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1
INTRODUCTION

Multinomial distribution arises in various application areas: queuing theory, software

reliability models, clinical trials and many others. Actually, data coming from any distri-

bution with known cumulative distribution function for continuous case (or probability

mass function for discrete data) via some transformation can be represented as the re-

sult of the multinomial experiment, which intuitively can be seen as the result of random

throwing of N balls across m urns.

But in any context, the next question is common to appear - is the data really drawn from

the multinomial distribution? Usually, it is interesting to test the null hypothesis that the

underlying distribution is equiprobable multinomial.

The general framework that will be considered in this thesis is the following. Given a set

of discrete i.i.d observations N1, N2, . . . , Nm with probability mass function P , we want to

test the null hypothesis

H0 : P = P0,

vs

H1 : P 6= P0

where P0 is the probability mass function of an equiprobable multinomial, which is

given by

P0(N1 = n1, N2 = n2, . . . , Nm = nm ; p,m) = N !

n1!n2! . . .nm !
pN

m∑
k=1

nk = N , p = 1

m

(1.1)

1
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Many procedures were proposed to answer this question. The classical way is to use the

χ2 goodness-of-fit test, which was first introduced in the paper by Pearson (1900) and

based on the test statistic:

X 2 =
m∑

i=1

(Ni −N p)2

N p
.

Another popular procedure is to replace X 2 with the log likelihood ratio statistic:

G2 = 2
m∑

i=1
Ni ln(

Ni

N p
)

Also well known statistics to use are: the Freeman-Turkey statistic, the Neyman modified

X 2 statistic or the modified log likelihood ratio statistic.[8]

Young(1962)[11] revisited this problem and proposed two alternatives to the existing

tests, with the test statistics based on the scaled range of the sample

Wm = ( max
1≤k≤m

Nk − min
1≤k≤m

Nk )(
m

N
)

1
2 ,

or on the scaled mean

Mm = (mN )−
1
2

m∑
i=1

∣∣∣∣Ni − N

m

∣∣∣∣ .

Young also showed, that the range based statistics reveal power advantage under some

alternatives.

But, all tests ,with the mentioned statistics, rely on the approximate distributions, which

require original data to satisfy some conditions. For example, as a rule of thumb, use of

Chi-squared approximation for the Pearson statistic is warranted only for values N and

m, such that N
m ≥ 5. But in some applications, these conditions are rarely satisfied, which

leads to the inability to use these tests, or to the inaccuracy in the results. This problem

can be solved, if the exact distribution of the used statistic is known.

So, the goal of this thesis is to develop the algorithm to compute the exact distribution of

the range of multinomial sample, and use it to built a test based on the exact distribution

of the statistic.

The outline of this thesis will go as following : Chapter 2 provides an overview of existing

approximations for the range and the ordered values statistics distributions, and some

existing procedures to compute the exact distributions. Chapter 3 is dedicated to the

new version of an algorithm for the exact distribution of the multinomial range. Accu-

racy of the approximations is discussed in Chapter 4. In Chapter 5, the goodness-of-fit

test based on multinomial range is discussed, along with its applications for the homo-

geneous Poisson process and the case studies in biometry.



2
EXACT AND APPROXIMATE

DISTRIBUTIONS OF THE ORDERED

VALUE STATISTICS AND THE RANGE

In order to perform hypothesis testing, the distribution of the test statistics has to be de-

termined. This chapter introduces approximations and different computational meth-

ods for calculating the exact distribution functions of maximum, minimum and range

for the multinomial distribution.

We first briefly discuss ways to approximate distribution of the range and the maximum,

using results of Johnson & Young[7] and DasGupta[4]. We also give an overview of previ-

ously developed algorithms for the exact values, presented in papers of Corrado[3] and

Rapperport[9].

2.1. APPROXIMATING DISTRIBUTIONS
First approximation to the multinomial distribution was introduced by Johnson & Young[7],

which was based on multinormal limit for the multinomial sample. Later, Young[11]

used this approximation to derive limiting distribution for the range of the sample.

The distribution of maximum, using Gumbel approximation, was initially introduced by

Kolchin(1978)[5], but contained some typos and errors, which were corrected by DasGupta[4].

Since the null hypothesis we will use later, is that the underlying distribution is equiprob-

3
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able multinomial, all approximations are derived under this condition. Next two sec-

tions follow original papers to provide details about approximations.

2.1.1. APPROXIMATION OF THE RANGE DISTRIBUTION

In order to define the approximating range distribution, we first look at the joint limiting

distribution for a multinomial sample.

Consider, a set of m discrete random variables n1, . . . ,nm with probability mass func-

tion 1.1. For equiprobable case, expectation and variance of ni are given by

E(ni ) = N p = N

m
,V ar (Ni ) = N p(1−p).

Then straightforwardly from multidimensional central limit theorem, the joint distribu-

tion of standardized multinomial values ωi

ωi = ni −N p√
N p(1−p)

= mni −Np
N (m −1)

with N →∞ converges to multinormal distribution with zero means, unit variances and

covariance between wi and w j equal to 1
1−k for i 6= j .

Consider now a set of m independent unit normal variables x1, . . . , xm . Using the prop-

erties of normal distribution, it can be shown that the standardized deviates from the

sample mean

t1 =
( m

m −1

)
(x1 −x), . . . , tm =

( m

m −1

)
(xm −x)

are jointly distributed multinormally with zero means, unit variances and equal covari-

ances 1
1−k .

Hence, the distribution of standardized multinomial variablesωi could be approximated

by the joint distribution of the standardized mean deviates of x1, . . . , xm .

From this it follows, that the range distribution of ωi ’s can be approximated by the dis-

tribution of the range of ti ’s.

P ( max
1≤i≤m

ωi − min
1≤i≤m

ωi ≤ r )
D→ P ( max

1≤i≤m
ti − min

1≤i≤m
ti ≤ r )

Now, note that

Range(ωi ) = max
1≤i≤m

ωi− min
1≤i≤m

ωi = mp
N (m −1)

( max
1≤i≤m

ni− min
1≤i≤m

ni ) = mp
N (m −1)

Range(ni )

Also

Range(ti ) =
( m

m −1

)
( max

1≤i≤m
xi − min

1≤i≤m
xi ) =

( m

m −1

)
Range(xi )
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Finally the range distribution of multinomial sample, n1, . . . ,nm , could be approximated

by the range distribution of m i.i.d standard normal variables

P

(
max

1≤i≤m
ni − min

1≤i≤m
ni ≤ r

)
D→ P

(
max

1≤i≤m
xi − min

1≤i≤m
xi ≤ r

√
m

N

)
(2.1)

The distribution of the range of m i.i.d standard normal variables is a known quantity,

and can be easily computed:

P

(
max

1≤i≤m
xi − min

1≤i≤m
xi ≤ r

)
= m

∫ ∞

−∞
f (x)

(∫ x+r

x
f (u)(d)u)

)m−1

dx

where f (x) is the probability density function of the standard normal variable.

Young[11] also noted, that the distribution of the range of a multinomial sample is nec-

essarily discrete, with interval 1 for possible values, when m > 2, and interval 2 for the

binomial case. So he introduced the continuity factor δk

P

(
max

1≤i≤m
ni − min

1≤i≤m
ni ≤ r

)
D→ P

(
max

1≤i≤m
xi − min

1≤i≤m
xi ≤ (r +δk )

√
m

N

)
where

δk = 1 for k = 2,δk = 0.5 for k > 2

2.1.2. APPROXIMATION FOR THE MAXIMUM

Since, the initial formulation of the approximating distribution for the maximum of multi-

nomial sample, proposed by Kolchin[5], contained some typos, here we provide cor-

rected version of the theorem by DasGupta[4].

DasGupta stated the following:

Theorem. If (n1,n2, . . . ,nm) ∼ Mul t
(
N , 1

m , . . . , 1
m

)
.

Let

µ= N

m
,ω= log−0.5loglogm

µ

And ε us the unique positive root of the equation

(1+ε) log(1+ε)−ε=ω

Then the distribution of the maximum of multinomial sample converges in distribution

to

P

maxni −µ(1+ε)√
N

2m logm

+0.5log(4π) ≤ z

 D→ FGumbel (z,0,0) = e−e−z

for all real z.
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In this case, no continuity correction was introduced.

2.2. ALGORITHMS FOR THE EXACT DISTRIBUTIONS
Obtaining the exact distribution of the extremal order statistics (minimum, maximum

and range) has been a problem of recurring interest in statistics. Few papers dealt with

this issue. One of the first algorithms to obtain the exact distributions of the maximum

and the minimum was proposed by Rapperport[9] in his unpublished thesis. Since the

paper remained unprinted, Rapperport’s idea has been neglected for a while. In 2010,

Corrado[3] looked at this problem from a different angle, and suggested an alternative

procedure.

2.2.1. STOCHASTIC REPRESENTATION ALGORITHM

One of the approaches to calculate the desired distributions, suggested by Corrado[3], is

based on the stochastic matrix representation, which determines transition probabilities

for the number of balls in urns. With nk being the number of balls in urn k, the sequence

sk = sk−1 +nk describes the cumulative ball count from s0 = 0 to sm = n , where m is the

total number of urns. Transition probability from sk−1 to sk is defined as follows:

P (sk |sk−1, p∗
k ) =


( n−sk

sk−sk−1

)
(p∗

k )sk−sk−1 (1−p∗
k )n−sk if sk ≥ sk −1

0 otherwise

where p∗
k = pk /

m∑
j=k

p j

(2.2)

Using the probabilities 2.2, stochastic matrices are formed in the following way:

Qk =


P (0|0, p∗

k ) P (1|0, p∗
k ) . . . P (n|0, p∗

k )

0 P (1|1, p∗
k ) . . . P (n|1, p∗

k )

. . . . . . . . . . . .

0 0 . . . 1


Q1 = [P (0|0, p1)P (1|0, p1) . . .P (n|0, p1)]

QT
m = [111. . .1]

(2.3)

This representation turns out very handy, since it provides straightforward way to calcu-

late desired distributions. For example, in order to calculate the exact probability of the

maximum amount of balls in the urn being not more than r , all transition probabilities

P (sk |sk−1, p∗
k ) for which sk − sk−1 > r should be set to 0. Product of modified stochastic

matrices results in the exact probability P (maxnk ≤ r ) . Distribution of the smallest or-

der statistics can be obtained in the same way, simply changing the inequality sign.
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Distribution of the range of multinomial sample also can be computed using the matrix

representation. To simplify notation, we denote Qk (ak ,bk ) stochastic matrix for urn k,

where P (sk |sk−1, p∗
k ) = 0 for all nk > ak or nk < bk . Introducing the set of all possible al-

locations of n balls among m urns as ∩m
k=1ak ≥ nk ≥ bk , we can express joint probability

of maximum and minimum ball count as:

P (∩m
k=1ak ≥ nk ≥ bk ) =Q1

1 ×
m−1∏
k=2

Qk (ak ,bk )×Qm (2.4)

Note that the set of allocations, described above, have intersecting intervals. In order to

calculate the probability of multinomial range exactly, intersection probabilities should

be subtracted:

P ( max
1≤k≤m

nk − min
1≤k≤m

nk < r ) =
n−r+1∑

h=0
Q1

1 ×
m∏

k=2
Qk (h + r −1,h)×Qm−

n−r∑
h=0

Q1
1 ×

m∏
k=1

Qk (h + r −1,h +1)×Qm

(2.5)

The main advantage of the stochastic matrix representation approach is that it does not

require equal urn probabilities, which can be very useful further for not equiprobable

cases. On other hand, the stochastic matrix representation is an ad-hoc solution given

that for every new composition, matrices should be redesigned and recalculated.

2.2.2. TREE-BASED ALGORITHM

In 1968, Rappeport[9] proposed an iterative algorithm for obtaining distributions of the

order statistics for the multinomial sample. This algorithm is based on the represen-

tation of all possible outcomes of multinomial trial in a form of a tree. For example,

random scatter of 6 balls across 3 urns can result in one of the paths through the tree,

shown on the Figure2.1. Different levels of the tree represent the number of balls in the

urn. The nodes - the number of urns with the specified amount of balls.

So, the path, indicated blue on the Figure2.1, shows the case, when 6 balls are drawn into

one urn and the other two urns are empty. Green branch of the tree represents the result

of the experiment, when one urn contains 3 balls, another urn is filled with 2 balls, and

the last one has 1 ball.

In the following sections, algorithms are also derived under assumption of the equiprob-

able multinomial. We begin with the algorithm for the maximum, since it is the basis for

all succeeding algorithms.
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Number of
balls in urn

6

5

4

3

2

1

0

1

0

0

0

0

0

2

0

0

0

0

3

0

0

1

1

1

0

2

0

0

1

1

0

0

2

0

1

0

1

1

0

0

0

1

1

Figure 2.1: Tree representation of the throw of 6 balls into 3 urns

2.2.3. DISTRIBUTION OF THE LARGEST ORDERED VALUE

To compute the distribution of the highest order statistic

P (n<1> ≤ r : N ,m), with n<1> = max
1≤k≤m

nk

we need to sum up probabilities of all the paths, that have zero nodes for all levels from

r+1 to N . For example, if want to compute the probability that no urn contain more than

r = 3 balls, when N = 6 and m = 3, we need to sum probabilities of the paths, indicated

gray and green on the Figure 2.1.

As a solution to this, Rappeport[9] developed an iterative procedure. The general idea

is to represent P (n<1> ≤ r : N ,m) in terms of P (n<1> ≤ r − 1 : N ,m) and find a way to

compute this probability explicitly for some specific r .

We start from computing the probability, that the maximum amount of the balls in the

urns equals exactly to r , and assuming, that such an urn is unique, i.e. all others urns

have at least 1 ball less. Then using 1.1 and introducing operator W2, which is nothing

more than a sum over all possible values n<2> . . .n<m>, such that n<1> > n<2>, we can

compute

P (n<1> = r : N ,m,n<1> > n<2>) = 1

r !
W2

(
N !

mN ∏m
i=2 n<i>!

m!∏r−1
k=0(#ni = k)!

)
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where #ni = k denotes the number of ni ’s equal to k.

The fraction
m!∏r−1

k=0(#ni = k)!

arises from the simple combinatorial argument. Since all the bins are the same, the

probability of given composition of n1, ..nm should be multiplied by total number of its

unique permutations.

If we relax condition of the uniqueness of maximum and use q = 0 to mean that n<1> < r ,

then

P (n<1> =≤ r : N ,m, ) =
∑
q

1

r !q !

N !m!

mN
Wq+1

(
1∏m

i=2 n<i>!
∏r−1

k=0(#ni = k)!

)

Clearly, the amount of bins, containing exactly r balls, can’t be bigger than bN
r c, which

defines the upper limit of the summation. Also, since all other N − r q balls should be

placed in m−q urns, with maximum not exceeding r −1, following inequality should be

satisfied

(m −q)(r −1) ≥ (N − r q),

from which the lower bound for q is max(0, N −r m+m). So the range of the summation

is defined as:

max(0, N − r m +m) ≤ q ≤ bN

r
c (2.6)

Finally, noticing that

Wq+1

(
1∏m

i=2 n<i>!
∏r−1

k=0(#ni = k)!

(m −q)!(N − r q)!

(m −q)N−r q

)
= P

(
n<1> ≤ r −1 : N − r q,m −q

)
,

we can write the iterative formula for the probability of maximum

P (n<1> ≤ r : N ,m) =∑
q

Aq P (n<1> ≤ r −1 : N − r q,m −q) (2.7)

Aq = N !m!

mN

1

r !q q !

(m −q)N−r q

(m −q)!(N − r q)!

As was mentioned, to carry out iteration procedure it should be feasible to evaluate it for

some particular value of r , which is clearly possible for r = 1.

P (n<1> ≤ 1 : N ,m) =


m!
mN (m−N )!

if m ≥ N

0 m < N
(2.8)

DISTRIBUTION OF THE SUM OF THE HIGHEST ORDER STATISTIC

The algorithm for the maximum can also be used for the calculation of probability func-

tion for the sum of the highest order statistic.
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As an example, we consider the case of the sum of the first three highest order statistics,

P (n<1>+n<2>+n<3> ≤ r : N ,m). This example was also provided in the original paper,

but contained some typos, which we corrected.

The framework of the method is to divide the probability function into the different

terms, corresponding to the different ranges of n<1> and n<2>. We can define three dis-

joint cases:

• n<1> ≤ r
3 - in this case, clearly

P (n<1>+n<2>+n<3> ≤ r : N ,m) = P (n<1> ≤ r

3
: N ,m)

• n<1> > r
3 and n<2> ≤ r−n<1>

2 - here we can fix value of n<1> = t1, therefore reserve

one urn to have exactly t1 balls. If the maximum of the smaller sample, with N =
N − t1 and m = m−1, will be smaller or equal than r−t1

2 , original inequality for the

sum of the three highest order statistics will automatically hold. Total probability

in this case is equal to the sum over all possible values of n<1>.

P (n<1>+n<2>+n<3> ≤ r : N ,m) =
r∑

t1=b r
3 +1c

At1 P (n<1> ≤ r − t1

2
: N − t ,m −1)

At1 =
N !m!

mN

1

t1!

(m −1)N−t1

(m −1)!(N − t1)!

• n<1> > r
3 and n<2> > r−n<1>

2 - analogously to the previous case, but we fix both

values of n<1> and n<2>.

P (
3∑

i=1
n<i> ≤ r : N ,m) =

r−1∑
t1=b r

3 +1c

min(r,t1−r )∑
t2=b r−t1

2 +1c
At1,t2 Bt1,t2 P (n<1> ≤ r − t1 − t2 : N − t1 − t2,m −2)

At1,t2 =
N !m!

mN

(m −2)N−t1−t2

(m −2)!(N − t1 − t2)!

1

t1!t2!

Bt1,t2 =


1
2! ift1 = t2

1 otherwise

Coefficient Bt1,t2 appears, because in this case values of t1 and t2 might be equal,

so we need to account on their permutation.

Distribution of a sum of the J highest order statistics can be computed in the same way,

splitting probability function into J terms. Each term corresponds to a particular range

of values of n<i>. On every interval we fix some of the n<i> and calculate the probability

of the maximum on the smaller sample, restricting it in such a way, that original inequal-

ity holds. Summation over all possible values of fixed n<i> results in the total probability
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for this range. The general formula for the distribution of a sum of the J highest order

statistics is following

P (
J∑

i=1
n<i> ≤ r : N ,m) =

= P (n<1> ≤ r

J
: N ,m)+

r∑
t1=b r

J +1c
At1 P (n<1> ≤ r − t1

J −1
: N − t1,m −1)+

+·· ·+
r−J+2∑

t1=b r
J +1c

· · · ∑
t J−1

At1,...,t J−1 Bt1,...,t J−1 P (n<1> ≤ r −
J−1∑
i=1

ti : N −
J−1∑
i=1

ti ,m − J +1)

(2.9)

If we denote I as the total number of summations for the particular range, then summa-

tion limits are defined as: b r
J +1c ≤ t1 ≤ r − I +1 - for i = 1

b r−∑I−1
i=1 ti

J−I+1 +1c ≤ ti ≤ min(tI−1,r −∑I−1
i=1 ti ) - for 2 ≤ i ≤ I

And coefficients A and B are calculated according to the following formula:

At1,...,tI =
N !m!

mN

1∏I
i=1(n<i>)!

(m − I )(N−∑I
i=1 ti )

(m − I )!(N −∑I
i=1 ti )!

Bt1,...,tI =
1∏tI

k=t1
(#ti = k)!

where #ti = k denotes the number of ti ’s equal to k.

2.2.4. DISTRIBUTION OF THE SMALLEST ORDER STATISTICS

The distribution of the smallest order statistics can be easily derived, simply using cal-

culation of the sum of m −1 highest order statistics, since

P ( min
1≤k≤m

nk ≥ r ) = P (
m−1∑
i=1

n<i> ≤ N − r : N ,m) (2.10)

However, this approach turns out very computationally inefficient already for quite small

N and m.

Rapperport, in his thesis, suggested an idea how the algorithm 2.7 could be used to com-

pute the distribution of the minimum, but no clear statement of the algorithm was made.

We provide a detailed explanation on how to exploit this method in order to compute the

minimum distribution.

Carrying out the iteration procedure, we can assign 0 probability to the branches that

have urns with less than r balls - we define P (n<1> ≤ r −1 : N ,m) = 0 for all cases when
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N 6= 0 or m 6= 0. Iterating through all possible values of the maximum - from r to N - we

will compute the desired probability for the minimum.

P ( min
1≤k≤m

nk ≥ r ) =
N∑

t=r
P (n<1> ≤ t : N ,m), with

P (n<1> ≤ r −1 : N ,m) = 1 if N = 0,m = 0

P (n<1> ≤ r −1 : N ,m) = 0 if N 6= 0∨m 6= 0

(2.11)

As an example, we again consider the multinomial experiment, with N = 6 and m = 3,

and compute the probability, that no bin has less than 2 balls, i.e. P (minni ≥ 2 : N =
6,m = 3). Algorithm 2.11,on the first iteration will compute the probability of the green

path on Figure 2.2. Following iterations will assign 0 probability to the gray branches,

since they all have bins with 1 ball or empty urns.
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Figure 2.2: Outcome tree for the throw of 6 balls into 3 urns with visualization for the minimum algorithm

Now, the initial algorithm can be improved in a more computationally efficient way.

We can notice that algorithm for the maximum traverse through all the branches of the

outcome tree, while computing P (P (n<1> ≤ N : N ,m). So, we can find distribution of the

minimum simply calculating P (n<1> ≤ N : N ,m) with the same "rules" for assigning 0

probability for branches as in 2.11. This addition reduces amount of iterations, since we

don’t calculate probabilities for the same branch multiple times.

P ( min
1≤k≤m

nk ≥ r ) = P (n<1> ≤ N : N ,m), where

P (n<1> ≤ r −1 : N ,m) = 1 if N = 0,m = 0

P (n<1> ≤ r −1 : N ,m) = 0 if N 6= 0∨m 6= 0

(2.12)
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Both versions of the algorithm have been implemented and made available in this the-

sis. We also provide tables with the critical values for the described distributions in the

Appendix B.



3
ALGORITHM FOR THE RANGE

DISTRIBUTION

In this chapter, we use same framework as Rapperport to develop a new method for

calculating the range distribution for the multinomial sample. Unlike the solution, pro-

posed by Corrado[3], our new algorithm doesn’t require redesign for every new compo-

sition.

3.1. DISTRIBUTION OF THE RANGE

To make the idea of the algorithm clear, we first return to the example of the multino-

mial experiment with N = 6 balls and m = 3 urns and describe the steps to compute the

probability of the range being smaller or equal to 3.

We can split this probability in two terms, corresponding to the different ranges of the

maximum.

P ( max
1≤k≤3

nk − min
1≤k≤3

nk ≤ 3) = P ( max
1≤k≤3

nk− min
1≤k≤3

nk ≤ 3 : maxnk ≤ 3)+

+P ( max
1≤k≤3

nk − min
1≤k≤3

nk ≤ 3 : maxnk > 3)
(3.1)

First term can be simply computed using 2.7, since obviously

P ( max
1≤k≤3

nk − min
1≤k≤3

nk ≤ 3 : maxnk ≤ 3) = P ( max
1≤k≤3

nk ≤ 3)

14
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In order to compute the second term, we can use a similar idea as for the minimum.

We iterate through all possible values for the maximum, assigning 0 probability to the

branches that have urns with less than "current maximum - 3 " balls. For example, we

compute P (n<1> ≤ 4 : n<1> > 3) with following conditions :

P (n<1> < 1 : N ,m) = 1 if N = 0,m = 0

P (n<1> < 1 : N ,m) = 0 if N 6= 0∨m 6= 0
(3.2)

Using this, we will compute the probability of the green path on Figure3.1 and discard

the grey one. Note, that we don’t visit the three blue paths, since we consider the case in
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Figure 3.1: Selection of the tree branches in the range algorithm in case of N=6,m=3

which maxnk > 3. Similarly, we compute P (n<1> ≤ 5 : n<1> > 4) and P (n<1> ≤ 6 : n<1> >
5) increasing minimum "allowed" amount of balls in urn to 2 and 3 correspondingly.

Summing up all resulted probabilities, we obtain desired value for the range probability.

Now, we will derive an equation for general case. Obviously, we can split the probability

the same way as in the example:

P (maxni −minni ≤ r : N ,m) = P (maxni ≤ r : N ,m)+
+P (maxni −minni ≤ r : N ,m,maxni > r )

(3.3)

The first term is easily computed using the algorithm for maximum 2.7, so now we will

consider the second term.

Assume, for time being, that maxni = n<1> = n<q> = r +1 > n<q> and denote minni =
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n<m>. Then, we can rewrite the second term of 3.3:

P (n<1>−n<m> ≤ r : N ,m,n<1> = r +1) =

= 1

((r +1)!)q q !
Fq+1,1

(
N !m!

mN

1∏m
i=q+1 n<i>!

∏r
m=t−r (#ni = m)!

)
,

(3.4)

where Fq+1,t−r is an operator that sums over all possible values of n<q+1>, . . . ,n<m>, such

that n<1> = n<q> > n<q+1> and n<m> ≥ 1.

Summing over all possible values for q will result in the total probability for this case

P (n<1>−n<m> ≤r : N ,m,n<1> = r +1) =

=∑
q

1

((r +1)!)q q !

N !m!

mN
Fq+1,1

(
1∏m

i=q+1 n<i>!
∏r

m=t−r (#ni = m)!

)
(3.5)

Since, in this case n<1> > r , range of q in summation is different from 2.6. To impose this

condition, case of q = 0 should be excluded, so

max(1, N − (r +1)m +m) ≤ q ≤ b N

r +1
c

Now, if we multiply and divide 3.5 by (m−q)(N−(r+1)q)

(m−q)!(N−(r+1)q)! , we can write it in the following

form:

P (n<1>−n<m> ≤ r : N ,m,n<1> = r +1) =∑
q

1

((r +1)!)q q !

N !m!

mN

(m −q)(N−(r+1)q)

(m −q)!(N − (r +1)q)!
Fq+1,1

(
1∏m

i=q+1 n<i>!
∏r

m=t−r (#ni = m)!

(m −q)!(N − (r +1)q)!

(m −q)(N−(r+1)q)

)
(3.6)

We can notice, that

Fq+1,1

(
1∏m

i=q+1 n<i>!
∏r

m=t−r (#ni = m)!

(m −q)!(N − (r +1)q)!

(m −q)(N−(r+1)q)

)

is simply another form of writing

P
(
minni ≥ 1 : N − (r +1)q,m −q,n<1> ≤ r

)
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Let’s recall the modified formula 2.12 for the distribution of minimum:

P ( min
1≤k≤m

nk ≥ k) = P (n<1> ≤ N : N ,m), where

P (n<1> ≤ k −1 : N ,m) = 1 if N = 0,m = 0

P (n<1> ≤ k −1 : N ,m) = 0 if N 6= 0∨m 6= 0

The condition n<1> ≤ r can be straightforwardly imposed to the algorithm by changing

the threshold for the maximum. For the current case:

P
(
minni ≥ 1 : N − (r +1)q,m −q,n<1> ≤ r

)= P (n<1> ≤ r : N ,m), where

P (n<1> ≤ 0 : N ,m) = 1 if N = 0,m = 0

P (n<1> ≤ 0 : N ,m) = 0 if N 6= 0∨m 6= 0

(3.7)

Plugging this into equation 3.6:

P (n<1>−n<m> ≤ r : N ,m,n<1> = r +1) =∑
q

1

((r +1)!)q q !

N !m!

mN

(m −q)(N−(r+1)q)

(m −q)!(N − (r +1)q)!
P (n<1> ≤ r : N − (r +1)q,m −q),

(3.8)

with conditions

P (n<1> ≤ 0 : N ,m) = 1 if N = 0,m = 0

P (n<1> ≤ 0 : N ,m) = 0 if N 6= 0∨m 6= 0

Using equation2.7 for the distribution of the maximum, we can write the desired proba-

bility as:

P (n<1>−n<m> ≤ r : N ,m,n<1> = r +1) = P (n<1> ≤ r +1 : N ,m), where

P (n<1> ≤ 0 : N ,m) = 1 if N = 0,m = 0

P (n<1> ≤ 0 : N ,m) = 0 if N 6= 0∨m 6= 0

(3.9)

Finally, we can calculate the second term in 3.3 summing over all possible values of n<1>

P (maxni −minni ≤ r : N ,m,maxni > r ) =
N∑

t=r+1
P (n<1> ≤ t : N ,m,n<1> > t −1), where

P (n<1> ≤ t − r −1 : N ,m) = 1 if N = 0,m = 0

P (n<1> ≤ t − r −1 : N ,m) = 0 if N 6= 0∨m 6= 0

(3.10)
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Condition n<1> > t − 1 is introduced at every summation step in order to avoid calcu-

lations for the same branches of the outcome tree. This results in different ranges of

summations in the recursion, i.e.

max(1, N − tm +m) ≤ q ≤ bN

t
c if n<1> > r

max(0, N − tm +m) ≤ q ≤ bN

t
c if n<1> ≤ r

The range distribution can be evaluated via the following iteration procedure:

P ( max
1≤k≤m

nk− min
1≤k≤m

nk ≤ r : N ,m) = P (n<1> ≤ r : N ,m)+

+
N∑

t=r+1
P (n<1> ≤ t : N ,m,n<1> > t −1)

with conditions for the case n<1> > r

P (n<1> ≤ t − r −1 : N ,m) = 1 if N = 0,m = 0

P (n<1> ≤ t − r −1 : N ,m) = 0 if N 6= 0∨m 6= 0

(3.11)

IMPLEMENTATION IN MATLAB

All the algorithms presented in this thesis were implemented in MATLAB. Even if the

main application area of discussed algorithms are samples of small size, it is interesting

to compare approximating and exact distributions for quite big values. It turns out that

standard routine, implemented in MATLAB, allows calculation of the factorials up to 170.

In order to avoid this problem, logarithm of gamma function was used, since

t ! = exp(log(Γ(t −1))

Taking natural logarithm turned out very useful, since all formulas contain fractions with

factorials in denominator and numerator, which were replaced by summation and sub-

traction.

In Appendix B, table of critical values for the range distribution is presented for the dif-

ferent combinations of the amount of observations and bins. For any other case, values

could be obtained using the code from Appendix A.



4
ACCURACY OF THE

APPROXIMATIONS

This chapter is dedicated to the analysis of accuracy of the approximating distributions

for the maximum and the range of a multinomial sample. We compare approximate

values with the exact ones, computed using the algorithms, discussed in Chapters 2-3.

Along with exact values for different cases, we also provide some statistics about errors

of the approximation.

4.1. ACCURACY OF THE MAXIMUM DISTRIBUTION APPROXIMA-

TION

In this section, we examine calculation precision of the Gumbel approximation for the

maximum distribution of multinomial sample. As was shown in 2.1.2, approximation is

given by:

P

maxni −µ(1+ε)√
N

2m logm

+0.5log(4π) ≤ z

 D→ FGumbel (z,0,0) = e−e−z

We start with investigating accuracy of the approximation for the binomial case. Figure

4.2, 4.2, 4.3 show cumulative distribution functions when the number of observations is

equal to 5,10 and 50.

19
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Figure 4.1: Exact maximum distribution and Gumbel approximation for N=5,m=2
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Figure 4.2: Exact maximum distribution and Gumbel approximation for N=10,m=2
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Figure 4.3: Exact maximum distribution and Gumbel approximation for N=50,m=2

It is clear that in the binomial case, even with quite big number of observations, ap-

proximating distributions differs quite significantly.

If we define the absolute and relative errors, as

abs = |pappr ox −pex | and r el = |pappr ox −pex |
pex

,

the mean of the relative errors in the binomial case, even with 100 observations, is 0.16.

Table 4.1 reports the exact probabilities for the multinomial maximum and compares

these with the approximate values for different combinations of number of observations

and bins.

N=25,m=5 N=100,m=25
t F(t) approx F(t) exact abs rel F(t) approx F(t) exact abs rel
5 0,064 0,002 0,062 31,000 0,001 0,000 0,001
6 0,292 0,147 0,145 0,986 0,121 0,022 0,099 4,500
7 0,576 0,490 0,086 0,176 0,552 0,240 0,312 1,300
8 0,781 0,769 0,012 0,016 0,846 0,596 0,25 0,419
9 0,895 0,913 0,018 0,020 0,954 0,837 0,117 0,140
10 0,951 0,972 0,021 0,022 0,987 0,945 0,042 0,044

N=20,m=20 N=50,m=50
2 0,185 0,121 0,064 0,529 0,013 0,003 0,01 3,333
3 0,864 0,705 0,159 0,226 0,767 0,370 1,071 1,073
4 0,987 0,948 0,039 0,041 0,984 0,848 0,161 0,160
5 0,998 0,993 0,005 0,005 0,999 0,976 0,023 0,024
6 1,000 1,000 0,000 0,000 1,000 0,997 0,003 0,003

Table 4.1: Approximation precision
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Table 4.1 reveals quite significant difference in the probability values even for tail ob-

servations. For example, in the case of N = 100,m = 25, the 95th approximate percentile

is 9, while the exact one is 11. This can influence the results of tests, based on maximum

test statistics, quite strongly.

Figure 4.4 shows average absolute error for the different bin compositions.
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Figure 4.4: Average absolute error for the approximation of maximum distribution

The average absolute error remains around 0.11, even with growing amount of obser-

vations and bins, so we can conclude that the Gumbel approximation for the maximum

distribution is not precise.

4.2. ACCURACY OF THE RANGE DISTRIBUTION APPROXIMATION

As was discussed in 2.1.1, the multinomial range distribution can be approximated by

the range distribution of m i.i.d. standard normal variables.

P

(
max

1≤i≤m
ni − min

1≤i≤m
ni ≤ r

)
D→ P

(
max

1≤i≤m
xi − min

1≤i≤m
xi ≤ (r +δk )

√
m

N

)
where

δk = 1 for k = 2,δk = 0.5 for k > 2

Unlike approximation to the maximum, approximate range distribution tend to perform

better with growing number of observations, as it can be seen from Figures 4.5, 4.6.
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Figure 4.5: N=30,m=20
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Figure 4.6: Exact range distribution and normal approximation for N=100,m=25

Normal approximation provides the reasonable degree of accuracy for not sparse

cases. But in the sparse cases, the accuracy of the approximation tends to decrease, as

shown in the Table 4.2.
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N=20,m=20 N=60,m=100
t F(t) approx F(t) exact abs rel F(t) approx F(t) exact abs rel
1 0,000 0,000 0,000 0,000
2 0,031 0,121 0,090 0,744 0,000 0,072 0,072 1,000
3 0,396 0,706 0,310 0,439 0,210 0,724 0,514 0,710
4 0,853 0,949 0,096 0,101 0,899 0,966 0,067 0,069
5 0,985 0,999 0,014 0,014 0,998 0,997 0,001 0,001

N=60,m=60 N=50,m=60
3 0,022 0,299 0,277 0,926 0,092 0,536 0,444 0,828
4 0,442 0,816 0,374 0,458 0,698 0,915 0,217 0,237
5 0,905 0,970 0,065 0,067 0,975 0,989 0,014 0,014
6 0,994 0,996 0,002 0,002 0,999 0,999 0,000 0,000
7 1,000 1,000 0,000 0,000 1,000 1,000 0,000 0,000

Table 4.2: Precision of the range approximation

Figure 4.7 shows that accuracy of the approximation fully depends on the ratio be-

tween the number of urns and the amount of the observations. Approximate distribution

converges to the exact one for cases when N
m ≥ 3.
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Figure 4.7: Average absolute error for the approximation of range distribution
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STATISTICAL TESTS BASED ON THE

MULTINOMIAL RANGE

Young(1962)[11] proposed a statistical test based on the range of multinomial sample

and provided evidence of its power advantage against classical procedures, suchχ2 goodness-

of-fits and the others. Young used approximating distribution for the test statistics, whose

accuracy is strongly dependent both on the number of observations and the amount of

bins, as was discussed in the previous chapter.

The goal of this chapter is to compare performance of the tests based on exact and ap-

proximate distributions for the test statistics under different specified alternatives. But

first we start by discussing the fact, that the range based statistic has a very desirable

property for a test statistics, such as unbiasedness.

5.1. UNBIASEDNESS OF THE RANGE BASED STATISTICS
According to Lehmann[6], a test procedure φ is called unbiased if the following condi-

tions hold:

Definition 1. Assume, a sample of observations X = [X1, . . . , Xn] from the known distri-

bution F (·,θ) is given. Consider the parametric hypothesis

H0 : θ ∈Θ0

vs

25
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H1 : θ ∈Θ1

whereΘ0 ∩Θ1 =; andΘ0 ∪Θ1 =Θ.

Then, for a defined significance level α, test procedure φα is unbiased if infθ∗∈Θ1 P
(
φα rejects H0|θ = θ∗

)≥α
supθ∗∈Θ0

P
(
φα rejects H0|θ = θ∗

)≤α (5.1)

Compiani[2], in his master thesis, proved the following theorem, regarding unbiased-

ness of the multinomial range statistics.

Theorem 1. Suppose we are given a sample [N1, . . . , Nm] from the multinomial distri-

bution with parameters N and p = [
p1, . . . , pm

]
. Suppose we want to test the following

parametric null hypothesis:

H0 : p =
[

1

m
, . . . ,

1

m

]
against

H1 : p 6=
[

1

m
, . . . ,

1

m

]
Let

T = max
1≤i≤m

ni − min
1≤i≤m

ni

Then, for a fixed significance level α and critical value cα, test φα of a form:

φα =
 Do not reject H0 if T < cα

Reject H0 if T > cα

is unbiased.

5.2. RANDOMIZED STATISTICAL TESTS

One of the parameters of the statistical test, which should be defined beforehand, is the

significance level α. That is to say, for some null hypothesis H0 and alternative hypothe-

sis H1 we define the test function φα, using the test statistics T = T (N1, . . . , Nm), as:

φα(N1, . . . , Nm) =
 0 if T (N1, . . . , Nm) ∉∆α

1 if T (N1, . . . , Nm) ∈∆α
(5.2)

where ∆α is a subset of the support of test statistics T , such that

P (T (N1, . . . , Nm) ∈∆α|H0) =α (5.3)
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In the following sections, we will use the multinomial range Tr ang e as the test statistics.

Range of the multinomial distribution is a discrete value, so there might be a case, that

no such subset ∆α exists, which satisfies 5.3. This leads to the fact that test of a form 5.2

will not have significance level α as desired.

In order to make significance level of the test exactly α we can modify the test function

and introduce randomized statistical test. Consider a test function φα such that:

φα(N1, . . . , Nm) =


0 if T (N1, . . . , Nm) < c̄α

κ if T (N1, . . . , Nm) = c̄α

1 if T (N1, . . . , Nm) > c̄α

(5.4)

where κ ∈ (0,1) satisfies following equation:

P (T (N1, . . . , Nm) = c̄α|H0)θ+P (T (N1, . . . , Nm) > c̄α|H0) =α (5.5)

Equation 5.5 shows that the test defined in 5.4 has significance level exactly equal to α,

as desired. In the randomized test 5.4, in the case of T (N1, . . . , Nm) = c̄α we reject the null

hypothesis with probability κ.

Critical value c̄α is the largest integer r, such that

P (T (N1, . . . , Nm) ≥ r |H0) >α,

therefore

θ = α−P (T (N1, . . . , Nm) ≥ c̄α+1|H0)

P (T (N1, . . . , Nm) = c̄α|H0)
.

5.3. GOODNESS-OF-FIT TESTS

Many goodness-of-fit tests can be reduced to the testing parametric hypothesis for a

multinomial distribution. Suppose, we are given a set of i.i.d. observations X1, . . . , Xn

from unknown distribution F , with null hypothesis H0 : F = F0. Support of the null

distribution F0 can be partitioned into m equiprobable non-overlapping sub-intervals

B1, . . . ,Bm . We define random variables N1, . . . , Nm as counters of the events in the inter-

vals B1, . . . ,Bm correspondingly

Ni =
n∑

j=1
I (X j ∈ Bi ) for 1 ≤ i ≤ m

Then, under H0, auxiliary variables N1, . . . , Nm are distributed as follows:

N ∼ Multinomial(n, p) with p =
[

1

m
, . . . ,

1

m

]
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Therefore, the test becomes

H0 : p = p0

vs

H1 : p 6= p0

Remark. If we define Yi ≡ F0(Xi ), by the probability integral transform, then Yi ∼Uni f or m(0,1)

under H0 for all i . This implies that, for any continuous theoretical distribution F0, we

can always transform the available data as shown above and obtain observations Yi in

the interval (0,1). Then, sub-intervals Bi , defined as Bi = [ i−1
m , i

m ], are equiprobable un-

der distribution of Yi . So, without loss of generality, we can always consider partition of a

unit interval into m sub-intervals with length 1
m .

One of the important issues, in the construction of the goodness-of-fit test of this

kind, is how to select the number of bins. Read and Cressie[10] provided the review of

relevant literature on this topic. However, we will leave this problem outside of the scope

of this work and try different compositions of bins and compare performance of the tests

relying on approximate and exact distributions.

5.3.1. NORMAL VS LOGNORMAL

As an example, we will provide the power comparison of the exact and approximate tests

under lognormal distribution as the alternative. The null distribution, that we consider,

is the normal distribution with the mean µ = 1.3 and the standard deviation σ = 0.25.

Alternative distribution is the lognormal with zero mean and standard deviation σLN =
0.25. Densities of the distributions are presented in Figure5.1.
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Figure 5.1: Normal(1.3,0.25) vs Lognormal(0,0.25)
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Power of the exact and approximate test is computed by Monte-Carlo simulation.

For each composition of the number of bins and the number of observations 3000 sim-

ulations were made.

The choice of the maximum sample size being not greater than 50 is motivated by the

following fact. For all input values of N , the power of the two tests reaches the ceiling

value of 1 for N ≤ 50. Therefore comparing tests for the sample sizes bigger than 50 does

not seem illustrative.
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Figure 5.2: Power comparison for the case of 5 bins

15 20 25 30 35

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

N

P
ow

er

α = 0.05 m=10

 

 

exact
approximation

Figure 5.3: Power comparison for the case of 10 bins
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Inspection of the Figures 5.2 - 5.3 reveals the power advantage of the exact distribu-

tion based test for all test sample size in case of the given alternative. In the case of the

5 bins, Figure 5.2, exact test outperforms the approximate test for sample sizes smaller

than 25 and at least as powerful as approximate for bigger samples. Also, the Figures 5.2 -

5.3 suggest that the difference in the performance tend to grow with the growing amount

of bins.

Figures 5.4 - 5.3 compare power of the tests for m = 30 and m = 50, respectively.

10 15 20 25 30 35 40 45

0.4

0.5

0.6

0.7

0.8

0.9

N

P
ow

er

α = 0.05 m=30

 

 

exact
approximation

Figure 5.4: Power comparison for the case of 30 bins
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Figure 5.5: Power comparison for the case of 50 bins
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Again, Figures 5.4 - 5.5 show that the exact distribution based test is more powerful

than approximate based test for all values of N .

On the basis of Figures 5.2 - 5.5 we can conclude that the exact test performs better uni-

formly over all sample sizes, independently to the amount of bins. We also see, that the

difference in power is increasing for the greater amount of bins.

5.3.2. POWER UNDER OTHER ALTERNATIVES

In order not to limit our attention to some particular distribution and provide more gen-

eral comparison of the tests, in this section we study the performance of the test under

the following class of the alternatives H1:

H1 : pi = 1

m
+ 1p

N
ci ,where i = 1, . . . ,m

With the c’s being fixed set of constants, such that
∑

ci = 0, set of alternatives H1 con-

verges to the H0 with O
(
n− 1

2

)
. This family of the alternatives was proposed by Cochran[1]

as a method of strengthening chi-squared test. We again use Monte-Carlo simulation for

different combinations of N and m to provide evidence of the power advantage of the

exact test. For every pair of N and m we look at the behaviour of the test for different

values of
∑

c2.

We start by investigating the behaviour on the small samples. In the following Figures,

horizontal axis represent the value of
∑

c2.
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Figure 5.6: Power comparison for the case of 2 bins and N=10
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Figure 5.7: Power comparison for the case of 2 bins and N=12

As Figures 5.6 - 5.7 show, the exact test is more powerful than approximate one uni-

formly over all values of c2. This is consistent with the remarks about behaviour of the

tests that were made in previous section.

To support the advantage of the exact test and show independence from sample size and

urn composition, we provide Figures 5.8 - 5.10
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Figure 5.8: Power comparison for the case of 4 bins and N=30
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Figure 5.9: Power comparison for the case of 8 bins and N=160
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Figure 5.10: Power comparison for the case of 10 bins and N=160

Figures 5.8 - 5.10 show as well, that the gain of power for bigger samples becomes

smaller, which can be explained by the growing ratio between amount of observations

and number of bins due to the convergence of the approximate distribution to the exact

one, as was explained in the Chapter 4.
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5.4. TEST FOR THE HOMOGENEOUS POISSON PROCESS

The same kind of test could be applied for testing homogeneous Poisson process. Sup-

pose, M(t ) - is homogeneous Poisson process. If we again partition time domain into m

non-overlapping equal-length sub-intervals B1, . . . ,Bm and define number Ni as

Ni =
n∑

j=1
I (X j ∈ Bi ) for 1 ≤ i ≤ m

Then distribution of random variables Ni is again equiprobable multinomial.

In order to study performance of the test non-homogeneous Poisson process should be

simulated. We will use time-scale transformation of homogeneous Poisson process to

generate NHPP. This method is based on simulation of the homogeneous Poisson pro-

cess of the rate one.

Denote N1(t ) as rate one HPP. Then inter arrival times T are distributed exponentially

with intensity 1

P (T ≥ t ) = exp(−t )

which can be rewritten

P (Λ−1(T ) ≥ t ) = exp(−Λ(t )) (5.6)

Let’s also denote Λ(x) - integrated rate function, which is nothing more than parameter

of Poisson distribution of the number of points in any finite interval (0, x], assuming that

Λ(0) = 0. Then inter arrivals times T ′ for HNPP are distributed:

P (T ′ ≥ t ) = exp(−Λ(t )) (5.7)

From equations 5.6 - 5.7 we can conclude, that T
′
1,T

′
2, . . . are points of the NHPP with

integrated rate function Λ(t ) if T1 =Λ(T
′
1),T2 =Λ(T

′
2) are points of a HPP with intensity

1. Hence, we can simulate NHPP simply generation exponential variables and taking

inverseΛ−1 of the generated time instants.

Power comparison of the tests is presented in the Table 5.1, which reveals advantage of

the exact test.

λ= 2+0.01∗ t ,m=30, T=20 λ= 0.3∗ t , m = 20, T = 200
Exact Approximate Exact Approximate
0.184 0.037 0.427 0.371
λ= 0.05∗ t , m= 15 λ= 2+ si n(2πt ),m=30
Exact Approximate Exact Approximate
0.133 0.059 0.213 0.084

Table 5.1: Power of the exact and approximate test in case of Poisson process

In the case of testing HPP, initial partition of the time domain is very important. For
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example, we consider a case, in which the real intensity follows the harmonic function:

λ= 5sin(π∗ t )

Figure 5.11 shows power of the tests with time domain split into 10 or 20 disjoint inter-

vals. Blue and red lines represent case of 10 bins, black and green - 20.

10 15 20 25 30 35 40 45 50

N

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

po
w

er

approximate m=10
exact m=10
approximate m=20
exact m=20

Figure 5.11: Power of the tests in case of harmonic intensity

From Figure 5.11, we see again the power advantage of the exact test. Huge power

gain between cases with 10 and 20 bins can be explained by the following fact. If we split

time domain into 20 non-overlapping equal-length intervals, each of them covers the

period of intensity function, which averages out the effect of the harmonic function.

So,the exact range based test shows better performance than the approximate test in

Poisson process application, but the performance itself is highly dependent on the initial

urn composition.

5.5. A SIMPLE APPLICATION TO DISEASE CLUSTERING

We conclude by showing a simple application of the test to the issue of disease cluster-

ing. The problem of disease clustering is frequently of interest to epidemiologists and

biomedical statisticians. From a statistical point of view, disease clustering usually have

been approached as hypothesis testing problems. The main interest is to test a null hy-

pothesis of no clustering, i.e., a common rate of disease across the study region, against

an alternative hypothesis of clusters presence.

Numerous ways to construct such tests were proposed over the last years. One of the
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approaches is based on the multinomial distribution. In this case, study region must

be separated into equal clusters, in terms of the population. Then, obviously, in case of

common rate of the disease across the region, the number of registered events should

follow equiprobable multinomial distribution.

We will demonstrate this approach using well-known epidemiological dataset of diag-

nosed leukaemia cases over 8 counties in the upstate of New York. This data originated

from the New York Sate Cancer Registry and was gathered during the 5-year period 1978-

1982, with totally 584 individuals diagnosed with leukaemia over population of approx-

imately 1 million people. Original dataset contains spatial information about registered

events already split into 790 initial clusters with different population. Their distribution

is shown on the Figure 5.12

MADISONONONDAGA
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Figure 5.12: Distribution of leukaemia cases over 8 counties in the New York State

In order to perform such a test, we have to cluster datapoints into groups of approx-

imately equal population. In a perfect case, the population of new clusters should be

equal, but for the leukaemia dataset it is impossible due to the original grouping. To our

knowledge, there is no existing unique algorithm for the equal size spatial clustering. For

this case, we have followed next procedure:

1. Define the number of clusters

2. Select range for the cluster population

3. Create clusters, satisfying population range, around points with anomaly high ini-

tial population
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4. Use k-means algorithm to create clusters for the rest of observations, initializing

clusters with points of the highest population

5. Trade observations between clusters based on the population and distance, until

population requirements are satisfied

Using this heuristics, we were able to create clusters with approximately equal popula-

tion (some of the points were reassigned to the different cluster on the post-processing

stage). In Figure 5.13, 32 cluster centroids are presented. In this case, population of the

groups varies from 36036 to 39528, therefore average probability in cluster is 3.48 % with

standard deviation of 0.08%, and we can assume that clusters are equiprobable.

Figure 5.13: Centroids of the 32 clusters

For this grouping, the maximum amount of the individuals diagnosed with the leukaemia

within one cluster is 39 versus the minimum of 3 cases registered. Total number of cases

registered in each cluster is presented in Table5.2. Using multinomial test based on the

range of the sample, null hypothesis is rejected for the 99% confidence level, since 99%

quantile of the range distribution in the case of 584 events and 32 bins is 25. The null

hypothesis is also rejected for the case of 25 clusters, which supports previous research

about leukaemia clusters for this dataset, which are believed to be caused by hazardous

waste sites in Broome, Onondaga, Cayuga and Cortland counties.
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Cluster Registered Cluster Registered Cluster Registered Cluster Registered
1 34 9 18 17 25 25 14
2 28 10 14 18 20 26 12
3 13 11 17 19 9 27 24
4 23 12 39 20 21 28 17
5 23 13 20 21 24 29 5
6 20 14 17 22 12 30 4
7 18 15 14 23 31 31 3
8 27 16 13 24 24 32 3

Table 5.2: Number of patients diagnosed leukaemia in each of 32 clusters

We want to notice that in this particular case there is no difference in using test based

on exact or approximate distribution, since for N = 584 approximate distribution con-

verges to the exact one. For smaller datasets the use of the exact test is preferable.

This method may not allow to identify the exact disease clusters, but rejection of the null

hypothesis is a strong indication of their presence and might be a powerful tool for the

early stages of the research.
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CONCLUSIONS

In this thesis, we have considered different class of tests used to tackle goodness-of-fit

problem: multinomial range test based on the exact distribution of the statistics. Using

results from the work of Rapperport, we developed a new algorithm for computing the

exact distribution of the multinomial range. Our algorithm relies on the tree representa-

tion of the outcome of a multinomial experiment. Unlike the other algorithms, available

in the literature, our version is uniform for any combination of the number of observa-

tions and bins. Presented algorithm require no modification for every new input. As far

as we know, this is a new contribution to the algorithms of this family.

In fact, we also developed new algorithm for the distribution of multinomial minimum

along with the correction of the previously developed algorithm for the distribution of

the sum of multinomial highest order statistics. All the algorithms were developed un-

der hypothesis of the equiprobable multinomial, so future research can be done to create

modifications for not equiprobable cases.

Given this result, we studied the behaviour of the approximating distributions of the

maximum and the range. We discovered that the accuracy of the approximations is

strongly depended on the combination of the number of urns and amount of obser-

vations. This result appears to be interesting, since approximate distribution is widely

used for the hypothesis testing in applications.

Finally, we focused on the hypothesis testing problem. Previous results from the liter-

ature provide evidence of power advantage of the range based test among well-known

goodness-of-fit test statistics, such χ2-test and the others. It was also proved before by

Compiani, that the range based statistics is unbiased. We performed our simulations to

39
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compare tests based on the exact and the approximate distributions. We found that ex-

act test is more powerful than the approximate for different classes of alternatives. We

first showed the power advantage in the case of the particular distributions, but then

also discovered same behaviour under closer class of alternatives. Power advantage of

the exact test holds independently from the sample size and the urn composition.

We also provided simulation results for the particular applications. In application to the

homogeneous Poisson process, exact test showed again power advantage, but for some

alternatives, the power value is highly dependent on the partition of the time domain.

For disease clustering problem, we rejected the hypothesis of a common rate of leukaemia

over upstate of New York. This results is supported by previous research. In this case, re-

sults of the exact and the approximate tests were identical due to the large size of the

sample.
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A.1. ALGORITHM FOR THE MAXIMUM

1 function [P] = max_order_statistic(t,N,I)

2 %% Script calculates probability of highest order statistic being <=

t

3 % Under equiprobable multinomial

4 % Input : N − number of balls

5 % I − number of urns(cells)

6 % t − argument of cdf

7 P = 0;

8 if t == 0 && N~=0

9 P = 0;

10 return

11 end

12 if t==0 && N==0

13 P=1;

14 return

15 end

16 if t>=N

17 P = 1;

18 return

19 end

41
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20 if N==0 && I~=0

21 P=1;

22 return

23 end

24 if N==0 && I==0

25 P=1;

26 return

27 end

28 common_term = gammaln(N+1)+gammaln(I+1)−N*log(I);
29 switch t

30 case 1

31 if I>=N

32 P = exp(gammaln(I+1)−gammaln(I−N+1)−N*log(I)); %

explicit calculation of P(n<1><=1)

33 calc = [calc;t,N,I,P];

34 else

35 P = 0;

36 calc = [calc;t,N,I,P];

37 end

38 otherwise

39 % range of summation for q

40 LowSum = max(0,N−t*I+I);
41 UpSum = floor(N/t);

42 for q = LowSum:UpSum

43 summ_term = (−q*gammaln(t+1)−gammaln(q+1)−gammaln(I−q+1)
−gammaln(N−t*q+1));

44 if I==q

45 summ_term_nominator = 0;

46 else

47 summ_term_nominator = (N−t*q)*log(I−q);
48 end

49 coef = exp(common_term+summ_term+summ_term_nominator);

50 [temp] = max_order_statistic(t−1,N−t*q,I−q);
51

52 P = P + coef*temp;

53

54 end

55 end
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56 end

A.2. SUM OF J HIGHEST ORDER STATISTICS

1 function [ P ] = highest_order_statistics( t,N,I,J )

2 %% Probability of the sum of the first J highest order statistics

being smaller than t

3 % P(sum(1:J)n<i> <= t : N,I) under H1 − equiprobable multinomial

4 % Input: N− number of trials

5 % I − number of cells(urns)

6 % t − argument of cdf

7 % J − number of highest order statistics

8 if J>I

9 error('J should be smaller or equal than I')

10 end

11 if J==I && (t<N )

12 error(' Total sum is every time equal to N')

13 end

14

15 if t == 0 && N~=0

16 P = 0;

17 return

18 end

19 if t==0 && N==0

20 P=1;

21 return

22 end

23 if t>=N

24 P = 1;

25 return

26 end

27

28 %% first term if n<1> <= t/J

29 P = max_order_statistic(floor(t/J),N,I);

30 %% recursive summation over all possible options

31 for sum_depth = 1 : J−1
32 rangeArg = [];

33 cur_depth = 1;
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34 P = P + recursive_sum(t,N,I,J,sum_depth,cur_depth,rangeArg);

35 end

36 end

37 function S = recursive_sum(t,N,I,J,sum_depth,cur_depth,rangeArg)

38 %% auxiliary function for calculating sum of nested loops

39 S = 0;

40 if cur_depth <= sum_depth % either increment summation depth or

calculate the term

41 if cur_depth == 1

42 cur_range(1) = floor(t/J+1);

43 cur_range(2) = t−sum_depth+1;
44 else

45 cur_range(1) = floor((t − sum(rangeArg(1:cur_depth−1)))/(J−
cur_depth+1)+1);

46 cur_range(2) = min( rangeArg(cur_depth−1), t − sum(rangeArg

(1:cur_depth−1)));
47 end

48 for r=cur_range(1):cur_range(2)

49 rangeArg(cur_depth) = r;

50 S = S + recursive_sum(t,N,I,J,sum_depth,cur_depth+1,rangeArg

);

51 end

52 else

53 prob_arg = floor( (t−sum(rangeArg))/(J−sum_depth));
54 temp_p = max_order_statistic(prob_arg, N − sum(rangeArg),I−

sum_depth);

55 common_term = gammaln(N+1) + gammaln(I+1) − N*log(I);

56 coef = (N−sum(rangeArg))*log(I−sum_depth) − gammaln(I−sum_depth
+1) − gammaln( N − sum(rangeArg)+1);

57 for k=1:numel(rangeArg)

58 coef = coef − gammaln(rangeArg(k)+1);

59 end

60 equal_statistics = unique(rangeArg);

61 for k=1:numel(equal_statistics)

62 temp = numel(find(rangeArg == equal_statistics(k)));

63 coef = coef − gammaln(temp+1);

64 end

65 S = temp_p*exp(common_term+coef);
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67 end

68 end

A.3. ALGORITHM FOR THE MINIMUM

1 function P = smallest_order_value( t,N,I )

2 %% Function to calculate the probability of smallest order statistic

to be >= than t for equiprobable multinomial

3 % Input:

4 % t − argument of "survival" function

5 % N − number of balls

6 % I − number of cells

7

8 P = 0;

9 % add for exceptions for "naive" input

10 if t>floor(N/I)

11 P=0;

12 return

13 end

14 if t==0

15 P=1;

16 return

17 end

18 aux = max_for_min(N,N,I,calc,t);

19 P = P + aux;

20 end

21

22 function [aux,calc] = max_for_min(t_max,N,I,calc,t)

23 aux = 0;

24 if t_max<t

25 if N==0 && I==0

26 aux=1;

27 return

28 else

29 aux = 0;

30 return

31 end
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32 else

33 if N==0 && I == 0

34 aux=1;

35 return

36 end

37 if t_max==1

38 if I==N

39 aux = exp(gammaln(I+1)−gammaln(I−N+1)−N*log(I)); %

explicit calculation of P(n<1><=1)

40 return

41 else

42 aux= 0;

43 return

44 end

45 end

46 if N==0 && I~=0

47 aux=0;

48 return

49 end

50 common_term = gammaln(N+1)+gammaln(I+1)−N*log(I);
51 LowSum = max(0,N−t_max*I+I);
52 UpSum = floor(N/t_max);

53 for q = LowSum:UpSum

54 summ_term = (−q*gammaln(t_max+1)−gammaln(q+1)−gammaln(I−q+1)
−gammaln(N−t_max*q+1));

55 if I==q

56 summ_term_nominator = 0;

57 else

58 summ_term_nominator = (N−t_max*q)*log(I−q);
59 end

60 coef = exp(common_term+summ_term+summ_term_nominator);

61 [temp] = max_for_min(t_max−1,N−t_max*q,I−q,t);
62 aux = aux + coef*temp;

63 end

64 end

65 end

A.4. ALGORITHM FOR THE RANGE
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1 function [P] = range_probability_ver2( t,N,I )

2 %% Function to calculate the probability of the range to be < =than

t

3 %for equiprobable multinomial

4 % Input:

5 % r − argument of "cdf" function

6 % N − number of balls

7 % I − number of cells

8 P = 0;

9 t= floor(t);

10 if t>N

11 P=1;

12 return

13 end

14

15 [P]=max_order_statistic(t,N,I);

16 prev=[t,N,I];

17 for t_max = t+1:N

18 [aux] = max_for_range(t_max,N,I,prev,t);

19 P = P + aux;

20 prev = [t_max,N,I];

21 end

22 end

23

24 function [aux] = max_for_range(t_max,N,I,prev,t)

25

26 aux=0;

27 if [t_max,N,I]==prev

28 aux = 0;

29 return

30 end

31 if prev(1)+1−t_max>t
32 if N==0 && I==0

33 aux=1;

34 return

35 else

36 aux = 0;

37 return
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38 end

39 else

40 if N==0 && I == 0

41 aux=1;

42 return

43 end

44 if t_max==1

45 if I==N

46 aux = exp(gammaln(I+1)−gammaln(I−N+1)−N*log(I)); %

explicit calculation of P(n<1><=1)

47 return

48 else

49 aux= 0;

50 return

51 end

52 end

53 if N==0 && I~=0

54 aux=0;

55 return

56 end

57

58 common_term = gammaln(N+1)+gammaln(I+1)−N*log(I);
59 LowSum = max(0,N−t_max*I+I);
60 UpSum = floor(N/t_max);

61 for q = LowSum:UpSum

62 summ_term = (−q*gammaln(t_max+1)−gammaln(q+1)−gammaln(I−q+1)
−gammaln(N−t_max*q+1));

63 if I==q

64 summ_term_nominator = 0;

65 else

66 summ_term_nominator = (N−t_max*q)*log(I−q);
67 end

68 coef = exp(common_term+summ_term+summ_term_nominator);

69 [temp] = max_for_range(t_max−1,N−t_max*q,I−q,prev,t);
70 aux = aux + coef*temp;

71 end

72 end

73 end



B
VALUES OF THE EXACT

DISTRIBUTIONS

B.1. DISTRIBUTION OF THE MAXIMUM

The following table provides critical values for the maximum distribution. For example,

in the case with N = 10 and m = 5

P (maxni ≤ 3 : N = 10,m = 5) = 0.433

49
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r
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N m
5 5 0,710 0,966 0,998 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
10 5 0,012 0,433 0,836 0,968 0,996 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
15 5 0,000 0,006 0,284 0,700 0,910 0,979 0,996 0,999 1,000 1,000 1,000 1,000 1,000 1,000 1,000
20 5 0,000 0,000 0,003 0,200 0,584 0,840 0,950 0,987 0,997 0,999 1,000 1,000 1,000 1,000 1,000
25 5 0,000 0,000 0,000 0,002 0,147 0,490 0,769 0,913 0,972 0,992 0,998 1,000 1,000 1,000 1,000
30 5 0,000 0,000 0,000 0,000 0,001 0,113 0,415 0,701 0,872 0,953 0,984 0,995 0,999 1,000 1,000
10 10 0,396 0,873 0,984 0,999 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
20 10 0,000 0,127 0,603 0,889 0,976 0,996 0,999 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
30 10 0,000 0,000 0,049 0,394 0,753 0,923 0,980 0,995 0,999 1,000 1,000 1,000 1,000 1,000 1,000
40 10 0,000 0,000 0,000 0,022 0,259 0,617 0,848 0,950 0,985 0,996 0,999 1,000 1,000 1,000 1,000
50 10 0,000 0,000 0,000 0,000 0,011 0,173 0,498 0,765 0,908 0,968 0,990 0,997 0,999 1,000 1,000
60 10 0,000 0,000 0,000 0,000 0,000 0,006 0,119 0,401 0,681 0,857 0,944 0,980 0,993 0,998 0,999
15 15 0,219 0,785 0,966 0,996 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
30 15 0,000 0,037 0,432 0,813 0,955 0,991 0,998 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
45 15 0,000 0,000 0,009 0,221 0,620 0,867 0,962 0,990 0,998 1,000 1,000 1,000 1,000 1,000 1,000
60 15 0,000 0,000 0,000 0,002 0,114 0,451 0,755 0,911 0,972 0,992 0,998 1,000 1,000 1,000 1,000
75 15 0,000 0,000 0,000 0,000 0,001 0,061 0,321 0,638 0,844 0,942 0,981 0,994 0,998 1,000 1,000
90 15 0,000 0,000 0,000 0,000 0,000 0,000 0,034 0,228 0,530 0,769 0,902 0,963 0,987 0,996 0,999
20 20 0,121 0,706 0,949 0,993 0,999 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
40 20 0,000 0,011 0,309 0,742 0,933 0,986 0,997 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
60 20 0,000 0,000 0,001 0,123 0,510 0,814 0,944 0,985 0,997 0,999 1,000 1,000 1,000 1,000 1,000
80 20 0,000 0,000 0,000 0,000 0,050 0,329 0,671 0,874 0,958 0,988 0,997 0,999 1,000 1,000 1,000
100 20 0,000 0,000 0,000 0,000 0,000 0,021 0,207 0,532 0,785 0,916 0,971 0,991 0,997 0,999 1,000
120 20 0,000 0,000 0,000 0,000 0,000 0,000 0,010 0,129 0,411 0,689 0,862 0,945 0,980 0,993 0,998
25 25 0,067 0,634 0,931 0,991 0,999 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
50 25 0,000 0,003 0,222 0,678 0,912 0,981 0,996 0,999 1,000 1,000 1,000 1,000 1,000 1,000 1,000
75 25 0,000 0,000 0,000 0,069 0,419 0,764 0,926 0,980 0,995 0,999 1,000 1,000 1,000 1,000 1,000
100 25 0,000 0,000 0,000 0,000 0,022 0,240 0,596 0,837 0,945 0,983 0,995 0,999 1,000 1,000 1,000
125 25 0,000 0,000 0,000 0,000 0,000 0,007 0,133 0,443 0,730 0,891 0,961 0,987 0,996 0,999 1,000
150 25 0,000 0,000 0,000 0,000 0,000 0,000 0,003 0,073 0,319 0,617 0,823 0,928 0,973 0,991 0,997
30 30 0,037 0,570 0,914 0,988 0,999 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
60 30 0,000 0,001 0,159 0,619 0,891 0,975 0,995 0,999 1,000 1,000 1,000 1,000 1,000 1,000 1,000
90 30 0,000 0,000 0,000 0,039 0,345 0,717 0,908 0,975 0,994 0,999 1,000 1,000 1,000 1,000 1,000
120 30 0,000 0,000 0,000 0,000 0,010 0,175 0,529 0,802 0,931 0,979 0,994 0,998 1,000 1,000 1,000
150 30 0,000 0,000 0,000 0,000 0,000 0,003 0,086 0,369 0,678 0,866 0,952 0,984 0,995 0,999 1,000
180 30 0,000 0,000 0,000 0,000 0,000 0,000 0,001 0,042 0,248 0,553 0,786 0,911 0,967 0,988 0,996
40 40 0,011 0,459 0,880 0,982 0,998 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
80 40 0,000 0,000 0,081 0,516 0,850 0,965 0,993 0,999 1,000 1,000 1,000 1,000 1,000 1,000 1,000
120 40 0,000 0,000 0,000 0,012 0,233 0,631 0,873 0,964 0,991 0,998 1,000 1,000 1,000 1,000 1,000
160 40 0,000 0,000 0,000 0,000 0,002 0,093 0,417 0,737 0,905 0,970 0,991 0,998 0,999 1,000 1,000
200 40 0,000 0,000 0,000 0,000 0,000 0,000 0,035 0,256 0,585 0,819 0,932 0,977 0,993 0,998 0,999
50 50 0,003 0,370 0,848 0,976 0,997 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
100 50 0,000 0,000 0,042 0,430 0,811 0,954 0,991 0,998 1,000 1,000 1,000 1,000 1,000 1,000 1,000
150 50 0,000 0,000 0,000 0,004 0,157 0,556 0,840 0,953 0,988 0,997 0,999 1,000 1,000 1,000 1,000
200 50 0,000 0,000 0,000 0,000 0,000 0,049 0,329 0,677 0,879 0,961 0,989 0,997 0,999 1,000 1,000

Table B.1: Distribution of the multinomial maximum
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B.2. DISTRIBUTION OF THE RANGE

The following table provides critical values for the range distribution. For example, in

the case with N = 15 and m = 15

P (maxni −minni ≤ 3 : N = 15,m = 15) = 0.51

t
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N m
5 5 0,038 0,710 0,966 0,998 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
10 5 0,012 0,321 0,601 0,867 0,971 0,996 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
15 5 0,006 0,181 0,386 0,659 0,854 0,953 0,988 0,997 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
20 5 0,003 0,116 0,265 0,500 0,716 0,868 0,949 0,983 0,995 0,999 1,000 1,000 1,000 1,000 1,000 1,000
25 5 0,002 0,081 0,193 0,388 0,595 0,770 0,887 0,952 0,982 0,994 0,998 1,000 1,000 1,000 1,000 1,000
30 5 0,001 0,059 0,146 0,308 0,497 0,676 0,815 0,906 0,958 0,983 0,994 0,998 0,999 1,000 1,000 1,000
10 10 0,000 0,396 0,873 0,984 0,999 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
20 10 0,000 0,060 0,237 0,640 0,896 0,977 0,996 0,999 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
30 10 0,000 0,016 0,079 0,313 0,612 0,841 0,949 0,986 0,997 0,999 1,000 1,000 1,000 1,000 1,000 1,000
40 10 0,000 0,006 0,032 0,158 0,380 0,637 0,831 0,935 0,978 0,994 0,998 1,000 1,000 1,000 1,000 1,000
50 10 0,000 0,002 0,015 0,086 0,236 0,458 0,679 0,840 0,932 0,974 0,991 0,997 0,999 1,000 1,000 1,000
60 10 0,000 0,001 0,008 0,050 0,151 0,325 0,535 0,724 0,858 0,935 0,973 0,990 0,997 0,999 1,000 1,000
15 15 0,010 0,061 0,510 0,875 0,978 0,997 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
30 15 0,000 0,016 0,079 0,313 0,612 0,841 0,949 0,986 0,997 0,999 1,000 1,000 1,000 1,000 1,000 1,000
45 15 0,000 0,001 0,028 0,111 0,299 0,542 0,756 0,892 0,959 0,986 0,996 0,999 1,000 1,000 1,000 1,000
60 15 0,000 0,001 0,008 0,050 0,151 0,325 0,535 0,724 0,858 0,935 0,973 0,990 0,997 0,999 1,000 1,000
75 15 0,000 0,000 0,005 0,023 0,082 0,198 0,365 0,553 0,719 0,843 0,920 0,963 0,984 0,994 0,998 0,999
90 15 0,000 0,000 0,002 0,013 0,047 0,124 0,250 0,412 0,581 0,729 0,841 0,914 0,957 0,980 0,991 0,996
20 20 0,000 0,121 0,706 0,949 0,993 0,999 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
40 20 0,000 0,002 0,029 0,321 0,745 0,934 0,986 0,997 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
60 20 0,000 0,000 0,002 0,065 0,274 0,607 0,850 0,954 0,988 0,997 0,999 1,000 1,000 1,000 1,000 1,000
80 20 0,000 0,000 0,000 0,015 0,089 0,301 0,586 0,812 0,929 0,977 0,993 0,998 1,000 1,000 1,000 1,000
100 20 0,000 0,000 0,000 0,004 0,030 0,138 0,349 0,603 0,802 0,917 0,969 0,990 0,997 0,999 1,000 1,000
25 25 0,000 0,067 0,634 0,931 0,991 0,999 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
50 25 0,000 0,000 0,010 0,227 0,680 0,912 0,981 0,996 0,999 1,000 1,000 1,000 1,000 1,000 1,000 1,000
75 25 0,000 0,000 0,000 0,030 0,178 0,505 0,799 0,936 0,983 0,996 0,999 1,000 1,000 1,000 1,000 1,000
100 25 0,000 0,000 0,000 0,005 0,041 0,201 0,483 0,747 0,901 0,967 0,990 0,997 0,999 1,000 1,000 1,000
30 30 0,000 0,037 0,570 0,914 0,988 0,999 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
60 30 0,000 0,000 0,003 0,161 0,620 0,891 0,975 0,995 0,999 1,000 1,000 1,000 1,000 1,000 1,000 1,000
40 40 0,000 0,000 0,201 0,720 0,941 0,990 0,999 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
80 40 0,000 0,000 0,001 0,027 0,195 0,587 0,857 0,960 0,990 0,998 1,000 1,000 1,000 1,000 1,000 1,000
50 50 0,000 0,003 0,370 0,848 0,976 0,997 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
100 50 0,000 0,000 0,000 0,042 0,430 0,811 0,954 0,991 0,998 1,000 1,000 1,000 1,000 1,000 1,000 1,000

Table B.2: Distribution of the multinomial range

B.3. DISTRIBUTION OF THE FIRST TWO HIGHEST ORDER STATIS-

TICS

The following table provides critical values for the distribution of the sum of the maxi-

mum and the second maximum. For example, in the case with N = 10 and m = 10

P (n<1>+n<2> ≤ 5 : N = 10,m = 10) = 0.811
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t
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

N m
10 5 0,166 0,588 0,887 0,984 0,999 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
15 5 0,000 0,006 0,088 0,392 0,722 0,913 0,981 0,997 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
20 5 0,000 0,000 0,000 0,003 0,054 0,277 0,580 0,817 0,939 0,984 0,997 1,000 1,000 1,000 1,000 1,000 1,000 1,000
25 5 0,000 0,000 0,000 0,000 0,000 0,002 0,037 0,205 0,469 0,720 0,881 0,959 0,988 0,997 0,999 1,000 1,000 1,000
30 5 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,001 0,027 0,157 0,385 0,631 0,816 0,923 0,972 0,992 0,998 1,000
10 10 0,811 0,967 0,997 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
20 10 0,001 0,131 0,415 0,736 0,913 0,978 0,996 0,999 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
30 10 0,000 0,000 0,000 0,050 0,206 0,494 0,745 0,898 0,966 0,991 0,998 1,000 1,000 1,000 1,000 1,000 1,000 1,000
40 10 0,000 0,000 0,000 0,000 0,000 0,023 0,109 0,325 0,573 0,779 0,903 0,963 0,988 0,996 0,999 1,000 1,000 1,000
50 10 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,011 0,061 0,216 0,432 0,653 0,816 0,915 0,965 0,987 0,996 0,999
60 10 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,006 0,036 0,148 0,325 0,538 0,721 0,852 0,929 0,969
15 15 0,592 0,884 0,978 0,997 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
30 15 0,000 0,037 0,172 0,501 0,772 0,922 0,978 0,995 0,999 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
45 15 0,000 0,000 0,000 0,009 0,052 0,251 0,511 0,749 0,893 0,962 0,988 0,997 0,999 1,000 1,000 1,000 1,000 1,000
60 15 0,000 0,000 0,000 0,000 0,000 0,002 0,018 0,127 0,316 0,561 0,760 0,888 0,954 0,983 0,994 0,998 1,000 1,000
75 15 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,001 0,007 0,067 0,193 0,405 0,616 0,786 0,894 0,953 0,981 0,993
90 15 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,003 0,037 0,119 0,287 0,485 0,674 0,815 0,905
20 20 0,410 0,788 0,948 0,991 0,999 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
40 20 0,000 0,011 0,066 0,339 0,635 0,852 0,952 0,987 0,997 0,999 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
60 20 0,000 0,000 0,000 0,001 0,012 0,131 0,340 0,610 0,808 0,922 0,972 0,991 0,998 0,999 1,000 1,000 1,000 1,000
80 20 0,000 0,000 0,000 0,000 0,000 0,000 0,003 0,052 0,169 0,396 0,622 0,801 0,908 0,963 0,986 0,995 0,999 1,000
100 20 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,001 0,022 0,084 0,247 0,451 0,658 0,811 0,907 0,959 0,983
25 25 0,273 0,695 0,912 0,982 0,997 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
50 25 0,000 0,003 0,024 0,233 0,515 0,779 0,919 0,976 0,994 0,999 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
30 30 0,176 0,612 0,873 0,971 0,995 0,999 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
60 30 0,000 0,001 0,008 0,163 0,412 0,708 0,884 0,963 0,990 0,998 0,999 1,000 1,000 1,000 1,000 1,000 1,000 1,000
40 40 0,070 0,478 0,790 0,945 0,989 0,998 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
80 40 0,000 0,000 0,001 0,082 0,257 0,579 0,808 0,932 0,979 0,995 0,999 1,000 1,000 1,000 1,000 1,000 1,000 1,000
50 50 0,026 0,378 0,708 0,915 0,981 0,997 0,999 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
100 50 0,000 0,000 0,000 0,042 0,156 0,471 0,733 0,897 0,967 0,991 0,998 1,000 1,000 1,000 1,000 1,000 1,000 1,000

Table B.3: Distribution of the n<1>+n<2>

B.4. DISTRIBUTION OF THE FIRST THREE HIGHEST ORDER STATIS-

TICS
The following table provides critical values for the distribution of the sum of the first

three highest order statistics. For example, in the case with N = 15 and m = 15

P (n<1>+n<2>+n<3> ≤ 8 : N = 15,m = 15) = 0.869

t
8 9 10 11 12 13 14 15 16 18 20 22 24 26 28 30 32 34

N m
10 10 0,987 0,999 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
20 10 0,020 0,174 0,468 0,747 0,913 0,978 0,996 0,999 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
30 10 0,000 0,000 0,000 0,005 0,064 0,230 0,472 0,708 0,869 0,986 0,999 1,000 1,000 1,000 1,000 1,000 1,000 1,000
40 10 0,000 0,000 0,000 0,000 0,000 0,000 0,002 0,028 0,120 0,509 0,856 0,977 0,998 1,000 1,000 1,000 1,000 1,000
50 10 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,014 0,181 0,559 0,858 0,972 0,996 1,000 1,000 1,000
60 10 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,040 0,254 0,610 0,868 0,970 0,995 0,999
15 15 0,869 0,972 0,996 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
30 15 0,000 0,038 0,174 0,405 0,669 0,856 0,950 0,986 0,997 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
45 15 0,000 0,000 0,000 0,000 0,009 0,052 0,160 0,362 0,592 0,898 0,986 0,999 1,000 1,000 1,000 1,000 1,000 1,000
60 15 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,003 0,018 0,186 0,571 0,866 0,974 0,997 1,000 1,000 1,000 1,000
75 15 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,001 0,028 0,226 0,578 0,850 0,964 0,994 0,999 1,000
90 15 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,003 0,053 0,269 0,598 0,846 0,958 0,991
20 20 0,714 0,908 0,979 0,997 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
40 20 0,000 0,011 0,066 0,197 0,448 0,697 0,864 0,950 0,985 0,999 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
60 20 0,000 0,000 0,000 0,000 0,001 0,012 0,047 0,172 0,373 0,770 0,953 0,994 1,000 1,000 1,000 1,000 1,000 1,000
80 20 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,003 0,066 0,351 0,718 0,923 0,986 0,998 1,000 1,000 1,000
100 20 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,004 0,089 0,358 0,695 0,901 0,977 0,996 0,999
25 25 0,558 0,823 0,949 0,989 0,998 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
50 25 0,000 0,003 0,024 0,087 0,290 0,550 0,763 0,898 0,963 0,997 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
30 30 0,416 0,728 0,909 0,977 0,995 0,999 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
60 30 0,000 0,001 0,008 0,036 0,189 0,429 0,662 0,837 0,934 0,993 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
40 40 0,209 0,553 0,816 0,941 0,985 0,997 0,999 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
80 40 0,000 0,000 0,001 0,005 0,086 0,260 0,479 0,705 0,862 0,981 0,998 1,000 1,000 1,000 1,000 1,000 1,000 1,000
50 50 0,096 0,417 0,723 0,896 0,970 0,993 0,999 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
100 50 0,000 0,000 0,000 0,001 0,042 0,156 0,332 0,577 0,780 0,962 0,996 1,000 1,000 1,000 1,000 1,000 1,000 1,000

Table B.4: Distribution of the n<1>+n<2>+n<3>
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