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Preface

Eleven months ago I walked into the office of my supervisor Erik-Jan van Kampen to discuss
some potential thesis topics. He told me about a research field within machine learning, called
reinforcement learning, on which he had a nice assignment available. I read some things
about this topic and found claims that the way machine learning works can be sometimes
surprisingly similar to the way humans learn. I started thinking about the topic, and after
some time came to the conclusion that this is a field of engineering which interests me a lot.
Having worked as a sailing instructor for a long time, I developed a passion for teaching. I
like the challenge of explaining and teaching in such a way that my students learn as quickly
as possible. Approaching this challenge from a totally different viewpoint - making a machine
learn as quickly as possible - seemed like something I was going to enjoy a lot. After 10
months of diving into the world of reinforcement learning, and optimizing the teaching for
the computer I found that there are actually a lot of parallels between the way we teach
humans, and the methods in which we can teach machines.
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Chapter 1

Introduction

In recent years the need for automation and autonomy in all sorts of vehicles and systems has
been growing. Especially in the development of controllers for Micro Aerial Vehicles (MAVs)
autonomy has large benefits [1]. Making such vehicles fully autonomous is difficult because
it means that they have to perform their missions with no human intervention. As a result,
it is necessary that the vehicle and its control system are inherently safe, and are able to
adapt to changing conditions. The dynamics of some of these vehicles, in particular small
and flapping wing MAVs such as the Delfly [2], are complex. For these vehicles, there is a
need for model-free controllers to circumvent the problems arising in model-based controllers
because of errors in modeling [3].

Reinforcement Learning (RL) is a promising method to meet these demands, since it can be
applied without a model of the system dynamics. In addition, when used online, RL controllers
can adapt to changing conditions [4]. In RL the controller receives scalar rewards from the
environment and uses these to improve its control policy. The goal for the controller is to
develop a policy that maximizes the return, which is the sum of all rewards, received from its
current state onward. RL is generally referred to as a method which is applied without using
prior knowledge. However, learning a policy from scratch can be a time consuming task, in
which there is little control over the parts of the state space that will be visited. In many real
life applications, such as flying with MAVs, this exploration could lead to unsafe situations
while the controller is still learning towards a good control policy, and in the worst-case result
in a crash.

The formalization of RL allows for using prior knowledge to accelerate the learning. Successful
attempts have been made to include knowledge on the dynamics of the system to speed up the
learning [5, 6]. These attempts used different kinds of knowledge on the system dynamics to
do so. Another method to improve the speed of learning is the use of human demonstrations
to explore the state space of a system. Several attempts have been made to do so [6, 7],
however, these attempts did use a model of the dynamics of the system at hand. A method
that accelerates the reinforcement learning in a model-free and online fashion through the use
of human demonstrations, has not yet been found.

Master of Science Thesis G.K. Schonebaum



2 Introduction

The goal of this research is to find out in which way human demonstrations can be used to
reduce the learning time, and improve the safety of online, model-free reinforcement learning
algorithms. In order to achieve this goal, the following research question will be answered:
How can we use demonstrations of a human to improve the performance of a reinforcement
learning controller? This question is subdivided in the following sub-questions:

• How can human demonstrations be used within RL algorithms?

• How do RL algorithms using human demonstrations compare to each other, and how
do they compare to existing techniques?

• In what way should the human demonstrate in order to maximize the benefit of the
demonstration for the RL controller?

• How does the effect of the human demonstration depend on the specific controlled
system?

This report consists of three parts. Part I contains a conference paper that includes the
used approach and the main findings and results. This first part is a stand alone document.
The preliminary research carried out before the work described in the paper was done is
presented in Part II. It contains a literature study in which relevant related literature is
reviewed and a preliminary, two-dimensional simulation on a simple quadrotor system. Part
III contains additional documentation. Chapter 8 forms the intermediate step between the
2D preliminary simulation described in Part II and the Informed Online Least Squares Policy
Iteration algorithm discussed in the paper (Part I). In Chapter 9 a more detailed description
of the implementation of the method in the paper is given. The complete set of results for
the different simulations is presented in Chapters 10 and 11 for the rotational pendulum
and the quadrotor slung load problem respectively. Finally, Chapter 12 presents the overall
conclusions on the research, and reviews the research questions presented in this Introduction.

Note on the chronological structure of the report
The first part of this research is described in Part II, in which the original research questions
are posed. In this early phase of the research, the goal was to implement the model-free
Reinforcement Learning algorithm using human demonstration on a real quadrotor. As such
the literature study is focused on RL algorithms in quadrotor applications. In addition, Part
II presents a plan for 3D simulations and an experimental setup. When the implementation
of the model-free RL algorithm was applied to a continuous problem however, as is described
in Chapter 8, it was found that there is still so much work to do on this algorithm, that the
implementation on an actual quadrotor is unfeasible in the time span of this thesis project.
As such, the scope was limited to the model-free algorithm itself, and the use of human
demonstrations within. In the remainder of Part III and the conference paper (Part I) this
new scope is used, and as a consequence the research questions were changed to the ones
presented in this introduction. As a result, the preliminary research should be read with this
change of scope in mind.

G.K. Schonebaum Master of Science Thesis
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Human Demonstrations for Fast and Safe Exploration

in Reinforcement Learning

Gerben Schonebaum∗, Jaime Junell† and Erik-Jan van Kampen‡

Delft University of Technology, Delft, The Netherlands

Reinforcement learning is a promising framework for controlling complex vehicles with
a high level of autonomy, since it does not need a dynamic model of the vehicle, and it
is able to adapt to changing conditions. When learning from scratch, the performance of
a reinforcement learning controller may initially be poor and –for real life applications–
unsafe. In this paper the effects of using human demonstrations on the performance of re-
inforcement learning is investigated, using a combination of offline and online least squares
policy iteration. It is found that using the human as an efficient explorer improves learn-
ing time and performance for a benchmark reinforcement learning problem. The benefit
of the human demonstration is larger for problems where the human can make use of its
understanding of the problem to efficiently explore the state space. Applied to a simplified
quadrotor slung load drop off problem, the use of human demonstrations reduces the num-
ber of crashes during learning. As such, this paper contributes to safer and faster learning
for model-free, adaptive control problems.

Nomenclature

Symbols
s State
a Action
π Policy
r Immediate reward
f(s, a) Transition function
ρ(s, a) Reward function
R Return
ε Exploration rate
γ Discount factor
Q(s, a) State-action value
φ(s, a) Basis function
w Basis function weight

η Forget factor
Kθ Update interval
Γ,Λ, z Matrices containing sample information

Abbreviations
MAV Micro aerial vehicle
RL Reinforcement learning
LSPI Least squares policy iteration
IOLSPI Informed online least squares policy iteration
HD Human demonstration
BF Basis function
RBF Radial basis function

I. Introduction

In recent years the need for automation and autonomy in all sorts of vehicles and systems has been
growing. Especially in the development of controllers for Micro Aerial Vehicles (MAVs) autonomy has large
benefits.1 Making such vehicles fully autonomous is difficult because it means that they have to perform
their missions with no human intervention. As a result, it is necessary that the vehicle and its control system
are inherently safe, and are able to adapt to changing conditions. The dynamics of some of these vehicles,
in particular small and flapping wing MAVs such as the Delfly,2 are complex. For these vehicles, there is
a need for model-free controllers to circumvent the problems arising in model-based controllers because of
errors in modeling.3

∗Master Student, TU Delft Aerospace Engineering, Control & Simulation. Delft. The Netherlands.
†PhD Candidate, TU Delft Aerospace Engineering, Control & Simulation. Delft. The Netherlands, Student Member AIAA.
‡Assistant Professor, TU Delft Aerospace Engineering, Control & Simulation. Delft. The Netherlands, Member AIAA.
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Reinforcement Learning (RL) is a promising method to meet these demands, since it can be applied
without a model of the system dynamics. In addition, when used online, RL controllers can adapt to
changing conditions.4 In RL the controller receives scalar rewards from the environment and uses these to
improve its control policy. The goal for the controller is to develop a policy that maximizes the return,
which is the sum of all rewards, received from its current state onward. RL is generally referred to as a
method which is applied without using prior knowledge. However, learning a policy from scratch can be a
time consuming task, in which there is little control over the parts of the state space that will be visited. In
many real life applications, such as flying with MAVs, this exploration could lead to unsafe situations while
the controller is still learning towards a good control policy, and in the worst-case result in a crash.

The formalization of RL allows for using prior knowledge to accelerate the learning. Successful attempts
have been made to include knowledge on the dynamics of the system to speed up the learning.5,6 These
attempts used different kinds of knowledge on the system dynamics to do so. Another method to improve
the speed of learning is the use of human demonstrations to explore the state space of a system. Several
attempts have been made to do so,6,7 however, these attempts did use a model of the dynamics of the system
at hand. A method that accelerates the reinforcement learning in a model-free and online fashion through
the use of human demonstrations, has not yet been found.

The goal of this research is to find out in which way human demonstrations can be used to reduce
the learning time, and improve the safety of online, model-free reinforcement learning algorithms. The RL
algorithm proposed in this research is purely model-free, which is useful for vehicles with complex dynamics
such as MAVs. In addition, it uses basis functions to approximate the state-action values which allows for
the application to continuous state systems.8 The algorithm uses a combination of two state of the art
RL techniques: Offline Least Squares Policy Iteration9 (LSPI) that is able to use the information of the
human demonstration sample, and online LSPI10 which continues learning online, and hence allows to adapt
to changing conditions. This combined algorithm is called Informed Online Least Squares Policy Iteration
(IOLSPI).

The contribution of this research is the implementation of this model-free and online IOLSPI algorithm,
resulting in faster and safer exploration in RL. To test the proposed algorithm, a standard RL benchmark
task is selected: the rotational pendulum. In this standard problem it is shown that the learning time could
be significantly reduced by using human demonstrations in IOLSPI. Furthermore, it is shown that while
using human demonstrations, the algorithm is still able to adapt to changing conditions. However, it is
found that the benefit of the human demonstrations is not the same for each problem.

The rotational pendulum problem includes no intuitive aspect of safety (there is no clear unsafe part
of the state space), therefore, an additional problem is reviewed: the control of a quadrotor which carries
a slung load. This combined vehicle has complex dynamics. In a task of dropping a load in a target, a
capable human expert could demonstrate good behavior. In this example the relevance of safety in exploring
becomes more apparent, since faulty policies result in dropping the load at the wrong location, or crashing
the quadrotor. It is shown that using human demonstrations the number of crashes while learning is reduced
for this quadrotor slung load problem. Reinforcement learning has already been applied to quadrotors with
a slung load.3,11–13 All these studies use a model of the system dynamics. In this paper, a two-dimensional
version of this slung load problem is used with a model-free reinforcement learning controller.

This paper is structured as follows: In section II, a short background on reinforcement learning and some
of its basic concepts and notations are introduced. Section III describes the used reinforcement learning
algorithm and methodology. Section IV gives an overview of the most important results, and section V
presents the conclusions of the paper.

II. Reinforcement Learning Preliminaries

In reinforcement learning a Markov Decision Process is considered, with a state space S and an action
space A. The RL agent starts in state sk and takes action ak according to its current policy πl:

ak = πl(sk) (1)

The transition function f , which describes the dynamics of the system, gives the next state sk+1:

sk+1 = f(sk, ak) (2)
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Furthermore, the agent receives a reward rk+1 which follows from the reward function ρ:

rk+1 = ρ(sk, ak) (3)

The goal for the agent is to find a policy π that maximizes the expected return R in each state. In Eq. (4)
the return is defined.

Rπl(s0) =
K∑

k=0

γkρ(sk, πl(sk)) (4)

Where K is the number of time steps and γ ∈ [0, 1] is the discount factor, ensuring that the further in the
future a reward is received, the less it contributes to the return at the current state. The expected return
for a certain policy πl, starting from state sk, applying action a and using policy πl onward is given by the
Q-function:

Qπ(sk, a) = E{Rπ(sk)|a} (5)

Using the Q-function, the greedy policy for that Q-function can be found with the following equation:

πl+1(sk) = arg max
a

Qπl(sk, a) (6)

In many practical applications, the state and action spaces are large or uncountable, and as such it becomes
intractable to describe the Q-value for each combination of state and action separately.8 In these cases an
approximation of the Q-value is made using a function approximator. Usually a linear combination of basis
functions (BFs) φ(s, a) is used. These BFs are weighted with a tuning vector wl to approximate the Q-values
Q̂(s, a):

Q̂(s, a) = φT (s, a)wl (7)

In policy iteration algorithms two steps are alternated. First the policy is evaluated, i.e. the Q-function is
determined. This is done by solving the Bellman equation (Eq. (8)).14 After this evaluation step the policy
is updated using equation (6). This new policy is then evaluated again, and so on.

Qπl(sk, a) = ρ(sk, a) + γQπl(f(sk, a), πl(f(sk, a))) (8)

In a model-free algorithm, the Bellman equation cannot be solved since the reward function ρ(sk, ak) and
transition function f(sk, ak) are unknown. However, the transition and reward information contained in a
set of samples D collected for the system can be used to approximate the Bellman equation. D contains
ns samples constituted of {sk, ak, rk+1, sk+1}. The Bellman equation can be formulated in matrix sense for
a set of samples D (Eq. (9)). For a more elaborate discussion on this approach we refer to the paper by
Lagoudakis.9

Γwl = z + γΛwl (9)

The matrices Γ and Λ and vector z in Eq. (9) are defined by Eqs. (10) - (12), and contain the information
in the transition samples.

Γk+1 ← Γk + φ(sk, ak)φT (sk, ak) (10)

Λk+1 ← Λk + φ(sk, ak)φT (sk+1, πl(sk+1)) (11)

zk+1 ← zk + φ(sk, ak)rk+1 (12)

To approximate the Q-function for a certain policy, the least square error in the modified Bellman equation
(Eq. (9)) is minimized.14 A policy evaluation algorithm called LSTD-Q9 (Least Squares Temporal Difference
for Q-functions) solves Eq. (9), which can be slightly modified to Eq. (13):

1

ns
Γwl =

1

ns
z +

1

ns
γΛwl (13)
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This modified equation is mathematically not different from Eq. (9), but improves the numerical stability.8

After the policy evaluation, the policy is updated using Eq. (6). The new policy is evaluated again using
LSTD-Q. This policy iteration method is called Least Squares Policy Iteration.9

The approach described has an interesting characteristic. The policy is defined implicitly by the Q-
function: for each state the greedy action maximizes the Q-value (Eq. (6)). In practice the greedy action
only needs be calculated for the state in which the action has to be taken, and not for the whole state space.
This approach makes a method to explicitly define the policy for each state redundant. Since the policy is
defined with respect to the Q-value (Eq. (6)) and an approximation of the Q-value with BFs is used, the
policy is at any moment fully defined by the current BF weights wl.

III. Least Squares Policy Iteration

In this paper the Least Squares Policy Iteration (LSPI) algorithm is used. There are different ways
described in literature in which this algorithm has been implemented. Lagoudakis and Parr9 invented the
algorithm for offline use. Busoniu et al. altered the algorithm to use it online. This online algorithm will
be referred to as Online Least Squares Policy Iteration10 (OLSPI). Both these approaches will form the
foundation for the integrated algorithm that is proposed in this paper, which uses offline LSPI to learn from
a batch of pre-collected samples, and afterwards continues with gathering samples online. This combined
algorithm is called Informed Online Least Squares Policy Iteration (IOLSPI).

A. Offline LSPI algorithm

Algorithm 1 shows the offline LSPI algorithm.9 This algorithm uses a batch of samples to learn a new policy.
These samples can be generated using a simulator, or they can be obtained as recordings during the use
of the physical system at hand. This algorithm starts with no knowledge of the problem or the policy in
advance. The matrix Λ0 and vector z0 are thus initialized with zeros. The matrix Γ0 is the identity matrix
multiplied with a small constant δ, to make sure it is invertible. In line 3, the policy weights are randomly
initialized. This random initialization gives the need to run the algorithm for several random seeds and
average its results. In lines 6-8, the complete batch of samples is processed according to equations (10) -
(12). After the whole batch is processed, the policy update follows in line 10. This process is repeated until
either the policy has converged, such that the difference in weights has dropped below the stopping criterion
χ, or a maximum number of iterations lmax is reached. The output of this algorithm is a policy which uses
the information of the presented sample batch. Note that the number of samples is directly linked to the
computation time needed to run the algorithm.

Algorithm 1 Offline LSPI9

1: Input: n BFs φ1(s, a), . . . , φn(s, a); γ; δ; Sample set D with ns samples; χ
2: Γ0 ← δInxn ; Λ0 ← 0nxn; zo ← 0nx1
3: l← 0; initialize weights (policy) w0

4: while l < lmax and ∆w > χ do
5: for k = 0 : ns do
6: Γk+1 ← Γk + φ(sk, ak)φT (sk, ak)
7: Λk+1 ← Λk + φ(sk, ak)φT (sk+1, πl(sk+1))
8: zk+1 ← zk + φ(sk, ak)rk+1

9: end for
10: wl+1 ← solve 1

k+1Γk+1wl = γ 1
k+1Λk+1wl + 1

k+1zk+1

11: ∆w = ||wl − wl+1||
12: l← l + 1
13: end while

B. Online LSPI algorithm

Busoniu et al. have extended the offline LSPI algorithm to a variant that can be used online.10 In online
LSPI the algorithm gathers its samples online to update the policy, contrary to offline LSPI. In Algorithm
2 the working principle of Online LSPI is shown. It is similar to Algorithm 1, but some clear differences are
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present. Since the algorithm runs online, it starts to update its policy after having processed a couple of
samples, contrary to offline LSPI, which updates its policy only after having processed all of its samples. In
online LSPI this policy update happens every Kθ time steps (line 10). The larger this update interval Kθ

is, the longer the algorithm waits before the policy is updated. On the other hand, when Kθ becomes small,
ultimately 1, this means that after each time step the policy is updated, which makes the algorithm slower.
With a Kθ of 1 the update is called fully optimistic.15 In general a partially optimistic update is used.11

Another feature of the online LSPI algorithm is that there is the need for exploration, as for all online
RL algorithms.16 Without exploration, the agent would always take the same action at the same state, and
as such the estimate of the Q-function would be poor. Furthermore, exploration allows gathering samples in
all parts of the state space, which improves the Q-function estimate. As can be seen in line 5 of algorithm
2, at each time step, with a probability of ε a random (exploratory) action is taken. Such a policy is called
an ε-greedy policy.4 If ε = 1, the action is chosen fully at random, if ε = 0, the action is chosen fully greedy.
Different schemes for this exploration rate can be used. In online LSPI it makes sense to start with a high
exploration rate, and make it decay over time. In this way at the beginning, when the policy is not good
yet, many different samples are gathered to improve the Q-function estimate. Gradually it becomes more
exploiting, to get better performance. The exploration rate should not decay to zero (fully greedy) however,
since then the algorithm is not able to adapt to changes in the conditions. An example of an exponential
decaying exploration rate that could be used is presented in Eq. (14).10

εk = ε0ε
kTs

d (14)

In this equation ε0 is the initial exploration rate, εd ∈ [0, 1] the exponential decay factor and Ts the sampling
time.

Following from the need for adaptation to changing conditions, in addition to the algorithm presented in
[10], a forget factor η is added (line 7-9). This forget factor makes sure that recently gathered samples have
a higher impact on the policy than old ones. This factor is added to make sure that the algorithm is able to
change along with changes in conditions by not carrying along too much outdated information.

Algorithm 2 Online LSPI10,11 with ε-greedy exploration and forget factor

1: Input: n BFs φ1(s, a), . . . , φn(s, a); γ; {Kθ}k≥0; {εk}k≥0; Γ0; Λ0; z0; w0

2: l← 0
3: Measure initial state s0
4: for every time step k = 0, 1, 2, . . . do

5: ak ←





exploit: arg maxa φ
T (s, a)wl with prob 1− εk

explore: random action with prob εk
6: Apply ak and observe next state sk+1 and reward rk+1

7: Γk+1 ← ηΓk + φ(sk, ak)φT (sk, ak)
8: Λk+1 ← ηΛk + φ(sk, ak)φT (sk+1, πl(sk+1))
9: zk+1 ← ηzk + φ(sk, ak)rk+1

10: if k = (l + 1)Kθ then
11: wl ← solve 1

k+1Γk+1wl = γ 1
k+1Λk+1wl + 1

k+1zk+1

12: l← l + 1
13: end if
14: end for

An advantage of the online LSPI algorithm is that the computational effort to update the policy is not
dependent on the number of samples processed. As such the time the online LSPI algorithm has been running
has no influence on the required computation time for the policy updates.

It should be noted that this algorithm works under the assumption that the Q-function does not change
too much for subsequent policies.10 This means that the previous values of the matrices Λ and Γ and the
z vector are also representative for the next policy. Using the forget factor does change this assumption a
little, since the part in these matrices corresponding to the samples that already have been forgotten, does
not influence the Q-function anymore.

5 of 18

American Institute of Aeronautics and Astronautics



C. Informed Online LSPI algorithm

In this paper the online and offline LSPI algorithms are combined. Using a set of samples, which can either
be generated with a simulator, or obtained from a human demonstration on the physical system, the offline
algorithm is run to find a satisfactory policy. Additionally, the samples processed offline are contained in
the Λ and Γ matrix and the z vector. After running the offline LSPI algorithm, the online LSPI algorithm
is used. In this Informed Online Least Squares Policy Iteration (IOLSPI) algorithm, contrary to regular
online LSPI, the policy found using offline LSPI is used as initial policy for the online part of the algorithm.
Furthermore, the Λ and Γ matrix and the z vector that were found after having run the offline LSPI are used
instead of an empty initialization as is done in regular online LSPI. The information of the offline samples is
contained in the matrices, and as such it does not start to learn from scratch. Moreover, the online algorithm
still is able to learn from the samples gathered online, and as such is able to adapt to changing conditions.

IV. Experimental Study

The IOLSPI algorithm is tested on two experimental studies. The first problem setup studied is a
rotational pendulum, with two state and one action variable. This is a common benchmark problem for
reinforcement learning controllers. The second application is a simplified representation of a quadrotor with
a slung load, which has four state and one action variable. This application is used to show the safety aspect
in learning and to evaluate the performance of the algorithm for high-dimensional problems. The performance
for the example problems is evaluated in two ways. Firstly, the intermediate policies are evaluated using a
simulator, while learning and exploration are turned off. The discounted return is calculated, for each of the
initial conditions. The discounted return for all different initial conditions is averaged. Secondly, the sum
of the rewards gathered per episode while learning is presented to show the performance of the controller
online. The results show the quality of the found policies. In the quadrotor problem, a third performance
measure is added: The number of crashes while learning, which quantifies the safety.

A. Rotational Pendulum

The rotational pendulum is the same system as described by Busoniu et al.,8 see figure 1. It consists of a DC
motor with a horizontal spinning axis, with an eccentric mass attached. The goal is to make the pendulum
swing up the mass and stabilize it pointing upwards. The state contains the angle and the angular rate:
s = [α, α̇]T . The angle α is zero radians when the mass is pointing up, and π rad when it is hanging down
in the middle. At the exact bottom, α transitions from π rad to −π rad. The maximum angular rate of the
rotational pendulum is 15 π rad/s.

Figure 1: Schematic rotational pendulum (left), real
rotational pendulum (right)10

There are three possible actions for this system:
Apply a clockwise torque (+3V), a counterclockwise
torque (-3V), or no torque (0V). Not for all states
the torque of the motor is sufficient to push the pen-
dulum upright in one go. For some states, for exam-
ple hanging down, back and forth swings are needed
to swing up the mass to the upright position. The
rotational pendulum has the following properties:
The mass moment of inertia of the disc J is 1.91 e-4
kgm2, the mass of the pendulum m is 0.055 kg. The
distance between the shaft and the mass l is 0.042 m,
friction coefficient b = 3 e-6 Nms/rad, torque con-
stant K = 0.0536 Nm/A and the internal resistance
of the motor R = 9.5 Ω. The gravitational acceler-
ation g is assumed to be 9.81 m/s2. The equation
of motion of the rotational pendulum is given by
Eq. (15).

α̈ =
m · g · l sinα− bα̇− K2α̇

R + K·a
R

J
(15)

This problem will be simulated for 600 s, with episodes of 1.5 s, after which the state is reinitialized.
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The sampling time is 0.005 s. The initial conditions (ICs) α0 and α̇0 used during learning are randomly
selected from the following sets: α0 = {π− 0.1, π, π+ 0.1} rad, and α̇0 = {-π, −2π

3 , −π
3 , 0, π3 , 2π

3 , π} rad/s.
With this set of initial conditions the pendulum always starts around the hanging down position with a low
angular velocity, and as such always needs multiple swings to reach the goal state. Because of the partly
random character of the algorithm, each result in this section is repeated 50 times with different random
initializations.

In this problem a reward structure is used that penalizes an offset of the angle with respect to the goal,
the angular rate and the control action (Eq. (16)). The values in this reward function were found trying
different combinations, and shows a behavior that is mostly inclined to limit the error in angle.

rk+1 = sT

[
5 0

0 0.01

]
s+ 0.01a2 (16)

To approximate the Q-function, an equidistant grid of 11x11 radial basis functions (RBFs) is used. This
means that the vector of RBFs is φ̄(s) = [φ1(s), . . . , φ121(s)]T . To make state-action BFs, the RBFs are
repeated for the three different actions. The RBFs are evaluated for the current action and zero for the
RBFs associated with the other actions. As such the vector of 121x3 state-action BFs can be represented as
follows: φ(s, a) = [I(a = −3) · φT (s), I(a = 0) · φT (s), I(a = 3) · φT (s)]T . Here the indicator function I is 1
when its argument is true, and zero otherwise.

1. Effect of tuning parameters for the online LSPI algorithm

First the online LSPI algorithm is studied with no use of human demonstration or other prior information
to get a baseline comparison. Figures 2 and 3 show the influence of different constant exploration rates. The
exploration rates are kept constant for clear comparison with the Informed Online LSPI results presented
later on. In figure 2 the discounted return when evaluating the intermediate policies is presented. In this
figure it can be seen that to reach the optimal policy, at least some exploration is needed. Furthermore,
it shows that greediness also pays off, since for this problem it results in becoming able to swing up the
pendulum. As a result, samples are also gathered in the swung up part of the state space, which is beneficial
for the Q-function approximation. In figure 3 the learning score is displayed, which is the summed reward
per episode. Each episode is 1.5 s. In this figure it can be seen that a high exploration rate yields low
learning scores, which is caused by the high percentage of random actions. Some exploration is beneficial
though. As was seen in figure 2, this pays off for finding a good policy.
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Figure 3: Online LSPI: Learning
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different, constant exploration
rates, Kθ = 1000

The behavior of the policies for ε = 1 follows a different trend. After gathering more samples, the
performance first decreases, after which it increases. An explanation for the behavior is as follows. The first
samples gathered contribute to finding a better policy. However, a big clutter of samples will emerge around
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the hanging down position, since it is hard for a purely random controller to reach the region of the state
space where the pendulum is pointing up. As a result, the fitting of the Q-function will be poor because of
the minimal variation in data points. Over time the chance of ending up in the upright part of the state
space grows. As such the policy gradually goes up. Moreover, full randomness is not a real interesting case
to consider, since in practice it would not be used anyway as can be seen in figure 3: it performs poor online.

The effect of the other tuning parameters: update interval Kθ , and discount factor γ are included in the
appendix.

2. Description of human demonstrations

For the Informed Online LSPI, five different sets of human demonstrations (HDs) are used to see whether
human demonstrations could improve the performance, and which type of human demonstration works best.
The human demonstration samples are gathered in 21 episodes of 1.5 s, starting at each of the possible initial
conditions from the previously defined grid. With a sampling time of 0.005 s, this results in sets of 6300
samples each. The human demonstrator has practiced with controlling the pendulum, and as such can be
considered an “expert”. Table 1 shows the details on the different sets. In some of the sets some corruption
on the action is added. This means that during the human demonstration, a percentage of the actions of the
human is replaced by a random action (a ∈ {−3, 0, 3}). This corruption can be seen as a forced exploration
within the human demonstration set. A human tends to make long streaks of the same action. To swing
the pendulum up for example, a human would create a large streak of samples with a clockwise action,
after which a large streak of counterclockwise actions is executed, and so on. This results in a low variety
of samples, since most adjacent samples contain the same action. As such, this corruption results in an
increase in variety in the sample set. Furthermore, two different modes of human demonstration are used:
Trying to perform as good as possible, and trying to efficiently explore the state space. The case of having
50% corruption while trying to explore was not included, since the high corruption makes it impossible to
efficiently explore the whole state space.

Table 1: Overview of human demonstration sample sets, used for the results in figures 4 and 5.

Sample set number Corruption Description

1 (figure 6) 0% Perform

2 0% Explore

3 50% Perform

4 33% Perform

5 (figure 7) 33% Explore

Figures 4 and 5 show the results for the different human demonstration sets used in the Informed Online
Least Squares Policy Iteration (IOLSPI) algorithm. It can be seen that human demonstration set number
5 (33% percent corrupted, exploratory) performs best. Set number 3 (50% corrupted) also performs well.
Both of them converge to a good policy, and show that they perform well from the start, in contrast to the
non-initialized online LSPI algorithm that needs some time to learn a good policy. The uncorrupted sets
perform significantly worse.
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Figures 6 and 7 show the distribution of samples for human demonstration set 1 and 5. Both the
corruption in the actions and the exploration can clearly be distinguished in the latter, whereas the former
shows a limited distribution of samples, both in action and in state. It can be concluded that the spread in
the sample set is an important factor for the performance of a human demonstration.
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ple set number 1 (0% corruption,
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ple set number 5 (33% corrup-
tion, explore, 6300 samples)

To study the benefit of using human demonstrations, the best human demonstration set (number 5) is
compared to non-initialized online LSPI, and to two other types of sample sets containing the same number
of samples. The first is a set of non-sequential random generated samples, which requires a simulator. The
sample distribution is depicted in figure 9. The other sample set is obtained using a purely random policy
throughout complete episodes, resulting in sequential samples. This approach does not require a simulator,
since this can be performed on the physical system. The spread in samples for this random sequential set
is limited, as can be seen in figure 8. The difference of this set with the human demonstration sample sets
(figures 6 and 7) and the non-sequential random sample set (figure 9) is clear. This is because using purely
random actions, the chance is small to reach the swung up region of the state space, while humans use their
prior intuition to reach that region.
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Each sample set is tested with the IOLSPI algorithm. Their performance is compared to the non-
initialized online LSPI algorithm. In the results of figures 10 and 11 it can be seen that the non-sequential
random sample set, together with the human demonstration sample set perform best (note that the non-
sequential random sample set requires a simulator). A good policy is followed from the start on, and the
converged policy is also better than the converged policy found with the sequential random sample set and
the non-initialized online LSPI algorithm. This graph hence shows the benefit of the use of the human
demonstration for this rotational pendulum problem. Comparing the human demonstration sample set
(figure 7) to the set of samples using a purely random sequence of actions in each episode (figure 8) shows
why the human scores better than a random policy. The human is able to use its intuitive understanding of the
problem to efficiently reach a large portion of the state space, which improves the Q-function approximation
and hence the policy.
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Figure 10: (Informed) Online
LSPI: Discounted return as a
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types of sample sets, Kθ = 1000,
ε = 0.2, using “hanging down
ICs”
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3. Results for the rotational pendulum problem with distributed initial conditions

In the previous section it was shown that for the rotational pendulum problem, when an episode always
starts at a hanging down position, the human demonstration has a great benefit since the human can use its
intuitive understanding of the problem to efficiently explore the state space. In problems where the entire
state space is easily visited anyway, the benefit of the human demonstrations might be less pronounced. This
hypothesis is tested using the same pendulum setup, but with different initial conditions. Instead of always
starting from a hanging down position, the pendulum starts at different positions throughout the whole state
space.

The new initial conditions (ICs) used during learning are a random combination of angle and angular
velocity, selected from the following subsets: α0 = {−π, −π/2, 0, π/2} rad, and α̇0 = {−10π, −3π, −π, 0,
π, 3π, 10π} rad/s.

For this modified, “distributed ICs” problem, regardless of the policy followed, samples will be gathered
throughout the entire state space. To study the impact of using human demonstrations on the IOLSPI
algorithm for this modified problem, the same analysis is done as was shown in figures 10 and 11. The
sequential random sample set, the non-sequential random sample set and human demonstration set number
5 are used in the IOLSPI algorithm and compared to the non-initialized online LSPI algorithm. The results
in figures 12 and 13 show the difference in trend of this modified problem with the original “hanging down
ICs” problem which was depicted in figures 10 and 11. It can be seen that the benefit of the human
demonstration is a lot less. For the random policy and the non-initialized online LSPI the performance
reaches the performance of the human demonstration sample set within 100 s. The final policy performs
a little less, the difference is small however. Studying the learning score, it can be seen that within 100 s
the score is for all different sample sets similar. It can be concluded that, for a problem that does not need
intelligent exploration, the benefit of the human demonstration is small.
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s are plotted, since after this no
significant changes occur)

4. Algorithm behavior in changing conditions

One of the benefits of using RL for control is that it is able to cope with changing conditions. With the
use of pre-generated samples within the LSPI however, there is a risk that when the conditions change, the
algorithm will use too much information of previous conditions. Samples gathered in outdated conditions
are no longer valid, and might prevent the algorithm from adequately keep up with the changing conditions.
To check this, a sudden change in conditions has been applied to the rotational pendulum problem, both for
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online LSPI and for IOLSPI using a human demonstration sample set. To simulate a change in conditions,
the gravitational acceleration was suddenly changed after 300 s from 9.81 m/s2 to 19.81 m/s2.

Figures 14 and 15 show the performance with this change in conditions. It can be seen that after the
change in conditions, the score drops drastically. For both the online LSPI and the IOLSPI using the human
demonstration samples, the scores go up after the change again, so it is clear that the agent is adapting to
the change in conditions and develops a policy suited for the new situation.

For the IOLSPI it can be seen that after the change some jumps in the summed reward per episode occur.
The policy fluctuates severely between 300 s and 340 s, which results in the summed reward per episode
going up and down up to 1000 units, which is reflected in figure 15. In this region, every now and then
the pendulum reaches the upright regime, at which it already has a fine policy. For the upright regime, the
influence of the gravitational acceleration is lower than in the hanging down regime, since it does not includes
swinging up. As such, the required change in policy when g changes is low in this regime. After gathering
more and more samples over time in the new conditions, the samples gathered in the new conditions become
more dominant, reshaping the policy over the whole state space. As a result, the policy is also good at the
swing up regime, allowing the pendulum to always swing up. This fluctuating behavior is not seen for the
online LSPI, since that policy is not yet good enough to swing up to the upright regime anyway.
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Figure 14: Discounted return as
a function of time with a jump
in g from 9.81 to 19.81 m/s2 at
300 s, Kθ = 1000, ε = 0.05, using
“hanging down ICs”
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Figure 15: Learning score as a
function of time with a jump in
g from 9.81 to 19.81 m/s2 at 300
s, Kθ = 1000, ε = 0.05, using
“hanging down ICs”

In figures 16 and 17 the time history of the angle α and the reward is shown, corresponding to the results
in figures 14 and 15. It can be seen that after the conditions change at 300 s, at first the controller performs
bad, and does not succeed in swinging up the pendulum. Looking at the final two episodes however (from
597 s to 600 s), it can be seen that a satisfactory policy was learned. This clearly shows the learning effect,
even after changing the conditions.

Comparing figures 16 and 17, the difference between the online LSPI with and without human demon-
strations can be seen. First of all it can be seen that before the conditions change, the IOLSPI finds a good
policy. The online LSPI on the other hand succeeds in only one of the two displayed episodes, and hence is
not yet at an optimal policy. This conclusion is supported by figure 15 which shows that the performance of
online LSPI is lower than IOLSPI. After the conditions change, at the last two episodes (from 597 s to 600
s), it is seen that both algorithms succeed in swinging up the pendulum. However, the IOLSPI needs one
swing less, and reaches the goal state faster.
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Figure 16: Online LSPI: Time
history of the angle and reward,
with a jump in g from 9.81 to
19.81 m/s2 at 300 s, episodes last
1.5 s, Kθ = 1000, ε = 0.05, using
“hanging down ICs”, note the
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Figure 17: IOLSPI using HD:
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ward, with a jump in g from 9.81
to 19.81 m/s2 at 300 s, episodes
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using “hanging down ICs”, note
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5. Forget factor implementation

When the conditions change, the set of samples the controller uses to update the policy still largely consists
of samples gathered in the old conditions. As such it is expected that when the conditions change, a forget
factor η will help. It makes the controller value recent samples more, and forget older ones. After k time
steps, a sample will have been reduced to a fraction of ηk of its original value (see algorithm 2). Depending
on the forget factor, after a certain number of time steps, the weight of a sample drops below 1 % of its
original value and as such is practically discarded. The following equation calculates which forget factor
corresponds to a number of samples N0.01 that are more than 1% of their original value.

η = 0.01
1

N0.01 (17)

Three different forget factors are compared: η =1 (no forgetting), η = 0.99991 (some forgetting, N0.01 =
50000 samples) and η = 0.9995 (much forgetting, N0.01 = 10000 samples). Figures 18 and 19 show the
performance for these different forget factors for online LSPI and IOLSPI using human demonstrations
respectively. First of all it can be concluded that a too low forget factor (i.e. much forgetting) yields poor
results. This can be explained by looking at the forget factor of 0.9995. With this forget factor only 10000
samples are used, since all samples older than 10000 time steps are practically discarded. It is found that
this set of only 10000 samples is not enough to uphold a good value function.

Second, it can be seen that for online LSPI, a forget factor of 0.99991 yields better performance than a
forget factor of 1. This can be explained by the fact that the samples at the beginning are forgotten after
some time. These samples do not contribute too much, since they are all around the hanging down position.
After the change in conditions, the forget factor of 0.99991 also clearly performs better. It forgets the old
conditions gradually, and by that allows for a better policy in the new condition.

For the IOLSPI using HDs in figure 19, a little different behavior is seen. With the forget factor of 0.99991,
in the first 300 s, the HD samples are being forgotten more and more. This means that the spread in the
used samples decreases, and hence the performance also decreases. After the change in conditions, when the
HD samples are not of too much interest anymore, since they were obtained under different conditions, the
forget factor of 0.99991 shows better results than a forget factor of 1.
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Figure 18: Online LSPI:
Summed reward per episode as
a function of time for different
forget factors, Kθ = 1000,
ε = 0.05, using “hanging down
ICs”
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Figure 19: IOLSPI with HD:
Summed reward per episode as a
function of time for different for-
get factors, Kθ = 1000, ε = 0.05,
using “hanging down ICs”

B. Quadrotor slung load system

Having studied the rotational pendulum, the safety aspect in the exploration has not become apparent yet.
As such, a second system is studied in which safety plays a more pronounced role. This system is a quadrotor
carrying a load suspended from a cable, where the goal is to drop the load in a basket. When the controller
is exploring, the quadrotor could either hit a wall or hit its own rotors with the suspension cable. Both
events can be considered a crash, with damage to the quadrotor as a consequence. Furthermore, the load
could be dropped outside the basket, damaging the (possibly fragile) load. Another interesting aspect of
this quadrotor slung load problem is that it has more dimensions than the rotational pendulum. As such
the effect of increasing dimension on the performance of the algorithm can be studied.

In this paper, a 2D simplification of the quadrotor system is studied with two degrees of freedom: the
lateral position of the quadrotor x, and the swing angle of the load θ. This 2D simplification has more
dimensions than the rotational pendulum problem, but still is straightforward to implement. The goal is to
drop the slung load at the target as quickly as possible. A snapshot of the simulation is presented in figure
20. Since the quadrotor cannot move up or down, it has to swing the load up to get it in the target basket.
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Figure 20: Snapshot of the 2D quadrotor simulation

The position of the quadrotor is defined in an
inertial frame, with x pointing right and z pointing
downwards. The location of the pendulum is de-
scribed in a radial reference frame, centered in the
c.o.m. of the quadrotor. When the pendulum is
hanging down, θ = 0 rad. Swinging to the right
corresponds to positive θ. The state is defined as
s = [x, ẋ, θ, θ̇]T . The action represents a force ex-
erted on the quadrotor which induces an accelera-
tion a ∈ {−3, 0, 3} m/s2. A fourth action is present,
which is releasing the load.

Considering the dynamics of the system, first the
motion of the quadrotor is considered. The influence
of the slung load on the quadrotor is neglected. The
control input for the system is the acceleration of
the quadrotor. It is assumed that no external forces
act on the quadrotor, so it can be assumed that
ẍ = a. The angular acceleration of the slung load is
calculated using Eq. (18).3
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θ̈ =
[
− cos θ sin θ

L

]
·
[
ẍ

−g

]
(18)

In this equation L is the length of the suspension cable. The state is propagated every time step using a
simple Euler integration scheme with sampling time Ts:

s← s+ ṡ · Ts (19)

A number of assumptions are made concerning the slung load. The cable is assumed to be inelastic and
massless. Furthermore, it is assumed that the cable is suspended from the c.o.m. of the quadrotor. The
system is assumed to be undamped, so aerodynamic forces are neglected, as well as friction of the cable
in the suspension point. Finally, it should be noted that the cable is actually modeled as a rod, since the
simulation does not allow the cable to become slack.
There are three conditions under which an episode ends:

• The maximum simulation time Tend is reached

• A crash occurs (either the quadrotor hits the wall or the cable hits the rotor)

• The load is dropped (either a miss or a dunk)

To score a goal, the following conditions should be fulfilled at the same time:

• The x position of the load is within xgoal ± xgmargin where xgoal is the basket center, and xgmargin

defines its width.

• The z position of the load is higher than zgoal but lower than zgoal + zmargin

• The load is moving downwards (żl ≥ 0)

In short, the load must fall in the basket from the top. In table 2 the constants used in this simulation are
presented.

Table 2: Dimensions and constants for the quadrotor simulation

Variable Value Unit Description

g 9.81 m/s2 gravitational acceleration

L 1 m Cable length

Ts 0.1 s Sampling time

Tend 5 s Simulation time

zstart 0 m Starting position

xg 0 m Goal position

zg 0.9 m Goal position

xgmargin
1.5 m Goal width

A reward is given when the load is dropped in the goal and a penalty is given when the goal is missed. A
slung angle of higher than 90 deg is not desirable, because this would cause the cable to tangle up with the
propellers. Therefore, a too high slung angle is penalized in the reward structure. The sides of the domain
are represented by walls, so when the quadrotor leaves the domain (it hits the wall) a penalty is given.
Furthermore, a penalty is given depending on the distance to the goal, in order to stimulate fast progression
to the goal. The reward structure is formalized in Eq. (20).

r =





100 if dropped in basket

−10 if dropped next to basket

−50 if θ > 90 deg

−150 if quadrotor hits a wall

−0.5 · ||x− xgoal||

(20)
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During learning, the initial conditions are picked at random from the following subsets: x ∈ [−6, 0] m,
ẋ = 0 m/s, θ ∈ [−π3 ,

π
3 ] rad and θ̇ = 0 rad/s. This rather distributed spread of initial conditions is chosen

to speed up the learning. This makes sure that the spread of the states visited will naturally be a lot bigger
than when the initial conditions are always around the same point in the state space.

Similar to the rotational pendulum problem, results are repeated for fifty different random seeds, to
account for the randomness. To approximate the Q-function, an equidistant grid of radial basis functions
is used. The issue encountered in a system with a higher dimensional state is that the number of basis
functions using this an equidistant grid grows exponentially with the number of state dimensions. To make
the problem solvable from a computational point of view, the number of RBF centers is limited to the x
dimension and the θ dimension, since the velocity and angular rate are believed to be less critical for this
problem. For this problem this means that an equidistant grid of 9x1x9x1 RBF centers is used. Since there
are four possible actions, a total of 324 RBFs is used.

1. Results for the quadrotor slung load problem

Figure 21 shows the learning effect for the quadrotor slung load problem for IOLSPI with a human demon-
stration and for online LSPI. It can be seen that the performance of IOLSPI is for the first 15000 episodes
better than online LSPI. From a safety point of view, figure 22 is especially interesting. It shows the percent-
age of crashes, misses, and the number of dunks (dropping the load in the goal), as a function of the number
of elapsed episodes. It can be seen that the longer the non-initialized LSPI algorithm learns, the lower the
amount of misses and the higher the amount of dunks. This is a result of the policy which is improving, and
the exploration rate which decays exponentially. The amount of crashes drops in the beginning, and from
10000 episodes onward shows a gradually increasing behavior. This increase in crashes can be attributed
to the decreasing exploration: While the exploration is still high, the chance of accidentally dropping the
load in the beginning of an episode is large. This dropping of the load ends the episode before a crash could
have occurred. After some time, when the exploration rate is lower, the load will remain attached longer,
increasing the chance of hitting a wall. It can be concluded that the policy found by the non-initialized
LSPI succeeds in reducing the number of misses, but fails to keep the number of crashes low. When human
demonstrations are used, it is seen that the performance in terms of dunks and misses is already better
from the beginning. The number of crashes is also lower when using human demonstrations. Combining
the reduction in misses and crashes over the whole time span, it can be concluded that using IOLSPI with
human demonstrations is safer than the non-initialized online LSPI.
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For this higher dimensional problem, the execution time becomes a big issue. The time to complete
1000 episodes is compared for different numbers of radial basis functions. Table 3 shows the results. It
can be seen that for higher numbers of RBF centers, the computational effort goes up quickly. This can
be explained by the fact that within the algorithm, some vector multiplications are done with the vector
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of basis functions and also with the Γ and Λ matrices, which are square matrices with dimension n (n is
the number of basis functions). In the policy improvement step, a linear system of order n is solved which
has O(n3) complexity. This calculation dominates the execution time and explains the strong increase in
execution time with increasing number of RBFs.

Table 3: Execution time for different number of RBFs

Total RBFs x-dimension ẋ-dimension θ-dimension θ̇-dimension Computation time [s]

36 9 1 1 1 10.2

324 9 1 9 1 18.5

2916 9 9 9 1 349.5

26244 9 9 9 9 Size of matrices causes

memory problems *

* Computations were executed in Matlab R2015a, which reaches its memory limits.

V. Conclusions and discussion

This paper shows that for some systems, human demonstrations can improve the performance of rein-
forcement learning in terms of learning time and safety. To show this, a combination of two state of the art
reinforcement learning (RL) algorithms is used. Offline Least Squares Policy Iteration (LSPI) and online
LSPI are combined to an algorithm named Informed Online Least Squares Policy Iteration (IOLSPI). This
algorithm is able to use human demonstration sample sets to improve its performance. The IOLSPI algo-
rithm uses the information present in a batch of samples, which can be obtained by a human demonstration,
to kick start the online LSPI algorithm, which continues learning online.

The example studied in this paper is a rotational pendulum problem, where a mass has to be swung
up from a hanging down position. It is found that using human demonstrations, a good policy is found
straight away, whereas non-initialized online LSPI needs 60000 time steps (300 s) to converge. In addition
the final policy found using human demonstrations is 10% better in terms of cumulative reward than the
non-initialized online LSPI.

It is found that the benefit of the use of human demonstrations is largest when the human uses its under-
standing of the problem to efficiently explore the state space, rather than only giving perfect demonstrations
of the task at hand. This exploration results in a large variation in samples throughout the state space,
which allows for better Q-function approximation. In addition, it is found that human demonstrations work
better in IOLSPI when every third action of the human demonstrator is corrupted (replaced by a random
action) in order to increase the variety in the demonstration sample set even more.

The benefit of using human demonstration in combination with IOLSPI is larger for problems in which
some understanding of the problem is needed to reach a larger portion of the state space. This is the case
in the aforementioned swing up pendulum problem. When the rotational pendulum problem is changed in
such a way that each episode of the problem is started at a random state, no understanding of the problem
is needed to explore the whole state space, in contrast to the original problem, which always starts hanging
down. For this modified problem, it is found that the IOLSPI using human demonstrations finds a good
policy straight away as well. However, in this modified problem the non-initialized online LSPI algorithm
finds a good policy already after 20000 time steps (100s), significantly faster than in the original problem.
Furthermore, the found policy scores only 1% worse than the policy found by the IOLSPI algorithm using
human demonstrations.

In addition, it is shown that the IOLSPI algorithm fulfills the demands for an autonomous controller: It
is fully model-free and it can adapt to changing conditions. To improve the adaptability of the algorithm, a
forget factor is implemented, to value outdated samples less than more recently gathered ones, to focus on
the current conditions. It is found that a mild forgetting behavior results in better performance in changing
conditions. With a mild forget factor, the IOLPSI algorithm needs over 40000 time steps less to obtain a
similar performance after a change in conditions, compared to the algorithm without the use of a forget
factor.
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With a second studied system the benefit in terms of safety of the IOLSPI algorithm is shown. In this
quadrotor slung load drop off task it is shown that the number of crashes while learning is reduced by 10%
to 50% using the IOLSPI algorithm, compared to a non-initialized reinforcement learning algorithm.

With the second case study, the limitation of the algorithm becomes apparent. A uniformly distributed
grid of radial basis functions is used to approximate the Q-function. With a growing number of state parame-
ters, the number of basis functions grows exponentially. For higher dimensional problems, the computational
effort becomes too high for present day computers.

In future research, improvements could be made by combining the IOLSPI algorithm with methods that
choose the radial basis functions in an intelligent way, or use other basis functions. When the number of
basis functions is limited, the computational effort stays low. With this addition in place, the algorithm
can be applied to multiple actuator systems, with continuous actions. With these extensions, the algorithm
can be applied to a 3D quadrotor simulation, and eventually on a real quadrotor. This will be a next step
towards model-free and adaptive control supporting the autonomy of these complex vehicles.
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Part II
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Chapter 2

Introduction to the Preliminary
Research

Micro Aerial Vehicles (MAVs) have shown a great potential in many applications due to their
low cost and high maneuverability [1]. Transport of small cargoes, remote sensing and search
and rescue missions are tasks for which MAVs are well suited. Especially in tasks at locations
which are hard to reach for humans, e.g., for visual inspection of offshore wind turbines, MAVs
can play an important role. Nowadays, quadrotors are the most used MAV platforms for these
applications because of their simple geometry and agility [1]. Human pilots are able to fly
quadrotors rather well, but making them fly autonomously saves time and eventually could
improve mission performance. In low level control tasks such as attitude hold, modern control
algorithms outperform human expert pilots. Furthermore, for tasks in which the MAV is out
of the line of sight of the human pilot and could lose contact with him or her, autonomous
flying capability is necessary for the MAV to complete the task.

Enabling autonomous flight is difficult because of the complex dynamics of quadrotors and the
potentially changing conditions in which they fly. At first, the controller should be adaptive
in order to keep up with the changing environment. Secondly, the controller should be model
free. Since the dynamics of quadrotors are complex, using a model based controller inevitably
results in modeling errors. Model free controllers do not have this problem and are more easily
extendable to even more complex MAV platforms, such as the Delfly [2].

Reinforcement Learning (RL) is an an approach which can both adapt to changing conditions
and is able to function with no prior knowledge of the dynamics of the system [4]. In RL
an agent (controller) interacts with its environment collecting rewards for good behavior and
penalties for bad behavior. In the beginning the policy is not perfect yet, so the agent tries
actions which explore the unknown part of the state space. The agent uses the rewards to
update its policy (control strategy) in order to maximize the expected cumulative reward. A
downside of using RL in quadrotor control is that because of the large state and action space
for a quadrotor, training towards a good policy takes a lot of time and will probably lead to
crashes while the controller is still learning a good policy.
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26 Introduction to the Preliminary Research

This training time might be reduced considerably by the use of a-priori knowledge within
the controller. A way of doing this is the use of a skilled “teacher” which demonstrates a
maneuver [8]. This kind of supervised learning could be a starting point for the reinforcement
controller which uses these demonstrations as a basis for its policy.

The goal of this research is to find out in which way demonstrations of a human expert
pilot can be used to improve the performance of reinforcement learning for quadrotor control.
To achieve this goal, the following research question will be answered. How can we use
demonstrations of a human expert pilot to improve the performance of reinforcement learning
for quadrotor control? This research question is subdivided in the following sub-questions:

• How can human expert demonstrations be used within RL algorithms?

• How can the performance of a RL algorithm be defined?

• How do RL algorithms using human expert demonstrations compare to each other, and
how do they compare to existing techniques?

The challenge in this research endeavor will be threefold. Firstly, the algorithm has two
opposing goals. On the one hand the algorithm should be generally applicable, on the other
hand it should be able to quickly learn a policy. Secondly, there will be a challenge in defining
a good metric to assess the performance of different algorithms, in terms of their result on
a task, required training time, etc. Finally, there will be a challenge in finding a good way
to use the human demonstrations. Since there will be significant variance, and probably also
failure in these demonstrations, it could be difficult to extract the right information.

To make the problem more tangible and to have a standard to compare the performances of
the different methods, a benchmark task is selected. This benchmark task will be a slung
load drop-off task; the quadrotor starts from an arbitrary position with respect to the drop-off
target and has to drop off the slung load as quickly as possible. This task was selected for
two reasons:

1. Because of the slung load, the dynamics are even more complex than for a quadrotor
alone, which makes the problem, in combination with the non trivial task, suited to
apply reinforcement learning.

2. The task is difficult, but doable for a human; an expert human pilot should be able to
achieve a good performance on this task and at least drop the slung load at its goal in
a percentage of his/her trials.

This preliminary research part is structured as follows. In Chapter 3, some basic concepts
and notations on RL are presented. Chapter 4 gives an overview of current literature on RL,
with a focus on RL in quadrotor applications. Chapter 5 will provide a simple simulation
in which two RL algorithms will be tested. Chapter 6 describes the approach taken in the
remainder of the research and gives a brief overview on what RL algorithms will be used
in the further analysis. Furthermore, it gives an outline of the intended 3D simulation and
experiment. Finally, Chapter 7 will provide the conclusions on this preliminary research.
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Chapter 3

Preliminaries on Reinforcement
Learning

This chapter presents the necessary basic knowledge on reinforcement learning theory that is
used in the remainder of this preliminary research. Throughout literature, many different no-
tations are used within reinforcement learning algorithm mathematics. As such this chapter
serves as an overview of the used notation and terminology within this report. The reinforce-
ment learning problem describes a decision process in which decisions or actions result in,
possibly delayed, rewards. Figure 3-1 shows the general idea in reinforcement learning. The
agent/controller decides on an action to take in the environment. The environment will end
up in a new state and give a reward. Using this information, the agent updates its policy
and decides on a new action. The goal within the reinforcement learning for the agent is to
develop a policy which maximizes the accumulated reward collected.

Figure 3-1: The agent-environment interaction in reinforcement learning [4]
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3-1 Markov Decision Process

In general, reinforcement learning algorithms solve a Markov Decision Process (MDP). An
MDP provides a framework for modeling problems involving sequential decision making. For-
mally, a deterministic MDP is defined by a state space S, which contains all possible states s
(s ∈ S), an action space A, which contains all possible actions a (a ∈ A), a transition function
f(s, a) and a reward function ρ(s, a) [9]. The transition function is a representation of the
behavior of a system, i.e., it determines in what state the system ends up after applying an
action (3-1).

sk+1 = f(sk, ak) (3-1)
Where k = {1, 2, . . . ,K} and K is the total number of discrete time steps. The reward
function calculates the immediate experienced reward following performing a certain action
a in state s (see Eq. 3-2). The reward gets index k+ 1 since it follows after the current state
and action, and is an input for the agent in the next time step.

rk+1 = ρ(sk, ak) (3-2)

The Markovian property states that the transition model and reward function do not change
as function of the history of states visited, which actually means that when one observes the
current state and possible actions, there is no need to know what happened before that state
to make a decision on which action to take [4].
The goal within an MDP is to maximize the return. The return is the accumulated reward,
which is calculated using 3-3.

Rπ(s0) =
T∑
k=0

γkρ(sk, π(sk)) (3-3)

In this equation, γ is the discount factor, which has a value between 0 and 1. When this
factor is lower than one, immediate rewards are valued higher than rewards in the future. In
an MDP the agent selects an action a according to its policy π. This policy is a mapping from
states to actions and determines the performance of the controller given the characteristics
of the MDP.
An MDP can last for an infinite timespan, or it can be episodic. This means that there is a
start state and an end state; the number of time steps is finite. Each realization, from start
state to end state, is called an episode.
A quadrotor flying with a slung load can be considered a Markov Decision Process [10]. There
is a state space S, which consists of all possible combinations of location, velocities etc. for
the quadrotor system. Furthermore, a number of actions can be performed by the quadrotor,
e.g., pitching forward, increase thrust etc. A reward function can be defined in order to reach
a certain goal, and the transition function is given by the dynamics of the system, which
might be unknown. There is one aspect of a quadrotor in real flight that may violate the
Markovian property; since the inflow on the rotors affects the thrust of the rotors, but is not
included in the state, since this is difficult to measure, the same set of states could result
in different behavior, depending on previous states. The implications of this are, however,
expected to be small. As a result, as is done in the reviewed literature, it is assumed that
this effect will not cause significant problems for this research.
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3-2 Value functions

As mentioned before, the goal in an MDP is to find an optimal policy which maximizes the
experienced return. This return is not known beforehand, so value functions are used as a
measure of the expected return of a certain state. We distinguish between state values and
state-action values. The state value (V-value) is defined by 3-4 [9] and represents the expected
return following policy π, starting from state s.

V π(s) = E{Rπ(s)} (3-4)

The state-action value function (Q-value) is defined as the return obtained, while at state s,
taking action a, and after this following policy π (3-5).

Qπ(s, a) = E{Rπ(s)|a} (3-5)

For small and discrete state and actions spaces, the value for each state and action can be
quickly updated and used to evaluate which action should be chosen, to end up in in the
next state with the highest value. When the number of states and actions grows however, the
number of states for which a value should be estimated explodes, this is called the curse of
dimensionality [4]. For a quadrotor for example, the state is not discrete, meaning that there
is an infinite number of states. As a result, it becomes impossible to assign a value to each
state individually.

To solve this problem, the value of a state can also be approximated globally. This can be
done using for example a neural network, but a more straightforward way is to use basis
functions. These basis functions (φl(s) with l = 1 . . . n) are multiplied with a weight (wl),
and summed to get an approximation of the value of a certain state, or state-action pair. For
approximate V-functions equation 3-6 holds, and for approximate Q-functions equation 3-7
holds.

V̂ (s) =
n∑
l=1

wlφl(s) = W T · Φ(s) (3-6)

Q̂(s, a) =
n∑
l=1

wlφl(s, a) = W T · Φ(s, a) (3-7)

These basis functions can have any form. They can be general functions, such as Chebyshev
polynomials, or task specific to include some knowledge on the task and system in the value
approximation. A more elaborate discussion on value functions will follow in Chapter 3.

3-3 Methods for solving MDPs

The goal in solving the MDP is to find the policy that maximizes the return R(s0). A
multitude of methods exist to do so [4]. Usually, a distinction is made between model based
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MDP solving methods

Model based Model free

Policy iteration Value iteration Policy iteration Value iteration

Figure 3-2: Taxonomy of MDP solving methods

and model free approaches. In model based approaches, the transition function f(s, a) is
known or an approximation of it is available. For a quadrotor, when a dynamic model of
the vehicle is used, the algorithm is model based. Problems in which a transition model
is available, can be solved using Dynamic Programming (DP) techniques. In model free
algorithms, there is no knowledge on the transition function. When there is no information
on beforehand at all, the agent needs to find the optimal policy by just interacting with its
environment and experience which actions are better and worse.

Furthermore, a distinction is made between online and offline algorithms. Offline algorithms
learn a policy using a model, before performing the task in real life. Online algorithms on the
other hand, learn a policy while performing the real task, “on the fly”. There are algorithms
which combine both; they use a simulator to offline learn an initial policy, but online adjust
the policy “on the fly”. In online algorithms there is the need to explore, i.e., the agent should
every now and then take an action which is the one that, at the current knowledge of the agent,
does not provide the highest return. If the agent would only exploit its current knowledge,
it would never find out whether there are states which actually have higher value than the
states it is exploiting. A common and straightforward way of implementing exploration in an
algorithm, is to include randomness factor ε which has a value between zero and one. In each
state, with a probability of ε, a random action is chosen.

Whether the algorithm is model based or model free, online or offline, its goal is to maximize
the return, doing this by updating the policy it is following. For the update of the policy
there are two general methods which are used for either model based or model free methods:
policy iteration and value iteration. Graphically, the connection between these methods is
presented in Figure 3-2.

3-3-1 Policy iteration

In policy iteration the algorithm iterates between two steps. The first step is policy evaluation,
which means that the value of each state, using the current policy, is calculated [11], this can
be seen in line 3 of Algorithm 1. The second step is policy improvement, which means that
a new policy generated which is greedy towards the current value function. Policy iteration
is called on-policy because in policy iteration, the policy which is used to control the process
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is also the policy that is evaluated [4]. A basic version of policy iteration is SARSA, which is
the algorithm described in Algorithm 1. It is called SARSA because it uses the State, Action,
Reward, (next) State, (next) Action, to update the value estimate and thereby indirectly the
policy.

Algorithm 1 Policy iteration basis (SARSA) [11]
1: for every iteration k = 1, 2, ... do
2: Apply ak = πk(sk), measure next state sk+1 and reward rk+1
3: Next action using current policy would be ak+1 = πk(sk+1) (on-policy)
4: Update Q: Qk+1(xk, ak)← Qk(xk, ak) + αk[rk+1 + γQk(xk+1, ak+1)−Qk(xk, ak)]
5: end for

3-3-2 Value iteration

In value iteration the algorithm looks for the optimal value function, that is for the maximum
return for a state or state-action pair. A straightforward example of value iteration is Q-
learning (Algorithm 2). The optimal value function is used to find the (optimal) policy. In
value iteration algorithm the value is determined looking at the maximum value of the next
state (Algorithm 2, line 3), instead of the value of the next state using the current policy, as
policy iteration does. As such, the policy according to which it acts, is not the same as the
policy that is evaluated. In practice this means that in the policy there is some exploration,
whereas in the evaluation there is not, as such this is called an off-policy algorithm [4].

Algorithm 2 Value iteration basis (Q-learning) [11]
1: for every iteration k = 1, 2, ... do
2: Apply ak = πk(sk), measure next state sk+1 and reward rk+1
3: Update Q: Qk+1(sk, ak)← Qk(sk, ak) + αk[rk+1 + γmaxa′ Qk(sk+1, a

′)−Qk(sk, ak)]
4: In which is should be stated that Qk+1 is evaluated using the maximum value for the

next state (Off-Policy)
5: end for

3-4 Overview

Concluding this background on reinforcement learning basics, the quadrotor slung load task
can be considered to be a good problem to study from a reinforcement learning perspective.
The process can be considered an episodic Markov Decision Process for which an optimal
policy will be found using a reinforcement learning method. By nature, the process is con-
tinuous in both state and action, and since a slung load drop off task is considered, there is
a clear end of the task, as such it is episodic. Whether the used algorithm will work based
on policy iteration or value iteration, has to be found out within the literature study. A
more elaborate introduction on reinforcement learning concepts can be found in the book of
Sutton and Barto [4] and the work of Wiering and Otterlo [9]. For a thorough introduction
on continuous state reinforcement learning theory the book of Busoniu [11] provides a good
overview.
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Chapter 4

Literature Review

In order to determine how human demonstrations can be used to improve reinforcement learn-
ing in quadrotor control, first a literature study is conducted. In this literature study, the
goal is to find out what reinforcement learning algorithms have been used to date within
quadrotor control. Furthermore, it is investigated in which ways human expert demonstra-
tions have been used within these algorithms. Finally, the way in which the performance of
these algorithms is evaluated is studied. Within this study, both literature on simulations
of quadrotor tasks, as well as literature describing real experiments, are reviewed. Since the
reference task selected in this research is the slung load drop off task, a significant portion of
the literature studied is on slung load related tasks.

Within the methods found in literature, a distinction has been made between model based and
model free methods. Some methods described could be placed in either of the categories. In
this research the distinction is made as follows: when an algorithm uses a transition model in
the learning of a new policy, it is considered model based, otherwise it is considered model free.
For example, in Continuous Action Fitted Value Iteration (CAFVI); in the actual learning of
the policy no model is used, however, some dynamics samples are used within the algorithm,
which could both be obtained in advance by using a simulator or human demonstrations.
This example thus falls under the category model free. Using this distinction between model
based and model free algorithms, Figure 4-1 has been composed to show different algorithms
used within quadrotor control, studied in this literature survey. In the gray boxes are the
algorithms as applied in the corresponding papers, and the section in which they are discussed.

This chapter is structured as follows. In section 4-1, the different components of which
reinforcement learning algorithms consist within quadrotor control, are elaborated on. After
this, some full algorithms are studied in section 4-2 (model based) and section 4-3 (model
free). In section 4-4 different performance metrics are discussed. Finally, section 4-5 provides
the conclusions on the literature study.
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Quadrotor RL controllers

Model based Model free

Policy it. Value it. Policy it. Value it.Other

PI
4-2-1

AVI
4-2-2

LA
4-2-2

DDP
4-2-1

LSPI
4-3-1

CAFVI
4-3-1

LSPI
4-3-2

Figure 4-1: Taxonomy of different reinforcement learning methods used for quadrotor control
with the sections in which they are discussed. (LA: Learning automata, PI: Policy iteration, AVI:
Approximate Value Iteration, LSPI: Least Squares Policy Iteration, CAFVI: Continuous Action
Fitted Value Iteration, DDP: Differential Dynamic Programming)

4-1 Components of a reinforcement learning algorithm

Studying the literature of reinforcement learning algorithms that have been used for quadrotor
control tasks, a number of components can be identified that constitute such algorithms.
Figure 4-2 shows these main components. The five components on the left of the figure,
constituting a reinforcement learning algorithm, are distinguished: A reward function, value
basis functions, a transition function, a policy, and a way of updating that policy. To the
right of each big block are the options listed for that component. Each RL algorithm studied
is a combination of these options. It must be stated, however, that not always all components
are present. For example, in model free RL a transition function is not used. In the following
sections the different components will be described in more detail.

4-1-1 Reward functions

The reward function specifies what behavior gets rewarded and thereby implicitly defines the
goal of the process [9]. The reward function can be open or regulative. An open reward
function only rewards when the final goal is reached, leaving the way to the goal open. A
regulative reward function rewards intermediate steps that lead towards the final goal as well,
thereby regulating the agent more towards the goal.

In quadrotor literature, different degrees between open and regulative are identified. In the
work of Abbeel [8], a highly regulative reward function is used to fly acrobatic maneuvers. 24
features are used in the reward function. This resulted in a good performance on this task,
with the behavior prescribed rather strictly with this approach. To use such a regulative
reward function, one should have a good idea of a proper strategy in advance. The result of
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Reward function

Basis functions

Transition function

Policy basis

Policy update

Open Regulative

Mission specific General

White box Black box

Cont. Function Q-greedy V-greedy

Random variation BF weight update

Simple Elaborate OLS LWLR

PBF RBF

Figure 4-2: General set-up of a reinforcement learning algorithm with on the left in white the
components, and on the right the possible options to use in these components. PBF: Polynomial
Basis Functions, RBF: Radial Basis Functions, OLS: Ordinary Least Squares, LWLR: Locally
Weighted Linear Regression

this is that the reinforcement learning algorithm does not have a lot of freedom to find other
strategies.

A rather open reward function is used by Figueroa [12] for the balancing of an inverted
pendulum on a quadrotor. The reward function only rewards the final goal, which is a straight
up pendulum, and for all other situations gives zero reward. This task is non minimum phase
with no trivial solution. The openness does allow for a lot of freedom of the algorithm, making
it possible to find an upswing strategy to balance the inverted pendulum. A downside of this
approach is that it takes more iterations to reach a good policy than for a regulative reward
function, since the agent only knows when it is perfectly good, but has no idea when it is
close to a good state.

An intermediate case between these is used by Bou-Ammar [13], pursuing a hover task. Here
the offset of the attitude angles are in the reward function, which increases reward towards
the final goal. This means that, in contrast to using the reward function of Figueroa [12], the
agent can tell when it is near the final goal and not only when it is spot on.

In general, it is found out that most used reward functions in literature are continuous as
function of for example the offset from a goal state similar to the example of Bou-Ammar [13].
Another finding is that in many applications, the control action is penalized in the reward
function, to limit control effort of the quadrotor.
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4-1-2 Basis functions for value approximation

The second component is the used set of basis functions to estimate the value of states, or
state-action pairs. In quadrotor literature, two types of basis functions are distinguished:
mission specific basis functions and general basis functions. Mission specific basis functions
incorporate knowledge on the system and task at hand, to select some specific basis functions.
General basis functions use an arbitrary combination of state and action variables. Bou-
Ammar [13] and Faust [14] use a mission specific set of basis functions. The knowledge on
the problem can be used to suffice with less basis functions in estimating the value. The task
to be performed by the quadrotor discussed by Bou-Ammar is hover stabilization. As such
the basis functions are chosen to be the squares of the attitude angles (φ, θ and ψ) and some
coupling terms as in Equation 4-1.

V (s) =
[
w1 w2 w3 w4 w5

]
·


φ2

θ2

ψ2

φψ
θψ

 (4-1)

With this approach, the value is clearly coupled to the task at hand. As a result, the use of
these basis function can not be extended to different tasks.

The other option is to use general basis functions to estimate the value for states or state-value
pairs. In literature, polynomial basis functions and radial basis functions are used. Shaker
[15] uses both methods and shows that for a landing task they yield similar results. In the
work of Palunko ([10] and [16]), polynomial basis functions are used, in this case Chebyshev
polynomials from the first kind (Equation 4-2). Figure 4-3 shows these polynomials.

ψ0(ξ̄) = 1
ψ1(ξ̄) = ξ̄

ψj+1(ξ̄) = 2ξ̄ψj(ξ̄)− ψj−1(ξ̄)
(4-2)

To use these Chebyshev polynomials (ψn|n = 0, 1, 2, . . . N), the state and action variables
should be normalized (Equation 4-3).

ξ̄ = −1 + 2 ξ − ξL
ξH − ξL

(4-3)

In these equations ξ is the state variable that is used to build a Chebyshev polynomial with.
ξ̄ is the normalized Chebyshev variable, and indices H and L denote the highest and lowest
value of the parameter respectively.

Using these Chebyshev polynomials, the set of basis functions for the whole state-action space
is given by Equation 4-4.

φ(x, u) = Φ(u)⊗Ψ(x) (4-4)
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Figure 4-3: Graphical representation of Chebyshev polynomials of the first kind by Whillas [17].

With Φ(u) and Ψ(x) are the vectors of Chebyshev polynomials for the action and state
respectively. ⊗ is the Kronecker product [10], so 4-4 can be rewritten to 4-5.

φ1(x, u)
φ2(x, u)

...
φM (x, u)
φM+1(x, u)

...
φNM


=



Φ1(u)Ψ1(x)
Φ1(u)Ψ2(x)

...
Φ1(u)ΨM (x)
Φ2(u)Ψ1(x)

...
ΦN (u)ΨM (x)


(4-5)

The advantage of using these general basis functions, is that no knowledge on the task and
vehicle need to be included, which makes the approach flexible towards other tasks and
vehicles. The downside of the Chebyshev polynomial approach, is that it does not work so
well for multiple input systems. However, many polynomial or radial basis function methods
exist to avoid this problem. Generally, literature shows that mission specific basis functions
are the most common used approach. It was found out however, that general basis functions
can also result in well performing algorithms.

4-1-3 Transition functions

As mentioned in Chapter refch:rl, model based algorithms use a transition function which
maps a state-action combination to a new state. Within quadrotor reinforcement learning
literature, two ways of finding a transition function are identified. Either a model is made
describing the dynamics of the system (white box approach), in order to calculate the new
state, or an input-output model is derived from a training data set (black box approach).
The latter can be considered as supervised learning [18].

Among the white box approaches, different levels of detail are discerned. Some methods only
use a simple model of the dynamics of the vehicle, and as such use it only as a rough estimate
of the next state. Faust uses this approach in [14] and [3]. Both papers elaborate on a slung
load delivery task, in which the dynamic model is a simple integration scheme to estimate
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the next state. Equation 4-6 shows the calculation by Faust [3] for the velocity (v), location
(p), and slung load angle (η). Here the input is the acceleration a, and is slung load angular
acceleration η̈ calculated using simple trigonometry. This simple model is only used as a
rough estimate of the new state following from certain inputs. The obtained estimated new
states are then used to evaluate their respective value, to choose the best action.

v = v0 + ∆ta p = p0 + ∆v0 + ∆t2
2 a (4-6)

η̇ = η̇0 + ∆tη̈ η = η0 + ∆tη̇0 + ∆t2
2 η̈ (4-7)

In algorithms using dynamic programming to solve the reinforcement learning problem, some
more elaborate models are used. An example of this can be found in a paper of Palunko [19].
Here a more elaborate dynamics model is used, to solve for the optimal policy using dynamic
programming.

Instead of composing a white box model of the dynamics of the vehicle, a black box system
identification approach could also be taken, in order to be able to estimate the transition
function. Many black box supervised learning algorithms exist to make an input-output
mapping for a system. Advanced nonlinear methods, such as artificial neural networks and
splines, could be used to make an input-output mapping. In quadrotor application only linear
regressions are found however. A good example of linear regression is the work of Waslander
[20], where locally weighted linear regression is used. This approach extends normal least
squares approximation to a weighted least squares approximation. The weights are defined
by the distance of each training sample input, to the input for which the output has to be
calculated. This weighting is done using Equation 4-8.

Wi,i = e
−||xi−x||

2τ2 (4-8)

In this equation, x is the input for which the output should be computed, xi is the ith input
of the training set, and τ is a fitting parameter which determines the range of influence of
the training samples.

The advantage of this method is that the local effects within the data fitting are included up
to an extent that can be adjusted using τ . This advantage makes this method more usable
for quadrotor controllers than a least squares approximation with no weighting, since it takes
into account local effects.

4-1-4 Policy basis

Within literature on reinforcement learning for quadrotor control, three different bases for a
policy are found. A distinction can be made between policies that are greedy towards a state-
action value, policies that are greedy towards a state value, and policies that are described as
a continuous function of the state.

In the literature reviewed, the majority of the algorithms is greedy towards a state value or a
state-action value. Bou-Ammar [13] and Figueroa [12] use a policy which is greedy towards
the approximated value. This policy can be formalized as in Equation 4-9.
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π(s) = arg max
a

V (s) (4-9)

In algorithms that use an action-value function approximation in stead of a value function
approximation, the policy can be greedy towards the action-value function. In the work of
Palunko [10] this approach is used. The policy can be formalized as in Equation 4-10.

π(s) = arg max
a

Q(s, a) (4-10)

It should be noted that, having a good approximation of the value, the greedy policies de-
scribed here prove to be successful approaches. When this is not the case however, for example
when the algorithm is run online, such as in the effort of Palunko [10], a greedy policy will
not suffice, since at the start the approximation of the value might not be good, yielding a
sub optimal policy. To this end, instead of a greedy policy, an ε- greedy policy can be applied
[10]. In that case, with a probability of ε, a non-greedy action will be chosen at random.
Because of the improvement of the value approximation alongside with the iterations, this ε
can decrease over time.
The third method is used by Waslander [20], where the policy is described by a function
of linear functions of some of the state parameters. The task studied by Waslander is an
altitude control task, which tries to follow a reference altitude. The policy is described by
Equation 4-11, and as such is a function of the current state and some weights w1, w2, w3, w4.

π(s, w) = w1 + w2(pz − pz,ref ) + w3vz + w4az (4-11)

Using this approach the policy is a smooth function of the state (position p, velocity v and
acceleration a in z-direction). The weights are to be learned by the algorithm, to achieve a
good performance.
The advantage of the latter method over the former two, is that there is no need to evaluate
the value over all possible actions given a state. Especially when the state is large and/or
continuous, this value evaluation can become computationally intensive. On the other hand,
the advantage of the former two methods is that for each state they find the one optimal
action, which is not guaranteed for the latter method.

4-1-5 Policy update

The key in reinforcement learning is that the policy improves over time. This update can
be performed in two ways: Either updating the policy itself (when this is a function of the
state), or updating the weights of the value function (when the policy is ε-greedy towards the
value function). The following sections describe different approaches to update the policy or
its value function approximation.

Direct policy update using random variation of policy weights

As described in subsection 4-1-4, in the algorithm described by Waslander [20], the policy
is defined as a linear combination of weights and state parameters. As such the policy is
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updated directly by changing the weights within the policy. The method to update these
weights is presented in Algorithm 3.

The method used is to initialize the policy weights (line 3) with reasonable values. From
this initial situation, the algorithm evaluates the current policy by looping over a number
of initial states, and within that over a whole episode. The total reward obtained in such
a loop is a measure of the performance of the policy. The policy is evaluated (line 7-14); if
the performance using the current policy is the new best, the policy weights are stored (line
16). After this, the policy is updated by adding a random Gaussian noise vector to the policy
weights (line 18), and the cycle starts over again.

This policy update method is model based; it uses a transition function to calculate the next
state (line 11). The method seems useful, since it is expected to converge to the optimal policy
by the use of adding Gaussian random numbers to the weights. A downside of the method is
its dependence on the initialization of the policy weights: if they are far off the optimal policy
weights, it will take a long time to converge to the optimal policy. Furthermore, a gradient
method might be faster than this random approach, because such a method is more directed
towards the optimal policy than this random approach. The method used here does have the
advantage that if the weight updates are big enough, it is able to escape from local minima.

Algorithm 3 Policy update by adding Gaussian noise [20]
1: Generate set S0 of random initial states
2: Generate set T of random reference trajectories
3: Initialize w with reasonable initial guess
4: Initialize v which is a noise realization
5: Rbest = −∞, wbest = w
6: repeat
7: Rtotal = 0
8: for s0 ∈ S0, k ∈ T do
9: s(0) = s0

10: for k = {0, 1, 2, . . . ,K − 1} do
11: ak = π(sk, w)
12: sk+1 = f(sk, ak) + disturbance
13: Rtotal = Rtotal + ρ(sk+1)
14: end for
15: end for
16: if Rtotal > Rbest then
17: Rbest = Rtotal, wbest = w
18: end if
19: Add Gaussian random vector to wbest, store as w
20: until wbest converges

Least squares policy iteration

As mentioned, most of the policy updates are done not directly but via the update of the
value function instead. An option to do this is called Least Squares Policy Iteration (LSPI),
which was introduced by Lagoudakis in [21] and [22]. This method can be used both model
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free and model based and uses a least squares approximation of the basis functions weights,
to update the value approximation. Palunko [10], [16] and Shaker [15] show applications of
this method to quadrotor control tasks.

At first the algorithm evaluates the value of the current policy using Equation 4-12.

Q(s, a) ≈ Q̂π(s, a, w) =
k∑
i=1

φi(s, a)wi = W TΦ(s, a) (4-12)

To update the matrix W , the squared error is minimized using Equation 4-13.

W = (ΦT (Φ− γP πΦ))−1ΦTR (4-13)

The transition matrix P , and reward vector R, are unknown in the model free case however.
To fix this, an approximate form of Φ, P πΦ and R is made using a set of samples D =
{{si, ai, s′i, ri}|i = 1, 2, ...L}. These samples might be acquired from the history of samples,
or from training data of a human demonstrator.

Using this, the followings equation provide the approximations.

Φ̃ =

φ(s1, a1)T
. . .

φ(sL, aL)T

 (4-14)

P̃ πΦ =

φ(s′1, π(s′1))T
. . .

φ(s′L, π(s′L))T

 (4-15)

R̃ =

 r1
. . .
rL

 (4-16)

The policy then is updated, finding the action that maximizes the approximate Q-function.

π(s|w) = arg max
a

W TΦ(s, a) (4-17)

When LSPI is used online, there is the need for exploration. The used samples can be updated
with the time history of experienced states and their respective rewards and follow up states.
Palunko [10] uses LSPI online. The formulation used for the least squares is a little bit
different, and the exploration is added in the algorithm. Algorithm 4 shows the working
principle applied by Palunko. In this algorithm the matrices Λ, Γ and vector z (line 7) are
introduced, they are discussed in detail in the book of Busoniu [11]. In this online variant the
policy is updated every Kθ (line 15-18). When Kθ is 1, the weights are updated every time
step. Kθ can be chosen bigger than 1, however, since the performance could even be better
when Kθ is larger than 1 [10].

A big advantage of the use of LSPI for quadrotor control tasks, is that it does not need
careful tuning of initial parameters. There is no learning rate and the algorithm does not
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Algorithm 4 Online LSPI with ε-greedy exploration [10], [23]
1: Input: discount factor γ
2: BFs φ1, . . . , φn
3: Policy improvement interval Kθ

4: Exploration development {εk}∞k=0
5: βΓ a small constant
6: l← 0
7: Γ0 ← βΓInxn,Λ0 ← 0, z0 ← 0
8: Measure initial state x0
9: for every time step k = 1, 2, . . . do

10: uk ←
{

exploit: arg maxa φT (s, a)wl with prob 1− εk
explore: random action with prob εk

11: Apply ak and observe next state sk+1 and reward rk+1
12: Γk+1 ← Γk + φ(sk, ak)φT (sk, ak)
13: Λk+1 ← Λk + φ(sk, ak)φT (sk+1, πl(sk+1))
14: zk+1 ← zk + φ(sk, ak)rk+1
15: if k = (l + 1)Kθ then
16: wl ← solve 1

k+1Γk+1wl = γ 1
k+1Λk+1wl + 1

k+1zk+1
17: l← l + 1
18: end if
19: end for

take gradient steps, it just minimizes the least squared error. This advantage comes at the
price that a history of samples is used, so at the beginning of an episode, some samples should
already be available [15]. These samples can be obtained in multiple ways, using human expert
demonstration for this is a suitable option.

Approximate value iteration

Faust [3], [14] uses the approximate value iteration algorithm. As mentioned in Chapter 3,
the difference between value iteration and policy iteration methods is that value iteration is
off-policy, i.e., the policy is evaluated looking at the maximum next value, instead of using
the current policy, as is done in policy iteration. In Algorithm 5, the AVI algorithm used by
Faust in [3] and [14] is presented. The algorithm is offline and has the goal to update the
basis function weights, to use this in a greedy policy afterwards. Within the learning part, it
can be seen that in every iteration, directly after evaluating the optimal value for the current
set of states, the weights of the basis functions are updated. This is done in order to converge
to weights that best describe the optimal value function. Furthermore, it can be seen that
this algorithm is model based; it uses a transition function.

The policy using this approximate value iteration scheme is a greedy policy π, which is used
to generate a trajectory and to control the quadrotor. π(s) = arg maxa(W TΦ(f(s, a))).

This offline method has a number of advantages according to Faust [3]:

1. The induced greedy policy is robust to some noise.
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Algorithm 5 Least squares approximate value iteration (modified version of alg 3.1 from
Busoniu [11])

Input: transition function f(s, a), reward function ρ, discount factor γ, vector of basis
functions Φ and samples {(sls)|ls = 1, . . . , ns}
Initialize parameter vector, e.g. W0 ← 0
repeatat every iteration l = 0, 1, 2, . . .

for ls = 1, . . . , ns do
Vl+1(sls)← r(s) + γmaxa[W T

l · Φ(f(sls , a))]
end for
θl+1 ← arg minW

∑ns
ls=1

(
Vl+1(sls)−W T · Φ(sls)

)2

until maximum number of iterations is performed

2. The policy is agnostic to the simulator used.

3. The algorithm can learn on a subset of the domain.

These advantages make the AVI algorithm suitable for an offline use. An online use has not
been found in literature.

Continuous Action Fitted Value Iteration

Whereas the previously described method discretizes the action space, the method proposed
by Faust [24] and Figueroa [12] can be used with a continuous action space. The method is
similar to the approximate value iteration approach and is called Continuous Action Fitted
Value Iteration (CAFVI). In order to be able to use CAFVI, the system should be control-
affine i.e., equation 4-18 should hold.

D : sk+1 = f(sk) + g(sk)ak (4-18)

Where f and g are some function of the state. For this approach to work, the basis functions
should be quadratic functions. In this sense the value function can be viewed as a Lyapunov
function. The algorithm used in this approach is presented in Algorithm 6. In line 8 and
9 it can be seen that this approach actually uses system dynamics samples to estimate the
action-value function. This samples can be obtained using a simulator, but more interesting
also by means of a human demonstrator. The update of the weights of the basis functions is
done by minimizing the least square error between the current estimate of the value with the
current weights of the basis functions, and the estimated value found by using the value of
the next state for each of the samples (line 15-16).

To find the action yielding the maximum of Q, equation 4-19 is used, where
qi = [Qps,1(ai1);Qps,2(ai2) Qps,3(ai3)] are three samples of Qps,i(a), obtained at points [ai1 ai2 ai3]
running through point p.

âi = min(max(â∗i , ali), aui ) (4-19)

â∗i = qTi · ([a2
i2 a

2
i3 a

2
i1]− [a2

i3 a
2
i1 a

2
i2])T

2qTi · ([ai2 [ai3 [ai1]− [ai3 [ai1 [ai2])T
(4-20)
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On the interval ali ≤ a ≤ aui , where superscripts u and l denote the upper and lower value
respectively.

Algorithm 6 Continuous Action Fitted Value Iteration [24]
1: Input: S,A, γ
2: Input: basis function vector Φ
3: Output: W
4: W0,W1 ← zerovector
5: l← 1
6: while l ≤ maxiterations AND||Wl −Wl−1|| ≥ ε do
7: for ld = 1, . . . , nd do with nd is the number of samples
8: sample state sld and observe its reward rld
9: {sld , aij , s′ij |i = 1, . . . , da, j = 1, 2, 3} (obtain system dynamics samples)

10: for all i and j: qij ←W T
l Φ(s′ij) (estimate action-value function)

11: â← calculated using equation 4-19
12: Apply â and find the full tuple {ald , â, s′ld , ρld}
13: vld = rld + γW T

l Φ(s′ld) (state-value function new estimate)
14: end for
15: Wl+1 ← arg minW

∑nd
ld=1(vld −W TΦ(sld))2

16: l← l + 1
17: end while

The advantage of CAFVI is that it allows for continuous action, which results in smoother
control. A downside of this approach is that there are more restrictions on the choice of the
reward function and the basis functions, in order to assure Lyapunov stability. “But, basis
functions must fit reasonably well into the true objective function determined by the system
dynamics and the reward, otherwise CAFVI diverges.” [24]. In the applications of CAFVI
by Figueroa [12] and Faust [24], no actual use is made of human demonstrations, instead a
simple simulation model is used. As mentioned, CAFVI does allow for the use of human
demonstrations.

Learning Automata

A slightly different algorithm that can be model free, is Learning Automata, as used by Santos
[25]. This approach works for a finite action set and is by Santos used to tune the PID gains for
a quadrotor, in order to allow for stable hover and simple trajectory following. The principle
of learning automata is to give each action a probability of being selected. Following from
the received reward, the probability of the action is adjusted: it will be increased when the
reward is high, but decreased when the resulting reward is low. In this way, the probabilities of
selecting actions is iteratively updated, ultimately, for each given state to make the probability
of one of the actions converge to one.

When this method is implemented online, it could be considered as a purely model free
reinforcement learning algorithm. For a quadcopter hover task this way of learning is not
suited, since it will crash a lot before it has learned the proper policy. As a result, Santos
[25] uses this method offline in simulation. When the policy has converged in simulation, it
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is used in an actual real life experiment. This policy yields acceptable results for the hover
task, but it would not be able to cope with changing conditions.

Dynamic programming approaches

Some of the aforementioned methods are methods that can be applied without a transition
model of the system, though they can also be applied with a transition model. There is a
class of algorithms that does not function without a proper model of the system, these are
approaches using dynamic programming. In the work of Abbeel [8] and Palunko [19], this
approach is used in order to find a good policy.
Dynamic programming works using the principle of optimality. When the full MDP is known,
similar to some of the model free methods, the policy will be iteratively improved towards the
optimum. This can be for example done using policy iteration, which is shown in Algorithm
7. By this, the Bellman equation is solved iteratively to find the optimal policy π∗(s). For
a more elaborate explanation on dynamic programming approaches, the book of Sutton and
Barto [4] is a good introduction, and the book of Busoniu [11] is a good extension on this for
large and continuous state spaces.

Algorithm 7 Dynamic programming policy iteration
Inputs:
Initialize Q(s, a) and π(s)
while π(s) is still changing do

while Q(s, a) is still changing do
Q(s, a)← ρ(s, a) + γQπ(s′, a′)

end while
Qπ(s, a) = Q(s, a)
π(s)← arg maxaQπ(s, a)

end while
Q(s, a) = Q∗(s, a), ∀s and ∀a
π(s) = π∗(s), ∀s

4-2 Model based applications

Having looked at the different components of reinforcement learning methods that are used for
quadrotor control, in this section some model based examples of algorithms will be studied,
to see how these components can be used together. In section 4-2-1 some algorithms that use,
or could use, human expert demonstrations within their algorithm are discussed. In section
4-2-2 some examples that do not use human expert demonstrations are presented.

4-2-1 Model based algorithms that (can) use human expert demonstration

Policy Iteration using a least squares transition model deducted from demonstrations

The first model based algorithm case study is found in a paper of Waslander [20], where an
Integral Sliding Mode controller is compared to a reinforcement learning controller. The task
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is to control the altitude of a quadrotor. The set-up of the reinforcement learning algorithm
consists of a regulative reward function, which penalizes deviations from a reference altitude
and velocity. In this algorithm no explicit value function is used. Since this is an offline model
based algorithm, complete episodes are evaluated in simulation, and so the total return after
an episode is used as a measure of comparison between policies. The transition model used for
this algorithm is a locally weighted linear regression, on either a human expert demonstration
set, or another training set. The policy basis is a random one, with the use of a polynomial
describing the policy as function of the states. The weights within the polynomial are adjusted
to find better policies.
The complete reinforcement learning algorithm is presented in Algorithm 8.

Algorithm 8 Model Based Reinforcement Learning [20]
1: Generate set S0 of random initial states
2: Generate set T of random reference trajectories
3: Initialize w with reasonable initial guess
4: Rbest = −∞, wbest = w
5: repeat
6: Rtotal = 0
7: for s0 ∈ S0, k ∈ T do
8: S(0) = s0
9: for k = {0, 1, 2, . . . ,K − 1} do

10: ak = π(sk, w)
11: sk+1 = f(sk, ak) + v
12: Rtotal = Rtotal + ρ(sk, ak)
13: end for
14: end for
15: if Rtotal > Rbest then
16: Rbest = Rtotal, wbest = w
17: end if
18: Add Gaussian random vector to wbest, store as w
19: until wbest converges

From the algorithm it can be seen that this approach has, similar to genetic algorithms,
a solution around which randomly a new solution is sampled. This approach makes the
method, in terms of speed of convergence, sensitive to the initialization of the policy function
weights. The advantage of this approach is that it can escape local maxima and find the
global maximum. Waslander concludes that using this approach “The reinforcement learning
control law is susceptible to system disturbances for which it is not trained.”
The black box system identification method used, Locally Weighted Linear Regression (LWLR),
shows to be a good extension on an ordinary least squares solution. In the domain of states in
which a quadrotor operates, a lot of variety is present. The local weighting in the regression
makes it possible to fit a good model in the presence of local effects. An analysis of the model
in, for example, ground effect showed a good representation by the model.
Concluding, the big advantage in this paper is the use of human expert demonstrations ,in
combination with the LWLR model, which shows promising results. The learning algorithm
itself is used offline, so is less suitable considering the demand of performing well in changing
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conditions. An online extension of the algorithm could be a solution to this. It uses an initial
policy found offline using the method described before, and then online continues learning,
updating the policy weights after each episode.

Using expert pilot demonstrations in helicopter acrobatics

The only method described in this literature survey which is not applied to a quadrotor, is the
work of Abbeel [8]. There are many differences between helicopter and quadrotor dynamics,
however, they are both complex. The reason this helicopter application is studied, is that it
distinctly uses human expert demonstrations for complex maneuvers.
The tasks pursued in this paper are challenging; acrobatic maneuvers such as front flips
and side rolls. The algorithm consists of the following components. The reward function is
regulative. It contains the errors of position, velocity and rotations over all different axes
as well as the control inputs. Similar to the effort of Waslander [20], the algorithm is used
offline. As such it does not use an approximation of the value, but uses the cumulative reward
over an episode instead, to evaluate a policy. The transition function is derived using a so
called grey-box [18] system identification method. This means that a simple model structure
is assumed according to the dynamics of the helicopter. The parameters within this model
structure are found using linear regression, with as training input the data of a set of human
expert demonstrations. The policy is found using differential dynamic programming which
has a policy iteration approach.
Evaluating the work of Abbeel, first of all it should be noted that the final implementation
of the algorithm has lead to successful autonomous execution of some advanced aerobatic
maneuvers. The grey-box system identifications shows potential, since it includes some prior
knowledge to the system, which in combination with the expert demonstrations yields good
results. It was found that, since these maneuvers are rather complex, and the algorithm does
not learn anymore while flying, some of the rewards had to be hand-tweaked, to end up with
satisfactory results [8]. This definitely is a downside of the chosen, model based approach.

4-2-2 Model based algorithms that do not use human expert demonstration

Offline approximate value iteration using a simple white-box model

In the paper of Faust [3], the task described is trajectory generation for a quadrotor with
a slung load, in order to reach a target location with minimal swing of the load. In this
algorithm, the reward function is mission specific. It contains the distance to the goal, i.e.,
the closer to the goal, the lower the penalty. Furthermore, it contains the swing angle, so
that the penalty increases with an increasing swing angle, in order to minimize the swing of
the load.
The basis functions are mission specific. The only basis functions used are the distance
towards the goal, the velocity, the swing angle and the swing angular velocity. The advantage
of mission specific basis functions becomes clear; only a few basis functions are needed, since
they are directed towards the mission.
This algorithm uses a simple transition function. A transition function is used, since only the
state value is estimated with the basis functions, and not the state-action value. Hence a way
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of calculating the next state is needed, to determine what the best action is. In this case, a
simple white-box model is used (explained in Equation 4-6).

The policy is learned offline using a simulator. The learning is done using approximate value
iteration, which provides an approximate value function. The policy employed on the physical
task is fully greedy towards the approximate value function: π(s) = arg maxa(WT ·Φ(f(s, a))
where f(s, a) is the aforementioned transition function.

The results of simulations and experiments show that the learned agent reaches the goal with
an acceptable performance. Whereas the general trend in the trajectory in experiment and
simulation is similar, the experiment shows much bigger oscillations. This can be explained
by the fact that the simulator used is not a perfect model of reality, and hence some effects
are not properly assessed by the simulator. In order to cope with this difference in simulator
results and experiment results, noise was added to the simulator dynamics. This addition did
bring the results of the simulator closer to those in the experiment, however, still significant
differences are present. This result clearly shows the limitations of model based methods.

Learning automata in a model based way

Santos [25] uses the principle of learning automata to control a quadrotor in hover. The
actions are defined differently in this work compared to the aforementioned efforts. Where
in Faust [3] and Abbeel [8] the actions are actual control actions (forward and backwards
acceleration for example), Santos approaches this a little bit differently; the action space is
defined as an equidistant distribution over the proportional, integral and derivative gains of a
PID controller on the orientation angles and position of the quadrotor. The reward following
from an action, therefore, is composed using the average attitude over four seconds with a
particular combination of gains in terms of steady state error, overshoot and cumulative error,
which is definitely regulative.

The approach of Santos which tunes PID gains in simulation by evaluating the performance
of a set of gains over a window of time, is different from other approaches discussed in
this literature study. It shows that reinforcement learning approaches can also be used in
combination with conventional PID control. It should be noted though, that this would only
be possible offline in this case, since a quadrotor which starts flying with randomly initialized
PID gains, will have a small chance of hovering well enough not to crash at the first iteration.

4-3 Model free applications

The following sections will describe some case studies of model free algorithms used in quadro-
tor control. In section 4-3-1 some algorithms that use, or could use, human expert demon-
strations within their algorithm are discussed. In section 4-3-2 some examples that do not
use human expert demonstrations are presented.
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4-3-1 Model free algorithms that (can) use human expert demonstration

Shaker: least squares policy iteration using human demonstrations

The first model free approach studied is the effort of Shaker [15], which describes the use
of a Least Squares Policy Iteration (LSPI), with continuous states and actions, to learn a
quadrotor in simulation to land based on computer vision.

The reward function is regulative, which rewards when the goal is reached, but also gives a
reward which gradually changes when getting closer to the goal. The Q-function is approx-
imated using generic basis functions. Two different sets of basis functions are used, Radial
Basis Functions and Polynomial Basis Functions, which both show good results. As this is
a model free algorithm, there is no transition function used. The policy iteration algorithm
is greedy towards the Q-function, which is approximated using the basis functions. The Q-
function is updated by changing the basis function weights. In most examples in literatur,e
LSPI considers discrete actions, in this algorithm a continuous action space is implemented.
This gives the advantage of allowing for smoother trajectories.

A downside of the work of Shaker is that this approach has not been tested on a real MAV
in experiment, but only in simulation. In simulation the policy converged, fastest with the
use of radial basis functions, and showed promising results. Interesting is the fact that the
algorithm uses samples to learn a good policy with the LSPI algorithm. Shaker does not
use human demonstrations to collect these samples, but a simulator. It would, however, be
possible to obtain the samples from human demonstrations.

Continuous action fitted value iteration with potential use of human demo’s

Faust [24] uses the Continuous Action Fitted Value Iteration (CAFVI) approach for learning
two tasks: A cargo delivery task with a cable suspended load, and a rendezvous task of a
quadrotor slung load with a ground robot vehicle. In this section the cargo delivery task will
be analyzed.

The reward function used in this algorithm is a regulative one; it rewards reaching the end
goal, but also penalizes the distance to the end goal, and the sling angle. The basis functions
are the same as in the previously described work by Faust [3]; they use the distance to goal,
velocity, load displacement and load angular velocity, which is a mission-specific set of basis
functions.

This is a model free method, and hence has no need for a transition function. The CAFVI
algorithm does need samples however. They can be obtained using human expert demonstra-
tions or by a simulator. In this case the state is randomly sampled using a simple simulator,
which is the same as in Equation 4-6.

Three different way of defining a policy are used in this approach, which are different from
the usual (ε−) greedy policies. First is the Manhattan policy, which determines an action in
a serial way; it finds the maximum of Q on one axis in the state space, and from that point
on finds maxima on the subsequent axes. The second method is called the convex sum policy,
which is a convex combination of the maximums found on each axis independently. Finally,
there is the axial sum policy, which is a maximum of the policy approximation obtained using
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the convex sum policy and non convex axial combinations. The policies do not have a distinct
way of exploring such as ε-greedy policies, but do so because the policies are sub optimal, and
hence explore a bit around the optimal policy. The update of the policy is done using the
value function update, which is done using the CAFVI algorithm as described in Algorithm
6.

To evaluate the performance of the different policies within the CAFVI algorithm, they are
compared to each other and to a discrete AVI method similar to previous work of Faust [3].
It is shown that the computation time for the CAFVI approach is independent of the input
dimensionality, in contrast to the discrete AVI method. This shows a big advantage for high
dimensional action spaces.

The results on the cargo delivery show that the convex sum policy performs best on a number
of criteria. The computational time for this policy is lower than for the others, and lower
than for the discrete AVI method. Moreover, it performs best in terms of minimal load swing
and in energy needed for control. On the other hand, the axial sum policy performs better
in terms of time to goal and delivery precision. In all these criteria mentioned, the CAFVI
method reaches better performance than the discrete AVI approach.

A downside of this method, as mentioned, is that there are criteria on the reward and basis
function to ensure convergence. Furthermore, the method is a little less transparent than
for example the AVI algorithm, which has a more straightforward policy and approach, in
which it is easier to analyze what happens within the algorithm. An interesting feature of
the CAFVI algorithm, is the possibility of using human demonstrations as samples.

4-3-2 Model free algorithms that do not use human expert demonstration

Online least squares policy iteration

In [10], Palunko tries to minimize the tracking error of a slung load, suspended from a quadro-
tor, while also minimizing the swing angle of the cable. This means that the algorithm has
to find a sequence of control actions for the quadrotor, that ensures that the load follows a
prescribed trajectory.

For this task, the reward function is a continuous one specific to the mission. It penalizes the
error of the load with respect to the reference trajectory, the load swing angle and the control
action, by that minimizing the control effort. The basis functions in this algorithm are general,
they are chebyshev polynomials of the first kind, which include state and action, and as such
constitute a state-action value function. The policy is ε-greedy towards the Q-function. The
update of the policy is done every seven iterations, using the approach described in Algorithm
4.

The performance on the prescribed task is tested both in simulation and in experiment. In the
simulation the performance of the algorithm is good. The reference trajectory is followed well
and the slung angle stays well within 7 degrees, oscillating a little bit around the equilibrium
position. The same goes for the experimental results, which show a good performance of the
algorithm, albeit with a little higher deviations from the reference than in simulation. An
interesting test done in simulation for this algorithm is a change in the conditions, to see
how the algorithm responds to changes in the environment. To this end the length of the
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cable was suddenly changed in the simulation. The results show that in a short time the new
situation is anticipated for. This result shows the power of a model free and online algorithm.
It anticipates on changing conditions, because it is not using a model of the environment and
keeps updating its policy while interacting with the environment.

4-4 Performance metrics for comparison of methods

In literature, different criteria are used to evaluate the relative performance of various algo-
rithms. In general, two main criteria are of interest:

1. The time/number of iterations it takes to learn a good policy. This criterion tries to
answer the question: How fast can the algorithm learn?

2. The performance of the final policy on the task at hand. This criterion tries to answer
the question: How well does the final policy perform the task?

In literature on quadrotor reinforcement learning control, mostly qualitative comparisons are
made between different algorithms. The majority of papers only looks at the time history
of different state parameters, to evaluate performance at a certain task, e.g., Waslander
[20] shows the reference altitude the quadrotor should follow, and the actual altitude the
quadrotor is flying as a function of time. The conclusion drawn from the plots is as follows:
“Comparison of the step response for Integral Sliding Mode (ISM) and RL control reveals
both stable performance and similar response times, although the transient dynamics of the
ISM control are more pronounced.” [20]. This is a qualitative way of evaluating performance
and compare different methods. To specifically compare different methods with each other,
there is a need for methods that are quantitative and clearly defined. A few papers use a
quantitative way of evaluating performance of algorithms, considering either the time to learn,
or the performance of the final policy found by the algorithm.

4-4-1 Time to learn

Faust [3] uses the offline CAFVI algorithm with different policy structures, and compares
them to discrete AVI. Since these policies are all offline, the number of episodes needed
to converge is a measure for the time to learn a policy. Since the computation time per
iteration can differ between methods, the actual time to learn might be a better criterion to
compare algorithms. The absolute time to learn is dependent on the computer on which the
computations are carried out. This means that comparing the time to learn does not give a
reproducible result. To this end Shaker [15] and Kaelbling [26] do not use the time to learn,
but the computational complexity of the operations needed. “A standardized measurement
of the computational time complexity of an algorithm is the number of elementary computer
operations to solve a problem, in the worst case.” This is a more cumbersome approach, but
does provide reproducible comparisons.
In online algorithms, the time to learn is more critical than in offline algorithms. In offline
algorithm the time to learn is mostly a matter of needed computational resources. For online
algorithms, the time to converge to a satisfactory result is critical, since the performance of
the task is most likely low, when a good policy has not been found yet.
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4-4-2 Performance

The performance of an algorithm is apart from the time to learn, also determined by the
quality of the found policy. In the paper of Faust [3], the performance of the different algo-
rithms is compared for a cargo delivery task. The algorithm runs offline, so the policy found
after learning is evaluated. Several different criteria are studied: The load displacement, the
time to reach the goal, and the energy needed to control the quadrotor. This is a method of
separately evaluating the goals for the task at hand. For each of the goals a winner is found.
This approach is a common approach for comparing different algorithms [24].

A more general approach to compare the performance, especially for online algorithms, is
measuring the accumulated return for a task. This approach is also used in an online algorithm
by Faust [24], and uses the initial goals set within the algorithm: the rewards. This method
allows to compare different algorithms, using the same reward function in a general sense.

Concluding, the performance of the policy found by the algorithm is the most important
criterion comparing different offline algorithms, since this is the policy that will be used in
actual flight. For online algorithms this same criterion is also important. However, for online
algorithms the accumulated return is also an important criterion, as this is a measure of how
good or bad the policy performed, while it was still developing.

4-5 Conclusions on the literature review

A literature study is conducted to identify different reinforcement learning approaches which
are used in quadrotor control. Within these methods, the use of human expert demonstrations
is studied, as well as the way in which performance is measured and compared between
different algorithms.

It is found that several different reinforcement learning techniques have been used in quadro-
tor control. A distinction can be made between model based and model free algorithms.
Furthermore, a distinction is made between algorithms that are offline, and algorithms that
run online, and as such can adapt to changing conditions.

In quadrotor control, there is as far as this study reached only one mention found of an
algorithm that uses human expert demonstrations within a reinforcement learning algorithm.
Waslander [20] describes an algorithm that runs offline, and makes use of flight data of a pilot
flying the quadrotor. The algorithm used is offline and model based, and thus not capable
of adapting to changing conditions. Abbeel [8] describes the explicit use of human expert
demonstrations within reinforcement learning as well. The application of this is a helicopter
however. Furthermore, it should be noted that similar to Waslander, the algorithm used
by Abbeel is an offline, model based method, and as such is not capable of adaptation to
changing conditions.

In some algorithms found, there would be the possibility to use expert demonstration, but
as far as the corresponding papers describe, a simulator was used to generate input-output
data, and no human demonstrations. Faust [24] makes use of continuous action fitted value
iteration, which uses input-output samples to calculate an update of the policy. The explicit
use of human demonstration is not mentioned in this paper. Furthermore, the method runs
offline, which makes it not able to adapt its behavior. Shaker [15] on the other hand, uses
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least squares policy iteration, in which the basis function weights are calculated online, by
using an initial set of samples, without using a model of the dynamics of the system. Human
expert demonstrations can help to make the policy start with a good guess of a policy.
Concluding, a good implementation of human expert demonstration within a reinforcement
learning algorithm for quadrotor control, which is able to adapt to changing conditions, is
not yet available.

In the literature study the different components of a reinforcement learning algorithm, as
used in quadrotor control, are discussed. It can be concluded that when the wish to have
an algorithm that is generally applicable (different tasks, extensible to different vehicles), it
helps to use an open reward function, and general basis functions. For a policy base and
improvement, LSPI and AVI are found to be good options. They are converging rather fast
towards a good policy, and allow for the use of human demonstrations.

Finally, it is found that up until this moment few different performance metrics are used in
literature to quantitatively assess the performance of a reinforcement learning algorithm on a
particular task. A measure which is good for comparing different methods is the cumulative
reward, as long as the same reward function is used. In addition to this a measure of “time
to learn” is useful, to value methods that converge faster.
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Chapter 5

Preliminary Simulation

In the preliminary simulation the feasibility is evaluated of the approach proposed in the lit-
erature study, using a simplified version of the quadrotor slung load problem. The simulation
is two dimensional, with only lateral movement of the quadrotor x, and swing angle of the
cable θ. The task in this simulation is to drop the slung load at the target as quickly as
possible. A snapshot of the simulation can be seen in Figure 5-1. Since the quadrotor cannot
move up or down, it has to swing the load up to get it in the target basket.
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Figure 5-1: Snapshot of the preliminary 2D quadrotor simulation

In section 5-1 the simulation setup will be described after which the implemented algorithms
are discussed in section 5-2. Section 5-3 shows the results for the implemented algorithms on
this 2D problem. Finally, in section 5-4, the values found by the algorithm are studied, as an
extra check on the reliability of the results, and to see if some behavior can be generalized to
be used for constructing basis functions.
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5-1 Simulation setup

For this 2D preliminary simulation, the position of the quadrotor is defined in an inertial
frame, with x pointing right and z pointing downwards. The location of the pendulum is
described in a radial reference frame, centered in the c.o.m. of the quadrotor. When the
pendulum is hanging down, θ = 0 and swinging to the right corresponds to positive θ.

First, the motion of the quadrotor is considered. The influence of the slung load on the
quadrotor is neglected. Since the quadrotor can only move along the x-axis, its position is
fully described by its x position xq.

The control input for the system is the acceleration of the quadrotor. It is assumed that this
is the only net acceleration on the quadrotor.

ẍq = a (5-1)

The state is propagated using a simple Euler integration scheme with time step Ts.

ẋq = ẋq0 + ẍq · Ts (5-2)
xq = xq0 + ẋq · Ts (5-3)

The angular acceleration is calculated as follows: [3]

θ̈ =
[
− cos θ sin θ

L

]
·
[
ẍq
−g

]
(5-4)

The angle is propagated using an Euler integration scheme as well.

θ̇ = θ̇0 + θ̈ · Ts (5-5)
θ = θ0 + θ̇ · Ts (5-6)

In this simple simulation, a couple of assumptions are made concerning the slung load. The
cable is assumed to be inelastic and mass less. Furthermore, it is assumed that the cable is
suspended from the c.o.m. of the quadrotor. The system is assumed to be undamped, so
aerodynamic forces are neglected, as well as friction of the cable in the suspension point. Fur-
thermore, it should be noted that the cable is actually modeled as a rod, since the simulation
does not allow the cable to become slack.

5-1-1 State and action

The state of the quadrotor with slung load is represented by its position, velocity, the slung
angle of the load and the angular rate of the slung load. To keep the preliminary simulation of
the reinforcement learning algorithms simple, the state variables are discretized and capped
to certain minimum and maximum values, which are presented in Table 5-1.
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Table 5-1: Discretization of the states of the system

minimum maximum spacing number of entries
xq [m] -2 8 0.5 21
ẋq [m/s] -5 5 0.5 21
θ [deg] -110 110 10 23
θ̇ [deg/s] -540 540 20 55

5-1-2 Definition of goal state

When the load is dropped into the target basket, the simulation is stopped. To reach the
goal, the following conditions should be fulfilled at the same time:

• The x position of the load is within xgoal±xmargin where xgoal is the basket center, and
xmargin defines its width.

• The z position of the load must higher than zgoal but lower than zgoal + zmargin

• The load must be moving downwards (zl ≥ 0)

In short, the load must fall in the basket from the top.

5-1-3 Used dimensions and constants

In Table 5-2 the constants used in this simulations are presented. The reward structure used
in this problem is kept as simple as possible. A reward is given when the goal is reached. As
the goal is to drop the load in the basket as quickly as possible, the time to reach the goal is
included in the reward. Since a sling angle of higher than 90 deg is not realistic, because this
would cause the cable to tangle up with the propellers, a too high sling angle is penalized in
the reward structure. The reward structure is formalized in 5-7.

Table 5-2: Used dimensions and constants

Variable Value Unit Description
g 9.81 m/s2 Gravitational acceleration
L 1 m Cable length
Ts 0.2 s Time step
Tend 5 s Simulation time
xstart 0 m Starting position
zstart 0 m Starting position
xgoal 5 m Goal position
zgoal 0.5 m Goal position
xmargin 1 m Goal margin
zmargin 0.3 m Goal margin
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r =


−t2goal if goal reached
−2T 2

end if goal not reached
−10 if θ > 80 deg

(5-7)

5-2 Implemented algorithms

As mentioned before, two algorithms are implemented within this preliminary simulation.
As a benchmark a simple Q-learning algorithm is implemented. The second algorithm is a
reinforcement learning algorithm that uses human demonstrations.

5-2-1 Q-learning implementation

The benchmark reinforcement learning algorithm used in this research is discrete Q-learning
with ε-greedy exploration. Algorithm 9 shows the working principle of Q-learning. As can
be seen in lines 13-16, the Q-values are updated only at the end of an episode. This is done
because at that moment, the exact return is known for the visited state action-combinations.

Algorithm 9 Q-learning with ε - greedy exploration and MC updates
1: Input: number of iterations K, simulation time Tend, timestep Ts
2: exploration and learning rate schedule {εk}∞k=0
3: Action space A
4: Initialize state s0
5: Initialize Q(s, a) with zeros
6: for k = 1 : K do
7: s = s0
8: for j = 1 : TendTs

do

9: ak =
{

a ∈ arg maxāQk(sk, ā), with probability 1− εk
uniformly random action in A, with probability εk

10: apply ak, measure next state sk+1 and reward rk+1
11: Break if goal is reached
12: end for
13: for j = 1 : jmax do

14: Rj =
jmax∑
n=j

rn

15: Qk+1(sj , aj) = Qk(sj , aj) + αk[Rj −Qk(sj , aj)]
16: end for
17: end for

5-2-2 Q learning with human demonstration implementation

In LSPI for quadrotor control which is used by Shaker [15], the state is continuous, and
estimated using basis functions. In this simple simulation a discrete state space is used, to
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allow for quick results and comparison. The problem, however, is that the proposed method
of using human demonstrations in RL, is done with least squares estimation of the basis
functions weights. By first using samples of human demonstrations, a good initial guess
of these weights is made, and hence the algorithms performance is improved. Since in the
discrete case, basis functions are not used, a slightly different approach is taken, still following
the contours of the continuous state LSPI.

LSPI is mimicked by using the human demonstrations for initial guessing of the state-action
values Q, see Algorithm 10. A number of human demonstrations is used, for which, using
Monte Carlo update, the average value of all the visited state-action pairs is determined (line
6-11). Then instead of initializing the Q-matrix random, or with zeros, all the visited state-
action values are formed by the values found using the human demonstrations (line 13). As
such the initialization of the value estimation is improved using the human demonstrations,
as is the case in the LSPI algorithm proposed by Shaker [15].

Algorithm 10 Q-learning with ε - greedy exploration and MC updates - Use preknowledge
1: Input: number of iterations K, simulation time Tend, timestep Ts
2: exploration and learning rate schedule {εk}∞k=0
3: Initialize state s0
4: Initialize Q(s, a) with zeros
5: Here follows the initialization using expert demo’s of the Q table
6: for n = 1 : Nsamples do
7: for j = 1 : jmax do

8: Rj =
jmax∑
n=j

rn

9: Qn+1(sj , aj) = Qn(sj , aj) + 1
#V isits(sj ,aj) [Rj −Qn(sj , aj)]

10: end for
11: end for
12: From here on Q-learning is applied
13: Q0 = QNsamples
14: for k = 1 : K do
15: s = s0
16: for j = 1 : TendTs

do

17: ak =
{

a ∈ arg maxāQk(sk, ā), with probability 1− εk
uniformly random action in A, with probability εk

18: apply ak, measure next state sk+1 and reward rk+1
19: Break if goal is reached
20: end for
21: for j = 1 : jmax do

22: Rj =
jmax∑
n=j

rn

23: Qk+1(sj , aj) = Qk(sj , aj) + αk[Rj −Qk(sj , aj)]
24: end for
25: end for
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5-3 Results

5-3-1 Description of the human demonstration sets

In this preliminary simulation four sets of human demonstrations are used. These are gener-
ated using the simulation real-time with a joystick as input. A description of each set is given
in Table 5-3. Each set consists of five demonstrations by the human pilot.

Table 5-3: Description of the demonstration sets

Set number Description
1 First set with the demonstrator trying to perform best.
2 Second set with the demonstrator trying to perform best.
3 Set in which the demonstrator starts steering to the left, which is not

optimal, and after this tries to perform best.
4 Set in which the demonstrator deliberately shows poor performance.

The applied inputs for the different demonstration sets are shown in Figure 5-2. Here it
can be seen that especially the first set has low variation between the different trials. In
demonstration set number 4, a lot more variation can be seen. Furthermore, it can be seen
in set 3, that each trial starts with a movement to the left (a negative action) before moving
the quadrotor to the right. As a measure for the type and quality of the sets of human
demonstrations, in Figure 5-3, a boxplot is presented to show the mean return and variance
within the set for the used demonstration sets. Especially the fourth set stands out, which is
logical because here a lot of variation was used deliberately by the human pilot, and hence
the scores were rather different.
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5-3-2 Influence of initialization parameters

A couple of parameters used in both the Q-learning algorithm and the Q-learning algorithm
with human demonstration can be tuned. The learning rate α, exploration rate ε, the number
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of iterations and the initialization of the Q-values have an important impact on the outcome
of the algorithm. All these parameters are varied to find a good combination of them for
satisfactory results. An analysis of these variations is provided in Appendix A. In short, it
was found that higher exploration rates result in a faster convergence to an optimal policy.
However, this comes at the cost of a lower average return, since a large portion of the actions
is random, and hence often yields low returns. A good value for the exploration rate was
found to be 1 %. The learning rate should be chosen not too high and not too low, a value
of 0.01 gives good results. In general it was seen that 2000 iterations is enough to converge
to a satisfactory policy, however, for lower learning rates, more iterations can be needed.

The initialization of the Q-values has an interesting influence. In pure Q-learning, it would
make sense to initialize the Q-values with zeros. Since all actual trials result in a negative
return, this approach will stimulate optimism in the face of uncertainty i.e., all states that
have not been visited yet, have higher value than the states that are visited already. In
the long run, for Q-learning, this results in finding an optimal policy. Putting the initial
Q-values lower, means that the algorithm converges faster to a satisfactory policy, but not to
the optimal one.

For the Q-learning combined with the use of human demonstrations, however, initializing the
Q-values at zero does not make sense. It would mean that all states visited in the demos,
which have gotten a value of lower than 0, will be skipped. This means that the contrary
happens to what should happen using the human demonstrations. As such, a value of -50 as
initialization of the Q-values is chosen.

5-3-3 Difference between Q-learning and Q-learning using human demonstra-
tions

Using the aforementioned initialization, the Q-learning algorithm is ran for 2000 iterations, as
well as the Q-learning with the use of the four different human demonstration sets. Figure 5-4
shows the results of this. The top plot shows the return at every single iteration. Human
demonstration set 1 and 3 are omitted in this plot for readability. Taking a closer look, it
can be seen that with pure Q-learning the algorithm needs around 150 iterations to converge
towards a satisfactory policy. For the human demonstration set 1, the algorithm converges
straight away. Human demonstration set 4 shows poor behavior, which shows that such a
bad set of human demonstrations does not improve anything.

In the lower plot of the figure, the average return is plotted for the different demonstration
sets and the pure Q-learning. It can be seen that set 1 and 2 show similar behavior, which
is logical since the demonstrations are almost identical. Set 3 is a little bit worse, but still
comparable to the first two sets. From this graph it can be concluded that using a proper
human demonstration set, the average return will be high, since the algorithm converges
straight away to a good policy, compared to pure Q-learning, that needs some more time.
Furthermore, it can be seen that using a bad set of human demos yields bad results. Interesting
to note here, is that for set 1 and 2 the greedy policy in the end results in a return of -4.
This is higher than the return achieved in the demonstration runs themselves, which means
that the algorithm does use the human demonstrations, but not blindly copies them, as it
outperforms the human demonstrator.

Master of Science Thesis G.K. Schonebaum



62 Preliminary Simulation

0 500 1000 1500 2000

R
et

ur
n

-200

-150

-100

-50

0

Iterations
0 500 1000 1500 2000

A
ve

ra
ge

 r
et

ur
n

-80

-60

-40

-20

0

Set 1
Set 2
Set 3
Set 4
No Demo

Figure 5-4: Return and average return for Q-learning and Q-learning with human demonstrations

Another interesting result can be seen in Table 5-4. Here the average return and the final
greedy return are presented for Q-learning and the four human demonstration sets over 5000
iterations. For the Q-learning, the the Q-values are initialized at zeros here, to stimulate
optimism in the face of uncertainty. From the table it can be seen that the Q-learning
algorithm has, by far, the worst average return over 5000 iterations. The final greedy return,
however, is best for the Q-learning. This solution has not been found by the algorithm using
human demonstrations, since these are from the start on more focused towards solutions which
are similar to the ones demonstrated by the human. The solution found by the algorithm
using human demonstrations results in a sequence of states visualized in Figure 5-5. The
action sequence which yields the -1.96 score, which is presented in Figure 5-6, shows that the
quadrotor speeds up to the right, and does not make the load swing up to the right, but to
the left. This non-trivial solution was not part of the human demonstrations and differs too
much, to be found by the human demonstration algorithm.

Table 5-4: Average and greedy result

Set number Average return Final greedy return
1 -5.15 -4
2 -5.45 -4
3 -7.37 -5.76
4 -25.60 -24.84
Q-learning -40.75 -1.96
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Figure 5-5: Snapshots of the solution found by the Q-learning algorithm using human expert
demonstrations
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Figure 5-6: Snap shots of the solution found by the Q-learning algorithm
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5-4 Value function analysis

To see whether the discrete values learned by the Q-learning algorithm make sense, and to
see whether some useful relations can be found to use in basis functions, the values obtained
in the discrete 2D simulation are studied. An important aspect of the discrete nature of the
simulation so far is that a lot of state action combinations have never been visited, and as
such have a zero value.

5-4-1 Number of visits and value representation

When looking at the number of visits, two things are interesting to study. Firstly, the total
number of visits can be studied. This depends on the number of iterations performed. Com-
paring this number to the total number of state-action combinations, is a measure of relative
visitation. The total number of state action combinations can be found looking at the dis-
cretization (Table 5-5). The used discretization results in 876,645 state-action combinations.

Table 5-5: Discretization of the states of the system

minimum maximum spacing number of entries
xq [m] -2 8 0.5 21
ẋq [m/s] -5 5 1 11
θ [deg] -110 110 10 23
θ̇ [deg/s] -540 540 20 55

For the analysis of the value distribution in the discrete simulation, 100,000 episodes are
performed. This results in a total of 1,422,657 visits. This means that on average every state-
action combination is visited 1.62 times. This is a low number, but because of computational
limitations, the number of 100,000 episodes was deemed a reasonable maximum. The reason
that with so few iterations, still a good policy was found, can be attributed to the fact that a
large portion of the state-action space was never visited. Studying the results, it was seen that
only 285,649 state-action combinations were ever visited, which is 33% of the total number
of state-action combinations.

To reach this percentage of visited state-action combinations, one adjustment had to be made
in the algorithm. Before, the initial conditions were the same for each iteration, i.e., x = 0
m, ẋ = 0 m/s, θ = 0 deg, θ̇ = 0 deg. Using always the same starting point results in a
low number of visited state-action combinations. Only 69,379 state-action combinations are
visited in that case, which is only 8% of the total. To solve this issue, the initial values of x
and θ were randomly selected each iteration. The number of visited state-action combinations
would have even be larger when ẋ and θ̇ were randomly initialized as well. However, in this
case the problem becomes a lot harder to solve for the algorithm, because of the low similarity
in initial condition, and as such needs a lot more iterations to yield a good policy. Because
of the limited computational resources only x and θ were initialized randomly.

Since the value matrix has five dimensions for this problem, a comprehensive graphical repre-
sentation requires some creativity. In this section four plots are presented which average the
value over all state-action combinations which have the same value for one of the parameters.
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Figure 5-7 for example, shows the average over all state-action combinations with at a certain
x-position. In the upper plot, the number of visits is plotted, and in the lower plot the mean
value is plotted.

It is important to note however, that to make the plots more useful, the value is plotted for five
cutoff numbers (C). When the cutoff number is 5 for example, all state-action combinations
that have less than 5 visits, are neglected. This operation is included, since it shows the
values more distinct. Since the learning rate is rather low in this algorithm (0.01), the value
is changed only little every visit. This means that the value only converges after a lot of
visits, and as such it could be argued that state-action combination with a low number of
visits do not give a good representation of the true state value. Setting the cutoff number
to high however, would mean that only a few state-action combinations remain to take the
mean of, which results in poor results as well.

5-4-2 Value function results

Figure 5-7 shows the value as a function of position. First of all it can be seen that the
number of visits is relatively equally spread. The only exception on this are the edges of the
domain, where the quadrotor can get stuck. The value shows the expected behavior. The
value is highest between x = 4 and x = 6, which is the location of the goal. Regarding the
trend in this plot, the distance to goal seems a gradual relation with the value.
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In Figure 5-8 the value as a function of the velocity is plotted. In the upper plot it can be
seen that the number of visits is highest at ẋ = 0, which is attributed to the fact that this is
the initial condition, and as such is the starting point for each iteration.

Looking at the value plot, it can bee seen that the value is increasing for increasing positive
velocities. This makes sense, since it means that heading faster to the goal yields a higher
value. Zero velocity corresponds to a low value, which is logical. Moreover it can be seen that
negative velocities, when moderate, yields quite high values as well. This can be explained
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by the fact that this is necessary when the starting point is to the right of the goal. Because
of the layout of the problem, the region right of the goal is a lot smaller than the region left
of the goal, and as such, in general, a lower velocity to the left is wanted.

Figure 5-9 shows the value as a function of slung angle. For this slung load task, the load
should be swung up to make the load reach the goal. In the plot it can be seen that this
behavior is reflected by the value function. Slung angles between -20 and 20 degrees have a low
value, since at this angle the load would be not high enough to reach the goal. Slung angles
with a magnitude larger than 80 degrees show low values. This behavior can be explained by
the big penalty which is given at absolute angles of 90 degrees and larger.
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The final plot to study is Figure 5-10. In the number of visits it can be seen that low angular
rates are visited relatively often. The peak at zero angular rate can be attributed to the fact
that each iteration starts at zero angular rate. In the value, logical conclusions are hard to
deduce. Purely looking at the values, it seems that higher angular rates are higher valued.
This should, however, be probably attributed to the fact that the number of visits is higher
at low angular rates, and the values did not converge yet.

From these results it can be concluded that the values show logical behavior, that matches
the expectation. It is hard to conclude though that these results can be a foundation for
good basis functions, since no coupling effects are included here. The basis functions which
could be deduced from these results are: distance to goal, velocity towards goal and a basis
function which rewards slung angles between 30 and 70 degrees, either positive or negative.
For the angular rate, no clear pattern could be found. The combination of the aforementioned
basis functions were applied to this problem, but do not show satisfactory results. It can be
concluded that more sophisticated basis functions are needed for a good continuous value
approximation.
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5-5 Conclusions on the preliminary simulation

Looking at the difference between the pure Q-learning (benchmark algorithm) and the algo-
rithm using human demonstrations, a number of conclusions can be drawn. First of all, it
is shown that using human demonstrations results in a fast, almost immediate convergence
towards a satisfactory policy. Furthermore, it is seen that the resulting policy is better than
the demonstrations by the human. It must be stated though, that the quality of the human
demonstration is an important factor regarding the performance of the algorithm. When the
human demonstration is not good at all, the algorithm will not benefit, and could even per-
form worse than pure Q-learning, which uses no prior knowledge at all. A final remark is that,
when the algorithm uses human demonstrations, it can be the case that the optimal policy
will not be found, especially when this optimal policy is completely different from the (sub
optimal) policy deducted using the human demonstrations. In short, from this 2D simulation,
it can be concluded that human demonstrations drastically improves the time to convergence,
but can result in not finding the optimal policy when this optimal policy is too different from
the demonstrations given by the human expert.
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Chapter 6

Plan of Approach for the Research

In the previous chapter a 2D, discrete state simulation showed promising results. In order
to assess the performance of the selected algorithms in a more realistic setting, a plan of
approach is formulated in section 6-1. The most important next steps are the evaluation of
the algorithm in a 3D setting and, if that shows promising results, a real life experiment on
a quadrotor. Section 6-2 gives an overview of the 3D simulation plan, after which section 6-3
presents the experimental setup.

6-1 General plan of approach for the research

Following from the conclusions drawn from the literature study, a plan of approach for the
remainder of this research is formulated. As was mentioned in the conclusion of the literature
study, a good implementation of human expert demonstrations within a reinforcement learn-
ing algorithm for quadrotor control, which is able to adapt to changing conditions, is not yet
available. As such, the main goal is to construct such an algorithm. As a basis for this, the
approach of Shaker [15] will be used, since this approach is model free and online, and shows
the opportunity to be extended with the use of human demonstrations.

In addition to the previously defined research questions in the Introduction, the following
more specific questions should be answered in the remainder of this research:

• How does the proposed algorithm compare to Q-learning in a 2D simulation?

• How does the proposed algorithm compare to Q-learning in a 3D simulation?

• Does the proposed algorithm perform on a real quadrotor experiment?

• What are the requirements for a set of human demonstrations to be useful for the
proposed algorithm?
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Figure 6-1: Research overview

Figure 6-1 gives an overview of the research
project, progress flows from top to bottom.
Up until this point, the literature study has
been performed based on the research ques-
tions. A basis for an algorithm has been se-
lected following from this research.

First a preliminary two dimensional simula-
tion will be carried out to evaluate the po-
tential of the proposed approach, this simula-
tion is finished for discrete state, and will be
described in the next chapter. The 2D sim-
ulation will be extended to function in con-
tinuous state. After the 2D simulation, the
algorithm should work for continuous state
and will be tested in a 3D simulation, ful-
filling the benchmark task of a slung load
drop off. When the algorithm shows good
results in this simulation, the algorithm will
be tested in an experiment on the Parrot AR
Drone. Between these steps, the algorithm
and its settings will evolve, and as such it is
likely that every now and then a step back
should be taken, which in the figure is indi-
cated by the arrows.

Within all steps of the research (except for
the experiment), the performance of the al-
gorithm will be compared to the performance
of a reference reinforcement learning algo-
rithm, which will be Q-learning. The com-
parison will be based on the performance of
the greedy policy after a certain specified
time. Next to this, the average return over
all learning iterations will be compared, as
well as the time to converge to a satisfactory
policy. In this case the policy is referred to
as “satisfactory” when the slung load will be
dropped off at the goal, however, using the
fastest route is not required.

Within the algorithm, the effect of different
sets of human demonstrations will be evalu-
ated. The number of trials, the variance in
the trials, and other variations between dif-
ferent sets of human demonstrations, will be
studied to find guidelines for the used of hu-
man demonstrations.
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6-2 3D Simulation Plan and Architecture

In this simulation, the quadrotor will have all six degrees of freedom, and the slung load will
have either two or three degrees of freedom. When only a taut cable will be modeled, the
position of the slung load can always be described by two swing angles. If a situation where
the cable is slack will also be modeled, the system can switch to three degrees of freedom; the
location of the load in three axes. Whether this will be modeled, is to be determined during
the setup of the 3D simulation.

The task itself will also be extended to a 3D task. This means that the goal basket should
be reached using lateral and longitudinal control, and the goal will be at another altitude
than the starting point of the quadrotor. The initialization position of the quadrotor will be
varied, to make the algorithm flexible.

For the 3D simulation, the following components should be in place:

1. 3D Dynamics model of a quadrotor (Poppe’s model [27] - Simulink model including the
dynamics of a quadrotor which was used for an nonlinear dynamic inversion controller.
The model differentiates between dynamics in small attitude angles and large attitude
angles)

2. Implementation of the slung load in this 3D model

3. Low level controller allowing to control the quadrotor with a joystick. To determine to
which degree the low level control must be implemented, an interview will be conducted
with an experienced quadrotor pilot, so that controlling the quadrotor in simulation will
match controlling the quadrotor in real life.

4. Real time (RT) 3D simulation environment for pilot to control the quadrotor (simulink)

5. Generation of useful sets of human demonstrations.

6. Reward structure

7. Implementation of the RL algorithm in 3D

8. optional: Noise realization to model wind, sensor noise etc.

9. A value approximation method (Basis functions)

10. A non-real time simulation to make iterations for the RL algorithms

An overview of the intended architecture is presented in Figure 6-2, showing how the different
bullet points from the list above interrelate. The 3D dynamics model (1) is at the core of the
simulation. It outputs, in combination with the slung load block (2), the state of the vehicle.
The state is fed back to the controller (3), which also gets the action input. The controller
block uses a control law to calculate the required rotational velocities, which are the input
for the 3D model. The actions can be generated by either a pilot (5), or the reinforcement
learning algorithm (7). For the pilot to control the system, a visual feedback is required from
the states of the vehicle in real time (4). The reinforcement learning block needs as input
the reward, which is calculated by the reward structure block (6) and the state. To make the
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model even more realistic, wind and other disturbances can be included using the disturbance
block (8). A disturbance could also be added to the state feedback, to model sensor noise,
this is not included in this overview for clarity of the figure.

Controller (3) 3D Model (1)

Slung load (2)

Pilot (5)

RL (7)

Reward (6)

Disturbance (8)

RT visuals (4)
ω

apilot

aRL

r

s

image

Figure 6-2: Overview of 3D simulation architecture

6-3 Experimental Setup

In the case that the reinforcement learning algorithm using human demonstrations still looks
promising after the 3D simulation, an experiment will be carried out. This experiment will
be done in the Cyberzoo 1 at the faculty of Aerospace Engineering in Delft, using a Parrot
AR Drone 2.0 2. The task to be performed will be the same as in the 3D simulation.

6-3-1 Test setup

The experiments will be carried out in the Cyberzoo, which is located in the “Vliegtuighal”
at the faculty of Aerospace Engineering. The Cyberzoo consists of a 10m x 10m x 10m
area, which is enclosed by safety nets. Figure 6-3 gives an impression of the Cyberzoo. The
Cyberzoo is equipped with an Optitrack 3 system, which provides a simulated GPS for indoors.
This system is able to track the position and orientation of vehicles within the Cyberzoo, by
the use of markers on the vehicles and cameras in the arena. Within the experiment, the
quadrotor and the slung load should be equipped with markers, to determine their state at
all times.

1TU Delft Robotics Institute. http://robotics.tudelft.nl
2Parrot AR.Drone 2.0. http://ardrone2.parrot.com/
3OptitrackTM. http://www.naturalpoint.com
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Figure 6-3: Cyberzoo flight arena

Figure 6-4: Parrot AR Drone 2.0 (picture from http://ardrone2.parrot.com/)

The quadrotor selected to implement the algorithms on, is the Parrot AR drone 2.0. This
quadrotor is selected because it is available at the faculty of Aerospace Engineering, there is
a lot of experience on it in house, and it is relatively easy to program. Figure 6-4 shows the
Parrot AR Drone 2.0. It is equipped with a front and bottom camera and weighs 420 grams.
The AR drone 2.0 has a 1 GHz 32 bit ARM Cortex A8 processor which runs Linux 2.6.32.
For position and attitude estimation there is a gyroscope, magnetometer and accelerometer
on board.

6-3-2 Implementation of the algorithm

The implementation of the algorithm on the AR Drone will be done using the open source
software Paparazzi 4. Within the Paparazzi library, a primary attitude controller should be
selected as well as an altitude controller. As such, the quadrotor should be controllable by a
human operator. When this low level control is in place, the reinforcement learning algorithms
should be implemented, which uses the state estimation of either the Optitrack system, or
the on board state estimation to calculate rewards. The output of the programmed algorithm
should be a control input for pitch, roll and yaw, as well as thrust.

6-3-3 Human demonstrations

For the experiment, at least three good pilots have to be found in order to generate a number
of human demonstration sets. Each demonstration set should consist of at least 10 trials.
Each pilot will be asked to complete several sets of demonstrations. Some sets should be

4Paparazzi Free Autopilot. http://wiki.paparazziuav.org
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performed when the pilot tries his/her best to finish the task. Other sets should include some
deliberate deviation from the optimal strategy to a varying extent, in order to be able to
compare different kind of demonstration within the reinforcement learning algorithm.
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Chapter 7

Conclusion on the Preliminary
Research

This preliminary research gives an insight into the use of human expert demonstrations to
improve reinforcement learning for quadrotor control. The following research sub-questions
are formulated for this research:

1. How can human expert demonstrations be used within RL algorithms?

2. How can the performance of a RL algorithm be defined?

3. How do RL algorithms using human expert demonstrations compare to each other, and
how do they compare to existing techniques?

In the literature review, the first question is partly answered. It is found that in literature
two ways of using human demonstrations within RL for quadrotor can be identified. The
first one is using a set of human demonstrations to identify a model of the system, which is
used offline to learn a policy. This method is model based and offline, and hence not easily
extensible to more complex vehicles, and not able to adapt to changing conditions, which both
are demands formulated in this research. The second way of using human demonstrations, is
to use them within a least squares policy iteration algorithm, in order to have a good initial
guess of a satisfactory policy. This approach can be used online and does not require a model.
As such this approach fulfills the formulated demands for the algorithm, and hence will be
pursued in the remainder of this research.

The second question is also studied within literature. Not many quantitative comparisons are
found in literature. The most relevant performance metrics are found to be: Time to learn a
good policy, performance of final policy and the accumulated return over the whole learning
process. Using these metrics, both the quality of the learned policy, as well as the time it
takes to develop it, are compared.
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The third question is partly answered in the preliminary simulation chapter. A simple, dis-
crete, 2D simulation shows that the use of human demonstrations within a Q-learning algo-
rithm proves to be successful. Less time to learn is required to reach a satisfactory policy,
and the accumulated return ends up a lot better than without using human demonstrations.
It is found, however, that the final policy found using human demonstrations may not be the
optimal policy. This effect has to be studied further, as well as the impact of different kinds
of sets of human demonstrations.

In the next phase of this thesis the third question will be studied in an increasingly more real-
istic environment. At first, the 2D simulation will be extended to continuous state. Secondly,
a 3D simulation environment will be created to evaluate the performance of the algorithm in
three dimensions, while improving it in parallel. Finally, the algorithm will be tested on the
Parrot AR Drone 2 in a real experiment. This should lead to a full and realistic answer to the
third research question, thereby answering the main research question which is: “How can
we use demonstrations of a human expert pilot to improve the performance of reinforcement
learning for quadrotor control?”
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Chapter 8

Balancing Pendulum Problem using
Offline LSPI

In the preliminary research (Part II) Q-learning was applied to a 2D quadrotor slung load
problem. To extend the concepts to the LSPI algorithm, and thereby allowing for continuous
Q-function approximations, in this chapter the Offline LSPI [22] algorithm is implemented on
a simple problem: balancing a pendulum. In this example, a pendulum which starts upright,
has to be balanced as long as possible, with a small noise on the action. In this chapter this
example is briefly described, and some of the results when using this example, with offline
LSPI, are presented.

8-1 Problem description: balance pendulum

The balance pendulum example used in this chapter is exactly the same as used by Lagoudakis
and Parr in their paper on offline LSPI [22]. As such, the problem description from their paper
is copied here.
“The inverted pendulum problem requires balancing a pendulum of unknown length and
mass at the upright position by applying forces to the cart it is attached to. Three actions
are allowed: left force LF (-50 Newtons), right force RF (+50 Newtons), or no force NF
(0 Newtons). All three actions are noisy; uniform noise in [-10, 10] is added to the chosen
action. The state space of the problem is continuous and consists of the vertical angle α
and the angular velocity α̇ of the pendulum. The transitions are governed by the nonlinear
dynamics of the system [28] and depend on the current state and the current (noisy) control
a:

α̈ = g sin(α)− κml(α̇)2 sin(2α)/2− κ cos(α)a
4l/3− κml cos2(α) (8-1)

where g is the gravity constant (g = 9.81 m/s2 ), m is the mass of the pendulum (m = 2.0
kg), M is the mass of the cart (M = 8.0 kg), l is the length of the pendulum (l = 0.5 m), and
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κ = 1/(m + M). The simulation step is set to 0.1 seconds. Thus, the control input is given
at a rate of 10 Hz, at the beginning of each time step, and is kept constant during any time
step. A reward of 0 is given as long as the angle of the pendulum does not exceed π/2 in
absolute value (the pendulum is above the horizontal line). An angle greater than π/2 signals
the end of the episode and a reward (penalty) of -1. The discount factor of the process is
set to 0.95. We applied LSPI with a set of 10 basis functions for each of the 3 actions, thus
a total of 30 basis functions, to approximate the value function. These 10 basis functions
included a constant term and 9 radial basis functions (Gaussians) arranged in a 3 x 3 grid
over the 2-dimensional state space. In particular, for some state s = (α,α̇) and some action
a, all basis functions were zero, except the corresponding active block for action a which was(

1, e
||s−µ1||

2

2σ2 , e
||s−µ2||

2

2σ2 , e
||s−µ3||

2

2σ2 , . . . , e
||s−µ9||

2

2σ2

)T
(8-2)

where the µi’s are the 9 points of the grid {−π/4, 0, π/4} x {-1, 0, 1} and σ = 1. Training
samples were collected in advance from “random episodes”, that is, starting in a randomly
perturbed state close to the equilibrium state (0, 0) and following a policy that selected
actions uniformly at random. The average length of such episodes was about 6 steps, thus
each one contributed about 6 samples to the set. The same sample set was used throughout
all iterations of each run of LSPI. ”

8-2 Analysis of LSPI as implemented by Lagoudakis

In the algorithm, a number of parameters can be adjusted. These are the number of samples,
the variation within the samples, the discount factor, the termination criterion and the max-
imum number of iterations. In the paper of Lagoudakis, the maximum number of iterations
to balance the pendulum is 3000. A score of 3000 hence is a fully successful policy. The
following observations were made:

• Number of samples: As is expected, the higher the number of samples used, the
higher the number of iterations the pendulum is balanced. This was already shown by
Lagoudakis, in Figure 8-1. Table 8-1 shows the results obtained in this reproduction
of the problem. It can be seen that the general trend is similar, and the order of
magnitude as well. In this research only 10 different sample realizations were used,
where Lagoudakis used 100. Furthermore, we evaluated the resulting policy two times,
where Lagoudakis did this a 1000 times.

• Variation within the samples: The way the samples are generated is done as in
Lagoudakis’ paper. Starting in a perturbed state around the equilibrium state (0,0), a
random policy is followed. The degree of perturbation was varied to study its impact.
It was seen that the larger the initial perturbation, the higher the variation within the
samples, and thereby the better the performance. However, when the perturbation is too
big, the pendulum is too far off the equilibrium position, and thereby the performance
deteriorates. This behavior can be seen in the results in Table 8-2. For the calculations
from now on, the maximum number of samples is changed to 600, to save computation
time.
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Figure 8-1: Inverted pendulum (LSPI): Average balancing steps, figure used from [22]

Table 8-1: Number of samples and performance

Number of samples Avg. Balancing steps
10 322.9
50 918.0
100 1215.7
200 1808.2
500 1233.1

1000 2339.5

Table 8-2: Variation in samples and performance

Deviation Avg. Balancing steps
0.001 194.4
0.01 351.0
0.1 321.7
0.5 72.2
1.5 33.3

• Discount factor: The default discount factor is 0.95. It was seen that using a value of
1 (no discount) yields a deficiency in solving for the Γ and Λ matrices, and hence gives
no reliable results. It was seen that with values of γ between 0.95 and 1, the algorithm
has problems converging, yielding poor results. Values between 0.85 and 0.95 show
faster convergence. However, the resulting policy becomes worse with lower discount
factor. It can be concluded that γ = 0.95 is a good choice for this problem.

• Termination criterion: The default value is 1e-5. At each iteration, the norm of the
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weight vector is compared with the norm of the previous weight vector. When this value
drops below the termination criterion, the algorithm stops. It was found out that as
long as this criterion is small enough (< 0.1), it does not influence the outcome.

• Maximum number of iterations: This parameter determines the maximum number
of iterations performed by the algorithm while not converging. Generally, a higher
maximum number of iterations yields better results. It seems that when the number of
iterations is at least 20, there is not much difference in outcome. It was seen that in
general, the policy either converges within these 20 steps, or does not converges at all.

• Number of RBFs: The performance is better with more RBFs: an average of 481.3
balancing steps for 4 RBFs per state variables per action (51 basis functions in total)
compared to an average of 350.95 balancing steps for 3 RBFs per state variable (30 basis
functions in total).

8-3 Use of human demonstrations in offline LSPI for the inverted
pendulum

The LSPI algorithm has been adjusted such that it can also use a set of Human Demonstration
(HD) samples as input instead of randomly generated samples. In this section the results using
the algorithm with different types of sample sets are presented. In Table 8-3 the results are
presented for different human demonstration sets, as well as for two randomly generated
sample sets, of which one was found to perform well, whereas the other was performing
poorly. These randomly generated sets were included to demonstrate the range of performance
that random sample sets can get. Furthermore, the table presents the result for the setting
mentioned in the previous section: at each execution of the algorithm a different randomly
generated sample set was used.

Table 8-3: Human demonstration sets and performance

Sample size Sample type Avg. Balancing steps Remark
1000 HD 128.8
976 HD 126.7
1976 HD 108.7 Merged two first sample sets
464 HD 11.4
999 random 49 Poor random sample
1032 random 600 Good random sample
variable random 351.0 Previously used initialization

Looking at this table allows to draw some conclusions. Firstly, looking at the lower three
sample sets, it can be concluded that there is a high variance between different random
sample sets. This means that the algorithm (for this number of samples) is sensitive to the
sample set used. This fact puts a large disclaimer on all the found results: A large sweep of
different random seeds should be used to give a better analysis, since there is a large spread
between different random seeds. Looking at the human demonstration results, it can be seen
that in general the human demonstration sample sets provide inferior results compared to the
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randomly generated samples. Some tricks were tried to trim the human demonstration sets,
only using “useful” samples. This did not yield better results, and it is hard to determine
what actually is a “useful” sample.

It can also be seen that apparently, combining two human demonstration sample sets does
not yield a better result. This is a weak conclusion as well though, as it was found out that
the initialization of the weight vector already results in a large difference in found policies, so
here again a larger study should be carried out to give significant results.

A clear difference between the randomly generated and the human demonstration samples
can be seen in Figures 8-2 and 8-3. The variance in the samples is bigger for the random
generated samples, this can be attributed to the fact that the random samples are including a
bigger part of the state space since they are generated using a random policy. This behavior
can be clearly seen as well in Figure 8-4.
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Figure 8-2: Human demonstration samples.
Left: angle, right: angular rate
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Figure 8-3: Random simulator generated
samples. Left: angle, right: angular rate

8-4 Observations and remarks

The following observations and remarks can be made studying the offline LSPI algorithm on
this balance pendulum problem:

• Different initial weight vectors already yield highly different results: larger numbers of
evaluations are needed for significant conclusions.

• More RBFs are beneficial for the outcome of a HD sample set (363.95 for hd976 with
4 RBFs, even 486.65 with max iterations on 50), this could be due to the fact that
with HD sample sets the spread is a lot smaller in data points, and hence more subtle
differences are to be identified.
As we did not find satisfactory results for the offline algorithm on this problem, we
decided that a problem which can benefit more of the understanding of a human, would
probably be suited better for this research. As such a swing up pendulum was chosen,
since this problem needs some understanding on future states, to be able to make it
swing up. With the knowledge obtained in that problem, the results found in this
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Figure 8-4: Spread of samples

chapter make sense. Using the human demonstration sample set, which is a lot less
diverse than the random generated set, yields inferior performance. In the swing up
pendulum we saw as well that a non-diverse human demonstration set does not form a
good sample set to learn a Q-function from.
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Chapter 9

Additional Research on the IOLSPI
Algorithm

In Part I the Informed Online Least Squares Policy Iteration (IOLSPI) was presented and
discussed. Some aspects of the algorithm and the way in which the results are statistically
compared, were left out, to keep it concise. For the interested reader, this chapter provides
more background on some aspects of the IOLSPI algorithm. In section 9-1 a more elaborate
discussion of the implementation of the Radial Basis Functions (RBFs) in the algorithm is
given. The addition of the forget factor in the algorithm will be studied more closely in section
9-2. The chapter ends with section 9-3, which gives insight on the statistical analysis that
was used in processing the results in this thesis.

9-1 Radial Basis Functions implementation

An important aspect of the LSPI algorithm is the choice of Basis Functions (BFs) to approxi-
mate the value function. Many methods can be used to choose these BFs [11]. In this research
RBFs are used, since they do not need a lot of hand-tweaking and generally provide good
value function approximations. In Part I the RBFs are quickly introduced. The following
sections give a more elaborate description of the implementation of the RBFs in this research.

9-1-1 The standard RBF

For the swing up pendulum problem an equidistant grid of 11x11 RBFs is used to approximate
the value function. This means that the vector of RBFs is φ̄(s) = [φ1(s), . . . , φ121(s)]T . To
make state-action BFs, the RBFs are repeated for the three different actions (a = {−3, 0, 3} V,
corresponding to a clockwise, counterclockwise or zero moment). The RBFs are evaluated for
the current action and zero for the RBFs associated with the other actions. As such the vector
of 121x3 state-action BFs can be represented as follows: φ(s, a) = [I(a = −3) · φT (s), I(a =
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0) · φT (s), I(a = 3) · φT (s)]T . Here the indicator function I is 1 when its argument is true,
and zero otherwise.

The radial basis function is the following:

φ(s) = e−
||s−µ||2

2σ2 (9-1)

In this equation µ is the RBF center location, σ the RBF width parameter, which is fixed at
the distance between two RBF centers.

9-1-2 Normalization of the RBF

In the rotational pendulum case, the number of dimensions of the RBF is two, since there
are two states of interest, angle and angular rate. To cancel out the difference in order of
magnitude of the different state parameters, a transformation is applied to the input state
signals to normalize these signals in the range from -1 to 1. This is done using Eq. 9-2

s̄ = −1 + 2 s− sL
sH − sL

(9-2)

The following equation is used to calculate the normalized RBF:

φ(s) = e
− ||s̄−µ̄||

2

2σ̄2 (9-3)

Figure 9-1 shows graphically how the RBF centers are distributed, for the angle and angular
velocity of the quadrotor example.
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Figure 9-1: Location of the
RBF centers, with their respec-
tive radii for the slung angle and
angular rate of the quadrotor ex-
ample. Top and right axis are
the normalized scales.
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Figure 9-2: Location of the
RBF centers, with their respec-
tive radii for the slung angle and
angular rate of the quadrotor ex-
ample with asymmetric spacing
of the centers. Top and right
axis are the normalized scales.
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9-1-3 Asymmetric spacing of RBF centers

For the slung load problem the number of dimensions is four. As such, the grid of RBF
centers will be four dimensional. To fit a good value function, that is able to follow the
complexity of the function, enough RBFs should be used. Since it is expected that not each
dimension has the same complexity, and as such needs the same number of RBF centers, an
asymmetric grid of RBF centers will be used. Figure 9-2 shows the situation in which this is
the case. This asymmetry gives rise to the problem that around θ̇ = −π, θ̇ = 0, or θ̇ = π,
the density of RBFs is a lot higher, than in the regions in between. The RBFs are summed,
so a wavy pattern in the Q-function will emerge, with peaks around π, 0 or −π and valleys
in between. To alleviate this problem, a non-symmetric normalization is used. That is, the
center locations as well as the states are normalized asymmetrically. For the center locations
we have:

µ̄x = [−1, 1] (9-4)

µ̄ẋ = cẋ − 1
cx − 1 · [−1, 1] (9-5)

µ̄θ = cθ − 1
cx − 1 · [−1, 1] (9-6)

µ̄θ̇ =
cθ̇ − 1
cx − 1 · [−1, 1] (9-7)

(9-8)

And for the normalized state we have:

¯̄s = [1, cẋ − 1
cx − 1 ,

cθ − 1
cx − 1 ,

cθ̇ − 1
cx − 1]T · s̄ (9-9)

In these equations c is the number of RBF centers in the respective dimension. This results in
the situation depicted in Figure 9-3. The RBFs are ellipsoidal now, making sure that for each
part of the state space the Q-function can properly be approximated and no wavy pattern as
for the situation in Figure 9-2 will emerge.

9-1-4 Trimming the RBF centers: convex hull approach

In Part I it was mentioned that the execution time of the algorithm scales more than quadratic
with the number of RBFs used. In this section an approach is introduced to limit the number
of RBFs needed named the convex hull approach. This approach is not used in the results
presented in this thesis, since further research on this method is needed to implement it in
IOLSPI. The working principle of the approach is discussed in the remainder of this section.

Especially for higher dimensional problems, using an equidistant RBF grid, the number of
RBFs grows quickly. However, in many problems a large part of the state space spanned
by the RBF centers, is never visited because of physical limitations of the system. In the
quadrotor slung load problem for example, the combination of a high slung angle, and a high
angular rate of the slung load will never occur for this problem setup. As such it is a waste
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of computational effort to include RBFs in these regions of the state space. To limit this
issue, an approach is devised that gets rid of the RBF centers in the improbable regions of
the state space. Figure 9-4 shows in two dimension what this method does. Using a sample
set, obtained by a human demonstration or otherwise, a convex hull is determined. A convex
hull of a set of data points is the smallest convex set containing all data points [29]. It is
assumed that the Q-function only needs to be approximated in the reachable part of the state
space. As such, all the RBF centers that are outside of the convex hull, are removed, since
they predominantly effect the unreachable part of the state space.

Apart from the benefit of reducing the computational effort using this approach, from a data
fitting point of view this approach proves itself useful as well. The RBFs which are outside the
convex hull, are not forced to fit the local Q-function, since there is no data available at there
region of influence. The RBFs inside the convex hull already fitted the actual Q-function.
As such, the RBFs outside of the convex hull will fit the noise, and deteriorate the overal
Q-function approximation.

This convex hull approach has not been applied yet for the results presented in this thesis,
but shows a promising way of eliminating unused RBFs, thereby speeding up the algorithm,
and improving the Q-function approximation.

9-2 Forget factor implementation

In Part I, in Algorithm 2 the implementation of a forget factor was mentioned. This section
provides more insight in the way this forget factor is implemented, and some additional
consideration regarding the forget factor.
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Table 9-1: Forget factor and number of samples used

N0.01 η

1000 0.997700
5000 0.999540

10000 0.999770
20000 0.999885
50000 0.999954
100000 0.999977
150000 0.999985

All 1

In the IOLSPI algorithm, the forget factor (η) is implemented as follows. Each time a sample
is added to the Γ, Λ matrix or z vector, the previous version of these matrices and vector
are multiplied with the forget factor. This way the relative importance of a sample decays
exponentially with the decay factor. This can be seen in the following equations:

Γk+1 ← ηΓk + φ(sk, ak)φT (sk, ak) (9-10)
Λk+1 ← ηΛk + φ(sk, ak)φT (sk+1, πl(sk+1)) (9-11)
zk+1 ← ηzk + φ(sk, ak)rk+1 (9-12)

This means that after k time steps, a sample will have been reduced to a fraction of ηk of
its original value. Depending on the forget factor, after a certain number of time steps, the
weight of a sample drops below 1 % of its original value. The following equation calculates
which forget factor corresponds to a number of samples N0.01 that are still more than 1% of
their original value.

η = 0.01
1

N0.01 (9-13)

Table 9-1 shows a list of different values for N0.01 and there corresponding forget factors.
As was mentioned before, each policy iteration step the modified Bellman equation is solved
for the weights.

1
ns

Γwl = 1
ns
z + 1

ns
γΛwl (9-14)

Each term includes the scaling term 1
ns

which is included for numerical stability [22]. When
the forget factor is included, the magnitude of the entries of the Λ and Γ matrices is different
than without forget factor. As such it could be argued, that to keep a same order of magnitude
in the entries of these matrices, the scaling should be adjusted as well. The following scaling
is used:

1∑k
i=1 η

i
Γwl = 1∑k

i=1 η
i
z + 1∑k

i=1 η
i
nsγΛwl (9-15)
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Having done some comparative tests between this scaling, and the original scaling, no signif-
icant difference was found, neither in execution time, nor in results. As such, for simplicity
we stick to the original scaling.

9-3 Statistical analysis

This section gives a note on the way of using statistical analysis in obtaining the results for
the (Informed Online) Least Squares Policy Iteration algorithm, which are presented in the
paper (Part I), and in the following chapters.

Due to the fact that we use random sampling of the initial policy weights, and that the
algorithm randomly selects an action when the Q-function has the same value for different
action or when it is exploring, we sometimes find large differences in results while using the
same algorithm settings, but for different seeds. To draw significant conclusions, a statistical
analysis should be carried out on the different results. To do this, the algorithm is run for
several independent random seeds. Using these different realizations, the 95% confidence
interval can be calculated as well as the mean. The upper and lower confidence bounds are
calculated using the following equations.

Yup = Ȳ + 1.96σ√
n

(9-16)

Ylow = Ȳ − 1.96σ√
n

(9-17)

Where Ȳ represents the mean, σ the standard deviation and n the number of realizations.

To obtain statistically good results throughout this thesis, the number of different random
initializations needed to reach a good mean result with acceptable confidence bounds is stud-
ied. Figures 9-5 until 9-8 show the mean, 95% confidence bounds, and extreme values for one
specific setting of the online LSPI algorithm applied to the rotational pendulum problem, for
different numbers of realizations. In general it can be seen that the higher the number of
realizations, the smoother the mean and the smaller the 95% confidence bounds. It is found
that using 10 realizations is not enough. Up until 25 realizations, the confidence bounds
become smaller and smoother. Between 25 and 50 realizations the difference is small, though
still detectable. As can be seen below, using 100 realizations still gives some improvement.
However, for computational reasons the standard number of realizations used will be 50.
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Figure 9-5: Online LSPI with
10 realizations: learning score as
a function of time, Kθ = 100,
ε = 0.6
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Figure 9-6: Online LSPI with
30 realizations: learning score as
a function of time, Kθ = 100,
ε = 0.6
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Figure 9-7: Online LSPI with
50 realizations: learning score as
a function of time, Kθ = 100,
ε = 0.6
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Figure 9-8: Online LSPI with
100 realizations: learning score
as a function of time, Kθ = 100,
ε = 0.6

Master of Science Thesis G.K. Schonebaum



92 Additional Research on the IOLSPI Algorithm

G.K. Schonebaum Master of Science Thesis



Chapter 10

Rotational Pendulum Additional
Results

This chapter is intended as an addition to section IV of the conference paper in Part I. The
results presented here are for the rotational pendulum, as was described in the conference
paper. This chapter is split in two sections: Section 10-1 presents a series of results for the
online LSPI algorithm, which uses no pre-collected sample sets. Section 10-2 presents the
results for the IOLSPI algorithm, mostly with the use of human demonstration sample sets.

10-1 Online LSPI

The reason to do a detailed study on the influence of different parameters on the online
LSPI algorithm is that this allows for better understanding of the LSPI algorithm. Further-
more, it serves as a baseline for comparison with the IOLSPI algorithm, that uses human
demonstrations.

10-1-1 Effect of tuning parameters for online LSPI

The effect of several tuning parameters will be studied. The influence of the update interval,
exploration rate and discount factor will be analyzed.

Update interval

Figures 10-1 and 10-2 show the result of the online LSPI algorithm for different update
intervals, varying from Kθ = 2 (very optimistic), to Kθ = 5000 (not so optimistic). Looking
at the results it can be concluded that a too optimistic policy update does not yield a good
score. This is attributed to the fact that when Kθ = 2 for example. The policy will already
be updated after two samples. Using only two samples to make the Q-function approximation
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is not enough. It can be expected that the policy which is found is rather arbitrary. Using
this policy, the next two samples will be gathered, so these will not be representative either.
As a result the policy never really becomes satisfactory. When Kθ is higher, the first policy
update already steers towards a good policy, since the approximation of the Q-function is a
lot better. As such the agent will learn a better policy more easily. It can be seen that for
Kθ = 100 and higher, the policy found is similar. Kθ = 1000 is found to be best for this
rotational pendulum problem. Additionally, it can be seen that a high update interval, 5000
for example, yields a little worse performance. This is attributed to the fact that the agent
waits too long (5000 time steps) to improve its policy. As a result it takes longer to converge
to a good policy, and thus, especially in the beginning, the performance is worse than for
lower Kθ .

A final note to make on the update interval, is that the execution time of the algorithm is
highly dependent on the update interval. This makes sense, since solving for a new policy is
a relatively expensive operation within the algorithm.
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Figure 10-1: Online LSPI: Dis-
counted return as a function of
time for different policy update
intervals, ε = 0.2, using “hang-
ing down ICs”
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Exploration rate

In the conference paper in Part I the results for different constant exploration rates was
already presented. Figure 10-3 and 10-4 show in addition the result for different exploration
decay factors, all starting with a fully exploratory policy (ε = 1). The results found are not
too different from the results for constant exploration rates. For the higher decay factors
(0.9996 and 1) it can be seen that too little exploitation does not yield a satisfactory policy
for this problem. For the decay factor of 0.9996 it can be seen that after some time (100 s)
it becomes more exploiting, and as such the performance starts to go up. Looking to the
summed reward per episode (Figure 10-4), it can be seen that the lower the exploration decay
factor, the faster the learning score goes up. This is because the exploration factor decays,
and as such the agent becomes more exploiting faster. A too low decay factor is not good
either, since this results in too little exploration at the start.
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Learning score as a function of
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Discount factor

The third tuning parameter which was varied is the discount factor. Figure 10-5 shows the
discounted return for different discount factors. This plot is useless for comparison, since the
discount factor determines for a large part the discounted return which is plotted. As a result
it is much more interesting to study Figure 10-6, which shows the learning score for different
discount factors. It can be seen that for a low discount factor (γ = 0.8), the performance is
not too good. This makes sense, since the horizon of the agent is small. The more advanced
states, at which the pendulum would be upright, are too far away for this shortsighted agent.
Figure 10-7 shows the time history of the angle for a discount factor of 0.8. It can clearly be
seen that the controller is not able to swing up the pendulum and reach a zero angle. A too
high discount factor (γ = 0.999) does not yield satisfactory results either. The time history
of the angle for this high discount factor can be seen in Figure 10-8.

10-1-2 Influence of noise

In the conference paper, and in the results presented so far, a perfect world is assumed, with
no noise in the system. In real life there will always be a noise component. As such the effect
of this noise on the system is studied. There are two ways in which a noise is introduced.
The first way is a noise on the action. This noise is included in the following way:

ap = a+ na (10-1)

In this equation ap is the perturbed action, a the unperturbed action, and na a zero mean
Gaussian noise with standard deviation σa. Since the action is the only moment acting on
the system this noise on the action can be seen as either actuator noise, or as system noise
(an external disturbance acting on the system).

Master of Science Thesis G.K. Schonebaum



96 Rotational Pendulum Additional Results

Time [s]
0 100 200 300 400 500 600

D
is

co
un

te
d 

re
tu

rn
#104

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

. = 0.8

. = 0.9

. = 0.92

. = 0.94

. = 0.96

. = 0.97

. = 0.98

. = 0.99

. = 0.999

Figure 10-5: Online LSPI: Dis-
counted return as a function of
time for different discount fac-
tors, Kθ = 1000, ε = 0.2, using
“hanging down ICs”

Time [s]
0 100 200 300 400 500 600

S
um

m
ed

 r
ew

ar
d 

pe
r 

ep
is

od
e

-13000

-12000

-11000

-10000

-9000

-8000

-7000

-6000

-5000

-4000

-3000

. = 0.8

. = 0.9

. = 0.92

. = 0.94

. = 0.96

. = 0.97

. = 0.98

. = 0.99

. = 0.999

Figure 10-6: Online LSPI:
Learning score as a function of
time for different discount fac-
tors, Kθ = 1000, ε = 0.2, using
“hanging down ICs”

Time [s]
594 595.5 597 598.5 600

,
[r
ad

]

-2

0

2

Time [s]
594 595.5 597 598.5 600

R
ew

ar
d

-50

-40

-30

-20

Figure 10-7: Online LSPI:
Time history of angle and re-
ward, episodes last 1.5 s, Kθ =
1000, ε = 0.2, γ = 0.8, using
“hanging down ICs”

Time [s]
594 595.5 597 598.5 600

,
[r
ad

]

-2

0

2

Time [s]
594 595.5 597 598.5 600

R
ew

ar
d

-52

-50

-48

-46

-44

-42

Figure 10-8: Online LSPI:
Time history of angle and re-
ward, episodes last 1.5 s, Kθ =
1000, ε = 0.2, γ = 0.999, using
“hanging down ICs”

The second source of noise is a sensor noise which is modeled. In real life, the state will never
be measured exactly by the sensors; the measurement will always be perturbed a little. The
measured state as such becomes:

sp = s+ ns (10-2)

In which sp is the measured state, s is the true state and ns is a zero mean Gaussian noise
with standard deviation σs.
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Noise on the action

Figures 10-9 and 10-10 show the results for four different action noise levels. It can be seen
that including noise, the performance of the algorithm improves. This can be attributed to
the fact that by introducing the noise, an implicit form of exploration is added. In this way
the variety in samples becomes a lot bigger. As such especially the discounted return for
evaluating the policies becomes better. Looking at the learning score, it can be seen that
with noise the agent learns a bit quicker. However, in the end the higher noise (σa =10 V)
shows a little lower converging score. This makes sense, since the control over the action is
lower than without noise. However, looking at Figure 10-11, which shows the time history
of reward and angle, it can be seen that the performance is still rather good: The controller
can swing up the pendulum to a zero angle. The benefit arising is that the noise can also
add to a faster convergence towards the upright position, since the absolute action might be
bigger with the noise addition. This phenomenon can be seen in the last episode (from 598.5
s to 600 s), here the motor is able to swing up the pendulum in one go. However, the level of
noise σa = 10 V is exaggerated, and not realistic.

It is assumed that a noise level with a standard deviation of 1 V is realistic. The plots show
that the performance of the algorithm does not change too much. Hence it can be concluded
that the algorithm also works well when actuator noise and external disturbances are present.
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Sensor noise

In Figures 10-12 and 10-13, the results when the sensor noise is included are presented. In
the figures it can be seen that a high sensor noise level (σs = [25 deg, 125 deg/s]T ) results in
a reduction in performance. This result makes a lot of sense. It means that the agent selects
the optimal action using a state measurement that is far off the actual state value. As such
a large portion of the chosen actions is not optimal. It can be seen that for moderate sensor
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Figure 10-11: Online LSPI:
Time history of the angle and re-
ward, episodes last 1.5 s, Kθ =
1000, ε = 0.2, σa = 10 V, using
“hanging down ICs”

noise levels the behavior is similar to the situation with no noise. It can be concluded that a
moderate deviation in the sensor (2 degrees standard deviation on the angle measurement and
10 degrees standard deviation on the angular rate measurement) still yields good performance,
hence the controller is robust to some sensor noise. It seems that the small noise level even
improves the performance. This can be explained, similar to with the action noise, by the
fact that it induces an implicit randomness in the algorithm, diversifying the sample spread.
This diversification yields a better approximation of the Q-function.
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10-1-3 Behavior in changing conditions

As was mentioned in the conference paper in Part I, the dynamics of the system are changed
externally, by altering the gravitational acceleration. We will study five different situations:
g = {3.81, 7.81, 9.81, 11.81, 19.81} m/s2. Figures 10-14 and 10-15 show the learning behavior
for these different situations, when they are constant, to see to what value they converge.

Sudden changes in conditions
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Figure 10-15: Online LSPI:
Learning score as a function of
time for different gravitational
acceleration, Kθ = 1000, ε =
0.2, using “hanging down ICs”

Now we will study how the algorithm copes with changes in the conditions. In Figures 10-16
and 10-17 it can be seen that the sudden change in gravitational acceleration has a clear effect
on the scores. After the change, however, it can be seen that the policy start improving, and
hence the agent is adapting to the new conditions. Comparing these Figures to Figures 10-14
and 10-15 it can be seen that only the change to 19.81 m/s2 does not reach the converging
learning score that was reached with no change in conditions. Having a closer look to what
this means to the behavior of the pendulum, Figures 10-18 and 10-19 that show the time
history of angle and reward are interesting to study. It can be seen that when changed to
the low gravitational acceleration (3.18 m/s2), the motor becomes over time strong enough
to swing up the pendulum in one go. For g = 19.81 m/s2 it can be seen that in the end the
motor needs a lot of swings, to reach the upright position. However, it was found that for an
exploration rate ε of 0.2, there is too much random action, to reach the upright condition at
all. For ε = 0.05 however, the controller is able to reach the upright position.

Following up on the previous conclusion on the impact of the exploration rate on the ability
to cope with changing conditions, we will focus on the change to 19.81 m/s2 . Figures 10-20
and 10-21 show the performance for different, constant exploration rates. Looking to the left
figure, it can be seen that to obtain a good policy, higher exploration rates pay off, both
before and after the conditions change. This makes sense, since the higher exploration rates
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Figure 10-16: Online LSPI:
Discounted return as a function
of time for different changes in
g at 300 s, Kθ = 1000, ε = 0.2,
using “hanging down ICs”
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Figure 10-17: Online LSPI:
Learning score as a function of
time for different changes in g
at 300 s, Kθ = 1000, ε = 0.2,
using “hanging down ICs”
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Figure 10-18: Online LSPI:
Time history of the angle and re-
ward, with a jump in g from 9.81
to 3.81 m/s2 at 300 s, episodes
last 1.5 s, Kθ = 1000, ε = 0.2,
using “hanging down ICs”, note
the gap in the x-axis
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Figure 10-19: Online LSPI:
Time history of the angle and re-
ward, with a jump in g from 9.81
to 19.81 m/s2 at 300 s, episodes
last 1.5 s, Kθ = 1000, ε = 0.2,
using “hanging down ICs”, note
the gap in the x-axis

result in a higher spread in samples, and hence in a better policy. However, looking to the
right figure, it can be seen that too high ε results in bad online performance while learning.
Since the task is hard with g = 19.81 m/s2 , too high exploration yields in inability to swing
up the pendulum. As such, it is found out that for this change in conditions, the moderate
exploration rate of 0.05 yields best results.
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Figure 10-20: Online LSPI:
Discounted return as a function
of time for different exploration
rates, Kθ = 1000 , g changes at
300 s from 9.81 m/s2 to 19.81
m/s2 , using “hanging down
ICs”
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Figure 10-21: Online LSPI:
Learning score as a function
of time for different exploration
rates, Kθ = 1000, g changes at
300 s from 9.81 m/s2 to 19.81
m/s2 , using “hanging down
ICs”

Gradual changes in conditions

In this section we will study what happens when the conditions change gradually instead
of sudden, and the effect of the exploration rate on this. As for the previous section, the
gravitational acceleration is changed to 19.81 m/s2 , however, this is done gradually in a time
span of 300 seconds.

In Figures 10-22 and 10-23, the results are found for this gradual change in conditions. It
can be seen that the performance seems to follow the change in conditions. For all different
exploration rates, the score at 600 s is close to the scores found after 600 s in Figures 10-20
and 10-21, where the sudden change in conditions was applied. In the latter figures, at 600 s
the controller has had already 300 s of the same conditions. It can be concluded that when
the conditions change gradually, the algorithm is able to adapt fast enough to maintain a
successful policy. This conclusion is supported by Figure 10-24 which shows the time history
of the angle and the reward, in the last 10 episodes (585 s - 600 s) with changing conditions.
It can be seen that most of the times the agent keeps succeeding in swinging up the pendulum
to zero angle, making the reward go up to the maximum, while the conditions are changing.

10-1-4 Study on forget factor

When the conditions change, the set of samples the controller uses to update the policy
still largely consists of samples gathered in the old conditions. As such it is expected that
when the conditions change, a forget factor could help. It makes the controller value recent
samples more, and forget the older ones. Figures 10-25 and 10-26 show the performance of
the algorithm with changing conditions for different forget factors. Out of this plot three
interesting cases are selected: η = 1 (no forgetting), N0.01 = 50000, which corresponds to a
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Figure 10-22: Online LSPI:
Discounted return as a function
of time for different sensor ex-
ploration rates, Kθ = 1000, g
starts changing at 300 s grad-
ually from 9.81 m/s2 to 19.81
m/s2 , using “hanging down
ICs”
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Figure 10-23: Online LSPI:
Learning score as a function
of time for different exploration
rates, Kθ = 1000, g starts
changing at 300 s gradually from
9.81 m/s2 to 19.81 m/s2 , using
“hanging down ICs”
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Figure 10-24: Online LSPI: Time history (last 10 episodes) of the angle and reward, in gradually
changing conditions with forget factor 0.99991, ε = 0.05, Kθ = 1000, episodes last 1.5 s, using
“hanging down ICs”

forget factor of 0.99991, since this shows a rather good average performance, and N0.01 =
10000, which corresponds to a forget factor of 0.9995, because that one shows poor behavior.

Figure 10-27 shows the performance for these different forget factors for online LSPI. First of
all it can be concluded that a too low forget factor (i.e. much forgetting) yields poor results.
This can be explained by the fact that in for example the case of the forget factor of 0.9995,
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Figure 10-25: Online LSPI:
Discounted return as a function
of time for different forget fac-
tors, Kθ = 1000, g changes at T
= 300s suddenly to 19.81 m/s2,
using “hanging down ICs”
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Figure 10-26: Online LSPI:
Learning score as a function of
time for different forget factors,
Kθ = 1000, g changes at T =
300s suddenly to 19.81 m/s2,
using “hanging down ICs”

only 10000 samples are used, since all samples older than 10000 time steps are practically
discarded. It is found that a set of 10000 samples is not enough to uphold a good value
function. Second it can be seen that a forget factor of 0.99991 yields better performance
than a forget factor of 1.This can be explained by the fact that the samples at the beginning
are forgotten after some time. These samples do not contribute too much, since they are all
around the hanging down position. After the change in conditions, the forget factor of 0.99991
also clearly performs better. It forgets the old conditions gradually, and by that allows for a
better policy in the new condition.
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Figure 10-27: Online LSPI:
Summed reward per episode as
a function of time for different
forget factors, Kθ = 1000, ε =
0.05, g changes at 300 s from
9.81 m/s2 to 19.81 /ms, using
“hanging down ICs”
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Figure 10-28: Online LSPI:
Summed reward per episode as
a function of time for different
forget factors, Kθ = 1000, ε =
0.05, constant g, using “hanging
down ICs”
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In Figure 10-27 it seems that after improving the policy, at 200 s the score goes down again
for η = 0.9995. To study this effect further, Figure 10-28 is plotted as well, showing the
performance when the conditions do not change. Here it can be seen that for the forget factor
η = 0.9995, the score fluctuates some, but stabilizes around a certain performance.

10-1-5 Results for the rotational pendulum problem with distributed initial con-
ditions

As was mentioned in the conference paper in Part I, the initial conditions grid was changed
from always starting from the hanging down position, to the following grid: α ∈ {−π, π/2, 0, π/2}
rad and α̇ ∈ {−10π,−3π,−π, 0, π, 3π, 10π} rad/s. In the paper it was shown that the benefit
of the human demonstration is a lot less with these distributed ICs, since with these initial
conditions, a large spread in samples is obtained anyway. This phenomenon is also reflected
in Figures 10-29 - 10-32. It can be seen that for the found policy, the exploration rate is a lot
less critical. Different constant exploration rates and different exploration decay factors yield
the same discounted return. The difference in online learning score still is evident however.
This is obviously because for higher exploration rates, while learning the number of random
actions is higher, and hence the score becomes lower.
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Figure 10-29: Online LSPI:
Discounted return as a function
of time for different constant
exploration rates, Kθ = 1000,
εd = 1, using “distributed ICs”
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Figure 10-30: Online LSPI:
Learning score as a function of
time for different constant ex-
ploration rates, Kθ = 1000,
εd = 1, using “distributed ICs”

Comparing Figures 10-31 and 10-32 (with the distributed ICs) to Figures 10-3 and 10-4 (with
hanging down ICs), it is seen that for this “distributed ICs” problem the time to learn a
good policy is a lot shorter than for the initial problem. It can be concluded that there is a
dependence on the type of problem on the time to learn a good policy. Furthermore, it was
shown in the paper (Part I) that for this easier “distributed ICs” problem, which requires less
intelligent exploration, the benefit of the human demonstrator is small, compared to a fully
random demonstrator.
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Figure 10-31: Online LSPI:
Discounted return as a function
of time for different exploration
decay factors, Kθ = 1000, ε0 =
1, using “distributed ICs”
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Figure 10-32: Online LSPI:
Learning score as a function of
time for different exploration de-
cay factors, Kθ = 1000, ε0 = 1,
using “distributed ICs”

10-2 IOLSPI with the use of human demonstrations

This section provides some additional results on the IOLPSI algorithm, and the different
human demonstration sets that were generated.

10-2-1 Explanation on different human demonstrations

For clarity Table 10-1 is repeated in this section. In addition to these five human demonstra-
tion sets, each setting (perform/explore and corruption percentage) is repeated, to see whether
the results are reproducible. Figures 10-33 and 10-34 present the results of these different hu-
man demonstration sample sets within the IOLSPI algorithm. The repeated demonstrations
are denoted with the same number as there counterpart, with an “a” added in the legend.
From the figures it can be clearly seen that the results are similar for the repeated human
demonstrations. It can be concluded that the approach used is reproducible.

Table 10-1: Overview of human demonstration sample sets.

Sample set number Corruption Description
1 0% tried to perform well
2 0% tried to explore
3 50% tried to perform well
4 33% tried to perform well
5 33% tried to explore
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Figure 10-33: IOLSPI: Dis-
counted return as a function of
time for different human demon-
stration sets, Kθ = 1000, ε =
0.2, using “hanging down ICs”
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Figure 10-34: IOLSPI: Learn-
ing score as a function of time
for different human demonstra-
tion sets, Kθ = 1000, ε = 0.2,
using “hanging down ICs”

10-2-2 Influence of noise

The following sections provide the results of the IOLSPI algorithm when noise is added to
the system.

Noise on the action

For IOLSPI with human demonstration use, the discounted return shows no big difference
for different sensor noise levels (Figures 10-35 and 10-36). For the learning score a difference
can be seen rather clearly on the other hand. Moderate noise is fine, but the high noise levels
mix things up. The pendulum is still able to swing up, but the balancing upright is hard,
since the harsh disturbances. In addition the action is also penalized in the reward function,
which also results in lower scores. The reason that this difference is not so pronounced in
the discounted return plot, is that the discounted return weighs the beginning of the episode
more than the end. In the beginning there is some benefit because of the action, since high
action values can help to swing up the pendulum faster. The most important conclusion to
draw here is the same as for online LSPI: The IOLSPI algorithm is robust to moderate noise
levels.

Sensor noise

Figure 10-37 clearly shows that the high sensor noise results in worse performance, since
the action will be often selected based on the wrong state. For moderate noise levels, the
algorithm has no problems. The same can be seen in Figure 10-38. Moderate noise levels are
fine, though extreme noise levels result in problems.
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Figure 10-35: IOLSPI: Dis-
counted return as a function of
time for different action noise
levels, Kθ = 1000, ε = 0.2,
σa = {0, 0.3, 1, 10} V, using
“hanging down ICs”
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Figure 10-36: IOLSPI: Learn-
ing score as a function of time
for different action noise levels,
Kθ = 1000, ε = 0.2, σa =
{0, 0.3, 1, 10} V, using “hanging
down ICs”
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Figure 10-37: IOLSPI: Dis-
counted return as a function
of time for different sensor
noise levels, Kθ = 1000, ε =
0.2, σs = {0, 1, 2, 25} deg
and {0, 5, 10, 125} deg/s, using
“hanging down ICs”
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Figure 10-38: IOLSPI: Learn-
ing score as a function of
time for different sensor noise
levels, Kθ = 1000, ε =
0.2, σs = {0, 1, 2, 25} deg
and {0, 5, 10, 125} deg/s, using
“hanging down ICs”

10-2-3 Behavior in changing conditions

In this section we will look at the behavior in changing conditions of the IOLSPI algorithm
using a human demonstration sample set. First a sudden change in conditions is studied,
changing the gravitational acceleration from 9.81 m/s2 to 19.81 m/s2 at 300 s. After this a
gradual change from 9.81 /ms to 19.81 m/s2 is simulated.
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Sudden change in conditions

Figure 10-39 shows the summed reward per episode while learning with a sudden change in
conditions. The first 300 seconds are as expected: The performance is from the start on good.
With higher exploration, the performance is worse, due to the higher percentage of random
actions. After the change in conditions, the higher exploration rates are not too interesting
to study. This is, as was mentioned in the online LSPI section of this chapter, because the
task is too difficult to reach the upright position with this level of randomness in the actions.
For ε = 0.1, the agent comes close, but does not succeed in reaching a satisfactory policy.
Only with no exploration, or with ε = 0.05 a satisfactory performance is reached.

In Figure 10-40 the same results are repeated, however, with the use of a moderate forget
factor of 0.99991. It can be seen that for the high exploration rates, the performance after 300
s only becomes worse, it has forgotten too much of its exploration of the state space obtained
from the human demonstrations. For the low exploration rates, two interesting things can
be seen: First of all the performance, just after the conditions change, is lower than without
forget factor. This is attributed to the fact that much of the human demonstration, which has
samples throughout a large portion of the state space, has been forgotten, which results in
worse results. The second observation is that with the forget factor included, the performance
goes up a lot faster than without the forget factor. This is because the new samples, including
the changed conditions, are valued more than the outdated ones when the forget factor is used.

Time [s]
0 100 200 300 400 500 600

S
um

m
ed

 r
ew

ar
d 

pe
r 

ep
is

od
e

-11000

-10000

-9000

-8000

-7000

-6000

-5000

-4000

-3000

0 = 0
0 = 0.1
0 = 0.2
0 = 0.3
0 = 0.4
0 = 0.05

Figure 10-39: IOLSPI with
HD: Learning score as a func-
tion of time for different explo-
ration rates, Kθ = 1000, η = 1,
g changes at T = 300 s instantly
to 19.81 m/s2, using “hanging
down ICs”
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Figure 10-40: IOLSPI with
HD: Learning score as a function
of time for different exploration
rates, Kθ = 1000, η = 0.99991,
g changes at T = 300 s instantly
to 19.81 m/s2, using “hanging
down ICs”

Gradually changing conditions

Figures 10-41 and 10-42 show the behavior in gradually changing conditions without and
with forget factor respectively. Similar results can be seen compared to the online LSPI
algorithm. The performance gradually changes along with the changing conditions. Again,

G.K. Schonebaum Master of Science Thesis



10-2 IOLSPI with the use of human demonstrations 109

for too high exploration rates the problem becomes unsolvable. For the lower exploration
rates it can be seen that the performance at 600 s is a little lower compared to the sudden
change in conditions, where the agent has had 300 s time to adapt to the changed conditions.
The differences are not that big however, so it can be concluded that for moderate changes
in conditions, the algorithm is able to keep up. Studying the forget factor shows the same
conclusions as for the suddenly changed conditions case: For the first 300 s the forget factor
makes the performance decrease a little, and when the conditions start changing, the forget
factor is beneficial. Studying Figure 10-42 more closely, an interesting phenomenon can be
observed for ε = 0. From 540 seconds onward, the performance stabilizes. This is because
at 540 seconds, the algorithm has found a policy which allows swinging up the pendulum
in three swings, whereas in the first 300 seconds, two swings were enough. It was seen that
having found this policy at 540 seconds, the gravitational acceleration change is small enough
from that moment on, to keep being able to swing up the pendulum in three swings and thus
the performance stays constant.
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Chapter 11

Quadrotor Slung Load Problem

This chapter gives an additional description of the quadrotor slung load problem that was
introduced in section IV of Part I. Furthermore, some additional observations on this problem
implementation are presented.

11-1 Addition to the problem statement

In addition to the parameters mentioned in the conference paper in Part I, for completeness
some more information on the implementation of the slung load problem is presented. In this
problem an ε−greedy policy is used. For the IOLSPI, which already has information on the
problem, a constant exploration rate of 0.01 is used. For the online LSPI algorithm, which
has no prior knowledge, this constant exploration rate results in poor results. To alleviate this
problem, an exponentially decaying exploration rate is used for the online LSPI algorithm.
The exploration rate starts at 1, and decays to 0.01 in the end. With this decaying exploration
rate, enough samples are gathered randomly to eventually reach a satisfactory policy.

For the use of the radial basis functions, a lower and upper limit for the state variables is
needed, since between these limits the RBF centers are spaced. Table 11-1 shows these limits,
which are found by empirically studying the boundaries of the state space.

Table 11-1: Limits of state variables

State variable Lower limit Upper limit
x [m] -6 0
ẋ [m/s] -4 4
θ [rad] -π/2 π/2
θ̇ [rad/s] -π π

Furthermore, the following should be noted concerning the implemented target reaching logic.
The agent is rewarded when it drops the load in the basket. In order to do this, it has to
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swing up the load high enough to reach the basket. It would have been logical to penalize
it when the load hits the side of the basket. However, since this basket side is rather small,
it would ask for a fine RBF grid to specifically differentiate between the states in which the
side of the basket is hit and in which the load just flies over the edge. As a consequence, this
penalty is not included. This means that the load cannot crash in the side of the basket, but
will just go through as if there was no side of the basket. However, it still has to swing up the
load, since it only gets rewarded when it drops the goal in the basket from above. As such,
it still is an interesting problem to solve with this reinforcement controller.

11-2 Observations on the slung load problem

Several observation can be made, when studying the quadrotor slung load problem as de-
scribed in this thesis:

• The initial conditions (ICs) used are designed rather artificially. The quadrotor starts
at an arbitrary position, with an arbitrary slung angle. In reality it would make more
sense to always start at a location away from the basket, whereas here the quadrotor in
some episodes starts already above the basket. This choice of initial conditions results
in a high variety in the samples anyways, similar to what we saw with the “distributed
ICs” for the rotational pendulum problem. When the initial conditions are narrowed
down to a smaller region, between x = -5 m and and -4 m, we see that the online LSPI
algorithm is not able to converge towards a satisfactory policy in a reasonable number
of iterations. The IOLSPI algorithm does not have this problem, since it already has a
sample set with a spread over the whole domain.

• The number of RBFs is definitely the limiting factor for this problem. Adding more
RBFs, over all dimensions, would probably result in better performance. It was found
however, that when we use more RBFs, more samples are needed to fit a proper value
function. As such, adding more RBFs adds computation time to the problem in two
ways: It slows down the solving of the Least Squares Policy Iteration, and it requires
the algorithm to run for more episodes.
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Chapter 12

Conclusion

In this thesis we have shown that for some systems, human demonstrations can improve the
performance of reinforcement learning in terms of learning time and safety.

The following research sub-questions are formulated for this research:

1. How can human demonstrations be used within Reinforcement Learning (RL) algo-
rithms?

2. How do RL algorithms using human expert demonstrations compare to each other, and
how do they compare to existing techniques in terms of safety and learning time?

3. In what way should the human demonstrate in order to maximize the benefit of the
demonstration for the RL controller?

4. How does the effect of the human demonstration depend on the specific controlled
system?

In the literature review (Chapter 4), the first question is partly answered. It is found that in
literature two ways of using human demonstrations within RL for quadrotor can be identified.
The first one is using a set of human demonstrations to identify a model of the system, which
is used offline to learn a policy. This method is model based and offline, and hence not easily
extensible to more complex vehicles, and not able to adapt to changing conditions, which both
are demands formulated in this research. The second way of using human demonstrations,
is to use them within a least squares policy iteration algorithm, in order to have a good
initial guess of a satisfactory policy. This approach can be used online and does not require
a model. As such this approach fulfills the formulated demands for the algorithm, and hence
is the approach studied in this research.

In this research, as is described in Part I, this online, model-free approach found in literature
is extended by combining two state of the art RL algorithms. Offline Least Squares Policy
Iteration (LSPI) and online LSPI are combined to an algorithm named Informed Online Least
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Squares Policy Iteration (IOLSPI). This algorithm is able to use human demonstration sample
sets to improve performance in terms of learning time and safety. The IOLSPI algorithm
uses the information present in a batch of samples, which can be obtained by a human
demonstration, to kick start the online LSPI algorithm, which continues to learn online.

It was shown that the IOLSPI algorithm fulfills the demands for an autonomous controller:
It is fully model-free and it can adapt to changing conditions. To improve the adaptability
of the algorithm, a forget factor was implemented, to value outdated samples less than the
more recently gathered ones, to focus on the current situation. It is found that a mild
forgetting behavior results in better performance in changing conditions. With a mild forget
factor present, the IOLPSI algorithm needs over 40000 time steps less to obtain a similar
performance after the conditions have changed, compared to the algorithm without the use
of a forget factor.

The second question is partly answered in the preliminary simulation chapter. A simple,
discrete, 2D simulation shows that the use of human demonstrations within a Q-learning
algorithm proves to be successful. Less time to learn is required to reach a satisfactory policy.

In Part I and Part III the second question is answered for continuous state problems. The
example studied is the rotational pendulum problem, where a mass has to be swung up from
a hanging down position. Here it was found that using human demonstrations, a good policy
is found straight away, whereas non-initialized online LSPI needs 60000 time steps (300 s) to
converge. In addition the final policy found using human demonstrations was 10% better in
terms of cumulative reward than the non-initialized online LSPI.

With a second studied system the benefit in terms of safety of the IOLSPI algorithm was
shown. In this quadrotor slung load drop off task it was shown that the number of crashes
while learning is reduced by 10% to 50% using the IOLSPI algorithm, compared to a non-
initialized reinforcement learning algorithm.

The third and fourth research questions were answered together in Part I. It was found that
the benefit of the use of human demonstrations is largest when the human uses its under-
standing of the problem to efficiently explore the state space, rather than only giving perfect
demonstrations of the task at hand. As a result, the benefit of using human demonstration in
combination with IOLSPI is larger for problems in which some understanding of the problem
is needed to reach a larger portion of the state space. This is the case in the aforementioned
swing up pendulum problem. The rotational pendulum problem was changed in such a way
that each episode of the problem was started at a random state, and as such no understanding
of the problem is needed to explore the whole state space. For this problem it was found that
the IOLSPI found a good policy straight away, but in this case the non-initialized online LSPI
algorithm found already after 20000 time steps (100s) a good policy, which was not different
from the policy found by the IOLSPI algorithm using human demonstrations.

With the second case study, a quadrotor slung load drop off task, the limitation of the
algorithm became apparent. A uniformly distributed grid of radial basis functions was used
to approximate the Q-function. With a growing number of state parameters, the number
of basis functions grows exponentially. For higher dimensional problems, the computational
effort becomes too high for present day computers.

For future research it would be interesting to combine the IOLSPI algorithm with methods
that choose the radial basis functions in an intelligent way, or use other ways of defining basis
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functions. When the number of basis functions is limited, the computational effort stays low.
With this addition in place, it would be interesting to apply the algorithm also to multiple
actuator systems, with continuous actions. With these extensions, the algorithm could be
applied to a 3D quadrotor simulation, and eventually on a real quadrotor. This will be a
next step towards model-free and adaptive control supporting the autonomy of these complex
vehicles.
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Appendix A

Additional Results of the Preliminary
Simulation

In this appendix the influence of the initialization of the parameters in the 2D simulation
are presented. The reference setting is the following: randomness ε = 0.01, learning rate α=
0.01, initialization of the Q-matrix Q0 = −50. The effect of variations in these parameters
are discussed in the following sections.

Effect of Q-initialization

The value with which the Q-values are initialized has a high influence on the speed of con-
vergence of the algorithm and, therefore, on the average return over 2000 iterations. Figure
A-1 shows the return for each iteration and the average return over all passed iterations for
the reference setting. It can be seen that using human demonstrations the convergence is
faster and hence the average return as well. Figure A-2 shows the average return as a func-
tion of different initializations of the Q-values (Q0). It can be seen that for both approaches
there is a benefit of taking a negative value for Q0. Initializing it at zero, will mean in the
case for Q-learning that the algorithm will be optimistic in the face of uncertainty, i.e., all
state-action combinations that are not visited yet, have a value of zero, which is in any case
higher than all visited state-action combination since these are negative because of the re-
ward structure. It has been seen that only 2000 iterations are not enough to make it converge
towards a satisfactory result. For the human demonstration algorithm, a Q0 of zero will work
counterproductive: This means that all state-action combinations that are visited within the
human demonstration runs, are deemed worse, since they will have a negative value, than all
non-visited states.

It can be seen from the figure that a value of -50 yields good results for both algorithms.
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Effect of greediness

Figure A-4 shows the impact of the greediness of the algorithm. It can be seen that for
the human demonstrations algorithm the lower the exploration rate, the higher the average
reward is. This is because the initial policy is good, and exploration does not yield in finding
a better policy within these 2000 iterations. This means that the higher the randomness,
the more bad results will occur. This lowers the average return. Figure A-3 shows this for
an exploration rate of 0.001. It can be seen that since the initial policy is already good, the
average is going to be high and constant.
For the Q-learning algorithm the influence is different. With too low exploration, the good
policy is not found, and hence the average return will end up low. For high exploration rates,
however, the influence of nonsense random iterations will start deteriorating the average too
much. As a result, it can be seen that an exploration rate of between 0.001 and 0.05 is optimal
for this problem.
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Effect of learning rate

The learning rate α is a measure on how aggressive the values are updated after a state has
been visited compared to its previous value. As can be seen in Figure A-5 and A-6 when the
learning rate is low but non-zero, it does not make a big difference. Too high learning rates,
however, give too aggressive behavior, and hence are not desirable.
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