Unsupervised Learning for
Automatic Classification of Needle
Electromyography Signals

Sterre de Jonge

2023

ol il SmERE
"’ .. v
IL ,‘“ v — 1 4 e o o
3 ; | IR
13 ' ‘

Unsupervised Learning for Automatic
Classification of Needle Electromyography
Signals

Sterre de Jonge
Student number: 4477464
January, 2023

Thesis in partial fulfilment of the requirements for the joint degree of Master of Science in
Technical Medicine

Leiden University - Delft University of Technology - Erasmus University Rotterdam

Master thesis project (TM30004, 35 ECTS) for the track Sensing and Stimulation
Clinical Neurophysiology, Department of Neurology, Amsterdam UMC, location AMC &
Faculty of Mechanical, Maritime and Materials Engineering (3mE), TU Delft

January 2022 - January 2023

Supervisors:

Dr. C (Camiel) Verhamme
Dr. W.V. (Wouter) Potters
Dr.ir. W. (Winfred) Mugge

Thesis Committee members:
Prof.dr. M.R. (Martijn) Tannemaat (chair)
Dr. C. (Camiel) Verhamme
Dr.ir. W. (Winfred) Mugge
Dr. W.V. (Wouter) Potters

i (‘ Erasmus
 Universiteit Del University
Leiden TU Delft &y Rotterdam

’/‘; The Netherlands
: Cretens

An electronic version of this thesis is available at http://repository.tudelft.nl/

http://repository.tudelft.nl/

Preface and Acknowledgements

I'm very happy to be able to present the research that | have been working on over the past year. This research
marks the end of my master's studies and, with it, my time as a student in Delft. While it's a bit sad to say
goodbye to this phase of my life, | am excited to see what the future has in store. | have truly enjoyed working
on this research with Wouter and Camiel over the past year and | am grateful for the lengthy discussions we had
about the topic, which kept me motivated and focused. Thank you for your trust in me and the freedom you
granted me to conduct this research. | have become more confident in myself. | also want to thank Winfred for
his contribution, even though we didn’t frequently meet the past year, the sessions we did have were very useful
and | appreciate the feedback you gave me. Finally, a big thank you to my friends and family who have supported
me and kept me sane throughout this whole process. Your encouragement means a lot to me!

Sterre de Jonge

Delft, 6th of January, 2022

Abstract

Introduction. Needle electromyography (EMG) is a diagnostic tool used to identify and localise neuromuscular
disorders, but the current evaluation by a neurologist is subjective and requires years of training. Artificial
intelligence can be used to automatically classify needle EMG signals. However, previous studies in this
area have been subject to bias and have overestimated their performance. As a result, we aim to develop
a clinically applicable method for automatically evaluating needle EMG signals to provide a more objective
and efficient means of analysis. Methods. In this study, we implemented and evaluated two unsupervised
learning models, a convolutional autoencoder 4+ k-means clustering model and a deep convolutional embedded
clustering model. The models were evaluated on two classification tasks: the classification of spontaneous,
voluntary and insertional activity and the classification of spontaneous activity in needle EMG data classified
as rest. We used hospital-acquired needle EMG data from the Amsterdam University Medical Centre (UMC),
location AMC, from a total of 326 patients. The data was converted to Mel spectrograms, resulting in a
total of 1.3 million images available for training. Results. The unsupervised learning models reached 93.5%
accuracy on unseen test data. The classification of phenomena present in rest, such as fibrillation potentials
and positive sharp waves, was less successful and requires further research. Conclusion. Our study provides
valuable insights for the use of unsupervised learning in the automatic classification of needle EMG signals and
highlights the need for further research in this area.

1 Introduction

Needle electromyography (EMG) is crucial for the iden-
tification and localisation of neuromuscular disorders [1-
3]. A needle is placed in the muscle to record the activity
of muscle fibers in resting and contracting states, with
high spatial resolution. Detection of abnormalities pro-
vides diagnostic information upon a defect in the neuro-
muscular control pathway and thus, neuromuscular dis-
orders.

In current practice, evaluation of needle EMG record-
ings is based on audio-visual interpretation of insertional,
spontaneous and voluntary needle EMG signals by a
neurologist [1]. Spontaneous activity in resting state,
caused by individual muscle fibers or a motor unit, are
described in guidelines after similar audio events. For ex-
ample, "rain on a tin roof” for fibrillation potentials and
"seashell” sound for endplate noise [2]. The presence of
spontaneous activity is considered normal directly after
insertional activity and when caused by activity near the
endplate zone. Abnormal spontaneous activity may in-
dicate pathologies at different levels of the motor unit
[2]. During voluntary contraction, muscle fibers within
a motor unit are activated which is recorded as a mo-
tor unit action potential (MUAP). The morphology and
firing pattern of MUAPs help differentiate between two
main categories of neuromuscular disorders, myopathic
and neurogenic disorders [2].

Correct interpretation and recognition of pathologies
in the needle EMG signal requires years of training before
it is mastered by the neurologist. The interpretation can
therefore be subjective, which is reflected in low inter-
rater agreements. Depending on type of (pathological)
waveform or level of training the interrater agreements
are found to be between 47 and 91% [4, 5]. Techniques
for objective analysis that allow a standardised yet sen-
sitive and specific evaluation of needle EMG signals is
therefore desired.

Recent studies focused on the automatic classification
of needle EMG signals have taken advantage of the ad-
vances in the field of artificial intelligence (Al). All of the
following studies reported a minimal classification accu-
racy of 95% for the classification of needle EMG signals.
Torres-Castillo et al. used linear discriminant analysis to
select two most discriminant time and time-frequency
features for the classification of healthy, myopathy and
neuropathy signals using k-nearest neighbour classifier
[6]. Bose et al. retrieved features using weighted visibil-
ity graph and classified healthy, myopathy and neuropa-
thy signals using naive-Bayes classifier [7]. Samanta et
al. used a pre-trained residual network with 50 layers
(ResNet50) to select features and classified healthy vs.
diseased (myopathy or neuropathy) signals using sup-
port vector machine and k-nearest neighbour classifier
[8]. Kamali et al. applied multiple instance learning to
discern healthy, myopathic and neuropathy muscles [9].

Other studies transformed needle EMG signals to a

two-dimensional spectrogram image to benefit from the
advances made in deep learning for images. Sengur et al.
used a convolutional neural network (CNN) to classify
healthy and neuropathy spectrograms [10]. Nodera et
al. converted the needle EMG signal to a Mel spectro-
gram [11]. The values in a Mel spectrogram are placed
on the Mel scale which reflects human perception of au-
dio signals [12-14]. The use of the Mel scale in the study
by Nodera et al. aimed to mimic the evaluation process
of a neurologist, who identifies abnormalities by sound
(as well as by visual pattern recognition). A pre-trained
Resnet50 model was used for the classification of spon-
taneous activity in resting state needle EMG signals and
training was performed on artificially augmented Mel
spectrograms in order to improve the classification ac-
curacy [11]. Nodera et al. were the first to apply Al to
rest needle EMG signals.

The high classification accuracies that were reported
in above-mentioned studies could be a result of bias and
overfitting, where the performance is overly estimated
on the test set. External validation, which is impor-
tant to recognise potential biases, was in none of the
studies reported. A bias that was identified in several
studies was the use of test data to inform decisions at
several phases of model development, including feature
selection, hyperparameter tuning and model selection.
Additionally, these studies used small datasets contain-
ing signals collected in a controlled environment from a
small number of patients. Online EMGLab database
(http://www.emglab.net) was in multiple studies
used [6-8, 10], this database consists of clean EMG
signals without artefacts and a clear distinction between
normal and pathological EMG signals [15]. Current lit-
erature on the classification of needle EMG signals has
therefore several drawbacks that make clinical imple-
mentation difficult: (1) reliance on manually selected
segments of data as a result of labelling, (2) lack of
validation on independent data, and (3) use of a small
subset of patient groups.

This study aims to develop a clinically applicable method
to automatically evaluate needle EMG signals. This is
achieved through (1) directly training models with hos-
pital acquired needle EMG data (containing insertional,
spontaneous and voluntary signals), and (2) perform
training with vast amounts of data through the imple-
mentation of unsupervised learning techniques. This ap-
proach has not yet been implemented in previous litera-
ture. We will focus on the classification of spontaneous
needle EMG signals, because earlier work primarily fo-
cused on the classification of voluntary signals. In order
to do so, it is necessary to identify resting state sig-
nals from insertional activity and voluntary contraction
in hospital acquired needle EMG signals. The unsuper-
vised learning methods that we will implement are dis-
cussed in the next section, followed by Section 3 which
describes the research question of this study.

http://www.emglab.net

2 Background
2.1 Clinical Needle EMG Examination

Needle EMG examination is performed at the hospital
to identify neuromuscular disorders. A needle is in-
serted into the muscle to measure the electrical activ-
ity of that muscle. There are three stages of the ex-
amination: (1) the muscle's response immediately af-
ter needle insertion, (2) the muscle's activity when it is
at rest (relaxed), and (3) the muscle’s activity during
voluntary contraction, from low to near maximal con-
traction [2]. It is normal for the muscle to have some
response to the needle, but if the activity lasts longer
than a few hundred milliseconds (known as increased
insertional activity), it may indicate a problem [2]. It
is, furthermore, expected that the muscle is electrically
silent when it is at rest. Spontaneous activity that is
observed for longer than 2-3 seconds is abnormal [2].
The exception is when the needle is near the endplate
zone (resulting in endplate noise/spikes), this activity is
normal. The following spontaneous waveforms may be
observed during muscle rest: fibrillation potentials, pos-
itive sharp waves (PSW), complex repetitive discharges
(CRD), myotonic discharges, fasciculation potentials,
myokymic discharges, and endplate noise/spikes. Fib-
rillation potentials and PSW have the same significance
and they are both spontaneous depolarisation of a mus-
cle fiber [2]. The examination is completed by evaluat-
ing MUAPs during voluntary contraction. The muscles
examined during a routine clinical examination are de-
termined by the clinical question and the patient’s symp-
toms.

2.2 Unsupervised Learning Techniques

In unsupervised learning, a model is trained without pro-
viding any labelled outcomes or target variables. Clas-
sification is performed by finding intrinsic differences in
the data. Clustering is a method to achieve this, but
clustering methods perform poorly in high-dimensional
spaces [16]. Dimensionality reduction is therefore used
in unsupervised learning to improve clustering.

A recently introduced method to achieve dimensional-
ity reduction and feature extraction, simultaneously, is
through autoencoders [17, 18]. Autoencoders are types
of deep learning models that are trained to learn efficient
representations of data. They are designed to compress
input data into a smaller and more compact form while
still retaining as much of the important information as
possible.

An autoencoder consists of two parts: an encoder
and a decoder. The encoder, described by z = f(x),
maps the input data (x) to a lower-dimensional repre-
sentation (z), called the latent space or representation.
The decoder, described by » = g(z), uses the latent
representation to reconstruct the original input data (re-
construction 7) [19]. The model is trained by minimising
the reconstruction error, which is the difference between

the input and the output. A meaningful latent space z
is achieved because the network is forced to capture the
most salient features of the training data in a lower-
dimensional space.

Autoencoders may consist of different kinds of build-
ing blocks to handle different kinds of input data. Con-
volutional autoencoders consist of convolutional layers
and are capable to handle image data as input data.
Convolutional layers preserve the spatial structure of
images and are very efficient in identifying local and
global structures. These layers are widely and suc-
cessfully used in convolutional neural networks in the
medical field, such as the classification or segmentation
of medical images [20-22]. Transformation of needle
EMG data to images (such as Mel spectrograms) allows
us to implement convolutional autoencoders.

A convolutional autoencoder (CAE) is presented in Guo
et al. [18] to learn ten features from unlabelled images
of MNIST database (28 x 28 images of handwritten dig-
its). These features were subsequently used in k-means
clustering, a popular clustering method [23], to form ten
clusters representing ten digits (0-9).

The goal of k-means clustering is to minimise within
cluster-variances (inertia). The algorithm consists of the
following steps: (1) initial centroids (number = k) are
randomly chosen, (2) all samples are assigned to its
nearest centroid, (3) centroids are updated by taking
the mean value of all the samples that are assigned to
the prior centroid. Step two and three are consecutively
repeated until the centroids do not move significantly.
The outcome is dependent on the (random) initialisa-
tion and it is thus common practice to initialise multiple
times to reach a global optimum.

In the CAE + k-means clustering approach, features
are learned to reconstruct the input by minimising the
reconstruction loss. This may not lead to the most opti-
mal feature representation that is used during clustering,
aiming to identify the classes. It could be that differ-
ent features are learned from images that are visually
alike, if both sets of features still lead to a correct re-
construction. The authors therefore added the clustering
loss, resulting in the approach named deep convolutional
embedded clustering (DCEC) [17, 18]. The clustering
loss dictates how well the data is mapped to k cluster
centres based on an auxiliary target distribution. The
target distribution puts more emphasis on data points
that were assigned with high confidence. The purpose
of the clustering loss is to improve cluster purity and
hence strengthen predictions [17].

3 Research Question

The aim of this study is to implement two unsupervised
learning strategies, convolutional autoencoder (CAE)
followed by k-means clustering (strategy 1) and deep
convolutional embedded clustering (DCEC) (strategy
[I) and evaluate their performance on the classification
of needle EMG signals converted to Mel spectrograms.

The following research question is addressed: What is
the accuracy of unsupervised learning strategies in the
automatic classification of needle EMG signals?

We hypothesise, that: (i) unsupervised learning tech-
niques can be used to classify rest, contraction and
needle Mel spectrograms with a minimal classification
accuracy of 95% (classification task a), (i) unsuper-

vised learning techniques are less effective at classify-
ing rest phenomena (i.e.: fibrillation potentials, positive
sharp waves, complex repetitive discharge and myotonic
discharge) in Mel spectrograms classified as rest, with
a minimal classification accuracy of 70% (classification
task b), (iii) DCEC performs better compared to CAE
+ k-means clustering in both classification tasks.

Deep convolutional embedded clustering (DCEC) (model I1)

Datasets unlabelled - TRAINING

100%

xx % = rest Mel spectrograms
- e

o

1,278, 938 Mel spectrograms

» 5% used for hyperparameter optimisation

5% = 74,134 Mel
spectrograms » 100% used for training signal typel models

» unknown % used for training rest models

Datasets labelled — VALIDATION/TEST

a b validation dataset
12,622 Mel 5,655 Mel 100%

spectrograms spectrograms —
per class perclass - 767 rest,

- 216 fibrillation (fib),

0% 304 - 388 positive sharp waves (PSW),
test - 9 myotonic discharge,
validation dataset dataset - 272 complex repetitive discharge

- 163 PSW-+fib Mel spectrograms

Development of signal type model (la, lla)

Hyperparameter
optimisation

best combination of
hyperparameters

[

Convolutional autoencoder (CAE) (model | + k-means)

1

1

: LATENT SPACE / features e
I reconstruction loss]
i i
g T
: : — ENCODER — - DECODER — \
1 1
| input reconstructed
. images images |
1 I

K-means
clustering .

training: optimisation

CLUSTERING LAYER /
cluster centres

CITTTTIT)—1q

4

Performance evaluation on validation / test set

clustering with confidence level

clustering without confidence level
Training samples
belonging to this
cluster are used for
training rest model

“rest”

Confidence level:
when 25% of training
data is removed.

% cluster centre

Training and
evaluation

Development of rest model (Ib, 1Ib)

final

best model .
evaluations

Testing

Retraining models with Mel spectrograms classified
as rest (with confidence level), increased with data-
augmentation to 500,000 Mel spectrograms

Figure 1: Structure of the proposed method. Convolutional autoencoder (in purple) is, combined with k-means clustering, the first
(1) model. Deep convolutional embedded clustering (in grey) is the second (Il) model. The output of model | is a trained k-means
clustering method and the output of model Il is a set of soft probabilities indicating the likelihood of a data sample belonging to
each cluster (q). Output of both models is evaluated using validation/test set. True label of cluster is determined by majority of
samples belonging to a class in the validation/test set. Clustering with confidence is applied to select data samples that meet a certain
confidence level, this level is determined when 25% of the data is removed from training dataset. The development of models for each
classification task is shown in the flow diagram at the bottom. The corresponding labelled datasets (a, b) are shown in middle left box.
All training data (green) is used for development of signal type model, Mel spectrograms that are classified as rest with confidence

level are used for development of the rest model.

4 Methods

In this study, two models were implemented [18]: con-
volutional autoencoder (CAE) + k-means clustering (I)
and deep convolutional embedded clustering (DCEC)
(I). These models were then applied to two subsets
of clinical data: all data (a) and rest data only (b).
First, models | and Il were trained to classify all needle
EMG signals in the muscle state (rest or contraction)
or presence of needle movement; leading to signal type
models. Second, the samples that were classified as rest
were used to train the models to identify phenomena
that were present in rest, leading to rest models. The
methods section is summarised in Figure 1, each aspect
will be discussed in detail in the following sections.

4.1 Data Retrieval and Preparation
4.1.1 Study Population

Clinical needle EMG recordings are digitally stored from
patients undergoing routine clinical examinations at the
neurophysiology department of Amsterdam UMC, loca-
tion AMC. Data recordings from all muscles are available
that were examined during clinical care. For this re-
search, we retrospectively exported recordings from 326
patients between December 2016 and April 2020. This
data was anomalously handled according to the General
Data Protection Regulation (GDPR). The data consists
of needle EMG recordings, muscle name, and patholog-
ical phenomena for each muscle as manually annotated
during the needle EMG exam (e.g., the presence and
intensity of fibrillation potentials, the presence and in-
tensity of positive sharp waves, and normal or increased
insertional activity). Selection did not take place during
exportation of recordings. All (raw) recordings were ex-
ported as uncompressed waveform audio files (wav) with
a sample rate of 44.1 kHz.

4.1.2 Data Acquisition

Needle EMG examination was performed using a nee-
dle and Synergy software. Signals were sampled with
a sample frequency of 44.1 kHz and the signals were
band-pass filtered (10 Hz - 10 kHz) during acquisition.
The patient was asked to relax and contract the mus-
cle, to record signals in both states. Signal quality was
optimised by re-positioning the needle during the exam.
Multiple recordings were made per patient and/or mus-
cle, if this was clinically required, and each recording
had a maximal duration of 120 s.

4.1.3 Preprocessing

The raw recordings (wav files) were converted to Mel
spectrograms during preprocessing. The Mel scale
places frequencies on a logarithmic scale where equal
distances are perceived as equal by the human ear [24].
A similar approach reported by Nodera et al. [11] was
adopted for the computation of the Mel spectrograms.

10

The root mean square of the data was normalised to
-26 dB using the Python package Pyloudnorm (version
0.1.0) [25]. The files were then sampled to 1.48 s over-
lapping segments using a sliding window and step size
of 0.1 s. Extraction of segments with 1.48 s duration re-
sulted in a square-shaped Mel spectrogram. Step size is
arbitrary but a relatively small step size of 0.1 s ensures
that The Mel spectrogram was then computed using the
Librosa toolbox in Python (version 0.8.1) [26] with the
following parameter settings: y = data samples, sample
frequency = 44 100, fmax = 10 000, number of Mel
bands = 128, hop length = 512. In words, the compu-
tation of the Mel spectrogram consisted of the following
steps: (1) the 1.48 s data sample was sampled to 128
non-overlapping 11.6 ms windows (containing 512 data
points per window), (2) the short-time Fourier transform
was used to calculate a magnitude spectrum for each
window, (3) the Fourier transformed signal was then fil-
tered through a set of band-pass filters, known as the
Mel filter bank. An example of a Mel filter bank is shown
in Figure 2 depicting six (triangular) filters (compared
to 128 filters that were implemented). The filters are
more discriminative at lower frequencies than at higher
frequencies, thus placing the frequencies on a Mel scale.
The filters are triangular shaped and have a response
of 1 at the centre frequency and this decreases linearly
towards O until it reaches the centre frequency of the
adjacent filter.

There are some limitations to this approach because
the pixel values (representing the values of the Mel spec-
trogram) are scaled according to the values in the 1.48
s time signal. The effect of this is shown in Appendix
D.4. It was for this thesis not feasible to change this
approach because we "discovered” it late in the process.

453 889 1326 1763 2200 2636

Amplitude

4000 6000
Frequency / Hz

2000 8000 10000

Figure 2: Example of Mel filter bank. Each coloured triangle cor-
responds to a band-pass filter that is applied to place values from
spectrogram onto the Mel scale.

The final steps applied to the Mel spectrogram included
converting the values to decibels, normalising the val-
ues using min-max normalising, and scaling the values
to the range [0,255] so that the Mel spectrogram could
be saved as an image. The resulting Mel spectrogram
(with size 128 x 128) was used as the image input for
all the models discussed in the following sections. When
using deep learning, it is important to scale the images
to the range [0,1]. Therefore, the images were rescaled
to this range when they were loaded during training.

4.1.4 Datasets and Labelling

The datasets that were used during each stage of clas-
sifying needle EMG signals are shown in Figure 3. Un-

labelled data was used for training and labelled data for
validation and testing. Remaining (and unlabelled) files
from patients in the labelled dataset were excluded from
the unlabelled dataset to truly separate training and val-
idation/test set. Data is best disjoint at patient-level
and not at signal-level to reduce overfitting and bias
[27]. Data recorded from bulbar muscles were excluded
during training, because waveforms in these muscles
possess different characterisations compared to other
skeletal muscles [2].

All data
326 patients, 2638 files
/

N\ N
60 files recorded Unlabelled data Labelled data
from bulbar
muscles removed 285 patients, 1,998 files 41 patients, 580 files
J J

-

(Signal type (dataset a)\ Rest (dataset b)

Classes: phenomena
present in rest
13 patients, 14 files

Classes: rest; contraction;
needle/artefact
_ 41 patients, 95 files

A J

Figure 3: Division of labelled and unlabelled data from available
database. Patients whose files were used in the labelled datasets
were excluded from the unlabelled dataset . Files recorded from
bulbar muscles were removed.

Dataset unlabelled
Unlabelled files were used for training. Mel spectro-
grams were computed from a total of 1,998 wav files
from 285 patients.

Dataset a: Signal Type

95 files from 41 patients were annotated for classes rest,
contraction and needle. Annotation was performed us-
ing an in-house developed annotation tool (in Python
3.9) that allowed for both auditory and visual inspection
of the needle EMG signal. The files were annotated by
at least two examiners of four examiners in total. Ap-
pendix A.1 describes the rules that were followed dur-
ing annotation. Nine files of 120 s were labelled by all
(four) of the examiners to determine the interrater reli-
ability * The final annotation (reference standard) was
determined when both examiners reached the same class
label. The class labels were assigned to 1.48 s segments
when the following requirements were met:

» 100% of a segment labelled as rest receives rest label

= 100% of a segment labelled as contraction receives
contraction label

» >15% of a segment labelled as needle movement re-
ceives needle label

For the needle movement class label, the requirement
was determined to be met when 15% of the annotation
received the needle label, as needle movement is gen-
erally a short-duration activity. The other two classes

were created using full-length annotations (100%) to
avoid contamination with other classes in the resulting
Mel spectrograms.

Dataset b: Rest

14 files from 9 patients were annotated for class rest
and spontaneous activity in rest: fibrillation potentials,
PSW, CRD, and myotonic discharge. These files were
selected for this dataset when a note was made of the
presence of these phenomena during examination, as
some of them are rare and the purpose of this dataset
is to provide Mel spectrograms of these classes. The in-
house developed annotation tool was updated to allow
annotation for multiple additional classes (elaboration in
Appendix A.2). The files were annotated by one expe-
rienced examiner. The rules followed during annotation
are described in appendix A.3. The class labels were
assigned to 1.48 second segments when the following
requirements were met:

= 100% of a segment labelled as rest receives rest label

= >5% of a segment labelled as spontaneous activ-
ity (fibrillation potentials, PSW, CRD, or myotonic
discharge) and remaining portion is labelled as rest
receives spontaneous activity (fibrillation potentials,
PSW, CRD, or myotonic discharge) label

= >5% of a segment is labelled as PSW and >5% of
the segment is labelled as fibrillation potentials and
remaining portion is labelled as rest receives PSW +
fibrillation potentials label

The rationale for these requirements is that spontaneous
activity can be of short duration. Annotation was per-
formed from starting to end point of waveform and the
spontaneous activity class labels were therefore given to
segments containing 5% of specific phenomena along-
side normal rest signal. As fibrillation potentials and
PSW have the same clinical significance, the final class
was created when they appeared in the same segment.

4.2 Model I: Convolutional Autoencoder
+ k-means Clustering

The convolutional autoencoder (CAE) was implemented
in Python using Keras (version 2.8.0) [28]. The param-
eters of the CAE were updated with mini-batch gra-
dient descent using the Adam optimisation algorithm.
The loss function optimised was the mean squared er-
ror (MSE), which is calculated over the input (y;) and
output (g;) as follows:

n

1 _
L,=MSE = - Z(Z/z‘ —4i)°
=1
An example of the network is shown in Figure 4. The
network shown here consists of three convolutional lay-
ers and latent space z that has size 64. This CAE shown

here is therefore trained to learn 64 features.

1This was performed in a previous study by Deborah Hubers (master thesis title: Artificial Intelligence-based Classification of

Electromyography, date: April 2022) (link to paper not available).

The features in the latent space were subsequently
used to train the k-means clustering method from Scikit-
Learn package (version 1.0.2) [29]. Number of clusters
were determined by hyperparameter optimisation (clas-
sification task a) and by the maximum number of classes
(classification task b).

4.3 Model Il: Deep Convolutional Em-
bedded Clustering

The deep convolutional embedded clustering (DCEC)
was implemented in Python with Keras, as well. The
DCEC model was end-to-end trained with simultane-
ous optimisation of the reconstruction loss (L,) and
clustering loss (L.). The network is shown in Figure 5
and is composed of CAE and a clustering layer which is

learning from their high confidence assignments. This is
realised by comparing the soft assignment of all training
data with an auxiliary target distribution. The soft as-
signment is computed using the Student's t-distribution.
For every input image (a sample i) the similarity is mea-
sured between embedded point z; (representing features
in the latent space of a input image z;) and centroid f;
[17]:

(L+ Iz — pyl*) "
2 (U [lzi =)~

Where ¢;; is the probability of assigning sample 7 to
cluster j. The target distribution for each sample p; is
computed by raising ¢; to the second power and then
normalising by frequency per cluster [17]. For sample i
and cluster j the target distribution is:

qij =

connected to the latent space of CAE.
b — a5/ i ig
Y Zj(qz2]/zz 4ij)

The clustering layer iteratively refines the clusters by

Input image EnCOder DeCOder Output image
(1@128x128) __'_'_'_'_'_'_'_'_'_'_'_i ._'_'_'_'_'_'_'_'_'_'_'_i (1@128x128)
| 32@64x64 64@32x32 128@16x16 32768 64 | 32768 128@16x16 64@32x32 32@64x64, 'mmm‘
| . H [=l '
1 ——r 1A =11 {1 R —
= Ot i
5x5 3x3 RN [T—————_ 5x5 <7 | I
Flatten « I FC 3x3 .
Convi Conv2 Conv3 | . Reshape Deconv3 Deconv2 Deconvi
1 stride =2 stride =2 stride =2 . I P stride = 2 stride = 2 stride = 2
. padding = zeros padding = zeros padding = zeros . padding = zeros padding = zeros padding = zeros
| ectivation= ReLU activation = ReLU activation = ReLU | I activation = ReLU activation = ReLU activation = ReLU

Figure 4: Convolutional autoencoder adopted from Guo et al. [18]. It takes a black and white image as input (in this case, a Mel
spectrogram) and learns a representation of a set of pixels at each layer using a filter (the size is the depth of the layer multiplied
by the kernel size). The first convolutional layer learns 32 representations and, since the input image has a depth of 1, the filters
have a size of 1 X 7 x 7. The second layer increases the number of representations to 64 and the filters have a size of 32 X 5 X 5
(because the depth has increased to 32 layers). The number of representations increases with the depth of the autoencoder because
more complex representations can be learned using the input from the previous layer. Zero padding and a stride of 2 are applied, which
decreases the feature maps (each representation) by half at each layer. After the final convolutional layer, all values are flattened
into a one-dimensional layer with 32, 768values, which is then reduced to the latent representation / features (z). The decoder is
symmetrical to the encoder and learns to reconstruct the input using these features. The learning process occurs by minimising a
reconstruction loss between the input and output image.

Decoder
Encoder
— - xl
Latent
space
X —— —_— |
z q 14 Leotar = Ly + VL.

= 12
Lreconstruction = X — x|

Lclustering =KL(pllg)

Figure 5: Deep convolutional embedded clustering adopted from from Guo et al. [18]. It is composed of the convolution autoencoder
(encoder + decoder) that takes an input image as input (x) and reconstructs this using the learned features to the output/reconstructed
image (z'). The latent space is additionally connected to the clustering layer representing the cluster centres. The output of the
clustering layer is q, representing the soft probabilities of a data sample belonging to each cluster. q computed over all training samples
is used to compute auxiliary target distribution p. The model is end-to-end trained by optimising the reconstruction loss and clustering
loss simultaneously.

12

The target distribution serves as the ground truth soft la-
bel, but since it depends on predicted soft label, it needs
to be updated during training. This should not occur at
each iteration (to avoid instability [18]) and the target
distribution is therefore updated at the beginning of an
epoch. The clustering loss is defined as the Kullback-
Leibler divergence loss between the soft assignments g;
and the auxiliary distribution p; as follows:

L(P|Q) = Zprlogp”

DCEC is trained by first pretraining the CAE (without
the clustering loss) to obtain meaningful target distri-
bution. The cluster centres are after pretraining ini-
tialised by performing k-means on embedded features
of all training data (with 100 random initialisations).
The clustering layer maintains cluster centres as train-
able weights. The model is then updated by both the
clustering loss L. and reconstruction loss L, as follows:

L.

Ltotal = Lr + ’ch

The clustering loss is multiplied by a value that is
smaller than one because predominance of clustering
loss in the total loss may lead to corruption of the fea-
ture space. In previous work it was shown that preser-
vation of local structures helps to stabilise the training
procedure [18].

Model | and Il were both implemented using publicly
available code from Guo et al. [18]. Changes were
made to the original code to adapt it to our user
case. The code can be found in the GitHub (https:
//github.com/Sterre26/Unsupervised_Learning_
Needle_EMG_Classification). Some parts of the
original code, with regards to the implementation of the
clustering layer, had to be revised because the origi-
nal implementation was not suitable (i.e. less efficient,
memory problems) for the amounts of data that we are
applying it to. Elaboration on these changes is provided
in Appendix B.

4.4 Clustering with Confidence

The output of both models is a cluster assignment where
all data samples are clustered in k-dimensional space
(with k the size of latent space/ number of features se-
lected in hyperparameter optimisation). An additional
step was introduced where data samples are clustered
with a confidence level, which quantifies the level of
certainty that a data point belongs to its assigned clus-
ter. Data points that do not strongly belong to their
assigned cluster were removed. The likelihood that a
data sample (z;) belongs to cluster j was calculated
with the following formula [30]:

1
sz—ch
llzi—cxll

T e (el

With w;; the weights and ¢; the coordinates of the cen-
tre of the jth cluster. The sum of weights is 1 for each

data sample. When the number of clusters is higher than
the number of class labels, the weights for a data sample
are combined from clusters belonging to the same class.
The confidence level is determined by removing 25% of
the data samples from the training set.

4.5 Development of Signal Type Model
(1a, 1la)

The first stage of development consisted of training
models for the classification of needle EMG signals in
rest, contraction and needle classes to identify spon-
taneous activity from insertional activity and voluntary
contraction. The training process consisted of three
phases, shown in Figure 1 within the orange coloured
box. All three phases were completed for model | and
model |, separately. The following paragraphs discusses
each phase in more detail. Training of the models dur-
ing the stages described in the following paragraphs was
performed on a Linux machine with 16-core CPU, 110
Gb RAM and Nvidia Tesla T4 GPU.

4.5.1 Hyperparameter Optimisation

The goal of hyperparameter optimisation is to select
the best combination of hyperparameters that results
in the highest performance (evaluated on the validation
dataset). Hyperparameter optimisation took place for
the hyperparameters shown in Table 1. The selection of
those parameters was carefully made, detailed elabora-
tion can be found in Appendix C. We tested the same
set of hyperparameters on both models, despite the ar-
chitectural similarities in the network. The rationale is
that a different architecture or learning approach may
be needed to update the weights from the clustering
layer, that are included in the second model, as optimal
as possible.

Hyperparameter optimisation was conducted with Hy-
peropt package (version 0.2.7) [31] using the Tree of
Parzan algorithm, a Bayesian approach. In Bayesian
model-based optimisation, a probability model of the ob-
jective function is built and iteratively used to select the
most promising hyperparameters to evaluate in the true
objective function. Fewer iterations are needed to reach
the best combination of hyperparameters compared to,
for instance, a standard grid search.

Each trial consisted of a newly selected set of pa-
rameters used to train a model for a maximal number
of epochs. The number of epochs is not set as a hy-
perparameter because it is only desired to get a rough
understanding of the performance. Models generally
perform better when trained for a longer period of time
(using more epochs) and with more data. This is,
however, computationally not feasible during hyperpa-
rameter optimisation. Applying the same rationale to
the amount of training data, hyperparameter optimisa-
tion was performed using 5% of the training data (see
also Figure 1). Hyperparameter optimisation for model

13

https://github.com/Sterre26/Unsupervised_Learning_Needle_EMG_Classification
https://github.com/Sterre26/Unsupervised_Learning_Needle_EMG_Classification
https://github.com/Sterre26/Unsupervised_Learning_Needle_EMG_Classification

one was conducted for 1500 trials where 1500 models
were trained for 8 epochs. Hyperparameter optimisation
for model two was conducted for 800 trials and each
trial consisted of pretraining CAE for 8 epochs followed
by training DCEC for 8 epochs.

The performance was computed after each trial using
validation data. This dataset contains 70% of Mel spec-
trograms of labelled dataset a (see also Figure 1), the
dataset is balanced and surplus data was randomly re-
moved. The objective function that was optimised by
Hyperopt was the F1 score for samples classified as rest.
F1 score is defined as the harmonic mean of precision
and recall (sensitivity):

Fl= % — 94 precision x recall

recall precision + recall

precision

With precision and recall:

TruePositive(TP)
TP + FalsePositive

Precision =

TP
TP + FalseNegative

Recall =

The best combination of hyperparameters were selected
for the model that resulted in highest F1 score for rest
(on the validation set) after all iterations. The best com-
bination of parameters that performed best for model |
and Il on classifying samples as rest from full-length hos-
pital acquired needle EMG data, were also applied for the
second task (classification of rest samples in phenomena
present in rest). This was possible because the domain is
very similar between the two datasets, so further hyper-
parameter optimisation is not necessary and the same
set of parameters can be used for training. Hyperpa-
rameter optimisation, and training in general, requires a
lot of resources (hyperparameter optimisation for both
models took about two weeks each on a powerful com-
puter), so it was not feasible to conduct this process a
second time on a slightly different dataset.

Table 1: Hyperparameter search space with corresponding value(s) for hyperparameters that are tuned for model | (convolutional
autoencoder + k-means clustering) and model Il (deep convolution embedded clustering). Batch size and learning rate are coupled
where different learning rates apply for the smaller or larger batch size. There are three different learning rate schedules. The number

of layers in the convolutional autoencoder determine the size of the filters and kernels, as well.

hyperparameters is shown on the right hand side.

Selection of best combination of

Selection Selection
Hyperparameters Value(s) model | model 11
Learning
Batch size 64 256 64 256 64 64
Schedule constant cycl|<fa| wnthou.t (clrl) or with (clr2) constant PT: constant,
amplitude scaling T: clrl
le-6, 5e-6, le-5, le-4, 5e-4, PT: 0.001,
Rate 5e-5, le-4, 5e-4 0.001, 0.005, [le-7, 1le-4] [le-5, 0.001] 5e-5 T: [le-7, 1e-4]
or 0.001 or 0.01 ' '
Optimiser Adam Adam Adam
Architecture
Layers three four five three three
. [16, 32, 64] or [16, 32, 64, 128] or [8, 16, 32, 64, 128] or
Filters [32, 64, 128] [32, 64, 128, 256] [16, 32, 64, 128, 256] [16, 32, 64] [32, 64, 128]
[6x5, 5x5, 3x3] or [5x5, 5x5, 3x3, 3x3] or [7x7, 5x5, 5x5, 3x3, 3x3] or
Kernels [7x7, 55, 3x3] [7x7, 5x5, 5x5, 3x3] [7x7, Tx7, 55, 3x3, 3x3] o, o, 5] [, 56, S
Stride 2 2 2
Padding "same” (with zeros) "same” "same”
RelU,
. LeakyRelu alpha 0.1, LeakyRelu
Activation LeakyRelu alpha 0.2, Rel.U alpha 0.2
LeakyRelu alpha 0.3
Batch norm True or False True True
Featur 10, 12, 14, 16 18, 20, 24, 28, 32, 36, 40, 48, 56, 64, 128, 256, 512, 64 56
eatures 1024, 2048, or 4096
Clustering
Clusters 5 6,or7 6 7
Gamma 0.05, 0.1, 0.2, 0.3, 0.4 or 0.5 N.A. 0.05

CLR = cyclical learning rate; MSE = Mean Squared Error; N.A. = not applicable; PT = pretraining; ReLU = Rectified Linear

Unit; T = training.

14

4.5.2 Training and Evaluation

Model | and model Il were both trained for a longer pe-
riod of time with more data once the best combination
of hyperparameters were selected. All training data was
used during training. Both models were trained for 100
epochs, for model Il this means that the model is firstly
pretrained for 15 epochs and then trained for 85 epochs.
The purpose of pretraining is to obtain meaningful tar-
get distribution which means that the CAE should be
able to reconstruct meaningful images, but it is not nec-
essary that the model fully converges. The following
metrics were tracked during training and evaluated after
each epoch:

1. Losses - Reconstruction loss for model I. Reconstruc-
tion, clustering and combined total loss for model II.
Losses were evaluated both on training datasets and
validation dataset.

Performance - Accuracy and F1 for rest was tracked
during training on the validation dataset. True la-
bel of cluster was determined by majority of samples
belonging to a class in the validation set. Multiple
clusters can belong to one class.

Performance with confidence - The performance (ac-
curacy and F1 for rest) was additionally computed
only on data samples that were clustered with min-
imal confidence level. Confidence level was deter-
mined at each epoch that resulted in 25% data re-
moval of training dataset. The performance with
confidence, the confidence level and the percentage
of removal on the validation dataset was tracked.
Delta label - This metric measures the similarity in
clustering assignments between consecutive epochs
and thus to what extend the same data sample results
in the same prediction. It is determined by compar-
ing previous clustering assignments with the current
cluster assignments. The clusters (i.e. which number
each cluster receives) remains the same for model I,
because the cluster centres are fixed by the clustering
layer. For model | it was necessary to reorder the clus-
ter numbering, because this is randomly assigned by
k-means clustering. We compared the current cluster
centres with the previous cluster centres using pair-
wise minimal distance.

4.5.3 Testing

After training for 100 epochs, the final model was tested
on a dataset that had not been seen during earlier stages
of model development (the test dataset). This dataset
contains 30% of Mel spectrograms of labelled dataset a
(see also Figure 1), the dataset is balanced and surplus
data was randomly removed. The model’s performance
was evaluated using precision, recall, Fl-score, and ac-
curacy. These performance metrics were depicted in
a performance table and the cluster performance per
cluster was additionally visualised in a confusion matrix,
with true labels as the class labels and predicted labels
as each cluster.

15

Clustering results were visualised on a T-distributed
stochastic neighbour embedding (t-SNE) plot. This
is a dimensionality reduction method that allows us
to visualise clustering in a high dimensional space
on a two-dimensional space. The features from test
datasets were reduced to two using Scikit-Learn pack-
age (version 1.0.2) and with the following param-
eters for t-SNE: n_components=2, perplexity=150,
init="pca’, learning_rate="auto’, n_iter=2000,
n_iter_without__progress=150, n_jobs=2, ran-
dom_state=0. The resultant two features were plotted
in a two-dimensional figure.

4.6 Development Rest Model

The second stage of development consisted of training
models to identify phenomena present in rest. The best
signal type models (model | and model Il) were used to
identify rest Mel spectrograms, that were clustered with
a confidence level, creating two rest training datasets.
The labelled rest set was also clustered by both models,
and Mel spectrograms that were not clustered as rest
were removed from the validation set. The process of
training the rest models is shown at the bottom in Fig-
ure 1. Hyperparameter optimisation was not performed
for rest models, and best combination of parameters was
re-used from development of signal type model.

4.6.1 Data-augmentation

Data-augmentation was applied to the validation
dataset to increase and balance the classes. The rest
validation dataset is small and to enable more freedom
in evaluating the models with balanced classes we arti-
ficially increased all classes to a maximum of 2,000 Mel
spectrograms per class. A similar approach reported by
Nodera et al. [11] for data-augmentation was adopted.
Data-augmentation was performed by skewing and dis-
torting the Mel spectrograms. Data-augmentation was
also applied to the rest training dataset, this dataset
was artificially increased to 500,000 Mel spectrograms.
This step was necessary to allow the model to learn on
augmented images.

4.6.2 Training and Evaluation

Model | and Il were both trained for 100 epochs using
rest Mel spectrograms. Model Il was again pretrained for
15 epochs and subsequently trained for an additional 85
epochs. Performance during training was evaluated for
the following metrics: training and validation loss, clus-
tering performance (accuracy and F1 for every class),
and similarity in clustering assignments between consec-
utive epochs (delta label).

4.6.3 Testing

The final model was not tested on unseen test data, be-
cause this data was not available. However, the same
steps were performed as performed on the signal type
dataset (described in Section 4.5.3) but then on the

losses

losses

0.009

— training L,

validation dataset. The final model (after training for
100 epochs) was tested on the validation dataset with
data-augmentation to compute precision, precision, re-
call Fl-score, and accuracy. The testing results consists
both of the performance table and the confusion matrix.
Clustering results were not visualised using t-SNE.

4.7 Outcome Measures

Outcome measures were evaluated on best models after
training for 100 epochs using labelled datasets. For de-
velopment of signal type models (model | and Il) this is
a balanced dataset of 30% of labelled dataset a, the test
dataset. For development of rest models (model | and II)
this is the validation dataset for samples that were clas-
sified as rest and after applying data-augmentation to
artificially increase to 2,000 images per class. Primary
outcome measure is accuracy and secondary outcome
measures are precision, recall and F1 score.

(0.0031 @ 100)
(0.0024 @ 100)

—— delta label (0.0008 @ 100)

5 Results

5.1 Data
5.1.1 Dataset a: Signal Type

The annotation process resulted in an average exclusion
of 24.8% of each data file. The excluded parts were
the parts of the file where the two examiners disagreed
or did not know the label. The interrater reliability of
the different reviewers (evaluated on nine files) is 0.772.
Table F.1 in the appendix shows the interrater reliability
of each file. Extraction of the 1.48 s segments with a
sliding window of 0.1 resulted in 18,277 rest Mel spectro-
grams, 32,573 contraction Mel spectrograms and 26,405
needle Mel spectrograms. The Mel spectrograms in the
classes were then split (on patient-level) in balanced val-
idation and test dataset with respectively 12,662 Mel
spectrograms per class and 5,655 Mel spectrograms per
class. Examples of the resultant Mel spectrograms of
each class are shown in Appendix D.1.

F1 rest (0.9175 @ 100)
Accuracy (0.9204 @ 100)

F1 rest soft metric (0.9857 @ 100)
Accuracy soft metric (0.9811 @ 100)

0.008

0.007 4

0.006

0.005 4

0.004

0.003 4

0.002 4

0.001 A

0.000

0.030

0.025 4

0.020 4

0.015 4

delta label

0.010 4

0.005 4

N WA AM A

1.000

0.975

0.950 4

0.925 4

0.900 4

0.875 4

accuracy and F1 rest

0.850 4

0.825 4

0.009

—— training Leotar (0.0051 @ 100)

T T T v 0.000 r .
20 40 60 80 100 20 40
epochs

T T T T T T
60 80 100 20 40 60 80

epochs epochs

Figure 6: Training and evaluation results of convolutional autoencoder + k-means clustering (model 1) for the development of signal
type model (al). Top left (a) shows training and validation loss, middle (b) shows the delta label, right (c) shows performance metrics
accuracy and F1 for rest evaluated with and without confidence level. Y-axis has the same range as Figure 7.

validation L, (0.0047 @ 100)
validation y*Lc (0.0017 @ 100)
validation L, (0.003 @ 100)

training v * Leustering (0.002 @ 100)
training Lreconstruction (0.0031 @ 100)

—— delta label (0.0002 @ 100)

F1 rest (0.8858 @ 100)
accuracy (0.8896 @ 100)

F1 rest soft metric (0.9288 @ 100)
accuracy soft metric (0.9293 @ 100)

100

0.008

0.007 4

0.006

0.005 4

0.004

0.003

0.002 4

0.001 A

0.000

- pretraining | training -+
T

0.030
0.025 4

0.020 4

A

0.015 4

oy

delta label

1
1
1 0.010 4
+
1
1
I

0.005 4
1

| pre-training | trainin

1.000

0.975 4

0.950 4

0.925 4

0.900 4

accuracy and F1 rest

0.875 4

1

1

1

1

1

1

]

1

1

1

1

1

}

1

1

1

1

0.850 4 1
1
1

0.825 4
< pre-training | trainin 9

T T T 0.000
20 40 60 80 100

epochs

T T T T T
80 100 20 40 60 80

epochs epochs

Figure 7: Training and evaluation results of deep convolutional embedded clustering (model 11) for the development of signal type
model (all). Top left (a) shows training and validation loss, middle (b) shows the delta label, right (c) shows performance metrics

accuracy and F1 for rest evaluated with and without confidence level.

The dotted vertical line illustrates the difference between

pretraining (left side of the dotted line) and training (right side of the dotted line). Y-axis has the same range as Figure 6.

2Master Thesis Deborah Hubers, april 2022

16

100

5.1.2 Dataset b: Rest

Following the annotation rules and pre-processing steps
resulted in 767 rest Mel spectrograms, 216 fibrillation
Mel spectrograms, 388 PSW Mel spectrograms, 9 my-
otonic discharge Mel spectrograms, 272 CRD Mel spec-
trograms and 163 fibrillation + PSW Mel spectrograms.
Examples of the resultant Mel spectrograms of each
class are shown in Appendix D.2.

5.2 Signal Type Model
5.2.1 Hyperparameter Optimisation

The best combination of hyperparameters after perform-
ing hyperparameter optimisation for model | and Il are
shown in Table 1. The search space for the number of
features was expanded based on the preliminary results
of model I, using the following ranges: the first 500 tri-
als used a range up to 32 features, the second 500 trials
used a range up to 64 features, and the final 500 trials
used a range up to 4096 features. Further evaluation
of the hyperparameter optimisation can be found in Ap-
pendix E, including the top 20 results for both models
(I'and I1) and box plots illustrating the relationship be-
tween performance and specific hyperparameters (e.g.
F1 score for rest vs. number of layers, F1 score for rest
vs. batch size).

5.2.2 Training and Evaluation

Model | was trained with the best combination of hy-
perparameters for 100 epochs. The results are shown
in Figure 6. Figure 6a shows the training and vali-

dation loss, with the training loss at 0.0031 and the
validation loss at 0.0024 after training for 100 epochs.
The validation loss remains consistently lower than the
training loss throughout training. Figure 6b shows the
delta label, which ends at 0.0008 at 100 epochs. This
means that 0.08% of the training data is clustered dif-
ferently compared to the previous epoch. Figure 6¢
shows the performance metrics accuracy and F1 score
for rest, evaluated on the validation set. The F1 score
for rest and accuracy stabilises after 25 epochs and after
training for 100 epochs they end at 91.8% and 92.0%,
respectively. Applying the confidence level results in a
higher performance with a final F1 rest value of 98.6%
and accuracy of 98.1%. The confidence level was deter-
mined to be 53.3% at epoch 100, meaning that all data
samples had to belong to their assigned class label (rest,
contraction or needle) with minimally 53.3% certainty.
The confidence level led to a removal of 20.3% data
samples from the validation dataset.

Model Il was trained with one adjustment to the se-
lection of best combination of hyperparameters. The
selected hyperparameter for the learning rate schedule
was the cyclical learning rate schedule without amplitude
scaling (clrl), this was changed to the cyclical learning
rate schedule with amplitude scaling (clr2). The for-
mer schedule did not lead to convergence of the model
during training, seen by the fluctuating delta label and
performance metrics that do not stabilise, these results
are shown in Figure G.1. This may be a result of the
select learning rate schedule, because high learning rates
(the maximal learning rate is not reduced in clrl) can
lead to divergence.

Table 2: Performance matrix of convolutional autoencoder + k-means clustering, evaluated on the test set (from labelled dataset a).
In brackets the performance values with confidence are shown. The confidence level for model | was determined to be 53.3%.

Precision Recall F1-score Support
Rest 0.924 (0.980) 0.847 (0.890) 0.884 (0.932) 5,355 (4,154)
Contraction 0.892 (0.899) 0.899 (0.918) 0.895 (0.909) 5,355 (3,490)
Needle 0.883 (0.928) 0.950 (0.985) 0.916 (0.956) 5,355 (5,030)
Accuracy 0.899 (0.935) 16,065 (12,674)

Table 3: Performance matrix of deep convolutional embedded clustering, evaluated on the test set (from labelled dataset a). In
brackets the performance values with confidence are shown. The confidence level for model Il was determined to be 97.9%.

Precision Recall F1-score Support
Rest 0.892 (0.936) 0.857 (0.958) 0.874 (0.947) 5,355 (4,298)
Contraction 0.900 (0.961) 0.828 (0.889) 0.863 (0.924) 5,355 (3,947)
Needle 0.838 (0.904) 0.937 (0.948) 0.885 (0.925) 5,355 (3,856)
Accuracy 0.874 (0.932) 16,065 (12,101)

17

Model Il was then trained with the best combination
of hyperparameters and clr2 as learning rate schedule for
100 epochs. The results are shown in Figure 7. Figure
7a shows the training and validation loss, with the com-
bined total training loss at 0.0051 and the combined
total validation loss at 0.0047 after training for 100
epochs. The validation loss remains, again, consistently
lower than the training loss throughout training. Figure
7b shows the delta label, which ends at 0.0002 at 100
epochs. This means that 0.02% of the training data
is clustered differently compared to the previous epoch.
Figure 7c shows the performance metrics accuracy and
F1 score for rest, evaluated on the validation set. The
final F1 score for erest and accuracy at epoch 100 is
88.6% and 89.0%, respectively. Applying the confidence
level results in a higher performance with a final F1 rest
value of 92.9% and accuracy of 92.9%. The confidence
level was determined to be 97.9% at epoch 100, mean-
ing that all data samples had to belong to their assigned
class label (rest, contraction or needle) with minimally
97.9% certainty. The confidence level led to a removal
of 19.7% data samples from the validation dataset.

5.2.3 Testing

Final model | (epoch 100) was evaluated with the test
dataset. Results are shown in Tables 2 and 4. The re-
sultant accuracy on the test set is 89.9% with all data
samples and 93.5% after applying the confidence level.
Final model Il (epoch 100) was evaluated with the test
dataset, as well. Results are shown in tables 3 and 5.
The resultant accuracy on the test set is 87.4% with all
data samples and 93.2% after applying the confidence
level.

The features learned by model | (64 features) and by
model I (56 features) were reduced to two features by t-
SNE. These results are shown in Figure 8 for model | (a)
and model Il (b). The data samples from test dataset
are depicted that were classified with confidence level.

In the appendix are additionally example predictions
shown of both models (appendix G.3). It is shown that
both models produce visually alike reconstructed images
from the input images. The main difference between the
input and reconstructed images is that noisy/greyish ar-
eas become black in the reconstructed output.

5.3 Rest model
5.3.1 Classification of Mel Spectrograms as Rest

Mel spectrograms from training datasets were used to
train the rest model with. Model | classified 374,412
Mel spectrograms and with confidence level 237,158 Mel
spectrograms. Model Il classified 406,493 Mel spectro-
grams and with confidence level 315,179 Mel spectro-
grams. Both datasets with Mel spectrograms classi-
fied with confidence level were artificially increased to
500,000 Mel spectrograms.

Mel spectrograms from rest validation set were also
classified by both models, and they were only used as
validation set when they were classified with the con-
fidence level. These classification results are shown in
Table G.1 for model | and in Table G.2 in the appendix.
56% of Mel spectrograms from rest dataset were ac-
curately classified by model | and 52% were accurately
classified by model Il. The Mel spectrograms were arti-
ficially increased to 2,000 Mel spectrograms per class,
except for Mel spectrograms from myotonic discharge
class.

Table 4: Confusion matrix of convolutional autoencoder + k-means clustering, evaluated on the test set (from labelled dataset a). In
brackets the performance values with confidence are shown. The confidence level for model | was determined to be 53.5%.

Predicted
cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 cluster 6
o Rest 4535 (3695) 552 (333) 0 (0) 104 (3) 26 (25) 138 (98)
E Contraction 112 (3)) 3340 (1986) 1 (1) 0 (0) 1472 (1217) 430 (282)
Needle 260 (74) 6 (0) 2457 (2457) 1986 (1872) 0 (0) 646 (627)

Table 5: Confusion matrix of deep convolutional embedded clustering, evaluated on the test set (from labelled dataset a). In brackets
the performance values with confidence are shown. The confidence level for model Il was determined to be 97.9%.

Predicted
cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 cluster 6 cluster 7
o Rest 3333 (3139) 441 (118) 182 (10) 0(0) 47 (25) 1258 (980) 94 (26)
E Contraction 45 (25)) 2572 (1734) 129 (5) 0 (0) 1863 (1776) 179 (58) 567 (349)
Needle 7 (6) 2 (0) 2216 (1258) 2025 (1863) 2 (1) 325 (194) 778 (534)

18

5.3.2 Training and Evaluation

The rest models (model | and 1) were trained with the
rest Mel spectrograms for 100 epochs. The results dur-
ing training are shown in Figure 9 and 10 for model
| and Il, respectively. The delta label was not always
computed for model |, this is because it is required for
the computation of the delta label that the cluster cen-
tres can be compared from the current epoch with the
previous epoch. In case of ambiguity, it is not possible
to re-order the cluster numbering and then it was not
possible to compute delta label.

The final training loss for model | is 0.0025 and the
final validation loss is 0.0031. Delta label is 0.005 at
epoch 100. The final accuracy after training is 2.76%,
it is seen in the figure that the accuracy fluctuates dur-
ing training, reaching a maximal accuracy of 30.0% at
epoch 68. The final training loss for model Il is 0.0061
and the final validation loss is 0.0076. Delta label is
0.0003 at epoch 100. The final accuracy is 12.3% after
training, and from the figure we can see that the model
Il does converge. The results of F1 scores during train-
ing are shown in Figure G.2 for model | and in Figure
G.3 for model Il. For model | it can be seen that the
F1 scores fluctuate a lot during training, too. The val-
ues for model Il stabilise after pre-training and the F1
score for fibrillation class is highest with a final value of
38.5%.

5.3.3 Testing

The final models were not evaluated to compute the
performance metrics and the confusion matrix.

6 Discussion

In this study, we implemented two unsupervised learning
strategies for the automatic classification of needle EMG
signals. Our results show that both methods (CAE +
k-means clustering and DCEC) were able to accurately
classify rest, contraction, and needle EMG signals, with

-SNE results with true labels

30000

20000

10000

~10000 9

~20000

~40000 ~20000 o 20000 40000 60000

(a

a final accuracy of 93.5% on the test set using the con-
fidence level. The classification of phenomena present
in rest, such as fibrillation potentials and positive sharp
waves, was less successful and requires further research.

6.1 Signal Type Model

The unsupervised learning models CAE + k-means clus-
tering and DCEC classifies resting state, contraction and
needle movements with an accuracy of 93.5% (model I,
confidence level 53.3%) and 93.2% (model Il, confidence
level 97.9%) evaluated on the test set. The confidence
level ensures a higher performance at the cost of re-
moving 21.1% of the test set for model | (Table 2) and
24.7% of the test set for model Il (Table 3). Model | is
best in identifying needle signals from rest and contrac-
tion signals with a F1 score of 95.6%. Model Il is best
in identifying rest signals with a F1 score of 94.7%.

There is no previous literature on the classification
of needle EMG signals into different types to compare
our results with. However, there are studies on the
classification of muscle rest and muscle contraction us-
ing surface EMG data. Surface EMG is non-invasive
and used for the control of EMG-based prosthetic limbs
because it is free of discomfort and with minimal risk
of infection [32]. Al-Maliki et al. successfully imple-
mented a stacked autoencoder for the classification of
hand movements resulting in a classification accuracy
of 99% for the classification of 10 movements, including
both resting and contracting state signals [33]. Zia ur
Rehman et al. showed that stacked autoencoders per-
formed better than linear discriminant analysis (LDA)
[34]. Wang et al. showed that feature extraction using a
sparse autoencoder and consequently classification with
deep neural network results in successful classification
results for the classification of hand movement gestures
[35]. A stacked autoencoder is a fully connected neu-
ral network that requires more training time and data
because there is a higher number of trainable weights
compared to a CAE.

-SNE results with true labels

Needle/artefact
© Contraction
Rest

10000

5000

5000

~10000

~20000 ~16000 0 10000 20000

(b)

Figure 8: t-SNE results of model | (a) and model Il (b) for test data samples classified with confidence level.

19

losses

losses

0.009

The strength of the classification of rest, contraction
and needle with unsupervised learning techniques is that
we are not dependent on labelled data. There are lim-
itations to using labelled dataset, such as potential for
user bias and differences between annotators, which can
introduce selection bias. In the labelled signal type
dataset, 24.8% had to be excluded due to unknown or
differently labelled data parts. This can be problem-
atic because it may exclude complex data that could
have helped the model better discriminate between the
classes. Despite these limitations, the labelled dataset
can still be useful for evaluating the performance of an
unsupervised model, as it can provide a sense of the
model’s ability to identify strictly separated classes when
trained with complex and potentially ambiguous data.
It is, however, better to perform validation with an
external dataset (derived from a different hospital and
annotated by different people) to compute a more accu-
rately performance. The labelled data set for rest pro-
vides additional information on the true performance of
the signal type models. The F1 score for rest samples

—— training Lreconstruction (0.0025 @ 100)

—— validation Lyeconstruction (0.0031 @ 100) —— delta label (0.005 @ 100)

was 94.7% for model Il when classifying signals with a
confidence level, this indicates that the model is suffi-
ciently able to classify rest signals as rest. However, only
52% of the rest labelled dataset is classified as rest by the
signal type DCEC model (Table G.2 in appendix). This
dataset is an over representation of spontaneous activity
and this data was especially difficult to annotate (repre-
sented by the poor interrater reliability of 0.03 average in
the files containing spontaneous activity, Appendix F).
Two types of spontaneous activity (CRD and myotonic
discharge) were also not annotated (rule 9, Appendix
A2).

6.2 Rest Model

The unsupervised learning models CAE + k-means clus-
tering and DCEC were not able to classify spontaneous
activity. Model Il converged to a final accuracy of 12.3%
and model | did not converge. Model Il was best in iden-
tifying fibrillation potentials from the other classes with
a final F1 score of 38.5%.

—— Accuracy (0.0276 @ 100)

0.008

0.007 4

0.006

0.005

0.004

0.003 4

0.002 4

0.001 4

-

0.000

0.030

0.025 4

0.020 4

0.015 4

delta label

0.010 4

f\\/w\//

0.005 4

accuracy and F1 rest

WM

0.009

T T T T 0.000 - -
20 40 60 80 100 20 40
epochs

/\J\\/\

80 100 20 40 60 80

epochs epochs

Figure 9: Training and evaluation results of convolutional autoencoder + k-means clustering (model |) for the development of signal
type model (al). Top left (a) shows training and validation loss, middle (b) shows the delta label, right (c) shows performance metrics
accuracy and F1 for rest evaluated with and without confidence level. Y-axis has the same range as Figure 9.

—— training Leotar (0.0061 @ 100)
training y* Leiustering (0.0024 @ 100)
training Lreconstruction (0.0037 @ 100)

—— validation L, (0.0076 @ 100)
validation y*Lc (0.0031 @ 100)

validation L, (0.0045 @ 100) —— delta label (0.0003 @ 100)

— accuracy (0.1235 @ 100)

0.008

0.007 4

0.006

0.005 4

0.004

0.003 4

0.002 4

0.001 A

0.000 4=

0.030 I

f

0.025 4

0.020 4

0.015 4

delta label

0.010 4

0.005 4

B

0.000 =

0.30 1

T
1
1
1
1
1
0.25 4 1
1
1
1
1

accuracy
o o
o N
& 5]
L L

0.10 1

0.05 1

T T T T
20 40 60 80 100
epochs

80 100 20 40 60 80

epochs

Figure 10: Training and evaluation results of deep convolutional embedded clustering (model 1) for the development of signal type
model (all). Top left (a) shows training and validation loss, middle (b) shows the delta label, right (c) shows performance metrics

accuracy and F1 for rest evaluated with and without confidence level.

The dotted vertical line illustrates the difference between

pretraining (left side of the dotted line) and training (right side of the dotted line). Y-axis has the same range as Figure 8.

20

Nodera et al. have applied deep learning tech-
niques for the classification of rest needle EMG sig-
nals [11]. They successfully classified six phenomena
present in rest (i.e.. CRD, endplate potentials, fas-
ciculation potentials, fibrillation potentials/PSW, and
myotonic discharges) in a supervised classification task
after transforming the signals to Mel spectrograms and
applying data-augmentation [11]. Training with the
original training set of 271 spectrograms resulted in an
accuracy of 86% on the test set (containing 59 spectro-
grams). Training with data-augmentation up to 200,000
training images showed an increase in performance to
100% accuracy on the test set. Their labelled dataset
contained two additional classes (endplate potentials
and fasciculation potentials) that were not present in
the dataset used in the current study. The low classifi-
cation accuracy obtained in the current study compared
to Nodera et al. is most likely due to the use of dif-
ferent training approaches (supervised vs. unsupervised
learning) but it may also be due to selection bias in the
dataset used by Nodera et al.

The labelled dataset that was used to validate the rest
models with, is small. This is a limitation because it
is then less representative for each class. Myotonic
discharge class, for example, contained 9 Mel spectro-
grams. Other spontaneous activity classes did not exist
at all (for example fasciculation potentials and endplate
noise/spikes). Myotonic discharge and fasciculation po-
tentials are rare, and the files that were annotated in
our datasets did not contain (many of) these signals.
Endplate potentials are normal and could be observed
in every patient, they are, however, painful for the pa-
tient which is why it is prevented to record these signals
for a longer period of time.

6.3 Unsupervised Learning Strategies

We expected that DCEC would outperform CAE + k-
means clustering because the features learned by DCEC
are optimised by both the clustering loss and the re-
construction loss. However, the testing results showed
that model | (CAE + k-means) performed slightly bet-
ter than model Il (DCEC) in classifying rest, contrac-
tion, and needle signals. DCEC model, however, seems
to generalise better. The accuracy computed on the
validation datasets is 92.3% for model Il compared to
98.1% for model |, a substantial difference. The differ-
ence is however not as noticeable anymore in the testing
performance: 93.2% vs. 93.5%. Model | may be more
prone to overfitting, the validation data was extensively
used to select the best combination of hyperparame-
ters. Additionally, model Il resulted in more stable re-
sults with the rest data set and the performance was not
a random guess in the loss landscape, leading to better
performance in the rest model.

Unsupervised learning has been applied in the clas-
sification of medical signals in a few number of studies.
For example, Wen et al. used a CAE to learn features
from EEG signals for the classification of healthy and

21

epilepsy EEG signals. The input for the CAE was a
one-dimensional time signal of 4096 samples. The fea-
tures learned by the CAE were then successfully used
in a supervised machine learning classification task [36].
Similarly, Jang et al. proposed an unsupervised fea-
ture learning method using a convolutional variational
autoencoder for the detection of anomalies in ECG sig-
nals [37]. In this study, the input for the autoencoder
was a one-dimensional ECG signal containing 2048 time
points.

6.4 Limitations and Recommendations

One potential limitation of this work is the decision to
convert raw needle EMG signals into Mel spectrograms
as input. We made this decision to benefit from the
advances in deep learning for image classification and
this approach has been successful in previous supervised
classification tasks [11, 38]. The current implementa-
tion of the Mel spectrogram, however, relies on the 1.48
s time signal (see appendix D.4). This is a drawback
because spontaneous activity waveforms are usually of
smaller amplitude compared to MUAP waveforms and
this information is partly lost. An alternative approach
was proposed, but did not result in satisfactory classi-
fication performances in early evaluations. To improve
the performance of the model in detecting subtle differ-
ences between classes, it is useful to focus on optimising
the computation of the input data in future work.

Another limitation of the Mel spectrograms as input
data is that is more difficult to interpret the model’s
results. It is desired that it is possible to evaluate the
model's prediction so that the model may be used as
decision support system. It is possible to provide the
needle EMG signals as time signal in convolutional mod-
els, this was performed in previous studies where time
signals of 4096 and 2048 samples were provided as input
[36, 37]. The needle EMG signal, however, is derived
with a very high sample frequency and it is thus most
likely not feasible to apply this approach.

The current unsupervised learning approach is not ef-
fective for classifying spontaneous activity. In order
to improve classification performance, it may be useful
to adopt a semi-supervised approach [39-42]. Semi-
supervised learning allows for the incorporation of both
labelled and unlabelled data, which can provide guid-
ance to the model while still benefit from using a large
amount of data. One possible approach for implement-
ing a semi-supervised learning strategy is to implement
an additional loss function that compares the model's
clustering output on a small set of labelled training data,
encouraging the model to learn discriminative features
between different classes. It is important to carefully
consider which type of semi-supervised approach would
be most suitable for our specific use case, as discussed
in [41].

During needle EMG examination, the time course of

the signal is important for evaluating the presence of
abnormal spontaneous activity. Normal spontaneous
activity may occur immediately after needle insertion,
but prolonged spontaneous activity at rest is abnormal.
To accurately classify these signals, it is important for
the model to consider the sequential nature of the data.
One type of deep learning model that can handle sequen-
tial data is a long short-term memory (LSTM) network.
LSTM networks were successfully implemented in the
classification of hand gestures using surface EMG sig-
nals in several studies [43-45].

The aim of this study was to classify spontaneous activ-
ity from hospital-acquired needle EMG signals. In future
research, it would be interesting to apply the same ap-
proach to contraction signals as well. The ultimate goal
is to classify the entire hospital-acquired needle EMG
signal, which requires the ability to identify MUAP wave-
forms. In particular, it is desired to distinguish between
myopathic and neuropathic MUAPs [2].

7 Conclusion

In this paper, we presented the first application of un-
supervised learning techniques for the automatic classi-
fication of needle EMG signals. By training our models
on a large amount of data from our clinical database,
we were able to take advantage of deep learning and
eliminate user-dependent bias and interrater differences
in data annotation. Additionally, our use of raw data
rather than manually selected samples helps to prevent
selection bias. The signal type models were able to clas-
sify spontaneous, contraction, and insertional activity,
and this model could be used as a preprocessing step in
the classification of hospital-acquired needle EMG data
to avoid manual preprocessing and increase the number
of available data samples. Our study provides valuable
insights for the use of unsupervised learning in the auto-
matic classification of needle EMG signals and highlights
the need for further research in this area.

Bibliography

[1] Devon I. Rubin. Needle electromyography: Basic con-
cepts. In Handbook of Clinical Neurology, volume 160,
pages 243-256. Elsevier B.V., 1 2019. doi: 10.1016/
B978-0-444-64032-1.00016-3. URL https://linkinghub.
elsevier.com/retrieve/pii/B9780444640321000163.
David C. Preston and Barbara Ellen Shapiro. Electromyogra-
phy and Neuromuscular Disorders, volume 4th edition. 2020.
ISBN 9780323758291.

Jee-Eun Kim, Jin Myoung Seok, Suk-Won Ahn, Byung-
Nam Yoon, Young-Min Lim, Kwang-Kuk Kim, Ki-Han Kwon,
Kee Duk Park, and Bum Chun Suh. Basic concepts of nee-
dle electromyography. Annals of Clinical Neurophysiology,
21(1):7, 2019. ISSN 2508-691X. doi: 10.14253/acn.2019.21.
1.7. URL https://synapse.koreamed.org/D0Ix.php7id=
10.14253/acn.2019.21.1.7.

Pushpa Narayanaswami, Thomas Geisbush, Lyell Jones,
Michael Weiss, Tahseen Mozaffar, Gary Gronseth, and Se-
ward B. Rutkove. Critically re-evaluating a common tech-
nique. Neurology, 86(3):218-223, 1 2016. ISSN 0028-3878.
doi: 10.1212/WNL.0000000000002292.

(2]

(3]

(4]

22

[5] Richard Kendall and Robert A. Werner. Interrater reliabil-
ity of the needle examination in lumbosacral radiculopathy.
Muscle & Nerve, 34(2):238-241, 8 2006. ISSN 0148-639X.
doi: 10.1002/mus.20554. URL https://onlinelibrary.
wiley.com/doi/10.1002/mus.20554.

Jonathan R. Torres-Castillo, Carlos Omar Lépez-Lépez, and
Miguel A. Padilla-Castafieda. Neuromuscular disorders de-
tection through time-frequency analysis and classification
of multi-muscular EMG signals using Hilbert-Huang trans-
form. Biomedical Signal Processing and Control, 71:103037,
1 2022. ISSN 17468094. doi: 10.1016/j.bspc.2021.103037.
URL https://linkinghub.elsevier.com/retrieve/pii/
S1746809421006340.

Rohit Bose, Kaniska Samanta, Sudip Modak, and Soumya
Chatterjee. Augmenting Neuromuscular Disease Detection
Using Optimally Parameterized Weighted Visibility Graph.
IEEE Journal of Biomedical and Health Informatics, 25(3):
685-692, 3 2021. ISSN 21682208. doi: 10.1109/JBHIL.2020.
3001877.

Kaniska Samanta, Sayanjit Singha Roy, Sudip Modak,
Soumya Chatterjee, and Rohit Bose. Neuromuscular Dis-
ease Detection Employing Deep Feature Extraction from
Cross Spectrum Images of Electromyography Signals. In
2020 42nd Annual International Conference of the IEEE En-
gineering in Medicine & Biology Society (EMBC), pages
694—697. IEEE, 7 2020. ISBN 978-1-7281-1990-8. doi: 10.
1109/EMBC44109.2020.9176464. URL https://ieeexplore.
ieee.org/document/9176464/.

Tahereh Kamali and Daniel W. Stashuk. Transparent Elec-
trophysiological Muscle Classification from EMG Signals Us-
ing Fuzzy-Based Multiple Instance Learning. IEEE Transac-
tions on Neural Systems and Rehabilitation Engineering, 28
(4):842-849, 4 2020. ISSN 15580210. doi: 10.1109/TNSRE.
2020.2979412.

Abdulkadir Sengur, Yaman Akbulut, Yanhui Guo, and Varun
Bajaj. Classification of amyotrophic lateral sclerosis dis-
ease based on convolutional neural network and reinforce-
ment sample learning algorithm. Health Information Sci-
ence and Systems, 5(1), 12 2017. ISSN 2047-2501. doi:
10.1007/513755-017-0029-6.

Hiroyuki Nodera, Yusuke Osaki, Hiroki Yamazaki, Atsuko
Mori, Yuishin lzumi, and Ryuji Kaji. Deep learning for
waveform identification of resting needle electromyography
signals. Clinical Neurophysiology, 130(5):617-623, 5 2019.
ISSN 18728952. doi: 10.1016/j.clinph.2019.01.024.

Tien En Chen, Shih I. Yang, Li Ting Ho, Kun Hsi Tsai,
Yu Hsuan Chen, Yun Fan Chang, Ying Hui Lai, Syu Siang
Wang, Yu Tsao, and Chau Chung Wu. S1 and S2 heart sound
recognition using deep neural networks. IEEE Transactions
on Biomedical Engineering, 64(2):372-380, 2 2017. ISSN
15582531. doi: 10.1109/TBME.2016.2559800.

Roman A. Solovyev, Maxim Vakhrushev, Alexander Ra-
dionov, Irina |. Romanova, Aleksandr A. Amerikanov,
Vladimir Aliev, and Alexey A. Shvets. Deep Learning Ap-
proaches for Understanding Simple Speech Commands. In
2020 IEEE 40th International Conference on Electronics and
Nanotechnology, ELNANO 2020 - Proceedings, pages 688—
693. Institute of Electrical and Electronics Engineers Inc., 4
2020. ISBN 9781728197135. doi: 10.1109/ELNANO50318.
2020.9088863.

Mohammed Aly and Nouf Saeed Alotaibi. A novel deep learn-
ing model to detect COVID-19 based on wavelet features ex-
tracted from Mel-scale spectrogram of patients’ cough and
breathing sounds. Informatics in Medicine Unlocked, 32, 1
2022. ISSN 23529148. doi: 10.1016/j.imu.2022.101049.

M Sc Miki Nikolic, Christian Krarup, and John Aasted
Sgrensen. Detailed Analysis of Clinical Electromyography
Signals. Technical report, University of Copenhagen, Copen-
hagen, 8 2001.

Michael Steinbach, Levent Ertéz, and Vipin Kumar. The
Challenges of Clustering High Dimensional Data. In New
Directions in Statistical Physics, pages 273-309. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2004. doi: 10.1007/
978-3-662-08968-2{\ }16. URL http://link.springer.
com/10.1007/978-3-662-08968-2_16.

(6]

7]

(8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

https://linkinghub.elsevier.com/retrieve/pii/B9780444640321000163
https://linkinghub.elsevier.com/retrieve/pii/B9780444640321000163
https://synapse.koreamed.org/DOIx.php?id=10.14253/acn.2019.21.1.7
https://synapse.koreamed.org/DOIx.php?id=10.14253/acn.2019.21.1.7
https://onlinelibrary.wiley.com/doi/10.1002/mus.20554
https://onlinelibrary.wiley.com/doi/10.1002/mus.20554
https://linkinghub.elsevier.com/retrieve/pii/S1746809421006340
https://linkinghub.elsevier.com/retrieve/pii/S1746809421006340
https://ieeexplore.ieee.org/document/9176464/
https://ieeexplore.ieee.org/document/9176464/
http://link.springer.com/10.1007/978-3-662-08968-2_16
http://link.springer.com/10.1007/978-3-662-08968-2_16

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

28]
(29]

30]
(31]

(32]

(33]

Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised
Deep Embedding for Clustering Analysis. 11 2015. URL
http://arxiv.org/abs/1511.06335.

Xifeng Guo, Xinwang Liu, En Zhu, and Jianping Yin. Deep
Clustering with Convolutional Autoencoders. pages 373-382.
2017. doi: 10.1007/978-3-319-70096-0{\ }39. URL http:
//link.springer.com/10.1007/978-3-319-70096-0_39.
lan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
Learning. MIT Press, 2016.

Mohammad Hesam Hesamian, Wenjing Jia, Xiangjian He,
and Paul Kennedy. Deep Learning Techniques for Medical
Image Segmentation: Achievements and Challenges. Journal
of Digital Imaging, 32(4):582-596, 8 2019. ISSN 1618727X.
doi: 10.1007/s10278-019-00227-x.

Samir S. Yadav and Shivajirao M. Jadhav. Deep convolu-
tional neural network based medical image classification for
disease diagnosis. Journal of Big Data, 6(1), 12 2019. ISSN
21961115. doi: 10.1186/s40537-019-0276-2.

Lei Cai, Jingyang Gao, and Di Zhao. A review of the applica-
tion of deep learning in medical image classification and seg-
mentation. Annals of Translational Medicine, 8(11):713-713,
6 2020. ISSN 23055839. doi: 10.21037/atm.2020.02.44. URL
http://atm.amegroups.com/article/view/36944/html.
Stuart P. Lloyd. Least Squares Quantization in PCM. [EEE
Transactions on Information Theory, 28(2):129-137, 1982.
ISSN 15579654. doi: 10.1109/TIT.1982.1056489.

S. S. Stevens, J. Volkmann, and E. B. Newman. A Scale for
the Measurement of the Psychological Magnitude Pitch. The
Journal of the Acoustical Society of America, 8(3):185-190,
1 1937. ISSN 0001-4966. doi: 10.1121/1.1915893.

Christian J Steinmetz and Joshua D Reiss. pyloudnorm: A
simple yet flexible loudness meter in Python. In 150th AES
Convention. 150th AES Convention, 150th AES Convention,
5 2021. URL https://ffmpeg.org/.

Brian Mcfee, Colin Raffel, Dawen Liang, Daniel P W EI-
lis, Matt Mcvicar, Eric Battenberg, and Oriol Nieto. Ili-
brosa: Audio and Music Signal Analysis in Python. Techni-
cal report, 2015. URL https://www.youtube.com/watch?
v=Mh0dbtPhbLU.

Ekin Yagis, Selamawet Workalemahu Atnafu, Alba Garcia
Seco de Herrera, Chiara Marzi, Riccardo Scheda, Marco Gi-
annelli, Carlo Tessa, Luca Citi, and Stefano Diciotti. Effect
of data leakage in brain MRI classification using 2D convo-
lutional neural networks. Scientific Reports, 11(1):22544, 12
2021. ISSN 2045-2322. doi: 10.1038/s41598-021-01681-w.
F. Chollet and others. Keras. GitHub. , 2015.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort,
Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu
Blondel, Peter Prettenhofer, Ron Weiss, Jake Vanderplas,
Alexandre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Edouard Duchesnay. Scikit-learn: Ma-
chine Learning in Python. Technical report, 2011. URL
http://scikit-learn.sourceforge.net.

Matt Crooks. Confidence in k-means, 7 2019.

J Bergstra, D Yamins, and D D Cox. Making a Science of
Model Search: Hyperparameter Optimization in Hundreds of
Dimensions for Vision Architectures. Technical report, 2013.
Nurhazimah Nazmi, Mohd Azizi Abdul Rahman, Shin Ichi-
roh Yamamoto, Siti Anom Ahmad, Hair Zamzuri, and Sai-
ful Amri Mazlan. A review of classification techniques of
EMG signals during isotonic and isometric contractions, 8
2016. ISSN 14248220.

Abdullah Y. Al-Maliki and Kamran Igbal. Hand and Lower
Arm Movements Classification Using Deep ANN and sEMG.

23

(34]

35]

(36]

(37]

(38]

(39]

(40]

(41]

(42]

(43]

(44]

45]

In IEEE International Symposium on Industrial Electron-
ics, volume 2021-June. Institute of Electrical and Electron-
ics Engineers Inc., 6 2021. ISBN 9781728190235. doi:
10.1109/1SIE45552.2021.9576387.

Muhammad Zia ur Rehman, Syed Gilani, Asim Waris, Im-
ran Niazi, Gregory Slabaugh, Dario Farina, and Ernest Ka-
mavuako. Stacked Sparse Autoencoders for EMG-Based
Classification of Hand Motions: A Comparative Multi Day
Analyses between Surface and Intramuscular EMG. Applied
Sciences, 8(7):1126, 7 2018. ISSN 2076-3417. doi: 10.3390/
app8071126. URL http://www.mdpi.com/2076-3417/8/7/
1126.

Xiaojie Wang, Yucheng Wang, Zhonghui Wang, chun-
hui wang, and You Li. Hand gesture recognition using
sparse autoencoder-based deep neural network based on elec-
tromyography measurements. page 42. SPIE-Intl Soc Optical
Eng, 32018. ISBN 9781510616905. doi: 10.1117/12.2296382.
Tingxi Wen and Zhongnan Zhang. Deep Convolution Neu-
ral Network and Autoencoders-Based Unsupervised Feature
Learning of EEG Signals. IEEE Access, 6:25399-25410, 2018.
ISSN 2169-3536. doi: 10.1109/ACCESS.2018.2833746. URL
https://ieeexplore.ieee.org/document/8355473/.
Jong Hwan Jang, Tae Young Kim, Hong Seok Lim, and
Dukyong Yoon. Unsupervised feature learning for electro-
cardiogram data using the convolutional variational autoen-
coder. PLoS ONE, 16(12 December), 12 2021. ISSN
19326203. doi: 10.1371/journal.pone.0260612.

Hiroyuki Nodera, Yusuke Osaki, Hiroki Yamazaki, Atsuko
Mori, Yuishin Izumi, and Ryuji Kaji. Classification of needle-
EMG resting potentials by machine learning. Muscle and
Nerve, 59(2):224-228, 2 2019. ISSN 10974598. doi:
10.1002/mus.26363.

Shuai Chen, Gerda Bortsova, Antonio Garcia-Uceda Judrez,
Gijs van Tulder, and Marleen de Bruijne. Multi-task
Attention-Based Semi-supervised Learning for Medical Im-
age Segmentation. pages 457—465. 2019. doi: 10.1007/
978-3-030-32248-9{\ }51.

Rushi Jiao, Yichi Zhang, Le Ding, Rong Cai, and Jicong
Zhang. Learning with Limited Annotations: A Survey on
Deep Semi-Supervised Learning for Medical Image Segmen-
tation. 7 2022. URL http://arxiv.org/abs/2207.14191.
Jesper E. van Engelen and Holger H. Hoos. A survey on semi-
supervised learning. Machine Learning, 109(2):373-440, 2
2020. ISSN 15730565. doi: 10.1007/s10994-019-05855-6.

I. Zeki Yalniz, Hervé Jégou, Kan Chen, Manohar Paluri, and
Dhruv Mahajan. Billion-scale semi-supervised learning for
image classification. 5 2019. URL http://arxiv.org/abs/
1905.00546.

Pufan Xu, Fei Li, and Haipeng Wang. A novel concatenate
feature fusion RCNN architecture for sEMG-based hand ges-
ture recognition. PLoS ONE, 17(1 January), 1 2022. ISSN
19326203. doi: 10.1371/journal.pone.0262810.

Weidong Geng, Yu Hu, Yongkang Wong, Wentao Wei,
Yu Du, and Mohan Kankanhalli. A novel attention-based hy-
brid CNN-RNN architecture for sSEMG-based gesture recog-
nition. PLoS ONE, 13(10), 10 2018. ISSN 19326203. doi:
10.1371/journal.pone.0206049.

Dawei Huang and Badong Chen. Surface EMG Decoding
for Hand Gestures Based on Spectrogram and CNN-LSTM.
In 2019 2nd China Symposium on Cognitive Computing and
Hybrid Intelligence (CCHI), pages 123-126. IEEE, 9 2019.
ISBN 978-1-7281-4091-9. doi: 10.1109/CCHI.2019.8901936.
URL https://ieeexplore.ieee.org/document/8901936/.

http://arxiv.org/abs/1511.06335
http://link.springer.com/10.1007/978-3-319-70096-0_39
http://link.springer.com/10.1007/978-3-319-70096-0_39
http://atm.amegroups.com/article/view/36944/html
https://ffmpeg.org/
https://www.youtube.com/watch?v=MhOdbtPhbLU
https://www.youtube.com/watch?v=MhOdbtPhbLU
http://scikit-learn.sourceforge.net.
http://www.mdpi.com/2076-3417/8/7/1126
http://www.mdpi.com/2076-3417/8/7/1126
https://ieeexplore.ieee.org/document/8355473/
http://arxiv.org/abs/2207.14191
http://arxiv.org/abs/1905.00546
http://arxiv.org/abs/1905.00546
https://ieeexplore.ieee.org/document/8901936/

A Annotation: Rules and Tool

A.1 Annotation Tool: updated for rest signals

The annotation tool that was developed in a previous project (Deborah Hubers, Master thesis, april 2022) was
used to make annotation. The tool is written in Python and used Tkinter. The tool was updated to allow for
the annotation of phenomena present in rest. Figure A.1 shows a screenshot of the tool, which includes options
for opening a .wav file, saving annotations, selecting the person performing the annotation, playing the audio,
and adjusting the sound with a sliding bar. The tool also allows for navigation of the main figure (located in the
middle left of the tool) on the x- and y-axes and for making annotations by selecting the type of annotation (using
either the mouse or a numbered shortcut) and clicking twice on the main figure to mark the start and end of the
annotation.

e0e0 EMG annotation tool (for rest)
Open fiie (0] Current WAV file: [Users/Sterre/_Python_folders/al_needle_emg_master/data_annotatle_rest/0001_R_tib_ant_2_1.wav

save annotation (s] Current CSV save flle: /Users/Sterre/_Python_folders/al_needle_emg_master/data_annotatle_rest0001_R_tib_ant_2_1CV.csv

Annotation save flle (Initials)

125
& 750

Audloplayer 0

Play sound [p]

Volume: 1.0x 20 40
—e = e 00— e B U |
Navigation
¥ scaling
Navigation
100
Zoom out (1)
~
w0 0 [—
Zoom in (4] \’\k—"‘
30 188
¥ like Synergy [y)
L ——————
X scaling 20 o
01 100 188
Set X scale 0 P T e v L I i e
| |
Amorations -100 168
Undo last annotation [u] -200 0t e e]
Reset current annotations -300 188
Click to annotate —400 0 e]
Q musclerest 1) |
— -100

500
975 976 977 978 979 98 981 982 983 984 976 978 280 982 984
Fibriliation (6]

Positive sharp waves (7]
Fasciculation (8]
Myotonic discharge (9]
Neuromyotonia (q]
Myokymia (w]
Complex repetitive discharge (CRD
Endplate noise (1]
Endplate spikes [t]
Motor unit contraction (g]

Unkown

Erase | Return (0]

Figure A.1: The annotation tool that was updated for the annotation of spontaneous activity in rest. the anno-
tations for rest that can be made are shown on the left-hand side under Muscle rest. The red line in the upper
figure shows the location of the signal shown in the left middle figure.

A.2 Annotation for Signal Type model

The following rules were applied:

1. Signal rest is annotated as signal rest

When the signal was intended as rest but contains a firing moter unit action potential, the signal is annotated
as rest.

Spontaneous rest activity is annotated as rest.

Needle movement is annotated as needle movement.

Needle in the air is annotated as non-analysable. (In this model treated the same as needle movement)
Contraction is annotated as contraction.

Distant contraction is annotated as contraction.

Myotonic discharges and complex repetitive discharges are left black (no annotation).

When in doubt: no annotation.

N

LN AW

25

A.3 Annotation for Rest model

The following rules were applied:

1. Signal rest that did not contain spontaneous rest activity is annotated as rest.

2. Spontaneous activity (i.e. fibrillation potentials, positive sharp waves, fasciculation potentials, myotonic
discharge, neuromyotonia, myokymia, complex repetitive discharge, endplate noise, endplate spikes, motor
unit contraction) is annotated as spontaneous activity. |f waveforms are separately discernible, they are
separate annotated.

3. When in doubt: no annotation.

26

1

1

B Code changes

This Master Thesis is an implementation of a model presented in the paper by Guo et al. [1]. The accompanying
code can be found in the GitHub link: https://github.com/XifengGuo/DCEC. Innovations in deep learning
are often tested in small-scale experiments using standardised databases. The implementation of the code then
consists of adapting the code to the specific user case. We encountered, however, additional problems in the
implementation of the code, specifically related to the clustering layer. This appendix will discuss the problems
and the structural changes that had to be adopted to implement the clustering layer.

The clustering loss is the Kullback-Leibler divergence of a target distribution p and soft label g. The soft label
is determined during training (for one batch) where an input is mapped by the clustering layer to a soft label
by the Student's t-distribution. The target distribution is subsequently derived over all soft labels (thus over all
training samples). In the code listing below (Listing 1) it is shown how this method was embedded in the original
code. At the beginning of each epoch, on line 3, a prediction is made using all training data. For the clustering
output, this results in soft label q. The target distribution p is consequently derived which is used during training.
The 'train_on_batch’ method is employed which allows the supply of both targeted outputs. The reconstruction
loss (mean squared error loss) is computed over the predicted output by the model and the input sample. The
clustering loss (Kullback-Leibler divergence) is computed over the predicted soft label g and the target distribution

p.

for epoch in trange(l, epochs_dcec+1): # loop over all epochs
predict using all training data and derive q
q, _ = self.model.predict(x_train, verbose=0)
compute target distribution p
weight = q *x 2 / q.sum(0)
p = (weight. T / weight.sum(1)).T

train on batch

for ite in tqdm(range(iterations)): # iterations = train_data.samples / batch_size (= bs)
x_samples = next(iter(train_data))
x_samples = x_samples[0]

if len(x_samples) < batch_size:
loss = self.model.train_on_batch(x=x_samples, y=[p[itexbs::], x_samples])
else:
loss = self.model.train_on_batch(x=x_samples, y=[p[itexbs: (ite+1)*bs], x_samples])

Listing 1: Original implementation of training with clustering loss.

The authors thus implemented this method by using Keras 'train_on_batch’ method. The following problems
were encountered with the implementation of this code:

1. Slow code - This is especially problematic (leading to extra time and extra costs) for performing the hyper-
parameter optimisation.

2. Validation loss cannot be computed - Loss can only be derived by using the 'train_on_batch’ line (because
this allows to provide the targeted output) but this means that the validation loss cannot be computed. The
validation loss is an evaluation of the model where no training is involved.

3. Not memory efficient - An out of memory error occurs when predicting the models output using all available
training data (1,3 million Mel spectrograms).

The code originates from 2017, which is a different era in terms of coding possibilities. The 'train_on_batch’
method was at the time an accessible solution to deal with different inputs, outputs and customise how losses
need to be computed. This method is however not desired because it is the main reason for the slow code because
the GPU is not accessed efficiently. Since 2020 it is possible to customise what happens in the 'fit" function (the
general function to use for training deep learning methods with Keras) by overriding the 'train_step’ function.
This function is called by 'fit" and for each batch the loss is calculated and the weights are consequently updated.
The overridden version of the 'train_step’ function is shown in Listing 2.

def train_step(self, data):
Override method ’'train_step’' to customize how training takes place.
with tf.GradientTape() as tape:
data, p = data[0], data[l] # input data in batches
reconstruction, q = self(data) # forward pass
compute losses
mse = tf.keras.losses.MeanSquaredError()
reconstruction_loss = mse(data,reconstruction)
kld = tf.keras.losses.KLDivergence()
kl_loss = kld(p, q)

27

https://github.com/XifengGuo/DCEC

compute total loss
total_loss = reconstruction_loss + kl_loss * self.gamma

compute gradients with total loss

grads = tape.gradient(total_loss, self.trainable_weights)

update weights

self.optimizer.apply_gradients(zip(grads, self.trainable_weights))
update metrics

self.total_loss_tracker.update_state(total_loss)
self.reconstruction_loss_tracker.update_state(reconstruction_loss)
self.kl_loss_tracker.update_state(kl_loss)

return a dict mapping metric names to current value

return {
"loss”: self.total_loss_tracker.result(),
"reconstruction_loss"”: self.reconstruction_loss_tracker.result(),
"clustering_loss”: self.kl_loss_tracker.result(),

}

Listing 2: Implementation of how to customise what happens in fit function.

The data (in batches) is unpacked on line 4. What is shown here, is that parameter p is also given as input. The
target distribution is computed at the beginning of an epoch using all training data. The target distribution p was
joined with the input data (the Mel spectrograms). The implementation of the code is shown in Listing 3.

for epoch in range(l, epochs_dcec+1): # loop over all epochs

define separate instance of model with only clustering layer as output
clustering = Model(inputs=model.input, outputs=model.output[1])

q = clustering.predict(train_data_dcec)
y_pred = q.argmax(1)

weight = q *x 2 / q.sum(0)

p = (weight. T / weight.sum(1)).T

combined_input = JoinedGen(train_data_dcec, p, batch_size)

loss = model. fit (x=combined_input, epochs=1, callbacks=[Callback_DCEC(train_data=
train_data_dcec, val_data=val_data, y_true_val=y_true_val, labels=labels_val, n_clusters=
clusters, save_directory=config.save_directory, batch_size=batch_size, epoch=epoch,
y_pred_last=y_pred)])

Listing 3: Implementation of how to customise what happens in fit function.

It is not possible to call fit for multiple epochs, because the target distribution p needs to be computed after each
epoch. It is thus still necessary to loop over all epochs. In line 4 we define a separate model that only consists of
the encoder, the latent space and the clustering output. Using this model to predict we only receive the output of
the clustering layer, g, and not the reconstructed image as output. As a result, we do not get an out of memory
error when predicting with all the training data (1.3 million Mel spectrograms).

We measured the difference in execution time between the original code and the updated code using 'line-profiler’.
This profiles the time individual lines of code take to execute The profiler was implemented to evaluate execution
time during hyperparameter optimisation. Hyperparameter optimisation for DCEC consists of a pretraining stage
(training of convolutional autoencoder) and training stage (training of convolutional autoencoder + clustering
layer). After pretraining, the cluster centres of the clustering layer are initialised by performing k-means on learned
features of all input data.

The results of the profiler are shown in Figure B.1. We can use the % time units to calculate the efficiency gain
between the original implementation of the code (Fig. B.1a) and the updated implementation of the code (Fig.
B.1b). We can see that the relative difference in time has decreased for step 2 vs step 3 after updating the code
and we have an efficiency gain of 50% for step 3.

28

Line # Hits Time Per Hit % Time Line Contents

380 @profile
381 def model_optimisation(params):
383
384 # (1) load data
385
404 # (2a) pre-train convolutional autoencoder
444 2 135468607.0 67734303.5 23.7 autoencoder.fit(train_data, epochs=8)
454
455 # (2b) perform k-means clustering on output latent space pre-trained autoencoder
456 1 8.0 8.0 0.0 km = KMeans(n_clusters=6, n_init=100)
457 1 8614708.0 8614708.0 1.5 km_fitted = km.fit(features_train)
469
470 # (3a) initialise deep clustering with clustering weights
508 1 879.0 879.0 0.0 deepclustering.get_layer(name='clustering').set_weights([km.cluster_centers_])
509
510 # (3b) train deep clustering with convolutional autoencoder
511 4 6370.0 1592.5 0.0 for epoch in trange(8):
512 3 102114308.0 34038102.7 A7E9) q, _ = deepclustering.predict(train_data)
513 3 15396.0 5132.0 0.0 weight = q *x 2 / g.sum(@)
514 3 9105.0 3035.0 0.0 p = (weight.T / weight.sum(1)).T
515 873 5938.0 6.8 0.0 for ite in range(@, iterations):
516 870 115783913.0 133085.0 20.3 x_samples = next(iter(train_data))
517 870 109182.0 125.5 0.0 x_samples = x_samples[0]
518 870 1258411.0 1446.4 0.2 if len(x_samples) < batch_size: loss = deepclustering.train_on_batch(x=x_samples,
y=[plitexbatch_size::], x_samples])
519 867 155466298.0 179315.2 P2 else: loss = deepclustering.train_on_batch(x=x_samples, y=[plitexbatch_size]:
(ite+1)*batch_size, x_samples])
(a) Implementation of original code
Line # Hits Time Per Hit % Time Line Contents
251 @profile
252 def model_optimisation(params):
254
255 # (1) load data
282
283 # (2a) pre-train convolutional autoencoder
323 2 692628103.0 346314051.5 41.7 autoencoder.fit(train_data_cae, epochs=8)
328
334 # (2b) perform k-means clustering on output latent space pre-trained autoencoder
335 1 23.0 23.0 0.0 km = KMeans(n_clusters = params['clusters'], n_init=100)
336 1 8870919.0 8870919.0 0.5 km_fitted = km.fit(features_train)
343
384 # (3a) initialise deep clustering with clustering weights
385 1 984.0 984.0 0.0 deepclustering.get_layer(name='clustering').set_weights([km.cluster_centers_])
386
387 # (3b) train deep clustering with convolutional autoencoder
388 9 29.0 3.2 0.0 for epoch in trange(8):
393 8 216268601.0 27033575.1 13.0 q = clustering.predict(train_data_dcec)
395 8 11218.0 1402.2 0.0 weight = q %k 2 / q.sum(@)
396 8 8462.0 1057.8 0.0 p = (weight.T / weight.sum(1)).T
397
398 8 52.0 6.5 0.0 combined_input = JoinedGen(train_data_dcec, p, batch_size)
399
400 8 680864250.0 85108031.2 41.0 deepclustering. fit(x=combined_input)

(b) Implementation of updated code

Figure B.1: Results of line-profiler to evaluate the execution time of individual lines of code. The function used in
hyperparameter optimisation (called model_optimisation) is evaluated. The code is simplified and the parts that
are time-consuming are highlighted in yellow.

29

C Hyperparameter Optimisation: Selection of Parameters

C.1 Introduction

Two models were implemented in this thesis. We performed hyperparameter optimisation to fine-tune these models
to our input data. The hyperparameter optimisation tool Hyperopt [2] was implemented to efficiently achieve the
best selection of hyperparameters.

The selection of the search space is discussed in the following sections. In Section C.2 the set of hyperparameters
are discussed that are important during training. In the subsequent section (Section C.3) the parameters are
discussed that make up the models architecture and are hence related to the complexity of the model. The final
section (Section C.4) discusses the parameters that can be fine-tuned during clustering. The search space that
we implemented is almost the same for both models, where a few additional parameters are added for model two.
The final search space is depicted in Table 1 of the main paper.

C.2 Training parameters
C.2.1 Optimisation algorithm

The aim during training is to reach a local optimum in the loss landscape. A deep learning model is in convergence
when the loss function reaches a minimum, which can be a global or local minimum. The weights and biases of
trainable parameters are updated during training by an optimisation algorithm. Most optimisation algorithms are
build upon gradient descent, where the loss function is minimised by following the gradient. One optimisation
algorithm was selected for the hyperparameter optimisation. This algorithm is built on other algorithms, stochastic
gradient descent, momentum and RMSprop, which will thus also be discussed in the following paragraphs.

Stochastic gradient descent (SGD) (or mini-batch gradient descent) is the simplest optimisation algorithm that
employs gradient descent. Exact gradients are computed from a small number of samples (equal to the batch
size) to approximate the gradients from all samples. Parameters (#) are updated by the following formulae, with
learning rate = « and objective function = J:

9/ — 9 _ OzAgJ(e; xi:i+n;yi:i+n)

Gradient descent is only aware of the (current) gradient and thus only if the loss is declining and how fast. It
is however useful "know” more, e.g., what the shape of the loss landscape is, if the current direction is similar
to previous updates, etc. Second-order optimisation algorithms provide information about the shape of the loss
landscape, such algorithms are however computationally too expensive and therefore not practical for implemen-
tation. Past statistics are incorporated in a group of optimisation algorithms using the exponentially weighted
moving average. These algorithms can roughly be divided in three groups: (1) Momentum, (2) RMSprop and
(3) Adam. Momentum accumulates the gradients of past steps so that the weights are on average updated in
the right direction. RMSprop measures the variance and when this is high (indication of the wrong direction) the
update will be low. Adam combines both momentum and RMSprop, where the parameters are updated by:

Vi

0 =0—-«

Fi

With ©; the exponentially weighted moving average for past gradients, calculated by:

v; =p1vi—1 + (1 —p1)Ag
C1-p}

And #; is the exponentially weighted moving average for past variance:

Vi

ri =pari—1 + (1 — p2)A\,
1-pl

U

30

C.2.2 Batch size

The batch size denotes the number of images that are seen during one update iteration, and are thus used to
compute an approximation of the gradient. A larger batch size may intuitively lead to a better approximation,
however, in practice it has been observed that larger batches leads to degradation in the quality of the model
(measured by its ability to generalise) [3]. Lack of generalisation may be due to the fact that large-batch methods
tend to converge to sharp minimisers of the training function [4]. Typical batch size range lies between 32 and
512 data samples and for this thesis we will test a small and large batch size, respectively 64 and 256.

C.2.3 Learning rate

The learning rate may be the single most important hyperparameter that needs to be tuned for training deep
learning models [5, 6]. The learning rate determines the rate of change: a small learning rate converges very slowly
while a large learning rate leads to divergence. We explore different learning rate schedules and learning rate values.

A straightforward learning rate schedule is a constant value that remains unchanged during training. The values
chosen differs per batch size. A constant learning rate in combination with Adam optimiser is not entirely constant,
since Adam also influences the rate of change.

We additionally explore a cyclical learning rate schedule.
This schedule is proposed by Smith [7] because he ar-
gues that a constant learning rate may converge on a sad-
dle point in the loss landscape (gradients are small but it (max_Ir)
is not a local minimum). In the cyclical learning sched-
ule the learning rate is cyclically varied within a band of
values (see Figure C.1) so that the learning rate alternates

Maximum bound

between both smaller and larger values. The step size Minimum bound

is set at 2, which means that after 2 epochs the learn- (base_Ir)

ing rate is changed and a total of 4 iterations are needed stepsize -

to complete one cycle. Training is best stopped after

the end of a cycle, which is therefore after 4, 8, etc. Figure C.1: Triangular learning rate policy,
epochs. adopted from Smith [7]. Stepsize is the num-

ber of iterations in half a cycle.

The band of values between which to alternate is determined with

the learning rate range test. A model is trained for a few epochs in

which the learning rate is linearly increased from low and high values and plotted with respect to the training loss.
The optimal learning rate range is where the loss starts to improve (and the curve starts to decrease) and before
the loss starts diverging. The results of the learning rate range test for the different optimisers and batch size are
shown in Figure C.2. The optimal learning rate ranges are therefore: [10**-7, 10*¥*-4] for a batch size of 64 and
[10**-5, 0.001] for a batch size of 256.

We both implement a cyclical learning rate without amplitude scaling (the values for the upper and lower bound
remains the same) and with amplitude scaling (the values for the upper bound linearly decreased by half after each
cycle). The final selection of values for the learning rate are shown in Table E.1.

C.3 Model parameters

The model parameters that are discussed here are in with relation to the convolutional autoencoder, that is part
of both model 1 and 2.

C.3.1 Convolutional layers

Complexity is directly increased when we add an extra layer. With the filters [16, 32, 64, 128], padding 'same’ and
stride 2, the dense layer will be of size 8192 at 4 layers compared to 32,768 at 3 layers (in Figure xx from the
main text). The dense layer combines all the learned representation from the final convolutional layer from which
the latent space can be learned. We will evaluate both cases and also the case with 5 layers, the dense layer will
then be of size 2048.

31

0.5 ’_\

0.4

0.3

loss

0.2

0.1

e ~

10°® 107° 1074 1072
learning rate (log scale)

0.0

107 10¢ 10 1074 10-2 10~
learning rate (Iog scale)

(a) (b)

Figure C.2: Learning rate range test for (a) a batch size of 64 and (b) a batch size of 256.

C.3.2 Kernel size

The kernels contain the weights that are learned to re-represent the data. Larger kernels are therefore more
computational expensive. The size of the kernels describe the level of detail with with the input is scanned.
Typical kernel sizes are 3 x 3 and 5 x 5, however to explore the effect of larger kernel sizes we will also adopt
kernels with size 7 x 7.

C.3.3 Filters

Filters determine the number of representations that are being learned at each layer. The number of filters typically
increase when the network goes deeper, and the intuition behind this is that at the beginning simple patterns are
captured (e.g., edges, corners, etc.) and in subsequent layers those patterns are combined to make more complex
patterns and the deeper we then go, the higher the amount of combinations that can be made. Therefore, we
increase the number of filters with depth. When we add layers we start with a lower number of filters for the first
layer.

C.3.4 Batch normalisation

In batch normalisation the features computed within a batch are normalised by the mean and variance. The
input image is normalised and scaled between [0, 1] and apart from that no normalisation or scaling takes place in
subsequent layer. Deep learning models tend to work better with normalised data and to make sure that after each
layer the data remains normalised, we apply batch normalisation. In batch normalisation the data is normalised
within a batch.

C.3.5 Stride

The stride is a parameter that modifies the amount of movement over the image. For example, if stride is set to
1, than the filter will move one pixel at a time. The stride was set at 2, however, so the filters moves with two
pixels at a time which also leads to smaller output image size at the next layer (with padding is zero the output
image reduces by half in size).

C.3.6 Activation

An activation is the last component of the convolutional layer. This function adds a non-linear transformation to
the output of the convolution. A typical chosen activation function is the rectified linear unit (ReLU). Next to
ReLU we will also add leaky RelLU to the search space.

C.4 Clustering parameters
C.4.1 Number of clusters

For the two classification tasks in this study, the number of clusters was chosen to be between 5 and 7. Using
three clusters for the first classification into three classes did not provide satisfactory performance, so a higher
number of clusters was selected to give the model more flexibility. The elbow method also indicated that a higher

32

The Elbow Method using Distortion

Distortion

2.5 5.0 7.5 10.0 12.5 15.0 17.5

The Elbow Method using Inertia

450000
400000
350000
©
£ 300000
b3
£
250000

200000

150000

2.5 5.0 75 10.0 125 15.0 17.5
Values of K

Figure C.3: Elbow plot

number of clusters would be more effective (as shown in Figure C.3). This method determines the optimal number
of clusters by finding the point where distortion and inertia are as low as possible, but also significantly reduce
from the previous point.

C.4.2 Gamma

The following range for gamma was selected: [0.05, 0.1, 0.2, 0.3, 0.4, 0.5]. In the paper from which we adapted
this method, the value of gamma was set to 0.1 [1].

Bibliography

[1]

2]
[3]
[4]

[5]
[6]
[7]
[8]

[9]

Xifeng Guo, Xinwang Liu, En Zhu, and Jianping Yin. Deep Clustering with Convolutional Autoencoders.
pages 373-382. 2017. doi: 10.1007/978-3-319-70096-0{\ }39. URL http://link.springer.com/10.1007/
978-3-319-70096-0_39.

J Bergstra, D Yamins, and D D Cox. Making a Science of Model Search: Hyperparameter Optimization in
Hundreds of Dimensions for Vision Architectures. Technical report, 2013.

D. Randall Wilson and Tony R. Martinez. The general inefficiency of batch training for gradient descent
learning. Neural Networks, 16(10):1429-1451, 2003. ISSN 08936080. doi: 10.1016/S0893-6080(03)00138-2.
Nitish Shirish Keskar, Jorge Nocedal, Ping Tak Peter Tang, Dheevatsa Mudigere, and Mikhail Smelyanskiy.
On large-batch training for deep learning: Generalization gap and sharp minima. 5th International Conference
on Learning Representations, ICLR 2017 - Conference Track Proceedings, pages 1-16, 2017.

Leslie N. Smith. A disciplined approach to neural network hyper-parameters: Part 1 — learning rate, batch
size, momentum, and weight decay. pages 1-21, 2018. URL http://arxiv.org/abs/1803.09820.

Jeremy Jordan. Setting the learning rate of your neural network., 3 2018. URL https://www. jeremyjordan.
me/nn-learning-rate/.

Leslie N. Smith. Cyclical learning rates for training neural networks. Proceedings - 2017 IEEE Winter Conference
on Applications of Computer Vision, WACV 2017, (April):464-472, 2017. doi: 10.1109/WACV.2017.58.
Hiroyuki Nodera, Yusuke Osaki, Hiroki Yamazaki, Atsuko Mori, Yuishin lzumi, and Ryuji Kaji. Classification
of needle-E<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>