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[1] Quantile hydrologic model selection and structure deficiency assessment is applied in
three case studies. The performance of quantile model selection problem is rigorously
evaluated using a model structure on the French Broad river basin data set. The case study
shows that quantile model selection encompasses model selection strategies based on
summary statistics and that it is equivalent to maximum likelihood estimation under certain
likelihood functions. It also shows that quantile model predictions are fairly robust. The
second case study is of a parsimonious hydrological model for dry land areas in Western
India. The case study shows that an intuitive improvement in the model structure leads to
reductions in asymmetric loss function values for all considered quantiles. The asymmetric
loss function is a quantile specific metric that is minimized to obtain a quantile specific
prediction model. The case study provides evidence that a quantile-wise reduction in the
asymmetric loss function is a robust indicator of model structure improvement. Finally a
case study of modeling daily streamflow for the Guadalupe River basin is presented. A
model structure that is least deficient for the study area is identified from nine different
model structures based on quantile structural deficiency assessment. The nine model
structures differ in interception, routing, overland flow and base flow conceptualizations.
The three case studies suggest that quantile model selection and deficiency assessment
provides a robust mechanism to compare deficiencies of different model structures and
helps to identify better model structures. In addition to its novelty, quantile hydrologic
model selection is a frequentist approach that seeks to complement existing Bayesian
approaches to hydrological model uncertainty.

Citation: Pande, S. (2013), Quantile hydrologic model selection and model structure deficiency assessment: 2. Applications, Water
Resour. Res., 49, 5658–5673, doi:10.1002/wrcr.20422.

1. Introduction

[2] Quantile regression has been extensively applied
[Koenker and Basset, 1978; Koenker, 2005; Ma and
Koenker, 2006; Keyzer and Pande, 2009] in parametric
and nonparametric statistics. Quantile regression has also
been applied in context of hydrologic forecasting [Weerts
et al., 2011]. A particular case of quantile model selection
in the form of model selection based on flow duration
curves (FDCs) has also been extensively studied in hydrol-
ogy [Yu and Yang, 2000; Son and Sivapalan, 2007; West-
erberg et al., 2011; Blazkova and Beven, 2009].

[3] However, the extension of quantile regression to
hydrological model selection is nontrivial. For example, in
context of hydrological forecasting (such as Weerts et al.
[2011]), linear quantile forecasts make one critical assump-

tion that a forecasting model (or parts of it) can be linear-
ized at a point in space or time. Such an assumption has
several other implicit subassumptions on differentiability
of the forecasting model and allowed perturbations that
may not hold when the forecasting temporal range is large
or when the temporal resolution of the forecasting model is
coarse. This may lead to inaccurate quantile predictions
with the quantile estimates of the parameters no more
meaningful than being partial derivatives of the nonlinear
forecasting model.

[4] Pande [2013] provides a theoretical foundation for
its extension to hydrological model selection. The study
reveals some interesting properties based on which struc-
tural deficiencies can be diagnosed and structure improve-
ments can be assessed. A quantile (specific) model is
obtained by minimizing a quantile specific loss function.
The loss function is called the asymmetric loss function.
The quantile model can then be used to predict the
observed quantile. However, it is not limited to quantile
model selection and prediction. Model structure deficien-
cies can lead to the crossing of two quantile model predic-
tions because of the biases in predicting observed quantiles
that structure deficiencies introduce. The optimal value of
loss function at a quantile contains full information of the
bias and thus structure deficiency at that quantile. The loss
function values of a set of candidate model structure at a
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given quantile thus order the structures in terms of its defi-
ciency at that quantile. The asymmetric loss function across
quantiles can therefore be used to assess deficiencies of a
set of candidate structures.

[5] Quantile hydrological model selection (or estima-
tion) encompasses some standard model selection techni-
ques based on summary statistics, for e.g., based on the
minimization of the mean absolute error. Quantile model
selection at a quantile value of 0.5 provides a model that
minimizes the mean absolute error. In some cases, quantile
model selection is also ‘‘equivalent’’ to maximum likeli-
hood model selection. A model selected by minimizing
mean absolute error is equivalent to assuming a Laplace
likelihood function. Model selection based on minimizing
the mean square error (Ordinary Least Squares, OLS)
(a ‘‘mean’’ model) is a weighted sum of models selected at
quantiles in the neighborhood of (and including) 0.5,
such as at 0.4, 0.5, and 0.6 [Koenker and Basset, 1978],
though the assignment of weights is less formal. Yet
another way is to estimate a mean model is to take the
mean of quantile models with quantile values ranging
between 0 and 1.

[6] The model selection strategy that is applied in this
paper is unique in following aspects : (1) the method is ap-
plicable to time series of any variable of interest (flux or
storage), (2) model selection is based on one quantile at a
time, unlike strategies based on FDC that identify a model
such that its FDC closely matches the observed FDC, (3) a
loss function of Koenker and Basset [1978] based on abso-
lute deviations is employed as an objective function that
removes the need to identify quantiles of an observed time
series, and (4) linearization of a hydrological model is not
undertaken unlike linear quantile hydrological forecasting
methods. This paper presents applications that demonstrate
the methodology and the utility of the theory presented in
Pande (2013).

[7] First, the nature of bias in predicting an observed
quantile due to model structure deficiency is exhaustively
studied alongside the performance of variants of quantile
hydrologic prediction. A complex model structure and
French Broad river basin data are used for this purpose.
Quantile model selection method is then implemented for a
case of a parsimonious hydrologic model developed for
western India where it is shown that quantile model selec-
tion enables the detection of model structure improvement.
Finally, several variants of the model structure used in the
first case study are applied to the Guadalupe river basin.
Multiple model structures are compared using quantile
model selection and inferred model structure deficiencies
are discussed.

[8] All the properties proved for a generic hydrologic
quantile model selection problem (QE2 problem) in Pande
[2013] also hold for the model structures of the applica-
tions, provided that assumptions 1–7 hold. Appendix A
provides relevant definitions for QE2 specification and the
assumptions.

[9] These assumptions are valid for the cases studied
here. The set K then represents the feasible space for model
specific parameter set (the values that the parameter sets
are allowed to take). Assumptions 1, 4, 5, and 7 hold for
these cases (we allow for initial burn in which leads to posi-
tive initial storages in case of flexible model structures).

Assumptions 2 and 6 on differentiability can be relaxed
without affecting the propositions (not done in the text to
maintain brevity). If the functions in these assumptions are
not differentiable, their gradients can be replaced by sub-
gradients at the optimum. Continuity is still required, but
all hydrologic models are continuous in parameters.
Monotonity in at least one parameter in assumption 2 holds
in general, for example, flow is monotonic in recession pa-
rameters. The gradients of the predictive equation with
respect to the parameters are independent of each other as
required by Assumption 2. The only restrictive assumption
may be that input forcings are nonzero for any time t
(Assumption 3). It is shown to hold for the parsimonious
dry land modeling case study, though not for the other two
case studies. The sensitivity of propositions to this assump-
tion is left for future work (at present it does not appear to
contribute to major steps within the proofs). Different opti-
mizers for each of the case studies are used, a gradient-
based minimizer in the parsimonious model case study and
a complex evolution-based minimizer in others. Both are
initiated with multiple starting points to ensure that a solu-
tion is near a global minimum (Assumption 7). The parsi-
monious model case study is a constrained problem to tame
the ill effects of model complexity while other case studies
have reasonably large sample for calibration. Thus, the
main result of Pande [2013] that the asymmetric loss func-
tion is a measure of model structure deficiency (and its util-
ity to rank model structures based on asymmetric loss
function at a particular quantile value) is not diluted by
these more general case studies.

[10] The paper is organized as follows. Section 2 studies
and validates the performance of quantile model selection
on French Broad river basin data using a flexible model
structure. Section 3 then assesses deficiency of a parsimoni-
ous dry land model developed for western India [Pande et
al., 2010, 2012a]. Section 4 orders various model structures
for the Guadalupe river basin in terms of structural defi-
ciency. Finally, section 5 concludes the paper.

2. Performance of Quantile Model Selection

[11] The performance of quantile model selection using
a flexible model structure is tested on the French Broad
river basin streamflow data set. Quantile models are
selected over different but overlapping calibration time
periods to judge the robustness of the method. However,
note that any such test assumes stationarity in streamflow.
Model parameter distribution both over years and quan-
tiles are studied. A split-sample test is also performed,
wherein the performance of quantile models selected over
a certain calibration period are tested on another nonover-
lapping period. It is shown that the behavior of bias esti-
mates across quantiles over different calibration periods
yields insights into model structure deficiency, supporting
its use in structure deficiency assessment as outlined in
corollary 4 of Pande (2013).

[12] The model structure setup [Schoups and Vrugt,
2010] is composed of reservoirs to model interception,
unsaturated zone, saturated zone, and river routing, referred
here as ‘‘crr0’’ (Figure 1). Precipitation P(t) in excess of
interception capacity (Ie), Pe(t)¼max(P(t)� Ie,0), contrib-
utes to the unsaturated zone. Evaporation, E(t), overland
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flow, R(t), and percolation to the saturated zone are gener-
ated from the unsaturated zone as nonlinear functions of
Su(t)/Sumax, where Su(t) is the storage in the unsaturated
zone and Sumax is its storage capacity. Evaporation and
overland flow are modeled as:

E tð Þ ¼ Ep 1� exp ��ESu tð Þ=Su maxð Þ½ �= 1� exp ��Eð Þ½ �
R tð Þ ¼ Pe tð Þ 1� exp ��FSu tð Þ=Su maxð Þ½ �= 1� exp ��Fð Þ½ � ð1Þ

where parameters �E and �F are nonlinear controls and Ep

is the potential rate of evaporation. Percolation (QP(t)) is
linearly related to Su(t)/Sumax as,

Qp tð Þ ¼ Qpmax Su tð Þ=Su max

[13] The slow flow, Qs(t), is a linear function of saturated
zone storage, Ss(t),

Qs tð Þ ¼ Ss tð Þ=Ks

where Ks is the slow flow time constant.
[14] Finally, overland flow R(t) and slow flow Qs(t) are

routed through two linear reservoirs each with time con-
stant Kf. Table 1 summarizes all the model quantities.

[15] The modeled flow at the outlet, Qmod tð Þ, is esti-
mated and subtracted from observed flows Qobs tð Þto obtain

two types of absolute residuals, ~�
þ
t ;

~�t�
n o

, such that

~�
þ
t ¼

jQmod ðtÞ � QobsðtÞj Qmod ðtÞ � QobsðtÞ
0 Qmod ðtÞ > QobsðtÞ

�
~�
�
t ¼

0 Qmod ðtÞ � QobsðtÞ
jQmod ðtÞ � QobsðtÞj Qmod ðtÞ > QobsðtÞ

�

[16] A �-quantile specific model for a given model struc-
ture (but one model structure at a time; here it is ‘‘crr0’’) is
obtained by minimizing the asymmetric loss function ��,

XN

t¼1

1� �ð Þ~�þt þ �~�t
�Þ
��

N ;with respect to model parameters :

�"
ð2Þ

[17] The Shuffled Complex Evolution global optimiza-
tion algorithm of University of Arizona (SCE-UA) is
implemented to minimize the objective function in equa-
tion (2). SCE-UA searches for a global optima by inde-
pendently (but periodically shuffled) evolving m complexes
each containing p parameter sets based on operations such
as expansion, contractions, and reflection. Readers are
referred to Duan et al. [1992] for additional details. For
this study, m is fixed at 20, p¼ 41 with a convergence crite-
ria of 0.1% (change in objective function), and the search is
terminated after 100,000 objective function evaluations if
no convergence is achieved.

[18] Daily streamflow, precipitation, and potential evap-
otranspiration data are used for assessing the performance
of quantile model selection (estimation). It spans 15 years

Figure 1. Model structure ‘‘crr0’’ used in Schoups and Vrugt [2010] for the Guadalupe River Basin:
(a) various process components of the model structure. It contains an interception reservoir with maxi-
mum capacity Ie (mm), interception excess precipitation flows into the unsaturated zone with storage
capacity Sumax (mm). The soil moisture storage in the unsaturated zone drives evaporation, overland
flow, and percolation. Percolation is to the saturated zone, which in turn yields slow flow. Finally, slow
flow and overland flow are routed by linear reservoirs to the outlet. (b) Nonlinear relationships governing
overland flow and evaporation fluxes.
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from 1961 to 1975. Ten overlapping 6 year periods (such
as 1961–1966; 1962–1967 . . . ,1970–1975) are considered
for calibration. The quantile models are estimated for each
such period at nine quantiles values, � ¼ 0.1, 0.2 . . . , 0.9.
The first 2 years of each period are used for burnin and the
performance on the remaining 4 years is used in model cali-
bration. Thus, 10 � 9¼ 90 models are identified spanning
10 calibration periods at nine different quantile values. The
performances of these models are then analyzed on 15
years of validation data set that spans from 1976 to 1990.

[19] Figure 2 shows the calibrated range of selected model
parameters over different periods at different quantile values.
The ranges of the parameters are tight relative to its allow-
able range (the y axis is scaled to the range¼ [min, max]),
except for Qpmax and �E. This suggests that the performance
of quantile model selection is robust at each quantile. High
variance in the estimates of Qpmax and �E may indicate
weak discriminatory power of the model in identifying per-
colation and evaporation fluxes. The parameter estimates
also suggest, as expected, that the models that predict high
flows (i.e., high quantile models) have lower upper zone
storage capacity, smaller flow time constants, and higher
(and less thresholded) percolations rates.

[20] Figure 3 analyzes the distribution of parameter esti-
mates over different quantiles for each calibration period.
All parameters have ‘‘nearly’’ constant ranges over time,
which suggests that the selected quantile models are
‘‘nearly’’ consistent over years. These ranges are similar to
the ones reported by Schoups and Vrugt [2010], except for
Ks, �E, and Qpmax for the French Broad river basin. These
differences may be due to the absence of an interception
component in the model structure used for this analysis.

[21] Figure 4 compares the performance of quantile
models predictions (resulting from quantile model estima-
tion) with other estimators on a calibration period of 1970–
1975. Only the last 75 days of the period are shown. Since
the quantiles are varied between 0.1 and 0.9 with incre-
ments of 0.1 (lower and higher quantile values than 0.1 and
0.9, respectively, are not considered for robust estimation;
see for example, the discussion on the robustness of
trimmed estimators in Vapnik [2002]), the 10–90% inter
quantile range is shown as the 80% quantile confidence
interval. A model estimated by minimizing the mean
square error (SCE-UA is used as the solver) is shown as the
‘‘MSE minimizer.’’ A median predictor is obtained by min-
imizing the mean absolute error. It is also a quantile model
estimated at � ¼ 0.5. Finally, Gastwirth and quant-mean
model predictions are considered that are obtained as a cer-
tain weighted combination of quantile models. A ‘‘Gast-
wirth’’ type prediction ŷg is obtained as ŷg ¼ 0:3�
ŷ�¼0:3 þ 0:4 � ŷ�¼0:5 þ 0:3 � ŷ�¼0:7, where ŷ�¼0:3is a quan-
tile model prediction for quantile � ¼ 0.3 (quantiles
� ¼ 0.33, 0.5, 0.66 were instead used in Koenker and Basset
[1978]), while ‘‘quant-mean’’ prediction ŷqmis the mean of

all quantile predictions, i.e., ŷqm ¼
X

�¼0:1:0:1:0:9

ŷ�=9. These

are also called ‘‘inefficient’’ estimators [Koenker and Bas-
set, 1978] because they are less efficient than the maximum
likelihood estimators (MLE) with likelihood functions that
match the underlying distributions. However, several stud-
ies such as Koenker and Basset [1978], and references
within, have shown that such ‘‘inefficient’’ estimators are
asymptotically more efficient across a wide variety of dis-
tributions (such as Gaussian, Gaussian mixture, Laplace,
Logistic, and Cauchy) than MLE with a particular likeli-
hood function and are almost as efficient as MLE for con-
ventional parametric models. Since the predictions are a
certain weighted mean of quantile model predictions, it is
akin to predicting from a combination of models, where
predictions from models that are estimated at different
quantiles are combined.

[22] The median model prediction tends to remain at the
lower end of the 80% confidence interval. The Gastwirth
and Quant-mean predictions lie in the lower to middle part
of the confidence interval. This suggests that lower to me-
dian quantile predictions are closely spaced and that model
structure ‘‘crr0’’ is rigid in predicting low flows when the
performance metric is mean absolute deviation (note that
quantile models are estimated by minimizing the asymmet-
ric loss function which is a weighted mean of mean abso-
lute deviations). All the predictions miss observed low flow
at several locations (time indices between 1420 and 1450).
The MSE minimization-based predictions appear to under-
predict and overpredict observed streamflow at several
locations, possibly as a result of the sensitivity of MSE to
outliers. The 80% quantile confidence interval brackets
most of the observations except the extremely low flows.
Thus, in general it appears that low flow prediction is diffi-
cult for the given model structure.

[23] These observations are corroborated by the perform-
ance of these models on a separate validation data set. Its
last 75 days are shown in Figure 5. The MSE minimizer-
based prediction model is more variable, overpredicting

Table 1. Description of Parameters (to Estimate), Variables,
Coefficients, and Indices Used in ‘‘crr0’’ Model Structure

Symbol [Units] Description Min Max

Parameters
Ie[mm] Maximum interception 0 10
Su max [mm] Top layer/unsaturated zone

moisture parameter
0 1000

Qp max [mm/d] Maximum percolation rate 0 100
�E [-] Curvature parameter for

evaporation
0 100

�F [-] Curvature parameter for
overland flow

�100 0

�s [-] Curvature parameter for
percolation

�10 10

Ks [day] Base flow time constant 1 150
Kf [day] Routing time constant 1 10
Variables
Su tð Þ [mm] Upper layer/unsaturated zone

soil water storage
Ss tð Þ [mm] Lower layer/saturated zone

soil water storage
E tð Þ [mm/d] Evaporation
R tð Þ [mm/month] Overland flow
Qp tð Þ [mm/d] Percolation
Qs tð Þ [mm/d] Base flow
Pe tð Þ [mm/d] Effective precipitation

(after interception)
Others
P tð Þ[mm/d] Precipitation
T Day index, {1,.,T}
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Figure 2. Variation in parameters of the models selected over 10 overlapping 6 year periods (1961–
1965,.,1970–1975) at different quantile values. For parameter definitions, see Table 1. The y axes for the
parameters are scaled to its range. �� is the asymmetric loss function.

Figure 3. Variation in parameters of the models selected over 9 different quantiles (� ¼ 0.1,., 0.9) in
different 6 year calibration periods. For parameter definitions, see Table 1. The y axes for the parameters
are scaled to its range. �� is the asymmetric loss function.
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higher flow and while underpredicting low flows. The me-
dian, Gastwirth, Quant-mean, and 80% confidence interval
miss low flows to the extent that it gives an impression that
quantile-based methods are less adept at handling low flow
predictions than MSE minimization-based prediction.
However, this is not the case. Table 2 shows the efficiency
(Nash-Sutcliffe coefficient) and standard bias (mean of the
difference of the observed from the predicted) for the same
data set. The coverage frequencies (fraction of observations
covered by a prediction interval) of 80% quantile confi-
dence interval on the calibration and the validation data
sets are also shown.

[24] Table 2 shows that median prediction is the worst
performer on the calibration data set while the MSE
minimizer-based model prediction is the worst performer
on the validation data set. Quantile models combination-
based predictions, i.e., Quant-mean and Gastwirth, are the
best performers both on the calibration as well as the vali-
dation data, both in terms of efficiency as well as standard
bias. Model structure deficiency is evident in the coverage
frequency of 80% quantile confidence interval since only
52% of the observations on the calibration data set and
60% on the validation data set, instead of 80%, are
covered.

3. Assessing Deficiency in a Parsimonious Model
for Dry Land Areas

[25] Figure 6 outlines a parsimonious dry land model
structure [Pande et al., 2012a] for Western India (states:
Gujarat and Rajasthan). The study area is subdivided into
basins wherein each basin is further subdivided into a set of

interconnected subbasins. Each such subbasin is concep-
tualized by a thresholded linear reservoir, with connectivity
between the subbasins governed by relative elevation dif-
ferences between the subbasins. Thus each such reservoir
or a store conceptualizes water stored in the subsurface as
well in streams within a subbasin. The model runs at
monthly time steps and assumes steady state (cyclo-statio-
narity) at annual time scale (time steps t¼ 1, . . . ,12). This
means that the model storages are constrained to return to
month 1 storage after the 12th month.

[26] Figure 6 also shows the mass balance for ith reser-
voir in time t. The ith store receives rainfall Pit in time t,
has effective hydraulic conductivity Ki and effective field
capacity �i. The latter two subbasin characteristics Ki and
�i are used to regionalize parameters that transform storage
Sit into subsurface flow and vaporization from soil. The
store conceptualizes three processes : overland flow
(max f0;Pit � w

i
g, wherew

i
is the reservoir threshold),

evaporation, and base flow (KiFckSit, where KiFck trans-
forms storage to base flow). By evaporation, we imply

Figure 4. Comparison of quantile model prediction
(resulting from quantile model estimation) with other
related estimators on a calibration period of 1970–1975.
The 80% quantile CI is the prediction range between
� ¼ 0.1 and 0.9. Quant-mean is defined as the mean of
quantile model predictions made at quantiles
� ¼ 0.1:0.1:0.9. Gastwirth is a weighted quantile prediction
given byŷg ¼ 0:3 � ŷ�¼0:3 þ 0:4 � ŷ�¼0:5 þ 0:3 � ŷ�¼0:7,
where ŷ�¼0:3is a quantile model prediction for quantile
� ¼ 0.3. Median is a model obtained by minimizing mean
absolute error while MSE minimizer is a model obtained
by minimizing mean squared error.

Figure 5. Comparison of quantile model prediction
(resulting from quantile model estimation) with other
related estimators on a validation period of 1976–1990
using models estimated on calibration period of 1970–
1975. The definitions of the legend entries are the same as
in Figure 4.

Table 2. The Efficiency (Nash-Sutcliffe Coefficient) and Stand-
ard Bias (Mean of the Difference of the Observed From the Pre-
dicted) Performance Metrices of the Model Predictions in Figures
5 and 6 on a Calibration and Validation Data Seta

Prediction

Calibration:
1970–1975 Period

Validation:
1976–1990 Period

Efficiency
(NS) (-)

Bias
(mm/d)

Efficiency
(NS) (-)

Bias
(mm/d)

Median 0.78 �0.18 0.82 �0.15
Quant-mean 0.81 0.04 0.82 0.09
Gastwirth 0.80 �0.09 0.83 �0.06
MSE minimizer 0.81 �0.18 0.81 �0.20

80% quantile CI
(Coverage frequency)

0.52 0.60

aAlso shown is the coverage frequency of the 80% quanitle prediction
range on calibration and validation data set.
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vaporization from effective rainfall Fcewit (where
wit ¼ min fPit;wi

g), moisture in soil (Fce0�iSit, either due
to evaporation through soil pores or due to land cover spe-
cific transpiration, where �iFce0transforms storage to va-
porization), and irrigation water use (uit¼�E0

ita
irri
i , where

E0
it is subbasin specific evaporation demand and airri

i is the
fraction of ith basin area under irrigation). Since the model
is conceptualized at monthly time steps, upstream flows are
assumed to comprise of two components: base flow
K‘FckS‘t generated by the upstream reservoir ‘as well as its
overland flow, max f0;P‘t � w

‘
g. The parameters of the

model are {Fce0, Fce, Fck , �, and w
i
; i ¼ 1; ::; I} where I is

the number of subbasins in the study area. For further dis-
cussion on model conceptualization, study area and data
used and how the data are reconciled with the model, read-
ers are referred to Pande et al. [2012a].

[27] The model concept is simple with Sit representing
the sum of water stored in surface water bodies, saturated
(as well as water in confined aquifers if present), and unsat-
urated zones. The vaporization from soil pores (in mostly
unsaturated zone), which is partially due to land cover spe-
cific transpiration, is represented byFce0�iSit. The parame-
ter Fce0 is assumed to scale the role of field capacity in
plant vaporization as well as to define the unsaturated zone
as a fraction of total storage. Meanwhile, the irrigation
water contribution to vaporization,uit, is assumed to have
been extracted from the ground water. No seasonality in
irrigation water use has been assumed. Thus, the simplifica-
tions detailed above entail certain assumptions. Nonethe-
less we here note that such a locally linear model construct
(at subbasin scale) is globally nonlinear at the correspond-
ing basin scale [Pande et al., 2012b]. We explore potential

deficiencies in modeling total vaporization using quantile
model selection as a result of the assumptions that have
been implicitly made.

3.1. Quantile Model Selection on Evaporation Flux

[28] The equations governing the model structure are
[Pande et al., 2012a]:

[29] (overland flow event)

wit ¼ min Pit;wi

n o
ð3Þ

(actual evaporation for ith subbasin at time t)

ea
it ¼ Fcewit þ Fce0�iSit þ uit ð4Þ

(j land use specific evaporation demand at time t)

ed
jt ¼ kc

ijtE
0
it ð5Þ

(i specific irrigation applied at time t)

uit ¼ �E0
ita

irri
i ð6Þ

(water balance for ith subbasin at time t)

ea
it � wit ¼ Sit � Sitþ1 þ

X
‘2U ið Þ

r‘t � rit ð7Þ

(constraint on actual evaporation)

Figure 6. Study area and model conceptualization [from Pande et al., 2011]. (a) The study area is in
the western semiarid to arid area of western India. It is delineated into a set of basins, each of which is
described as a set of interconnected subbasins. Each subbasin is conceptualized as a linear reservoir with
threshold and with parameter set ki. Each such reservoir model conceptualizes base flow, overland flow,
and vaporization either due to soil evaporation or land cover transpiration.
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ea
it �

X
j

aije
d
jt ð8Þ

(subsurface flow equation from subbasin i to its down-
stream subbasins)

rit ¼ KiFckSit þmax 0;Pit � w
i

n o
ð9Þ

(T-period steady state constraint)

SiTþ1 ¼ Si1 ð10Þ

[30] Table 3, reproduced from Pande et al. [2012a], pro-
vides a description of various symbols used in the above
equations. A solution for the variables is obtained by solv-
ing the above equations (3–10) simultaneously for given
values of parameters and coefficients.

[31] Consider further that observations for monthly
changes in storage, D~Sit, and actual evaporation, êit

a, are
available. Let the residuals from predicting storage change
and actual evaporation be defined as,

D~S it � Sitþ1 � Sitð Þ ¼ �it ð11Þ

� êa
it � ea

it

� �
� �þit� ð12Þ

1� �ð Þ �êa
it þ ea

it

� �
� ��it� ð13Þ

[32] The following minimization program (called QE3)
then implements a �-quantile specific parameter estimation
for the model structure given by equations (3–10) with
evaporation flux as the variable of interest,

min 0:5
XI

i¼1

XT

t¼1

j�itj þ
XI

i¼1

XT

t¼1

�þit� þ ��it�
� �" #

=NI

with respect to Fce;Fce0;Fck ; �;wi
; Sit; �

þ
it� ; �

�
it� ; e

a
it; rit;

r‘t; uit,
[33] subject to constraints (3)–(13) and

Fce � 0;Fce0 � 0;Fck � 0; � � 0;w
i
� 0; Sit � 0; �þit� � 0and ��it�

� 0

for all i¼1, . . . , I, ‘ 2 U ið Þ and t¼ 1, . . . ,T.
[34] We consider two linear reservoirs conceptualization

for each subbasin as an improvement over the current
model structure. These two linear reservoirs are vertically
connected with the top reservoir conceptualizing an unsatu-
rated zone while the second reservoir conceptualizes a satu-
rated zone. Subsurface flow is only produced by the second
(bottom) reservoir. Apart from the absence of base flow,
the top reservoir is conceptualized in the same manner as a
linear reservoir case with threshold-based overland flow
and vaporization conceptualizations. The following equa-
tions along with equations (3–6 and 8) describe the concep-
tualization of each subbasin:

[35] (water balance for an ith subbasin at time t)

ea
it � wit ¼ Sit � Sitþ1 þ Sb

it � Sb
itþ1 þ

X
‘2U ið Þ

r‘t � rit ð14Þ

(subsurface flow equation from subbasin i to its down-
stream subbasins)

rit ¼ KiFckSb
it þmax 0;Pit � w

i

n o
ð15Þ

[36] (T-period steady state constraint)

SiTþ1 þ Sb
iTþ1 ¼ Si1 þ Sb

i1 ð16Þ

[37] Note that the equations (14–16) differ from (7, 9,
10) due to an additional storage variable Sb

it for the bottom
store. The base flow is a fraction of the bottom storage
level. The total storage at time t is now defined as Sit þ Sb

it.
The minimization program QE4 implements a �-quantile
specific parameter estimation for the more complex model

Table 3. Description of Parameters (to Estimate), Variables,
Coefficients, and Indices Used in the Parsimonious Model for a
Dry Land Area [From Pande et al., 2012a]

Symbol [Units] Symbol Description

Description of Parameters
Fce [-] Fraction of residual rainfall that evaporates
Fce0 [1/month] Multiplier on �i, fraction of storage that

evaporates
Fck [h/(in�month)] Multiplier on Ki, fraction of storage contributing

to slow flow
� [-] Multiplier on E0

i;ta
irri
i , fraction of maximum irri-

gation demand
w

i
[mm/mo] Hortonian overland flow threshold parameter,

rainfall above this threshold is conceptualized
as overland flow contribution

Description of Coefficients
Ki [in/h] Effective hydraulic conductivity
�i [-] Effective porosity
kc

i;j;t [-] Crop coefficients based on FAO guidelines for
jth land cover type in ith subbasin and month
t

airri
i [-] Fraction of area irrigated in the ith subbasin

Pi;t [mm/month] Monthly rainfall for the ith subbasin in month t
aij [-] Fraction of ith subbasin covered by jth land

cover type
Description of Variables
Si,t [mm] Store levels in subbasin i and month t
ri;t [mm/month] Slow flow out from ith reservoir in month t
E0

i;t [mm/month] Reference evaporation calculated using 1985
Hargreaves equation for ith subbasin in month
t

ui;t [mm/month] Estimated irrigation demand for ith subbasin in
month t

wi.t [mm/month] Residual rainfall in ith subbasin and month t af-
ter subtracting Hortonian overland flow

ed
j;t [mm/month] Evaporation demand of jth crop in month t

ea
i;t [mm/month] Actual total evaporation from ith subbasin in

month t
Description of Indices
U(i) Set of subbasins upstream to the ith subbasin
I Subbasin index, {1, . . . ,N}
J Land cover index, {1, . . . ,J}
T Month index, {1, . . . ,T}
I Number of subbasins, 34 in this study
J Number of land cover types, 18 in this study (15

croptypes, three other land cover types)
T Number of months, 12 in this study
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structure given by equations (3–6, 8, 14–16) with evapora-
tion as the variable of interest,

min 0:5
XI

i¼1

XT

t¼1

j~� itj þ
XI

i¼1

XT

t¼1

~�
þ
it� þ ~�it��

� 	" #
=NI

with respect to Fce;Fce0;Fck ; �;wi
; Sit; Sb

it;
~�it�þ; ~�it��; ea

it;
rit; r‘t; uit,

[38] subject to constraints (3–6, 8, 14–16),

Fce � 0;Fce 0 � 0;Fck � 0; � � 0;w
i
� 0; Sit; S

b
it � 0; ~�it�þ

� 0; ~�it�� � 0;

and with storage and vaporization residuals defined as:

D~S it � Sitþ1 � Sit þ Sb
itþ1 � Sb

it

� �
¼ ~� it ð17Þ

� êa
it � ea

it

� �
� ~�it�

þ ð18Þ

1� �ð Þ �êa
it þ ea

it

� �
� ~�it�

� ð19Þ

3.2. Quantile Model Selection Results

[39] Programs QE3 and QE4 are solved in General Alge-
braic Modeling System (GAMS) using MINOS5 Discrete
NonLinear Programming (DNLP) solver [GAMS, 2008].
The threshold parameters w

i
are set to calibrated values

using an equally weighted mean absolute errors, i.e., using
program QE3 with � ¼ 0.5 [see Pande et al., 2012a] to
direct the attention to the parameters that directly affect the
estimation of vapor flux. Further, the storage levels are ini-
tialized (for the solver) at the levels estimated by the
equally weighted mean absolute error in Pande et al.
[2012a]. In order to address the sensitivity of the solver to
parameter initialization by the user, a 3 � 3 � 3 � 3 mesh-
grid for remaining parameters {Fce 0,Fce,Fck ,�} is created
with lower bound at {0,0,0,0} and upper bound at
{0.1,0.1,0.1,0.1} for QE3 and QE4. The upper bounds are
set based on median parameter estimates of QE3, i.e., solu-
tion of QE3 with � ¼ 0.5 [Pande et al., 2012a]. A solution
that is a minimum of local minima (approximating a global
minimum) is thus obtained. The results shown in the fol-
lowing for QE3 and QE4 are for the initialization that has
the minimum objective function.

[40] Figures 7a and 7b show quantile parameter estimates
relevant to vapor flux for programs QE3 and QE4, respec-
tively. All parameters for the two reservoir model set up of
QE4 are nearly constant for all the quantile values. Further,
the parameter � corresponding to the evaporation due to irri-
gation is 0 for all quantile values except the 90th percentile.
In the case of QE3, two of the three parameters, Fce, �, are
also nearly constant for all quantiles except the 90th percen-
tile. However, Fce0 gradually increases with quantiles. The
improvement of the model structure in QE3 to that in QE4
reduces the need to explicitly model irrigation (as done in
QE3) as the vertically connected model structure implicitly
models the vertical flux between the two reservoirs.

[41] Figure 8 further elaborates on the reduction of
model structure deficiency when the model structure is
improved. The loss curve for the thresholded single reser-

voir model structure (for each subbasin) in program QE3
increases with quantiles. The loss curve for the two reser-
voir model structure (for each subbasin) in QE4 first
increases and then becomes constant with increasing quan-
tiles. Further, the latter curve is quantilewise closer to 0
than the former. Both these observations reveal a reduction
in model structure deficiency when storages in unsaturated
and saturated zones are better distinguished via the two res-
ervoir model structure. However, as Figure 8 suggests, nei-
ther of the two model structures remove the structural error
entirely and yield poor prediction of higher vapor fluxes or
there are errors in evaporation flux (reanalysis) data that
cannot be accommodated in the model structures.

[42] Figure 9 shows the performance of two quantile
models (10th and 90th percentile) with the reanalyzed
data used for two subbasins within the study area and for
the two model structures considered in programs QE3 and
QE4. Note that quantile specific parameter values that are
obtained from programs QE3 and QE4 are applicable to
all the subbasins within the study area. These parameters
are locally scaled by subbasin specific hydrologic proper-
ties (such as field capacity, hydraulic conductivity) or var-
iables (such as rainfall) to yield subbasin specific vapor
fluxes.

[43] The model structure deficiency in representing the
underlying processes is evident in Figures 9a and 9b
(though also in Figure 9c). The 80% confidence intervals of
the model structure are not able to cover the vapor flux
observations of the two subbasins. The model structure cor-
responds to program QE3. The inter quantile model per-
formance for subbasin 11 is improved by considering the
model structure in QE4 (Figure 9d) as it now brackets more
observations. However, this appears not to be the case for
subbasin 4. The improvement in the model structure as
envisaged in QE4 is limited. This may be due to errors in
the reanalyzed evaporation data, the 80% confidence inter-
val or the limited model structure improvement in QE4.
The interannual decline in the water table that the study
area is currently witnessing [Tiwari et al., 2009] has also
been ignored. This can be important in explaining the part
of observed reanalysis data that are not bracketed by the
80% quantile confidence interval. Note here that the model
structures in QE3 and QE4 are both deficient such that the
10th and 90th percentile models do not cross, which sup-
ports the arguments presented in Pande et al. [2012a] that
structural deficiency is a necessary but not a sufficient con-
dition for quantile predictions to cross.

[44] Models based on traditional statistics such as mean
absolute error or mean square errors can be obtained from
quantile models for each of the structures. A median model
is a quantile model for quantile value � ¼ 0:5. Similarly a
‘‘mean’’ model that corresponds to a model obtained by
minimizing mean square error statistics is a weighted sum
of quantile models for quantiles around � ¼ 0:5. These
models are also equivalent to models obtained by maximiz-
ing a Laplace or a Gaussian likelihood function. These tra-
ditional statistics-based model selection would also suggest
that the two reservoir model structure is an improvement
over the single reservoir model structure. This is because
the asymmetric loss function values for the former structure
is quantile-wise closer to 0 than the latter and the statistics
for a model selected based on traditional statistics can be
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represented as weighted sums of asymmetric loss function
values at various quantiles.

4. Deficiency Ordering of Model Structures for
the Guadalupe River Basin

[45] The Guadalupe river basin data set is obtained from
the Model Parameter Estimation Experiment (MOPEX)
data set [Duan et al., 2006]. The basin has a quick response

to precipitation with low flows for nonrainy days. This may
indicate that the basin has low percolation rate, quick
response of the basin to precipitation, and small residence
time for overland flow. Further discussion on the river ba-
sin can be found in Clark et al. [2008].

[46] The modifications are made to model structure
‘‘crr0’’ (Figure 1) to generate nine different model struc-
tures. Three model structures are generated by altering the
number of routing reservoirs from 3 to 1 (called crr1, crr2,
and crr3). The next three model structures are created by
removing the interception component from crr1, crr2, and
crr3 yielding crr4, crr5, and crr6, respectively. The final
three model structures are based on crr5 with alterations to
the remaining components, i.e., the unsaturated and satu-
rated zones. The first of these three structures, crr7, is such
that parameter �F in equation (1) is an inverse function of
storage Ss in the saturated zone. This mirrors a model struc-
ture conceptualization in Clark et al. [2008], wherein the
saturated area is controlled by an inverse function of mois-
ture in the lower layer. The overland flow equation then
becomes:

R tð Þ ¼ Pe tð Þ 1� exp � �F=Ss tð Þf gSu tð Þ=Su maxð Þ½ �
= 1� exp ��F=Ss tð Þð Þ½ � ð20Þ

[47] The model structure crr8 is created by replacing the
surface runoff generating mechanism in equation (1) with
an infiltration excess mechanism based on Moore [1985]. It
is assumed that the probability distribution function of the
infiltration capacity, i, is a reflected power within the basin,

Figure 7. Vaporization relevant quantile parameter estimates Fce, Fce0, � from (a) program QE3 and
(b) program QE4, equations (4) and (6).

Figure 8. Comparison between the two asymmetrically
weighted objective functions for model structure in QE3
(single reservoir) and QE4 (two reservoirs).
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where imax is the maximum infiltration capacity present
within the basin and �F now controls the curvature of this
distribution,

F ið Þ ¼ 1� 1� i=imaxð Þ�F 0 � i � imax ð21Þ

[48] For a given amount of precipitation P(t) at time t,
the infiltration excess flow is given by Moore [1985]:

R tð Þ ¼

ZP

0

F ið Þdi P tð Þ � imax

P tð Þ � imax þ
Zimax

0

F ið Þdi P tð Þ > imax

8>>>>>>><
>>>>>>>:

ð22Þ

[49] The solution to equation (22) with the distribution
specification of (21) yields:

R tð Þ ¼
max P tð Þ þ imax

aF þ 1
1� P tð Þ=imaxð Þ�Fþ1 � 1

h i
; 0

� 

P tð Þ � imax

max P tð Þ � imax þ P tð Þ � imax

aF þ 1
; 0

� 

P tð Þ > imax

8>><
>>:

ð23Þ

[50] Finally, the model structure crr9 is created from crr5
by introducing an upper bound, Ssmax on the second layer

moisture Ss and the base flow is conceptualized as a nonlin-
ear (power) function of the lower layer soil moisture
(a power function with additional parameter bF controlling
the curvature). The second layer moisture that is in excess
of its upper bound Ssmax is transferred to the upper layer
(similar in conceptualization to Sacramento Soil Moisture
Accounting (SAC-SMA) model, Burnash [1995]). Thus,

Qs tð Þ ¼ Ss tð Þ=Ss maxð ÞbF=Ksfor Ss tð Þ � Ss max ð24Þ

[51] Table 4 summarizes all the above model structures
and associated additional or redefined parameters.

4.1. Quantile Model Selection on Streamflow

[52] Table 1 summarizes the basic model structure
‘‘crr0’’ which is the basis for model structures crr1 to crr9.
The modeled flow, Qmod tð Þ, is estimated for each of the
model structures crr1 to crr9 and subtracted from observed
flows Qobs tð Þ to obtain two types of absolute

residuals, ~�
þ
t ;

~�t�
n o

. It is then used to estimate a �-quantile

specific model for each model structure by minimizing the
asymmetric loss function in (2).

[53] The Shuffled Complex Evolution global optimiza-
tion algorithm of University of Arizona (SCE-UA) is used
to minimize the objective function in equation (2). The pa-
rameters of the algorithm are kept the same as in section 2.

Figure 9. Comparison between reanalyzed evaporation data and 10th and 90th quantile models for two
subbasins: (a and c) for subbasin 4 and (b and d) for subbasin 11. Figures 9a and 9b are for model struc-
ture within program QE3 and Figures 9b and 9d are for model structure within program QE4. Monthly
rainfall values are shown in the inset.
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[54] Daily streamflow, precipitation, and potential evap-
otranspiration data that are used for assessing the nine
model structures span 6 years (1959–1964). It is assumed
that the data size is large enough for the estimation of any
model from the nine model structures to converge (to an in-
finite sample estimation), thereby removing the need to test
the performance of a selected model over unseen data
[Pande et al., 2009, 2012b]. Runga Kutta integrator is used
to solve the differential equations involved in the model
structures [Schoups and Vrugt, 2010]. SCE-UA is run five
times with different initialization for each quantile and
model structure. The reported results are quantile-wise best

performing models within each model structure amongst
five different SCE-UA initializations.

4.2. Quantile Model Selection Results for the
Guadalupe River Basin

[55] Figure 10 shows that quantile-wise best performing
model (in terms of its asymmetric loss function) can be
selected from each of the nine model structures. The model
structures crr1–crr3 model low flows (represented by lower
quantiles) in the same manner. The differences between the
model structures appear in modeling larger quantiles with
the model structure crr2 with two routing reservoirs

Table 4. Summary of Model Structures crr1 to crr9 Used in This Studya

Model Structure Modified Equation/Description Additional/Adjusted Parameter (units)

Crr1 Three routing reservoirs -
Crr2 Two routing reservoirs -
Crr3 One routing reservoir -
Crr4 Crr1 without interception -
Crr5 Crr2 without interception -
Crr6 Crr3 without interception -
Crr7 Crr5 with overland runoff parameter an inverse function of

lower layer water storage (see equation (20))
�F (mm): proportionality parameter corresponding to Ss(t)

Crr8 Crr5 with overland flow generated by infiltration excess
mechanism (see equation (23))

imax (mm/d): maximum infiltration capacity within the ba-
sin, �F (-): curvature parameter of reflected power distri-
bution function

Crr9 Nonlinear lower/saturated zone with upper bound on its
storage (see equation (24))

bF (-): exponent, Ssmax (mm): upper bound on second layer
storage

aAll model structure changes are with reference to ‘‘crr0’’ unless mentioned otherwise.

Figure 10. Quantile-wise comparison of asymmetric loss functions for nine model structures summar-
ized in Table 4. Figure 12d shows best performing model structures crr2, crr5, and crr8 from Figures
12a–12c, respectively.
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capable of performing the best. The spikes in the asymmet-
ric loss functions of crr2 and crr3 are potentially due to the
threshold (interception) estimation. Once the interception
component from the model structure is removed, the asym-
metric loss functions for the three model structures are
more stable as shown in Figure 10b (structures crr4–crr6).
All the three model structures, which are dissimilar only in
the number of routing reservoirs, are capable of modeling
the low flows in the same manner but differ in the way they
can model the high flows. The model structure crr5 with
two routing reservoirs is capable of providing the best
quantile-wise performance amongst the three structures.
Figure 10c shows that the model structure crr8 with an
infiltration excess runoff generating mechanism yields the
best quantile-wise performing model amongst the model
structures crr7–crr9. The structure crr9 with a nonlinear
and thresholded saturated zone conceptualization is capable
of modeling low flows better but it is incapable of modeling
high flows. It is the opposite for the model structure crr7
that conceptualizes runoff generation as dependent on the
soil water storage in the lower/saturated zone reservoir.
The model structure crr7 is not capable of mimicking low
flows as good as the other two model structures, though it
models high flows nearly as well as the model structure
with an infiltration excess runoff generation mechanism.

[56] Figure 10d finally compares the best performing
model structures from groups {crr1, crr2, crr3}, {crr4, crr5,
crr6}, and {crr7, crr8, crr9}. These three model structures,
crr2, crr5, and crr8, are also the best three model structures
from the set of all nine model structures. These three model
structures are similar in performance for low flows. Sur-
prisingly, the model structure crr5 with two routing reser-
voirs and no interception (and the remaining structure the
same as ‘‘crr0’’) is better suited to model high flows than
the model structure (crr8) with similar structure as crr5
except with infiltration excess as the runoff generating
mechanism. Probably, a model structure with infiltration
excess mechanism but with different number of routing res-
ervoir may yield a better performing model structure.

[57] Three Bayesian model selection (detailed in Appen-
dix B) criteria are also used to assess the nine model struc-
tures. The three criteria find crr1, crr2, crr5, and crr8 as the
best of the nine model structures. It finds crr7
(BIC¼ 5.9742eþ 004, HM1¼ 5.9761eþ 004, HM2¼
5.9661eþ004) and crr9 (BIC¼ 5.8411eþ 004, HM1¼
5.8422eþ 004, HM2¼ 5.8347eþ 004) as the worst struc-
tures. However, amongst these four model structures, the
criteria find crr8 as the best (BIC¼ 6.4227eþ 004,
HM1¼ 6.4248eþ 004, HM2¼ 6.4182eþ 004), followed
by crr2 (BIC¼ 6.2744eþ 004, HM1¼ 6.2760eþ 004,
HM2¼ 6.2678eþ 004), crr1 (BIC¼ 6.2594eþ 004,
HM1¼ 6.2613eþ 004, HM2¼ 6.2520eþ 004), and then
crr5 (BIC¼ 6.2502eþ 004, HM1¼ 6.2522eþ 004,
HM2¼ 6.2434eþ 004). Thus, Bayesian criteria yield a
more intuitive ordering of model structures than quantile
model selection. It finds infiltration excess as an important
process in Guadalupe river basin, followed by interception.

[58] Figure 11 shows the parameter values common to
the model structures crr2, crr5, and crr9 as shown in Figure
10d. Even though crr2 and crr5 are nearly similar in per-
formance, the kinks on asymmetric error of crr2 can be
seen due to similar kinks in its parameter estimates. This is

accredited to searching for a threshold when it is not
smoothed in the model equations [Clark et al., 2008]. The
presence of interception allows higher upper layer soil
water storage capacity. Similarly, the estimates of maxi-
mum percolation rate Qpmax, base flow and routing time
constants, Ks and Kf, are lower for crr5 than crr2 for low
quantiles values, indicating a compensation for the absence
of interception zone in the case of the former. The evapora-
tion relevant parameter estimates for crr5 are more erratic
with quantiles compared to the other two model structures.

[59] The parameter estimates of all the model structures
except for Sumax and �F show similar trend with quantiles
(either increasing or decreasing) in Figure 11. The runoff
related parameter �F has a different interpretation for crr8
(�F is the curvature of reflected power distribution function
unlike for crr2 or crr5), thus a different y axis. Further note
(from Figures 11a, 11b, and 11e) that the quantile specific
parameter estimates for the structure crr8 are much more
variable across quantiles. If the true model (of nature) is
embedded within a model structure being considered, there
would exist an optimal model that (i) has zero asymmetric
loss function value and (ii) has same parameter values at
different quantiles. These two conditions are akin to the
conditions that are necessary and sufficient for a model
structure ‘‘not’’ to be deficient (see also its discussion in
Pande [2013], section 4.1). Thus, if the true model is not a
member of the model structure (i.e., the model structure is
deficient as would be the case almost surely), neither of the
two consequences may hold. Hence, one may conclude that
variability in parameter estimates across quantiles is a con-
sequence of structure deficiency. However, the variability
in parameter estimates across quantiles may also be due to
different sensitivity of parameters at different quantiles in
addition to model structure deficiency and may hide the
deficiency effect. This along with the evidence from Figure
10d (worst asymmetric error amongst the three model
structures) indicates that structure deficiency of crr8 is pos-
sibly higher than crr2 or crr5.

[60] In general, all three model structures show high pos-
itive values of �E and negative values for �F consistently
across all the quantiles. Thus, all three model structures
suggest that evaporation tends to occur at the potential rate
and that the overland flow is initiated after the average ba-
sin moisture condition relative to the maximum crosses a
certain threshold (for crr2 and crr5). Since the overland
flow in the structure crr8 does not depend on the unsatu-
rated zone soil moisture, the estimated Sumax increases with
quantiles unlike the case of crr2 or crr5 wherein the unsatu-
rated zone is parameterized shallower for higher quantiles
in order to accommodate streamflow peaks. The routing
time constant Kf is close to 1 day, the base flow time con-
stant Ks decreases with higher quantiles for nearly all quan-
tiles for all the model structures, suggestive of the quick
response nature of the basin.

5. Conclusions

[61] Applications of quantile model selection and model
structure deficiency assessment were presented in this pa-
per. An exhaustive study using a flexible model structure
and the French Broad river basin data set demonstrated that
quantile model selection and prediction accommodates
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other types of predictors such as those based on minimiza-
tion of summary statistics as well and showed that that a
weighted sum of quantile predictions is a robust predictor.

[62] Two additional case studies were then studied to
demonstrate that the asymmetric loss function embeds model
structural deficiency as proposed by Pande [2013]. In the
parsimonious dry land modeling study, an expected
improvement due to an addition of a lower reservoir in the
model structure was reflected in lower asymmetric loss func-
tion values for all considered quantiles. In the Guadalupe
river basin case study, the asymmetric loss function was
employed to infer least deficient model structure out of nine
model structures spanning different interception, routing,
overland flow, and base flow conceptualizations. It also dem-
onstrated that the asymmetric loss function can be used to
order various model structures in terms of its deficiency. The
Bayesian criteria revealed the same best four and the worst
two model structures. However, it differed from quantile
structural assessment in the identification of the least defi-
cient model structure. The Bayesian criteria found infiltra-
tion excess and interception as important processes that
reduce model structure deficiency in the Guadalupe river ba-
sin, unlike quantile model selection.

[63] No assumptions on error structure were made by
quantile model selection. The quantile estimates of parame-
ters thus might have absorbed some of the effects of mea-
surement errors in addition to that of structural deficiency.

This however does not limit the conclusion that an
improvement in a model structure leads to a reduction in
bias in predicting a quantile. Naturally, the bias would not
vanish if a structure for measurement errors is not incorpo-
rated in addition to the structure of predictive equations.
But given that the absence of a structure for measurement
errors equally holds for any improvement in a model struc-
ture, the bias in quantile prediction would reduce with any
reduction in model structure deficiency. This was also
shown to hold in the synthetic case study of Pande [2013]
that studied the effect heteroscedastic additive noise on
quantile model selection.

[64] Quantile model selection assesses structural defi-
ciency across quantiles without making any strong a priori
assumption about the ‘‘true’’ model structure. It is an
approach that informs a modeler on where and to what
degree her model structure is deficient in not being able to
model the underlying processes. It is thus a mechanism to
approach the ‘‘truth’’ in an efficient manner while acknowl-
edging that the ‘‘truth’’ may never exactly be modeled.

Appendix A: QE2 Problem Specification and the
Assumptions

[65] Let St denotes the storage of a reservoir and let its
outflux be a function of the storage denoted by f St; kð Þ.
Here, k 2 K represents a set of parameters (for example

Figure 11. Quantile specific parameter estimates (that are common across model structures) for three
best performing model structures crr2, crr5, and crr8. aF values for structure crr8 are plotted on the right-
hand side axis. The legend for the model structures is provided in (e).
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slow and fast runoff coefficients), K represents the range of
parameters and corresponds to a particular model structure.
Let yt; xtf gt¼1;::;N represent observed data set whereyt 2 <þ
and xt 2 <þ represent observed outflux and input forcing,
respectively, at time t. Let x ¼ xtf gt¼1;::;N represent the
input forcing vector and So is the initial soil moisture condi-
tion. A �-quantile specific function and the corresponding
parameters based on outflux observations can be estimated
by the program (QE2):

W � ; y; xð Þ ¼ min k2K; "�t ; "
þ
t ; St

XN

t¼1

1� �ð Þ"�t þ �"þt
� �

st
yt � f St; kð Þ � "þt � 0
�yt þ f St; kð Þ � "�t � 0
Stþ1 � St ¼ xt � f St; kð Þ
"þt ; "

�
t � 0

[66] The following assumptions should hold for the prop-
ositions provided in Pande [2013] to be valid for a given
hydrological model selection problem.

[67] Assumption 1: The parameter set K that defines the
model structure for a given model equation is compact.

[68] Assumption 2: The model equation f St; kð Þ is dif-
ferentiable, is monotonic in at least one element of k, and
increasing in St. Further, @f

@kj
is independent of @f

@kj0
where

kj and kj0 are two distinct elements of k.
[69] Assumption 3: Input forcing vector is nonzero, i.e.,

x ¼ x1; ::; xt; ::; xNf g 6¼ 0.
[70] Assumption 4: Initial model storage is sufficiently

greater than 0, i.e., So >> 0.
[71] Assumption 5: The observed variable of interest is

bounded, i.e., y � y � y.
[72] Assumption 6: The cumulative probability density

F(yıx) is differentiable and
[73] Fðyjy-t ; x Þ ¼ 0; 8y-t � y-t � y-t where

y-t ¼ y1; ::; yt�1; ytþ1; ::; yNf g.
[74] Assumption 7: We avail of a global optimizer that can

identify a minimum of a quantile model selection problem.

Appendix B: Bayesian Criteria

[75] Three Bayesian criteria are used to approximate the
marginal log likelihood of a model structure [Pande, 2013].

[76] 1. Bayesian Information Criteria (BIC) [Kass and
Raftery, 1995]:

log m yjMð Þ � log f yjM ; ��ð Þ � 0:5 log Nð Þj�j

[77] 2. Harmonic mean of the log likelihood values of
the posterior distribution (HM1) [Kass and Raftery, 1995]:

log m yð jMÞ � 1

m

Xm

i¼1

log f yjM ; ��ð Þð Þ�1

 !�1

[78] 3. A variant of Chib and Jeliazkov [2001] (HM2):

log m yjMð Þ � log f yjM ; ��ð Þ þ log	 � � jMð Þ � log	 � � jy;Mð Þ

[79] Here, m yjMð Þis the marginal likelihood that data y
are from a model structure M, f yjM ; ��ð Þis the likelihood

that the data y are from a model that is from a structure M
and parameterized by ��, �� represents the maximum likeli-
hood parameter estimate (MLE) for a given model structure
M, j��j is the dimensionality of the parameter set,
	 ��jMð Þis the prior probability of the MLE ��, 	 ��jy;Mð Þ
is the posterior probability of ��, N is the sample size, and
m is the size of parameter sets sampled from the posterior
distribution 	 ��jy;Mð Þ. The General Likelihood function is
used (see section 2.3.1) for f yjM ; �ð Þ.

[80] For the Bayesian criteria HM2, 	 �jy;Mð Þis nonpara-
metrically estimated using multivariate kernel density esti-
mation. For the case studies, N¼ 2192 days and m¼ 600.
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