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Report Outline
This report consists of two parts. The first is a Scientific Paper, which presents the final
results of the thesis and the methodology used to arrive at them. The second part is the
Preliminary Thesis report. This part contains the preliminary work performed up until the
midterm review. This includes a literature study along with the first results.

The Scientific Paper is written in a format required by IEEE journal Transactions on In-
telligent Transportation Systems. It consists of six sections: Introduction, Background In-
formation, Methodology, Results, Conclusion, and Acknowledgements.

The Preliminary Thesis report contains sections on methodology and planning of the the-
sis, four chapters on the research relevant to the topic of this thesis, and, finally, the prelim-
inary results. The Preliminary Thesis has been graded following a midterm thesis review.

The Scientific Paper Part is recommended to a reader interested only in the outcomes and
concise methodology description. However, if a reader is interested in the full process taken
to arrive at results, then reading the complete report is recommended. Chronologically, the
Preliminary Thesis has been produced first. Hence, the Scientific Paper picks up on the work
in the Preliminary Thesis and develops upon it.
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Quantification of ATM System Resilience under uncertainty

Jakub Janowski
Supervisors: Jacco Hoekstra1, Joost Ellerbroek1, Giuseppe Sirigu2, Heiko Udluft2

Abstract— The resilience of the Air Traffic Management
(ATM) system to disturbances is required to maintain high
operation performance. Before it can be improved, the resilience
of the ATM system must be quantified. The measurement
of resilience requires knowledge of a system reference state.
This paper proposes a novel methodology to detect disruptions
without a pre-specified reference state and to quantify airspace
resilience to disturbances. The method utilises residual-based
anomaly detection to model a reference state based on historical
values and detect deviations from it. The method has been
tested in assessing the resilience of arrival time (airspace state)
to high winds (disturbance) in 9 airports worldwide for a
year. The results have shown that the method is capable of
detecting disruptions as well as airports experiencing high wind
conditions tend to be more resilient to them.

I. INTRODUCTION

The Air Traffic Management (ATM) system is being put
consistently under more pressure. The number of Instru-
mental Flight Rule (IFR) operations is increasing year to
year. In Europe, it is forecast to increase by more than 50%
between the years 2017 and 2050 [5]. With this growth
comes the need to optimise air traffic operations such that the
limited resources are used to their full potential. An area for
potential improvement is the ATM system resilience, which
is understood as the ability to respond to disturbances such
as weather or technical faults. If severe enough, disruptions
due to, for example, the weather may negatively impact
operations by increasing delays. In the US, 78% of delays
occur in the near-airport phase of flight, while in Europe,
this number is 48.4% [9]. In both cases, weather constitutes
at least half of the delays.

Before the Resilience of a system can be improved, it must
be defined as well as made quantifiable through a metric. An
essential step in measurement of resilience is the detection
of system disruptions understood as a deviation of a system
state from a reference state. However, the reference state
may be ambiguous and related to the overall context in
which the system is operating in a given moment. Hence,
the research problem addressed in this paper is the ability to
define resilience when the nominal state, i.e., disruption-free
state, is unknown.

The proposed solution to the research problem utilises a
bayesian linear regression model that relates a Key Perfor-
mance Indicator (KPI) of interest to variables that describe
the airspace context. This method is de facto, a residual-
based anomaly detection method known from the field of
data mining [20]. This approach allows for detecting KPI

1 Delft University of Technology
2 Airbus Defence & Space

deviations when the exact nominal range of KPI values
is unknown. Furthermore, a Resilience metric is proposed,
which is based on measuring absorptive and restorative
capacities of airspace.

The method has been tested on deviations of arrival time
KPI in response to high wind speeds. The results have
shown that the method can identify deviations due to this
disturbance. The method has been employed on a year of
Automated Dependent Surveillance (ADS-B) data for nine
major airports, and for each, a Resilience score has been
computed.

The results show that there is a tendency for airports to
increase the resilience of their operations to the wind if they
face this disturbance frequently. This is done through the
placement of runways in multiple directions, such as in the
case of Amsterdam Schiphol. The complete method can be
utilised to track the effectiveness of resilience improvement
initiatives.

The structure of the paper is as follows. First resilience,
ATM KPIs, and time-series analysis shall be introduced
in section II. Next, the methodology shall be presented
in section III. In section IV, the results of the deviation
detection and resilience metric are presented. Lastly, the
paper is concluded in section V.

II. BACKGROUND INFORMATION

Research of airspace response to disruption requires the
employment of analytical tools and field domain knowledge
covering airspace KPIs and resilience. To set a theoretical
basis for later discussion, the following subsections shall
introduce key concepts for this research.

A. Resilience

The understanding of resilience varies between domains
[27]. As such, different properties are attributed to the
resilience of a system. Three capacities can be attributed
to resilience: absorptive, restorative, and adaptive [28]. The
absorptive capacity allows the system to withstand pertur-
bations without changing the system state in reaction to the
perturbation. The restorative capacity is responsible for re-
turn to a system nominal condition following a perturbation.
The adaptive capacity allows the system to modify its internal
characteristics to adjust to a perturbation.

Table I presents the three capacities concerning system
properties of robustness, dependability, and resilience. Re-
silience in this schematic is an overarching property en-
compassing robustness and dependability. However, while
restorative and absorptive capacities can be decoupled from



each other, they cannot be decoupled from the adaptive
capacity. This is because the adaptation of the system will
change its restorative and absorptive capacities.

This is important to consider as measurements of the two
capacities will be partially influenced by adaptability. In
the context of ATM, this can be understood through airport
operational adaptation to a change in wind direction. If the
airport has favoured directions due to, for example, runway
positioning or approach procedures, then the restorative and
absorptive capacities concerning wind speed will be affected
by the runway configuration utilised.

TABLE I: Resilience capacities [30].

Related system properties Resilience capacities
Absorptive Restorative Adaptive

Robustness + - -
Dependability + + -
Resilience + + +

Various metrics for measuring resilience have been pro-
posed. One of the first measures of resilience originates
from the field of earthquake engineering. In it, a value Qt
represents the quality of performance of a system, with
100% meaning that the system is functioning fully. As such,
resilience is defined as in equation 1. R is the resilience
value, while t0 is the start time of disruption, and t1 is the
time of full recovery. The highest value resilience may take
is 100; in this case, the disruption does not affect system
performance quality.

R =

∫ t1

t0

(100−Q(t))dt (1)

Figure 1 presents the disruption and recovery process. It
can be seen that at the moment t0 the quality of service
experiences a drop due to a disrupting event such as an
earthquake. From that time on, the quality of service begins
to recover to reestablish the full performance. This concept
is known as the resilience triangle due to its shape.

td

Q
ua
lit
y	
of
	se
rv
ic
e	
[%

]

0

100

T

Fig. 1: Resilience triangle concept. td indicates time of
disruption.

The method, as mentioned earlier, includes the assumption
that only a single disruption occurs. Zobel has proposed
an extension that overcomes this assumption. Et al., in the
context of the resilience of cyberinfrastructure [34]. In the
proposed method, the area above the quality curve Q(t) is
measured as a sum of within and between event losses.

Within-event losses are those that occur due to slow-onset
disruptions.

Within the field of ATM, resilience is known mainly
through the mostly qualitative Resilience Engineering frame-
work [31]. However, a quantitative measurement framework
has been proposed, which allows for the measurement of
resilience [32]. The performance-based approach proposed
by Gluchshenko and Foerster [32] defines resilience based
on the return of a system state to its reference level following
a disruption. In this framework, resilience is considered high
if the time of deviation is higher than the time of recovery.

The proposed resilience measurement methodology fo-
cuses on the restorative capacity from table I. In this defini-
tion, the time of deviation is the time between the beginning
of disruption and the peak of deviation from the reference
state. The time of recovery is then the time between the
peak, as mentioned earlier, and the end of disruption. Figure
2 presents a system response to a disturbance. The time of
deviation is much larger than the time of recovery; hence,
the system has high resilience.

Sy
st
em

	st
at
e	
/	K

PI

T

D
is
ru
pt
io
n

N
om

in
al

tdisturbance

Tdeviation Trecovery

Tdisruption

Fig. 2: High resilience according to performance based ATM
resilience approach. (adapted from Gluchshenko et al. [31])

When discussing concepts such as deviation, it is essential
to note that a deviation occurs with respect to a reference
state. In the resilience triangle-based definitions, the refer-
ence state is 100% - maximum quality of service. In the
definition by Gluchshenko et al., this is a set of performance
indicator values. The determination of an adequate reference
state is critical in measuring resilience. If the reference state
is set incorrectly, deviations may not be detected or will be
detected too frequently.

B. ATM system performance metrics

In the study of resilience, system states are observed for
disruptions. Hence, there exists a need to quantify the state by
some metric. Such metrics can then be utilised to assess the
effects of system modifications. However, the ATM system
performance can be considered from different perspectives.

The International Civil Aviation Association (ICAO) and
the Civil Air Navigation Services Organisation (CANSO)
created KPIs that are used to evaluate the performance of
the ATM system. A 2009 ICAO report [8] has defined



eleven Key Performance Areas (KPAs). The KPAs that can
be derived based on observed traffic include Capacity and
Efficiency.

CANSO also proposes Efficiency and Capacity KPIs [7].
Some of the Capacity KPIs include landing and departure
capacities as well as airport throughput, which is the sum
of the two previous mentioned capacities. They can be
considered as declared capacity or utilised capacity where
the former is the theoretical maximum of the capacity while
the latter is the actual usage of capacity.

The efficiency KPIs proposed by CANSO are divided per
phase of flight and include Taxi, Departure, En-route, and
Arrival KPIs. Efficiency KPIs can be utilised to, for example,
compare the arrival time with a nominal arrival time or an
ideal arrival time. Furthermore, distance flown can also be
considered in comparison to an ideal value such as a great
circle distance.

Another set of KPIs are predictability KPIs [7]. These
are utilised to measure the variability of the ATM system
performance. Those can include travel time variation, flight
plan variation, or capacity variation.

Additionally, more sophisticated metrics are utilised in
research to study airspace congestion. These can include
flow-based, geometrical, or dynamical system metrics [6].

Overall, arrival time is a metric that is simple to measure
as only entry and exit times are needed to obtain it. With
distance, integration must be performed over the complete
flight path. Furthermore, abnormal arrival time the airspace
is directly related to delays, hence it serves as a relevant KPI.

C. Time-series analysis

One can notice that the metrics based on which resilience
is measured in section II-A occur in the form of a time-series.
A uni-variate time-series can be defined as an ordered set of
scalar values Fuv = {f1, f2, ..., fn} where each value fi
corresponds to the ith observation of parameter f [23], [24].

However, complex systems, such as the ATM system,
are described by multiple parameters simultaneously. In this
case, the concept of the multi-variate time-series becomes
relevant. Thus, a multi-variate time-series can be defined as
an order set of vectors Fmv = {~f1, ~f2, ..., ~fn}. For example,
in the context of ATM, this vector could consist of aircraft
count and landing rate.

The uni-variate time-series analysis has to consider tem-
poral auto-correlations. In the case of multi-variate time-
series, this becomes more complex as cross-correlation and
inter variable causality can occur, e.g., landing rate affects
aircraft count in the airspace. In this regard, utilising expert
knowledge can be beneficial to predetermine the directions
of causality as well as choosing suitable variables to include
in the time-series for modeling of the airspace state.

1) Anomaly detection for deviation detection: An ad-
ditional observation can be made based on the resilience
concepts from section II-A, that inherently resilience deals
with system response during non-nominal events caused by
disturbances. In this regard, a parallel can be drawn to the
outlier detection field of data mining. In outlier detection,

the goal is to determine data that deviates significantly from
other data [22], [21].

As an example, consider figure 3, which presents the
concept of an anomaly in the context of time-series. Outside
of the red dotted region, the time-series appears to be
governed by nominal conditions. However, within the dotted
box, the behaviour of the time-series suggests the presence
of another, anomalous mechanisms.

T

Anomaly

Fig. 3: Anomalous data example. The anomaly seems as if
it was caused by another mechanism.

The nominal state of a complex system such as the ATM
system can be non-obvious. This is because the norm of
a particular state can be potentially stochastic as well as
dependent upon other variables. In this regard, anomaly
detection methods can be utilised to define the nominal state
as well as to detect deviations from it. In the data mining
terminology, the deviation would be the anomaly.

Overall, three outlier types can be identified [21]:
• Global: data object varies significantly from the rest of

the dataset.
• Contextual: data object is different from the dataset

considering its context.
• Collective: some data objects collectively, but not indi-

vidually, differ from the dataset.
Contextual outliers are relevant to developing models of

nominal airport states. In this regard, drops in performance
due to poor weather or other disruptions can be considered
outliers in the context of nominal operations, which must be
defined concerning the disruptions being considered. I.e., the
nominal state when studying disruptions due to weather is
the state that is present when no poor weather occurs.

Another essential consideration in anomaly detection is
whether a labelled set of anomalies is available. If a suffi-
cient amount of anomalies have been previously captured,
anomaly detection can be posed as a supervised learning
problem. In this case, the algorithm would be taught to detect
anomalies based on labelled data. However, labelled data is
not easily obtainable for the resilience measurement problem
at hand. Hence, an alternative is unsupervised learning.

In the unsupervised learning approach, the algorithm is
trained without labelled data. In the context of resilience
measurement, this means that no pre-labelled disruptions are
needed. Hence, the unsupervised approach is preferred for
the problem at hand.

The challenge involved with detecting contextual outliers
is the definition of context. In some applications, the context



is easy to specify. For example, when measuring temperature,
the context is the geographic location where it is measured.
However, in other cases, it may be problematic as the context,
if defined by multiple variables that relate to the variable
being measured, is non-trivial.

2) Residual based anomaly detection: The solution to
this challenge is to model the nominal state based on the
contextual factors. The outlier detection itself is performed
by measuring the variable deviation from the nominal state
as determined by the variable’s contextual factors. Consider
a deterministic variable x and its corresponding context c.
Equation 2 presents the function that models the nominal
state xN based on c.

xN = fN (c) (2)

Given the nominal state function, the residual between the
function output and the variable x can be computed as the
difference between the two values.

ε = x− fN (c) (3)

If the residual ε is above a set threshold α then the variable
x is considered an outlier. Due to the utilisation of the model
residual in outlier assessment, this method is referred to as
residual-based anomaly detection [20].

While the method, as mentioned earlier, presented the
nominal state as deterministic, it can as well be modelled
as a probability distribution:

XN ∼ F (c) (4)

This approach is beneficial as it allows for the soft
classification of an outlier, i.e., a probability of deviation
is attributed to a data point instead of a hard classification.
For this, the probability density function of the nominal state
can be utilised:

f(xn | c) = F (c) (5)

The training of function F (c) can be treated as a super-
vised machine learning problem with outputs being x values
and c context values being the input. In this scenario, the
model training must be performed on non-outlier data to
teach it the nominal state.

Regression is utilised in order to perform residual-based
anomaly detection. Regression is a method of mapping a
relationship between dependent and independent variables.
A variety of regression methods exist, some with high
approximation power such as neural networks that have been
utilised for sophisticated tasks such as computer vision and
natural language processing [19].

However, the most common method of regression is
linear regression [18]. This method remains popular due
to its simplicity and, thus, also interpretability. The model
parameters allow for investigation of how the independent
variables affect the dependent variables.

Linear regression can be treated from the Bayesian per-
spective. Within this approach, the problem changes from

determining the best line to determining the best probability
distribution fit. This method has the added benefit of au-
tomatically obtaining information about the likelihoods of
outputs values given the input values.

Equation 6 presents linear regression. y is a single output
value, w are the model parameters, x are the input values
and ε is the error term.

y = wTx + ε (6)

Consider equation 7 which no longer presents the value
y as a scalar value, but rather a Gaussian probability distri-
bution with the mean of µ = wTx and variance of α. This
representation is equivalent to equation 6 as the first term
of that equation is deterministic whilst the error term ε is
normally distributed with variance α and mean µ = 0.

P (y|w,x, α) = N (wTx, α) (7)

The Bayesian linear regression approach attempts to obtain
a probability distribution of the model parameters w. This is
done by introducing a prior probability distribution on the
model parameters [18]. The choice of a Gaussian distribution
as a prior of w will have the same result as the introduction
of `2 regularisation in ridge regression. In practice, the
regularisation is introduced to prevent model overfitting by
penalizing large parameter values.

Bayesian regression as implemented in Scikit-Learn uses
the Bayesian Ridge variant [16]. This method, introduces a
spherical Gaussian prior on parameters w as in equation 8.
This results in all the model parameters w having the same
variance. Parameters λ from equation 8 and α from 7 have a
Gamma distribution priors, each with two hyperparameters.

p(w|λ) = N (w|0, λ−1Ip) (8)

The proposed method of utilising Bayesian regression uses
supervised learning to model the nominal state of arrival time
based on the context. The model is trained to predict x from
c for days where wind speed is below a strength threshold.
Such days are considered nominal as the wind does not cause
disruptions due to its low strength. The anomalies can be
detected by comparing the model’s output to the actual arrival
time. If the difference between the two values is above a
threshold, then an anomaly may be present.

3) K-means clustering: An alternative approach to outlier
detection is to utilise clustering. Clustering is a process of
grouping data objects such that objects similar to each other
are in the same groups, while objects that differ are in
different groups. In this context, three outlier types exist
[21]. The first type of an outlier corresponds to an object
that does not belong to any cluster. The second type of an
outlier corresponds to objects for which the distance to the
cluster centre is large. The last outlier type corresponds to
objects belonging to small or sparse clusters.

One of the popular clustering algorithms due to its sim-
plicity and interpretability is K-means clustering [18]. This
approach aims to minimise the intra-cluster distance of points



belonging to a cluster and the clusters centre (mean). It
does this iteratively by calculating cluster means based on
the points belonging to a cluster and then reassigning the
points to their nearest cluster centre. This is repeated until a
prescribed stopping criterion or convergence. The clustering
goal is to minimize the expression in equation 9.

arg min
S

k∑
i=1

∑
x∈Si

‖x− µi‖2 (9)

k is the preset number of clusters, Si is the ith cluster of
set S = {S1, S2, ..., Sk}. µi is the mean of the ith cluster
and x is a data point belonging to cluster Si.

The expression in equation 9 describes the sum of the
intra-cluster distances, which are distances between objects
belonging to the same cluster. The minimisation of this
expression results in a set of clusters S, where the similarity
between objects in a particular cluster is high. I.e., if the
distance is minimised, then the similarity is maximised.

The requirement to preset the number of clusters k is the
critical drawback of this method [15]. In multidimensional
problems (n > 2), it is problematic to determine beforehand
the representative amount of clusters to utilise if no prior
information is known on the mechanics involved in gener-
ating the data points. For this, a selection criterion must be
utilised in order not to cluster based on an arbitrary number
of clusters.

Two commonly used criteria for model selection are the
Akaike information criterion (AIC) and Bayesian Informa-
tion Criterion (BIC). In general, both criterion attempt to
weigh the goodness of fit of a model versus model com-
plexity. That means a model with high approximation power
and a large number of parameters may be able to fit the data
very well. However, this model would be prone to overfitting,
i.e., it will fit the training data well; however, it will perform
poorly on data it has not seen. The equations for AIC and
BIC can be seen in equations 10a and 10b respectively.

AIC = 2k − 2ln(L̂) (10a)

BIC = ln(n)k − 2ln(L̂) (10b)

In equations 10, k is the number of parameters in the
model. This is also the number of clusters in k-means. n
is the number of samples. L̂ is the maximum value of the
likelihood function of the model.

The proposed method of utilising k-means clustering
differs from Bayesian regression as the former does not
explicitly model the nominal state. Additionally, no context
is utilised in the clustering.

III. METHODOLOGY

Having presented the background information, the meth-
ods utilised in this paper are specified in this section. The
resilience analysis process consists of the steps below. This
method has been applied to the particular case of airport
resilience assessment to disruption in the form of high winds.

The data processing flow can be seen in figure 4. While the
approach is general, this paper shall focus on the impact of
high winds on arrival time.

1) Derive Airspace Metrics
2) Train nominal conditions model
3) Detect deviations due to disruptions
4) Quantify resilience based on deviations
The ADS-B data is obtained from the Airbus Airsense

global ADS-B database [4]. The database utilised for this
research contains ADS-B messages captured by a global
ground-based receiver network for the year 2018. Each ADS-
B message is stored in a decoded format along with addi-
tional metadata per message consisting of UNIX timestamp,
unique flight id, arrival, and departure airports. The data is
stored in a cloud, and airspace metric derivation has been
performed utilising Apache Spark big data computing engine
running on a cloud-based cluster [33].

Wind information for corresponding airports has been
obtained from METAR messages. The METAR data has
been queried from the Iowa State University database, which
collects historical information from the Automated Surface
Observing System network [3].

The details of the process follow.

A. Metric derivation

The metrics are derived for a circular region with a radius
of 100 Nautical Miles around the airport being investigated.
There also exists the possibility to precisely model the
airport Terminal Manoeuvring Area (TMA) based on a
three-dimensional polygon of that airspace. However, that
approach would not create a possibility for benchmarking
airports as some of the metric values would be incomparable.
For example, an airport with a smaller TMA will have, most
likely, shorter nominal arrival times than an airport with a
large TMA.

Thus, a more general representation in the form of a
circular region is preferred. The radius of 100 NM is chosen
based on the practice of Air Navigation Service Providers
in approximating the arrival airspace [14]. The filtering for
aircraft positions within the 100 NM distance of the airport
can be performed with the use of Haversine formula between
the aircraft position and the airport reference point.

The metrics to be derived from ADS-B data can include
continuous values such as aircraft count or event-based
values such as landing rate. The latter are referred to as event-
based as the value can only be changed once the event occurs.
The former can be measured continuously as the aircraft are
present in the observed airspace at every moment.

Event-based metrics are a collection of objects with cor-
responding times of occurrence. As the general trend in
the arrival airspace is being considered, these events can
be transformed into a time-series metric using windowed
aggregation.

Figure 5 presents an example of how time-based window
aggregation is performed. The event, landing, is being cap-
tured. From this event, two possible metrics are derived. First
is the landing count in a time window. Second, the mean
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Time Time-in Landing
1 25 True
2 None False
3 35 True
4 30 True
5 None False
6 None False
7 None False
8 20 True
9 20 True
10 None False

Window start
time

Time-in
(mean)

Landing
(count)

1 30 3

6 20 2

Fig. 5: Window aggregation of events for time-series creation

time-in sector can be derived, assuming that the entry time
into the airspace is also known.

A key aspect in the development of context-based outlier
detection modelling is the proper selection of features rep-
resenting the context. As the time-in sector metric is being
considered as the target value, the features must adequately
describe critical parameters in the mechanism that affect this
metric. The context for this is metric is presented in figure
6.

Figure 6 presents the relations and factors affecting the
Time-in metric. Overall, the system boundary is defined on
the physical boundary of the abstracted arrival airspace. The
system has two parameters that directly impact the time-in
metric the arrival and landing rates. An imbalance between
the two results in an increase of the time-in metric because
the arriving aircraft will need to remain longer in the airspace
before they can land.

Due to the limited throughput of airport runways, the take-
off rate affects the landing rate. Air Traffic Controller (ATC)
may choose to increase the landing rate at the expense of the
take-off rate or vice versa, depending on the needs. As such,
the take-off rate will indirectly influence the time-in metric.

All of the throughput related rates are affected by weather
conditions. A direct causal relationship between weather
conditions and airport throughput exists. Poor weather in the
form of high winds, low visibility, or other conditions will

Landing
rate

Airport

Arrival
rate

Time-in

Take-off	rate Departure
rate

Arrival	airspace

Weather
conditions

Fig. 6: Airspace context for time-in metric.

reduce airport throughput. An indirect relation is existent
between arrival and departure rate as those two may be
reduced if the poor weather conditions are forecasted and
information is communicated to aircraft scheduled to arrive
or depart at the airport. In such a scenario, the aircraft may
hold for the weather conditions to improve.

There exist other factors affecting the time-in sector,
such as the number of staffed ATCs, controller decisions,
TMA structure, runway closures, and deicing. Some of these
factors will indirectly affect the time-in metric through other
metrics. For example, a runway closure might not be directly
present as a feature in the data; however, it presents itself
through the landing rate.

B. Data description

The response variable considered within this paper is
the median arrival time in a 15-minute window. The
arrival time is defined as the time between crossing into 100
NM radius and last descent below 1200 feet before landing.
The features (explanatory variables) are derived based on
context values of figure 6. However, feature engineering must
be performed on the context values to improve model per-
formance. This constitutes performing transformations and
combinations of input values based on domain knowledge.

The data consists of airspace metrics at 15-minute inter-
vals. The sampling rate value has been chosen based on the
30 minute METAR issuing period such that if a weather
change is observed, the effect on the metrics can be captured
before the next METAR message [2].



Two sets of features (explanatory variables) were in-
vestigated. The first includes the basic features, while the
second adds lagged values of features. The two sets shall
be compared to select the feature set that more accurately
models the nominal conditions during low wind conditions.
The basic set of features includes:

• Arrivals count in the 15 minute time window
• Landings count in the 15 minute time window
• Departures count in the 15 minute time window
• Take-offs count in the 15 minute time window
• Landing & take-off difference
• Arrival & landing difference
• Departure & take-off difference
• Wind speed in knots (as reported by METAR)
• Wind speed directional components

The direction of the wind plays a significant role in
effecting an airport. For example, a strong wind along a
runway direction may not cause a disruption. However, the
wind of the same magnitude but perpendicular to the runway
could severely impact operations due to the need to perform
cross-wind landings. Hence, the Wind Speed Directional
Components are a method to account for wind speed as well
as direction. They are defined as in equation 11. cφ is the
wind speed directional component, wspeed is the wind speed
in knots, wdir is the wind direction, and φ is the centre of
the half-sinusoid pulse function while ∆φ is the half-width
of the pulse.

cφ = wspeed fhs(wdir, φ,∆φ) (11)

The half-cycle sinusoid pulse function is defined as in
equation 12.

fhs =

{
cos((wdir − φ) 360

4∆φ ) if wdir ∈ [φ−∆φ, φ+ ∆φ]

0 else
(12)

The characteristic of the function fhs is that it is zero
outside of the interval [φ−∆φ, φ+∆φ] while in the interval
it takes the value of the positive half of the sinusoid cycle.
The term 360

4∆φ modifies the frequency of the sinusoid so that
it fits the interval.

Eighteen features are created using the fhs function. Each
one is separated 20 degrees and has a half-width of 20
degrees, such that there is an overlap between each function.
Hence, φ ∈ {0, 20, ..., 340} and ∆φ = 20.

The second set of features includes all the previously
mentioned features plus lagged values of selected features.
The lagged values are considered as there may be a delay in
the effect of some variables. I.e., a decreased landing capacity
will only cause the time-in value to increase after an hour.
The lagged features include: landing and take-off counts,
landing & take-off difference, arrival & landing difference,
departure & take-off difference, and wind speed. The time
lags utilised are 0.5, 1, 1.5, and 2 hours.

C. Nominal conditions modelling

With the metrics derived and processed into a tabular form
that allows for utilisation in algorithms, the nominal state can
be modelled. Two methods shall be utilised for this task.
First is K-means clustering, which will be used in a context-
free setting - the second being Bayesian Ridge Regression,
which will utilise the knowledge of the context to model the
nominal state.

In the nominal states in both context-aware and context-
free settings is derived based on days where the wind speed
has not crossed a threshold of 15 knots. The threshold is
selected based on Eurocontrol’s ATM Airport Performance
(ATMAP) weather algorithm [13]. The algorithm is utilised
to score the weather conditions at airports based on visibility,
wind, and other conditions. The higher the score, the worst
the weather conditions. In this algorithm, wind becomes
contributing to the score only once it crosses the value of
15 knots.

1) K-means metric clustering: The K-means algorithm,
described in section II-C.3, is used only on the response
variable (arrival time) to model the nominal state in a
context-free setting. The k-means algorithm accepts inputs
in a tabular format with rows being samples and columns
being features. The input format is shown in figure 7. The
m parameter is dependent upon the sampling chosen for the
metric. For an entire day, it will be equal to the length of a
day over the sampling interval time.
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Metric measurement during day

metric value

Time of day

Time of day

metric value

day 1

day 365

Fig. 7: Input format for K-means clustering algorithm.

2) Bayesian Ridge Regression: For context-aware nomi-
nal state modelling, Bayesian Ridge Regression is utilised
using the Scikit-learn implementation using the default hy-
perparameter values [16]. In this method, each sample corre-
sponds to one metric measurement during the day, unlike in
the k-means method, where a full day constitutes a sample.
The output of the regression will be the mean and variance
of a Gaussian distribution that is the posterior probability
distribution for a target metric value given its context.

The bayesian ridge regression variant, as implemented
in Scikit-learn, was chosen because of the high number of
features, particularly in the feature set with lagged features.
Ridge regression, as such, will prevent over-fitting the model.
Additionally, by using the Scikit-learn implementation, the
reproducibility becomes simpler as this package is well
known within the machine learning community.



D. Deviation detection

The detection of deviation is inherently an outlier detection
problem. The Bayesian Ridge Regression method directly
returns a probability distribution, which is utilised for quan-
tification of the deviation likelihood. In the case of K-means,
the distribution can be estimated utilising Gaussian Mixture
Models under the assumption that the values are normally
distributed around the cluster centre.

Consider that the nominal state has been modelled. The
probability distribution for a metric measurement i is given
by equation 13. µi is the mean whilst σ2

i is the variance for
the ith measurement.

Mi ∼ N (µi, σ
2
i ) (13)

Note that in the case of Bayesian Ridge Regression, and
more generally, context-based methods, the values of µi
and σ2

i are dependent upon the context Ci. In context-free
methods like k-means, the values above are derived without
consideration of the context.

As such, the deviation probability can be quantified based
on the Cumulative Distribution Function (CDF) of the distri-
bution from equation 13. If the deviations are considered to
be values larger than usual, then the value of the CDF can
be used directly, as shown in equation 14.

FMi
(mi) =

∫ mi

−∞
N (µi, σ

2
i ) (14)

The CDF returns a value between 0 and 1, which indicates
the likelihood of a value being lower than mi for the given
probability distribution. It is important to note that the CDF
value for a mi = µi will be 0.5. Hence if a disruption results
in a reduction of a metrics value, such as in the case of
landing rate, then the Survival Function can be used instead,
which is defined in equation 15. For the time-in metric,
disruptions result in a positive deviation; hence, the CDF
is appropriate.

SMi
(mi) = 1− FMi

(mi) (15)

The CDF and Survival Function return a probability for
a single measurement. However, deviations, especially those
caused by weather, will possibly occur over multiple mea-
surements. As such, there exists a likelihood of spurious,
single measurement deviations that are not caused by a
disruption.

The solution to the above is to utilise a filter to smooth
the values in time. The simplest method for this is a rolling
average filter. The concept of a rolling window is presented
in figure 8.

Within each window, an operation can be performed on the
previously obtained probability values. In this research, the
mean is utilised. Based on the resultant value, an assessment
can be made whether a deviation has occurred or not. In the
case of a mean, a confidence level value can be used, such
as 0.95. However, the mean value is no longer a statistical

window	1

window	2

window	3

t1 t2 t3 ...

Fig. 8: Rolling window

value but rather a score. Hence, it should not be treated as
a probability or likelihood.

Another consideration is the blurring introduced by the
window, which will result in the deviation start and end
being below the detection threshold. A proposed solution
is to capture a period half of the window length before and
after the disruption to capture the complete extent of the
deviation. Alternatively, a more sophisticated window such
as the exponential window can be utilised. However, the
exponential window will not be utilised in this paper.

E. Resilience quantification

Once the deviations are captured, the resilience can be
computed on a per airport basis. As mentioned in sec-
tion II-A, resilience consists of three capacities: absorptive,
restorative, and adaptive. The first two cannot be measured
independently of the adaptive capacity if the latter is present.

The absorptive capacity allows the airport to withstand a
disturbance without experiencing stress, i.e., without a metric
deviation. Hence, if an airport does not experience deviations
due to a frequently occurring disturbance, then it can be
considered robust or possessing a strong absorptive capacity.

However, airports will experience varying amounts of a
particular disturbance. For example, airports may experience
particular weather conditions more frequently and at a higher
intensity than other airports. Thus, robustness should be
dependent upon the intensity of disruptions experienced as
well. Thus, equation 16 presents the absorptive capacity
metric.

Mabs. =

(
1− nd

mhigh wind

)(
1− 15

wmean

)
(16)

nd is the number of deviations during which the wind
speed exceeded the 15-knot limit. mhigh wind is the number
of days during the year where the wind speed exceeded the
threshold mentioned above. wmean is the mean wind speed
during the disruptions of nd.

The absorptive capacity defined in 16 is limited to values
between 0 and 1 for no absorptivity and full absorptivity. The
first term defines absorptivity in terms of how frequently a
disruption occurs in relation to the frequency of disruptive
conditions. The second term accounts for the magnitude of
the disturbances in relation to the 15-knot threshold of wind
speed.

The second capacity of resilience is the restorative capac-
ity, which allows the airport to recover from a disruption.



For this capacity, the definition created by Gluchshenko et
al. for resilience shall be utilised. In this definition, a system
is resilient if the recovery time is short compared to the
time between the start of the deviation and its maximum
magnitude.

As such, this capacity can be quantified based on the ratio
in equation 17.

Mrest. =
tdev
ttotal

(17)

tdev is the time from the start of the deviation until the
maximum deviation magnitude. ttotal is the total time of
deviation. This metric is also limited to values between 0 and
1. In the perfect scenario, the system recovers immediately
following the deviation, and the value of tdev will be equal
to the time ttotal.

An assumption is made that there exists an underlying
probability distribution dictating the behaviour of time-in
metric in response to wind speed. As such, the deviations
observed throughout a year are only a sample of data
obtained from a population. In this regard, the sample may
inappropriately describe the properties of the entire popu-
lation. In order to address this, bootstrapping can be used
to recalculate values of absorptive and restorative capacities
from equations 16 and 17.

Bootstrapping is a technique which is based on sampling
numerous times from the original sample [11]. The sampling
is done with replacement in order not to modify the proba-
bility distribution of the original sample. Hence, the original
sample is treated as the population, while the resamples are
subsets of the population, i.e., statistical samples.

In the context of capacity metrics, every time a resample
is performed, the metric can be recomputed. Thus, if a
large number of resamples are performed, e.g., 1000, then a
median value of the metric values computed for each of the
resamples can be used. The result will be a more statistically
accurate value of the metric for an airport.

For decision-makers, it is important to present the perfor-
mance of an ATM system concisely. As such, a resilience
metric is proposed that combines the absorptive and restora-
tive capacities. The concept of the combined metric is shown
in figure 10.

Resilience, according to this definition, becomes a vector
in an absorption-restoration space. Thus, the larger the values
of the two capacities, the higher the resilience of the system.
In this general definition, the metrics of absorption and
restoration can be modified to suit the needs of the decision-
makers. However, the values need to be scaled to the same
range for the resilience value to be meaningful.

In the above definition, the adaptive capacity is not in-
cluded. If adaptation is made quantifiable, the definition
can be expanded into three dimensional space to include it.
However, ATM system adaptation through actions such as
runway configuration change can be observed in absorption
and restoration metrics.

IV. RESULTS

In this section, the results are presented, which have been
obtained based utilising data for nine airports. They are Am-
sterdam Schiphol (AMS), Copenhagen Kastrup (CPH), New
York JFK (JFK), Chicago O’hare (ORD), Zurich (ZRH),
London Heathrow (LHR), Hong Kong (HKG), Rome Fiu-
micino (FCO) and Munich (MUC). The selection of airports
is such that a variety of wind conditions and geographical
location is present. For example, Schiphol and Kastrup are
known to be affected strongly by windy conditions, while
Munich and Zurich are not [10].

The metrics have a sampling period of 15 minutes. To
transform the events into a time series, a median has been
utilised as an aggregation method for continuous values such
as time-in and wind speed. I.e., the median of time-in values
is taken for the 15 minute period. The metrics are extracted
for the year 2018, excluding May 29th due to data corruption
for that day.

A. Deviation from nominal

Two methods are considered for the deviation detec-
tion, the non-contextual K-means clustering, and contextual
Bayesian Ridge Regression. The results of these methods are
presented in the following subsections.

1) K-means clustering: The K-means clustering is per-
formed on day-long metric samples. Hence, with a 15-minute
sampling interval, there are 96 metric measurements during
the day. Each measurement at a particular time thus becomes
a feature. There are 362 samples are three days of the year
have been removed due to data corruption.

As mentioned in subsection II-C.3, the k parameter in k-
means clustering has to be preset. A proposed approach is to
utilise the Akaike information criterion (AIC) and Bayesian
Information Criterion (BIC). The k value should be the local
minimum with the lowest k parameter. Furthermore, both
AIC and BIC should suggest a similar optimal k parameter.
The normalised AIC and BIC scores for clustering performed
on the arrival time metric can be seen in figure 9.

In figure 9, the x-axis is the number of clusters, while
the y-axis is the normalised criterion values. Normalised
values are utilised as the criterion value in of itself is not
essential. Instead, features like minimums and maximums
are crucial. On the example of the first subplot for AMS,
the AIC value suggests an optimal cluster number between
10 and 20, which is the location of the minimum. However,
there is no local minimum present in BIC as the value is
continuously increasing for increasing cluster number.

In the majority of the cases, the AIC value has a minimum
in the range of k between 10 and 20. Some airports, such as
ORD and ZRH, do not have a well presented local minimum.
Furthermore, the BIC criterion features no local minimum for
all airports.

Based on the computed values of AIC and BIC, an optimal
amount of clusters cannot be well defined. Additionally,
some airports like ORD or JFK do not have a clear minimum
for both criteria. As such, the utilisation of clustering for



0 50

0.00

0.25

0.50

0.75

1.00

AMS

BIC

AIC

0 50

0.00

0.25

0.50

0.75

1.00

CPH

0 50

0.00

0.25

0.50

0.75

1.00

FCO

0 50

0.00

0.25

0.50

0.75

1.00

HKG

0 50

0.00

0.25

0.50

0.75

1.00

JFK

0 50

0.00

0.25

0.50

0.75

1.00

LHR

0 50

0.00

0.25

0.50

0.75

1.00

MUC

0 50

0.00

0.25

0.50

0.75

1.00

ORD

0 50

0.00

0.25

0.50

0.75

1.00

ZRH
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deviation detection would be ambiguous as no justification
for a particular cluster number can be performed.

2) Bayesian Ridge Regression: To validate the model
performance, grouped k-fold cross-validation has been per-
formed on the two models, one with the lag features and
the other without. The grouping is required in order not to
train and test the model on the same days. If not performed,
leakage would occur from the training set to the testing set.
Ten folds have been utilised, and for each fold, a Root Mean
Square Error (RMSE) has been computed. The results are
reported in the box plot of figure 11. The error is computed
between the model output and the actual time-in values in
the testing set.

The RMSE values for all airports are between 5 and 7
minutes. Models for some airports display a more consider-
able variance of performance than others. For example, AMS
has a broader range of RMSE values than CPH. This would
suggest that CPH has conditions varying less throughout the
year as the model performs similarly for each fold. As can be
seen, the introduction of lag features results in a decrease of
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Fig. 11: Root Mean Square Errors for models trained on
airport and feature combinations.

the RMSE value for all airports. Hence, the expanded feature
set shall be utilised for deviation detection.

The dataset for cross-validation consists of days where
maximum wind speed did not exceed 15 knots. The same is
true for the overall model training set. This is done, so the
model parameters reflect the system behaviour under nominal
wind conditions. The predictions from such a model can be
interpreted as the expected nominal values given the context.

With the model trained on days with wind speed below
the threshold, the detection of deviations can be performed.
Figure 12 presents a deviation due to wind high winds. The
blue line is the actual arrival time value that occurred. The
red line is the expected arrival time value, while the red
area indicates one standard deviation on that expected value.
Wind speed is shown as a green line to show a temporal
correlation between the wind speed magnitude and deviation.
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Fig. 12: London Heathrow arrival time metric deviation due
to high wind disruption.

Note that a value of time-in of zero indicates that no landings
are occurring.

As can be seen in figure 12, the increase in wind speed
results in a deviation of the arrival time value (blue) from the
expected nominal value (red). The expected nominal value
is considered the centre of the distribution with a standard
deviation. Given the previous, the actual arrival time value
can be converted to a CDF value as in equation 14. The
CDF values are averaged using a two-hour rolling window
to detect deviations. As mentioned in subsection III-D, an
hour is added before the start and end of the deviation to
account for blurring.

It is important to note that the method does not perform
well in periods when little or no operations are performed.
For example, LHR has a night curfew between 23:30 and
6:00 where little or no flights depart or arrive at the airport.
Despite this, it can be seen that in figure 12, the nominal
state for these times is non-zero.

As mentioned previously, there exists a temporal correla-
tion between arrival time value and wind speed. This relation
is non-linear, and a lag is present between the increase
of wind speed and arrival time value. The study of such
dynamics could result in better arrival time predictions and
capacity estimation given a weather forecast.

B. Aggregate airport statistics

The airport aggregate statistics have been obtained utilis-
ing bootstrapping using 1000 resamples. The result for the
mean value of absorptive capacity can be seen in figure 13b.
Note that the results are shown in a box plot form to show
the range of mean values obtained from bootstrap.

From figure 13b, it can be seen that Amsterdam Schiphol
airport posses the highest absorptive capacity followed by
New York JFK and Rome Fiumicino. The lowest absorptive
capacities are displayed by Hong Kong International, Mu-
nich, and London Heathrow.

The performance of Schiphol can be potentially explained

by the airport design adjusted to the windy conditions,
which are frequently occurring in Amsterdam. The airport
utilises eight different runway configurations over ten runway
directions. The three airports with the lowest absorptive
capacity have a parallel runway configuration.

From the worst performers, Munich airport experiences
relatively little windy conditions [13]. Thus, it is hypothe-
sised that its relatively weak absorptive capacity is resultant
from a lack of system adaptation to such conditions. Fur-
thermore, Hong Kong airport experiences severe wind shear,
which is likely to contribute to its low absorptive capacity
[1].

Next, the restorative capacity is presented in figure
13a. The restorative capacity is the highest in Amsterdam
Schiphol, followed by Copenhagen Kastrup. The worst per-
formance is seen in Munich, followed by Rome Fiumicino.
There is a tendency for airports that frequently experience
strong winds to have a better restorative capacity to such
conditions than airports not experiencing these disruptions.

Lastly, resilience as defined in figure 10 is show in 13c.
Amsterdam and Copenhagen airports top the list. Notably,
Amsterdam has the best absorptive and restorative capacities
for the airports considered, which makes it also the most
resilient airport to high winds. However, Copenhagen per-
forms better in restoration than absorption. This indicates
that Copenhagen is relatively easily disturbed by high winds.
However, once a disruption occurs, it is quickly dealt with.

The airports with lower resilience tend to have a parallel
runway configuration except for Rome. Airports with high
resilience have runways facing different directions. This
difference is expected to increase resilience to high winds as
the airport has more choice to adapt to varying wind direction
and thus avoid cross-wind landings.

V. CONCLUSION

A method for detecting KPI metric deviation due to
high wind speeds has been proposed. The method utilises
Bayesian Ridge Regression to asses the nominal KPI metric
state given current airspace conditions. The use of Bayesian
Ridge regression provides distribution variance, which is
utilised to assess the likelihood of a deviation being present.
K-means clustering has been proven unusable for day-long
metric samples due to the inability to specify the k parameter
unambiguously. The Bayesian Ridge Regression method has
been applied to traffic in the year 2018 for nine airports. The
proposed resilience measurement method based on absorp-
tive and restorative capacities has shown that airports facing
disruptions from high winds tend to be more resilient to them
than those that do not. Further research must be performed
on the utility of this method to different KPI and disruptions.

This research presents two key contributions. The first of
which is the utilisation of context-based anomaly detection
as a means of defining a nominal state of a system state
quantified through a metric such as a system KPI. This
method enables measuring system state disruptions, and
hence also resilience, when the nominal state of the system
is unknown or not deterministically definable. The second
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Fig. 13: Capacity and resilience scores of all the airports. Scores obtained by bootstrapping with n = 1000.

contribution is the introduction of resilience as a vector in the
space of absorptive and restorative capacities. Furthermore,
absorptive and restorative capacities are defined through a
metric that accounts for the magnitude and frequency of
occurrence of disturbances.

The contributions, as mentioned earlier, can be utilised by
aviation stakeholders to detect the presence of disruptions
that would affect operations. For example, the anomaly
detection algorithm could be adapted to operate in real-
time and alert airline operation centres when airports to
which their aircraft are flying to are experiencing arrival time
disruptions. Additionally, the resilience metric can be utilised
to assess the impact of changes introduced by airports or Air
Navigation Service Providers.

The methodology has been tested only on arrival time
metric as system state and wind speed as the disturbance
factor. Furthermore, there exists a possibility that a deviation
detected during high wind weather may have been caused
by a third factor, thus causing a spurious relationship. Fur-
thermore, only ADS-B and METAR data have been utilised.
Lastly, only airports with high traffic volumes have been
considered.

Two paths for further research are identified. First focuses
on the system dynamic response to disturbance, which in-
cludes more precisely understanding the relationship between
the disturbance properties and the airspace response. Individ-
ual aircraft trajectories under varying disturbance conditions
could be studied utilising more sophisticated models such
as Long Short Term Memory neural networks or Gradient
Boosting. Additionally, the application of the method for
metrics other than arrival time should be tested
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Introduction
The Air Traffic Management system is consistently put under more pressure. From year to
year the number of flights increases. In 2008 there were 800 million passengers transported
in Europe. In 2017, this number grew to over a billion [22]. Whilst major airports are planning
expansions, the increase in capacity will not be enough as Eurocontrol predicts a seven-fold
increase of delays between 1-2 hours [19].

The increased demand requires a higher optimisation of airport and airspace usage. Whilst
initiatives like Airport Collaborative Decision Making are proving useful in the planning of op-
erations, the delays continue growing. As such, over the last two decades, interest has been
growing in the field of resilience. Resilience, defined as the ability to recover quickly from
difficulties is crucial to maintaining operational capacity through disruptive events. Collo-
quially speaking, the field of resilience has attracted attention as there is a desire to not only
operate optimally but also operate through as many conditions as possible.

Originally, the field of resilience has been associated purely with safety management in
the ATM field. As such, the majority of the work focuses on qualitative frameworks for safety
analysis [41]. However, over the last several years it became apparent that resilience per-
spective can also be used to look at issues of capacity. As such, airspace and airport can be
analysed and designed with regard to their ability to recover from disturbances.

Before airspace resilience can be designed for, it must be measurable. As such, the goal of
this research project is to develop metrics for measurement of resilience in the case of adverse
weather conditions including high winds and low visibility. In particular, the metrics should
be obtainable from ADS-B data at around airports as this is an easily accessible data source
that is present worldwide. As such, it allows for performance comparison between airports.
Previous research has already been performed on resilience metrics however not utilising
ADS-B data.

Figure 1: Aircraft count within London TMA for a random set of
days. One day has had severe winds, which day is it?

The challenge of measuring resilience in
real systems is determining the nominal
state and detection of deviations from it. Air
traffic is extremely complex and day to day
operations vary vastly. These high varia-
tions can depend on the day of the week,
month, season, schedule etc. The scale
of the variations is large enough that it
can cover up deviations due to disturbing
events. Thus, it is difficult to determine
what is considered nominal and what is an
anomaly caused by weather. To visualise
this, consider figure 1, which presents air-
craft counts within London Terminal Ma-
noeuvring Area during some days in the year
2018. One of those days has been affected
by severe winds, which caused flight cancel-
lations. However, which day is it?

This preliminary thesis report starts with the description of the overall project methodol-
ogy. Chapter 1 presents the trends in ATM delays and their causes. Next, chapter 2 presents
the concept of resilience and research performed on this topic. Chapter 3 gives an overview
of developed ATM metrics. Afterwards, chapter 4 introduces clustering for time-series anal-
ysis. Lastly, the preliminary results which include metric extraction, Principal Component
Analysis and clustering are presented in chapter 5.
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Methodology & planning
This chapter presents the planning and methodology of the thesis work. The thesis goal is to
develop a method for quantifying airspace resilience by utilising ADS-B data. Before actual
research work can commence the essence of the research must be determined. For this, the
research questions to be answered are required. The main research question to be answered
is whether airspace resilience can be quantified using aircraft positional data. The
sub-questions are formulated below.

• What are the metrics that describe the Airspace State?

– Do the metrics correlate with weather conditions in the Terminal Manoeuvring
Area?

– Do the metrics have a causal relationship with weather conditions in the Terminal
Manoeuvring Area?

• Which resilience measurement method is most appropriate?

– Stochastic vs. Deterministic measure?
– What is considered a nominal state?
– What is considered a perturbed state?

• Can clustering on ADS-B derived data be used to identify days during which disruptions
have occurred?

– What clustering algorithm is most appropriate?
⋄ Which timescale?
⋄ How to deal with different dimensional data?
⋄ Cluster including weather data?
⋄ What distance metric?

– Can results of the clustering be used to derive nominal airspace state?

Overall, the project consists of a preliminary thesis phase and a thesis phase. The pre-
liminary phase consists of literature study where previous research and technical documen-
tation is analysed for information useful to the thesis work. Additionally, the preliminary
phase consists of data pre-processing phase where data obtained from Airbus Airsense ADS-
B database is converted into raw airspace metrics. The preliminary phase shall finish with
initial prototyping work on clustering of metrics.

The final thesis phase begins with performing clustering on multiple airspace metrics to
obtain a prototype of a nominal airspace state which will be then used to derive airspace
resilience by comparing non-nominal days recovery to a nominal state. The results of this
phase will be validated by comparing two airports. The detailed workflow can be seen in
figure 2 whilst the scheduling is presented in the Gantt chart in figure 3.

The thesis phases serve as delimiters for reporting purposes. I.e the preliminary thesis
phase shall end with a presentation of progress and a preliminary thesis report shall be
handed in for grading. The final thesis phase shall conclude with the thesis defence and a
final thesis report.
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xxvii

Aside from the division into phases, the implementation aspects of the project are divided
into work packages. The work packages serve as a means to discretize the work into tangible,
linearly related goals. As such, consider the first work package:

Data pre-processing The goal of this work package is to utilise the ADS-B positional data
along with the knowledge from literature study to obtain filtered and equally sampled airspace
metrics for a Terminal Manoeuvring Area around a European airport.

Data analysis The continuation of data pre-processing. After obtaining workable data from
the previous phase it is possible to perform analytics on it. The result of this phase should
be clusters of days derived based on all the metrics.

Resilience derivation In resilience measurement, a key notion is the nominal state to which
deviations are compared. As such, in this work package, stochastic description of the nom-
inal airspace state is derived from the clusters (i.e obtaining cluster prototypes and adding
probability bounds) and from this resilience is measured using a probabilistic method and
weather data.

Validation Finally, to prove the applicability of this method to different airspaces other air-
ports resilience will be derived with the same process and it will be compared to the first
airport.

However, it is important to note that the work packages are not the only tasks to be realised
in this project. The literature study is performed in conduction with raw metric extraction
in the initial phases and the reporting is also done in parallel throughout the project. The
schedule is planned such that the whole project will be defended in December 2019.
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1
ATM system disruptions

The air traffic system is under increasing pressure as it’s utilisation increases through grow-
ing passenger counts. The US-EU comparison report published by FAA and Eurocontrol
informs that the passenger numbers in the US have increased by 7% between 2015 and
2017 whilst in Europe by 11.4%. The increases in IFR movements per airport have not been
as fast given 2.4% and 5.2% increases in the US and Europe respectively. The disparity re-
sults from the fact passenger numbers per flight have also been increasing in both regions.
Unfortunately, also delays are on the rise as shown in figure 1.1 [21].

Figure 1.1: ATMDelay comparison US-Europe. TMI-L1: scheduling initiatives, TMI-L2: initiatives on day of flight but before push-
back, TMI-L3: sequencing measures after pusback but before take-off, TMI-L4: initiatives after take-off, DEP: flow restrictions
causing departure delay. Figure from US-EU comparison report [21].

From the above, it can be seen that the US experiences less delayed flights, once delayed
the delay is larger than in Europe. Furthermore, the number of delayed flights, as well as
delay length, are increasing in Europe and the US. The above shows that qualities like adapt-
ability, robustness and resilience are becoming of more relevance to ATM as the disruptions
are on the rise. Hence, the increased need for abilities to deal with them.
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2 ATM system disruptions

Whilst investigating delays, it is important to consider their causes. Figure 1.2 shows the
taxonomy of delays in Europe and the US. As can be seen, in both region delays experienced
at airports make up a significant proportion of the delays. Within Europe the delays are more
often caused by traffic volume however, weather attributes to just over 40% of delays overall.
Around airports, weather causes more than half of the delay.

Figure 1.2: ATM delay taxonomy by cause and place. Delays above 15 minutes. Figure from US-EU comparison report [21].

The 2018 Network Operations by Eurocontrol reports that the European airports that
contributed the most to delay were Amsterdam Schiphol, Barcelona El Prat, Lisbon and
London Heathrow. From those, Lisboa was the strongest affected by capacity issues. The
rest were facing mostly weather-related delays. In London Heathrow, the weather-related
delays accounted for 75% of all delays whereas Amsterdam had around 60% of its ATM
delays caused by weather. The weather-related delays were particularly dominant in the
winter season. Considering this, Schiphol and Heathrow are well-suited airports for analysis
of weather-related disruptions [20].

An important question for analysis of airspace response to weather is what is considered to
be severe weather. Focusing on airports which are in the scope of this research, Eurocontrol
suggests that Capacity Limited Weather should be defined as weather which contains any of
the below.[64] These values will be utilised in further analytic work.

• Storms

• Convective activity

• Winds above 25kts or gusts above 30kts

• Visibility below 500m or cloud level below 200ft

• Severe precipitation

Furthermore, With accelerated climate change in progress, the weather conditions will be
changing over the coming decades. The exact effects of climate changes on conditions such
as local winds, fogs and other aviation affecting phenomena are yet to be determined [45].
However, more frequent occurrences of such events would increase the need for resilience.



2
Resilience

The definition of Resilience as defined by the Oxford Dictionary is [55]:

1. The capacity to recover quickly from difficulties; toughness

2. The ability of a substance or object to spring back into shape; elasticity

The commonality of these two definitions is the ability of an object to return to a natural
steady state after a disturbing event occurred. The term originates from the field of material
sciences where resilience is defined as ”the ability of a metal to absorb energy when elastically
deformed and then to release it upon unloading” [34]. According to this definition, a brittle
object like a ceramic pot will not be considered resilient as it will shatter quickly under tensile
stress.

Indeed, in the common language, the term resilience is understood in the context of at-
titude towards stress and adversity. In particular, the ability to recover. It brings on the
thoughts of a sportsman recovering from a defeat, a boxer standing up after a hard blow, a
runner continuing a marathon after a fall.

Since the 1980s, resilience, along with robustness, has been gaining popularity as a topic.
This can be seen in the figure 2.1 generated with Google Ngram viewer [29].

Figure 2.1: Frequency of appearance ”robustness” and ”resilience” terms in the English corpus of books.

The increase in popularity can be possibly attributed to a better awareness of operational
issues caused by disruptions to operations. Now, not only do we require our systems to be
highly optimised for their nominal operating conditions, but we also need them to be able to
perform under adverse conditions. This increase led to the term becoming a buzzword. 1

1https://medium.com/usaid-frontlines/insights-tom-staal-5a7ab307d818
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The goal of this chapter is to introduce to the reader the concept of resilience in the scien-
tific literature. In particular, the perspectives from which it is seen as well as the contexts in
which it appears. Furthermore, a special focus will be put on its use in the field of Air Traffic
Management.

2.1. Resilience capacities
In 2014 Francis and Bekera performed an analysis on definitions of resilience used through-
out different domains. Based on the results, they developed the paradigm of resilience ca-
pacities [26]. They have discovered that the definitions include one or more of the following
qualities: absorption, adaptation and restoration.

The absorptive capacity is the ability of a system to maintain the same operational perfor-
mance despite adversities and disturbances. In practice, absorptive capacity is implemented
through buffers and other mitigation strategies. An example of a buffer in aviation might
be adding extra time to the expected turn around period of an aircraft to better absorb any
disruptions.

The adaptive capacity is the ability of a system to rearrange it’s functioning to accommo-
date for undesirable operating conditions. Francis and Bekera highlight that the difference
between the adaptive and the absorptive capacity is the former results in a change of a sys-
tem whilst the latter doesn’t. An example of the adaptive capacity of the ATM system can
be the redistribution of airspace sectors between controllers based on the number of aircraft
within those sectors. Such an approach allows the system to adapt to changing conditions.

Lastly, the restorative capacity is the ability of a system to return to its nominal state
following a disruption. In the case of ATM, it can be seen in the case of snowfall at an
airport. Initially, during the snowfall, the airport capacity might become constrained or even
become null. However, once the weather conditions improve to a sufficient level, the ATM
system will begin an attempt to restore its nominal capacity.

The three aforementioned capacities make up, as named by Francis and Bekera, the tri-
angle of resilience [26]. All of these capacities are required for a system to be called resilient.
However, robustness and dependability can also be defined as based on those capacities.
Blom and Boufara in the book Complexity science in air traffic management have introduced
the relation between these terms and resilience capacities [8]. Table 2.1 presents this rela-
tion.

Related system properties Resilience capacities
Absorptive Restorative Adaptive

Robustness + - -
Dependability + + -
Resilience + + +

Table 2.1: Relation of resilience capacities to system properties. Table adjusted from Complexity science in air traffic manage-
ment [8].

In the table above the plus sign indicates that the capacity is present in the system prop-
erty. As such, robustness contains the absorptive capacity. Dependability expands robust-
ness with the addition of restorative capacity. Resilience encompasses dependability but
also includes the adaptive capacity. As such, resilience is an enriched system property as
compared to dependability and robustness. The triangle of resilience with robustness and
dependability is shown in figure 2.2
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Figure 2.2: Resilience triangle with robustness and dependability marked. Figure adjusted from Francis and Bekera 2014. [26]

When considering a system through the resilience capacities paradigm it is important
to note the relation of adaptability with restorative and absorptive capacities. In the case
of a dependable system, absorption and restoration capacities can be measured directly.
However, once adaptability is introduced into the system, measurement of absorption and
restoration alone becomes impossible. This is because adaptability modifies the absorptive
and restorative properties of the system. In the context of this research project, it is important
to note that any measurement of absorptive and restorative capacities will be affected
by the adaptability of the system. To capture a true state of these capacities individually,
two measurements would have to be performed under the same conditions with the adaptive
capacity present and missing.

2.2. Resilience engineering
When considering the safety of systems, the Swiss Cheese Model is common, a metaphorical
approach introduced by James Reason in his influential paper Human error: models and
management [53]. Namely, pieces of cheese represent safety barriers such as redundant
subsystems. The holes in the cheese, are the deficiencies in the safety barrier. Thus, an
alignment of the holes of multiple pieces of cheese allows an error to penetrate the defences
and result in a failure.

An earlier model dating back to the first half of the 20th century is the Heinrich Domino
Theory of accident causation [37]. In this metaphor, causes are domino’s, which when
pushed over result in a cascade of events which in the results in a failure. A very common
theme in detective TV series.

The previously mentioned theories serve as a good way to ”visualise” how failures occur,
however, they are deficient in performing safety analysis of existing systems. This is noted in
a report for Eurocontrol by Erik Hollnagel and James Reason himself in which they convey
that the Swiss Cheese Model serves as means of communication. It is not able to answer the
questions as to why holes appear and how do they change with time [54].

To address the critiques of existing safety management methodologies, Resilience Engi-
neering has been introduced as an alternative in the early 2000s with the book Resilience
Engineering: Concepts and Precepts by Woods et al [65]. The study of resilience looks at
safety and performance more holistically. Thus, according to Erik Hollnagel, resilience is
not just a lack of accidents and failures [17]. Furthermore, it is not only the study of what
went wrong, but also what went right. Within Resilience Engineering a belief is present that
inherently failures occur in the same manner as successes. In that regard, resilience is also
about utilising opportunities as well as reacting to threats. Erik Hollnagel in his website
calls this a transition ”... from protective safety to productive safety (...) Resilience is about
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how systems perform, not just about how they remain safe” [17].
The definition of resilience in the 2006 edition of Resilience Engineering: Concepts and

Precepts is:

”The essence of resilience is therefore the intrinsic ability of an organisation (system) to
maintain or regain a dynamically stable state, which allows it to continue operations

after a major mishap and/or in the presence of a continuous stress [65].”

The 2010 edition of Resilience Engineering: Concepts and Precepts changes the focus of
the above definition from maintaining a stable state to sustaining required operations.

”The intrinsic ability of a system to adjust its functioning prior to, during, or following
changes and disturbances, so that it can sustain required operations under both expected

and unexpected conditions.”

Erik Hollnagel suggests that the evolution of definitions is to broaden the meaning of
Resilience. That is, to encompass also the performance under a variety of conditions as
proof of resilience. Thus, he suggests a newer version definition of resilience:

”A system is resilient if it can adjust its functioning prior to, during, or following events
(changes, disturbances, and opportunities), and thereby sustain required operations

under both expected and unexpected conditions [17].”

In this field, resilience encompasses values such as flexibility, where a system can hastily
respond to disturbances to accommodate the changing conditions. However, the definition
goes further than that and also includes the ability to forecast adverse events and adapt
accordingly to maintain safety. Importantly, resilience is a dynamic process in which failure
is a means of adapting to a situation rather than a malfunction [31].

2.3. Ecological resilience
Resilience has been defined in ecology since the 1970s when Holling published his highly
cited paper Resilience and stability of ecological systems [35]. The ecological resilience defini-
tion is considered to be one of the most highly used definitions. A literature study conducted
by Francis and Bekera found that it is common in various domains [25]. Furthermore, note
the increase in usage of term ”resilience” in figure 2.1 starting from 1970. He defines re-
silience as:

”The persistence of relationships within a system and is a measure of the ability of these
systems to absorb changes of state variables, driving variables, and parameters, and

still persist [35].”

Hollings contribution has been also to define stability and denote its difference from re-
silience. From a systems theory point of view, stability relates to the fluctuations of state
variables. More precisely, with the speed of recovery and fluctuations of the state variables
after a disturbance. As such, a system can be resilient but not stable and vice versa. He also
noted that stability and resilience tend to be conflicting in ecological systems. In general,
populations with low stability tend to be more resilient in the face of extreme, fluctuating
climatic conditions [35].

In 1995 Holling updated his definition of resilience to include adaptability [30]. This defi-
nition is below. Looking through the perspective of resilience capacities, the above definition
includes absorptivity and adaptivity. However, it is not full resilience as it does not include
the restorative capacity which is more similar to the definition of stability.

”Resilience is the buffer capacity or the ability of a system to absorb perturbations,or the
magnitude of disturbance that can be absorbed before a system changes its structure by

changing the variables and processes that control behaviour [30].”



2.4. Resilience contexts 7

2.4. Resilience contexts
However, the term resilience appears in a variety of contexts. A literature review performed
by Righi et al. has analysed 237 studies including the term ”resilience engineering” [56].
Furthermore, domains in which resilience research was performed were numerous. Some
examples are fishing, meteorology, military, nuclear power plants, health care and aviation.

Within aviation, of the articles analysed by Righi et al. almost half concerned themselves
with the theory of resilience. Only 2 out of 34 dealt with Identification and classification of
resilience which hints that the research in resilience quantification is needed due to the low
number of studies concerning it. Furthermore, it is also noted that quantitative studies are
not common to observe [56].

Aside from a variety of contexts, also a variety of properties are assigned to resilience.
Usually, the properties are domain related as shown by Royce and Bekera who conducted
a definition review in their article [25]. For example, within organisational systems domain
resilience has properties such as: recognising unanticipated perturbations, capacity to recog-
nise threats and ability to sustain a shock. Within Economic systems, resilience is considered
to be the ability to recover, ability to withstand or capacity to survive.

As mentioned previously, aviation is also a domain that interests itself in resilience. Avi-
ation domain resilience articles analysed by Righi et al. have been the most numerous, the
understanding of resilience within ATM shall be described in the next section [56].

2.5. Resilience in Air Traffic Management
As seen from the previous sections, resilience has found it’s way to a variety of domains and
is perceived through different perspectives. Of course, the main interest of this literature
study is to find the past and present usage in the ATM domain.

Commercial aviation overall is a safe mode of transport. The year 2014 had 7 accidents
with fatalities out of 37.4 million flights flown that year [1]. This results in about 1 in 5
million chance for a flight to be fatal. This can be attributed to the safety culture present in
the aviation industry.

It should come as no surprise then that the ATM industry became interested in Resilience
Engineering soon after it became recognised. In 2007 a project was started by Eurocontrol
to determine the role Resilience Engineering can play in ATM. A result of this project was a
White Paper was published with Erik Hollnagel as the coauthor [41]. In this report, Hollnagel
et al. recommend using a Functional Resonance Assessment Method for safety analysis of
ATM systems.

Whilst the work of Hollnagel on Resilience Engineering is influential and important, it has
the drawback of being purely qualitative. Furthermore, most of the research on resilience in
ATM has been thus far performed from the safety perspective. A need exists for a quantitative
framework that will allow dealing with non-safety related perspectives.

Such a need was noted by Olga Gluchshenko in a DLR report published in 2012 which
was in 2013 expanded into an article [27, 28]. As Gluchshenkos work is highly relevant to
the topic of this literature study, her work will be presented in-depth.

Gluchshenko et al. introduce another definition of resilience with the focus on non-safety
related disturbances:

”The ability of a system to respond on a disturbancewithin a time horizon by
transient perturbation, i.e. the system is resilient against the disturbance over the

considered time horizon; is relative to the specified reference state of the system and to
a particular disturbance [28].”

To understand this definition, the words in bold font have to be described. As such,
consider a tree standing upright when there is no wind present. It can be assumed, that
the upright position of the tree is the reference state of the system. This is because this is
the state of the system when no disturbance is present. In this metaphor, the wind is the
disturbance.

Now imagine, the wind picks up which results in the disturbance being present. If the wind
is strong enough the tree will sway from its vertical position. This sway is the perturbation,
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a departure from the reference state. If the wind is not very strong, the tree will return to its
vertical position after the disturbance has subsided. This is called a transient perturbation.
However, a permanent perturbation would occur, if instead, the wind was strong and the
tree has undergone what could be considered a plastic deformation. As such, a new reference
state would be achieved that is no longer upright.

Gluschenko et al. also introduces a term closely linked with perturbation which is stress.
While perturbation is referred to as the ”action of a system”, the stress is the ”reaction of a
system” [28]. It is the departure from a reference state to a disturbed state. In the authors’
opinion, stress according to Gluschenkos definition is the measure of perturbation. As such,
in the metaphor of the tree in wind, the stress will be the deviation of the tree from the
vertical measured in meters. Such stress is called survival stress as the system manages
to maintain it’s inherent properties. However, if the tree was to brake, changing the system
properties, it would have experienced lethal stress.

Additionally, the topic of resilience versus robustness is tackled by Gluschenko et al. A
2015 literature review of publications containing the term ”resilience engineering” shows that
the term resilience frequently occurs with robustness [56].In the aforementioned metaphor,
a tree is more robust if it can experience a higher wind before it begins to sway. Thus, the
definition of robustness is:

”The ability of a system to experience no stress since a disturbance had occurred, i.e. the
system is robust against the disturbance over the considered time horizon; is relative to

the specified reference state of the system and to a particular disturbance [28].”

Gluschenko suggests measuring resilience by the recovery time from disruption. In partic-
ular, three categories of resilience are suggested. High resilience where the time of recovery is
shorter than the time of disruption, this is presented in figure 2.3a. Medium resilience where
the time of recovery and time of disruption are approximately equal, figure 2.3b. Lastly, low
resilience when recovery time is longer than the time of disruption, figure 2.3c.

While the resilience categorisation proposed by Gluschenko et al. is simple to understand
it lacks consideration for themagnitude of deviation. This can be understood by two scenarios
relating to airport operations during winds. The system is described by the number of flight
cancellations at an airport. According to the aforementioned categorisation and definition of
resilience, two airports will have the same resilience if their relation between time of deviation
and time of recovery is the same. However, one of the airports might have fewer cancellations
compared to its reference state, overall, handling the high winds better than the other airport.

Despite the deficiencies, this work presents an intelligible abstraction of ATM resilience.
Gluschenko et al. present a methodology for measuring resilience and robustness which can
be seen in figure 2.4 [28]. From figure 2.4 indicators, time horizon and reference state arise
as critical elements in measuring resilience. Indicators should be able to capture the state
of the system appropriately. The time horizon has to be specified as the system response to
long term events such as the winter period will be different than short term events like high
winds. Lastly, the reference state is of importance as resilience and robustness can only be
measured when the indicators are compared to a value representative of the nominal state.
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(a) High resilience, recovery time is significantly longer than time of deviation.

(b) Medium resilience, recovery time is similar to time of deviation.

(c) Low resilience, recovery time is significantly longer than time of deviation.

Figure 2.3: Resilience types. Figures from [28].
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3
Metrics

With the deregulation and corporatisation of the aviation industry more importance has been
placed on performance. As such, performance-based air navigation became of interest to the
industry. The main characteristic of this approach is the a result oriented approach. In par-
ticular, through the use of objectives. Furthermore, the achievement of the objectives is done
through decision-making based data with the focus on obtaining the objectives. The 2009
Manual on global performance of the Air Navigation System published by ICAO states that the
performance based approach can be used throughout the whole spectrum of activities within
aviation [38]. Thus, also including ATM.

As such, before attempting to improve airspace resilience, there must be a methodology for
measuring it. Thus, there is a need for metrics. A variety of metrics, sometimes referred to as
Key Performance Indicators (KPI) have been developed for measurement of different aspects
of the ATM system. The goal of this chapter is to introduce the reader to metrics developed
up to date. The first section will focus on metrics in ATM which include complexity metrics
and throughput metrics. Lastly, resilience metrics, not necessarily from ATM domain, will
be shown.

3.1. ATM KPIs - ICAO
The 2005 report by ICAO Global Air Traffic Management Operational Concept defined eleven
Key Performance Areas (KPAs) of Air Traffic Management [50] . Subsequently, the afore-
mentioned 2009 Manual also by ICAO included a comparison between KPIs used by two
ATM organisations [38]. Each KPI considered in the report pertained to one of the eleven
KPAs. The KPAs are: Access and Equity, Capacity, Cost Effectiveness, Efficiency, Environ-
ment, Flexibility, Global Interoperability, Participation by the ATM community, Predictability,
Safety and Security.

Overall 2009 comparison indicated a lack of cohesion in indicators used. The discrep-
ancies occurred due to multiple factors. One, different filtering criteria was used to obtain
the metrics. For example, measurements would be taken at specific locations or specific
times Two, values were normalised in different manners. Three, statistical operations were
applied such as windowing, averaging etc. Lastly, the definitions of terms varied between
organisations.

The above discrepancies yield a useful conclusion for the research project. Due to the
available ADS-B data, a comparison between multiple airspaces can be conducted using the
exact same metrics and methodology. Allowing for a useful comparison that would otherwise
be unavailable based purely on ANSPs data.

Of the eleven KPAs, Capacity and Efficiency are of most importance to this research
project. This is mainly due to the available data and the context of the other areas. For
example, Access and Equity, Global Interoperability and Participation by the ATM commu-
nity are business related. Additionally, safety and flexibility KPAs are considered on a higher
level. I.e. safety is defined through the number of accidents which cannot be easily derived

11
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from ADS-B data.

3.1.1. Capacity KPA
The Capacity KPA is divided into three categories, System-wide, Airspace and Airport capac-
ities [38]. The first, can be the number of flights accommodated within the entire system.
However, such approach is problematic as the estimation of maximum capacity is complex.
Furthermore, the scalability of this approach is problematic as the same methodology would
need to be applied to different ATM systems. A suggested alternative is to measure the actual
number of flights flown, distance covered etc. However, the critique of such approach is that
it does not measure the actual system capacity but rather the conditions in which it operates.
As such, in economic terms what is being measured is the supply.

The airspace level metrics include the number of IFR flights that can be handled at one
time. However, similar issue arises as to system-wide metrics because it is hard to judge
objectively how many aircraft can enter an airspace volume simultaneously.

The airport indicators have the most commonality between organisations. Most of the
indicators include IFR movements defined as number of arrivals plus departures. However,
aggregations are also used to for example compute movements for whole metropolitan areas.
Furthermore, they values can also be presented based on meteorological conditions.

3.1.2. Efficiency KPA
The KPAs of efficiency are mostly computed through ”Temporal Efficiency” [38]. That is,
consideration is given mostly to delays. As such, metrics include fraction of flights departing
on time, average departure delays and etc. The main issues arising in the case of efficiency
indicators are the thresholds as to what is considered a delay. Furthermore, certain delays
are omitted such as delays due to weather.

3.2. ATM KPIs - CANSO
Another perspective on ATM KPIs is offered by the Civil Air Navigation Services Organisation
(CANSO). This approach is based upon ICAO KPAs: capacity, efficiency and predictability
[14]. Whilst the aforementioned ICAO report Global Air Traffic Management Operational Con-
cept serves as a high level guideline providing no specific solutions, the CANSO report Rec-
ommended Key Performance Indicators for Measuring ANSP Operational Performance in turn
provides KPIs for each KPA.

3.2.1. Capacity KPIs
Declared capacity is the theoretical maximum that can be handled by an airspace sec-
tor or airport. Factors that affect the declared capacity include: airline schedules, aircraft
mix, delay tolerance, ground infrastructure, staffing, airspace restrictions, weather, passen-
ger infrastructure. Operationally, declared capacity may be utilised as a fixed value for the
airspace. However, an adaptive approach is also possible whereas the ANSP declares the
daily maximum based on known operation factors [14].

Knowledge of the declared capacity is important as it allows the ANSP to benchmark it’s
operations. However, the computation of this value is nontrivial and depends upon multiple
factors. Furthermore, in the context of this research project the declared capacity cannot be
derived with certainty from collected ADS-B data. However, for airports close to operational
limit such as Amsterdam Schiphol an approximation of declared capacity can be derived with
the assumption that the airport operates at it’s highest operational capacity. Thus, when
observing the capacity over a long period of time a potential upper limit may be detectable.

Capacity utilisation is a measure of effectiveness of capacity usage by the ANSP. This KPI
requires two elements, one is the aforementioned declared capacity and the second is the ac-
tual capacity usage at a given time. As such, it also suffers from the non-trivial determination
of declared capacity [14].

However, the actual capacity usage can be easily computed with access to ADS-B data.
This can be done by counting unique aircraft IDs within a geographically filtered dataset
corresponding to the sector of interest. As mentioned previously, the declared capacity could
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be estimated using historical values.
Delay Attributed to Capacity KPI is a measure of how over demand or, inversely, under

supply of airspace capacity impacts delays. The computation of this KPI requires knowledge
of aircraft schedules as well as association of delay with excess demand [14].

A potential method of computing this KPI may be possible by comparing a nominal ap-
proach/descent time with actual approach/descent times. However, this is exclusive for
Terminal Control Areas and results in a pseudo delay.

3.2.2. Efficiency KPIs
Efficiency KPIs are used to determine the efficiency of five different flight phases: taxi-out,
departure, en-route, arrival, taxi-in. Whilst the report also mentions gate departure and gate
arrival as flight phases, they do not fall under the jurisdiction of the ANSP but rather the
airline itself and ground handlers. As such, they will not be considered further in this report
[14].

A common method to demarcate those flight phases is by setting a radius around an
airport to indicate areas in which arrivals/departures occur. As such, flights are considered
departing if they are within 40 nautical miles of the airport whilst arriving flights are set to
be within 100 nautical miles of the airport. However, some ANSPs chose to set both of those
limits to 40 nautical miles [14].

Taxi-out and taxi-in KPIs both take a similar form of comparing a nominal taxi time to
the actual values experienced by the aircraft. Factors that play a role in those KPIs include
aerodrome layout, airport staffing, current ATM situation and availability of parking slots. It
must be noted that the taxi-in process is less affected by the ATM situation. Furthermore,
availability of parking slots is not a factor for taxi-out time [14].

The KPIs for these flight phases may include: number of aircraft delayed, delay time,
distribution of delays and etc. However, a simplification can be used whereas not the delay
is considered but simply the actual taxi time. Furthermore, a zero-velocity time as part of
total taxi time can also be an indicator of inefficiencies in the taxi process.

Theoretically, these values can be easily and accurately derived from ADS-B data. How-
ever, in practice the difference in Standard Operating Procedures of airlines and individual
pilot choices will impact taxi time measurement from ADS-B. This is because there is no
standard on when to turn on the ADS-B transponder. For example, some aircraft may first
begin transmitting their position just before the runway whilst others already during push
back.

Departure KPIs include two separate segments: take-off and departure. For the former, a
comparison can be made between the Calculated Take-off Time and the actual take-off time.
For the latter, multiple options are possible. They include: average delay within departure
zone, average excess horizontal distance per flight, average excess time per flight.

The required data for the computation of this KPI include the departure time, aircraft
trajectory and crossing time of ring of 40NM radius. Furthermore, a baseline must be set
for computation of excess times and distances. Aside from the baseline, these values can be
easily derived per flight utilising ADS-B data as aircraft are usually transmitting whilst on the
runway. However, the baseline values would need to be either preset based on unattainable
ideal conditions such as ideal horizontal distance being equal to 40NM. Historical analysis
can also be used to determine nominal conditions although data for an appropriately long
amount of time must be available.

En-route KPIs are defined in terms of comparison of actual distance flown between Ter-
minal Control Area exit and arrival points and the ideal distance. For short routes, the great
circle distance is a good approximation for ideal distance. However, numerical optimisation
studies have shown that wind-optimised routes tend to be a better solution for longer flights
[39]. Additionally, the excess time can also be computed if an assumption is made that the
aircraft would travel the ideal route at the same average velocity as the actual route.

The ADS-B data is well suited for computation of this KPI considering that the update
time of ADS-B is 0.5 seconds and thus at least an order of magnitude lower than radar [67].
Additionally, ADS-B data tends to be more accurate as compared to radar [67]. However, for
longer routes the ideal distance is non-trivial and thus hard to obtain. For shorter routes
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however the great circle approximation can be used. Furthermore, excess distance capture
by this KPI might result from airspace restrictions such as military zones.

The arrival KPIs include both the descent phase as well as the final approach and landing.
A metric for the latter can be the runway occupancy time computed as the difference between
wheels on ground and runway exit. This will be influenced by aircraft category as well as
presence of high-speed exit ramps. For the descent phase two metrics can be derived, first,
ground track inefficiency which could be defined as ground track distance starting from 100
NM away from an airport till touch down, divided by 100 NM. Second, excess distance and
time can be derived when comparing the actual flown path to an ideal value.

CANSO has developed a methodology for computing such ideal arrival routes based on
clustering of flights by aircraft type and conditions [13]. Overall, this method is similar to the
aforementioned derivation of nominal conditions based on historical data. Both, the compu-
tation of the nominal approach path as well as the actual approach path can be performed
using ADS-B.

3.2.3. Predictability KPIs
Predictability, as defined by ICAO, is the ”ability of airspace users and ANSPs to provide
consistent and dependable levels of performance” [50]. As such, the predictability KPIs deal
primarily with variability in services provided by the ANSP. This is of importance for airspace
users as it allows for accurate planing of operations without unnecessary buffers to account
for uncertainty. CANSO defines three predictability indicators [14].

Capacity Variation KPIs measures the variability in capacity. They can be implemented
as a standard deviation of a capacity for a desired time period. Furthermore, this metric will
give an indication of sector or airports with high delays. This metric can be implemented
based on ADS-B data as aircraft/operation counts can be derived from it [14].

Travel Time Variation KPIs can be defined based on the time scale considered. On a
strategic scale they can be derived based on the schedules submitted by the airlines. Such
a measure would give an insight about airlines subjective judgement on the predictability of
air facilities. For this KPI access to airline schedules must be obtained. Thus, ADS-B cannot
be used to derive it.

However, on the tactical scale, the time variability per flight-phase can computed. For
example, for arriving flights the time between crossing the 100NM ring and landing may be
considered for variability. If total flight time between airport pair is considered, this measure
can give an indication of routes where buffers are applied to schedule to account for possible
delays. Furthermore, the per flight-phase variability can be computed utilising ADS-B data.

Flight Plan variation KPIs can be derived from flight plans and optionally actual trajecto-
ries flown. If considering only the flight plans between an airport pair, the last pre-departure
flight plan can be compared to the the other flights in other to determine the variability.
When combining flight plans with trajectories the so called ”filed versus flown” measures can
be derived. However, all of those metrics cannot be derived purely based on ADS-B.

3.3. Airspace Congestion Metrics
The purpose of Airspace Congestion Metrics is to quantify the difficulty of an air traffic sit-
uation as perceived by an Air Traffic Controller (ATCo) supervising the sector. Being able to
determine this difficulty is critical in assessing how many aircraft can a ATCo manage safely.
If a situation is simple then an ATCo is able to handle additional aircraft in the sector. Con-
versely, if the situation is difficult then aircraft may need to be prevented from entering the
sector.

However, this difficulty is not only dependent upon the number of aircraft airborne. Con-
sider figure 3.1 which presents easy, average and difficult traffic situations with each having
the same amount of aircraft. Intuitively, a reader with no air traffic management experi-
ence will be able to imagine that handling the right most situation will be more difficult than
handling the left most.

Thus, the distribution of aircraft positions, velocities and headings plays a significant role.
Overall, from figure 3.1 it is seen that the larger the chaos of the situation, i.e. less uniformity
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of the aforementioned factors, the more difficult the traffic situation. As such, more advanced
complexity metrics attempt to include such factors as well.

Delahaye and Puechmorel in their book Modeling and Optimization of Air Traffic - Airspace
Congestion Metrics suggest three approaches for modelling traffic situation complexity [16].
They are: flow-based, speed vector distribution based and dynamic system based metrics.

Figure 3.1: Three Air Traffic situations. From left: Easy, Average, Difficult situations [16].

3.3.1. Flow-based metrics
Flow-based metrics work by considering the air transport system through a network per-
spective. In this abstraction, airways become the edges of a graph whilst airports and airway
junctions become the nodes. Based on a survey Delahaye and Puechmorel suggest three
types of workloads: conflict workload, coordination workload and monitoring workload [16].

The conflict workload is based on the need for the ATCo to resolve conflicts at nodes of
the graph. In other words, at the intersections of aircraft paths. An implicit assumption of the
method proposed is that the aircraft arriving at a node follow a Poisson Process. The Poisson
Process models a discrete set of events where the timing between events is independent of
the previous occurrence of events. Furthermore, this model assumes that only the average
time between events is known [44].

Figure 3.2: Crossing of airways
schematic [16].

Consider figure 3.2 which presents a schematic drawing of
airways 𝑖𝑗 and 𝑙𝑗 intersecting at node 𝑗. 𝑓 and 𝑓 are aircraft
flows on airways 𝑖𝑗 and 𝑙𝑗 respectively. 𝜃 is the angle between
two airways crossing at Node 𝑗.

Using the aforementioned Poisson Process model, equation
3.1 can be derived which presents the average number of con-
flicts at the node. Variables 𝑉 and 𝑉 are the average velocities
of aircraft travelling along the airways. 𝑁 is described by De-
lahaye and Puechmorel as a standard separation norm [15].
Whilst no further description is given, the author believes that
this is a separation between aircraft in units of time. I.e. 2
minute, 180 seconds etc.. Thus, the unit of 𝑓 is expected to be
aircraft per unit time. As such 𝑁 will be a value of conflicts
per unit time.

𝑁 =
2𝑁 √𝑉 − 2𝑉 𝑉 cos 𝜃 + 𝑉

𝑉 𝑉 sin 𝜃 𝑓 𝑓 (3.1)

It can be assumed that the conflict number is proportional to controller workload. Fur-
thermore, if multiple airways are crossing at the junction, the workload is considered to
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be the sum of workloads of all pairs of airway combinations. In equation 3.3 𝐶 (𝑗) is the
controller workload whilst 𝛼 is defined in equation 3.2.

𝛼 =
2𝑁 √𝑉 − 2𝑉 𝑉 cos 𝜃 + 𝑉

𝑉 𝑉 sin 𝜃 (3.2)

𝐶 (𝑗) = 1
2 ∑
𝑖 ∈ 𝒩
𝑖 ≠ 𝑗

∑
𝑙 ∈ 𝒩

𝑙 ≠ 𝑖; 𝑙 ≠ 𝑗

𝛼 𝑓 𝑓 (3.3)

However, an ATCo might have more nodes in his sector than just one. Thus, the total
workload is considered to be the sum of nodes in sector 𝑆 . The set of nodes in sector 𝑆 is
represented by 𝒩 . Equation 3.4 describes this mathematically.

𝐶 (𝑆 ) = 1
2 ∑

∈𝒩
∑
𝑖 ∈ 𝒩
𝑖 ≠ 𝑗

∑
𝑙 ∈ 𝒩

𝑙 ≠ 𝑖; 𝑙 ≠ 𝑗

𝛼 𝑓 𝑓 (3.4)

The coordination workload is associated with handling of aircraft crossing between sec-
tors. In such a situation, the ATCos of the neighbouring sectors must coordinate the transfer
by agreeing whether the transfer can actually happen and how it should happen. To visu-
alise this, consider figure 3.3 which presents a schematic scenario of airways and an airspace
sector [16].

Figure 3.3: Visualisation of airspace borders and
airways.

Three possibilities of intersection between an air-
way and sector exist. One, the airway is fully within
the sector, in figure 3.3 this is airway 3-4. Two, one of
the airway ends is within the sector whilst the other
end is not, eg. airway 4-5. Lastly, both of the ends of
an airway can be outside of a sector however part of
the airway still crosses within a sector such as airway
1-6.

For the coordinator workload only cases two and
three result in a need to perform handovers. As such,
only those cases generate workload. Thus, the coor-
dination workload can be describe by equation 3.5.
𝒜 is a set of airways with both ends outside of the
sector but with a segment within. 𝒩 are again the
nodes within the sector.

𝐶 (𝑆 ) = ∑
⨁ ∈𝒩

𝛽 𝑓 + ∑
𝑖 ∉ 𝒩
𝑗 ∉ 𝒩

(𝑖, 𝑗) ∉ 𝒜

2𝛽 𝑓 (3.5)

The first term represents the workload from airways with one end within the sector. The
mathematical symbol ⨁ represents exclusive OR (XOR) operator. 𝑓 is the same as in conflict
workload representing aircraft flow. Term 𝛽 is a weighing coefficient used to adjust the
coordination workload with respect to other workloads.

The second term includes the workload due to airways with only a segment crossing
through the sector. The multiplier ”2” is added to represent a need for a double handover,
while going into the sector and while going out.

Lastly, the monitoring workload is the effort of the ATCo to maintain watch over air-
craft not currently posing any conflicts or not entering/leaving the sector. This effort can be
describe with equation 3.6.
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𝐶 (𝑆 ) = 𝜂 ∑
( , )∈ℒ

𝑙
𝑉 𝑓 (3.6)

𝑚𝑎𝑡ℎ𝑐𝑎𝑙𝐿 represents the set of airways within or intersecting with the sector 𝑆 . 𝑙 is the
length of the airway within the sector. 𝜂 is a coefficient to control the relative importance of
monitoring effort.

The three aforementioned workloads can be summed together to achieve the total sector
workload. Whilst relatively simple, the flow based method has it’s deficiencies. Firstly, it
is not simple to extract aircraft flows at particular airways from ADS-B data. This requires
a process of matching ADS-B messages to airways. Furthermore, 𝑁 can only be estimated
without knowing the exact procedures. Lastly, the network based approach requires knowl-
edge of airway and waypoint positions. As such, this method will not work in Free Route
Airspace which is becoming more common within Europe.

3.3.2. Geometrical
Geometrical approaches rely on quantifying the air traffic complexity by considering the ge-
ometrical distribution of aircraft and their velocity vectors. Such approach is beneficial as
compared to flow based method as knowledge of airway structure is not necessary. Further-
more, in some scenarios aircraft do not follow airways.

Traffic density
Hilburn notes that the most common metric in this approach is Traffic density [33]. Density
is simply computed as the number of aircraft within an airspace over the volume of the
airspace. For equal volumes, when for example simplifying an airspace as a cylinder the
division by volume can be skipped in order to utilise the aircraft count only.

Track inefficiency
A metric recommended by the Civil Air Navigation Services Organisation is the ground track
inefficiency [14]. This metric quantifies the efficiency of aircraft track by integrating the path
to obtain ground distance covered. This distance is then normalised by a reference track
distance. This reference could be the nominal distance or an ideal distance such as a great
circle between airspace edge and airport.

The track inefficiency can be calculated as in equation 3.7

∑ 𝑑𝑖𝑠𝑡(�⃗� , �⃗� )
100𝑛𝑚 (3.7)

where 100𝑛𝑚 is the reference distance and 𝑑𝑖𝑠𝑡 is a numerical distance computation func-
tion between two points such as euclidean distance or Haversine distance as in equation 3.8.

𝑑 = 2𝑟 arcsin(√sin (𝜑 − 𝜑
2 ) + cos (𝜑 ) cos (𝜑 ) sin (𝜆 − 𝜆2 )) (3.8)

Proximity
With proper scaling aircraft proximity can also be quantified [16]. The proximity metric is
based on a distance vector defined in 3.9. The goal of the proximity metric is to give insight
into the clustering of aircraft which the simple traffic density does not give.

𝑑 , = ‖⃗⃗⃗⃗𝑝 − ⃗⃗ ⃗⃗𝑝 ‖ , =
√(𝑥 − 𝑥 ) + (𝑦 − 𝑦 )

𝑎 +
(𝑧 − 𝑧 )

ℎ (3.9)

The horizontal and vertical relative distances are normalised by distances characteristic
for those dimensions. For example, 𝑎 can be set to an aircraft spacing distance within the
Terminal Manoeuvring Area and ℎ can be set to vertical spacing. The normalised distance is
computed between each pair of aircraft and is then summed as in equation 3.10.
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𝑃(𝑖) =∑𝑒 (3.10)

𝛼 is a scaling factor to control importance of distances.

Convergence
The convergence metric goes further in quantification of aircraft clustering by including also
relative aircraft velocity vectors to the proximity. This means that the metric can capture the
organisation of the relative aircraft movements. The variation in relative distance is defined
as:

𝑟 = 𝜕
𝜕𝑡 ‖�⃗� ‖ = 𝜕

𝜕𝑡√�⃗� ⋅ �⃗� =
�⃗� ⋅ �⃗�
𝑑 (3.11)

where �⃗� is the relative position vector and �⃗� is the relative velocity vector. 𝑑 is the
distance from equation 3.9. As in the case of proximity, the convergence values are computed
per aircraft pair and summed. However, only pair with negative relative distance are used
in the summing as those are the aircraft converging. The summing is presented in equation
3.12 and as in the proximity equation a scaling factor 𝛼 is used.

𝐶𝑣(𝑖) = 𝜆 ∑
/

−𝑟 ⋅ 𝑒 ( ⋅ ) (3.12)

3.3.3. Dynamic systems
A third type of airspace congestion metrics are based on dynamic systems theory [16]. In
such methods, the airspace is modelled as a dynamic system which has a state and a set of
inputs affecting the state. The general case can is described by equation 3.13. Vector �⃗� is a
positional vector of form [𝑥, 𝑦, 𝑧] .

̇⃗𝑋 = 𝑓(�⃗�, 𝑡) (3.13)

Equation 3.13 describes a model which is non-linear and time variant. It can be further
simplified on time-invariant cases respectively in equations 3.14 and 3.15.

̇⃗𝑋 = 𝑓(�⃗�) (3.14)

̇⃗𝑋 = A ⋅ �⃗� + �⃗� (3.15)

Given multiple aircraft positions and their velocity vectors the guiding equations 𝑓 or in
the linear case matrices A and vector �⃗� can be derived by minimising the error between the
aircraft velocity vectors and the state equations. The advantage of such methods is that they
are better suitable to trajectories not just instantaneous vectors. Their disadvantage is their
perceptual complexity and difficulty of implementation. As such, the exact guiding equations
shall not be mentioned in this report however they are available in literature [16].
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3.4. Resilience Metrics
Quantitative methods of resilience assessment can be categorised into general measures and
structure-based models. The former method is based on measuring system performance
prior to and following a disturbance. The advantage of this method is that it does not require
knowledge of the system structure. Contrarily, the structural-based method requires the
knowledge of systems characteristics. The advantage of structural-based methods is the
ability to study how the structure affects resilience [36].

General measures can be categorised into probabilistic and deterministic approaches.
Structural-based models consists of optimisation, simulation and fuzzy logic models. The
schematic drawing of this categorisation can be seen in figure 2.2.

Resilience quantative
assesment

General measures

Deterministic
approaches

Probabilistic
approaches

Structural-based 
models 

Optimization models

Simulation models

Fuzzy logic models

Figure 3.4: Categorisation of quantitative resilience assessment methods. Figure adapted from A review of definitions and
measures of system resilience by Hosseini et al. [36].

3.4.1. General measures
Unlike the probabilistic method, the deterministic one does not measure the stochastisity in
the system behaviour. I.e it ignores uncertainties related in the system response. This may
be considered an advantage considering that probabilistic data is not required for their com-
putation. Conversely, the probabilistic aspect provides more insight into complex systems
which frequently behave stochastically [36]. Furthermore, Hosseini et al. note that metrics
can capture dynamic or static system behaviour. Where dynamic behaviour includes the
temporal aspect of response while the static approach is free of it.

Deterministic Approaches

Figure 3.5: Resilience loss after a disruption. Figure from [36].

Bruneau et al. proposed a static resilience
metric based on the concept of quality 𝑄(𝑡)
[9]. Quality can represent performance met-
rics which in the ATM context could be for
example airspace capacity. In this method,
resilience is defined by equation 3.16. A
larger value of 𝑅𝐿, resilience loss, indicates
lower resilience. This can be graphically
seen in figure 3.5.

𝑅𝐿 = ∫ [100 − 𝑄(𝑡)]𝑑𝑡 (3.16)

In the above equation 𝑡 is the time when
disruption occurs whilst 𝑡 is the time when
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𝑄 returns to it’s pre-disruption state. This
method has two assumptions, one, that the quality of the system before the disruption oc-
curred is 100. Two, a single disruption is present. These assumptions come from the context
of the metric which is earthquake impact upon infrastructure. The advantage of the above
method is it’s simplicity and general applicability. Furthermore, the metric due to abstract
units can be hard to comprehend.

Figure 3.6: Resilience loss approximation, marked by red trian-
gle. Figure adapted from [36].

Zobel offers a different method based on
resilience triangles and predicted maximum
loss in order to set a comparative baseline
for disruptive events. The resilience triangle
is an approximation of resilience loss sug-
gested by Bruneau et al. and can be seen in
figure 3.6 [9, 68].

The resilience in this method is described
by equation 3.17. 𝑋 is the maximum loss
of quality, 𝑇 is the recovery time whilst 𝑇∗
is the maximum predicted time the recovery
could take. 𝑇∗ is used as a baseline in this
case. The concept of maximum resilience
loss is presented in figure 3.7 by the dark
blue shaded polygon between 𝑡 and 𝑡 + 𝑇∗.
This approach relies on the assumption that
recovery of the system begins directly after

the disruption has occurred.

𝑅(𝑋, 𝑇) =
𝑇∗ −
𝑇∗ (3.17)

Figure 3.7: Resilience triangle and polygon of maximum re-
silience loss. Figure from [68]

A dynamic metric was proposed by Henry
and Ramirez-Marquez which quantifies re-
silience at time 𝑡 by comparing the recovery
to the loss experienced for a given disrupt-
ing event 𝑒 [32]. Resilience 𝑅 (𝑡|𝑒 ) for per-
formance metric 𝐹 is described in equation
3.18. Intuitively, this resilience measures
the proportion of recovered state to the ini-
tial loss.

𝑅 (𝑡|𝑒 ) =
𝐹(𝑡|𝑒 ) − 𝐹(𝑡 |𝑒 )
𝐹(𝑡 ) − 𝐹(𝑡 |𝑒 ) 𝑤ℎ𝑒𝑟𝑒 𝑡 ∈ (𝑡 , 𝑡 )

(3.18)
The notations in equation 3.18 are ex-

plained in figure 3.8. 𝑡 is the time at which
the disruptive event occurs, 𝑡 is the time at

which the system is in the final disrupted state, 𝑡 is when recovery beings to take place and
𝑡𝑓 is the time at which the systems enters a post recovery equilibrium. 𝐹 is a performance
metric.

The method from equation 3.18 in it’s proposed form does not give information about the
rate of recovery but rather how much has the recovery progressed.
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Figure 3.8: Disruption and recovery process.[32].

Probabilistic Approaches
A simple probabilistic resilience metric proposed by Chang and Shinozuka measures the
probability of a system experiencing performance loss lesser than an acceptable level and a
recovery time shorter than an acceptable level [12]. The equation below presents this concept.
𝑟∗ and 𝑡∗ are respectively the maximum acceptable loss of system performance and maximum
acceptable recovery time from disruption 𝑖.

𝑅 = 𝑃(𝐴|𝑖) = 𝑃 (𝑟 < 𝑟∗ and 𝑡 < 𝑡∗) (3.19)

Another stochastic approach is to compare the actual performance to target performance
over a certain time period 𝑇. This is described by equation 3.20. 𝑃(𝑡) is the actual perfor-
mance curve whilst 𝑇𝑃(𝑡) is the target performance curve. The target performance curve can
be considered as deterministic or stochastic.

𝐴𝑅 = 𝐸 [ ∫
𝑃(𝑡)𝑑𝑡

∫ 𝑇𝑃(𝑡)𝑑𝑡
] (3.20)

3.4.2. Structural-based models
Structural-based models differ from general measures by the need to model internal me-
chanics of systems which resilience is being analysed. As such, these approaches allow for
conducting simulations or optimisation.

Optimisation models
Optimisation models are developed in order to plan actions for increasing resilience. In these
approaches the resilience measurement is not a direct goal but rather it’s maximisation for a
given problem. An example of this is the problem of allocating resources for maintaining oper-
ations of an airports runway and taxiway network [24]. It can be noted that the optimisation
models are dominant in scenarios where boundaries of the problem can be clearly defined
and a model of the system can be constructed. As such, this method is mostly present in
network problems with solution found using linear programming [4, 23, 40].

Simulation models
Simulation models require the modelling of actors and elements of a system. Unlike gen-
eral measures, this allows to explore resilience in scenarios which have not occurred. This
method of measuring system resilience has been applied in various domains such as logistics,
infrastructure networks and disaster response [3, 11, 59].
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Fuzzy logic models
Lastly, fuzzy logic models attempt to capture the probabilistic nature of processes by mod-
elling them using many-valued logic where the truth values range from 0 to 1. This approach
allows for accommodation of partial truths which is helpful in modelling non-deterministic
processes. The approach has been utilised in fields like organisational and infrastructural
resilience [47, 60].



4
Time-series clustering

Clustering is the process of grouping objects such that objects of similar characteristics are
in the same group whilst those that differ are in other groups. Cluster analysis finds use in
various domains such as banking where it can be used to segment clients and present them
with personalised product offers. Furthermore, clustering is useful in data exploration as it
is an unsupervised method i.e. it does not require labelled data. As such, it can be used
to find previously unknown relationships useful for the development of prediction models.
Clustering can be considered good when the intra-group similarity is high whilst the similarity
between objects from different groups is low.

Time-series clustering is the specific use of clustering for time-series which can be defined
as a set of observations each performed at a specific time. Time series can be defined as in
Definition 4.0.1. An example use of time-series clustering is credit card fraud detection. In
this use case, time-series of transactions are classified to detect whether it is an anomaly
[57].

Definition 4.0.1. Time-series clustering Given a dataset of 𝑛 time-series data 𝐷 = {𝐹 , 𝐹 , .., 𝐹 }, the
process of unsupervised partitioning of 𝐷 into 𝐶 = {𝐶 , 𝐶 , .., 𝐶 }, in such a way that homogeneous time-
series are grouped together based on a certain similarity measure, is called time-series clustering.
Then 𝐶 is called a cluster, where 𝐷 = ∪ 𝐶 and 𝐶 ∩ 𝐶 = ∅ for 𝑖 ≠ 𝑗 [2].

In the context of Air Traffic Management system Resilience, clustering can be of use to
determine nominal and non-nominal airspace conditions. The states of the airspace which
consist of parameters like aircraft count, trajectory efficiency, convergence, etc. are all time-
series. I.e. they are all measurements taken at a particular time and as such can be clustered
to search for patterns which can be later utilised to quantify resilience.

23
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4.1. General process
Time-series clustering methods contain four components: time-series representation, simi-
larity/distance measure, clustering prototypes and finally time-series clustering [2]. These
components occur in the order listed however methods may not have all the components. An
example of this is clustering based on euclidean distance between time-series which would
not require a time-series representation as the method works directly on the series itself. The
schematic in figure 4.1 presents the four components.

Whole 
Time-Series
clustering

Similarity /
Distance
measures

Time-Series
Representation

Clustering
protypes

Time-Series
Clustering

Figure 4.1: Time-series clustering components

4.1.1. Time-Series Representation
Time-Series Representation is the process of transforming a raw time-series single into a
difference representation space such that the transformed representation in space 𝑅 is
of less dimensions than the raw space 𝑅 i.e. 𝑚 < 𝑛. The formal definition is introduced in
4.1.1.

Definition 4.1.1. Time-series representationGiven a time-series vector 𝐹 = {𝑓 , 𝑓 , .., 𝑓 }, representa-
tion is transformation of the time-series to another dimensionality reduced vector 𝐹 = {𝑓 , 𝑓 , .., 𝑓 }
where 𝑛 < 𝑚 and such that the degree of similarity between different time-series is maintained after
the transformation [2].

Aghabozorgi et al. suggest representation is performed for three reasons. First, for large
time-series data, it reduces the computational effort required to perform distance measures.
Measurements from high-frequency sensors like accelerometers can become memory inten-
sive when accumulated for longer time-periods and thus the second reason is to reduce
memory requirements. Lastly, real-world time-series are influenced by varying noise and
bias such that the underlying process driving the time-series may not be visible. As such,
performing clustering on such series would result in a grouping being performed not neces-
sarily on the driving signal characteristics [2].

Four types of representation methods exist. First, are the data adaptive methods which
attempt to minimise global reconstruction errors by using techniques such as Piecewise Poly-
nomials or Singular Value Decomposition [62]. Second are non-data-adaptive methods
which allow for easier comparison of multiple time-series and work on approximating local
features rather than minimising the total reconstruction error as in the previous type. The
methods include Wavelets and Chebyshev Polynomials [62]. The third representation type is
model-based such as Markov Models or Auto-Regressive Moving Average. Lastly, there are
data dictated representations which are derived directly based on the data. An example of a
data dictated method is a bit representation of a time-series where each bit indicates whether
an element of the time-series is above or below the average [5].

Aghabozorgi et al. note that time-series representation research is limited for discrete-
valued time-series. Furthermore, a majority of research focuses on evenly-spaced time-
series. Importantly for this research, the authors note that in the papers review for the 2015
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Time-series clustering literature review no articles are addressing multivariate time series
data of different lengths [2].

4.1.2. Dissimilarity measures
Once a time-series representation method is chosen, the similarity/dissimilarity between
time-series can be measured. The most simple similarity measure can be computed when
a time-series is considered to be univariate. That is ”the time-series is a sequence of real
numbers sampled regularly in time where each number presents a value” [2]. Under such a
scenario, the distance between two time-series can be defined as in 4.1.2.

Definition 4.1.2. Time-series distance Let 𝐹 = {𝑓 , 𝑓 , .., 𝑓 } be a time-series of length 𝑇. If the distance
between two time-series is defined across all time points,then 𝑑𝑖𝑠𝑡(𝐹 , 𝐹 ) is the sum of the distance
between individual points dist (𝐹 , 𝐹 ) = ∑ dist (𝑓 , 𝑓 ) [2].

The challenge of distance measurement results from the inherent problems facing real
time-series data which include: amplitude and time scaling, noise, linear drifts, temporal
drifts and discontinuities. Furthermore, multiple factors affect the choice of distance mea-
sure, this is schematically shown in figure 4.2.

Distance
measure

Level:

Shape
Structure

Objective

Similarity in time
Similarity in shape
Similarity in change

Type

Shape based
Comparison based
Feature based
Model based

Figure 4.2: Factor in choosing the dissimilarity measure. Figure adapted from Time-series clustering – A decade review [2].

Aghabozorgi et al. distinguish three objectives that can be achieved, first being similarity
in time in which the time of the occurrence of a pattern is of importance. For this objective,
euclidean distance methods are useful [43]. For finding similarity in shape the exact time
of occurrence is not of importance. This objective is useful for short time-series. For long
time-series similarity in change is of more importance which is also referred to as similarity
in structure. For this objective modelling approaches are used. Once model parameters are
obtained, they are used to find similarities [2].

One of the most common dissimilarity measures for time-series is Dynamic Time Warping.
This measure attempts to resolve the deficiency of performing direct euclidean distance com-
putation on two equal length time series. The deficiency is that features in one time-series
may appear in another time-series however with a time shift or amplitude scaling applied. As
such, direct euclidean distance computation would result in a high distance despite actual
similarities being present.

The goal of Dynamic Time Warping is to shift points of the time-series with respect to an-
other time series such that the points align with minimum distance [48]. Figure 4.3 presents
this concept graphically. The part of the time-series below is shifted with respect to the time-
series above, however, part of it remains the same. A naive euclidean computation would
return a high distance despite the two series being the same in their structure.

Whilst DTW is beneficial for distance computation, it suffers from poor computational
complexity of 𝑂(𝑁 ) [48]. As such, it becomes problematic to use for long time-series such
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Figure 4.3: Conceptual representation of dynamic time warping algorithm [51].

as airspace metrics throughout the day.

4.2. Clustering prototypes
A cluster prototype is a representative value in the original data-space characteristic of a
cluster. For example, if clustering would be performed on an aircraft approach paths to
a runway, a cluster prototype would be a characteristic approach path to a runway. The
simplest form of obtaining a prototype is by averaging. Given a set of time-series within a
cluster the values of those time-series are averaged to obtain a representative value. However,
this approach has multiple drawbacks. First, the time-series must be equal length. Second,
averaging a time-series with similarities in shape rather than time causes the same issue
as performing Euclidean distance computation. The resultant prototype time-series may not
contain characteristic features of the cluster elements as some features may have experienced
shifting in time or scaling.

A commonly used prototyping method is the medoid [2]. Whilst average prototype was
obtained through calculating the mean, the medoid is obtained by computing the median
time-series out of those in the cluster set. In practice, this is performed by computing dis-
tances between all the time-series combinations with Dynamic Time Warping or Euclidean
distance. Then, the time-series which has the smallest cumulative distance to all other time-
series becomes the medoid.

4.3. Time-Series clustering
Various categories of clustering methods exist. A common method is hierarchical clustering
[42]. This method attempts to create a cluster hierarchy by a bottom-up or top-down ap-
proach. The former is based on starting with each sample having its own cluster and then
joining the clusters upwards into bigger clusters. The latter does the opposite with all the
samples in one cluster which are then divided up into smaller and smaller groupings.

The benefit of hierarchical clustering is that it does not require a specified amount of
clusters as an algorithm input unlike k-Means, k-Medoids and so on. This a significant
strength as with time-series signals of complex systems like airspace an initial amount of
clusters is hard, if not impossible, to judge. An additional benefit of this method is the
ability to accept unequal length time-series. The main drawback of this method is the poor
computational complexity as the frequently utilises DTW as a distance metric.
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The aforementioned k-Means algorithm is part of partitioning clustering methods. The
algorithms in this category attempt to partition into k clusters such that the total distance
of all elements in a cluster to each other is minimised. In the k-Means method, the cluster
prototype is the mean of all elements in the cluster. A similar method is k-Medoids which
utilises the medoid instead of the mean.

The partitioning clustering methods described so far can be referred to as crispy - that
is they cluster samples into discrete clusters. However, there exist also soft methods which
rather than directly assigning elements to clusters place a probability of them belonging to the
particular clusters. Such clustering methods include Fuzzy c-Means and Fuzzy c-Medioids
[2]. The downside of both soft and crispy partitioning based clustering methods is the need
to define a number of clusters to partition into. Furthermore, unlike hierarchical clustering,
there is a need to calculate a prototype for each cluster on which the accuracy of clustering
dependant.

Another common clustering method outside of time-series analysis field is DBSCAN which
is part of Density-based clustering methods [18]. The density-based methods create clusters
in spaces of high density which are separated by spaces of low density. It has to be noted
that such methods are not applied in time-series analysis [2].

Various other methods like grid-based clustering and multi-step clustering exist. How-
ever, they are complex or do not apply to time-series clustering [2].

4.4. Gaussian Mixture Models for cluster modelling
An important part of measuring resilience is the definition of the nominal state. As mentioned
in the introduction, to measure resilience a reference state is needed. This reference state in
case of noisy signals can be ambiguous. For this reason, there exists a need for modelling
the reference state as a probability distribution. In this, Gaussian Mixture Models (GMM)
can form a useful combination with clustering.

Once a cluster is obtained, it’s elements are time-series of some metric (or metric in multi-
variate case) during a particular day at a Terminal Manoeuvring Area. Based on those time-
series a nominal state for a time step can be derived using GMMs.

A GMM in of itself is a linear superposition of multiple Gaussian distributions with po-
tentially different parameters, hence the mixture in the name [7]. GMMs are useful as they
allow modelling of distributions of real variables which frequently do not adhere to a par-
ticular distribution such as Gaussian or Pareto. Mathematically the probability distribution
resultant from the superposition is described as in equation 4.1.

𝑝(x) = ∑𝜋 𝒩 (𝑥|𝜇 , Σ ) (4.1)

Majority of the above equation is a multivariate Gaussian distribution. The novelty is
the introduction of 𝜋 term which is referred to as the mixing coefficient. If the Gaussian
distribution terms are normalised then the sum of mixing coefficients is one. Hence, the
mixing coefficient is, in fact, a probability of picking the kth distribution. Thus, all the mixing
coefficients are bound between values of 0 and 1.

As such, GMMs can serve as a means of fuzzyfing otherwise crispy clusters. Additionally,
GMMs can be utilised to generate extra data when required. However, for this research
GMMs may prove useful to determine the nominal state as well as quantifying the likelihood
of non-nominal state. A common GMM implementation in Python comes as part of scikit-
learn package [10].
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Preliminary results

The goal of the thesis is to quantify airspace resilience based on ADS-B data. To perform this,
airspace metrics describing various aspects of ATM operations shall be derived based on the
aircraft positional data obtained from ADS-B. These metrics along with weather information
will allow for quantifying recovery from weather-related disruptions which include high winds
and low visibility. However, the nature of ADS-B and Air Traffic Management are complex
and result in the data being noisy and thus the driving phenomena remain uncertain.

For this reason, to derive airspace resilience a method must be developed for quantifying
the likelihood of a particular day being non-nominal. This is the case because airspace
operations vary greatly from day to day and as thus so do the metrics. An anomaly in the
metric data may or may not stem disturbing events such as fog or high winds. Thus a
probabilistic description is required to assess the results of such disruptions.

To quantify the resilience, first, the metrics have to be derived from ADS-B. The raw met-
rics then should be interpolated such that all metrics are available at the same time intervals.
Lastly, the data should be filtered to remove the noise and expose the underlying trends. Next,
the feature space of the metric time series should be reduced and then clustered.

In this section, the results of the preliminary results of the thesis shall be presented.
These include: raw metric derivation in section 5.1, metric interpolation and filtering in
section 5.2 and finally Principal Component Analysis in 5.3. These sections correspond to
work packages: data processing and part of data analysis from figure 2.

5.1. Raw metric extraction
The airspace metrics to be utilised need to describe various aspects of the airspace to more
completely describe the situation. Some events such as a closed runway might cause effects
that are not visible in, for example, airborne aircraft count. However, they will be visible in
the ground track inefficiency because the airborne aircraft shall be holding. As such, the
following metrics shall be utilised:

• Airborne aircraft count

• Ground track inefficiency

• Proximity

• Convergence

• Landing count

• Take-off count

However, before the metrics can be extracted, the meaning of airspace has to be defined.
Whilst it is possible to use the exact airspace volumes obtained from navigational databases,

28
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such an approach would be more complex and allow less of comparison between airspaces.
As such, the airspace will be defined as a cylindrical region of airspace around an airport
with a radius of 100 NM.

For efficient filtering of aircraft within this cylinder, a formula has been developed to
determine whether a latitude-longitude point (𝜙, 𝜆) lies within a great circle distance 𝑑 of
another point (𝜙 , 𝜆 ) on earth that can represent an airport. This formula is presented
in equation 5.1.

𝑎 cos(𝜙) cos(𝜆) + 𝑏 cos(𝜙) sin(𝜆) + 𝑐 sin(𝜙) > cos(
𝑑
𝑅 ) (5.1)

where factors 𝑎, 𝑏, and 𝑐 are:

𝑎 = 𝑐𝑜𝑠(𝜙 )𝑐𝑜𝑠(𝜆 )
𝑏 = 𝑐𝑜𝑠(𝜙 )𝑠𝑖𝑛(𝜆 )

𝑐 = 𝑠𝑖𝑛(𝜙 )
(5.2)

Based on the above formulas, the point (𝜙, 𝜆) is within a great circle distance 𝑑 of ref-
erence point (𝜙 , 𝜆 ) if expression in equation 5.1 is true. The resultant aircraft positions
for a week of traffic within 100 NM of London Heathrow Airport can be seen in figure 5.1.

Figure 5.1: Traffic positions within 100 NM of London Heathrow airport during week starting 22nd January 2018.

The available ADS-B data is available in a decoded columnar format. The data is obtained
from a ground-based receiver network and fused with operations schedule information to
include additional fields such as departure airport, scheduled arrival airport and real arrival
airport. Additional fields utilised throughout the metric extraction include message recep-
tion time in UNIX time as well as unique flight identification not to be confused with flight
numbers.

The data is of reduced size to lower the required storage volume. The size reduction
has been performed by the elimination of messages during unchanging flight conditions.
For example, during cruise messages from a particular aircraft may be available in sixty-
second intervals however during terminal manoeuvring this is reduced to one message every
5 seconds. An assumption within this research is that the aircraft equipped with ADS-B are
representative of all aircraft within an airspace.
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The discrete nature of ADS-B messages presents a challenge for deriving metrics that are
continuous nature. For example, aircraft count can be performed continuously however if
messages from different aircraft are received at different discrete times then the aircraft count
may be inaccurate as for a given discrete-time messages for every aircraft may not have been
received. This is further complicated by the aforementioned additional data reduction. To
overcome this, the message reception times shall be rounded to the lowest value possible for
a metric to remain representative.

The following sections present the metrics. The metric extraction is implemented using
Apache Spark Python API whilst the analysis is performed locally using Pandas. [46, 66]

Aircraft count
The aircraft count is defined as the number of airborne aircraft within a radius of 100 NM of
the airport. The aircraft count is obtained by first, rounding the ADS-B message reception
time to the nearest sixty seconds. Then, for each minute a count of distinct transmitting
aircraft is performed. The messages themselves do not serve as an indication of the amount
of aircraft in the airspace as multiple messages per aircraft might have been received within
a sixty-second period. If no messages have been received within a sixty-second period the
aircraft count is set to zero. The process is described by a flow chart in figure 5.2

Round UNIX
timestamps to

nearest 60 seconds

Keep latest message
from each
transmitter 

Count unique
transmitters Aircraft count

Figure 5.2: Flow chart of aircraft count acquisition from ADS-B data obtained around an airport.

This aircraft count has been performed for the complete year 2018 around LondonHeathrow.
The result can be seen in figure 5.3. Each line in the plot represents one day.

Figure 5.3: Plot of aircraft counts within 100NM radius of London Heathrow during year 2018. Each line presents one day.
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Ground track inefficiency
Ground track inefficiency is defined as the ratio of ground track distance covered by air-
craft between crossing the 100 NM radius around an airport and landing over 100NM. To
account for the discrete nature of ADS-B and coverage limitations the inefficiency shall be
implemented as a discrete integration of ADS-B positions up to the last position before the
aircraft descending below 1200 feet. The cut off altitude of 1200 feet is used as the last
received position altitude varies between aircraft and thus creates an inconsistency in the
final position used to compute the inefficiency. Figure 5.4 presents quantile plot of aircraft
altitude at the last ADS-B message before landing. As can be seen from it, the majority of
last aircraft positions occur below 1200 feet. Figure 5.5 presents the process of computation
this metric.

Filter for positions
above 1200 feet

Compute ground
track distance

Round last position
before landing to
nearest 5 minutes

Assign inefficiency to
rounded time of last

position

Compute mean
inefficiency for each

5 minute interval

Figure 5.5: Flow chart of approach ground track inefficiency computation.

Figure 5.4: Quantile plot of last transmitted altitudes before
landing.

The inefficiency itself is presented in equa-
tion 5.3, the distance measure between two
points that is used is Haversine distance.

𝜂 =
∑ 𝑑𝑖𝑠𝑡(�⃗� , �⃗� )

100𝑁𝑀 (5.3)

The metric is equal to one if the aircraft
would fly from the edge of the radius to land-
ing in a straight path. Values above 1 show an
inefficiency, an inefficiency of 0 is used to in-
dicate that no landings were occurring in the
given period. Whilst values below 1 are theo-
retically impossible, they do occur in practice
as the first ADS-B message after crossing the
radiusmay be some distance within the radius
and the ground track integration will yield a
value below 100 NM for efficient approaches. Inefficiencies for the year 2018 of aircraft ar-
riving at LHR are present in figure 5.6.
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Figure 5.6: Arriving aircraft ground track inefficiency within 100NM radius of London Heathrow during year 2018. Each line
presents one day. 0 presents no landing aircraft.

Proximity
The goal of the proximity metric is to characterise the level of closeness between aircraft in
the airspace by prioritising the aircraft closer to each other. The metric to be used has been
developed by Delahaye et al. and is presented in equations 5.4 and 5.5.[16] 𝑎 and ℎ are 5 and
0.3 km respectively and are considered characteristic distances for horizontal and vertical
spacing. ⃗⃗⃗𝑝 is the position vector whilst 𝑥, 𝑦 and 𝑧 are the position coordinates.

𝑑 , = ‖⃗⃗⃗⃗𝑝 − ⃗⃗ ⃗⃗𝑝 ‖ , =
√(𝑥 − 𝑥 ) + (𝑦 − 𝑦 )

𝑎 +
(𝑧 − 𝑧 )

ℎ (5.4)

𝑃(𝑖) =∑𝑒 (5.5)

The 𝛼 factor in equation 5.5 is a scaling factor for distances and a value of 0.1 is used in
the computation. Equation 5.5 is performed on a per aircraft basis. The airspace proximity
metric is taken to be the mean of all the aircraft values. The process is summarised by a flow
chart in figure 5.7. As with the previous metrics, the aircraft timestamps are rounded to a
value which in this case is the nearest 15 seconds. The aircraft positions are then used to
compute proximity between aircraft pairs which are then aggregated by taking the mean to
obtain a value for the airspace.

Round timestamps to
nearest 15 seconds

Compute proximity
between aircraft pairs

Compute mean of all
proximities for each
15 second period

Figure 5.7: Computation process for proximity metric.

The resultant proximity values for the year 2018 around Heathrow airport can be seen in
figure 5.8.
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Figure 5.8: Proximity metric values throughout year 2018 around Heathrow airport. Each line presents one day.

Convergence
The convergence metric is the derivative of the distance between aircraft. I.e. it represents the
nearing rate between aircraft and was developed by Delahaye et al [16]. Intuitively the value
of the metric increases as the aircraft are closer together and moving faster in each other’s
direction. This nearing rate is defined in equation 5.6. �⃗� , �⃗� and 𝑑 are respectively: the
relative position vector, relative velocity vector and distance scalar.

𝑟 = 𝜕
𝜕𝑡 ‖�⃗� ‖ = 𝜕

𝜕𝑡√�⃗� ⋅ �⃗� =
�⃗� ⋅ �⃗�
𝑑 (5.6)

The convergence itself is presented in equation 5.7. Like proximity, it is computed on per
aircraft pair basis however only converging aircraft are used in the summation hence 𝑟 ≤ 0.
The two parameters include 𝜆 and 𝛼 . The former is set to 1 whilst the latter to 0.1.

𝐶𝑣(𝑖) = 𝜆 ∑
/

−𝑟 ⋅ 𝑒 ( ⋅ ) (5.7)

The process of computation is similar to proximity and is presented in figure 5.10. Figure
5.10 presents the resultant convergence values for a whole year.

Round timestamps to
nearest 15 seconds

Compute
convergence

between aircraft pairs

Compute mean of all
convergence for each

15 second period

Figure 5.9: Convergence computation process.
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Figure 5.10: Convergence metric values throughout year 2018 around Heathrow airport. Each line presents one day.

Landing & Take-off count
The landing and take-off counts are performed by capturing first aircraft positions on the
ground for landing or first airborne positions for take-off. However, this unlike the previously
mentioned metrics does not provide a value but rather an event and it’s time. To obtain actual
aircraft take-off and landing counts a rolling window summation is performed over a 5 minute
period for landings and take-offs separately. The obtained value is interpreted as the number
of landings and take-offs in a 5 minute period. Figure 5.11 presents the computation process
whilst figures 5.12a and 5.12b show the landing and take-off counts respectively. Unlike the
figures for other metrics, figures 5.12 show the metric only for morning hours of one day.
This has been done for figure clarity.

Capture first
positions on ground /

in air
Round event time to
nearest 15 seconds

Apply 5 minute rolling
window summation

Take-off and landing
counts within 5
minute period

Figure 5.11: Operations computation process.
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(a) Landing counts.

(b) Take-off counts.

Figure 5.12: Operation plots for 1st January 2018. 5 minute rolling sum. Morning hours. Single day presented for clarity.
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5.2. Interpolation and filtering
From the figures in section 5.1 it can be seen that the data is noisy and the underlying process
is not visible. Furthermore, the data is sampled at different intervals for the most accurate
computation of the given metric given the discrete nature of ADS-B. Table 5.1 presents the
characteristics of the derived metrics.

Aircraft count Inefficiency Proximity Convergence Operations
Time interval [s] 60 300 15 15 Variable
Discrete Yes No No No Yes

Table 5.1: Metric characteristics.

Interpolation
Majority of clustering and analytics methods such as Principal Component Analysis require
vectors of equal lengths [52]. As such it is desirable to have values of each metric variable at
the same time stamps. However, as can be seen from table 5.1 this is not the case for the raw
metrics. As such, interpolation is used to reduce the spacing of metrics to the lowest time
interval of 15 seconds of Proximity and Convergence. To obtain equal spacing and consistent
vector length linear interpolation formula 5.8 is used.

𝑦 = 𝑦 (1 − 𝑡 − 𝑡
𝑡 − 𝑡 ) + 𝑦 ( 𝑡 − 𝑡

𝑡 − 𝑡 ) (5.8)

In the above formula, 𝑛 indicates the number of the interval. For example, there are four
15s intervals in 60s. 𝑦 is the metric corresponding to the metric sampled at a lower frequency
than the one that is being interpolated to. 𝑦 is the last available value whilst 𝑦 is the
next available value. 𝑡 and 𝑡 correspond to the times of 𝑦 and 𝑦 . The 𝑡 presents
the time of start of the nth interval. For a Δ𝑡 second interval it can be defined as in equation
5.9. 𝑛 must be discrete thus, 𝑡 − 𝑡 must be divisible by Δ𝑡.

𝑡 = 𝑛Δ𝑡 + 𝑡 (5.9)

Filtering
The above equations are thus used for interpolation of metrics sampled at a lower frequency
to a higher frequency. However, interpolation of noisy data introduces extra noise to the
data. The noise in the data is problematic as it hides the underlying phenomena however its
removal must be performed cautiously as the true underlying signal may be interfered with
and important characteristics of it may be removed.

A common filtering method is utilising rolling windows. A rolling window is a method of
dividing up a long series into multiple overlapping windows in which a determined operation
is performed such as summation, averaging or another smoothing. The size of the window
along with the operation to be performed in the window will affect the results of the filtering.
The window size must be chosen to be wide enough to perform smoothing whilst not being
too wide to hide the underlying phenomena. For the window size, no exact methodology
is available. However, knowledge of the signal characteristic along with domain knowledge
allows for selecting an appropriate size window. Consider figure 5.13 which presents the
Fast Fourier Transform of the Aircraft Count metric for the complete year 2018. The x-axis,
instead of units of frequency has units of time interval in hours to aid in readability.

It can be seen from the Fourier transform that the dominating time interval corresponds
to just over 20 hours. This is reasonable as it corresponds to the daily fluctuation of aircraft
during the day, low numbers at night whilst high during the day. Other peaks are visible on
the scale between an hour and 10 hours for which no simple explanation is directly avail-
able. However, this information is useful as it indicates that no strong cyclical component
is present on a scale of below an hour. If it existed, windowing filtering on such scale would
have to be performed more carefully to not remove information.
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Figure 5.13: Fast Fourier Transform of Aircraft Count throughout year 2018 for London Heathrow. x-axis in the units of hours
unlike usual frequency.

As such, for window filtering on a time scale of 25 minutes is deemed appropriate. Given
the window size, a filtering method can be chosen. Here, one of the most common linear fil-
tering methods is Window Averaging [63]. However, this method suffers from the drawback of
being sensitive to outliers. As such, a better candidate is a Moving Window Median. Whilst
more robust to outliers, it is more computationally expensive which is an acceptable defi-
ciency. The resultant filtered metrics for 2nd May 2018 can be seen in figures 5.14 through
5.18.

Figure 5.14: Aircraft count, filtered and nonfiltered comparison for Wednesday, 2nd May 2018.
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Figure 5.15: Proximity, filtered and nonfiltered comparison for Wednesday, 2nd May 2018.

Figure 5.16: Convergence, filtered and nonfiltered comparison for Wednesday, 2nd May 2018.
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Figure 5.17: Inefficiency, filtered and nonfiltered comparison for Wednesday, 2nd May 2018.

Figure 5.18: Operations - landings and take-offs, filtered and nonfiltered comparison for Wednesday, 2nd May 2018.
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Daylight savings adjustment
London Heathrow flight schedules change by an hour with respect to the Coordinated Uni-
versal Time (UTC). This is the reason why in figure 5.3 two slopes are visible in the early part
of the day. Whilst this seems like an actual variation by e.g. an airport having a different
opening time on some days it only an effect present due to the time change. As compared to
the local time the airport begins operation at the same times.

To correct for this, all the UNIX timestamps for the daylight savings days between 2018-
03-25 01:00:00 and 2018-10-28 01:00:00 UTC are shifted forward by an hour by adding
3600 to them. The gap that this causes for the change forward in March is corrected for
by placing 0s in for the metric values during the ”non-existent” hour during that day. The
overlap caused at the end of the period is dealt with by removing the duplicate timestamps
and leaving only the latest. Whilst the latter removes data, it is acceptable as the data
removed is of less relevance as it from the night curfew period where no activity takes place.
Furthermore, it is only an hour which is insignificant compared to the whole year 2018.

Figure 5.19: Aircraft counts for year 2018 corrected for day light savings. Note the lack of second slope in the morning hours as
compared to plot 5.3.
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5.3. Clustering
The goal of clustering in the scope of this research is to obtain groups of time-series which will
best describe characteristic nominal airspace states. However, this is, in fact, a balancing
act. Consider calculating nominal conditions for a complete year - i.e. clustering all days in
a single cluster. The resultant nominal conditions will be ”one fit all” however, all the days
of the year can be used to compute the confidence interval for this nominal state.

The solution to this is performing nominal state calculation more specifically, for example
per quarter of the year or other feature. However, as mentioned earlier, this is a balancing
act. Now consider a case where every day of the year is considered its cluster. Whilst this
would theoretically bemost accurate, as for example, the Friday before Christmas, is a unique
day in a year due to heavier than usual traffic and thus it would make sense to compute a
nominal ”Friday before Christmas”. The issue that arises as more nominal conditions are to
be calculated the smaller the amount samples per nominal condition are available. This is
related to the curse of dimensionality [6].

As such, the goal is to find an optimal amount of nominal states through clustering such
that enough samples per feature are present but the nominal states are specific enough.
For this to be performed, the metric data must be explored. For this, Principal Component
Analysis has been used.

Principal Component Analysis - data exploration
Principal Component Analysis is a data exploration method which allows for reducing high
dimensional data into lower dimensions for visualisation or feature reduction [58]. Mathe-
matically speaking, PCA performs a transformation on amatrixX to a new coordinate system.
It does this by eigendecomposition of a covariance matrix Σ of the features in matrixX. Within
this new system, the axis of it represent the directions of the maximal variance of the original
matrix and are ordered from most varying to least varying. The axis, which are eigenvectors,
of matrix Σ, represent the new axis and are called Principal Components.

To understand this method consider matrix in 5.20. In this matrix, the value represents
a value of some metric such as aircraft count, inefficiency, etc. In the diagram, aircraft count
is taken as an example.

[
𝑚 , ⋯ 𝑚 , ∗

⋮ ⋱ ⋮
𝑚 , ⋯ 𝑚 , ∗

]
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e
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Metric measurement during day

aircraft count

Time of day

Time of day

aircraft count

day
1

day 365

X =

*Metrics sampled at 15 second intervals - 5760 samples for each day

Figure 5.20: Description of matrix X used in Principal component analysis

Figure 5.20 shows the composition of matrix X used in Principal Component Analysis as
an input. The matrix rows are days of the year whilst the columns are measurements taken
during the day. Hence, each row corresponds to one curve for a particular day.

As mentioned before, PCA performs an eigendecomposition of the covariance of matrix
X. Because X is, in fact, a dataset with rows representing samples and columns variables
(measurement at each timestep is considered a variable) the covariance Σ can be estimated
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with equation 5.10 where 𝑛 is the number of samples which in the case of the PCA being
performed it is equal to 365 - number of days in a year.

Figure 5.21: Toy example of PCA on two dimensional normally
distributed data. Note the arrows indicate the directions of most
variance - they are the Principal Components [49].

Σ = XTX
𝑛 − 1 (5.10)

Thus, the Principal Components are the
eigenvectors of the covariance matrix Σ. The
eigenvectors with the largest corresponding
eigenvalues are the most influential in terms
of the variance of data along them. In intu-
itive terms, they describe the most variance
in the data from all principal components.
Consider figure 5.21 which presents a toy
example of PCA. In this image the two di-
mensional normally distributed scatter data
has two principal components along direc-
tions of most variance.

Before the PCA can be analysed, it is im-
portant to consider how much information
do the two Principal Components have about
the variance of data. As mentioned earlier,
the principal components are eigenvectors
with corresponding eigenvalues. The magni-
tude of the eigenvalue indicates how ”strong”
a particular Principal Component is. Thus,
the eigenvalue can be used to obtain information on how much variance does each Princi-
pal Component explain. This is done by simply by dividing the eigenvalue by the sum of all
eigenvalues as in equation 5.11.

𝜎 , = 𝜆
∑ 𝜆

(5.11)

Figure 5.22: Explained variance of the first 10 Principal Compo-
nents of PCA performed on aircraft count throughout year 2018.

The result of this operation for the first
10 components can be seen in figure 5.22.
As can be seen, the first Principal Compo-
nent is dominant with almost 80% of vari-
ance explained by it. The second component
explains only 10% with the next values hav-
ing importance on the variance. Together,
the two first Principal Components explain
close to 90% of the variance.

For this research, PCA has been used
to visualise the time-series data represent-
ing days of the year. Such visualisation al-
lows to determine the overall structure of the
time-series on a per-sample basis and give
insight as to how to proceed with further op-
erations such as clustering. The disadvan-
tage of PCA is that it is not directly able to
work on multivariate time-series data with multiple samples and as such it has to be per-
formed on per metric basis. The result of the PCA for aircraft count with colouring by month
and day of the week can be seen in figures 5.23 and 5.24 respectively. Each dot in the PCA
plots represents one day. The PCA implementation used comes from scikit-learn and the
inputs were standardised before inputting them into the PCA function [10].

In the aforementioned figures, one day is marked with an orange triangle. During this day
the gathered data has been corrupted and very limited activity was observed in the airspace.
An investigation into the cause has resulted in no events of importance occurring within the
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Figure 5.23: Principal Component Analysis of aircraft count with each point representing a day. Colouring by month. Triangle
presents a day for which data has been corrupted and low amount of flights was detected.

Figure 5.24: Principal Component Analysis of aircraft count with each point representing a day. Colouring by day of week.
Triangle presents a day for which data has been corrupted and low amount of flights was detected.
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airspace and the data was deemed to be corrupt. However, this day does remain useful as it
allows to verify whether the outliers in the PCA are unusual days. By analysis of the figure,
it can be seen that the point is one of the furthest from the main cluster.

From the two PCA plots, it can be seen that no multiple clusters can be distinguished for
all days. Majority of the points lies within one central cluster. It can be seen however that
months tend to be a more important factor in the daily aircraft count rather than the day of
the week. This is because some clustering can be observed when considering the month as
seen in figure 5.23 where the winter months are different from summer months. This is not
the case for days of the week in figure 5.24 where no similarities can be distinguished.

PC 1 PC 2 SUM
aircraft count 0.77 0.07 0.84
convergence 0.58 0.1 0.68
proximity 0.55 0.12 0.67
inefficiency 0.32 0.1 0.42
landing count 0.24 0.08 0.32
take-off count 0.22 0.08 0.3
operations 0.37 0.09 0.46

Table 5.2: Principal component variances for all metrics

The above is of importance to fur-
ther feature engineering as it highlights
the importance of the seasonality in the
daily trends. Thus, it appears that
the month of a year is a better feature
for deducing a days nominality as com-
pared to the day of the week. Fig-
ures 5.25 present a similar pattern for
the other metrics. Table 5.2 presents
the variances of the first two compo-
nents along with their sum for each met-
ric.

(a) Operations (b) Inefficiency

(c) Convergence (d) Proximity

Figure 5.25: Principal Component Analysis of metrics with each point representing a day. Colouring by month. Triangle presents
a day for which data has been corrupted and the low amount of flights was detected. Legend as in figure 5.23.
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(a) Operations (b) Inefficiency

(c) Convergence (d) Proximity

Figure 5.26: Principal Component Analysis of metrics with each point representing a day. Colouring by day of the week. Triangle
presents a day for which data has been corrupted and the low amount of flights was detected. Legend as in figure 5.24.
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K-means clustering
K-means is a common method of clustering based on minimization of variance within a clus-
ter [7]. This is described by equation 5.12. 𝑆 is a cluster that is part of a set 𝑆 , 𝑆 , ..., 𝑆
where 𝑘 is the desired number of clusters. x and y are observations belonging to a particular
cluster. Note that 𝑘 ≤ 𝑛.

argmin
S

∑ 1
2 |𝑆 | ∑

x,y∈
‖x− y‖ (5.12)

In practice, the clusters are computed iteratively starting from an initial random assign-
ment of cluster centres. First, the observations are assigned to a cluster based on the smallest
Euclidean distance or alternative distance measure. Next, the cluster centre is updated by
computing the mean of points within the cluster. The process repeats until the change in
the cluster centre is below a tolerance.

The K-means clustering algorithm has been tested on inefficiency metric. The inefficiency
metric has been chosen as this metric is most likely to show the effects of disruptions. This
is because if weather conditions become severe enough to constrain operations the aircraft
already inbound to the airport will require to hold or go-around. As such, this metric should
rise in poor weather conditions. The K-means implementation comes from Python library
tslearn which features various functionalities for operations on time-series data [61].

The goal of clustering within the scope of this research is to create nominal conditions
clusters. As such, the fitting of clusters in the K-means has been performed only with days
during which weather was not severe. A day is considered to consist of severe weather if any
of the following is true: wind speed over 25 knots, gusts over 30 knots, visibility below 0.5
NM. The clustering has been performed on per day basis just as the PCA. Hence, the input
matrix is of shape: (𝑛 , 5760) just as in figure 5.20. Figure 5.27 presents the results as the
colouring of points on the PC plot of inefficiency metric. This result includes severe weather
days which have been classified based on clusters derived from good weather days.

Figure 5.27: K-means clustering results displayed on a Principle Component Plot of airspace inefficiency metric. Colouring by
cluster.
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The K-means clustering has been performed with 4 clusters based on the results from
data exploration using PCA. As mentioned in the previous subsection, seasonality is of im-
portance in metric patterns for London Heathrow more so than the day of the week. As such,
4 clusters represent four distinct seasons.

Euclidean distance serves as the distancemeasure. Experiments were performed using
Dynamic Time Warping however the resultant cluster centres could not be explained and
the computation required significantly downsampling the metric time-series due to the high
computational complexity mentioned in chapter 4. As such, Euclidean distance proved to
be robust and understandable. Importantly, the computation could be performed without
downsampling the time-series data. As the data has been adjusted for daylight savings no
large scale time lag will be present to disrupt the distance metric.

As can be seen from figure 5.27, the direct clustering on time-series data has resulted in
clusters being formed in the transformed coordinate system of Principal Components. Cluster
1 (blue) is most numerous and also least varied. Next is cluster 4 (pink) which lies close to
cluster 1 however it is more varied. Clusters 2 (green) and 3 (red) are the least numerous
with cluster 3 representing numerous outliers. Note that the corrupted data day values have
not been used in the clustering process.

Additionally, K-means utilises a random initial cluster centre placement. As such, every
time the algorithm is performed the result is different. To prevent this, K-means clustering
has been ran 100 times and the best clustering defined as the minimum distance of samples
to the cluster centre.

To verify the results of clustering the cluster centres (non-severe weather only) have been
plotted. They can be seen in figure 5.28. The colouring of the line corresponds to the colouring
from figure 5.27.

Figure 5.28: Cluster centres for the four clusters computed using K-means. Colouring the same as in figure 5.27.

The above plot shows that clusters remain quite similar around morning and evening
hours where traffic increases and decreases respectively. Majority of variation occurs during
the day. For cluster 1, after the morning peak caused by a concentration of arrivals the values
begin to decrease throughout the rest of the day. Cluster 2 is similar to cluster 4 due to an
increase in inefficiency following the morning rush. However, within cluster 2 the values
begin to subside around noon. Cluster 3 is an anomalous cluster. Cluster 4 is characterised
by a continuous increase in inefficiency throughout the day. Only during the evening hours
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does it begin to subside.

(a) Cluster 1 - decrease after morning peak. (b) Cluster 2 - increase till noon, decrease throughout
rest of day.

(c) Cluster 3 - anomalies. (d) Cluster 4 - increase throughout day.

Figure 5.29: Cluster centres along with the days belonging to a particular cluster.

Figure 5.29 presents the cluster centres from figure 5.28 with days belonging to the cluster
plotted on top. The anomalous cluster 3 contains only two days for which there appear to
be no flights in the morning hours. The other clusters centres appear to well match the
distribution of the samples within them.

Bad Weather Good Weather Total
Cluster 1 15 184 199
Cluster 2 15 107 122
Cluster 3 0 2 2
Cluster 4 4 34 38

Table 5.3: Good and bad weather day counts in clusters. Sum
of totals is not 365 due to removed days.

After the K-means clustering has been fit-
ted on good weather days, the remaining bad
weather days were classified based on the
obtained clusters. Table 5.3 displays the to-
tal number of days in a cluster as well as the
share of good and bad weather days within
them.

Table 5.3 presents the information re-
garding weather in clusters. Overall it can
be seen that clusters 1 and 2 are most nu-
merous. Overall, the bad weather days are

relatively evenly distributed amongst clusters. Cluster 1 consists of 7.5% bad weather days
whilst cluster 2 and 3 of 12% and 11% respectively. The anomalous cluster contains none.
This balance between the dominant clusters suggests that no cluster is representative of
disruptions.



Conclusion
In this preliminary thesis report, a literature study has been performed which has highlighted
the need to explore the concept of resilience. ATM delays have been on the rise in both, the
United States as well as Europe. About a quarter of near airport ATM delays are caused by
weather conditions.

To lessen the impact of the aforementioned weather conditions on air traffic, the ATM
system resilience to such disruptions should be considered. Interest in Resilience has been
on the rise in the past decades due to desire for systems to maintain their operational capacity
throughout and following disruptions. Within ATM community Resilience is understood as
the ability to recover from a disruption through transient perturbation to a reference state.
The challenge in measuring resilience in real systems is the ambiguity of the reference state
as well as the effects of the disruption.

The transient perturbation and reference state have to be quantified. Various metrics exist
that quantify various aspects of the ATM system. Most numerous are airspace complexity
metric which serve to define the complexity of an air traffic situation as perceived by an Air
Traffic Controller. These metrics appear to be useful when considering airspace also in the
spatial dimensions, i.e. on a map. However, aggregated values for complete airspace varying
only in time are heavily correlated with aircraft count in the airspace, as such they do not
provide much more information than this simple metric. Key Performance Indicators such
as the number of operations, efficiency, time in the airspace, etc. can also serve as airspace
metrics. In particular, efficiency metrics may contain information on bad weather conditions
as those are related to holdings and go-arounds.

As mentioned previously, the airspace reference state and deviations from it are ambigu-
ous. Each day in the airspace is different and what is considered nominal is not obvious and
as such, neither is the deviation from it. For this reason, time-series clustering can become
useful to estimate a set of nominal conditions in the airspace. This clustering can be later
utilised to match bad weather day metrics to it’s most likely nominal condition and estimate
the probability of deviation through means such as Gaussian Mixture Models.

The preliminary work performed included extracting airspace metrics for London Terminal
Manoeuvring Area from ADS-B data supplied by Airbus Airsense for the year 2018. These
metrics have also been refined through interpolation and filtering to achieve evenly spaced
time-series for clustering purposes. Principal Component Analysis of airspace metrics has
yielded that no distinctive clusters exist when projecting the metrics into two-dimensional
space. However, the clustering performed using K-means algorithm on inefficiency metric
has yielded three types of nominal days: declining inefficiency throughout the day, increasing
inefficiency till evening and third, increase till noon with a drop afterwards.

Overall, the clustering to define nominal days has yielded promising results with clear
trends in data. However, the remaining issue within the process of resilience measurement
is the measurement of deviation from nominal. The complexity metrics of proximity and
convergence do not seem to add much value over aircraft count due to the strong correlation
between them.
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Recommendations
Within the context of the complete thesis, this preliminary report objective is to document
research performed thus far. The results obtained hint at the feasibility of using clustering in
the process of resilience measurement. However, additional work remains to be done. Below
are highlighted the key points for the next thesis stage:

• Consider time inside of airspace on arrival as a metric due to possibly smaller noise as
compared to inefficiency metric.

• Perform feature engineering to determine if a combination of metrics has a higher rela-
tion to weather conditions.

• Consider lower sampling rate.

• Perform analysis on a time-scale shorter than a day to explore relations between weather
conditions during the day and the metrics.

• Utilise, Gaussian Mixture Models for modelling of cluster time-series elements.

• Achieve greater stability in clustering results through picking clustering results based
on intra-cluster and inter-cluster distances.

• Utilise Gaussian Mixture Model results to measure the probability of deviation for bad
and good weather days. Compare the results.

• Perform the complete clustering and deviation analysis process for Amsterdam Schiphol
and compare results to London Heathrow.
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