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1 Introduction

Point clouds, enriched with semantic classification, have become a powerful data representa-
tion of 3D urban scenes. Point clouds naturally come with high-resolution geometrical details.
Successful semantic interpretation of point clouds would further enhance their utility in vari-
ous fields: such as urban planning applications need information on buildings and man made
ground structures (bridges, canals, etc.); forest monitoring need trees structure; autonomous
driving uses object detection and segmentation (Xie et al. (2020)).

Despite its importance, the fully-automatic or semi-automatic semantic classification of point
clouds remains a challenging task and is prone to high error rates. For example, Actueel
Hoogtebestand Nederland (AHN) data is automatically classified and then manually cleaned
(ahn) to correct the classification errors. Despite months of tedious manual cleaning, there
exists many semantic errors in the classification of AHN4 point cloud data. This naturally
leads to the following questions: How accurate is the claasification of point cloud data that is
being used? What are the types of misclassification errors? and where are they located? So
quality control of point cloud becomes extremely important to address above questions. In
industry practice, separate algorithms are developed to identify errors of different kinds. To
this end, there appears to be significant potential for automation using artificial intelligence,
deep learning in particular.

Deep learning has shown its great power in various 3D computer vision and geomatics tasks.
Unlike traditional machine learning techniques that rely heavily on handcrafted features, re-
quiring extensive domain knowledge, deep learning offers greater flexibility. It autonomously
learns to capture high-dimensional features, eliminating the need for manual feature engi-
neering. This self-learning capability enhances deep learning’s applicability and efficiency in
handling complex tasks in these fields (He et al. (2021)).

The thesis project addresses the critical problem of identifying and correcting misclassifica-
tions in laser-scanned point cloud data to improve the existing classification by developing a
deep learning framework. Misclassifications in outdoor and urban setting point cloud data
can lead to errors in mapping terrains (DTM and DSM), identifying built-up structures (build-
ings, bridges, etc.), and also assessing landscape’s features. So, automatic quality control helps
in both assessing and improving the quality of the labelled point cloud data, and saves a lot
of time in manual cleaning.

1.1 Deep Learning for Misclassifications Detection

In the last decade, a variety of successful deep learning models on point cloud semantic seg-
mentation using various technologies (Chapter 2) have been proposed, such as PointNet, KP-
Conv, Point Transformer and many more, and they have shown promising results. The thesis
project offers the opportunity to enhance existing deep learning frameworks for semantic seg-
mentation, adapting them for a new application in quality control to improve the quality of
labeled point clouds.

The model developed is aimed to be kept simple, and it should be easily adoptable to var-
ious datasets. To achieve this a two step process is designed. First step is the data preprocessing
phase. In this step, all the points are given confidence scores, and using it, most likely misclas-
sified points are detected. The final step then follows, involving online deep learning. In this
step, deep learning model learns from the most confident samples, and then detects/corrects
the possible errors in the test data. Chapter 4 gives more details.
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1.2 Project Dataset and Inconsistencies

The developed model should be applicable to any laser-scanned semantically segmented data.
In view of this thesis, the deep learning model will be trained and tested on Dutch datasets,
and its performance is gauged on AHN4.

The AHN data that is the current height model of the Netherlands. It is the digital dataset
that provides information about the elevation and topography of the dutch landscape. AHN
has made various datasets available, such as point clouds in LAZ format, and grids (0.5 me-
tres and 5.0 metres resolution) in GeoTIFF format for Digital Terrain Model (DTM) and Digital
Surface Model (DSM). Further, the AHN4 point cloud data is enriched with semantic classi-
fication and has six classes: building, water, ground, civil (bridges and jetties), high tension
cables, and others (anything apart from the above four). It is widely used across industries
for various projects. As a considerable portion of the land lies below sea level, AHN plays a
crucial role in flood risk management and water resource planning. Currently there are four
versions of AHN data are available for public use, the latest one being AHN4.

A few inconsistencies are presented in Figure 2. Inconsistencies like outliers, boats labelled
as water, ground points on top and middle of the building, identification of greenhouses, jet-
ties labelled as ground, random ground/water/building points sprinkled in locations where
they should not be observed can be expected in AHN4. The goal is to develop a deep learning
model that learns to identify and correct inconsistencies of these kinds.

(a) Ground as others (b) Ground as others

(c) Bridge (civil) as other (d) Ground inside building

Figure 1: Few inconsistencies in AHN4
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2 Related work

Many approaches have been developed over the years to semantically classify the point cloud
data. Early research used basic techniques and concepts like region growing, clustering (Co-
maniciu and Meer (2002)), and graph based methods. These methods focused on segmenting
point clouds based on simple features like curvature, color, and normal vectors. With the ad-
vancement of machine learning, researchers began applying these techniques for point cloud
segmentation. The real breakthrough came with the introduction of deep learning to point
cloud processing, particularly PointNet (Qi et al. (2017a)) and PointNet++ (Qi et al. (2017b)).
This is followed by introducing Convolutional Neural Networks (PointCNN; KPConv), and
recently with self-attention mechanisms - transformers (Point Transformer).

2.1 Machine Learning

Niemeyer et al. (2012) proposed using Conditional Random Fields (CRF) for classifying air-
borne LiDAR point clouds in urban environments. Along with the xyz information, geomet-
rical and intensity features were also made part of input data to classify objects. A non-linear
decision surface to reliably separate the object clusters in feature space was also introduced.
The quality of classification in their approach is also improved by incorporating contextual in-
formation to the model. The idea of CRFs was further explored in their next research Niemeyer
et al. (2014), where they implemented CRFs with graph structure where nodes represent Li-
DAR points and edges represent the relation between between them. Within the framework,
unary and pairwise potentials are defined to model the likelihood of each class for a point and
the class transition between adjacent points.

Weinmann et al. (2015) focused on increasing distinctiveness of geometric features for 3D scene
analysis and its methodology consists of four major components: neighborhood selection, fea-
ture extraction, feature selection, and supervised classification. In sequence, the method starts
with defining the most suitable neighborhood size for each point in point cloud, which is very
important for extracting distinctive features. From these neighborhoods 3D and 2D geometric
features are extracted. Next, of all the features from the previous step, most relevant features
are selected, aiming to improve classification efficiency and accuracy. Finally, various classifi-
cation algorithms are employed to assign semantic labels to the points. For this step a range
of classification algorithms can be used, ranging from traditional frameworks to latest deep
learning networks.

To maintain consistent geometrical meaning in the feature extraction process, rather than k-
nearest neighbors, multiscale neighborhoods based on spherical neighborhoods was intro-
duced by Thomas et al. (2018). This approach allows for computation of features with clearer
geometric significance, which are then used by random forest classifier for semantic segmen-
tation. This paper stands out for its emphasis on simple geometrically meaningful features
and its effectiveness in segmentation.

2.2 Multi-Layer Perceptrons

PointNet (Qi et al. (2017a)) and PointNet++ (Qi et al. (2017b)) are two significant papers in the
field of 3D point processing because of their innovative approach to handling unstructured
3D data. PointNet was groundbreaking for its ability to directly process point clouds without
needing voxelization or mesh generation. It used unique neural network which achieved per-
mutation invariance to point order through a symmetric function, specifically, a max pooling
layer. This design ensures that the output of the network is unaffected by the order of input
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points. However, PointNet is capable of capturing global structure but fails in understanding
local features. PointNet++ addresses this by implementing a hierarchical network. It segments
the input data into overlapping local regions, and processess each region with PointNet (to
capture local features) and these features are hierarchically aggregated to capture global con-
text.

2.3 Convolutional Neural Networks (CNNs) on Point Cloud

The success of traditional 2D CNNs on images, where convolutions are applied over a regu-
lar grid (i.e., image pixels), inspired researchers to expand its applications to 3D point cloud
data. However, point clouds are irregular and unordered, making the direct application of
standard convolutions challenging. To address this, a few methods to adapt CNNs have been
developed: Voxel-based convolution, point-based convolution, and graph-based convolution.

2.3.1 Voxel-based Convolution

The voxel-based convolution approch involves transforming the point cloud into a regular 3D
voxel grid, which allows the use of 3D convolutions. VoxNet, is one such network, proposed
by Maturana and Scherer (2015), combines a volumetric occupancy grid representation with a
3D CNN. A higher voxel resolution captures finer details but increases the computational load,
while a lower resolution reduces detail but is computationally more efficient. The crucial part
in achieving a good balance between accuracy and speed is to choose a good suitable voxel
resolution.

2.3.2 Point-based Convolution

Point-based convolution approach suggests applying convolutions directly on points. Li et al.
(2018) introduced PointCNN architecture, and it uses X-Conv operator, a convolution method
designed to handle the unstructurness inherent in point cloud data. This operator learns a
transformation, referred to as X-transformation, which reorders and weights input point fea-
tures to facilitate effective convolution operations. This method preserves the fidelity of the
original point cloud and allows the network to learn complex local patterns.

Kernel Point Convolution (KPConv) proposed by Thomas et al. (2019), utilizes a set of ker-
nel points defining the area where convolutional weights are applied, providing flexibility
and adaptability to the convolution process on point clouds. This approach offers two main
advantages: flexibility and deformability. Flexibility is from the fact that there is no restriction
on number of kernel points, making the convolution process adaptable to various point cloud
structures. Deformability is from adaptability of the kernel point positions to match the local
geometry, enhancing the model’s ability to capture complex spatial patterns.

2.3.3 Graph-based Convolution

PointNet only has global understanding of the input data. PointNet++ to some extent tried in-
corporating local neighborhood information through applying PointNet recursively on over-
lapping small neighborhoods, but it still lacks the understanding of local geometrical points
structures. As discussed above KPConv overcomes this by applying convolutions directly on
the points, making it point-based convolution.

Another approach to understand local geometrical relationship between points is by edge
convolutions, where connections between points are key. Wang et al. (2019) proposed an archi-
tecture Dynamic Graph CNN (DGCNN), and it has novel simple operation called EdgeConv,
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which captures local geometric features by edge convolutions. It works by creating a local
graph for each point in the point cloud, considering its nearest neighbors, and this graph is
dynamically updated in each layer of the network. Which means that set of k-nearest neigh-
bors of a point in each layer of the network changes, and is computed from the sequence of
embeddings. In the feature space proximity is different from proximity between points in
input point cloud, and this enables non-local diffusion of information throughout the point
cloud.

2.4 Transformers

Success of transformers in natural language processing and image processing inspired re-
searchers to adapt them for point cloud applications. Point Transformer from Zhao et al. (2021)
is a pioneering work in that direction, they took leverage of self-attention operator, which is the
core of transformer network, is permutation invariant, and allows the model to weigh the im-
portance of different points in the cloud and focus on relevant features for segmentation tasks.
Further, in contrast to previous works on transformers which applied self-attention globally
were susceptible to heavy computation and also failed to understand large scale 3D scenes,
Point Transformer applies self-attention locally, and this gives the scalability to the model to
understand massive scenes. It also differs by using ”vector self-attention” and ”subtract rela-
tion”, whereas before that scalar dot-product attention was used.

To better understand and capture long-range contexts effectively, Stratified Transformer is
introduced by Lai et al. (2022), where the model samples nearby points densely and distant
points sparsely as keys in a stratified manner. This way low computational cost is achieved
by still maintaining large effective receptive field. To address the irregular arrangement of
3D points, the authors proposed an embedding method, First-layer Point Embedding, that ag-
gregates local information, facilitating faster convergence and better performance. KPConv
worked the best as the local feature aggregator among a variety of methods like max or av-
erage pooling and simple MLPs. They have also adapted a method called Contextual Relative
Position Encoding, that enhances the model’s ability to understand spatial relationships within
the point cloud.
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3 Research questions

3.1 Objectives

The main research goal for this thesis is to: Develop a deep learning framework to automatically
identify and correct misclassifications in laser-scanned point cloud data to improve the existing classi-
fication.

To achieve this the following sub-questions will be relevant:

• What type of misclassifications exist and how to identify them in the point cloud?

• In the training phase, each point is assigned a confidence score, which indicates the
level of certainty about its current label. Consequently, another significant sub-question
emerges that must be enquired about programmatically.

– How to integrate additional data (aerial images, external point cloud, BGT, etc.)
with point cloud data to measure confidences?

• How can we adapt and develop a deep learning framework to refine the classification
errors?

• How well does the adapted model fit to the purpose of laser-scanned outdoor and urban
settings point cloud data?

3.2 Scope of research

When considering airborne LiDAR data there are various types of errors that could be within
the data: geometrical errors, systematic errors, classification errors, any many more. The fo-
cus of the study is specifically on classification errors, with a particular emphasis on Dutch
datasets such as AHN.

The aim of the thesis is to utilize a cutting-edge deep learning framework, as outlined in
Chapter 2, and adapt it for the specific task of identifying misclassifications and accurately
predicting correct classifications. It is important to note that the proposed research does not
involve creating a new architecture from the ground up.
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4 Method

The thesis project is broadly categorized into two steps.

1. Data preprocessing

2. Online deep learning

4.1 Data Preprocessing

In the first step, data preprocessing, point cloud data is prepared for the deep learning model.
A few AHN4 tiles are selected, and for each point in the point cloud, a confidence score rang-
ing from zero to one is given, zero being for least confidence and one for max confidence.
Confidence calculation depends on multiple factors such as the existing classification of the
point; the neighborhood consistency (Figure 2b), measure of how well a point is surrounded
by points of same classification; derived indices from satellite imagery like NDVI (Normalized
Difference Vegetation Index) (Figure 2c), NDWI (Normalized Difference Water Index) (Figure
2d), NDBI (Normalized Difference Built-up Index).

Though neighbourhood consistency is a 3D technique, indices from satellite imagery are 2D
calculations, and these abstractions of 3D data to 2D may introduce some errors. It is also
important that the satellite images used should be temporally as close as possible to the point
cloud data acquisition.

Further, The Netherlands also has BAG (Basisregistratie Adressen en Gebouwen) and Basis-
registratie Grootschalige Topografie (BGT) datasets, which are very rich with semantic infor-
mation, could also be used (based on progress and availability of time), these are 2D datasets
as well.

(a) Point cloud (b) Neighbourhood consistency

(c) NDVI projected to point cloud (d) NDWI projected to point cloud

Figure 2: Preprocessing on AHN4
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4.2 Online Deep Learning

The second step involves online deep learning. In this phase, a deep learning model is trained
using the data prepared from the previous step. Online deep learning is a technique em-
ployed where the model starts learning from the most confident samples in the training set,
and gradually recognizes and corrects the classification errors of points with low confidence.
As discussed in Chapter 2, there are number of state of the art deep learning architectures that
could be adopted like PointNet, PointNet++, KP-Conv, Point Transformer, PointNext and,
many more. Since these deep learning architectures are developed for the semantic segmenta-
tion of the point cloud data, the adapted model has to be enhanced to judge the semantically
segmented data and give confidence scores for all the points based on their classification, and
also predict the classification if the confidence is too low.

When applying online learning to Dutch datasets such as AHN, one of the major challenges
is selecting appropriate tiles for training the model. Since AHN is countrywide data, the geo-
graphic feel and appearance of the places change drastically from one place to another. If the
training AHN tiles chosen are too close to each other then there is a possibility that the model
fails to work on AHN tiles from another place far away. To counter this, and to make model
robust and more generalised, data selection has to be geographically spread out.
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5 Time planning

5.1 Activities

A rough graduation calendar and project schedule of the thesis is shown below. The exact
details of P4 and P5 are yet to be decided as time progresses.

Start End Activity Weeks (roughly)
09 Oct 27 Oct Exploring graduation topics with supervisor

P1 - Topic finalization Progress Review
01 Nov 10 Jan Literature study and methodology building 8
04 Dec 10 Jan Preliminary code for Data preparation 4

P2 - Formal assessment Graduation plan
25 Jan 23 Feb Finalizing the code and selecting the tiles for data preparation 4
26 Feb 17 Mar DelftBlue processing the data 3

P3 - Colloquium midterm
11 Mar 05 Apr Finalizing the deep learning architecture and model testing 2
08 Apr 03 May Deep learning implementation and results compilation 4
01 May 12 May Thesis writing 2

P4 - Formal process assessment
21 May 09 Jun Finalize thesis 2
07 Jun 14 Jun Prepare final presentation 1

P5 - Presentation and final assessment 2

Event Date
P1 17 November
P2 24 January
P3 March, week 12
P4 May, week 21-22
P5 June, week 25-26

5.2 Meetings

Bi-weekly meetings were held with my first supervisor Shenglan as this was time for litera-
ture review and understanding basic concepts. I have also had two meetings with PhD stu-
dent Daan van der Heide, for critical guidance. Weekly meetings will be held starting from
P2 onward with my first supervisor, and additional technical guidance and support will be
provided by the second supervisor and also my graduation professor Dr. Jantien Stoter.
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6 Tools and datasets used

6.1 Tools

As the point cloud data of each AHN tile is huge, typically ranging from 4 GB to 8 GB, soft-
ware like CloudCompare takes a lot time to load the data and display it. Further, bigger
the data size slower is the interface to operate it. To handle this issue, Potree, an open-
source WebGL based point cloud renderer for large point clouds is used, and it is available
at: https://github.com/potree/potree/. To use web based viewer, first the LAZ/LAS data
has to be converted to octree LOD structure using PotreeConverter, developed by Schütz et al.
(2020) must be used, available at: https://github.com/potree/PotreeConverter/releases.

Python will be used to write the code for the entire project, along with many packages like
laspy to read point cloud, numpy and scipy for matrix manipulations and scientific comput-
ing, and xarray with rioxarray for satellite image reading and matrix operations.

For deploying the deep learning model, PyTorch framework will be used.

6.2 Data

Both for training and testing the model AHN4 point cloud will be used. It is publicly available
at: https://www.ahn.nl/ahn-viewer. True and false color satellites images with 30 cm resolu-
tion of The Netherlands are made available for free by the Netherlands Space Office in their
Satellite Data Portal: https://www.spaceoffice.nl/en/satellite-data-portal/.

As the project advances and if time permits, the incorporation of additional datasets like BAG,
BGT, and external point cloud data from municipalities provided by Rijkswaterstaat is being
considered. These datasets, furnished by the second supervisor Daan van der Heide, can help
during the preprocessing phase, particularly in assessing confidence scores.
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