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Influence of track flexibility and spatial coherence of track 
irregularity on vehicle-slab track interaction: 
frequency-domain analysis
Lei Xua and Tao Lu b

aSchool of Civil Engineering, Central South University, Changsha, China; bFaculty of Civil Engineering and 
Geosciences, Delft University of Technology, Delft, The Netherlands

ABSTRACT
A straightforward and practical method of frequency-domain ana-
lysis is developed for coupled vehicle-track system. The influence of 
the track flexibility and spatial coherence of irregularities on fre-
quency response of vehicle-track systems are systematically studied 
accounting for train velocity and irregularity wavelength. 
Calculations show that the track flexibility cannot be ignored to 
obtain an accurate response of wheels whereas the resonance 
frequencies of car body motions remain unchanged. The inclusion 
of track flexibility enables consideration of wave reflections in rail 
sections between different wheels. The excitations at different 
wheels due to irregularity have phase lags determined by the 
train velocity and distances between wheels. This spatial coherence 
is important to the system response. The influence of contact spring 
on the system frequency response is examined. It is found that the 
system response converges at a certain value of the contact stiff-
ness and the track stiffness governs the wheel-rail interaction after 
then.
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1. Introduction

Vehicle-track interaction has been a long-standing topic in railway engineering since the 
last century. Due to the necessity of analysing nonlinearity of the wheel-rail contact, 
contact discontinuity such as hang sleeper, and some other nonlinear dynamic problems, 
time-domain analysis is widely applied to evaluate the system dynamic performance 
using the direct integration method. And also, remarkable developments have been made 
in the modelling and analysis of the vehicle-track interaction [1–3].

However, the deficiency of time-domain analysis is also obvious especially in figuring 
out the dynamic characteristics with high efficiency and precision due to its time- 
consuming nature. The frequency domain analysis is intrinsically more efficient. 
Frequency-domain analysis in structural dynamics can conveniently reveal the dynamic 
characteristics of a linear system with less computational efforts. The frequency compo-
nents which may cause large system responses can be identified. For numerical modelling 
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of vehicle-track interaction, a comprehensive three-dimensional coupled vehicle-track 
system can consists of more than thousands degrees of freedom. One simulation in time- 
domain can cost relatively long time which is extremely not suitable for parametric study. 
It is therefore significantly important to seek a more direct and simple frequency analysis 
method for modelling vehicle-track interaction.

In railway engineering, receptance (displacement frequency response function) or 
mobility (velocity frequency response function) of railway tracks have been studied 
both theoretically and experimentally in a detailed manner for different track systems, 
e.g. conventional ballasted tracks [4–6] and slab tracks [7–10] without considering the 
vehicle effects. The track receptance is normally obtained considering one wheel-rail 
contact point except [11] in which the cross point receptances, namely the responses of 
the rail under different wheelsets excited by a harmonic point load under a specific 
wheelset were analysed. For the frequency-domain analysis, it is often the case that the 
track and the vehicle are considered separately. In a few references [12,13], frequency 
responses of railway system were analysed accounting for the vehicle effects by consider-
ing the unsprung wheel mass. It has been shown the coupling of the wheel is important to 
the frequency response of the track since the inclusion of wheel mass shifts the first 
resonance frequency to a lower value [12,13]. Similarly, when analysing dynamic 
responses of the vehicle excited by vertical track irregularities, the influence of track 
flexibility was shown to be important after 20 Hz in terms of contact forces [14] for 
conventional ballasted tracks. As stated in [15], ‘An accurate knowledge of wheel 
receptances is crucial to understand the wheel/rail interaction and its magnitude’. The 
coupling of track flexibility to the vehicle is therefore significant to obtain an accurate 
wheel receptances and receptances of other DOF of the vehicle. To summarize, when 
investigating the frequency-domain characteristics of a vehicle-track system, the two 
subsystems have to be accounted for simultaneously as a coupled system. This is rarely 
done for ballasted railway tracks, not to mention that the frequency response of a coupled 
slab track-vehicle system has not been addressed in the literature.

Besides, as one of the main sources of railway noise and vibration, track vertical 
irregularities, such as short-wavelength roughness on rail surfaces and long-wavelength 
unevenness from differential subgrade settlements, generate excitations whose frequency 
equals the passage velocity of the train divided by the wavelength of the irregularity. It is 
natural to expect that a combination of train velocity and wavelength of irregularity 
which leads to an excitation frequency of the same value as the resonant frequency 
components obtained from the frequency-domain analysis will cause a large response of 
the system. In the literature, the influence of track vertical irregularities on railway vehicle 
dynamics are widely discussed [16–18]. Critical wavelengths of track vertical irregula-
rities which excite certain vehicle modes are investigated [16–19]. The investigations 
either do not take track flexibility into account [16,18] or the combined effect of 
wavelength of irregularities and train velocities are not considered [18]. In [17], both 
the ‘rigid track’ and flexible modelling for ballasted track scenarios are studied to 
examine the influence of the track flexibility on the vehicles. It is concluded that the 
track flexibility plays a minor role in vehicle dynamics in the frequency range 0–25 Hz. 
However, this frequency range does not cover the resonance peak of wheel vibration 
since the contact spring is relatively stiff and the wheel may vibrate at a frequency much 
higher than 25 Hz. Another important issue for irregularity excitations is that the spatial 
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coherence of multiple interaction points (multiple wheels). The excitations at different 
wheel-rail contact points have phase differences which are related to the distance between 
wheels and the train velocities. This coherence is studied in [18] in which the track is not 
modelled. However, without the track flexibility, the wave reflections between multiple 
wheels are not included although this wave phenomenon was proven to be important 
[19,20].

To make strides on the aforementioned studies, two contributions are made in the 
present study

● The frequency-domain characteristics of vehicle-slab track system with the subsys-
tems fully coupled is thoroughly examined. The influence of the coupling is also 
addressed.

● The combined effects of train velocity and wavelength of irregularities in one goal in 
the framework of a fully coupled vehicle-slab track system is investigated.

Summarily, the organization of this work is as follow:

● In Section 2, configuration of the vehicle-track interaction model and a brief 
introduction about the establishment method are elaborated.

● In Section 3, the methods for achieving frequency- and time-domain solutions are 
presented.

● In Sections 4 and 5, numerical studies are conducted systematically and conclusions 
are drawn.

2. Construction of the vehicle-track interaction model

Generally, the vehicle-track system consists of the vehicle subsystem and the track 
subsystem, being modelled as a multirigid-body system and flexible finite element system 
respectively. The two subsystems are coupled at the wheel-rail interfaces by satisfying 
force equilibrium and displacement compatibility between the wheel and the rail.

2.1. Configuration of the vehicle-track interaction system

The vehicle consists of a car body, two bogie frames and four wheelsets, and these rigid 
bodies are connected by the primary and the secondary suspensions characterized by 
spring-dashpot elements. The tracks consist of the rails at left- and right- side long-
itudinally modelled by Timoshenko beams, and track slabs modelled as thin-plate 
elements are distributed under the rail with specific spacing between adjacent track 
slabs. The rail-track slab interaction is characterized by discretely supported fasteners, 
and the subgrade is equivalently expressed as Winkler foundation.

To couple the vehicle and the tracks dynamically, it is of significantly importance to 
quantitatively formulate the wheel-rail interaction through forces, geometries and the 
matrices in highlight of the wheel/rail contact mechanism [1].

The configuration of the vehicle-track interaction model has been presented in Figure 1, 
where the symbols y, z, ψ, β and θ denote the lateral, vertical, yaw, pitch and roll motion 
respectively; the subscripts ‘c’ and ‘w’ denote the car body and the wheelset respectively; the 
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symbols ‘k’ and ‘c’ denote the stiffness and damping coefficient respectively; the subscripts ‘p’ 
and ‘s’ denote the primary and secondary suspension system respectively and the subscripts 
‘x’, ‘y’ and ‘z’ denote the longitudinal-, lateral- and vertical- direction respectively.

2.2. Energy variation for deriving the wheel-rail interaction matrices

There are basically two methods to depict the wheel-rail interaction, as shown in Figure 2: 
the first method is explicitly calculating wheel-rail normal/creep forces by Hertz contact, 

Figure 1. Vehicle-track interaction model (a) Side view; (b) End view; (c) Global coordinate system.

Figure 2. Wheel-rail interaction model: (a) Side view, (b) Top view.

INTERNATIONAL JOURNAL OF RAIL TRANSPORTATION 345



Kalker’s linear creep theory with saturated-creep modification [1,4,5,11,15]; the second 
method is implicitly coupling the wheel and the rail by stiffness and damping matrices by 
energy variation principle [2].

Taking the second method as an example, the total elastic potential energy �d for the 
wheel-rail interaction can be assembled by 

�d ¼ �c þ�k þ�g þ�kg (1) 

where �c is the negative value of the work done by the wheel-rail creep forces; �k is the 
elastic potential energy for the wheel-rail elastic compression; �g is the work done by the 
gravity and �kg is the work done by the gravitational restoring force/moment.

The negative value of the work done by the wheel-rail creep forces �c can be 
obtained as 

�c¼Vc;xþVc;yþVc;zþVc;θz (2) 

with Vc;x ¼ �
P

i

P

j¼l;r
Fx

c;i;jΔxx
c;i;j, Vc;y ¼ �

P

i

P

j¼l;r
Fy

c;i;jΔxy
c;i;j, Vc;z ¼ �

P

i

P

j¼l;r
Fz

c;i;jΔxz
c;i;j, 

Vc;θz ¼ �
X

i

X

j¼l;r
Fθz

c;i;jΔxθz
c;i;j 

where the symbol ‘i’ denotes the ith wheelset, and j¼l; r denote the left- and right- side of 
the wheelset respectively; Fx

c , Fy
c and Fz

c denote the longitudinal-, lateral- and vertical- 
creep force respectively and the Fθz

c denotes the spin moment; Δxx
c , Δxy

c and Δxz
c denote 

the wheel-rail relative longitudinal-, lateral- and vertical displacement and Δxθz
c denotes 

the wheel-rail relative angle around Z-axis.
The elastic potential energy for the wheel-rail elastic compression �g can be 

obtained as 

�k¼
X

i

X

j¼l;r

ð~z

0
kH;i;jð~zwr;i;jÞ~zwr;i;jdzwr;i;j (3) 

where kH denotes the Hertz contact stiffness, and it is correlated to the wheel-rail elastic 
compression ~zwr;i;j.

The work done by the gravity �g can be obtained as 

�g ¼ �
X

i
Fz

g;izw;i (4) 

where Fz
g;i is the gravitational force borne by the ith wheelset; zw;i is the vertical 

displacement of the wheelset at the centroid.
The work done by the gravitational restoring forces �kg can be obtained as 

�kg ¼
X

i
Fgy;iΔzgy;i þMgm;iψw;i

� �
(5) 

where Fgy is the lateral gravitational restoring force and Mgm the restoring moment 
around Z-axis; Δzgy;i is the lateral relative displacement between the wheelset centroid 
and the centre of two side rails and ψw;i is the yaw angle of the wheelset.

Following principle of total potential energy with stationary value, it can be got [21] 
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δ2�d ¼ 0 (6) 

where ‘δ’ denotes the variational symbol; the subscript ‘ 2 ’ stresses that the variation is 
only conducted on the strain and displacement while the forces are kept constant in 
accordance with the virtual work principle.

Obviously, n dynamic equilibrium equations can be derived from Equation (1), and 
for every displacement parameter, the following equation should be satisfied, that is, 

δCi
@�d

@Ci
¼0 (7) 

With implementation of the ‘set-in-right-position’ rule in [22], the mathematical 
matrices formulations for wheel-rail interaction can be obtained.

Finally, the dynamic equations of motion for vehicle-track interaction can be 
assembled by matrix formulations 

Mvv 0
0 Mtt

� �
€Xv
€Xt

� �

þ
Cvv Cvt
Ctv Ctt

� �
_Xv
_Xt

� �

þ
Kvv Kvt
Ktv Ktt

� �
Xv
Xt

� �

¼
Fv
Ft

� �

(8) 

where M, C and K denote the mass, damping and stiffness matrices respectively; the 
subscripts ‘v’ and ‘t’ denote the vehicle and the track structures; X, _X and €X denote the 
displacement, velocity and acceleration vector respectively, and F denotes the loading 
vector.

The detail modelling method can further refer to Refs. [1,2], here not presented for 
brevity.

3. System response solution at frequency- and time- domain

3.1. Frequency-domain solution

3.1.1. Receptance
To obtain the dynamic characteristics of the vehicle-track coupled system in the fre-
quency domain, the receptance (frequency response) of the system is investigated. After 
assembling the components of the mass, stiffness and damping matrices to obtain the 
global system matrices, the governing equations of the vehicle-track system can be 
written as follows in matrix form: 

M€xþ Kx þ C _x ¼ f (9) 

where M,K,Care the N � N global mass, stiffness and damping matrices, respectively. In 
addition,xðtÞ ¼ x1ðtÞ; � � � ; xNðtÞ½ �

T is the displacement vector andfðtÞ ¼ f1ðtÞ; � � � fNðtÞ½ �
Tis 

the force vector. It is defined that the receptance αi;j is the frequency response of the ith degree 
of freedom under a unit harmonic load applied on the jth DOF (degree of freedom), namely 
fjðtÞ ¼ 1 � eiΩt . Because of the harmonic excitation, the force vector can be rewritten as 
fðtÞ ¼ F � eiΩtin which F ¼ F1; � � � FN½ �

T is the force amplitude vector and the jth element 
Fj ¼ 1 because of the unit amplitude of the harmonic excitation at the jth DOF. Under the 
harmonic excitation, the response can be written as follows: 

xðtÞ ¼ X � eiΩt ¼ X1; � � � ;XN½ �
T
� eiΩt (10) 
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where X is the amplitude vector of the displacement. After substitution of Equations (10) 
and (9), one obtains 

� MΩ2 þ Kþ iΩC
� �

X ¼ F (11) 

The receptance αi;j, namely the frequency responseXiof the ith degree of freedom 
(1 � i � N) can be obtained by solving Equation (9) after substitution Equation (10) 
to the latter. Note that the unit harmonic excitation can also be applied simultaneously 
on more than two degrees of freedom to represent excitations from a wheelset (two 
wheels) to both rails as is shown in [23]. Note that in such a case, the naming of 
receptance αi;j is not applicable.

3.1.2. Response in the plane of velocity and wavelength of vertical irregularity
The harmonic excitation can come from different sources in practice. In this work, the 
rail vertical irregularity is considered. The so-called ‘moving irregularity’ approach is 
used to derive the system response with varying velocity of the train and wavelength of 
the irregularity. The vehicle-track coupled system is assumed to be excited by a vertical 
irregularity moving at the same speed vas the vehicle but in the opposite of the wheel 
rolling direction. The frequency Ω in Equation (10) becomes Ω ¼ 2πv=λ ¼ kv in which λ 
is the wavelength and k is the wavenumber of the irregularity, respectively. Thus, the time 
signature of the excitation can be expressed by Aeið2πv=λÞt or Aeikvt and A is the amplitude 
of the irregularity.

The vehicle considered here consists two bogies with in total four wheelsets. The 
wheelsets are numbered from 1 to 4 in Figure 1(a). Assume the fourth wheelset is at x ¼
x0 where x0 is the distance from the origin of coordinate, d1 ¼ 2Lt is the distance between 
two wheelsets of one bogie and d2 ¼ 2ðLc � LtÞ is the distance between wheelset 2 and 3 
as shown in Figure 1. The geometric parameters Lt and Lcare given in Table A1 in the 
Appendix. Therefore the excitation under the fourth wheelset is Aeikðvtþx0Þand conse-
quently, the excitation is Aeikðvtþx0þd1Þat the third wheelset, Aeikðvtþx0þd1þd2Þ at the second 
wheelset and Aeikðvtþx0þ2d1þd2Þ at the first wheelset considering the phase shift. Now the 
vector f in Equation (9) is the equivalent force vector due to the moving irregularity. The 
vertical degrees of freedom of wheels and the vertical degrees of freedom of the rail at the 
wheel-rail contact points will be directly excited by the vertical irregularity. Denoting the 
vertical degrees of the wheelsets as xw1z to xw4z, the vertical degrees of freedom right 
under those wheels are correspondingly designated as xw1L rail to xw4L railfor the left rail 
and xw1R rail to xw4R rail for the right rail.

Therefore, the equivalent force components applied on wheels are 

fw1z ¼ 2kH � Aeikðx0þ2d1þd2Þ � eikvt

fw2z ¼ 2kH � Aeikðx0þd1þd2Þ � eikvt

fw3z ¼ 2kH � Aeikðx0þd1Þ � eikvt

fw4z ¼ 2kH � Aeikðx0Þ � eikvt

8
>><

>>:

(12) 

The coefficient 2 comes from the fact that the wheelset is assumed to be a rigid body 
having only one freedom in vertical direction and it is supported by two Hertz contact 
springs on two rails. The equivalent force components applied to the track are 
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fw1L rail ¼ fw1R rail ¼ � kH � Aeikðx0þ2d1þd2Þ � eikvt

fw2L rail ¼ fw2R rail ¼ � kH � Aeikðx0þd1þd2Þ � eikvt

fw3L rail ¼ fw3R rail ¼ � kH � Aeikðx0þd1Þ � eikvt

fw4L rail ¼ fw4R rail ¼ � kH � Aeikx0 � eikvt

8
>><

>>:

(13) 

The other terms in f are all zero.
Correspondingly, the response can be written as 

x ¼ X � eikvt � eikx0 ¼ X1; � � � ;XN½ �
T
� eikvt � eikx0 (14) 

where X is the amplitude vector of the displacement. Upon substitution of the force to 
Equation (9), one obtains: 

� MðkvÞ2 þ Kþ iðkvÞC
� �

X ¼ F (15) 

where F ¼ F1; � � � ; FN½ �
T in which 

Fw1z ¼ 2kH � Aeikð2d1þd2Þ

Fw2z ¼ 2kH � Aeikðd1þd2Þ

Fw3z ¼ 2kH � Aeikd1

Fw4z ¼ 2kH � A

8
>><

>>:

and

Fw1L rail ¼ Fw1R rail ¼ � kH � A expðikð2d1 þ d2ÞÞ

Fw2L rail ¼ Fw2R rail ¼ � kH � A expðikðd1 þ d2ÞÞ

Fw3L rail ¼ Fw3R rail ¼ � kH � A expðikd1Þ

Fw4L rail ¼ Fw4R rail ¼ � kH � A

8
>><

>>:

(16) 

The other entries in F are all zero. The response Xi of an arbitrary ith degree of freedom 
(1 � i � N) can be obtained by solving Equation (16). The value of x0 is chosen 
arbitrarily since the term eikx0 is cancelled when solving Equation (16).

Generally frequency domain solution is developed to solve linear problems and it is 
rather convenient to reveal the system frequency characteristics.

3.2. Time-domain solution

To obtain time-domain solution of vehicle-track systems by excitations, such as track 
irregularities, with random combinations of wavelengths and phase, sometimes, with 
parametric nonlinearity and discontinuity, the time integration scheme such as 
Newmark-β and Wilson-θ can be applied to derive the system response at time domain.

Set Newmark-β as an example, the following steps can be followed to obtain system 
responses:

Forming the vehicle-track coupling matrices: mass matrix Mvt, damping matrix Cvt, 
stiffness

matrix Kvt,
Computing the equivalent stiffness matrix: �Kvt ¼ Kvt þ

1
βΔt2 Mvt þ

γ
βΔt Cvt,

Deriving the equivalent loading vector: 

�Fvt ¼ Fvt þMvt
1

βΔt2 Xt þ
1

βΔt
_Xt þ

1
2β
� 1

� �

€Xt

� �

þ Cvt
γ

βΔt
Xt þ

γ
β
� 1

� �

_Xt þ
Δt
2

γ
β
� 2

� �

€Xt

� �

;
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with Fvt ¼ � ~Mvt €X
I
t �

~Cvt _XI
t �

~KvtXI
t , where ~Mvt, ~Cvt and ~Kvt denote the original mass, 

damping and stiffness matrix respectively;
Obtain the displacement vector at time t þ Δt: 

XtþΔt ¼ �K� 1
vt

�Fvt;

Obtain the acceleration and velocity vector at time t þ Δt: 

€XtþΔt ¼
1

βΔt2 XtþΔt � Xtð Þ �
1

βΔt
_Xt �

1
2β
� 1

� �

€Xt;

_XtþΔt ¼ _XtþΔt 1 � γð Þ€Xt þ Δtγ€XtþΔt;

After the acquisition of the time-domain responses of indices, amplitude-frequency 
spectra based on Fourier transformation can be also assessed.

Generally, time-domain solution is developed to solve nonlinear and time-dependent 
problems.

4. Numerical studies

In the numerical studies, comparisons between the time- and frequency- domain 
responses are firstly presented to show the effectiveness of the solutions, and then 
systematical studies are conducted to reveal the track flexibility and spatial coherence 
of track irregularities on system frequency response, and parametric studies are also 
presented to illustrate the wheel/rail contact stiffness on frequency response variations. 
The computational domain is chosen as such the influences of the vehicle are fully 
damped at the boundaries.

The parameters used in the examples are listed in Tables A1 and A2 in the Appendix.

4.1. Comparisons between time- and frequency- domain solutions

In vehicle-track interaction, power spectral density of track irregularities, denoted as Sxx, 
is generally applied as system excitations. Following the equivalent transformation 
between power spectral density and signal amplitude [24], the amplitude of A trans-
formed as the wheel/rail interfacial excitation in Equations, (12), (13) and (16) can be 
obtained as 

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxxð~ωÞ

p
(17) 

where ~ω is the circular frequency.
The vehicle speed is setting to be 250 km/h. In the frequency domain analysis, the 

Hertz contact stiffness is linear. According to K.L. Johnson’s research [25], the contact 
stiffness can be estimated by formula 

kH ¼
3
2

F1=3
s

2
3

E
1 � v2 ðrwrrÞ

1=4
� �2=3

(18) 

where Fs is the wheel static load; E is the elastic modulus of the wheel and the rail and v is 
the Poisson ratio; rw and rr are respectively the contact curve radius of the wheel and the 
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rail, For the real case considered in this work, kH can be obtained as 3:1� 107F1=3
s . If 

Fs=79 kN, kH=1.3 GN/m, however, if considering the dynamic effects of rail irregularities 
and assuming that the wheel-rail contact deformation is less than 2 mm, kH can be 
estimated as 4.6 GN/m approximately. Hence this study chooses two stiffness of soft 0.1 
GN/m and hard 8 GN/m except the static one 1GN/m, to achieve more clear 
comparisons.

Through comparisons on power spectral density function, SyyðωÞ ¼ YðωÞ�YðωÞT, 
YðωÞ is the amplitude spectrum, Figure 3 plots the comparisons on dynamic indices of 
car body acceleration and wheel-rail force between the time domain solution and the 
frequency domain solution. It can be observed from Figure 3 that similar results have 
been obtained for these two solutions especially when the Hertz contact stiffness reaches 
1 GN/m and 8 GN/m. However, the differences of results between the time domain 
solution and frequency domain solution are large if the Hertz contact stiffness is too soft 
to be 0.1 GN/m, which is also indicating that the wheel-rail contact stiffness exerts 
significant influence on system frequency response performance.

4.2. Frequency domain analysis of the vehicle

The frequency response in terms of displacement is investigated in this section following 
the procedure described in Section 3.1. In studies of vehicle-track interaction, accelera-
tion is an important indicator. The acceleration frequency response (accelerance) can be 
readily obtained as the production of the displacement frequency response (receptance) 
and � Ω2. Although the resonant frequencies of the receptance and the accelerance are 
different. The difference is marginal provided the damping values are small, which is 
normally the case.

4.2.1. Frequency response: comparison between rigid and flexible track cases
The frequency response of the vehicle is calculated for two cases: (a) the track flexibility is 
not included, namely the track is considered as rigid and the contact spring is kept at the 
wheel track interface; (b) the vehicle is coupled with the track and therefore the flexibility 
of the track is included. For the two cases, a unit point harmonic load 1 � exp iΩtð Þis 
applied on the degree of the vertical motion of the fourth wheelset. The positions of 
wheelsets are not important for rigid track case since no waves are generated in the rail 
reflecting between wheelsets and bogies. For the vehicle-track coupled case, the location 
of excitations matters because of: (1) periodic change of track properties due to discretely 
positioned rail fasteners; (2) Waves generation in rails and reflecting of these waves 
between wheelsets and bogies. The main features of vehicle response will keep the same 
regardless of the excitation position. The fourth wheelset is chosen as a reference. 
Without loss of generality, the fourth wheelset is assumed to be on the railseat, namely 
above a rail fastener. The parameters used are listed in the Appendix. Figure 4 shows the 
frequency response of the car body. The unit harmonic excitation is placed on the degree 
of vertical motion of the fourth wheelset. One can see that car body bouncing motion 
resonates at 0.7 Hz whereas resonance of the pitch motion of car body occurs at 0.93 Hz 
from Figure 4(a) for the rigid track case. The peak at 93.5 Hz in Figure 4(a) is related to 
the vibration of unsprung mass on the Hertz contact spring. This is confirmed by 
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examining the driving point displacement FRF, namely the displacement at wheelset 4 
caused a vertical harmonic excitation at wheelset 4 by calculating: 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kH=mw

p

2π
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 � 108=ð1680=2Þ

p

2π
¼ 95:1 HZ (19) 

in which mwis half of the mass of one wheelset Mw as listed in Table A1 in the Appendix. 
When the track flexibility is considered as shown in Figure 4(b), the car body motions are 
not influenced since the resonance frequencies of the bouncing and pitch motions are not 
changed. However, the driving point displacement FRFs at wheelset 4 are affected since 
the contact force changes when the displacement of the track is included. Now the wheel 
vibrates on the combined stiffness of the contact spring and the track, results in 
a downshift of the resonance peak to about fw ¼ 32:7Hz.

Figures 5 and 6 demonstrate frequency responses of bogies. The frequency 
response is plotted till 200 Hz only since the vibrations of vehicle are mainly in 
the low frequency range. The first and main resonance peak of the vertical motion 
of bogies is at fcv ¼ 0:74Hz. This frequency corresponds mainly to bogie bouncing 

Figure 3. Comparisons between time-domain and frequency-domain solutions: (a) Car body vertical 
acceleration, (b) Wheel-rail vertical force.
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motion. The first peak of pitch motion of bogies is fcp ¼ 0:93Hz at which the pitch 
motion of car body dominates as shown in Figure 4. The second peak at 6.2 Hz is 
associated with dominating bogie pitch. One can see that the amplitudes of motions 
of the front bogie are smaller than those of the rear bogies, and peaks are more 
obvious for the front bogie as well. This is due to the fact that the excitation is 
placed on the fourth wheel which is attached to the rear bogie. The motion of the 
rear bogie is mainly governed by the excitation directly whereas the front bogie is 
also influenced by waves propagating from the excited wheel to wheels of the front 
bogie. At higher frequencies, taking into account the track flexibility results in 
multiple peaks, e.g. in Figure 5(b) due to wave reflections in rail sections between 
bogies and wheelsets which will form standing waves at certain frequencies in those 
rail sections. However, when the track flexibility is not included, such wave reflec-
tions are not possible because no elastic waves exist in rigid track.

Another observation from Figures 4–6 is that the responses of the vehicle with track 
flexibility included are lower than those with rigid track assumption, as expected.
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Figure 4. Car body response: (a) Rigid track, (b) Track flexibility included.

10
-1

10
0

10
1

10
2

Frequency in Hz

10
-18

10
-16

10
-14

10
-12

10
-10

10
-8

A
m

pl
itu

de
 o

f r
ec

ep
ta

nc
e

Front bogie vertical motion

Front bogie pitch motion

10
-1

10
0

10
1

10
2

Frequency in Hz

10
-18

10
-16

10
-14

10
-12

10
-10

10
-8

A
m

pl
itu

de
 o

f r
ec

ep
ta

nc
e

Front bogie vertical motion

Front bogie pitch motion

Figure 5. Front bogie response: (a) Rigid track, (b) Track flexibility included.

INTERNATIONAL JOURNAL OF RAIL TRANSPORTATION 353



4.2.2. Response in wavelength and velocity plane
The responses in the wavelength and velocity plane are calculated in this section from 
Equation (15). This analysis aims to identify combinations of velocity and wavelength 
which lead to resonant responses of the vehicle. The range of wavelength of irregularities 
considered is 0.1 ~ 20 m with exception when investigating car body pitch motion. 
Typical wavelengths of track irregularities on high-speed railway lines in China are 
within this range [26]. The velocity is calculated from 10 km/h till 400 km/h.

In Figure 7(a), the response of car body vertical motion is shown in the contour plot. 
For a better visibility, the velocity is plotted till 140 km/h since generally the response is 
large at long wavelength and low train velocity [27]. The reason is that this combination 
leads to small excitation frequency in the range of natural frequency of the car body. To 
excite the vertical motion, it is expected that resonance occurs when fex ¼ v=λ ¼ fcv in 
which fcv ¼ 0:74Hz is the resonant frequency of car body vertical motion as shown in 
Figure 4. This is confirmed in Figure 7(b). Two wavelengths are chosen to plot the 
response versus the velocity (this plot is actually a slice of the contour plot). A second 
x-axis which represents excitation frequency calculated by fex ¼ v=λ is added. It is clearly 
shown that resonance occurs at train velocities which give rise to excitations of frequency 
fex ¼ fcv. In Figure 7(a), the resonance condition 

λ ¼ v=fcv (20) 

for the vertical car body motion is plotted. Since the vertical motion of the car body is 
a symmetric mode, the maximum amplitude of this motion is excited by the irregularity 
when the two bogies move in-phase. To satisfy this condition, the wavelength of the 
irregularity should satisfy [3] 

λ ¼ ðd1 þ d2Þ=n; n ¼ ð1; 2; 3:::Þ: (21) 

Therefore, maximum responses occur at discrete locations defined by Equation (21) on 
the line of Equation (20). The velocities at these discrete points in Figure 4(a) are called 
critical velocities of a certain vibration mode (here dominantly the vertical car body 
motion). Theoretically, there are an infinite number of combinations of wavelength and 
velocity defined by Equations (20–21) for the vertical motion as can be seen in Figure 7(a) 
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in the lower wavelength and velocity regions, as well as the pitch motion which will be 
shown later. However, only the highest critical speeds are suitable for inserting enough 
energy to excite the car body motions since the amplitudes of the harmonic components 
and the associated energy introduced in the system by the track irregularities reduce with 
decreasing wavelength as pointed out in [17]. n= 1 and 2 are plotted for Equation (11) in 
Figure 7(a). It confirms this statement as the highest critical velocity v ¼ 40km=h at n= 1 
gives the largest magnitude of response.

Figure 7. Carbody vertical motion, normalized with respect to kH � A: (a) Response of car body vertical 
motion in λ and v plane, (b) Frequency response of car boy vertical motion for certain wavelengths of 
irregularities.
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Figure 8 shows the response of the car body pitch motion. When the combination of 
irregularity wavelength and train velocity leads to an excitation frequency 
fex ¼ v=λcoinciding with the resonant frequency of car body pitch motion fcp ¼

0:93Hz as shown in Figure 7, peak motion occurs. Two slices of the contour plot are 
shown in Figure 8(b) in which resonance can be observed at 0.93 Hz.

In addition, the pitch motion is an antisymmetric motion. Resonance occurs when the 
rear and front bogies are excited out-of-phase by the irregularity. Therefore, Equation 
(21) becomes [17] 

λ ¼ 2ðd1 þ d2Þ=ð2n � 1Þ; n ¼ ð1; 2; 3:::Þ: (22) 

Therefore, now Equations (20) and (22) govern the critical velocities. In Figure 8, n= 1–3 
is plotted for Equation (22). The highest critical velocity for the car body pitch motion is 
seen at v ¼ 106:6km=hfor a wavelength of 31.8 m.

From Figures 9–12 the vertical responses of all the four wheelsets are plotted. Again 
a contour plot in λ � vplane and a slice of the contour plot at a specific wavelength is 
presented. We denote fw as the resonant frequency of vertical motion of the wheelsets 
as shown in Figure 7. One can conclude that for all the wheels resonance occur at the 
same frequency fex ¼ v=λ ¼ fw ¼ 32:7Hz which is the bright band in the contour plot. 
At this frequency the wheel vibrates on the combined stiffness of the track and the 
contact spring as shown in Figure 4(b). The different locations of the wheels do not 
influence the resonant frequency. Since the resonance frequency is relatively high, long- 
wavelength irregularities will not lead to the resonance frequency in the operational 
velocity range of current high-speed trains, the wavelength is plotted till 5 m in Figures 
9–12 for better visibility. In all the Figures 9–12, a slice is taken from the contour plot 
forλ ¼ 2:0m. The slices indicate clearly the main resonance of the wheelsets’ vertical 
motion occurs at fw.

Because the motions of bogies are largely dependent on the distances between bogies 
and wheelsets, no universe rules apply, and here the responses of the bogies are not 
present.

To conclude, the spatial correlation of excitations at different wheels must be con-
sidered to predict critical wavelength and vehicle speed combinations which excite 
certain vehicle modes, e.g. carbody vertical and pitch motions. Similar conclusions can 
also be found in [17,18].

4.3. Frequency domain analysis of the rail

4.3.1. Frequency response: comparison between coupled- and uncoupled vehicle 
conditions
The frequency response of the rail is calculated for two cases: (a) the vehicle is not 
included; (b) the vehicle is coupled with the track and therefore the vehicle-track 
interaction is considered. For the two cases, two unit point harmonic loads 1 � exp iΩtð Þ

are applied symmetrically on the degrees of the vertical motion of the two rails on the 
railseat and the mid-span of two adjacent railseats. When vehicle is coupled, the fourth 
wheelset is placed on the same position to the applied force.
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As shown in Figure 13, when vehicle is included, the first resonance peak fr of the track 
receptance is shifted from 52 Hz to a lower value of 33 Hz. This is expected because 
consideration of the vehicle leads to an increasing of overall mass to the track and thus 
the resonance frequency decreases. The pinned-pinned frequency at 1062 Hz of the rail is 
not influenced by accounting for the vehicle or not. However, when the vehicle is 
considered, the response of the rail at mid-span becomes lower than the case without 
vehicle at the pinned-pinned frequency. The antiresonance frequency a bit less than 
100 Hz in Figure 13(b) corresponds to wheel resonance which is given by Equation (19).

Figure 8. Car body pitch motion, normalized with respect to kH � A: (a) Response of car body pitch 
motion in λ and v plane, (b) Frequency response of the car body pitch motion for certain wavelengths 
of irregularities.
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4.3.2. Response in the velocity and wavelength of the irregularities
In Figures 14–17 the vertical responses of the rail at four positions directly under the four 
wheelset are presented. A contour plot in λ � v plane and a slice of the contour plot at 
a specific wavelength is plotted. The maximum rail displacement occurs at fex ¼ v=λ � fr 
(the bright area in the contour plots) which corresponds to the peak of the track 
receptance as shown in Figure 13. It can be concluded that the resonance frequency is 
not influenced by the locations of the track. The wavelength is plotted till 5 m in Figures 
14–17 for better visibility. For longer wavelengths, the vertical response of the rail is 
relatively small.

Figure 9. First wheelset vertical motion, normalized with respect to kH � A.

Figure 10. Second wheelset vertical motion, normalized with respect to kH � A.

Figure 11. Third wheelset vertical motion, normalized with respect to kH � A.
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4.4. Influence of the stiffness of the contact spring

From Figures 18–21, the influence of the stiffness of the contact spring is analysed. The 
responses are normalized with respect to the amplitude of the irregularity. In other 
word, the comparisons are made considering the same irregularity the thus the 
influences of the contact spring are solely extracted. In general, it can be concluded 
that higher stiffness of the contact spring leads to a higher response level because of 
larger contact force. The stiffness change does not influence the resonance frequencies 
of the car body bouncing, car body pitch, bogie bouncing and bogie pitch motions. In 
contrast, greater stiffness of the contact spring results in an increase of the resonance 
frequency of the wheel vertical motion as shown in Figure 21. As can be seen that there 
is almost no difference in the responses between kH ¼ 1:0GN/m and kH ¼ 8:0GN/m, 
the influence of contact spring on resonance frequencies of the vehicle becomes 
marginal when kH keeps increasing. This observation can be explained as the following: 
when kH increases, the wheel-track contact becomes more and more rigid, then the 
track stiffness dominates the response.

Figure 12. Fourth wheelset vertical motion, normalized with respect to kH � A.

Figure 13. Driving point receptance of rail: (a) Driving point track receptance, without vehicle, the first 
peak is at 52 Hz, (b) Driving point track receptance, with vehicle, first peak at 33 Hz.
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In Figure 22, the receptance of the rail is calculated for three values of contact 
stiffness. The contact spring play a minor role on the wheel-rail interaction 
especially in low frequency regions in which the vehicle responses and first 
resonance peak of the rail are most relevant. However, the antiresonance fre-
quency of the rail is largely influenced by the contact stiffness since this frequency 
corresponds to resonance of wheel motion as predicted by Equation 19. To 
visualize the location of this frequency, the receptances of contact spring and 
unsprung mass are plotted as well. Antiresonance occurs at the intersection of 
contact spring receptance and unsprung mass receptance as shown in Figure 22. 

Figure 14. Vertical motion of rail under first wheelset, normalized with respect to kH � A.

Figure 15. Vertical motion of rail under second wheelset, normalized with respect to kH � A.

Figure 16. Vertical motion of rail under third wheelset, normalized with respect to kH � A.
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Larger stiffness of contact spring leads to an intersection at higher frequency and 
the amplitude of the response decreases accordingly. From Figure 22 it can be 

Figure 17. Vertical motion of rail under fourth wheelset, normalized with respect to kH � A.
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Figure 18. Car body response, normalized with respect to A: (a) Vertical motion, (b) Pitch motion.
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seen that the first peak of the rail receptance increases with increasing contact 
stiffness first and then converges. The reason for this convergence is that when 
the contact stiffness is large, the overall supporting stiffness to the wheel is 
dominated by the track stiffness. Figure 23 shows the dependence of first reso-
nance frequency of the rail on the stiffness of contact spring. From about 
kH ¼ 3:0GN/m the first resonance frequency starts to converge.
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Figure 20. Rear bogie response, normalized with respect to A: (a) Vertical motion, (b) Pitch motion.
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Figure 21. Driving point displacement FRF, wheel vertical motion, normalized with respect to A.
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5. Conclusions

A fully coupled three-dimensional vehicle-slab track model is employed to investigate the 
frequency-domain response of the system. Apart from the model validation by time- and 
frequency-domain response comparisons, the receptances of the vehicle and vertical 
motion of the rail are thoroughly analysed accounting for the coupling of subsystems 

Figure 22. Rail vertical receptance, normalized with respect to A.
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Figure 23. Influence of contact spring stiffness on the 1st resonance frequency fr of the rail.
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and spatial coherence of multiple wheel-rail contact points caused by multiple wheels. 
The system responses excited by moving vehicle on irregular track are studied consider-
ing the combined effects of the train velocity and the wavelength of vertical track 
irregularity on the responses are examined in one goal. The critical wavelengths and 
corresponding critical velocities which cause resonances of different vehicle modes are 
emphasized. Based on the analysis, the following conclusions can be drawn:

(1) The resonance frequencies of the vehicle are independent of the track modelling 
options. However, coupling the track flexibility to the system results in a smaller 
resonance frequency for the wheel vertical motion. The accuracy of the wheel 
receptance is important for understanding the wheel/rail interaction and its 
magnitude.

(2) Including the track flexibility enables the model to account for effects of multiple 
wheels and wave reflections in rails between different wheels.

(3) Although the wave reflections in rails between multiple wheels are important for 
the overall dynamics of the system, this wave phenomenon does not change the 
main resonance frequency of the wheels and the rail under the wheels.

(4) The first resonance frequency of the rail shifts to a lower value when vehicle is 
considered. At the same time, an antiresonance frequency is introduced at the 
frequency where the receptance of the contact spring and the receptance of 
unsprung/wheel mass intersect, namely the antiresonance frequency corresponds 
to resonance of wheel vertical motion.

(5) Increasing of the stiffness of the contact spring results in higher resonance frequency 
of both the wheel and the rail. The first resonance frequency of the rail converges at 
a certain value of the contact stiffness. The reason is that when the contact stiffness is 
much larger than the equivalent stiffness from the track, the overall stiffness 
supporting the wheel converges to the track stiffness and therefore increasing the 
contact stiffness has marginal influence on the overall stiffness under the wheel. In 
contrast, higher contact stiffness moves the antiresonance frequency of the rail to 
higher values and the wheel vibrates on the contact stiffness at this frequency.

(6) When the excitation frequency fex ¼ v=λ resulting from irregularity coincides 
with one of the natural frequency of the vehicle, resonances of the vehicle occur. 
The corresponding critical train velocity and critical wavelength of irregularity are 
discrete values. The highest critical speeds lead to the largest response of the 
vehicle since the amplitudes of the harmonic components of irregularities and the 
associated energy introduced in the system by the track irregularities reduce with 
decreasing wavelength.
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Appendix

Table A1. Main parameters of the vehicle.
Notation Parameter (unit) Values

Mc Car body mass (kg) 49080
Mt Bogie mass (kg) 4420
Mw Wheelset mass (kg) 1680
Icx Mass moment of inertia of car body about X-axis (kg m2) 65700
Icy Mass moment of inertia of car body about Y-axis (kg m2) 1698400
Icz Mass moment of inertia of car body about Z-axis (kg m2) 1447100
Itx Mass moment of inertia of bogie about X-axis (kg m2) 1576
Ity Mass moment of inertia of bogie about Y-axis (kg m2) 4902
Itz Mass moment of inertia of bogie about Z-axis (kg m2) 3551
Iwx Mass moment of inertia of wheelset about X-axis (kg m2) 773.3
Iwy Mass moment of inertia of wheelset about Y-axis (kg m2) 130
Iwz Mass moment of inertia of wheelset about Z-axis (kg m2) 770
kpx Stiffness coefficient of primary suspension along X-axis (MN/m) 1.24
kpy Stiffness coefficient of primary suspension along Y-axis (MN/m) 1.24
kpz Stiffness coefficient of primary suspension along Z-axis (MN/m) 1.27
ksx Stiffness coefficient of secondary suspension along X-axis (MN/m) 0.11
ksy Stiffness coefficient of secondary suspension along Y-axis (MN/m) 0.11
ksz Stiffness coefficient of secondary suspension along Z-axis (MN/m) 0.27
cpz Damping coefficient of primary suspension along Z-axis (kN s/m) 65
csy Damping coefficient of secondary suspension along Y-axis (kN s/m) 5.4
csz Damping coefficient of secondary suspension along Z-axis (kN s/m) 16.5
Lc Semi-longitudinal distance between bogies (m) 7.85
Lt Semi-longitudinal distance between wheelsets in bogie (m) 1.25
R0 Wheel radius (m) 0.43
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Table A2. Main parameters of the track structures.
Notation Parameter (unit) Values

Er Elastic modulus of the rail (N/m2) 2.059 × 1011

ρr Mass of the rail per unit length (kg/m) 60.64
Iry Rail second moment of the area about the Y axis (m4) 3.215 × 10−5

Irz Rail second moment of the area about the Z axis (m4) 5.24 × 10−6

Gk Rail torsional stiffness (N m/rad) 1.9587 × 105

krz Fastener stiffness in the vertical direction (N/m) 3 × 107

kry Fastener stiffness in the lateral direction (N/m) 3.5 × 107

crz Fastener damping in the vertical direction (N s/m) 2.5 × 104

cry Fastener damping in the lateral direction (N s/m) 2.5 × 104

Et Elastic modulus of the slab (N/m2) 3.6 × 1010

μt Poisson ratio of the slab 0.25
mt Mass per unit volume of the slab (kg/m3) 2500
Ht Height of the slab (m) 0.19
Lt Length of the slab (m) 4.95
Wt Width of the slab (m) 2.40
ktz Equivalent vertical stiffness coefficient of the CA layer (N/m) 1.3 × 109

ctz Equivalent vertical damping coefficient of the CA layer (N/m) 1.0 × 104

kty Equivalent vertical stiffness coefficient of the CA layer (N/m2) 6 × 107

cty Equivalent vertical damping coefficient of the CA layer (N/m) 1.0 × 104
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