Passive and Active Inspection of Wireless
Sensor Networks: A Practical Use Evaluation

Dik-Jan Wisse

]
TUDelft

Delft University of Technology

Passive and Active Inspection of Wireless
Sensor Networks: A Practical Use Evaluation

Master’s Thesis in Computer Science

Embedded Software group
Faculty of Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology

Dik-Jan Wisse

May 14th, 2009

Author

Dik-Jan Wisse
Title

Passive and Active Inspection of Wireless Sensor Networks: A Practical Use Evaluation
MSc presentation

May 28th, 2009

Graduation Committee
prof. dr. K.G. Langendoen (chair) Delft University of Technology

prof. dr. ir. H.J. Sips Delft University of Technology
dr. ir. R. Hekmat Delft University of Technology
ir. G.P. Halkes Delft University of Technology

Abstract

Sensor nodes are small, autonomous, battery-powered devices that use a wireless
network interface to communicate with other sensor nodes. Together these sensor
nodes form a Wireless Sensor Network (WSN), which has the purpose to sense
information about the environment. Before a WSN is deployed, it is tested using
simulators and testbeds. Both simulators and testbeds are not able to fully cap-
ture all non-deterministic behaviour of the environment in which the WSNs are
deployed. Passive inspection is an approach that detects problems within a WSN
during deployment. Passive inspection makes use of the broadcast nature of wire-
less communication and is realised by overhearing messages sent by sensor nodes.
The limitation of passive inspection is that operator of the WSN has to wait un-
til a sensor node transmits a message and that this message contains the specific
information is needed. To overcome this limitation active inspection can be used,
and is realised by injecting messages into the deployment to force a reaction from
a sensor node. The concept of passive inspection is not new and has already been
evaluated in a simulator and presented in a demo. In this thesis we will further
evaluate the practical use of passive inspection using real hardware and we will
try to extend passive inspection with active inspection. In order to evaluate pas-
sive and active inspection, we designed and implemented an inspection network
and an analysis tool. The evaluation compared the normal operation of a deploy-
ment with an operation containing a previously resolved bug. The result of this
evaluation is that the analysis tool is clearly capable of detecting the previously re-
solved bug. In this way we showed that passive inspection would have been able
to detect that problem when it occurred in a real-life deployment. The evaluation
of active inspection showed that active inspection can be used without negatively
effecting the behaviour of the sensor nodes in the deployment.

“Program testing can be a very effective way to show the presence of bugs, but is
hopelessly inadequate for showing their absence” — prof. dr. Edsger W. Dijkstra

Contents

1 Introduction 1
2 Related Work 3
3 Passive and Active Inspection 5
3.1 InspectionNetwork 5
32 AnalysisTool 7
3.3 Extracting Information from Messages 7
4 Inspection Network: Design and Implementation 9
41 Requirements 9
42 InspectionNode L .. 11
43 PacketDetection. 13
43.1 Location of the Detection 13
43.2 Extended Packet and Collision Detection 14
44 Network Architecture 16
441 NetworkLayers. 17
442 Implementation Details of the Connection between T-Node
and TmoteSky, 17
443 Implementation Details of the Time Synchronisation 19
5 Analysis Tool: Analysis of the received information 21
51 Passivelnspection., 21
5.1.1 Combining Radio Packets of Multiple Inspection Nodes . . . 21
5.1.2 Statistics of the MAC-Layer 22
513 NetworkTime. 23
5.1.4 Statistics of the Network-Layer 23
52 Activelnspection L. 23
6 Evaluation 27
6.1 Setup of the Experiments 27
6.2 Accuracy of the Time Synchronisation between the Inspection Nodes 29
6.3 Passivelnspection. 0. 29
6.4 Activelnspection o o oL 33
6.5 Influence of Temperature Differences on the Time Synchronisation
between Sensor Nodes 34

vii

7 Conclusions and Future Work

7.1 Conclusions
7.2 Future Work
Bibliography

viii

Chapter 1

Introduction

Sensor nodes are small, autonomous, battery-powered devices that use a wireless
network interface to communicate with other sensor nodes. Together these sensor
nodes form a Wireless Sensor Network (WSN), which has the purpose to sense
information about the environment and send that information to a central point
in the network. The central point is called the sink, and functions as the exit and
entry point of the WSN. Most WSNs are self-organising and consist of multi-hop
paths from source to sink. Self-organisation is important as a WSN must oper-
ate autonomously and without interruption for months or even years. Multi-hop
paths are created because the radio that is responsible for the wireless communica-
tion has a limited transmission range due the inherent power limitations of radio
communication [8].

Once created, a WSN-application is tested before being deployed. On most de-
ployment sites limited resources are available. It is therefore important to resolve
every possible problem before deployment. There are two possible means of test-
ing a WSN-application before deployment. It can be tested using a simulator or
using a testbed. An advantage of a simulator is that it can be run on any arbitrary
computer and extra hardware, such as sensor nodes, is not required. The main
reason for the use of a testbed is that it is very difficult for simulators to create re-
alistic models of non-deterministic behaviour. The non-deterministic behaviour in
a WSN is caused by its distributed nature, the use of interrupt-driven processors,
and radio propagation. We mention that processors are interrupt-driven as inter-
rupts have a large impact on the processors limited processing power. Radio prop-
agation has a non-deterministic behaviour as it is influenced by the environment.
The environment has so many variables that it is impossible to accurately model
it. A testbed uses, therefore, the actual hardware to test the WSN-application. A
testbed consists of a small number of sensor nodes that have, besides a radio, a
wired network connection. This wired network connection can be used to retrieve
state information of each node in order to reveal problems in the WSN-application.
Although a testbed is a valuable asset to the debugging process, it still not able to
detect and analyse every problem. The reason for this is that a testbed is suscepti-
ble to the probe-effect [14], as sending debugging information over the wired con-
nection can consume a significant amount of processing power of a sensor node.
Also, although the actual radio chip is used, a testbed is still not capable of fully
capturing all non-deterministic behaviour of the environment. This is because it is

usually located in the controlled environment of a laboratory, whilst a deployment
is located, for example, outside or in a factory building.

Bugs that appear due to non-deterministic behaviour mostly manifest them-
selves in race conditions. In order to detect these race conditions and other prob-
lems during a deployment, passive inspection and active inspection can be used.
Passive inspection is an approach that inspects the communication between sensor
nodes without interfering with their communication, and is realised by overhear-
ing messages sent by sensor nodes [17]. Overhearing messages makes it possible
to create knowledge as to which state the WSN is in. In order to overhear messages
extra sensors nodes that are called inspection nodes, are placed in the deployment.
The information collected by the inspection nodes is sent to a central computer,
where it is processed by an analysis tool. The inspection nodes form, with the
central computer, an inspection network. The limitation of passive inspection is
that the operator has to wait until a sensor node transmits a message and that
the message contains the specific information the operator wants. To overcome
this limitation active inspection can be used to retrieve more information than the
information that has already been sent, and to retrieve information on-demand.
Active inspection is realised by injecting messages at the inspection nodes into the
deployment.

There are two problems that we address in this thesis. The first problem is that
passive inspection is evaluated in a simulator and presented in a demo [17], but
not yet further evaluated with real hardware. What we want to know is whether
or not passive inspection can offer some added value to the process of debugging
a WSN. Further, we want to know what is needed to apply this concept to our
specific deployment that is described in Chapter 4. Passive inspection has inher-
ent limitations, and therefore the second problem that we address is, whether or
not we can reduce these limitations by extending passive inspection with active
inspection. Active inspection forces a reaction from the sensor nodes in the de-
ployment, therefore interfering with the normal operation of the deployment. The
main challenge to implementing active inspection is to minimise the side-effects of
this interference.

The goal of this thesis is to evaluate the practical use of passive and active
inspection in an WSN-deployment. The concepts of passive and active inspection
are useful if we can use them to detect problems and if they can provide us with
insight into how and why problems occur. In order to evaluate the practical use,
an inspection network and an analysis tool are created. The inspection network
and the analysis tool are evaluated by re-introducing a previously resolved bug
to check whether or not the analysis tool can detect the bug, and by other small
experiments.

The remainder of this thesis is organised as follows. Chapter 2 briefly discusses
related work. After dealing with the concepts of passive and active inspection in
Chapter 3, Chapter 4 describes details of the design and implementation of the in-
spection network. The focus will be on how data collected by the inspection node
is transported back to the central computer and how it is possible to communi-
cate with the deployment via an inspection node. Chapter 5 expands on which
information can be deduced from the packets received by the inspection nodes.
Chapter 6 will explain how the implementation of the inspection network is used
to evaluate the practical use of passive and active inspection. Finally, in Chapter 7
we draw conclusions using the results from the practical use evaluation, where
after topics for further research will be presented.

Chapter 2

Related Work

The influence of the environment on the wireless communication of the sensor
nodes and the distributed nature of sensor networks in general, makes a successful
deployment of a sensor network difficult. Therefore a lot of effort is put into testing
and debugging a sensor network before and during a deployment. These efforts
can be grouped, and are described by the following categories:

Simulators are the first step in testing the operation of sensor networks. Simu-
lators have the advantage that they can run on any arbitrary computer, provide
direct access to the internal state of all sensor nodes, and make it possible to test
different scenarios in a controlled manner. Simulators model the environment and
hardware into discrete events using different levels of abstraction. TOSSIM [11]
uses a low level of abstraction to transmit a packet by modelling radio propaga-
tion. Other more general-purpose simulators like OMNeT++ [22] use a higher
level of abstraction. They model the radio propagation in events like transmitting
a packet and receiving a packet. The advantage of using a low level of abstraction
is that the environment and hardware are simulated more realistically, but will
need a lot more processing power to do so. The biggest limitation of simulators
is that it is impossible to fully capture the environment and the non-deterministic
behaviour of hardware in models.

Testbeds like MoteLab [23] and PowerBench [7] use a separate wired connection
for each sensor node to send state information that can be used to resolve prob-
lems in the WSN-application. Another type of testbed is the Deployment Support
Network (DSN) [4] that uses wireless connections instead of wired connections.
The wireless connections makes it practical to use a DSN outdoors, exposing the
testbed to more realistic environmental conditions than is possible inside a build-
ing. Although a DSN is a good step forward, the problem of the probe-effect re-
mains. The impact of the probe-effect will be reduced when sensor node hardware
becomes more powerful, as a smaller percentage of the processing power has to be
spent on the transmission of the debug information.

In-band Debugging makes it possible to debug a deployment by letting sensor
nodes send debug information in-band with normal network traffic. Tools that
implement this approach are Nucleus [6], Sympathy [16] and Memento [20]. The

sensor nodes in these tools collect debug information and send it periodically or
on-demand, back to the sink. The advantage of these tools is that they can be used
during the deployment of a sensor network. The major disadvantage of these tools
is that a problem that negatively affects the communication between the sensor
nodes will also negatively affect the collection of debug information at the sink.
Another tool that makes use of in-band network traffic is Clairvoyant [24]. Clair-
voyant is a source-level debugger that makes it possible to debug a single sensor
node in a deployment. The disadvantage of all in-band debugging tools is that the
collection and transmission of debug information consumes resources and influ-
ences the normal behaviour of the sensor nodes.

Packet Sniffing makes it possible to detect problems in a deployment by over-
hearing the messages sent by the sensor nodes. The advantage of packet sniffing
is that it does not use any resources of the deployment and it does not interfere
with the normal operation of the deployment (eliminating the probe-effect). The
passive inspection tool that we propose in this thesis falls in this category, together
with Wit [12], Jigsaw [2], LiveNet [1], SNTS [9], and SNIF [18]. Wit and Jigsaw
are WLAN packet sniffers that analyse and infer information based on a detailed
model of the 802.11 MAC protocol. The main difference between the two is, that
Wit merges all traces offline and Jigsaw merges all traces online. The difference be-
tween WSNs and WLAN:Ss is that most WLANSs are single-hop networks and use
standardised MAC protocols, whereas most WSNs are multi-hop networks and
use different MAC protocols, making WSNs more difficult to sniff.

LiveNet, SNTS, and SNIF are all packet sniffing tools for WSNs. The sniffers of
LiveNet store the overheard packets in local flash memory or send them back to
a laptop using a wired connection. LiveNet focuses on network dynamics in the
form of network connectivity and routing path inference. Like LiveNet, the snif-
fers of SNTS also store the overheard packets in local flash memory. SNTS distin-
guishes itself by providing a flexible manner to specify the format of the overheard
packets and by applying rule-based machine learning to infer relations between
packets. SNIF makes use of a DSN to provide packet sniffing and uses a root-
cause decision tree like Sympathy to detect problems. A root-cause decision tree
provides an analysis of the problem on a high level, making it useful for the gen-
eral user. Detailed statistics would provide more insight into the inner-workings
of the deployment, but can only be used by domain experts.

The tool we propose is a combination of Jigsaw, LiveNet and SNIE. It will
make use of portable wireless packet sniffers like SNIF, online analysis like Jig-
saw and SNIF, MAC-layer analysis like Jigsaw, and network dynamics analysis
like LiveNet.

Chapter 3

Passive and Active Inspection

Passive inspection is an approach that inspects the communication between sensor
nodes without interfering with their communication. Passive inspection is possible
because sensor nodes use wireless communication. In order for a sensor node to
communicate with another sensor node, it must transmit a message. This message
can be received by every node within the transmission range of the sender. Passive
inspection is realised by overhearing messages sent by sensor nodes.

Active inspection is used to force a reaction from one or more sensor nodes, and
it is realised by injecting messages into the WSN. Usually the sensor nodes react
by transmitting a message back, which is then observed using passive inspection.
Another example of a forced reaction can be the switching on or off of the LEDs
on the sensor node. Active inspection depends on features built into the software
that are running on the sensor nodes. Some features are standardised while others
are deployment specific.

In order to overhear and inject messages extra nodes, called inspection nodes,
are placed within the WSN. Together the inspection nodes form an inspection net-
work. The concept of an inspection network is described in Section 3.1. The in-
spection network is used to transport the collected messages to a central computer,
where after they are processed by an analysis tool. The concept of an analysis tool
is described in Section 3.2. The last section, Section 3.3, describes what kind of
information can be expected when collecting messages.

3.1 Inspection Network

An inspection network consists of several inspection nodes. Multiple inspection
nodes are needed to ensure that transmissions from a reasonable number of sensor
nodes are overheard. A typical WSN consists of a large number of sensor nodes,
because the transmission range of each sensor node is limited and the field in that
they are deployed covers a large area.

The use of multiple inspection nodes has several consequences. Firstly, all mes-
sages collected by inspection nodes have to be merged at a central computer. Merg-
ing data at a central computer allows for the filtering out of duplicate messages
and the identification of dependencies between messages. A duplicate message
is created when multiple inspection nodes overhear the same message. A depen-
dency between messages is, for example, a data message that is transmitted by the

sender and an acknowledgement that is transmitted by the receiver. An acknowl-
edgement is transmitted to confirm the reception of a data message. Rather than
using a distributed solution, the use of a central computer also makes it easier to
not only analyse and display the collected data using graphical notations, but also
to coordinate the injection of messages into the WSN. The second consequence for
the use of multiple inspection nodes, is that the clock of each inspection node must
be synchronised with each clock of every other inspection node in the inspection
network. This is necessary for filtering out duplicate messages and identifying
dependencies between messages.

There are several consequences for messages being collected by inspection nodes
and transported to a central computer. Firstly, the data throughput of the data
transport needs to be higher than the data throughput of the WSN. The reason
for this is that not only can data messages be duplicated, but when a message is
overheard extra information is collected about this message, creating more data. It
is important to record, for instance, at which point in time the message was over-
heard and what the strength of the signal was at which the message was overheard.
Secondly, an inspection network must be created, which is responsible for the data
transport. The inspection network can be organised as single-hop or multi-hop
network, using either wireless or wired connections. When a single-hop network
is created, all inspection nodes communicate with the central computer directly
forming a star-topology. When a multi-hop network is created, the inspection
nodes communicate with the central computer via other inspection nodes or di-
rectly, forming a mesh-topology. If wireless connections are chosen for the inspec-
tion network, these must not interfere with the wireless connections between sen-
sor nodes. The hardware of the inspection node must, therefore, have two radios:
a front-end radio for collecting messages and a back-end radio for transporting
data.

Active inspection is realised by injecting messages into the WSN. Messages can
be injected by an operator at the central computer or by the inspection node it-
self. The operator wants a reaction from one or more sensor nodes and therefore
creates a message including meta-data. This message is transported to a specific
inspection node, from which the message is injected by the inspection node into
the sensor network at a certain time. The meta-data added to the message in-
cludes the information about which inspection node to use and the time at which
the message should be transmitted. The inspection nodes must be able to transmit
messages autonomously in the form of acknowledgements. If a sensor node trans-
mits a data message destined for an inspection node, the inspection node must ac-
knowledge that data message. An acknowledgement must be transmitted shortly
after the receipt of a data message. Therefore the inspection node must do this
autonomously, as it will take too long to transport a data message to the central
computer and an acknowledgement back to the inspection node for injection. This
implies that the acknowledgement message must be present in the inspection node
at the time the inspection node must transmit an acknowledgement. The acknowl-
edgement can be hard-coded into the software running on the inspection node.
However, it is more flexible to create the acknowledgement message at the central
computer, from which it is transported once to an inspection node and stored in a
buffer. In this way the operator at the central computer can change the contents of
the acknowledgement message on-demand, leading to more flexibility.

In order for the inspection nodes to inject messages into the WSN, they must
participate with the MAC protocol used in the WSN. This means that the point in

‘ Sensor readings ‘
I 1
| |

Layer 1: header | Payload | Layer 1: trailer

Layer 0: header S i?é}?foéa 7777777777777777 _Layer 0: trailer

[Message -

Figure 3.1: Message layout

time, at which the message is injected, is very important. For instance, when a mes-
sage is injected at a wrong point in time, the message will either not be received by
the destination, or it will cause collisions. Collisions disrupt the normal operation
of the WSN and result in a crude form of the probe-effect. MAC protocols use car-
rier sense (CSMA), time division (TDMA) or both, to share the common medium
between sensor nodes. CSMA is realised by first listening to the radio, and then
if no other node is transmitting, the message is transmitted. TDMA is realised by
transmitting in time-slots. Time-slots can be assigned to a sensor node statically
or dynamically. When the MAC protocol, used in the WSN, uses a dynamically
assigned time-slot algorithm, the inspection nodes must also participate with this
algorithm. Using time-slots implies that the sensor nodes must synchronise their
clocks with each other. This notion of time is called the “network” time. In order
for the inspection nodes to inject messages at the right point in time, the clock of
the inspection nodes must be synchronised according to the network time.

3.2 Analysis Tool

The analysis tool operates at the central computer, and is responsible for managing
the collected data and coordinating active inspection. The first task of the analysis
tool is to store all incoming data to disk. This makes it possible to perform further
analysis offline, and replay the events step-by-step in the analysis tool. The second
task of the analysis tool is to combine the data traces of all the inspection nodes to
form one data trace. Combining the different traces is done based on the time the
data was collected and on the contents of the data. The data must be combined
online in order to display it online, so that the operator can react immediately. The
operator can react, for example, by injecting a message or by moving an inspection
node to another location.

3.3 Extracting Information from Messages

The information collected by the inspection nodes are messages transmitted by
sensor nodes. These messages contain information that is organised similar to the
OSI-model. Each layer is encapsulated by a lower layer as payload (see Figure 3.1).
Messages of a typical WSN-application consist of three or four layers, namely:

MAC Layer is responsible for the communication between a sensor node and its
neighbouring sensor nodes. The MAC layer uses three types of messages for

the realisation of communication, namely: unicast, acknowledgement and
broadcast messages. Each message contains a source and destination ad-
dress, these can be used to determine which sensor has sent the message and
which sensor node should have received the message. When the destina-
tion successfully received a unicast message, it transmits an acknowledge-
ment, which can be used by the analysis tool to conclude if the recipient
has received the message. However, it is difficult to conclude whether the
sender received the acknowledgement or not (Two army problem). We can
only partly solve this problem by comparing the data message with the next
data message of that specific sender. If that data message contains the same
payload, the analysis tool concludes that the second data message is a retry.
This partly solves the problem, as the sender will eventually stop sending re-
tries, leaving the analysis tool in the dark as to whether or not the sender has
received the acknowledgement. Broadcast messages are not acknowledged
making it difficult, or even impossible, to determine which sensor nodes re-
ceived a broadcast message. The analysis tool has three options to approx-
imate which sensor node received the broadcast message: assume that no
sensor node received the broadcast message; assume that all sensor nodes
in the neighbour list of the sender have received the broadcast message; or
assume all sensor nodes that are covered by the same inspection node as
the sender, have received the broadcast message. A neighbour list is a list
that contains the link qualities between the sensor node and its neighbours.
Whether a neighbour list can be constructed at the analysis tool depends on
the information that the network layer exposes. The third option is the least
accurate, but is relevant as a neighbour list can not always be constructed at
the analysis tool, and not all the sensor nodes that received the message have
to be in the neighbour list of the sender due asymmetrical links between the
sensor nodes.

Time Synchronisation Layer is an optional sub-layer of the MAC layer. The use
of this sub-layer depends on whether a TDMA MAC protocol is used in the
WHSN, and if its time synchronisation algorithm exposes information in the
message sent by the sensor nodes. When this sub-layer is used by the MAC
protocol, the information its contains can be used by the analysis tool to check
whether or not the clocks of the sensor nodes are properly synchronised with
each other.

Network Layer is responsible for the routing of messages towards the sink. The
information exposed by this layer are the link qualities between a sensor
node and its neighbours, and the distance between the sink and the sensor
node. The distance can be expressed in, for example, the number of hops be-
tween the sink and the sensor node, or in how many transmissions it will take
to transport a message to the sink from the sensor node. This information can
be used by the analysis tool to determine whether or not the network-layer
is functioning properly and is, therefore, routing the messages as efficiently
as possible to the sink.

Application Layer contains, for example, sensor readings. The analysis tool does
not use this information, as this information is too deployment specific.

Chapter 4

Inspection Network: Design
and Implementation

The starting point for the design and implementation of the inspection network
is a deployment, a central computer and the concept of an inspection node. The
sensor nodes used in the deployment that we want to overhear are T-Nodes and
use the TinyOS operating system. The specifications of the T-Node are listed in
Table 4.1a. The central computer is a laptop, at which the collected data is analysed
and displayed online. The front-end radio of the inspection node must be the
Chipcon CC1000 radio, the same radio that the T-Nodes use.

4.1 Requirements

The requirements for the design and implementation of the inspection network are
listed below.

Non-Intrusive means that the inspection network should not change or interfere
with the operation of the deployment while debugging the deployment. This
requirement excludes, for example, full source level debugging, as break-
points and stepping through source code interferes with the operation of the
deployment. Passive inspection complies with this requirement, as it only
uses the messages that are sent by the sensor nodes to debug the deploy-
ment. A disadvantage of passive inspection is that the operator has no influ-
ence on when and what information is received, and therefore active inspec-
tion is used. Active inspection can not fully comply with the non-intrusive
requirement as injecting messages is intrusive. To limit the intrusiveness of
active inspection no side-effects should occur due to message injection. For
example, when the inspection node injects a message destined for a specific
sensor node, all other sensor nodes should not be negatively affected by this
message injection.

Sufficient coverage of the deployment by the inspection network is needed to dis-
till the dependencies between messages. Only a partial and not a complete
coverage of the deployment is needed, as sensor nodes only communicate

Processor

- Type Atmel ATMegal28L

- Clock speed 8 MHz

-RAM 4 KB

Radio

- Type Chipcon CC1000

- Frequency 868 MHz

- Bitrate 19.2 kbps

- Transmission range 25-50m

- Output data Stream of bytes
16-bit RSSI value

(a) T-Node Hardware

Software-layers

- Application-layer LofarAGRO

- Network-layer LEEP / CTP

- MAC-layer MMAC Framework /
Crankshaft

OS TinyOS 2.X

(b) Software Stack

Deployment

- Number of nodes 96

- Dimensions 90 m x 50 m

Testbed

- Number of nodes 24

- Dimensions 15mx8m

(c) Network Layout

Table 4.1: Specifications

10

with their direct neighbours, limiting their energy consumption. A depen-
dency between messages is, for example, a data message and acknowledge-
ment pair. In order to cover any sender-receiver node pair, the minimum
transmission range of the back-end radio of the inspection nodes must be at
least the maximum transmission range of a sensor node (50 meters). Also,
to reach a reasonable area of the deployment from the central computer, the
transmission range of the back-end radio of the inspection nodes should be
at least 50 meters.

Flexibility and portability are important requirements as the inspection should
be easy to place, move and manage. The implications of these requirements
are that the inspection network should not consist of too many inspection
nodes, and that the inspection nodes should use wireless communication
and be battery powered. Being battery powered is not a problem, as the
inspection network only has to operate continuously for up to a few days.

Reliable transport of data between inspection nodes and the central computer is
needed to ensure that all data collected by the inspection nodes can be used
for analysis. Especially the analysis of the dependencies between messages
suffers when there is message loss.

Time synchronisation is needed between inspection nodes to enable the combin-
ing of messages at the laptop, and to enable message injection between in-
spection nodes and sensor nodes, depending on the MAC protocol used on
the sensor nodes. Time synchronisation between inspection nodes and sen-
sor nodes, must be done passively. In other words, only the inspection nodes
should be aware of the time synchronisation and not the sensor nodes, in
compliance with the non-intrusive requirement.

A higher data rate of the back-end radio than the front-end radio is needed, as
multiple inspection nodes can overhear the same message and all overheard
messages are sent to one central point. How much higher the data rate of the
back-end radio must be than that of the front-end radio, depends on the rate
of messages received by the inspection nodes and on the number of inspec-
tion nodes used in the inspection network. The rate of messages received
by the inspection node depends on the rate of messages transmitted by the
sensor nodes and the number of sensor nodes that an inspection node can
overhear.

Specifications of the message layers are needed to be able to distill information
from the messages that are sent by the sensor nodes. The specification can
be a document that describes the different layers or the source-code. Source-
code is preferred, as it contains much more information than a document
would.

4.2 Inspection Node

The concept of an inspection node can be realised by different combinations of
hardware. We selected three candidates for the choice of inspection node, namely:
a BTnode, a Tmote Sky + T-Node, and a PDA + T-Node (see Figure 4.1). Both
Tmote Sky and PDA do not have a CC1000 radio in contrast to a BITnode and a

11

(a) BTnode (b) Tmote Sky

Inspection Node Back-end radio Frequency | Data Rate | Outdoor Range
BTnode Zeevo ZV4002 Bluetooth | 2.4 GHz 7232 kbps | 50m (100m)
Tmote Sky + T-Node | Chipcon CC2420 2.4 GHz 250 kbps 125m

PDA + T-Node WiFi IEEE 802.11b 24 GHz 11 Mbps 100 m

(c) Specifications

Figure 4.1: Candidate Inspection Nodes

T-Node. Therefore both Tmote Sky and PDA will need a T-Node to supply the
required CC1000 radio. The requirements that all three candidates meet more or
less equally are listed below:

* The wireless connections of the inspection network must not interfere with
the connections between the sensor nodes. This requirement is met by using
different frequency bands; the CC1000 radio operates at a frequency band
of 868 MHz while the back-end radios of all three candidates operate at a
frequency band of 2.4 GHz.

¢ The requirements for the bare minimum and the preferred minimum trans-
mission ranges are met by all three back-end radios. The Zeevo ZV4002 Blue-
tooth radio is a class 1 radio, implying that the Bluetooth radio could achieve
a transmission range of 100 meters. However, without an extra power sup-
ply connected to the BTnode, the Bluetooth radio has only power to achieve
a transmission range of 50 meters.

* The data rate of the back-end radio rate must be much higher than the data
rate of the front-end radio, and is met by all three back-end radios. The data
rate of the back-end radios are 250 kbps or higher, while the front-end radio
has a data rate of 19.2 kbps.

The PDA is the weakest of the three candidates. Its battery life-time is consid-
erably less than that of the other candidates. Also, the PDA is more expensive,
and is therefore too valuable to use in an outdoor environment (moisture). The
BTnode has two advantages over the Tmote Sky. There is no need for a custom
connection between the BTnode and a T-Node, unlike the connection between the
Tmote Sky and a T-Node, as the BTnode has two integrated radios. The other ad-
vantage is that Bluetooth radios create more reliable links than CC2420 radios, by

12

2.4 GHz

%68 MHz
Tmote Sky Tmote Sky T-Node
CC2420 CC2420 CC1000 L

Radio chip Radio chip Radio chip
1/0 1/0 ‘
MSP430 SPI MSP430 SPI ATMegal28L
Processor Processor Processor

Laptop
UART UART1 UARTO UART1 UARTO0 UARTO0

Figure 4.3: Structural Layout Inspection Network

means of frequency hopping techniques. When comparing the available software,
the Tmote Sky has a slight advantage over the BTnode. This is because the T-Node
connected to the Tmote Sky can use the same TinyOS CC1000 software compo-
nents used by the T-Nodes in the testbeds and deployments. The BTnode has a
different operating system (BTnut) with its own software to control the CC1000 ra-
dio. The software of the BTnode must be able to handle TinyOS messages, which
could mean that more time is needed during the development phase. A more gen-
eral advantage to use TinyOS instead of BTnut is that the TinyOS community is
much larger than that of BTnut, meaning that there are more resources available in
the form of software and support.

In summary, the best candidates for the realisation of an inspection node are
the Tmote Sky/T-Node combination and the BTnode. For reasons of convenience,
we have chosen the Tmote Sky as it was already available, and the connection
between the Tmote Sky and the T-Node was easy to fabricate. Figure 4.2 and
4.3 give an idea as to how a Tmote Sky is connected to a T-Node. Messages are
collected by the CC1000 radio of the T-Node. This data is sent over the serial
connection (UARTO-to-UARTO) to the Tmote Sky. The Tmote Sky transmits this
data to the Tmote Sky connected to the laptop. The Tmote Sky connected to the
laptop, sends the data over the USB-port to the laptop where it is analysed.

4.3 Packet Detection

The CC1000 radio of the T-Node part of the inspection node samples the ether and
converts the radio signal into a continuous stream of bytes. This stream of bytes
contains not only noise but also messages in the form of radio packets. These
radio packets can be detected and filtered from the stream. It is up to the designer
to decide where and how the detection and filtering is done. The location of the
detection and the detection itself is described in the following subsections.

4.3.1 Location of the Detection

The detection can be done at one of the four locations of the structural layout that
is shown in Figure 4.3. Detecting packets at either one of the two Tmote Skys has

13

Figure 4.2: Tmote Sky
connected to a T-Node

;

Figure 4.4: Hidden node problem: node 0 and node 3 cannot hear each other and
both start sending, resulting in a packets collision at node 9

no added value. A Tmote Sky has nearly the same processing power as a T-Node.
A better choice for location would be at the T-Node or at the laptop where there is
lots of processing power. Detecting packets at the T-Node results in less informa-
tion being transmitted to the laptop, reducing the load on the inspection network
and making it possible to use more inspection nodes. Detecting packets at the lap-
top implies that all the raw data is collected at the laptop. This makes it possible to
use different, stronger, detection algorithms, there less chance of bugs occurring in
the inspection nodes, and there is a constant data load on the inspection network,
provided that the number of inspection nodes does not change. Debugging soft-
ware on a laptop is easier than debugging on a node. Also, it is more difficult to
locate a bug in the detection algorithm if one part of the detection is done at the
T-Node and the other part at the laptop. A constant load is a good property, as
the worst-case is the same as the best-case. With a variable load it is more difficult
to find the worst-case load while testing. Testing with the worst-case load makes
it more likely that the inspection network will stay functioning during operation.
Nevertheless, the best location to detect packets is the T-Node, as more inspec-
tion nodes can be used, and the collected data can be timestamped straight after
collection, which results in a timestamp that is as accurate as possible.

4.3.2 Extended Packet and Collision Detection

When a radio packet is transmitted, it is preceded by a preamble and a synchroni-
sation sequence. The preamble is used by the receiving radio hardware to tune to
the right frequency and phase of the signal. In the case of the CC1000 radio, the
preamble is also used in software to detect contention and packets. The synchroni-
sation sequence used by the CC1000 radio is a 2 byte sequence (sync-word). While
the radio of the receiver is tuning to the signal of the sender, the received preamble
bytes can contain bit-errors. When the length of the preamble is too short to contain
a bit-error free preamble byte the packet will be lost. The solution to this problem
is to extend the packet detection by making the detection algorithm tolerant of a
bit-error occurring in each preamble byte and in the sync-word.

The packet detection algorithm can also be extended by making use of the cap-
ture effect. The capture effect makes it possible, in certain cases, to detected packets
that were otherwise lost, and to detect the occurrence of collisions. Lee et al. [10]
describe the capture effect as the ability of some radios to correctly receive one of
several concurrently transmitted messages, even if the received strengths of the
messages are almost the same.

Collisions occur when two sensor nodes transmit a message concurrently. There
are two main reasons for collisions: the use of CSMA-based MAC protocols, and
the hidden node problem. When using a CSMA-based MAC protocol a collision

14

Sender A [Preamble | Sync—word [Header | Payload [CRC]
[Preamble | Sync—word [Header | Payload [CRC] SenderB

——» Time

(@) Scenario of two colliding packets

Sender A | Preamble | Sync—word [Header | Payload [CRC | Payload [CRC| SenderB

R Time

(b) Signal first sender (Sender A) is stronger than signal second sender (Sender B)

Sender A | Preamble [Sync—word [Header [Preamble | Sync—word [Header | Payload [CRC] SenderB

Time

(c) Signal second sender (Sender B) is stronger than signal first sender (Sender A)

Sender A | Preamble | Sync—word |Header | Payload [CRC | Payload [CRC | Sender B
. Preamble Sync-word Wrong No preamble or
Single thread Detected Detected CRC-word sync—word
Detected Detected
Discard packet Packet lost
—_— Time
(d) Standard packet detection where the second packet is lost
Sender A | Preamble [Sync—word [Header | Payload [CRC |
Preamble Sync-word Wrong
Thread One Detected Detected CRC-word
Detected
Discard packet
Thread Two [Preamble | Sync—word [Header | Payload [CRC| SenderB
Preamble Sync—word Correct
Detected Detected CRC-word
Detected

Packet received

— Time

(e) Dual thread packet detection where the second packet is correctly received

Figure 4.5: Packet transmission

15

T-Node Laptop
Application Application
! 3 ‘ Point-to-Point [- - - - - - - - - - - - - - | - Point—to—Point‘ 3 3
Time-sync ‘ Data Transport Data Transport ‘ Meta Transport
Data link Data link
‘ Physical Physical
Tmote Sky connected to T-Node Tmote Sky connected to laptop
ffffffffff
; Data Transport j Meta Transport Time-sync | Data/Meta Transport
Data link Data link Data link Data link
UART ‘ Physical Physical CC2420 ‘ Physical Physical UART

Figure 4.6: Network Architecture Layout

can occur when two sensor nodes sense the absence of a signal and start transmit-
ting concurrently, resulting in a collision. The hidden-node problem occurs when
two sensor nodes are not in each others transmission range but there is a desti-
nation sensor node that is located in both their transmission ranges. When both
sensor nodes start transmitting, a collision can occur (see Figure 4.4). Collision
detection is limited, as we can only detect a collision when the start of a second
packet is detected during the reception of the first packet. In other words, to be
able to detect a collision the sync-word of the second packet must be detected pre-
cisely between the sync-word of the first packet and the end of the first packet. In
order to detect the sync-word of the second packet, the second packet must have a
stronger signal than the first packet.

As mentioned before, the capture effect makes it possible to detect one of sev-
eral colliding packets and is realised as follows. If the first packet sent has the
strongest signal, we will never know that a second packet was sent (Figure 4.5b).
By contrast, when the second packet sent has a stronger signal, the second packet
can be detected successfully (Figure 4.5¢c). However, when the standard packet de-
tection is collecting the payload of the first packet while a second packet with a
stronger signal is transmitted, the second packet is missed as the packet detection
is still busy with the first corrupt packet. This scenario is displayed in Figure 4.5d.
To solve this problem, a second detection thread is executed to try to detect the sec-
ond packet while the first detection thread tries to collect the first packet, as shown
in Figure 4.5e.

4.4 Network Architecture

The network architecture (see Figure 4.6) describes the different layers needed to
transport the data collected by the T-Node to the laptop, and to transport the mes-
sages that need to be injected into the WSN from the laptop to the T-Node. In this
section we will give a short description of the different layers, whereafter a more
detailed description of the layers is given that are specific for this implementation.

16

4.4.1 Network Layers

The network architecture consists of six software layers. A short description is
given of each software layer.

Application Layer is responsible for timestamping and assigning a type to the col-
lected data. Different types of data are needed as not only received messages
are collected, but also, for example, when the channel was busy while trying
to inject a message into the WSN.

Point-to-Point Layer is responsible for using the transport layer as efficiently as
possible and to avoid a dependency of the application layer on a specific
transport layer. Efficiency is achieved by putting the application layer data
into a frame and packing as many frames or parts of frames into a transport
packet creating a high data throughput. Framing makes it possible to recon-
struct the application layer data in its original form at the laptop. A frame
consists of a delimiter and a length field. The delimiter is used to detect the
start of a frame and the length to detect whether or not the frame is complete.
Making the application layer independent of the transport layer has the ad-
vantage that the transport layer can be changed or tuned without having to
change the application layer. Changing the application layer implies that
many parts of the analysis tool have to be changed too. The point-to-point
layer is only used for transporting data from the T-Node to the laptop and
not the other way around. The reason for this is that de-framing data at the
T-Node costs too many resources and not much data has to be transported to
the T-Node so a high data throughput is not necessary.

Time Synchronisation Layer is responsible for synchronising the clocks of the Tmote
Sky connected to the T-Node with the clock of the Tmote Sky connected to
the laptop and for synchronising the clock of the T-Node with the clock of
the connected Tmote Sky.

Data Transport Layer is responsible for identifying the source inspection node
and the destination inspection node, and to detect packet loss and duplicate
packets.

Meta Transport Layer is responsible for the transport of commands and meta data
between the laptop and the Tmote Sky connected to the T-Node. A command
can be, for example, to blink the LEDs of the Tmote Sky connected to the T-
Node. Meta data can be, for example, statistics about the connection between
the Tmote Sky and the T-Node.

Data Link Layer is responsible for creating reliable connections between nodes,
and between node and laptop. Reliability is achieved by detecting corrupt
packets and by retransmitting unacknowledged packets.

4.4.2 Implementation Details of the Connection between T-Node
and Tmote Sky

The connection between the T-Node and the Tmote Sky is a custom connection
that also needs custom software. The basis for this connection is the TinyOS UART
component that is available for both nodes. This UART component is designed for

17

3 .
CC2420 Atbiter 4 | UART 0. Packet arrives
Component Component Component | 1. Signal the processor
5 2. Execute the interrupt handler

A
3. Request the USARTO

2 CPU 4. Release the USARTO
1 5. Grant the USARTO
.| | Peripheral interface
0 CC2420 I UART
—
Chip USARTO Connection

Figure 4.7: Sharing the Peripheral Interface

a connection between a personal computer (pc) and a sensor node. This connec-
tion is asymmetrical; from pc to sensor node a stop-and-wait protocol is used, and
from sensor node to pc a non-reliable protocol. The developers of TinyOS wanted
to use a non-reliable protocol for both ways, as a non-reliable protocol is less com-
plex and smaller in size than a stop-and-wait protocol. However, the connection
between the pc and the sensor node is too unreliable to use a non-reliable proto-
col. The reason for this is that the size of the receiving buffer at the sensor node is
too small to cope with a high interrupt load, resulting in bytes in the buffer being
overwritten. The pc does not have this problem as more memory is available for
the receiving buffer. As the UART connection is asymmetrical, when a T-Node is
connected to a Tmote Sky, both nodes expect a pc on the other side of the connec-
tion and will receive an acknowledgement for each message that they send, while
not expecting any. The UART connection had to be modified to use a two-way
stop-and-wait protocol, as both nodes have limited size buffers and reliability is
an important requirement.

Due to hardware limitations of the Tmote Sky, the UART connection with the
T-Node has to share a peripheral interface of the processor with the radio chip. The
radio chip uses this peripheral interface for the transport of radio packets between
the processor and the radio chip. The radio chip is also connected to the proces-
sor with dedicated control lines. With these control lines the processor coordinates
with the radio chip when the peripheral interface is needed. In software, coordi-
nation of sharing a resource, in this case the peripheral interface, is done through
an arbiter component. To give an idea how the sharing of the peripheral interface
works, a scenario is sketched in Figure 4.7, where the UART component is owner
of the peripheral interface and the radio receives a radio packet. In this scenario
the radio chip signals the processor that it needs the resource.

When the T-Node wants to send data to the Tmote Sky it can not signal the
processor of the Tmote Sky for the resource, as there are no dedicated control lines
between the two nodes. To solve this problem flow control is incorporated in the
UART component at the HDLC-like framing [21] layer. Framing is used to cre-
ate a reliable connection over the UART’s byte-oriented connection. The HDLC-
like framing protocol reserves special bytes for the use of flow control commands.
Two flow control commands are used, Xstart and Xfinished. They are escaped the
same way as a frame-delimiter. The use of flow control is illustrated in Figure 4.8,
where the UART component periodically requests the use of the peripheral inter-
face. When granted the UART-component starts the transfer with the T-Node of
one UART unit each. The UART unit can either be a data frame or an acknowl-
edgement frame. This implementation of flow control differs from the standard

18

TmoteSky | | T-Node !

\Artbiter UART | | UART

m

3 Xstaf‘t

‘

‘

~Frame

! ‘

j i

i Frame

‘ |

‘

Xfinishéd

Figure 4.8: Flow Control

implementation, as time-slicing is used and the Xfinished signal transmits in the
opposite direction.

Time-slicing ensures that the peripheral interface is shared in the most optimal
way possible to support both the needs of the radio chip and the T-Node. The
needs of the radio chips differs from that of the T-Node. When packets arrive, the
radio chip needs the interface as quickly as possible, but only for a short amount of
time. As the T-Node has more memory than the radio chip, it can wait longer for
the interface to become available. However, the T-Node needs the interface for a
longer period of time, as the UART connection is much slower than the connection
between the radio chip and the peripheral interface.

The Xfinished signal transmits in the opposite direction to ensure that all data
sent by the T-Node is received. When the interface is granted to the radio chip,
all data sent by the T-Node is lost and the transmission of data by the T-Node will
probably interfere with the transmission between the radio chip and the processor,
creating corrupt packets.

Complete frames are chosen as UART unit to assist the stop-and-wait proto-
col. When the stop-and-wait protocol receives a corrupt acknowledgement frame
or does not receive an acknowledgement frame at all in the time slice after the
transmission of a data frame, it retransmits the data frame.

4.4.3 Implementation Details of the Time Synchronisation

The clocks of the inspection nodes need to be synchronised with each other. Time
synchronisation can be realised by either using a centralised or decentralised ap-
proach. In this implementation we have chosen for a centralised approach, as we
already have a central point and a centralised approach is less complex than a de-
centralised approach. The clock of the Tmote Sky connected to the laptop is used
as the central clock instead of the clock of the laptop. This removes the need for an
additional synchronisation stage, which reduces the inaccuracy of the synchroni-
sation.

The time synchronisation consists of two stages. In the first stage the current
time is broadcasted by the Tmote Sky connected to the laptop and received by the

19

Tmote Skys connected to T-Nodes. This stage is realised by an implementation of
“Packet-level time synchronization” [13] for CC2420 radios. In order to make this
implementation work we had to resolve two problems both related to the “start of
frame delimiter” (SFD) pin of the CC2420 radio [3]. The SFD pin is connected to
an interrupt pin of the processor. The moment the CC2420 is going to transmit a
packet the SFD pin becomes active generating an interrupt. In the interrupt han-
dler of the SFD pin a timestamp is taken and transferred to the transmit buffer in
the CC2420, to update the timestamp in the packet. For some reason, it takes too
long between the activation of the SFD pin and the transfer of the updated times-
tamp, causing the packet to be transmitted with an old timestamp. We resolved
this problem by first putting a marker in the packet to indicate an “invalid” times-
tamp and overwriting the “invalid” timestamp in the interrupt handler. When the
packet is transmitted before the timestamp is updated the receiver will receive the
marker “invalid” and discards the timestamp. The rate at which the timestamp
packets contain an “invalid” marker depends on the rate of messages received at
the Tmote Sky connected to the laptop. At a rate of one message per second, 0.3%
of the time synchronisation packets contain an “invalid” marker, and at a rate of
20 messages per second, 3%.

The second problem occurred while a packet is being received and hardware
address recognition is enabled. In receive mode the SFD pin becomes active when
the start of a packet is detected and a timestamp is taken in the interrupt handler.
When the hardware address recognition discards the packet, the SFD pin becomes
inactive straight after the receipt of the destination address. The interrupt han-
dler is fired again and the timestamp is discarded. When the SFD pin becomes
active again before the interrupt handler has been able to discard the timestamp,
the timestamp queue will still contain an incorrect timestamp. We resolved this
problem by increasing the packet size so that only one packet can fit in the receive
buffer, and reduce the size of the timestamp queue to one item. When the receive
buffer can contain only one packet, only one timestamp needs to be saved and an
old timestamp can be safely overwritten.

The second synchronisation stage is between the Tmote Sky and the T-Node.
We implemented this stage using the same principles as the “Packet-level time
synchronization” [13].

20

Chapter 5

Analysis Tool: Analysis of the
received information

The previous chapter focused on how the collected data is transported back to the
central computer while in this chapter, Section 5.1, will concentrate on how the
transported data is used for analysis. The second section, Section 5.2 describes
how active inspection is coordinated from the analysis tool and how the messages
are injected at the inspection nodes.

5.1 Passive Inspection

Subsection 5.1.1 describes how the radio packets of multiple inspection nodes are
combined into one stream. The following subsections describe what kind of data
can be extracted from the different layers that form a radio packet.

511 Combining Radio Packets of Multiple Inspection Nodes

The stream of radio packets supplied by each inspection node need to be combined
online into one stream (see Section 3.1). This combination process is realised using
the following steps:

1. Radio packets of each inspection node will arrive at the central computer in
FIFO-order, and are added to a queue per inspection node. The timestamp
of a new packet is checked against the timestamp of the oldest packet in the
queue. When the timestamp of the new packet is older than the timestamp
of the oldest packet, a clock skew is detected. The timestamp of the new
packet is not compared to the timestamp of a previously arrived packet, as
a small time synchronisation inaccuracy would be identified as a significant
clock skew.

2. The packet with the oldest timestamp of all the packets at the head of all
the queues is selected. The timestamp of this packet must be older than the
timestamp of the latest received data from each inspection node. This ensures
that no packets will arrive that are older than the selected packet.

21

3. Packets at the head of each queue with the same contents as the selected
packet are removed. This filters out duplicate packets.

4. The selected packet is dispatched, so that it can be analysed further.

5.1.2 Statistics of the MAC-Layer

The packets that are dispatched by the combination process are used by the MAC-
layer statistics process. When a packet arrives, it is sorted into the correct node
queue by identifying the source address of a data packet and the destination ad-
dress of an ack packet. A node queue is a queue of packets associated with a
particular sensor node in the deployment. When a node queue contains two data
packets, dependencies are deduced based on the payload and the number of ac-
knowledgements. The payload consists of data from the network and application
layer (see Section 3.3). In order to deduce dependencies between two data packets
the payload of the two data packets are compared with each other:

* Equal payloads: the second data packet is marked as a retry. If the queue
contains an ack between the two data packets, the source node did not re-
ceive the ack, otherwise the destination node did not receive the first data
packet. As links between sensor nodes are asymmetrical, it is important to
make a distinction between the two directions.

* Unequal payloads: if the there is an ack packet between the two data pack-
ets, the first data packets is marked as acknowledged. If there was no ack
packet between the two data packets, either the inspection nodes have missed
the ack or the sensor node has given up retrying as the maximum number of
retries had been reached.

Depending on the number of radio packets missed by the inspection nodes, uncer-
tainties appear in the statistics. It is obvious that when radio packets are missed,
the statistics are incomplete. A bigger problem is, for instance, when a data packet
is marked as acknowledged whereas it has actually been dropped, or when the
recipient is blamed for not receiving the data packet when actually the sender did
not receive the acknowledgement.

In order to reduce these uncertainties the software running on the sensor nodes
can be modified to include sequence numbers in the radio packets that they trans-
mit. There are two sequence numbers used to reduce the uncertainty to a mini-
mum:

¢ Transmit index: an index that increases with every transmitted packet. (tidx)

* Payload index: an index that increases every time the payload of the packet
changes (pidx)

Atidx is the difference between the transmit index values of the two data pack-
ets, and Apidx is the difference between the payload index values of the two data
packets. Atidx is used to determine the number of missed packets. Apidx is used
to determine the number of missed packets with a unique payload. When the
payload of the two data packets are equal, all missed packets are marked as re-
tries. When the payload of the two data packets are not equal, we assume that
all missed packets with a unique payload are acknowledged, and that all missed
packets represented by Atidx - Apidx are retries.

22

5.1.3 Network Time

The packets that are dispatched by the combination process are used by the net-
work time statistics process. This process supplies statistics about the time syn-
chronisation protocol that is used to synchronise the clocks between the sensor
nodes. The synchronisation protocol used by the sensor nodes is part of the \MAC
framework [15], and works as follows. Each radio packet contains a network-
timestamp, that represents the network time of the sensor node at the moment
the packet was sent. When a sensor node receives a packet with a network time
further in the future than its own network time, the sensor node will adjust its
network time accordingly.

In order to check whether each sensor node has the same network time, the
network time timestamp in the packet is compared to the timestamp of receipt
by the inspection node. The difference between these two timestamps, hereafter
called delta, should be more or less constant for all sensor nodes at a specific point
in time, during the life-time of the deployment. The delta can be used to check
whether or not two sensor nodes can communicate with each other and whether
time-partitions have formed in the deployment. When two nodes have different
deltas it is very likely that the destination node’s radio is turned off while the
source is transmitting. Time-partitions can be detected by comparing the delta
of different sensor nodes. Sensor nodes with the same delta form a group. If there
are multiple groups, time-partitions have been formed in the deployment.

5.1.4 Statistics of the Network-Layer

The packets that are dispatched by the combination process are used by the network-
layer statistics process. The network protocol used in the deployment is the Col-
lection Tree Protocol (CTP) [5]. CTP is a proactive routing protocol that creates a
spanning tree by letting each node choose one parent to send its data packets to.
This tree can be re-constructed and visualised using the parent field of a CTP rout-
ing packet and the destination field of a CTP data packet. The re-construction of
the routing tree is used to detect routing loops, to detect partitions within the net-
work, to check the routing tree against the link qualities broadcasted by the sensor
nodes, and to track CTP data packets that are routed through the network. The
visualisation of the routing tree can be used to aid in the detection of problems ef-
fecting the routing tree. A CTP routing packet contains a sequence number that is
used by the link estimation protocol to count the number of missing CTP routing
packets. The analysis tool uses this sequence number to detect sensor nodes that
have been rebooted.

5.2 Active Inspection

Injecting messages into a deployment is coordinated using the analysis tool at
the central computer. In order to do this successfully, inspection nodes must co-
operate with the MAC protocol used in the deployment (see Section 3.1). Both
CSMA-based and TDMA-based MAC protocols, with the additional use of the
time-synchronisation layer (see Section 3.3), are supported. However, the current
implementation for the support of CSMA-based MAC protocol does not include
advanced features like channel reservation techniques (RTS/CTS) and collision

23

Action

TDMA-based MAC protocol

CSMA-based MAC protocol

1. | Move the inspection
node timestamp to
the present if it was
in the past.

Increase the inspection node
timestamp and network
timestamp with steps the
size of the frame length.

Move the inspection node
timestamp and network
timestamp to the present by
adding the difference
between the present and the
past to both timestamps.

2. | Inject the message.

Activate a timer at which
the packet must be injected.
When the inspection node is
receiving a message, the
network timestamp is
adjusted to the next

Check whether or not a
message is being received.

If so, the inspection node
will adjust the network
timestamp and inject the
packet once the message has

time-frame and the timer is
reactivated to try and inject
the message in the next
time-frame.

been received, otherwise the
packet is injected directly.

Table 5.1: The process of injecting a message into the network at the T-Node part
of the inspection node

avoidance techniques (random back-off timer). The following parameters are used
to inject packets at the correct moment in time:

¢ Inspection node timestamp: a timestamp according to the clock of the in-
spection node at which the packet should be injected into the network.

e Frame length: the length in milliseconds of the time-frame used by the TDMA-
based MAC protocols. A frame length of zero indicates the use of carrier
sense with a CSMA-based MAC protocol.

* Network time offset: the offset within the packet where the network time
is located. A network time offset of zero indicates the absence of the time-
synchronisation layer in the packet.

When the operator wants to inject a packet, the message is set up at the analysis
tool and the above parameters are added to the packet. The packet is transported
to the selected inspection node and is processed as described in Table 5.1. The first
action listed in Table 5.1 is to move the inspection node timestamp to the present
if it was in the past. An inspection node timestamp can be in the past due to
a delay in the transport of the packet from the analysis tool to the T-Node part
of the inspection node, and for convenience. It is convenient to re-use a packet
received from the destination. This enables the re-use of the time-delta between
the inspection node timestamp and the network timestamp. Re-using the time-
delta ensures that the clock of the inspection node is synchronised to the clock of
the destination, ensuring that the packet is injected in the correct time-slot of the
destination.

When injecting acknowledgements into the deployment, special functionalities
are needed. This is because acknowledgements must be injected immediately after
the receipt of a data packet. It would take too long to transport the data message

24

all the way to the central computer where after the acknowledgement would have
to be transported back to the inspection node. The acknowledgement packet is
set up at the central computer and transported once to inspection node where it
is stored in its memory to be used when needed. The acknowledgement packets,
that are transported, contain the following parameters:

* Source address: is the address that the inspection node will assume. For
example, when the inspection node assumes the address 40, the inspection
node will inject an acknowledgement with source address 40 when it has
received a data packet with destination address 40. If the source address
is the same as the broadcast address, the injection of acknowledgements is
stopped.

¢ Network time offset: the offset within the packet where the network time
is located. A network time offset of zero indicates the absence of the time-
synchronisation layer.

After the receipt of a data packet, the destination address is compared to the source
address of the acknowledgement that is stored in memory. When they are equal,
the network time of the acknowledgement is updated and injected into the deploy-
ment.

25

26

Chapter 6

Evaluation

In this chapter we evaluate the passive and active inspection capabilities of the
implemented analysis tool and the inspection network. First, in Section 6.1 we
describe how the experiments, using the testbed, are set up. In Section 6.2, we
evaluate the accuracy of the time synchronisation between the inspection nodes.
Section 6.3 and 6.4 describe the passive and active inspection experiments that
were performed, and the results of these experiments are evaluated. The last sec-
tion, Section 6.5, describes what influence the temperature of the environment has
on the clocks of the sensor nodes.

6.1 Setup of the Experiments

The experiments were performed using a testbed that consists of 24 T-Nodes. The
layout of the testbed is shown in Figure 6.1. The blue dots represent the locations
of the inspection nodes, and the red dots that of the sensor nodes. The T-Nodes
have a transmission range of 25 meters and the dimension of the testbed is approx-
imately 8 x 15 meters. This means that all nodes lie within in each other’s trans-

room 9.320 room 9.80
() [[
23 0 15 14

J
22 8

room 9.310 @ room 9.70
(] [[J
19 4 12 20
® (]

(] [[
10 11 7 13

4m
3 9
[) [] [] []
1 2 16 17 \
J4m

6.4m 2.3m 6.4m

Figure 6.1: Testbed Layout

27

70 ‘Inspect‘ion Node99 ——— | Ins pectﬁon Node99 ———

T-Node Time-A (ms)
b

jitter of the clock at the T-Node (ms)
IS

0 2
0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400 1600

Tmote Sky Time (seconds) Tmote Sky Time (seconds)

(a) Clock-drift of the T-Node with respect to the clock of (b) Jitter of the clock of the T-Node
the Tmote Sky

0.25 —

‘ Insi;)ect{on Node 99 =1

0
2.6-22-18-13-09-04 00 04 09 13 1.8 22 26 -26-22-18-13-09-04 00 04 09 13 1.8 22 26
Jitter (ms) Jitter (ms)

(c) Probability Density Function of the jitter of the clock (d) Probability Density Function of the jitter of the clock
at the T-Node of inspection node 99 at the T-Node of inspection node 200

0.25 —

inspéctidn Node 99 +200 ===

0.15 - 1
0.1 | 1

0.05 - 1

-2.6 22 -1.8-13-09-04 00 04 09 13 1.8 22 26
Jitter (ms)

(e) Probability Density Function of the jitter between the
T-Nodes of the two inspection nodes

Figure 6.2: Accuracy of the Time-Synchronisation between the Inspection Nodes

28

mission range, and they will, therefore, form a single-hop network. This is not a
realistic representation of a deployment, and therefore the transmission power of
the T-Nodes is reduced, so that a multi-hop network will be formed. Each sensor
node will generate a data message every 2 seconds and will transmit that message
towards the sink (sensor node 0). The laptop with a connected Tmote Sky is placed
5 meters from the inspection nodes.

6.2 Accuracy of the Time Synchronisation between the
Inspection Nodes

The need for time synchronisation between the inspection nodes is described in
Section 3.1 and Section 4.1. Time synchronisation is an important requirement and
therefore its accuracy is also important. The accuracy is measured by the amount
of jitter of the clock at the T-Node part of the inspection node.

The clock of the T-Node is synchronised every 5 seconds to the clock of the
Tmote Sky connected to the laptop by recording the difference between the two
clocks (time-A), at the T-Node. When a synchronised timestamp is needed, a
timestamp of the local clock of the T-Node is taken and added to the time-A. The
slope in Figure 6.2a, obtained by linear regression, represents a 1 millisecond clock-
drift of the T-Node every 22.8 seconds with respect to the clock of the Tmote Sky
connected to the laptop. Time synchronisation is able to compensate for the clock-
drift, but not for the jitter. When the clock-drift is removed from Figure 6.2a, the
jitter remains and is shown in Figure 6.2b. The probability density function of the
jitter of inspection nodes 99 and 200 are shown in Figure 6.2c and Figure 6.2d. From
these figures we conclude that there is a 84.4% and 84.6% probability that the error
of the time synchronisation of the inspection nodes lies around 1 millisecond. The
synchronisation processes in both inspection nodes are independent of each other,
and both jitter functions have a normal distribution, therefore both jitter functions
can be added to each other to form one combined probability density function.
This function is shown in Figure 6.2e. From this figure we conclude that the differ-
ence in time between two inspection nodes lies within 3 milliseconds of each other
with a probability of 85.6%.

The radio of the T-Node can only send 7 bytes within 3 milliseconds, as its bit-
rate is 19.2kbps. The header of a CC1000 radio message, alone, is 7 bytes, meaning
that the radio message is long enough to span more than 3 milliseconds. This
makes it impossible to receive multiple radio messages within 3 milliseconds of
each other. Therefore when the message traces of the inspection nodes are com-
bined at the central computer, the logical time order of the collected messages will
be preserved. This implies that the time synchronisation is accurate enough to
combine the message traces of the inspection nodes and to correctly filter-out du-
plicate messages at the central computer.

6.3 Passive Inspection

In order to evaluate the passive inspection capabilities of the implemented analysis
tool and the inspection network, we compare two cases. The first case will function
as a reference experiment for the second case. In the second case we re-introduce
a previously resolved bug to check whether or not the analysis tool can detect the

29

TinyOS 1 TinyOS 2

[]

3
Send.sendDone(error:=FAIL) Send.sendDone(error:=FAIL)
PacketAcknowledgment.wasAcked():=FALSE

°
3

—_
—_

Data packet Data packet

,
$

Ack packet Ack packet
Send.sendDone(error:=FAIL) Send.sendDone(error:=SUCCESS)
PacketAcknowledgment.wasAcked():=FALSE

Figure 6.3: Port-bug: changed Send. sendDone semantics

bug. We have chosen a previously resolved bug for two reasons. The first reason
is time constraints. In the case of observation you have to wait until an anomaly
occurs and that can take a long time. The second reason is that it is very difficult to
detect an anomaly during the development phase of the inspection network and
analysis tool. Especially in the initial development phase, where an anomaly is
more likely to be a bug in the tool than in the subject under observation.

The previously resolved bug used in the experiment was introduced while
porting software from TinyOS 1 to TinyOS 2. This bug will be referred to hereafter
as the port-bug and is described as follows. The process of sending a data packet
consists of two events; transmitting a data packet and receiving an acknowledge-
ment packet. When both events are successful, the data packet is successfully re-
ceived by the destination. In TinyOS 1, if either event failed the parameter error
of the signal Send.sendDone would indicate FAIL, as shown in the TinyOS 1 col-
umn in Figure 6.3. In TinyOS 2 there was a need to make a distinction between
the two events. The parameter error of the signal Send.sendDone now only in-
dicates FAIL when the data packet was not successfully sent. Whether or not the
acknowledgement packet is successfully received is indicated with the result of the
function PacketAcknowledgment .wasAcked (), as shown in the TinyOS 2 column
in Figure 6.3. Due to the change of the semantic meaning of the error parame-
ter, the network-layer assumes that the packet was not successfully transmitted
while it actually was but no acknowledgement was received. The network-layer
will assume that the process of sending a packet went wrong, and therefore not
accounting for the fact that the link was too weak between the node and its des-
tination. This results in the network-layer repeatedly retransmitting the packet,
as long as the packet is not successfully being acknowledged. Added to this, the
packet is never marked as retry and its link statistics are never updated.

The impact of this bug can be visualised using the MAC-layer statistics and
the routing tree. The MAC-layer statistics of the reference experiment are shown
in Figure 6.4. Data packets can either be collected or deduced. If a data packet
is collected, it is actually overheard by an inspection node. If a data packet is
deduced, it is deduced from the extra sequence numbers of the data packets that
are overheard by the inspection nodes. From this figure we conclude that most
data packets are acknowledged, except for those of node 14. The benefit of the

30

Number of Data Packets

Number of Data Packets

400

350

300

250

200

150

100

50

400

350

300

250

200

150

100

50

T T T T T T T T T T T
Acknowledged: collected + deduced =====
Retry: collected + deduced ==
Acknowledged: deduced ===
o Retry: deduced mmmmm -

W.Hﬂ H L Hﬂﬂlﬂﬂ ﬂnHﬂ HH L HH.HHH.Hm H il

Fﬂ o W H«HJ
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Node Ids

Figure 6.4: MAC-layer statistics of the reference experiment

T T T T T T T T T T T
Acknowledged: collected + deduced ==
Retry: collected + deduced =
Acknowledged: deduced
L Retry: deduced mmmmm ~

Lo L HHIHH- |HHIHH il |HH|H| DL i e 0.
1 5

2 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Node Ids

Figure 6.5: MAC-layer statistics of the port-bug experiment

31

® ®) 3 10 22 ®73
PRI v PN v
o9 ®1] ®13 oy ®13 ®16 ®19
¥ v P BN
)] ®1> o ®14 ®20
\
o5

Figure 6.6: Routing Tree Layout of the reference experiment

o <%, < o3, '6%'1%'%
L N ¢

o7 ®13 o5 20

Figure 6.7: Routing Tree Layout of the port-bug experiment

extra sequence numbers (see Section 5.1.2) is evident at nodes 10 and 19. Without
the extra sequence numbers, 31 of the 40 (78%) acknowledged packets and 8 of the
9 (89%) retry data packets would not have been detected from the collected data
packets of node 19. Figure 6.4 also shows that nodes 15 and 17 have sent no data
packets at all. The reason for this is that the links are asymmetrical; nodes 15 and
17 are not able to hear the other nodes, while the other nodes can hear nodes 15
and 17. This conclusion is based on the routing tables of the nodes, collected by
the network-layer statistics.

The MAC-layer statistics of the port-bug experiment are shown in Figure 6.5,
and shows that almost 90% of all transmitted data packets are retry data packets.
This is a clear indication of a problem. The benefit of the extra sequence numbers
in the port-bug experiment is less apparent than in the reference experiment. For
example, in the port-bug experiment 65 of the 253 retries of node 21 are not de-
tected. Although 65 is a significant number, it is only 26% of the total number of
retry data packets.

Figure 6.5 also shows that not all sensor nodes are affected by the port-bug.
The sensor nodes that have sent many retries are affected by the port-bug while
the other ones are not. Sensor nodes that are closer together are more likely to
have stronger links than nodes that are situated further apart from each other. Due
to this there is less chance of an acknowledgement not being received when sent
between two nodes that are close together. Therefore, there is less chance of an
instance of the port-bug occurring between two nodes that are situated close to-
gether. The sensor nodes that have sent many retries have chosen the sink as par-
ent. Due to asymmetrical links, they are able to receive packets transmitted by the
sink but not the other way around. The reason why the sensor nodes have chosen
the sink as parent, is because the routing layer wants to create the shortest path
towards the sink, and this is achieved by communicating with the sink directly.
The asymmetrical links, together with the link statistics not being updated, causes
the sensor nodes not to switch to a parent closer by.

32

Time-delta (ms):

Difference between
the time of the inspection network and
the network time of the sensor nodes

90
80
70
60
50
40
30
20
10

Figure 6.8: The elapse of the network time during active inspection

That the sensor nodes affected by the port-bug are located too far from the
sink is visualised by comparing the routing-tree layout of the reference experiment
(Figure 6.6) with that of the port-bug experiment (Figure 6.7). In Figure 6.7 the
sensor nodes affected by the port-bug are connected to the sink directly, whereas
in Figure 6.6 they are not.

6.4 Active Inspection

Active inspection consists of the ability to inject radio packets and acknowledge
data packets. In order to test the ability to inject radio packets, we have chosen to
use data packets, as it is a requirement that data packets are acknowledged by the
recipient. An acknowledgement also shows whether or not the network time of
the destination node is unaffected by the injection. This is done by comparing the
timestamp in the acknowledgement with the timestamp of the inspection node,
and by comparing the timestamp in the acknowledgement with the timestamps
of previously received packets from the destination node and other nodes (see
Section 5.1.3).

33

90

Inspection Node 156 Inspection Node 200

Run H Temperature ‘ Clock-drift H Temperature ‘ Clock-drift
1 -2 °C (outdoors) 47.1 ppm 20 °C (indoors) | 42.6 ppm
2 20 °C (indoors) 49.9 ppm 20 °C (indoors) | 42.6 ppm
3 -6 °C (outdoors) 44.5 ppm -6 °C (outdoors) | 29.9 ppm

Table 6.1: The clock-drift of the T-Node with respect to the clock of the Tmote Sky
connected to the laptop.

The experiments of injecting radio packets uses the same setup as the experi-
ments used for passive inspection. In the experiment performed, inspection node
99 sends each sensor node a data packet with source address 40 and CtpOriginld
40. Data packets with CtpOriginld 40 are tracked by the analysis tool to visu-
alise the complete path from the source to the sink. Inspection node 99 was able
to successfully send a data packet to each sensor node in the testbed, as its send
power was not reduced. Nodes 15 and 17 also acknowledged the receipt of the
data packet, but were not able to send the data packets towards the sink, as they
both do not have a parent. Figure 6.8 shows the elapse of the network time during
the experiment. For nodes 15 and 17, the inspection network only collected the
acknowledgements for the data packets that were injected. The rest of the data col-
lected about these nodes are interpolated. The slope of the line in the delta/time
plane represents the drift between the clocks of the T-Nodes in the deployment and
the clocks of the inspection nodes. In the delta/node id plane the ideal scenario
would be that the lines are straight and horizontal, meaning that all the clocks of
the sensor nodes are always synchronised with each other. Although this is not
completely the case, the lines are straight enough to conclude that the network
time was not affected by the injection of data packets.

The setup of the experiment of injecting acknowledgements consists of two sen-
sor nodes and two inspection nodes. The idea behind this experiment is to first let
the two sensor nodes setup a link between themselves, where after the destination
sensor node is replaced by an inspection node. In this experiment we want to test
the ability of an inspection node to successfully acknowledge any data packets that
the sensor node sends. Node A generates data packets and sends them to node B,
the sink. After node A has successfully sent multiple data packets to node B, node
B is disabled by removing its battery pack. At the analysis tool, inspection node
99 is set to reply as node B. Inspection node 200 collects data messages from node
A and collects acknowledgements from inspection node 99. From the MAC-layer
statistics at the analysis tool we were able to conclude that node A successfully
received the acknowledgements sent by inspection node 99, as its payload imme-
diately changed after the transmission of an acknowledgement.

6.5 Influence of Temperature Differences on the Time
Synchronisation between Sensor Nodes
In early January, we inspected a deployment of roughly 30 sensor nodes with a

dimension of approximately 15 by 15 meters located in two back gardens. The
sink and two sensor nodes where placed inside one of the houses. A number of

34

overlap
lt—
Sender | time=slot |

I
clock—drift ! data/ack

Recipient

Figure 6.9: Time-slot miss-alignment due to clock-drift

sensor nodes where placed inside the garages at the end of the gardens, while the
remaining sensor nodes were placed in the two gardens. Different temperatures
were experienced by sensor nodes placed in different locations. During the inspec-
tion of this deployment we detected that the network time of certain sensor nodes
drifted away from other sensor nodes. After brainstorming we suspected that the
difference in temperature could have an effect on the synchronisation of the net-
work time. In order to check whether this premise was valid, we used the built-in
facilities of the inspection network to monitor the time synchronisation between
the inspection nodes. The influence of the temperature difference is measured in
the amount of clock-drift of the T-Node with respect to the clock of the Tmote Sky
connected to the laptop. The duration of each run of the experiment lies around
50 minutes, and the results are summarised in Table 6.1. From these results we can
conclude that as the temperature drops the clock-drift between the T-Node and the
Tmote Sky becomes smaller. This means that the clock of the T-Node runs slower
as the temperature drops.

The variation of clock-drift due to temperature difference has the following
effect on the operation of the deployment. The clock-drift between two sensor
nodes causes the miss-alignment of the time-slots between the sensor node that
sends the message and the sensor node that receives the message (see Figure 6.9).
Due to the extreme drift between the clocks of these two sensor nodes, the overlap
of the two time-slots becomes too small for the destination to receive the message
sent by the source. When the destination does not receive any messages it can
not synchronise its clock with the clocks of the other sensor nodes, as it needs
the network timestamp in the message to do so. The solution to this problem is
to increase the frequency of broadcasting synchronisation messages. The result is
that before the time-slots do not overlap any more, the clocks of the sensor nodes
are synchronised to ensure the alignment of the time-slots.

35

36

Chapter 7

Conclusions and Future Work

7.1 Conclusions

It is impossible to resolve all problems before deployment, as it is impossible to
accurately model an environment due to its many variables. Passive inspection
is proposed by Ringwald et al. [18] to detect problems in WSN-application dur-
ing deployment by overhearing the communication between sensor nodes. Our
research attempted to further evaluate the concept of passive inspection and to an-
swer whether we can extend passive inspection with active inspection. To perform
our evaluation, we first had to design and implement an inspection network.

Before we could evaluate the passive and active inspection capabilities of our
inspection network we had to evaluate the accuracy of the time synchronisation
between the sensor nodes (see Section 4.1). The results of this evaluation are very
positive as the time synchronisation manages to achieve that the drift between
clocks of the inspection nodes stays within 3 milliseconds of each other with a
probability of 85.6%. This implies that the time synchronisation is accurate enough
to combine the message traces of the inspection nodes and to correctly filter-out
duplicate messages at the central computer.

The passive inspection capabilities of our inspection network were evaluated
by comparing a normal operation of the deployment on our testbed with an op-
eration where a previously resolved bug, the port-bug, was inserted. The aim of
this was to check whether or not the port-bug could be detected by the analysis
tool of the inspection network. The results show that we would have been able
to detect the port-bug based on the MAC-layer statistics and the routing tree lay-
out. The MAC-layer statistics revealed that almost 90% of all data packets were
retries in the port-bug experiment whereas less than 10% of all data packets were
retries in the reference experiment. When comparing the routing tree layout with
the MAC-layer statistics we were able to deduce why some sensor nodes were less
affected by the port-bug than others. The results also show that without extra se-
quence numbers (see Section 5.1.2) a significant number of messages would not
have been detected. This would negatively effect the MAC-layer statistics, but not
so much that we would be unable to detect the occurrence of the port-bug. From
these results we make the following generalisations:

Completeness vs. coverage: In order to detect problems within the deployment it
is more important that the limited number of inspection nodes are placed in

37

such way that the part of the deployment that they cover delivers complete
information rather than trying to cover the whole deployment at once. It is
not necessary that the inspection nodes cover the whole deployment at once,
as sensor nodes only communicate with their direct neighbours. However,
it is important that the data collected by the inspection nodes is complete,
meaning that there are no holes in the collected information. For instance a
hole can be a missed acknowledgement packet. Suppose that the maximum
number of retries is set to 10 data packets and only 9 data packets are col-
lected then the question arises if we missed the 10th packet; meaning that
the maximum number of retries has been reached; or that the data packet
was acknowledged after the 9th transmission. It is impossible to make this
distinction, because of the incompleteness of the collected data.

Significance: The effect of a bug must be measurable. If the effects are small, the
bug is difficult to detect. The effect of the port-bug on the MAC-layer statis-
tics was so big that it was easy to detect that there was a problem.

The conclusion of this MSc thesis is that with our further evaluation of passive in-
spection, we were able to detect real-life bugs using real hardware. Added to this,
it is possible to detect problems at a lower level than it is possible with a root-cause
tree, by using detailed statistics about the inner-workings of the deployment. Fur-
ther, we conclude that active inspection can be used without negatively effecting
the behaviour of the sensor nodes in the deployment. Future research into new
applications of active inspection must evaluate its usefulness.

7.2 Future Work

Our suggestions for future work are grouped by the following topics:

Inspection Network: The inspection network can be improved by modifying or
replacing the hardware of the inspection node. The peripheral interface of the
processor at the Tmote Sky is responsible for the bottleneck of the transport of data
between the inspection node and the laptop (see Section 4.4.2). By modifying the
hardware of the Tmote Sky, the UART connection should be able to use the second
peripheral interface (USART1) of the processor. A more rigorous solution would
be to increase the data throughput by replacing the radio chip and the processor
with more powerful ones.

Passive Inspection: = The most common concept in order to increase the practical
use of passive inspection, is to let the sensor nodes in the deployment broadcast
debug information, so that the inspection network can capture this information.
This removes the need to send debug information in-band with the actual sensor
network traffic. An example of a realisation of this concept has been proposed by
Romer et al. [19] where sensor nodes emit an assertion message when a predefined
condition is met. This increases the visibility of the internal state of the sensor
nodes.

Active Inspection: There are several concepts that could make use of active
inspection. The most basic concept would be to alter settings within the sensor

38

nodes. For example, to enable or disable the broadcast of assertion messages. A
more advanced concept would be to inject messages in order to execute predefined
test-cases. Passive inspection can be used to evaluate whether the test-case passed
or failed. Active inspection can also be used to spread new software images in
order to re-program sensor nodes.

39

40

Bibliography

[1]

(2]

3]

[4]

[5]

8]

[9]

[10]

B. Chen, G. Peterson, G. Mainland, and M. Welsh. Livenet: Using passive
monitoring to reconstruct sensor network dynamics. In Proceedings of the 4th
IEEE/ACM International Conference on Distributed Computing in Sensor Systems
(DCOSS 2008), pages 79-98, 2008.

Y. Cheng, Bellardo J, P. Benko, A.C. Snoeren, G.M. Voelker, and S. Savage.
Jigsaw: Solving the puzzle of enterprise 802.11 analysis. In Proceedings of
the ACM Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications (SIGCOMM 2006), pages 39-50, 2006.

Chipcon. CC2420: 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver.
Technical report, Texas Instruments, 2007.

M. Dyer, J. Beutel, T. Kalt, P. Oehen, L. Thiele, K. Martin, and P. Blum. Deploy-
ment support network - a toolkit for the development of WSNs. In Proceedings
of the 4th European conference on Wireless Sensor Networks (EWSN 2007), volume
4373/2007, pages 195-211. Springer Berlin / Heidelberg, 2007.

R. Fonseca, O. Gnawali, K. Jamieson, S. Kim, P. Levis, and A. Woo. The col-
lection tree protocol (CTP). Technical Report TinyOS: TEP 123, TinyOS Core
Working Group, 2007.

G.Tolle and D. Culler. Design of an application-cooperative management sys-
tem for wireless sensor networks. In Proceedings of the 2nd European Workshop
on Wireless Sensor Networks (EWSN 2005), pages 121-135, 2005.

I. Haratcherev, G. Halkes, T. Parker, O. Visser, and K. Langendoen. Power-
bench: A scalable testbed infrastructure for benchmarking power consump-
tion. In International Workshop on Sensor Network Engineering (IWSNE 2008).,
2008.

H. Karl and A. Willig. Protocols and Architectures for Wireless Sensor Network,
chapter Network Architecture, pages 60-61. Wiley-Interscience, 2005.

M.M.H. Khan, L. Luo, C. Huang, and T. Abdelzaher. Snts: Sensor network
troubleshooting suite. In Proceedings of the 3rd International Conference on Dis-
tributed Computing in Sensor Systems (DCOSS 2007), 2007.

J. Lee, W. Kim, S. Lee, D. Jo, J. Ryu, T. Kwon, and Y. Choi. An experimental
study on the capture effect in 802.11a networks. In Proceedings of the the 2nd
ACM international workshop on Wireless network testbeds, experimental evaluation

41

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

and characterization (WINTECH 2007), pages 19-26. ACM New York, NY, USA,
2007.

P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Accurate and scalable
simulation of entire tinyos applications. In Proceedings of the 1st International
Conference on Embedded Networked Sensor Systems (SenSys 2003), pages 126-137.
ACM New York, NY, USA, 2003.

R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan. Analyzing the mac-
level behavior of wireless networks. In Proceedings of the ACM Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communica-
tions (SIGCOMM 2006), pages 75-86, 2006.

M. Maroti and]. Sallai. Packet-level time synchronization. Technical Report
TinyOS: TEP 133, TinyOS Core Working Group, 2008.

C.E. McDowell and D.P. Helmbold. Debugging concurrent programs. In ACM
Computing Surveys (CSUR), volume 31, pages 593-622. ACM New York, NY,
USA, 1989.

T. Parker, M. Bezemer, and K. Langendoen. The AMAC framework: redefin-
ing MAC protocols. PDS-2007-004, Delft University of Technology, 2007.

N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler, and D. Estrin. Sym-
pathy for the sensor network debugger. In Proceedings of the 3rd international
conference on Embedded Networked Sensor Systems (SenSys 2005), pages 255-267,
New York, NY, USA, 2005. ACM.

M. Ringwald. Reducing Uncertainty in Wireless Sensor Networks: Network In-
spection and Collision-Free Medium Access. PhD thesis, ETH Zurich, 2009.

M. Ringwald, K. Romer, and A. Vitaletti. Passive Inspection of Sensor Net-
works. In Proceedings of the 3rd IEEE international conference on Distributed Com-
puting in Sensor Systems (DCOSS 2007), volume 4549, pages 205-222. Springer,
2007.

K. Rémer and M. Ringwald. Increasing the visibility of sensor networks with
passive distributed assertions. In Workshop on Real-World Wireless Sensor Net-
works (REALWSN 2008), 2008.

S. Rost and H. Balakrishnan. Memento: A health monitoring system for wire-
less sensor networks. In Proceedings of the 3rd Annual IEEE Communications So-
ciety on Sensor and Ad Hoc Communications and Networks (SECON 2006), pages
577-584, 2006.

W. Simpson. PPP in HDLC-like Framing. RFC 1662, Daydreamer, 1994.

A. Varga. The omnet++ discrete event simulation system. In Proceedings of the
European Simulation Multiconference (ESM 2001), pages 319-324, 2001.

G. Werner-Allen, P. Swieskowski, and M. Welsh. MoteLab: a wireless sensor
network testbed. In Proceedings of 4th international symposium on Information
Processing in Sensor Networks (IPSN 2005), pages 483488, 2005.

42

[24] J. Yang, M.L. Soffa, L. Selavo, and K. Whitehouse. Clairvoyant: a comprehen-
sive source-level debugger for wireless sensor networks. In Proceedings of the
5th international conference on Embedded networked sensor systems (SenSys 2007),
pages 189-203, New York, NY, USA, 2007. ACM.

43

	Contents
	1 Introduction
	2 Related Work
	3 Passive and Active Inspection
	3.1 Inspection Network
	3.2 Analysis Tool
	3.3 Extracting Information from Messages

	4 Inspection Network: Design and Implementation
	4.1 Requirements
	4.2 Inspection Node
	4.3 Packet Detection
	4.3.1 Location of the Detection
	4.3.2 Extended Packet and Collision Detection

	4.4 Network Architecture
	4.4.1 Network Layers
	4.4.2 Implementation Details of the Connection between T-Node and Tmote Sky
	4.4.3 Implementation Details of the Time Synchronisation

	5 Analysis Tool: Analysis of the received information
	5.1 Passive Inspection
	5.1.1 Combining Radio Packets of Multiple Inspection Nodes
	5.1.2 Statistics of the MAC-Layer
	5.1.3 Network Time
	5.1.4 Statistics of the Network-Layer

	5.2 Active Inspection

	6 Evaluation
	6.1 Setup of the Experiments
	6.2 Accuracy of the Time Synchronisation between the Inspection Nodes
	6.3 Passive Inspection
	6.4 Active Inspection
	6.5 Influence of Temperature Differences on the Time Synchronisation between Sensor Nodes

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	Bibliography

