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 a b s t r a c t

The transport of ions is governed by a species conservation equation and the Nernst-Planck flux expression. The 
latter requires information on the electrical potential, for which an additional transport equation is required. 
Traditional numerical approaches, such as solving the Poisson equation or applying the electroneutrality condi-
tion, face limitations in their applicability. In this work, a new numerical model is introduced for the electrical 
potential that effectively functions as a numerical switch between the Poisson equation and the electroneutrality 
condition. This model is tested for three different scenarios: a small-scale system where charge separation is ex-
pected in a large part of the domain, a large-scale system where charge separation is significantly less important, 
and a multi-ion liquid junction system. This new numerical model is capable of producing accurate results for 
all the tested systems.

1.  Introduction

The transport of ionic species is an important phenomenon that can 
be encountered in many different fields, ranging from biological systems 
to chemical applications. It is governed by a species conservation equa-
tion in combination with the Nernst-Planck flux expression. In addition 
to the species transport equations for the ions, an equation describing 
either the distribution of the electrical potential or the electrical field is 
required. To model these systems, several approaches can be found in 
the literature, each with their own assumptions and applications. Cohen 
and Cooley (1965) were among the first authors to numerically solve the 
system of equations for ion transport in a thin permeable membrane. 
They define a set of two equations: the Poisson equation and an equa-
tion for the total current density in the system, which are both defined 
in terms of the electrical field. Although these equations can be used to 
solve the separation of charge, Cohen and Cooley (1965) chose to use the 
electroneutrality assumption, which was first proposed by Planck (Jack-
son, 1974). This assumption entails that there can be no separation of 
charge. By employing this assumption, they reduce the Poisson equation 
to the electroneutrality condition. Even though this method no longer 
directly provides an expression for the electrical field, the equation for 
the total current density, which is used to close the system of equations, 
does contain the electrical field. However, these equations can also be 
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solved without assuming electroneutrality, for example Scharfetter and 
Gummel (1969) solved the Poisson equation in terms of the electrical 
field directly and Brumleve and Buck (1978) only used the equation for 
the total current density. Subramaniam et al. (2019) determined via a 
comparison between the use of the electroneutrality condition and the 
Poisson equation in terms of the electrical potential for a lithium sym-
metric cell that both models produce viable results. It is mentioned that 
for the system under consideration, adoption of the electroneutrality 
condition is more efficient from a numerical point of view. Britz and 
Strutwolf (2014) simulated a liquid junction system using a variety of 
approaches: (i) using the Poisson equation in terms of the electrical po-
tential, (ii) using the Poisson equation in terms of the electrical field, 
(iii) eliminating the Poisson equation by directly substituting it into the 
species conservation equations (and integrating it where required), and 
finally (iv) by assuming electroneutrality. As a fifth approach, Britz and 
Strutwolf (2014) considered eliminating one species transport equation 
using the Poisson equation. However, due to the complexity of the re-
sulting derivatives, this approach was not pursued. It was found that 
methods (i)-(iii) are able to predict the development of the electrical 
potential over time, where methods (i) and (ii) were more accurate than 
method (iii). Method (iv), i.e. the electroneutrality condition, was not 
able to capture the development of the electrical potential. A summary 
of the presented methods is shown in Table 1. 
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Table 1 
A summary of the methods presented in the introduction.
Approach Advantage(s) Disadvantage(s) References

Total current density 
equation

Accurately predicts 
charge separation

Electrical current density should be 
known and numerically more difficult to 
solve

Cohen and Cooley (1965), Brumleve and Buck (1978)

Poisson equation Accurately predicts 
charge separation

Numerically more difficult to solve Cohen and Cooley (1965), Scharfetter and Gummel (1969), 
Britz and Strutwolf (2014), Subramaniam et al. (2019)

Substitution of 
Poisson equation

Can predict charge 
separation and 
eliminates one 
transport equation

Predicted charge separation is not 
accurate

Britz and Strutwolf (2014)

Electroneutrality 
assumption, 
electroneutrality 
condition

Numerically easier 
to solve

Cannot predict charge separation Cohen and Cooley (1965), Britz and Strutwolf (2014), 
Subramaniam et al. (2019)

Nomenclature

Latin Letters
 Faraday constant
𝐢 (Total) current density
𝐢𝑑 Current density analogous the displacement current
𝐢𝑞 Current density caused by moving charges
𝐧 Molar flux
𝐮 Solvent velocity
𝑐 Concentration
𝐷 Diffusion coefficient
𝑒 Elementary charge
𝐿 Domain length
𝐿𝐷 Debye length
𝑁𝑡 Number of time steps
𝑁𝑥 Number of grid cells
𝑅 Universal gas constant
𝑇 Temperature
𝑡 Time
𝑥 𝑥-coordinate
𝑧 Ionic charge

Greek Letters
Δ Difference
𝜙 Electrical potential
𝛼̃2 Ratio of length scales or time scales
𝜌𝑐 (Charge) density
𝜏𝑑 Diffusive relaxation time
𝜏𝑒 Electric relaxation time
𝜀0 Permittivity of free space
𝜀𝑟 Dielectric constant

Subscripts
0 Initial
𝑖 Species
𝑡 Time
𝑥 𝑥-direction

Superscripts
𝑛 Current time step
𝑛 + 1 Next time step

Abbreviations
CDS Central differencing scheme
CF Constant field
ENC Electroneutrality condition
FVM Finite Volume Method
LBM Lattice Boltzmann Method
LBPM Lattice Boltzmann Methods for Porous Media
PDE Partial differential equation

As is evident from earlier reported studies, different systems re-
quire different approaches. The most flexible approach is to either use 
the Poisson equation or the equation for the total current density, as 
these equations are capable of predicting charge separation. However,
depending on the specific system, these equations can prove to be dif-
ficult to solve from a numerical perspective, as the range of time and 
length scales to be captured is large due to the occurrence of charge sep-
aration. As an alternative, the electroneutrality condition can be used, 
which does not have this requirement. However, the electroneutrality 
condition is not capable of predicting the separation of charge and thus 
should be used with care.

In this work, a new numerical model for the treatment of the electri-
cal potential is presented that applies to the transport of ionic species. 
The model effectively functions as a numerical switch between the Pois-
son equation and the electroneutrality condition. As such, this approach 
offers flexibility and can be used for several different systems, in con-
trast to the existing methods. In Section 2, an overview of the governing 
equations and the conventional methods for describing the electrical 
potential is given, followed by a description of the newly proposed nu-
merical approach. In addition, an overview of the numerical treatment 
is given. Section 3 showcases the new numerical approach for different 
types of systems, comparing the results generated using the new model 
to the results generated using conventional models. Finally, the conclu-
sions are presented in Section 4.

2.  Methodology

In this section, the governing equations are introduced. This intro-
duction includes a detailed description of the available models in liter-
ature for charged species transport and a description of the newly pro-
posed model. In addition, an overview of the numerical treatment of the 
equations is given.

2.1.  Governing equations

The concentration of an ion can be determined from a simple species 
conservation equation:
𝜕𝑐𝑖
𝜕𝑡

+ ∇ ⋅ 𝐧𝑖 = 0. (1)

Here, 𝑐 is the concentration, 𝑡 the time and 𝐧 the molar flux. The sub-
script 𝑖 refers to a specific species. The total molar flux is given by a 
combination of the Nernst-Planck flux and a convective flux:

𝐧𝑖 = −𝐷𝑖∇𝑐𝑖 − 𝑧𝑖
𝐷𝑖
𝑅𝑇

𝑐𝑖∇𝜙 + 𝐮𝑐𝑖. (2)

In this equation, 𝐷 is the diffusion coefficient, 𝑧 the signed ionic charge 
in units of 𝑒,  the Faraday constant, 𝑅 the universal gas constant, 𝑇  the 
temperature, 𝜙 the electrical potential and 𝐮 the velocity of the solvent. 
The right-hand side of Eq. (2) consists of three separate contributions: 
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(Fickian) diffusion, electromigration and convective transport, respec-
tively.

Apart from the species equations, a transport equation for the elec-
trical potential is required to close the system of equations. To this end, 
the Poisson equation can be used:

−∇ ⋅
(

𝜀0𝜀𝑟∇𝜙
)

= 𝜌𝑐 , (3)

where 𝜀0 is the permittivity of free space, 𝜀𝑟 the dielectric constant of 
the solvent and 𝜌𝑐 the charge density. The Poisson equation originates 
from the field of electrostatics. The usage of electrostatics rather than 
electrodynamics can be justified, considering that the timescale for the 
formation of an electrical field is significantly smaller than the timescale 
for species transport. For an electrolyte solution, the charge density 𝜌𝑐
is given by:

𝜌𝑐 = 
𝑁
∑

𝑖
𝑧𝑖𝑐𝑖, (4)

where 𝑁 is the total number of species.
Different approximations can be derived from the Poisson equation. 

To this end, it is useful to consider the Poisson equation in its dimension-
less form, using the following dimensionless operator and quantities: 

∇̃ = 1
𝐿
∇, (5a)

𝑐 = 1
𝑐0

𝑐, (5b)

𝜙̃ = 
𝑅𝑇

𝜙. (5c)

Note that the dimensionless quantities are indicated by a tilde. Using 
these expressions in combination with Eq. (3) with a constant 𝜀0𝜀𝑟 yields

𝛼̃2∇̃2𝜙̃ =
𝑁
∑

𝑖
𝑧𝑖𝑐𝑖, where 𝛼̃2 =

𝜀0𝜀𝑟𝑅𝑇
2𝐿2𝑐0

. (6)

The parameter 𝛼̃2 can be interpreted both as the ratio of the Debye 
length, 𝐿𝐷, to the system size and as the ratio of an electric relaxation 
time, 𝜏𝑒, to a diffusive relaxation time, 𝜏𝑑 , (Mafé et al., 1986): 

𝛼̃2 =
(

𝐿𝐷
𝐿

)2
=

𝐿2
𝐷∕𝐷

𝐿2∕𝐷
=

𝜏𝑒
𝜏𝑑

, (7a)

𝐿𝐷 =

√

𝜀0𝜀𝑟𝑅𝑇
2𝑐0

, (7b)

𝜏𝑒 =
𝐿2
𝐷
𝐷

, (7c)

𝜏𝑑 = 𝐿2

𝐷
. (7d)

When ̃𝛼2 is small, the following (dimensional) approximation is obtained 
from Eq. (6):
𝑁
∑

𝑖
𝑧𝑖𝑐𝑖 = 0. (8)

This is known as the electroneutrality condition (ENC). According to 
ENC, charge separation cannot take place within the domain. The small 
value of 𝛼̃2 implies that ENC is only a good approximation if the sys-
tem size is significantly larger than the Debye length 𝐿 ≫ 𝐿𝐷 (or sim-
ilarly, the electric relaxation time is significantly smaller than the dif-
fusive relaxation time 𝜏𝑒 ≪ 𝜏𝑑). This is in accordance with the work of 
MacGillivray (1968)1, in which it is shown that ENC is the zeroth order 
approximation of the perturbation expansion around 𝛼̃2.

1 In the work of MacGillivray (1968), 𝛼̃2 is defined as 
(

𝜀0𝜀𝑟𝑅𝑇 ∕
(

2𝐿2𝑐0
))(

Δ𝑐∕𝑐0
)

. However, this does not change the result ob-
tained from the perturbation analysis.

When considering the limit of 𝛼̃2 approaching infinity, Goldman’s 
constant field (CF) approximation (Goldman, 1943) is obtained from 
Eq. (6):
∇2𝜙 = 0. (9)

This equation effectively states that the electrical field is constant. 
MacGillivray and Hare (1969) showed that the CF approximation is 
the zeroth order approximation of the perturbation expansion about 
1∕𝛼̃2, supporting the previously mentioned limit. However, Kato (1995) 
showed that the CF approximation can be used for higher values of 1∕𝛼̃2, 
with 1∕𝛼̃2 = 1.7 giving an error of approximately 10%.

An alternative to the Poisson equation is the equation for the electri-
cal current density, which was used first by Cohen and Cooley (1965):
𝐢 = 𝐢𝑞 + 𝐢𝑑 , (10)

where 

𝐢𝑞 = 
𝑁
∑

𝑖
𝑧𝑖𝐧𝑖, (11a)

𝐢𝑑 = −𝜀0𝜀𝑟
𝜕∇𝜙
𝜕𝑡

. (11b)

Here, 𝐢 is the resulting current density, 𝐢𝑞 the current density arising from 
the movement of ions due to gradients in concentration and electrical 
potential and 𝐢𝑑 is the displacement current density2 The derivation of 
Eq. (10) is shown by both Buck (1984) and Mafé et al. (1988), each 
using different physical principles.

To further analyse the equation for the electrical current density, it 
is useful to consider its dimensionless form using the following three 
dimensionless quantities in Eqs. 12a–12c in addition to those given in 
Eqs. 5a–5c: 

𝐢̃ = 𝐿
𝐷𝑐0

𝐢, (12a)

𝐧̃𝑖 =
𝐿
𝐷𝑐0

𝐧𝑖, (12b)

𝑡 = 𝐷
𝐿2

𝑡. (12c)

𝐢̃ =
𝑁
∑

𝑖
𝑧𝑖𝐧̃𝑖 − 𝛼̃2

𝜕∇̃𝜙̃
𝜕𝑡

. (13)

Analogous to the previous analysis, 𝐢𝑑 can be neglected when 𝛼̃2
approaches zero, yielding 𝐢 = 𝐢𝑞 . Substituting the Nernst-Planck flux 
(Eq. (2)) into this equation, using ENC (Eq. (8)) and rewriting for the 
gradient of the electrical potential yields:

∇𝜙 =
𝐢
 +

∑𝑁
𝑖 𝑧𝑖𝐷𝑖∇𝑐𝑖

− 
𝑅𝑇

∑𝑁
𝑖 𝑧2𝑖𝐷𝑖𝑐𝑖

. (14)

This equation for the electrical potential is valid in case ENC holds. Sim-
ilarly, CF approximation (Eq. (9)) is obtained when 𝛼̃2 approaches in-
finity.

Each of the equations (or closures) for the electrical potential defined 
above has its advantages and disadvantages. The Poisson equation gen-
erally provides the highest flexibility, as it can produce viable results in 
every situation. However, the numerical treatment of the equation re-
quires a relatively small time step size and grid size, which might be un-
desirable depending on the considered problem. ENC is only valid under 
specific conditions, but significantly simplifies the numerical treatment. 
As ENC does not determine the electrical potential by itself, Eq. (14) 
should be used to calculate the potential field. The advantages and dis-
advantages for CF approximation are similar to ENC, except that the 

2 Unlike 𝐢𝑞 , the displacement current density 𝐢𝑑 does not represent the phys-
ical transport of charge carriers. Instead, it describes the effect from the time-
varying electrical field and is used to capture the capacitive behaviour of the 
electrochemical double layer.
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electrical potential is directly calculated. Finally, the model using the 
electrical current density, Eqs. 10–13, is also capable of producing viable 
results in every situation. However, it requires the value for the electri-
cal current density, which is not always readily available. To overcome 
some of these disadvantages, a new numerical approach is presented in 
this work. This approach is based on the continuity equation for electri-
cal charge, which is given by:
𝜕𝜌𝑐
𝜕𝑡

+ ∇ ⋅ 𝐢𝑞 = 0. (15)

Since this equation is derived by multiplying each species conservation 
equation (Eq. (1)) by 𝑧𝑖 and summing them, it is not unique and can-
not be used in its current form. To address this, the Poisson equation 
(Eq. (3)) is numerically embedded into Eq. (15), as further discussed in 
Section 2.2. The method will effectively behave as a numerical switch 
between the Poisson equation and the transport equation for the elec-
trical potential that is valid in case ENC holds.

2.2.  Numerical treatment

For the discretisation of the partial differential equations (PDEs), a 
cell-centred Finite Volume Method (FVM) is used. All simulations are 
performed using the in-house software FoxBerry.

For each of the ionic species, the species continuity equation (Eq. (1)) 
is solved in combination with the Nernst-Planck flux (Eq. (2)). The time 
derivative is treated using a first-order accurate implicit Euler scheme, 
while both the (Fickian) diffusion flux and the electromigrative flux are 
discretised in space using a second-order accurate central differencing 
scheme (CDS). The non-linear electromigrative flux term is included by 
treating the concentration explicitly and the potential implicitly.

For the electrical potential, the Poisson equation (Eq. (3)), the equa-
tion obtained from ENC (Eq. (14)) or the new approach based on the 
continuity equation for the electrical charge (Eq. (15)) can be used. CF 
(Eq. (9)) is not considered, as this approximation is not valid for the 
systems under consideration.

In the discretisation of the Poisson equation CDS is used for the 
second-order spatial derivative. All terms in the equation are treated 
implicitly.

In case of ENC, the following equation is obtained by combining 
equations Eqs. (1), (2) and (8):

−∇ ⋅

(


𝑅𝑇

( 𝑁
∑

𝑖
𝑧2𝑖𝐷𝑖𝑐𝑖

)

∇𝜙

)

= ∇ ⋅

( 𝑁
∑

𝑖
𝑧𝑖𝐷𝑖∇𝑐𝑖

)

. (16)

This equation will hereafter be referred to as the electroneutrality equa-
tion. For this equation, the second-order spatial derivatives are treated 
using CDS. The non-linear dependency on the left-hand side is included 
by treating the concentrations explicitly and the potential implicitly. 
The right-hand side is treated fully implicitly.

For the approach based on the continuity equation for electrical 
charge, the Poisson equation is numerically embedded into Eq. (15). 
To this end, Eq. (3) is derived to the time to obtain:
𝜕𝜌𝑐
𝜕𝑡

= − 𝜕
𝜕𝑡
(

∇ ⋅
(

𝜀0𝜀𝑟∇𝜙
))

. (17)

The derivative of the potential to the time on the right-hand side of 
Eq. (17) is discretised using a first-order accurate approximation:
𝜕𝜌𝑐
𝜕𝑡

= −
∇ ⋅

(

𝜀0𝜀𝑟∇𝜙𝑛+1) − ∇ ⋅
(

𝜀0𝜀𝑟∇𝜙𝑛)

Δ𝑡
. (18)

Here, the superscript 𝑛 refers to the current time step and the superscript 
𝑛 + 1 to the next time step. Evaluating the Poisson equation, including 
the definition for the charge density given in Eq. (4), at time step 𝑛 yields 
the following relation:

−∇ ⋅
(

𝜀0𝜀𝑟∇𝜙𝑛) = 
𝑁
∑

𝑖
𝑧𝑖𝑐

𝑛
𝑖 . (19)

This relation can be substituted into Eq. (18) to obtain the following 
expression for the derivative of the charge density to time:
𝜕𝜌𝑐
𝜕𝑡

=
−∇ ⋅

(

𝜀0𝜀𝑟∇𝜙𝑛+1) − 
∑𝑁

𝑖 𝑧𝑖𝑐𝑛𝑖
Δ𝑡

. (20)

Using Eqs. (2), (11a) and (20), Eq. (15) can be rewritten to:

−∇ ⋅
(

𝜀0𝜀𝑟∇𝜙𝑛+1) − 
∑𝑁

𝑖 𝑧𝑖𝑐𝑛𝑖
Δ𝑡

= 

[

∇ ⋅

( 𝑁
∑

𝑖
𝑧𝑖𝐷𝑖∇𝑐𝑖

)

+ ∇ ⋅

(


𝑅𝑇

( 𝑁
∑

𝑖
𝑧2𝑖𝐷𝑖𝑐𝑖

)

∇𝜙𝑛+1

)

− ∇ ⋅

(

𝐮
𝑁
∑

𝑖
𝑧𝑖𝑐𝑖

)]

.

(21)

This equation will be referred to as the charge conservation equation. 
For the charge conservation equation, the time step size effectively 
works as a numerical switch and can be viewed as an asymptotic pre-
serving scheme (Larsen et al., 1987; Larsen and Morel, 1989; Jin and 
Levermore, 1996; Jin, 1999; Degond et al., 2010; Hu et al., 2017; An-
guill et al., 2022): the Poisson equation is dominant for small time step 
sizes, while for larger time step sizes the behaviour is governed by the 
electroneutrality equation. Note that the derivation presented here gen-
eralises to higher-order approximations for the time discretisation. For 
the second-order spatial derivatives in Eq. (21), CDS is used. The first 
term on the right-hand side is treated fully implicitly, while the non-
linearity in the second term is overcome by treating the concentrations 
explicitly and the electrical potential implicitly. The last term on the 
right-hand side is not taken into account, as it is assumed that 𝐮 = 0 for 
all systems presented in this work.

The combination of the species equations and an equation for the 
electrical potential is solved in a coupled fashion using the BiCGStab2 
iterative solver (Masterov, 2019) in combination with an incomplete 
LU preconditioner from Trilinos (Prokopenko et al., 2016; Team, 2020) 
(the maximum number of iterations was set to 104 and the convergence 
criterion used is 10−14)3. The boundary conditions are described using 
a first-order fully coupled description. When the electromigrative flux 
expression is used as (part of) a boundary condition, the concentration 
is treated explicitly, while the electrical potential is treated implicitly. 
The values used in the boundary conditions are updated every time step 
when required.

It is noted that mathematical simplifications exist when ENC holds 
and a binary electrolyte is used, without introducing additional assump-
tions (Newman and Thomas-Alyea, 2004; Fuller and Harb, 2018). In 
this case, it is possible to fully eliminate the electrical potential from 
the species transport equation, yielding a single transient convection-
diffusion equation that is valid for both ionic species. In addition, ENC 
(Eq. (8)) allows for the elimination of one species transport equation in 
systems with three or more ionic species. The concentration of the elim-
inated species can then be determined as a function of the others. In this 
work, it is chosen to follow neither of the aforementioned mathematical 
simplifications in order to have an objective comparison between the 
different transport equations for the electrical potential.

3.  Results

To demonstrate the versatility of the newly proposed numerical 
model, three test cases are considered: a small-scale system where 
charge separation is expected in most of the domain, a large-scale system 
where charge separation is significantly less important, and a multi-ion 
liquid junction system. For the latter system, the importance of charge 
separation is varied by changing the system parameters, and the effect 

3 Note that no under-relaxation was used in the numerical solving procedure.
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Fig. 1. A schematic overview of the small-scale system.

Table 2 
Simulation parameters for the small-scale system.
 Description  Value
 Ionic species 𝑖  {K+, OH−}
 Ionic charge 𝑧𝑖  {+1, −1}
 Diffusion coefficient 𝐷𝑖  {1.96 ⋅ 10−9, 5.27 ⋅ 10−9} 𝑚2∕𝑠
 Initial KOH concentration 𝑐0  {10−4, 10−4} 𝑚𝑜𝑙∕𝑚3

 Dielectric constant solvent 𝜀𝑟 80.2
 Temperature 𝑇 293.15 𝐾
 Applied potential difference Δ𝜙 2 ⋅ 10−2 𝑉
 Domain length 𝐿 12.9 ⋅ 10−6 𝑚
 Number of grid cells 𝑁𝑥 110
 Time step size Δ𝑡 1.3 ⋅ 10−6 𝑠
 Number of time steps 𝑁𝑡 28800

of the electrical potential equation on the predicted liquid junction po-
tential is evaluated. It is noted that all simulations were performed in 
2D, while the effect is only studied in a single coordinate direction. A 
zero-gradient boundary condition is applied for both the ionic species 
and the electrical potential in the other coordinate direction, such that 
no profiles will be observed. Two grid cells were used for this coordinate 
direction.

3.1.  Small-scale system

The small-scale system consists of a potassium hydroxide electrolyte 
surrounded by two inert electrodes, which is shown schematically in 
Fig. 1. The parameters used in this simulation are given in Table 2. 
Based on a time and grid dependency study, both the chosen time step 
size and grid size show a negligible error of (10−3%).

The simulations are performed using the Poisson equation and the 
newly developed charge conservation equation for the electrical poten-
tial. The electroneutrality equation is not used for this case, as this 
method will not be able to predict the charge separation based on its 
definition.

To verify the implementation, the simulation results will be com-
pared against those obtained from the ion transport model in the Lat-
tice Boltzmann Methods for Porous Media (LBPM) code (Tang et al., 
2023). LBPM is a highly parallelised GPU-enabled open-source software 
package which employs the lattice Boltzmann method (LBM) to model 
mesoscale phenomena, including ion transport at a scale where charge 
separation is significant and must be resolved. This is achieved by cou-
pling the Nernst-Planck flux (Eq. (2)) and the Poisson equation (Eq. (3)). 
Since LBM is inherently suitable for parabolic PDEs, whereas the Pois-
son equation is elliptical in nature, an ad hoc temporal term is added to 
the original Poisson equation:
𝜕𝜙
𝜕𝑡

= ∇2𝜙 +
𝜌𝑐
𝜀0𝜀𝑟

. (22)

Table 3 
Simulation parameters for the large-scale system.
 Description  Value
 Ionic species 𝑖  {Li+, PF−6 } Ionic charge 𝑧𝑖  {+1, −1}
 Diffusion coefficient 𝐷𝑖  {4.0 ⋅ 10−10, 4.0 ⋅ 10−9} 𝑚2∕𝑠
 Initial LiPF6 concentration 𝑐0  {500, 500} 𝑚𝑜𝑙∕𝑚3

 Dielectric constant solvent 𝜀𝑟 16.8
 Temperature 𝑇 298.15 𝐾
 Domain length 𝐿 7.5 ⋅ 10−4 𝑚
 Number of grid cells 𝑁𝑥 320
 Time step size Δ𝑡 1.0 ⋅ 10−2 𝑠
 Number of time steps 𝑁𝑡 45000

This modified Poisson equation is solved until a pseudo steady-state 
within a time step, similar to how it is done in the work of Tang et al. 
(2023). It is noted that while the dimension of the temporal term does 
not match the dimensions of the two remaining terms, the value of this 
term will be equal to zero at the pseudo steady-state and thus no prob-
lem is introduced. The electrical potential obtained from Eq. (22) is used 
to solve for the Nernst-Planck flux, which yields the ionic concentration 
profiles.

The simulation results generated using the charge conservation equa-
tion are shown in Fig. 2. The data generated using the Poisson equation 
shows very similar results. To quantify the difference between these two 
models, the 𝐿∞ norm is calculated as:

𝐿∞ = max

(

|

|

|

|

|

𝑐𝑖,charge conservation − 𝑐𝑖,Poisson
𝑐𝑖,charge conservation

|

|

|

|

|

)

. (23)

The 𝐿∞ norm is calculated for both ions, and the maximum value is 
found to be 3.5 ⋅ 10−4%. This difference is found at the final time step.

As expected, the positively charged potassium ion is repelled by the 
electrode with the highest electrical potential, while it is attracted by 
the electrode with the lowest electrical potential. The opposite is true 
for the hydroxide ion, as this ion is negatively charged. As a result of 
the rearrangement of the ions, the electrical potential profile changes. 
Initially, a linear profile is observed between the two electrodes, which 
develops to a flat profile in the middle of the domain with significant 
gradients near both electrodes. This suggests a strong electrical field 
near the electrodes and a vanishing field at the centre of the domain, 
which is a characteristic feature of electrode shielding.

Comparing the simulation results with those from LBPM reveals a 
similar (transient) trend. However, in contrast to LBPM, the FVM results 
show slightly smaller slopes near the electrodes for both ion concentra-
tion profiles and the electrical potential profile, suggesting that FVM 
predicts a lower degree of shielding. While it is unclear which method 
provides more accurate results (as there is no independent judge), the 
difference between them is minor, supporting the conclusion that the 
implementation is correct.

3.2.  Large-scale system

For the large-scale system, the lithium symmetric cell system de-
scribed by Subramaniam et al. (2019) is used, which is schematically 
shown in Fig. 3.

The simulation parameters can be found in Table 3. The boundary 
conditions are taken from Subramaniam et al. (2019).

After performing the time and grid dependency studies, the chosen 
time step size and grid size both show a negligible error of (10−4%).

For this test case, the simulations are performed using the elec-
troneutrality equation and the charge conservation equation. The Pois-
son equation is not reported, as divergence was observed for the re-
ported grid size and time step size. The simulation results for the charge 
conservation equation can be found in Fig. 4. Visually indistinguishable 
results are obtained when using the electroneutrality equation. To quan-
tify the performance of both models, the generated data is compared to 
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Fig. 2. The simulation results for the small-scale system, obtained using the charge conservation equation for the electrical potential. The results are compared to 
the results obtained using LBPM.

Fig. 3. A schematic overview of the large-scale system (Subramaniam et al., 2019).

Fig. 4. The simulation results for the large-scale system, obtained using the charge conservation equation for the electrical potential.
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Fig. 5. The dimensionless ENC retrieved from the simulations when using (a) 
the electrical potential in case of the ENC and (b) the charge conservation equa-
tion.

the analytical solution for the ion concentrations reported by Subrama-
niam et al. (2019), which is based on ENC for a binary salt. The 𝐿∞
norm is calculated for each ion as:

𝐿∞ = max

(

|

|

|

|

|

𝑐𝑖,model − 𝑐𝑖,analytical
𝑐𝑖,analytical

|

|

|

|

|

)

. (24)

Considering all time steps, a maximum of 1.7 ⋅ 10−5% was obtained for 
both models. This indicates a slightly better performance compared to 
the time and grid dependency studies.

Due to the stripping of lithium ions on the left side of the system, 
an increase in the lithium ion concentration is observed. The increase 
of the ion concentration is time-dependent, and reaches a maximum of 
approximately 110% of the initial lithium ion concentration. The oppo-
site is true for the right side of the domain, where a decrease in lithium 
ions is observed. The concentration profile of the hexafluorophosphate 
counter-ion closely follows the concentration profile of the lithium ion, 
hinting at electroneutrality. For both ionic species, the simulation re-
sults nicely match the analytical results. The electrical potential slowly 
develops in a non-linear fashion as a result of the imposed current. In 
steady state, it shows a linear profile with a potential difference of 5mV 
over the electrolyte solution. The analytical values for the electrical po-

Fig. 6. The electrical potential gradient at the left side of the domain, obtained 
using the charge conservation equation.

Fig. 7. A schematic overview of the liquid junction system.

tential profile are obtained by numerically integrating Eq. (14), taking 
into account the analytical formula for the ion concentrations as found 
in the work of Subramaniam et al. (2019). As can be seen, a good agree-
ment is found.

Both models predict an insignificant residual charge (see Fig. 5), im-
plying that electroneutrality holds. For the electroneutrality equation, 
the observed profile is approximately flat and increases marginally with 
time, which can be explained by an accumulation of errors. For the 
charge conservation equation, an accumulation of residual charge can 
be found at both of the boundaries of the system, which could be ex-
plained by the numerical inclusion of the Poisson equation. The cen-
tre of the domain shows a negligible residual charge, as expected. In 
general, the charge conservation equation seems to drive the system to-
wards electroneutrality.

Following Subramaniam et al. (2019), a zero-gradient boundary con-
dition for the electrical potential is applied at the left side of the domain 
(𝑥 = 0). However, as is apparent from Fig. 4, a non-zero gradient of the 
electrical potential is observed in that region. To confirm whether the 
resulting electrical potential profile shows the expected behaviour, the 
numerical gradient is compared to the analytical gradient assuming elec-
troneutrality (see Eq. (14)). A three point stencil is used to determine 
the numerical gradient at the boundary, taking into account that the first 
internal cell node is located half of the grid spacing inside the domain:

𝑑𝜙
𝑑𝑥

|

|

|𝑥=0
=

−2𝜙1 + 3𝜙2 − 𝜙3
Δ𝑥

, (25)
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Fig. 8. The simulation results for the liquid junction system.

Fig. 9. The simulation results for the liquid junction system for a larger time step size of Δ𝑡 = 5 ⋅ 10−3 s. As can be observed, the Poisson equation is not capable of 
producing valid results for small values of 𝛼̃2.

where 𝜙1, 𝜙2 and 𝜙3 are the potential values at the first, second and third 
internal cell nodes, respectively, and Δ𝑥 is the uniform grid spacing. 
The result for the charge conservation equation can be found in Fig. 6. 
The results generated using the electroneutrality equation are visually 
identical and therefore not shown.

As can be observed, the numerical potential gradient follows the an-
alytical gradient. The error is estimated using the 𝐿∞ norm:

𝐿∞ = max

⎛

⎜

⎜

⎜

⎝

|

|

|

|

|

|

|

𝑑𝜙
𝑑𝑥

|

|

|𝑥=0,model
− 𝑑𝜙

𝑑𝑥
|

|

|𝑥=0,analytical
𝑑𝜙
𝑑𝑥

|

|

|𝑥=0,analytical

|

|

|

|

|

|

|

⎞

⎟

⎟

⎟

⎠

, (26)

showing a maximum value of 0.3%.

3.3.  Liquid junction system

The last system is a liquid junction system based on the work of 
Mafé et al. (1986). The system consists of two barium chloride-calcium 
chloride electrolyte solutions of different concentrations, separated by 
a membrane, as schematically shown in Fig. 7. At the start of the simu-
lation, the membrane is removed and the solutions are allowed to mix. 
A potential difference is formed due to a competition between the diffu-
sion fluxes, separating the ionic species, and the electromigration fluxes, 
keeping the ionic species close together. This liquid junction potential 

Table 4 
Simulation parameters for the liquid junction system.
 Description  Value
 Ionic species 𝑖  {Ba2+, Ca2+, Cl−}
 Ionic charge 𝑧𝑖  {+2, +2, −1}
 Diffusion coefficient 𝐷𝑖  {8.48 ⋅ 10−10, 7.93 ⋅ 10−10, 2.03 ⋅ 10−9} 𝑚2∕𝑠
 Initial salt concentration 𝑐0  {5 ⋅ 10−8, …, 5 ⋅ 108} 𝑚𝑜𝑙∕𝑚3

 Dielectric constant solvent 𝜀𝑟 78.4
 Temperature 𝑇 298.15 𝐾
 Domain length 𝐿 1 ⋅ 10−4 𝑚
 Number of grid cells 𝑁𝑥 100
 Time step size Δ𝑡 1 ⋅ 10−4 𝑠
 Number of time steps 𝑁𝑡 300

reaches a pseudo steady-state, which is disrupted when the boundary 
conditions start to influence the ions. The value of the liquid junction 
potential depends on the parameters used in the system and can be ex-
pressed using the ratio of the electric relaxation time to the diffusive 
relaxation time, Eqs. (7c) and (7d) respectively. To tune this ratio, the 
concentration 𝑐0 (see Fig. 7) is varied between 5 ⋅ 10−8 to 5 ⋅ 108 mol∕m3. 
While the upper limit far exceeds the physical solubility of the salts, the 
results are purely used for demonstrative purposes.

The parameters used in the simulations can be found in Table 4.
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As previously mentioned, the boundary conditions for the species 
should not affect the pseudo steady-state results and can thus be arbi-
trarily chosen. In this work, no-flux boundary conditions are used on 
both sides of the domain. For the potential, it is important to fix the 
value using a Dirichlet boundary condition on one side of the domain 
and to allow for development of the potential with a Neumann bound-
ary condition equal to zero on the other side. The time and grid depen-
dency studies were performed both for the highest and lowest values for 
the concentration 𝑐0. The values reported in Table 4 show an error of 
(10−1)% for both the time step size and grid size.

The simulation results of all three models for the electrical potential 
are shown in Fig. 8. For small values of 𝛼̃2, all models predict similar 
results. However, the results obtained for high values of 𝛼̃2 using the 
electroneutrality equation are different from the results computed using 
the Poisson equation and the charge conservation equation. This result 
is expected, as electroneutrality holds only when 𝛼̃2 is small. Using the 
electroneutrality equation, the liquid junction potential is independent 
of 𝛼̃2, reflecting the strict enforcement of charge neutrality.

Results obtained by solving the Poisson equation and the charge con-
servation equation are very similar. The advantage of using the charge 
conservation over the Poisson equation is apparent when numerically 
resolving the process of charge separation becomes increasingly more 
difficult, for example by increasing the time step size to Δ𝑡 = 5 ⋅ 10−3 s
which is shown in Fig. 9.4 In this case, the Poisson equation does not 
yield viable results for low values of 𝛼̃2, while the charge conservation 
equation and the electroneutrality equation are able to produce accurate 
results. This can be explained by the effective switching in the charge 
conservation equation to the electroneutrality equation.

4.  Conclusion

A new numerical model for the treatment of the electrical potential, 
referred to as the charge conservation equation, was presented in this 
work. This model effectively functions as a numerical switch between 
the Poisson equation and the electroneutrality equation. The charge con-
servation equation has been tested for three different systems: a small-
scale system where charge separation is expected in most of the domain, 
a large-scale system where charge separation is significantly less impor-
tant, and a multi-ion liquid junction system where the importance of 
charge separation depends on the chosen parameters. The results gen-
erated using the charge conservation equation were compared to the 
results generated by the Poisson equation and/or the electroneutrality 
equation, depending on the system. It was found that usage of the charge 
conservation equation produces accurate results for each of the systems, 
while usage of both the Poisson equation and the electroneutrality equa-
tion fails to produce accurate results in all cases. In comparison to the 
Poisson equation, the charge conservation equation is more convenient 
from a numerical viewpoint as it circumvents to resolve the time and 
length scales of charge separation. Compared to the electroneutrality 
equation, the charge conservation equation does not inherently assume 
electroneutrality.
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