804 67445 67639 

  

 

Figure 38: Fuel consumption savings on the empty runs 
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Figure 39: Total fuel consumption savings 

 

The data presented in Figures 38 and 39 indicate a proportional increase in fuel savings corresponding 
with an increase in the number of trucks. The exception at the 30-truck scenario is attributable to the 
Simulated Annealing (SA) optimization reaching an optimal solution.  
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5 Discussion  
 

The Haulsim software's limitations, particularly its lack of location-based, exportable data, represent a 

significant barrier to achieving more precise results. The average speeds of mining trucks provide an 

initial view of the potential efficiencies, yet we are constrained by the parameters of the Simulated 

Annealing (SA) optimization process. Due to Haulsim's inability to simulate the secondary effects of 

loading and unloading delays, our optimization is limited to the intervals between these events. In the 

dynamic environment of mining operations, being able to adjust and enhance these aspects would 

greatly increase the utility of the tool in realizing the full extent of possible optimizations. 

In the realm of heavy-duty vehicle modelling, there exists a conspicuous gap in extensive research, or 

perhaps much of the research remains inaccessible to the public. While the current optimization 

paradigm posits that lower speeds are invariably preferable, real-world scenarios paint a more 

nuanced picture. Trucks, under specific circumstances, may have an optimal operational speed that 

diverges from the minimum. It's imperative to calibrate mining trucks' speeds to these optimal 

benchmarks, particularly when considering the diverse and often harsh conditions found in mining 

environments. "Presently, existing models are not designed to evaluate the outcomes of reduced 

speeds in mining trucks. Typically, a reduction in speed leads to an increase in fuel consumption as per 

these models. This is attributed to the unit conversion employed in the models, due to the fact that 

lower speeds result in decreased distance coverage. Consequently, the implications of speed 

reductions on fuel efficiency and overall operational efficacy remain inadequately explored within 

these frameworks." 

Existing datasets, while comprehensive, often present highly specific data, delineating fuel 

consumption based on particular payloads, speeds, and Total Resistance (TR) values. A distinct 

delineation for TR and speed alone could significantly enhance our understanding of fuel consumption 

modelling. Notably, many models predominantly utilize a TR value of 10 or higher, which typically 

represents scenarios of exiting mining pits. The domain of fuel consumption modelling could benefit 

from broadening its scope to investigate scenarios where trucks, under certain payloads and negative 

TR, may not require more fuel than the idle state. If feasible, mine design could incorporate such 

considerations to optimize and reduce fuel consumption. 

The observed savings in total fuel consumption amount to approximately 27-32% in the different truck 

scenarios. This percentage of savings is overstated. This can be attributed to the manner in which the 

speed formulas are extrapolated. The fuel consumption data is derived from moderate to high TR 

levels, where the operational speeds range between 5-30 km/h. Given that fuel consumption increases 

exponentially with speed, higher speeds inevitably lead to heightened fuel usage. However, the empty 

runs exhibit low to moderate TR levels, at which elevated speeds of 40+ km/h are readily achievable. 

This phenomenon tends to overestimate the fuel consumption during the empty runs at their native 

speeds. Due to the limited availability of data on fuel consumption modelling at low TR values, it 

remains challenging to ascertain its precise impact. The impact on scenarios involving more trucks is 

difficult to predict. In this study, increasing the number of trucks leads to fuel savings because their 

optimized speed is lower. However, in actual practice, trucks emit fuel while idle, a consideration that 

might become irrelevant if electric trucks become the norm. Still, it's important to assess whether the 

savings in fuel outweigh the extra capital investment and labour costs associated with electric trucks. 
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6 Conclusion  
 

The primary aim of this thesis was to create a model capable of optimizing truck speeds for reduced 

fuel consumption. This research utilizes a custom-designed mine, where simulation data is generated 

using Haulsim. The data from Haulsim is subsequently processed using Python, and the optimized truck 

speeds are determined through the application of the Simulated Annealing (SA) optimization 

algorithm. 

In summarizing the outcomes, Simulated Annealing (SA) has emerged as an effective tool for optimizing 

truck speeds to extensive queue times. With its initial parameters, the algorithm exhibited 

commendable performance, producing near-optimal solutions, particularly for scenarios with 26, 30 

and 34 trucks. While adjusting the parameters expedited the optimization for these smaller truck 

configurations without compromising results, the 38 and 42 truck scenarios necessitated a more 

nuanced approach. Although parameter modifications led to improved outcomes for these larger 

configurations, they were accompanied by extended solving times. Furthermore, these scenarios 

occasionally fell short of achieving near-optimal results. 

A discernible correlation was observed between the number of temperature stages and the solving 

time. This suggests a general heuristic: larger truck scenarios typically require a greater number of 

temperature stages to gravitate towards a near-optimal solution. However, the intrinsic randomness 

of the SA algorithm presents challenges. While it offers adaptability, it also introduces an element of 

unpredictability, meaning that reaching an optimal solution isn't guaranteed in every instance. 

Concerning fuel consumption, this study, while predominantly employing hypothetical scenarios, 

demonstrated a reduction in total fuel usage ranging from 27% to 32%. This decrease was observed 

both in specific Total Resistances (TRs) and in the heat map analysis, where TR and speed were varied 

as parameters. While these results may not translate directly to real-world contexts, they underscore 

the vast optimization potential that exists in actual mining operations. Even marginal savings in fuel 

consumption can translate into significant economic and environmental benefits, given the colossal 

scale of mining activities. 

The larger truck scenarios in this simulation suggest that an increase in number of trucks does increase 

the fuel savings. However, it is important to recognize that these savings might not directly translate 

to real-world scenarios. Even if such fuel savings are achievable, it's critical to consider that they may 

not offset the additional costs incurred, including the capital investment required for procuring more 

trucks and the accompanying increase in labour expenses. 

In light of these findings, it is imperative for mining operations to leverage advanced optimization 

techniques, like SA, in conjunction with tools like Artificial Neural Networks, which will be explained 

more in the recommendations chapter. Such an approach not only ensures efficient operations but 

also paves the way for sustainable practices in the mining industry. 
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7 Recommendation  
 

Each mining site presents its unique set of challenges, necessitating a flexible framework capable of 

being seamlessly integrated across varying situations. Such a framework should be adept at estimating 

the fuel consumption of mining trucks at specific Total Resistance (TRs) and speeds. This would 

facilitate accurate determinations of areas of high fuel emission, zones where trucks can decelerate, 

or even instances where acceleration is feasible, provided it is counterbalanced by a reduction in speed 

elsewhere.  

Artificial Neural Networks (ANNs) present a promising avenue in this context. Given the vast reservoir 

of data points typical of mining operations, ANNs can be trained to discern patterns and behaviours in 

fuel consumption specific to each mine. Beyond fuel consumption, ANNs can be harnessed to predict 

aspects like road maintenance intervals, potentially leading to further reductions in fuel usage. 

As highlighted in multiple studies by Soofastaei, the three principal parameters influencing the fuel 

consumption of mining trucks are Total Resistance (TR), speed, and payload. The unit of measurement 

in the Multiple Linear Regression (MLR) model, which incorporates these parameters, is liters per hour 

(l/h). However, the l/h-based MLR is not directly applicable to scenarios where speeds are adjusted, as 

lower speeds result in fewer kilometers traveled but increased fuel usage per kilometer, contrary to 

the conclusions of other studies. Consequently, the development of an alternative Artificial Neural 

Network (ANN) is necessary, wherein the unit of liters per kilometer per ton (l/km*ton) is more 

appropriate. This unit allows for the calculation of specific fuel consumption based on road segments, 

considering the three aforementioned parameters. With this data, a real-time model could be 

constructed to advise optimal truck speeds, taking into account both production and operational 

constraints. 

Mining conglomerates, in their bid to remain competitive and reduce their carbon footprint, must 

leverage the immense data at their disposal. While significant fuel savings can be harvested from 

optimizing loaded runs, the empty runs too offer considerable opportunities for fuel conservation. 

Frameworks for developing Artificial Neural Networks (ANNs), which incorporate variables like 

distance, speed, Total Resistance (TR), and payload, can be established. Such comprehensive 

frameworks would enable the integration of all pertinent data, thereby facilitating more accurate 

estimations of fuel consumption across various mining environments. This approach would also be 

beneficial in accommodating the diverse range of mining truck types, ensuring applicability and 

accuracy in a broader spectrum of operational contexts. 

The advent of electric trucks, equipped with regenerative braking, introduces an added layer of 

complexity to the optimization puzzle. Unlike their diesel counterparts, which continue to consume 

fuel even during descent or when idling, electric trucks recapture energy during downhill trajectories. 

This fundamental shift necessitates a re-evaluation of prevailing optimization models, ensuring they 

are attuned to the changing landscape of vehicular technology in mining operations.  

A comprehensive understanding of fuel consumption can significantly enhance the effectiveness of 

optimization tools employed to predict and optimize said consumption. A synergistic approach, 

integrating meta-heuristics with Machine Learning (ML) techniques, particularly Artificial Neural 

Networks, is a promising strategy. Such a combination facilitates the simultaneous consideration of 

multiple salient parameters. Historically, both meta-heuristics and ANNs have demonstrated 

adaptability and efficacy across diverse scenarios, thus making them optimal candidates for addressing 

the complexities inherent in predicting and optimizing fuel consumption.  
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9 Appendix 
 

All of the code can be found in the git repository: https://github.com/Floris-4604784/ThesisSAP/ 


