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Preface
One of my biggest interests has always been in product development. When I started think-
ing about my thesis project I quickly knew I wanted to do this project at a company that
develops medical devices. During my first MSc year, I attended a guest lecture by Motekforce
Link and the name has stuck with me ever since. I am excited that I could do a graduation
internship with them.

From an academic point of view, doing a development internship can introduce some dif-
ficulties. Commercial and scientific approaches are not always compatible and both had to
be respected to satisfy requirements for a development intern and a MSc graduate simulta-
neously. I learnt that the device I was going to work on, the Armbot, did not yet have the
training exercises (software) for which it was designed and built. From my literature review,
I knew what types of assistive algorithms were used and I had some ideas about what would
be suitable for the Armbot. The resulting plan was to design and implement a new training
algorithm and validate the performance in an experiment.

Development of the Armbot was discontinued due to organizational decisions during my
internship. I got the opportunity to stay and finish my thesis, but this meant nobody but me
was involved in the project. Also, the people who used to work on the Armbot had left the
company. It took a lot of time and effort to find out what I was dealing with, especially since I
had no knowledge of the matter and nobody around was familiar with details about the Arm-
bot. It was quite a struggle finding documentation, learning C++, setting up a cross-compile
tool chain and finding and fixing bugs in the software. Although these circumstances might
have had a negative impact on the project, I learned a lot. For me personally, this type of
experience is at least as valuable as the final result and I take all that I learned with me in
the start of my professional career.

Concluding my remarks on this eventful project, I think I did manage to achieve a fair balance
between development and scientific value. There is still a lot to improve and although fur-
ther development of the Armbot seems unlikely, I look forward to seeing all the other exciting
product ideas from Motekforce Link come to life.

M. J. Elzinga
The Hague, December 2018
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Abstract – Neurologically impaired patients can
regain motor function by engaging in rehabilita-
tion. Currently there is no conclusive evidence
that robotic rehabilitation has better clinical results
than conventional rehabilitation but robotic rehabil-
itation has the potential to increase efficiency and
patient motivation, justifying improvement of reha-
bilitation robotics. A variety of approaches to de-
sign the interaction between a robotic trainer and
the patient is used. For the purpose of improving
rehabilitation robotics, a new adaptive algorithm is
proposed. Assistive algorithms seem suitable for
training impaired patients but prove difficult to val-
idate with healthy subjects. For healthy subjects,
error augmentation is shown to be more effective
for learning. In an experiment, 13 healthy subjects
performed a reaching task while strapped to an up-
per extremity exoskeleton. During this task they
were subject to an adaptive augmented error feed-
back controller. Subjects were divided into three
groups in which one of each, or both the follow-
ing parameters of a force field were adapted: dead
band width and divergent force field strength. Per-
formance was measured as amount of deviation
from a straight line between two targets. Adapt-
ing dead band width results in a better movement
performance than adapting force field strength (p
= 0.0069). Adapting force field strength in addition
to adapting dead band width did not improve move-
ment performance (p = 0.9960). It is concluded that
an adaptive augmented error feedback mechanism
can improve movement performance in a reaching
task with healthy subjects.

1. Introduction
Neurological injuries such as stroke, traumatic
brain injury and spinal cord injury often cause
loss of motor function. Yearly, 6.3% of disability
adjusted life years (DALY’s) are caused by neu-
rological injury [1] and the world-wide burden of
stroke is increasing [16]. Examples of neurologi-
cal injuries are stroke, spinal cord injury and trau-
matic brain injury, which can result in loss of the
ability to perform activities of daily living (ADL’s).
30-40% of patients suffering from neurological in-

juries are limited in or incapable of walking, even
after rehabilitation [28]. Of patients that are heav-
ily affected in the upper limb, only 18% regain full
motor function [31]. For these patients rehabilita-
tion can be beneficial to recover motor function by
improving motor neuron output as well as muscle
morphology [2], a combination referred to as mo-
tor plasticity. Rehabilitation is shown to be effec-
tive to improve motor plasticity [7] [36] when it is
task-oriented, repetitive and of long duration [32]
[24]. The need for repetitive and intensive train-
ing is expensive and labor-intensive for therapists,
but robotic rehabilitation devices can be used to
lift this burden. State of the art rehabilitation
robots help patients during rehabilitation tasks by
assisting them in their movements and providing
visual, auditory and haptic feedback. There is cur-
rently no consensus about the clinical benefits of
robotic rehabilitation over conventional rehabili-
tation [30] [27] [22]. However, robotic rehabili-
tation has the potential to surpass conventional
therapy when it comes to efficiency and cost effec-
tiveness while simultaneously making rehabilita-
tion more pleasant and motivating for patients by
using games in virtual reality (VR) [26] [9] [18] [37]
[25]. This makes improving the design of rehabili-
tation robotics worth the effort.

Many considerations, such as mechanical de-
sign [17] and control architecture, are important
in the development and validation of robotic reha-
bilitation devices. These considerations are par-
tially based on the nature and severity of patients’
impairments, but also on theoretical approaches
about motor learning and sensorimotor control.
Especially for the control architecture and design
of learning tasks, a multitude of computational
approaches to motor learning are used [4] [19].
A lot of scientific research is done on adaptive
controllers, which mimic the role of a therapist.
An issue with the validation of robotic rehabilita-
tion methods is that often healthy subject groups
are used [11] [3] [20] [21]. Assessing the perfor-
mance of a rehabilitation device on healthy sub-
jects causes a conflict, because an impairment of
some sort is designed for these healthy subjects
and the device that is used to aid the subject is
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also used to impose that impairment.
An important question in robotic rehabilitation

is how to design the interaction between the ex-
ternal trainer and the patient. A trainer can be
a robot, therapist, or combination of both and
has the task of observing a patients’ movements,
providing feedback to correct and improve these
movements when necessary. At the same time a
mechanism must be in place that minimizes the
magnitude and frequency of the trainers’ interven-
tions. When voluntary movements are not encour-
aged, there is a risk that the patient starts relying
on the trainer. This results in a sub-optimal move-
ment strategy and thus sub-optimal recovery. A
trainer should be able to monitor the performance
of a subject and adapt its assistance accordingly to
optimize motor learning. Optimizing trainer inter-
vention forms the basis for development of adap-
tive training algorithms, widely referred to as As-
sist As Needed (AAN) [10] [14] [15] [13] [6].

Many forms of adaptiveness can be used and
the optimal trade-off between practical applica-
tion and theoretical correctness depends on fac-
tors such as training goal, mechanical design and
computational cost. In theory, the optimal way
of modeling adaptive controllers is to model them
according to physiological processes in a human
body [34] [38] [23] [39]. The rationale behind this
approach is that if the robot learns in a similar
way the human does but slightly slower, interven-
tions are optimized to human performance. Mod-
eling a robot after human learning processes can
be done by combining optimization algorithms or
neural networks with muscle models [12]. To cre-
ate a reliable neural- or muscle model, physiologi-
cal parameters of humans are required [5], which
is a patient-specific and labor intensive procedure.
An adaptive algorithm that does not require much
tuning or a priori knowledge is desired.

In this project an adaptive algorithm is used
with an upper extremity exoskeleton and healthy
subjects performing a learning task. While AAN
helps severely impaired patients, patients who
have regained motor skills benefit less from such
an assistive rehabilitation task. For healthy sub-
jects assisting does not improve motor learning at
all, but punishing does [33] [8], which is the rea-
son for using an augmented error feedback mech-
anism. Besides testing the effect of an adap-
tive augmented error mechanism, various adapta-
tion rules are used to gain understanding of what
might be the optimal way to adapt such an algo-
rithm to promote motor learning.

Performance is quantified as movement devia-
tion from an optimal path. Augmenting the move-
ment error is done by introducing a divergent force
field when a subject deviates from the optimal tra-
jectory, while free movement is allowed within a
dead band zone. Two parameters were adapted:
stiffness of the force fields’ virtual spring and width
of the dead band. Three subject groups conducted

Abnormal motor output

Abnormal sensory input

Neurological injury

Normal sensory input

Normal motor output

Trainer sensory input

Figure 1: Sensorimotor control and the role of a trainer. When not
neurologically impaired, normal sensory input results in normal motor
output. Neurological injury increases the probability of normal sensory
input resulting in abnormal motor output. A trainer introduces a new
sensory state which can help correct abnormal motor output.

the experiment, one for each update parameter
and one with both. The goal of analyzing move-
ment performance was to determine if adapting the
algorithm improved learning performance, and if
so which of the adaptation rules had the best re-
sults.

1.1. Background
Motor learning is the process of adapting move-
ment strategies to an environment. This includes
creating/strengthening neural pathways, altering
joint impedance or optimizing movement strategy.
When a subject is presented with a new scenario or
a new environment, he/she needs to learn how to
react to that environment. In a task-based training
scenario, the environment acts on the subject in a
way that simulates an ADL. In an assistive setting
the environment might be programmed to help a
subject reach a certain point when this subject is
not capable of performing that movement. Mak-
ing this environment adaptive can help optimize
the intervention of the environment andmovement
performance of a subject. However, there is al-
ways a risk that an assistive environment results
in sub-optimal motor learning. An explanation for
this can be found when looking at sensorimotor
control as an adaptive Markov model [34]. When
a subject has a neurological injury, the probability
that a neural command results in abnormal motor
output is increased as a result of damage to the
neurological pathways [34]. When a normal motor
command results in an abnormal motor output,
this will in turn cause an abnormal neural com-
mand. This loop of abnormal sensorimotor control
can be broken by introducing a trainer. The role
of a trainer is to recognize abnormal motor out-
put and correct it, so a normal neural command is
generated (Figure 1).

According to the Hebbian feedback control law
[29] ’neurons that fire together wire together’,
meaning that the trainer will help a subject
strengthen neural pathways by repeatedly mak-
ing correct movements. However, at a certain mo-
ment this does not hold any longer. When a sub-
ject recognizes that the trainer will always assist,
the subject starts relying on the trainer and the
development of neurological pathways stops. To
solve this problem, a trainer needs to be able to
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Group Participant Age Dominant arm Sex
1 1 24 L F
1 7 32 R F
1 10 31 R M
2 2 24 R F
2 8 34 R M
2 11 35 R M
2 13 25 R M
3 3 56 R M
3 6 24 R M
3 9 24 R F
3 12 30 R M

Table 1: Subject groups & details. Adaptation rules: Group 1 - dead
band, Group 2 - stiffness, Group 3 - dead band and stiffness. Of 13
participants, 2 were excluded due to technical reasons.

recognize the performance of a subject and act ac-
cordingly. Because healthy subjects do not bene-
fit from assistive environments, they should train
with resistive or punishing environments [8] [33].
It has been shown that motor learning in healthy
subjects can indeed be improved by amplifying er-
rors [35]. Subjects learn that it takes less effort
to slightly increase joint impedance than it takes
effort to return to the dead band from a divergent
force field.

2. Materials & Methods
An experiment was conducted in which 13 healthy
subjects were asked to move their left hand back
and forth between two targets while connected to
a robotic device. Deviation from a straight line
between the two targets was measured and used
to quantify the development of movement perfor-
mance during the given task. Free movement
was allowed within a dead band zone around the
straight line between the two targets. Outside this
dead band zone a divergent force field was present,
acting in the direction perpendicular to the line be-
tween targets. Depending on the performance dur-
ing the trials, the robotic algorithm could update
the dead band width and/or the strength of the
force field. Subjects were divided in three groups,
as seen in Table 1. The goal of this experiment
was to find out what effect adapting the algorithm
had on the task performance, and see what kind
of adaptation yielded the best results.

2.1. Experiment protocol
Participants were provided an information sheet
(Appendix E) about the experiment and the back-
ground and provided their informed consent. In-
structions were also given verbally after the par-
ticipants read the information sheet, and a re-
searcher helped the participant put on the cuffs
of the robotic device. Each participant was asked
to perform 225 trials, one trial being moving from
target A to target B or vice versa. The first 20 trials
were used to get familiar with the procedure and
the algorithm was not updating during that time.
After the test trials, subjects could continue until
they reached trial 225. Catch trials were present

on pre-defined trial numbers, during which the
force field was turned off (stiffness set to zero) even
if subjects moved outside the dead band. Subjects
were randomly placed in one of the three groups
(Table 1). Before each experiment, the robotic
device was re-initialized and force sensors were
calibrated. Measurements from the adaptive al-
gorithm as well as from the force sensors were
recorded at a sample frequency of 500 Hz.

2.2. Feedback
To know whether a target was reached, subjects
were presented a game providing visual feedback
on a screen in front of them (Figure 2). This game
was running on an external computer and mea-
surement information was retrieved in real-time
from the robotic device via an application program-
ming interface (API). More details about this game
can be found in Appendix D. Two squares, repre-
senting target A and B, were shown on screen. If
a target was reached it turned green. Also, when
the subject would move outside of the dead band
a red bar was shown on the corresponding side. A
counter was used to indicate the end of the test pe-
riod (first 20 trials) and the end of the experiment
(225 trials).

(a) Force field (b) Target reached

Figure 2: Armbot game visual feedback during experiment. In 2a the
subject is ouside of the dead band, in 2b the subject reached a target.

2.3. Robotic device
The experiment was done with an upper extremity
exoskeleton called the Armbot (Figure 3). The Arm-
bot has four actuated degrees of freedom (DOF’s)
and is designed as a lightweight rehabilitation
robot that is easy to attach to and detach from a
patient. The Armbot is an admittance-controlled
device, using force sensor data to calculate posi-
tion, velocity and acceleration of a virtual mass
model. When modeled correctly, moving an arm
while strapped in the Armbot feels transparent, as
if there were no exoskeleton. To this mass model,
virtual effects such as dampers or walls can be
added in a haptic renderer. These haptic effects
are used to design the feedback given in training
excercises. In the experiment an adaptive aug-
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mented error feedback algorithm is implemented
as a virtual spring.

Figure 3: Armbot prototype #13. Four electrical motors drive the ac-
tuated DOF’s via pushrods: elbow flexion (green), shoulder abduction
(red), shoulder endo-/exorotation (blue and yellow), shoulder flexion
(blue and yellow). The subject is strapped to the device with one cuff
for the upper arm and two cuffs for the forearm. A BeagleBone Black
running realtime Linux runs the control software.

2.4. Adaptive error augmentation
For the experiment, an adaptive augmented er-
ror feedback algorithm was implemented in the
control loop of the admittance controlled mode of
the Armbot. The functionality in this algorithm is
twofold: augment movement error by introducing
a force field and adapt the characteristics of this
force field. Because of its nature the algorithm is
called Punish As Needed (PAN), Figure 4 shows an
overview of the control structure of the Armbot and
the addition of the PAN algorithm. The current
implementation can be found in Appendix A and
other design considerations for the PAN algorithm
can be found in Appendix C.

Force field
When moving outside of the dead band, a resistive
force field is turned on. This force field is created
by adding two virtual springs to the haptic ren-
derer. One spring acts on the shoulder endo- and
exorotation and the other on shoulder abduction.
On the shoulder endo-/exorotation axis the spring
pulls in the direction of the movement error, per-
pendicular to the optimal trajectory (augmenting
shoulder endo- or exorotation). The shoulder ab-
duction spring only pulls in the abduction direc-
tion. The task space was divided into the following
zones (Figure 5):

1. Target zone (A or B)

2. Dead band

3. Resisting zone

4. Stabilizing zone

Subjects were asked to move back and forth be-
tween zones A and B. In these zones no force field
was active. A straight line from A to B was the the-
oretical optimal movement trajectory in terms of
resistance. Within the dead band, free movement
is allowed, and no additional forces are imposed on

the arm. In the resistive zone, a force field pushes
the subject away from the optimal trajectory. For
stability and safety, a stabilizing zone is included.
This stabilizing zone is a force field in the oppo-
site direction of the resistive zone which restricts
further movements and prevents the subject from
ending up in uncomfortable positions.

The zones were defined and measured in the
motor space of two joint DOF’s: shoulder rotation
and shoulder flexion. Both DOF’s were actuated
by the same motors (blue and yellow rods in Fig-
ure 3) and motor space was defined as the linear
displacement of the rods in [m], directly converted
from motor encoder ticks. The displacement of
these two motors was used to see if a target was
reached, if the force field should be turned on or
off and what the direction of the spring should be
(Appendix A). The PAN function was called in the
force control loop of the Armbot.

Adaptation rules
Dead band width ( ) was decreased and spring
stiffness ( ) was increased when a subject did not
move outside the dead band during one trial. To
measure this, a movement error parameter was
updated constantly during each trial. When mov-
ing inside the dead band the movement error re-
mained zero. When moving outside the dead band
the movement error was increased. After reach-
ing a target the movement error was evaluated and
when it was zero for the previous trial, an update
of the force field parameters was done. The move-
ment error parameter was set to zero again before
each next trial. Depending on the subject group,
spring stiffness, dead band width or both were up-
dated. The adaptation rules for each group were
the same: an incremental increase of the stiffness
and an incremental decrease of the dead band
width.

.

Both increment values were determined by trial
and error, with the requirement that the task
should be easy in the beginning and become hard
enough so that subjects would feel the effect of the
force field towards the end of the experiment. Ini-
tial values were: 10, 0.02. Updating the
force field parameters was done in the following
way: upon entering a target zone, the total error
was evaluated and if the error was larger than zero,
parameters were updated.

2.5. Data Analysis
All measured data was separated per trial. For
each trial the root mean square (RMS) of all sam-
ples was calculated. An exponential fit was applied
to the averaged movement performance RMS per
group. The parameters of these fits indicate aver-
age learning rates of the groups. The applied fit is
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Virtual mass model

+
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admittance controller
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Figure 4: Armbot control structure with PAN algorithm. The main realtime control loop is an admittance controller that uses measured force to
calculate model position, velocity and acceleration (PVA) to drive the robot. A position control loop uses measured PVA to compensate for play and
friction. The PAN algorithm uses measured position of two rods to determine in which zone the subject is positioned. The zone and movement error
determine if the virtual force field should be turned on or off, and if the parameters of virtual effects should be updated. Movement performance is
always recorded as absolute difference between two rods.

Flexion

Rotation

Abduction

Optimal 
trajectory

A

B

Dead band

Resisting zone

Stabilizing zone

Shoulder

Figure 5: Task space zones and force field directions. Between two
targets A and B the optimal trajectory is a straight line. The area around
the optimal trajectory is a dead band in which haptic effects are turned
off. Outside the dead band lays the error augmenting zone, with virtual
springs acting on shoulder abduction and rotation. In the outer stabiliz-
ing zone springs on shoulder abduction and rotation prevent the user
from reaching uncomfortable positions.

in the following form:

In which is the response, is a multiplying
factor, is a decay rate and is a time factor (tri-
als).

To evaluate the statistical significance, a one-
way ANOVA between groups was done. If
group means were significantly different, a Tukey-
Kramer post-hoc test was done. All data process-
ing was done in MATLAB R2016b.

3. Results
3.1. Algorithm adaptation
Table 2 shows the total amount of force field acti-
vations after 225 trials for each participant. There
is a significant difference between the amount of
activations between groups, F(2,8) = 8.86, p =
0.0094. Group 1 has a significantly higher amount
of activations than Group 2 (p = 0.0292) and Group
3 has significantly more activations than Group 2
(p = 0.0114). There is no significant difference be-
tween Groups 1 and 3 (p = 0.9250). The adaptation
of algorithm parameters corresponds to the rates
seen in Figure 6. The rate of force field activations
between groups is not significantly different (be-
tween trial 25 and 75 p = 0.4236, between trial 75
and 125 p = 0.2141, between trial 125 and 175 p
= 0.2097, between trial 175 and 225 p = 0.6809).
The adaptation of dead band width and stiffness

Group 1 Group 2 Group 3
94 2 87
58 38 104
54 10 53

17 55

Table 2: Total force field activations per participant for each group. In
group 3 the force field was activated the most, followed by Group 1 and
Group 2.

are shown for each individual participant in Fig-
ure 7. In trials where the forcefield is not activated
(horizontal line in Figure 6), the parameters of the
algorithm are updated. The difference in dead
band adaptation is significant between groups (p
= 2.25635 e-5). In Group 1 and 3 the dead band
width changes significantly more than in Group 2
(p = 0.0000, p = 0.0001). Difference in dead band
width adaptation between Group 1 and 3 is not
significant (p = 0.8806). Group 2 has a signifi-
cantly higher stiffness adaptation than Group 1 (p
= 0.000) and Group 3 has a significantly higher



6 Contents

stiffness adaptation than Group 2 (p = 0.0000).
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Figure 6: Cumulative amount of trials with errors. Each trial in which
subjects moved outside the dead band one or more times is counted as
a trial with an error. Each line represents one subject. The rate of force
field activations is the amount of activations per 50 trials.
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Figure 7: Adaptation of algorithm parameters per trial. Each line is
one subject. In Group 1 only dead band width was updated, in Group
2 only stiffness of the virtual spring was updated and in Group 3 both
dead band width and spring stiffness were updated.

3.2. Performance of subjects
The RMS of movement performance per group for
the whole experiment is shown in Figure 8a (val-
ues per individual participant can be found in Ap-
pendix B). A lower value means a lower error, in-
dicating better performance. There is a significant
difference between the groups, F(2,615) = 14.7, p
= 5.822e-7. Group 1 and 3 perform significantly
better Group 2 (p = 0.000), but are not signifi-
cantly different from each other (p = 0.9979). The
same movement performance RMS data is shown
for only the catch trials in Figure 8b. In these catch
trials the movement performance between groups
is also significantly different, F(2,93) = 6.63, p
= 0.002. Group 1 is has a better performance
than Group 2 (p = 0.0069), Group 2 has a bet-
ter performance than Group 3 (p = 0.0054) but
the difference between Group 1 and 3 is insignif-
icant (p = 0.9960). When comparing the results
of the whole experiment (Figure 8a) with results of
only catch trials (Figure 8b), differences between

Group
1 0.0098 0.0020
1 catch 0.0081 0.0086
2 0.0098 9.1618e-4
2 catch 0.0095 0.0060
3 0.0119 0.0037
3 catch 0.0114 0.0327

Table 3: Parameters of exponential fit. Groups 3 has the highest decay
rate, followed by Group 1 and then Group 2.

groups are similar: Groups 1 and 3 perform better
than Group 2 but not different from one another.

In Figure 9 the average movement performance
RMS of the first and last five catch trials is shown
for each group. In Group 3 the performance im-
proves the most (-0.0060), in Group 1 the move-
ment performance increased less than in Group 3
(-0.0025) and in Group 2 movement performance
increased the least (-0.0016). In Figure 10 the
RMS of joint angles per trial are shown. Shoul-
der endo-/exorotation is significantly different for
each group, F(2,2456) = 17.42, p = 3.08185 E-8.
Group 1 has less shoulder endo-/exorotation than
Group 2 (p = 0.0000), Group 3 has less shoul-
der endo-/exorotation than Group 2 (p = 0.0007)
and Group 1 and 3 have similar shoulder endo-
/exorotation (p = 0.0419). Difference in shoul-
der abduction between groups is not significant,
F(2,2456) = 1.66, p = 1.1905. Shoulder flexion
shows no significant difference between groups,
F(2,2456) = 0.01, p = 0.9923. Elbow flexion is
different between groups, F(2.2456) = 10.15, p =
4.08767E-5. Groups 2 and 3 have less elbow flex-
ion than Group 1 but do not differ from one an-
other (p = 0.2887). One participant in Group 2
discovered that elbow flexion was not necessary to
complete the task and kept the elbow at a fixed
angle. This data is not disregarded because the
subject was technically successful in completing
the trials.

3.3. Learning rates
An exponential fit to the movement performance
data is shown for each participant in Figure 8.
Parameter values of each fit are presented in Ta-
ble 3. The learning rates correspond to the dif-
ferences in movement performance between the
groups: Group 3 learning the fastest, followed by
Group 1 and then Group 2.

4. Discussion
4.1. Difficulty & Adaptation
The task was most difficult for Group 1 and 3. This
result is to be expected: the dead band keeps get-
ting narrower until any subject would move out-
side it. This does not hold for adapting the stiff-
ness. Once a subject is capable of performing the
movement correctly, increased stiffness will never
be noticed because a subject will not move out-
side the dead band. From the amount of force
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Figure 8: Movement performance RMS of each group. For each trial, the movement performance RMS is shown for each group (each color is
a different group). Figure 8a: One dot represents the RMS of movement performance for one group. An exponential fit for each group is shown
(solid lines). Figure 8b: Separated catch trials from figure 8a and performed identical exponential fit.
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Figure 9: Movement performance average of first and average of last
five catch trials. For each group, the average of the movement perfor-
mance RMS over the first and the last five catch trials is shown.

field activations it can be concluded that the task
gets harder when decreasing dead band width, but
the task does not get harder when increasing only
stiffness. Adding an increasing stiffness parame-
ter when decreasing the dead band width param-
eter makes the task slightly harder, but the effect
is not significant. From this it can be concluded
that when subjects were punished, they were not
punished enough because there was no extra in-
centive to increase their joint impedance over the
time of the experiment.

The large differences in parameter adaptation
between subjects within groups show that there
is not one rule that fits everyone. Apart from the
larger increments in algorithm parameter updates
as mentioned before, a better approach is to adapt
the rules based on a personal performance mea-
sure. Preferably using the measured error during
a trial, instead of just a yes or no if there was an
error during a trial. An error measurement could
be used to calculate the magnitude of the next pa-
rameter adaptation. This method is presented in
Appendix C. Furthermore, an exponential fit was
used because the learning effect is expected to re-
sult in an exponential decay of movement error.
Updating algorithm parameters in a linear way

does not match this expectation, so an exponen-
tial decay factor might be included in the update
rule. Another advantage of this approach would be
that a longer experiment is not needed: in the be-
ginning of the experiment large increments will be
made, making the task challenging quickly. While
skill is acquired, the increments decrease propor-
tional to movement error.

Currently updating of both parameters is de-
pendent on one measure: movement error. This
means movement performance is defined by the
ability to stay within the dead band and ability to
return to the dead band from the force field simul-
taneously. For the purpose of this experiment that
is a valid assumption, but in a real world applica-
tion themeaning of movement performance should
be re-evaluated. Is the training goal to improve
joint impedance in a working area, or might the
goal be to increase the range of this working area,
or something else? Instead of deviation from a tra-
jectory, range of motion or movement speed could
be the error measure, or any other measurement
of movement.

4.2. Movement Performance
Group 1 and 3 had similar movement perfor-
mance, but performed better than Group 2. This
is a result from the task being harder when dead
band width is decreased. Increasing stiffness
when the dead band is decreasing does not have a
significant effect on task performance. This is not
what would be expected. The subjects in Group
3 were punished as often as subjects in Group 1,
but when they were punished they were punished
harder because the stiffness was higher. This con-
firms the aforementioned conclusion that difficulty
of the task was not high enough.
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Figure 10: Human joint angles RMS per trial. For each group, the following joint angles are shown: shoulder endo-/exorotation (’rotation’),
shoulder abduction (’abduction’), shoulder flexion (’flexion’) and elbow flexion (’elbow’). In each group, one dot represents the RMS of a joint angle
in radians for one trial, shown in a different color for each subject.

This particular training brings the performance
of all subjects closer to each other, no matter what
the adaptation rules are. Because this is a learn-
ing task, such an effect is to be expected regard-
less of updating the parameters. While the per-
formance slightly increases in Group 1 and 3, the
performance in Group 2 sometimes decreases (Ap-
pendix B). This is the opposite of what would be
expected in a learning task. An explanation might
be that subjects learned that there was some de-
viation allowed, and started to put less effort in
moving in a perfectly straight line which results
in a slightly worse movement performance. In this
case narrowing the dead band would have kept the
task more challenging.

4.3. Movement Strategy
The effects of training persisted during the catch
trials, which indicates that subjects not only
adapted their movement strategy during the pres-
ence of a force field but also afterwards. Move-
ment strategy changed in order to better perform
the task. Shoulder endo-/exorotation is directly
related to the movement performance so the differ-
ence between groups is expected. Shoulder flex-
ion is directly related to reaching the targets, so
no difference between groups is expected. More
shoulder abduction would be expected in groups
where subjects were punished more often because
the force field promoted shoulder abduction, but
this effect is not seen which is another indicator
that severity of the punishment was not sufficient.
For a reaching movement, elbow flexion could be
perceived to be necessary. However, because only
shoulder flexion was used to determine if the end-
point was reached, elbow flexion was not required
to complete the task. One subject in Group 2
discovered this and kept the elbow at a fixed an-

gle during the whole experiment. Other than that
there is no clear explanation for the significant dif-
ference between Groups 2 and 3, and 1.

The subject in Group 2 shows an important
flaw in this experiment. The task is not imple-
mented as a true virtual model of a point (corre-
sponding to a subjects’ hand) in Cartesian space,
which is compared to the locations of the optimal
trajectory, targets and dead band. Instead just two
position measurements from motors are used to
judge where the subjects’ hand is located. This
introduces the risk of learning a trick, instead of
learning to truly move the hand in a straight line.
Although learning a trick can still be considered
learning a task, in this experiment it means that
at least one DOF (elbow flexion) can be completely
ignored. The resulting movement strategies and
adapted joint impedances might be different be-
cause of this. In Appendix C an alternative ap-
proach to designing this experiment is proposed,
which could overcome this problem.

4.4. Learning
Improved movement performance shows that sub-
jects learned moving in a straighter line. How-
ever with only these results, it cannot be shown
that subjects actually learn better when adapting
the algorithms’ parameters than when not adapt-
ing these parameters. It would be interesting to
compare these experiments with an experiment in
which the parameters are set to a difficult value
from the start, to see if adapting the algorithm from
an easy configuration is beneficial. An advantage
of the method used in this experiment is that no
subject-specific tuning is necessary. The parame-
ters can be set so that the task is easy and every
subject would eventually end up in a configuration
that is hard, and at that point start learning.
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4.5. Experiment Design
No live representation of the end point was pre-
sented to subjects in the visual interface. Subjects
had to create some reference in their mind about
where their hand was located relative to the target
positions.

As shown in Figure 4, the virtual effects are
based on measured PVA. This was done because
of technical reasons, but it is not the ideal imple-
mentation. A more optimal way of modeling this
would be to use the model PVA as input for the
virtual effects.

The update rules were designed so that the task
could only get harder. This was done based on the
assumption that when subjects make a movement
without moving outside the dead band, they are
ready for a more difficult task. However, it might
be the case that sometimes good movement per-
formance is the result of luck and not skill.

Because of instability of the gravity compensa-
tion algorithm, causing unstable behavior of the
system, gravity compensation has been turned off
completely during the experiment. This could have
caused an extra difficulty for subjects to move, be-
cause they had to do some gravity compensation
that the Armbot was supposed to do for them. The
resulting effect is that the force experienced by
subjects was contaminated with gravitational ef-
fects, not purely the intended force field.

5. Conclusion
A functional adaptive error augmenting algorithm
was built and implemented on the Armbot. With
the adaptation rules used in this experiment, the
following can be concluded:

• Decreasing dead band width made the task
harder.

• Increasing force field strength did not make
the task harder.

• Making the task harder improved learning
performance.

There are some imperfections in the design of the
algorithm and the experiment that need to be over-
come. Despite of these issues, results of this ex-
periment show that an adaptive augmented error
algorithm can improve learning performance in a
reaching task with healthy subjects.

5.1. Recommendations
The PAN algorithm can be improved by using
model PVA data to calculate the actual end point
(position of the hand) in Cartesian space. This re-
sults in a better performing algorithm because the
force field strength can be dependent on the true
model elongation of the spring: large movement
errors will then be punished harder than smaller
errors. Also, using Cartesian coordinates in the
PAN algorithm has benefits for designing a better
task space and visual references.

To improve the experiment, new update rules
are recommended. A higher degree of error aug-
mentation might lead to more improvement of per-
formance, so using larger increments of param-
eter adaptation will be beneficial. Ideally, these
increments are be based on an individual subject
performance measure rather than fixed values as
was done in this experiment. Additional improve-
ments to the error augmentation would be to start
with more difficult initial settings (lower dead band
width and/or higher stiffness) or to let the param-
eters be incremented along an exponential decay.

Repeating the experiment with improved meth-
ods and knowledge from this experiment is neces-
sary to reach a more determinate conclusion on
the benefit of adaptive parameters over fixed pa-
rameters. If this new experiment under better con-
ditions would point out that it is indeed possible
to improve learning performance with an adap-
tive augmented error algorithm, the next step is
to make a switch back to neurologically impaired
patients and test the inverse of the paradigm pre-
sented here: an adaptive error reducing algorithm
in which adaptation is based only on a subject
performance measure. After validating basic as-
sumptions in this experiment, many more im-
provements can be made to the therapy as a whole.
Possible improvement include, but are not limited
to: more different training tasks, VR environments
and auditory feedback. Ultimately, the compari-
son with conventional therapy has to be made to
decide for or against this robotic therapy.
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A
PAN algorithm

Presented here are outlines of the functions used in the PAN algorithm. The main function
was Algorithm 2, which was placed inside the force loop in the Armbot real-time software.
The task space design is based on values set by the user:

• targetA

• targetB

• dead band width wDB

Algorithm 1 Check target reached.
function TargetReached

if Difference left and right rod < wDB then
if Right & Left disp < target A then

return true
end if
if Right & Left disp > target B then

return true
end if
return false

end if
return false

end function

13



14 A. PAN algorithm

Algorithm 2 Activate virtual spring when not on target and outside dead band
function PunishAsNeeded

ErrorCalculator
if TargetReached == false then

Spring = true
if Difference left and right rod <= wDB then

K = 0
else if Difference left and right rod > wDB then

K = K
if RightRod > LeftRod then

SpringLocation = -5
else if LeftRod > RightRod then

SpringLocation = 5
end if

end if
else

K = 0
end if
TrialUpdate

end function

Algorithm 3 Reset total error and call parameter update
function TrialUpdate

if TargetReached then
Reset Total error
UpdateChallenge

end if
end function

Algorithm 4 Movement error
function ErrorCalculator

if Dead band == true then
Movement error = 0

else
Movement error = Difference left and right rod - wDB
Total error = Total error + Movement error

end if
end function

Algorithm 5 Parameter update
function UpdateChallenge

if Total error == 0 then
K = K + 2
wDB = wDB - 0.0001

end if
end function



B
Additional data

Movement Performance

20 40 60 80 100 120 140 160 180 200 220

Trial

0

0.005

0.01

0.015

0.02

0.025

0.03

R
M

S
 P

e
rf

o
rm

a
n

c
e

Group 1 - AdaptDB

Subject 1

Subject 2

Subject 3

Exponential fit

20 40 60 80 100 120 140 160 180 200 220

Trial

0

0.005

0.01

0.015

0.02

0.025

0.03

R
M

S
 P

e
rf

o
rm

a
n

c
e

Group 2 - AdaptK

Subject 4

Subject 5

Subject 6

Subject 7

Exponential fit

20 40 60 80 100 120 140 160 180 200 220

Trial

0

0.005

0.01

0.015

0.02

0.025

0.03

R
M

S
 P

e
rf

o
rm

a
n

c
e

Group 3 - AdaptKDB

Subject 8

Subject 9

Subject 10

Subject 11

Exponential fit

(a) Movement performance RMS of all trials.
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Figure B.1: Movement performance RMS. Figure B.1a: for each subject, the RMS of movement performance per trial is shown.
A logarithmic fit for each subject is shown (solid lines). There is a significant difference between the groups (p = 1.5602 E-10).
Group 1 and 3 significantly differ from Group 2 (p = 0.000), Group 1 and 3 are not significantly different (p = 0.9740). Figure B.1b:
Separated trials from figure B.1a and performed identical exponential fit. Movement performance between groups is significantly
different, F(2,349) = 10.05, p = 5.71528 E-05. Group 1 has a different outcome than Group 2 (p = 0.006), Group 2 has a different
outcome than Group 3 (p = 0.002). The difference between Group 1 and 3 is insignificant (p = 0.9989).
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C
Design of augmented error movement

task
In the current implementation of the task and PAN algorithm, many concessions have been
made for technical reasons. Here the originally intended algorithm design is presented. For a
universally usable PAN algorithm we want to create a model of the Cartesian representation
of the following elements:

• Subject/robot end effector (hand position)

• Task

– Optimal trajectory

– Targets

– Dead band

– Force field

– Stabilizing zone

The implementation used in the experiment served the purpose of a straight reaching task
reasonably well. However when there is a desire to design more complicated tasks with for
example curved trajectories, that method will be practically unusable. The method proposed
here can easily be applied to any desired trajectory, of course respecting physical constraints
of the robot and human.

End effector position
The arm consists of two members: an upper arm and forearm (Figure C.1), the forearm length
might be extended to include the hand. A vector representing each member is defined by the
length of that member multiplied by the unit vector of that member. The upper arm and
lower arm vector can be added to one another, resulting in an endpoint vector spanning from
the shoulder to the end effector, or hand (𝐸𝑃).

𝑈𝐴 = 𝑙 ̂𝑢𝑎
𝐹𝐴 = 𝑙 ̂𝑓𝑎
𝐸𝑃 = 𝑈𝐴 + 𝐹𝐴

This end effector vector 𝐸𝑃 can be used to calculate the end effector position 𝑝𝐴𝑐𝑡 in cartesian
space in relation to the shoulder joint, by multiplying 𝐸𝑃 with the unit vector of the x- y- or
z-axis.

17



18 C. Design of augmented error movement task
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Figure C.1: Composing end effector vector. Upper arm starts in the shoulder along unit vector ̂ with length , forearm
starts in the elbow along unit vector ̂ with length .

𝐸𝑃 = 𝐸𝑃�̂�
𝐸𝑃 = 𝐸𝑃�̂�
𝐸𝑃 = 𝐸𝑃�̂�

Position related to task space
The end-effector coordinates can be used as reference to the locations related to the task.
Force field zones will be designed as a cylindrical tunnel around the optimal trajectory, ex-
pressed as radius of that cylinder. The actual position 𝑝𝐴𝑐𝑡 is used to calculate 𝑟𝐴𝑐𝑡, the
minimized Euclidean distance between the closest point on the optimal trajectory and the
end effector position.
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rDB

rFF

Dead bandDivergent zoneConvergent zone

rAct
pAct
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Optimal trajectory

Figure C.2: Actual position and zones as radius of cylinder. An optimal movement trajectory is the center of a cylinder.
Force field zones are defined as circles around that center point. is dead band radius, is divergent zone radius and
is stabilizing zone radius.

𝑟𝐴𝑐𝑡 =min‖𝑝𝐴𝑐𝑡 − 𝑝𝑁𝑒𝑎𝑟‖

𝑟𝐴𝑐𝑡 =min√(𝐸𝑃 − 𝑝𝑁𝑒𝑎𝑟 ) + (𝐸𝑃 − 𝑝𝑁𝑒𝑎𝑟 ) + (𝐸𝑃 − 𝑝𝑁𝑒𝑎𝑟 )



19

𝑟𝐴𝑐𝑡 can then be used to easily calculate the end effect position in relation to the task space.
Values for 𝑟𝐷𝐵, 𝑟𝐹𝐹 and 𝑟𝑆𝑍 will be defined beforehand, and can be adapted based on the
movement error. When subtracting the actual position from the zone in which the end effector
is positioned, an error value results which can be used as input for the spring elongation.

𝑒𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 = {
𝑟𝐴𝑐𝑡 − 𝑟𝐷𝐵 for 𝑟𝐷𝐵 < 𝑟𝐴𝑐𝑡 < 𝑟𝐹𝐹
−𝑟𝐹𝐹 − 𝑟𝐴𝑐𝑡 for 𝑟𝐴𝑐𝑡 > 𝑟𝐹𝐹

0 otherwise

Force field design
The divergent force field should be along the vector 𝑟𝐴𝑐𝑡 and pointing outward. Because this
force is not imposed on the end effector, is has to be devided over the shoulder and elbow
joint. In other words, the direction of 𝑟𝐴𝑐𝑡 should be translated into a rotation of shoulder
and elbow joint causing a movement of the end effector further along 𝑟𝐴𝑐𝑡.

Movement performance
It is desired to have an error metric that can be used to quantify the performance of subjects
during the experiment. The optimal trajectory is assumed to represent the best movement,
so deviation from this path is counted as error. An important difference with a measure such
as spring elongation is that this error is also counted when inside the dead band. This is
done because the performance always needs to be monitored. Movement performance 𝑀𝑃 is
defined by the area between the end effector path and the optimal trajectory, calculated by
taking the derivative of 𝑟𝐴𝑐𝑡 from the start to end of the trial.

𝑀𝑃 = ∫ |𝑟𝐴𝑐𝑡(𝑡)||�̇�(𝑡)|𝑑𝑡

Additional comments
Currently gravity compensation is implemented in the Armbot, but does not have a stable
performance. Likely this is due to a mechanical axis offset in the shoulder joint: the
abduction and rotations axis cross each other, but the flexion axis does not cross this
junction. This causes the system to overcompensate the gravitational force and makes the
gravity compensation unusable. For this reason gravity compensation has been turned off
completely during the experiment.





D
Armbot Game

To provide feedback to subjects a small game was built in Unity. The main functionality was
to show if a subject had reached a target or had moved outside the dead band. In the PAN
algorithm, four boolean flags were included. These were:

• targetA

• targetB

• ffLeft

• ffRight

Each of them could be retrieved by sending a command to the API, receiving a string ’1’ or
’0’ back. This information was then used to trigger the various colors for targets and left or
right dead band.

Game with end effector
As mentioned in the discussion, it is desired to have the end effector position displayed to
give subjects a more useful feedback. When designing the task as presented in Appendix C,
the Cartesian coordinates can easily be used to create a visual representation on screen. A
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PARTICIPANT INFORMATION SHEET 

For a study investigating the behaviour of a robotic controller in an upper limb exoskeleton, by 
means of a reaching task.

 
Date 18-10-2018, Version 2.0 
 
Dear Madam/Sir,  
 
You have been asked to participate in a study during which the performance of a controller for a 
rehabilitation robotics exoskeleton is investigated by performing a reaching task with this exoskeleton. 
This information sheet provides some detailed information about the study. For questions, please get in 
touch with any of the researchers mentioned at the end of this information sheet, 
 
Study background 
When learning a motor task, the way an environment acts on a human determines how fast and how well 
the human learns this task. For healthy individuals, an environment that punishes incorrect movements 
has been shown to result in better learning results. A robotic exoskeleton is a form of an environment 
that can be used to impose forces on a human. In this study, we want to determine whether adapting this 
environment (the exoskeleton) results in an improved learning rate. To do this, we control an 
exoskeleton in such a way that it punishes you by pushing you away when you make mistakes during a 
movement task. The better you get in doing this task, the harder it will become because the exoskeleton 
will leave a decreasing amount of room for errors. 
 
Study goal 
The goal of this study is to investigate whether the robotic controller behaves (adapts to the human 
performance) as it should, and if this behaviour has a positive effect on the learning of a reaching task. 
 
What does participating involve? 
During this study, you are asked to make a movement with your arm between two points, while 
connected to an exoskeleton with your arm. Your upper and lower arm will be connected to this 
exoskeleton, and in front of you a screen will show two points representing the target positions (to which 
you are asked to move). You will start with your hand between the two targets and will move your hand 
back and forth between the two, in as straight a line as possible. The targets will turn green when you 
reach them. You will be asked to repeat this movements for several times. During the study, a force field 
can be turned on at random moments. When this force field is on, the exoskeleton will push your arm 
away to the side when you make movement errors. This sideways movement will be limited so that your 
arm will not end up in an uncomfortable position. If your arm is pushed away, you are encouraged to 
push it back in order to complete the task.  
 
The study takes place in the headquarters of Motekforce Link, based in Amsterdam. 
 
Risks 

Risks associated with the study are minimal. Slight discomfort can occur as a result of being strapped 
in the arm cuffs. The force field can get strong when performing the task well, so making an error after 
many successful trials will be punished by a hard push away. An emergency button is present at all 
times, enabling us to stop the robot immediately.  

  
Participation is voluntary! 
Your participation in the study is voluntary. If you agree on participating in the study, you have the right 
to withdraw at any time (also during the study). There is no need to have a legitimate reason to do so. 
In case you agree to participant in the study you will be provided an informed consent form for you to 
sign.  



   
 

 
Confidentiality 
We will treat your personal details and data confidentially. People not authorised to access your details 
will not have the opportunity to do so. When the results of the study get published, it is impossible to 
trace this back to you.  
 
Summary 
Participating in this study is voluntary. You are free to decide whether or not you wish to participate. 
Summarized, when you decide to participate: 

• You are willing to participate in research during which you will perform a reaching task, while 
connected to a robotic exoskeleton; 

• You agree with the use of your data for purposes of the study; 
• You understand we cannot provide individual study results. 

 
Thanks in advance for your possible participation in the study, 
 
Maurits Elzinga, researcher 
m.j.elzinga@gmail.com 
0613856006  



   
 

 
Participant Personal Information 
 
Date 20-07-2018 
 
This information is confidential and will not be made available to third parties.  
 
Personal information        
 
Participant number  : 
 
Age    : 
 
Gender    :  M  / F 
 
Height    : 
 
Weight    : 
 
Dominant arm   :  Right   /  Left 
 
 
______________________________________________________________ ___ 
 
 
 
Start experiment : 
End experiment  : 
Total experiment time : 
  
 

 



Consent Form for Armbot reaching task 
  

Please tick the appropriate boxes Yes No  

Taking part in the study    

I have read and understood the study information dated 18/10/2018, or it has been read to 
me. I have been able to ask questions about the study and my questions have been answered 
to my satisfaction. 
 

□ □  

I consent voluntarily to be a participant in this study and understand that I can refuse to 
answer questions and I can withdraw from the study at any time, without having to give a 
reason.  
 

□ □ 
 

 

I understand that taking part in the study involves being strapped in an exoskeleton with one 
arm, and repeatedly making reaching movements between two points. 
 
Risks associated with participating in the study 

□ 
 

□ 
 

 

I understand that taking part in the study involves the following potential risks: slight physical 
discomfort as a result of being strapped in the arm cuffs or the force field. 
 

 □ □ 

Future use and reuse of the information by others    
I give permission for the movement recording data that I provide to be archived in 
Motekforcelink M-drive so it can be used for future research and learning. 
 

□ 
 
 
 
 
 

□ 
 
 
 
 

 

Signatures    
 
_____________________                       _____________________ ________  
 
Name of participant                                           Signature                 Date 

   

    
I have accurately read out the information sheet to the potential participant and, to the best 
of my ability, ensured that the participant understands to what they are freely consenting. 
 
Maurits Elzinga                               __________________         ________  
                                               Signature                 Date 
 

   

Study contact details for further information:   
Maurits Elzinga 
m.j.elzinga@gmail.com 
0613856006 
 
 

   

 
 

 



 

Delft University of Technology  
ETHICS REVIEW CHECKLIST FOR HUMAN RESEARCH 

(Version 10.10.2017) 
 
 
This checklist should be completed for every research study that involves human participants and 
should be submitted before potential participants are approached to take part in your research study.  
 
In this checklist we will ask for additional information if need be. Please attach this as an Annex to 
the application. 
 
Please upload the documents (go to  this page for instructions). 
 
Thank you and please check our website for guidelines, forms, best practices, meeting dates of the 
HREC, etc.  
 
 

I. Basic Data  
 
 

Project title Armbot adaptive controller 
Name(s) of researcher(s) Maurits Elzinga 
Research period (planning) August – September 2018 
E-mail contact person m.j.elzinga@gmail.com 
Faculty/Dept.  Biomedical Engineering 
Position researcher(s):1 MSs student 
Name of supervisor (if applicable): Alfred Schouten, Winfred Mugge 
Role of supervisor (if applicable): MSs thesis project supervisor 

 
  

II. A) Summary Research 
 

 
The goal of this research project is to validate the controller of a robotic 
exoskeleton, designed for upper limb rehabilitation. Two main questions to be 
answered are 1. Is the controller able to help a subject complete a reaching task 
2. Will the subject perform the task better after using the robotic device for some 
time. The robotic device has been developed at Motekforce Link, and the software 
to control the prototype will be new. Approximately 5-10 healthy subjects will be 
asked to carry out movements (shown on a screen in front of them) while 
connected to the exoskeleton for a duration of approximately 30 minutes. The 
exoskeleton will impose a force field which can be felt by the subjects. 

 
 
 
 
B) Risk assessment 
During the experiment, there might be a possibility that the device does not 
respond the way it should. This can result in an unwanted movement of the 
exoskeleton. As a failsafe, an emergency push button is always with hand to turn 
off the motors. 
 
 
 
 
 

                                                
1 For example: student, PhD, post-doc 



 
III. Checklist 

 
 

    
Question Yes No 

1. Does the study involve participants who are particularly vulnerable or unable to give 
informed consent? (e.g., children, people with learning difficulties, patients, people 
receiving counselling, people living in care or nursing homes, people recruited through 
self-help groups). 

 x 

2. Are the participants, outside the context of the research, in a dependent or subordinate 
position to the investigator (such as own children or own students)?2 

 x 

3. Will it be necessary for participants to take part in the study without their knowledge 
and consent at the time? (e.g., covert observation of people in non-public places). 

 x 

4. Will the study involve actively deceiving the participants? (e.g., will participants be  
deliberately falsely informed, will information be withheld from them or will they be 
misled in such a way that they are likely to object or show unease when debriefed 
about the study). 

 x 

5. Personal data  
• Will the study involve discussion or collection of personal data? (e.g., BSN 

number, location, sexual activity, drug use, mental health). Please check the 
HREC website for definitions.   
If yes’: Did the data steward approve your data management plan? (Electronic  
Consent) 

 
 
 

x 

  

6. Will drugs, placebos, or other substances (e.g., drinks, foods, food or drink constituents, 
dietary supplements) be administered to the study participants?  

 x 

7. Will blood or tissue samples be obtained from participants? 
 

 x 

8. Is pain or more than mild discomfort likely to result from the study?   x 

9. Does the study risk causing psychological stress or anxiety or other harm or negative 
consequences beyond that normally encountered by the participants in their life outside 
research?  

 x 

10. Will financial inducement (other than reasonable expenses and compensation for time) 
be offered to participants?  
 

 x 

 
Important: 

if you answered ‘yes’ to any of the questions mentioned above, please submit a full application to HREC 
(see: website for forms or examples). 

 
11. Will the experiment collect and store videos, pictures, or other identifiable data of 

human subjects? 3  
 x 

                                                
2 Important note concerning questions 1 and 2. Some intended studies involve research subjects who are 
particularly vulnerable or unable to give informed consent .Research involving participants who are in a 
dependent or unequal relationship with the researcher or research supervisor (e.g., the researcher’s or research 
supervisor’s students or staff) may also be regarded as a vulnerable group . If your study involves such 
participants, it is essential that you safeguard against possible adverse consequences of this situation (e.g., 
allowing a student’s failure to complete their participation to your satisfaction to affect your evaluation of their 
coursework). This can be achieved by ensuring that participants remain anonymous to the individuals concerned 
(e.g., you do not seek names of students taking part in your study). If such safeguards are in place, or the 
research does not involve other potentially vulnerable groups or individuals unable to give informed consent, it is 
appropriate to check the NO box for questions 1 and 2. Please describe corresponding safeguards in the 
summary field. 
3 Note: you have to ensure that collected data is safeguarded physically and will not be accessible to anyone 
outside the study. Furthermore, the data has to be de-identified if possible and has to be destroyed after a 



Question Yes No 

 
If “yes”, please fill in Annex 1 and make you sure you follow all requirements of the 
applicable data protection legislation. 
In addition, please provide proof by sending us a copy of the informed consent form. 

12. Will the experiment involve the use of devices that are not ‘CE’ certified?   
 
Only, if ‘yes’: continue with the following questions:     
  

x  

Ø Was the device built in-house?   
 

 x 

Ø Was it inspected by a safety expert at TU Delft?  
(Please provide device report, see: HREC website) 

 x 

Ø If it was not built in house and not CE-certified, was it inspected by some other, 
qualified authority in safety and approved?  
(Please provide records of the inspection ). 

 x 

13. Has or will this research be submitted to a research ethics committee other than this 
one?  (if so, please provide details and a copy of the approval or submission). 
 

 x 

 
 

IV. Enclosures (tick if applicable) 
o Full proposal (if ‘yes’ to any of the questions 1 until 10) 
o Informed consent form (if ‘yes’  to question 11) 
o Device report (if ‘yes’ to question 12) 
o Approval other HREC-committee (if ‘yes’ to question 13) 
o Any other information which might be relevant for decision making by HREC 
o Data management plan approved by a data steward (if  yes to question 5B) 

 
 
   
 

V. Signature(s 
 
 
Signature(s) of researcher(s) 
Date: 
 
        
 
Signature research supervisor (if applicable)    
Date: 
 
  

                                                
scientifically appropriate period of time. Also ask explicitly for consent if anonymised data will be published as 
open data.  
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