
Delft Center for Systems and Control

Controlling the estimation bias
in deep reinforcement learning
problems with sparse rewards
Towards robust robotic object manipulation learning

Roland Varga

M
as

te
ro

fS
cie

nc
e

Th
es

is

Controlling the estimation bias in deep
reinforcement learning problems with

sparse rewards
Towards robust robotic object manipulation learning

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

Roland Varga

January 18, 2023

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

The work in this thesis was supported by DEMCON. Their cooperation is hereby gratefully
acknowledged.

Copyright © Delft Center for Systems and Control (DCSC)
All rights reserved.

Abstract

Many recent robot learning problems, real and simulated, were addressed using deep re-
inforcement learning. The developed policies can deal with high-dimensional, continuous
state and action spaces, and can also incorporate machine-generated or human demonstra-
tion data. A great number of them depend on state-action value estimates, especially the
ones in the actor-critic framework. Deriving unbiased estimates for these values is still an
open research question, mostly since the connection between accurate value estimates and
system performance is not yet well-understood. This thesis work has three main research
contributions. Firstly, it analyzes the connection between value estimates and performance
for the TD3 algorithm. Secondly, it derives theoretical bounds for the true value function
when dealing with environments where a reward is only given for successful completion of a
task (sparse/binary reward). Lastly, a deliberate underestimation objective is added to the
TD3 algorithm together with the theoretical bounds to improve system performance when
using human demonstration data that only covers a specific part of the state and action space.
All the algorithms are tested and evaluated using simulated robot manipulation tasks in the
robosuite environment, where the robot is first trained on the demonstration data and then
can gather more experiences in the simulation. Results show that the deliberate underesti-
mation together with the value bounds enable the robot to learn from human demonstration,
which was not possible for the standard TD3. Additionally, applying just the value bounds
speeds up the learning process when using machine-generated datasets.

Master of Science Thesis Roland Varga

ii

Roland Varga Master of Science Thesis

Table of Contents

Acknowledgements ix

1 Introduction 1
1-1 Structure of the report . 2

2 Deep Reinforcement Learning for Robotic Manipulation 3
2-1 Deep reinforcement learning in robotics . 3
2-2 Introduction to reinforcement learning . 4
2-3 Value function based methods . 8
2-4 Deep Q-learning . 11
2-5 Deterministic policy gradient methods, DDPG 13
2-6 Summary of the chapter . 15

3 Estimation Bias of Actor Critic Algorithms 17
3-1 Sources of overestimation bias . 17
3-2 Effects and reduction of overestimation bias . 18
3-3 Dealing with underestimation bias . 20

4 Learning from Demonstration 23
4-1 Replacing shaped rewards with demonstrations 23
4-2 Importance of the source of demonstration data 24
4-3 Available datasets for learning . 25

5 Algorithm Proposal 27
5-1 Lower and upper bounds on the value functions 27
5-2 Underestimation outside the demonstration . 30
5-3 Putting it all together . 31

Master of Science Thesis Roland Varga

iv Table of Contents

6 Implementation 33
6-1 Simulation environment, robot model . 33
6-2 Demonstration datasets . 33
6-3 Hardware and software . 35
6-4 Investigated test cases . 35

7 Results 37
7-1 Critic value estimates of dataset samples . 37
7-2 Critic value estimates of random state-action samples 41
7-3 Performance of the different algorithms . 43

8 Discussion 45
8-1 Connection between value estimates and performance 45
8-2 Summary, future prospects . 46

9 Conclusion 47

A Individual Runs with Different Seeds 49

Bibliography 57

Glossary 61
List of Acronyms . 61
List of Symbols . 61

Roland Varga Master of Science Thesis

List of Figures

2-1 Diagram of a run with the Markov decision process. The next state only depends
on the current state and the current action. The observed reward depends on the
state and optionally the action. Note that the transition between states is not
necessarily deterministic. 5

2-2 Toy example of a reinforcement learning problem. The agent (robot) starts at the
bottom left field and its objective is to reach the goal (checkered flag). For the
defined reward function, state and action-space, and transition dynamics refer to
the main text. 6

2-3 Diagram of a general reinforcement learning problem. The agent decides on an
at action based on the last observed st state, which after execution results in rt
instantaneous reward and the new observed state st+1 6

2-4 In Q-learning the state-action pairs and their corresponding values are stored one-
by-one. This means that only discrete states can be considered. Deep Q-learning
enables the generalization to continuous state-spaces. In this example, the agent in
each N state can execute 4 discrete actions. Instead of storing these pairs directly,
a deep neural network can be fitted on the states. 11

2-5 Schematics of the actor-critic framework. The actor chooses and executes an
action in the environment based on the current state. The critic observes the next
state and the reward, then computes the Temporal difference (TD) error. Based
on this error both the actor and critic are adjusted [1]. 14

3-1 Visualization of overestimation bias introduced by the maximization operator in
Q-learning. The true value function has a single state input and its value output
is the same for all possible actions in a certain state for simplicity. The crosses
indicate the samples of the true value function that are used to create the approx-
imations for the state-action pairs. Due to approximation errors, the values for
different actions (green and red curves on the top graph) sometimes overestimate,
sometimes underestimate the true function. However, the maximization between
the two will result in selecting overestimated values more often over underestimated
ones (bottom graph). 19

Master of Science Thesis Roland Varga

vi List of Figures

6-1 Robosuite environments used for the testing of the proposed and standard algo-
rithms. On the left the cube lift environment is shown, where the objective of
the agent is to lift the cube from the table above a certain height. On the right,
the can pick-and-place environment can be seen, where the aim of the robot is to
pick up a can randomly initialized in the left box and move it to the bottom right
compartment. 34

7-1 Minimum and maximum Q values assigned by the critic to transition samples
randomly selected from the replay buffer (different datasets and tasks). The thick,
solid lines show the mean of four runs with four different seed values (0, 15, 22,
96). The shaded area shows 1 standard deviation of the different runs. The plots
show that the 2 proposed algorithm manages to keep the values close to the desired
[0, 1] range. In case of the cubelift task with human demonstration and the can
pick-and-place task with machine generated data the standard algorithm could not
be pretrained before the environmental interactions, due to instability, and that is
why there are less gradient steps in case of the corresponding (blue) curve. . . . 38

7-2 Mean of the Q values assigned by the critic to samples in the batch randomly
selected from the replay buffer (different datasets and tasks). The thick, solid
lines show the mean of four runs with four different seed values (0, 15, 22, 96).
The shaded area shows 1 standard deviation of the different runs. The plot shows
that as the learning progresses the standard algorithm is becoming more and more
pessimistic about the state-action pairs in the replay buffer (despite filling it with
successful trials as will be shown later). The two proposed algorithm has a higher
mean value (more optimistic). In case of the cubelift task with human demonstra-
tion and the can pick-and-place task with machine generated data the standard
algorithm could not be pretrained before the environmental interactions, due to in-
stability, and that is why there are less gradient steps in case of the corresponding
(blue) curve. 40

7-3 During pretraining (no env. interaction), maximum and minimum Q values as-
signed by the critics to randomly generated state-action pairs around the demon-
stration data distribution (machine generated dataset, cubelift task). The thick,
solid lines show the mean of four runs with four different seed values (0, 15, 22,
96). The shaded areas show 1 standard deviation of the different runs. It can
be observed, that the UBTD3 algorithm manages to regulate the values of state-
action pairs that are not in the dataset and successfully assign low values to them
in the [0, 1] range. In case of the other algorithms, the value of random state-
action pairs is not directly regulated, only through the interpolation/extrapolation
capabilities of the critic neural networks. In case of the can pick-and-place task
the value estimates of the standard algorithm is not plotted, since pretraining on
the demonstration data was not possible due to instabilities. 42

7-4 Average of 5 test episode returns using the policies trained by the different algo-
rithms as the learning progresses (different datasets and tasks). Although binary
completion reward is used, in case of the cubelift task the trial is only stopped if the
robot managed to lift the cube for 1 second, which is 20 samples. Values below 20
indicate that the grasping of the cube was not robust and it was dropped. In case
of the can pick-and-place task, the value 20 indicate that the robot placed the can
in the correct compartment and the can stayed there for the same 20 time steps
(1 second). The thick, solid lines show the mean of four runs with four different
seed values (0, 15, 22, 96). The shaded areas show 1 standard deviation of the
different runs. 44

A-1 Maximum and minimum value estimates of the different algorithms while training
on the machine generated dataset and the collected experiences in the cubelift task. 50

Roland Varga Master of Science Thesis

List of Figures vii

A-2 Performance improvement of the different algorithms as the learning progresses in
the cubelift task using the machine generated dataset. During the learning process
after every 5th trail (1000 samples) the current policy is evaluated using 5 trials.
In each trial the robot needs to lift the cube and hold it for 20 samples (1 second).
The figures show the average number of terminal state samples in the 5 trials for
every evaluation step. 51

A-3 Maximum and minimum value estimates of the different algorithms while training
on the machine generated dataset and the collected experiences in the can pick-
and-place task. 52

A-4 Performance improvement of the different algorithms as the learning progresses
in the can pick-and-place task using the machine generated dataset. During the
learning process after every 5th trail (1000 samples) the current policy is evaluated
using 5 trials. In each trial the robot needs to lift the can and place it in the
designated compartment for 20 samples (1 second). The figures show the average
number of terminal state samples in the 5 trials for every evaluation step. 53

A-5 Maximum and minimum value estimates of the different algorithms while training
on the human demonstration dataset and the collected experiences in the cubelift
task. 54

A-6 Performance improvement of the different algorithms as the learning progresses
in the cubelift task using the human demonstration dataset. During the learning
process after every 5th trail (1000 samples) the current policy is evaluated using 5
trials. In each trial the robot needs to lift the cube and hold it for 20 samples (1
second). The figures show the average number of terminal state samples in the 5
trials for every evaluation step. 55

Master of Science Thesis Roland Varga

viii List of Figures

Roland Varga Master of Science Thesis

Acknowledgements

Firstly, I would like to thank my permanent supervisors Dimitris Boskos (TU Delft) and
Michiel Plooij (Demcon) for their guidance and patience during the thesis project. I am also
grateful to Arno Stienen (Demcon) for initiating my journey in this topic. Jens Kober (TU
Delft) and his PhD students, Bas van der Heijden and Jelle Luijkx, helped with their insights
at critical points during my thesis.

Jan van Beek (TU Delft) deserves my appreciation for the guidance in the tougher times of
the thesis work.

I cannot be grateful enough for all the help and support from my partner, Emma, and my
family. Last but not least, my friends helped me overcome numerous obstacles along the way
and made my days brighter.

Delft, University of Technology Roland Varga
January 18, 2023

Master of Science Thesis Roland Varga

x Acknowledgements

Roland Varga Master of Science Thesis

“As I said, the problem is a classic one (the multi-armed bandit problem); it was
formulated during the war, and efforts to solve it so sapped the energies and minds
of Allied analysts that the suggestion was made that the problem be dropped over
Germany, as the ultimate instrument of intellectual sabotage.”
— Peter Whittle

Chapter 1

Introduction

Robotics is spreading from the well-structured factory environments to our environments,
even to our homes. This brings up numerous engineering challenges that need to be overcome
to design and deploy systems that can operate safely and efficiently.

One of the most researched area in robotization is robotic manipulation [2, 3, 4, 5, 6, 7, 8, 9].
Seemingly easy tasks, such as picking up a plastic cup or a fruit are hard to achieve with
robots using the standard tools. So what makes it challenging? For one, variability. The
object properties are not necessarily known when designing the grasping systems and they
often would be hard or tedious to estimate. For example, a tomato can be relatively solid
when it just ripened but it might be a bit mushy as it further ripens. We humans often grab
soft objects differently than solid ones. When picking up a tomato, we might reach under it,
so we need to squeeze it less on the sides. Same with slippery objects, like a bar of soap. We
learn our grasping behaviour via trail and error, dropping objects sometimes in the process.
A similar approach exists in robotics: reinforcement learning [10, 11, 12, 2, 13].

In reinforcement learning the robot (agent) interacts with an environment receiving feedback
from it in the form of rewards based on its performance. For example, if the goal is to pick
up an object with a robot arm, the environment could give a reward of 1 whenever the object
was lifted successfully and 0 otherwise. It is up to the robot to "figure out" a way to actually
lift the object and thus achieving the reward of 1.

One can imagine, that if only this 0 or 1 reward is given and no other instructions to improve
itself, then the robot will need quite some time to figure out anything useful [9]. Therefore it
would be beneficial to use algorithms that can incorporate demonstrations of the execution
of certain tasks, so the robot does not need to start from scratch. This demonstration might
come from a human operator, as shown later in Chapter 4, guiding the robot, showing the
task [8, 9, 5, 14].

The majority of state-of-the-art reinforcement learning algorithms in robotics, that can also
utilize demonstration data, use deep neural networks (deep reinforcement learning – intro-
duced in Chapter 2) to estimate the value of different states and actions. The "states" refer to
the collection of variables that describe the current status of the system (e.g. sensor signals).

Master of Science Thesis Roland Varga

2 Introduction

In case of the object lifting example, the state variable could be the distance of the robot
gripper from the object. The "actions" gather all the possible choices that the robot could do
in a given state, for example closing the gripper or moving closer to the object.

When the agent fails to accurately estimate the value of certain states and actions, the
performance of these systems can quickly degrade. In our example, the robot might estimate
that it is better (more "valuable") to stay far away from the object rather than picking it up.
A great number of state-of-the-art algorithms are prone to consistently either overestimate
or underestimate the value of states and actions (estimation bias – introduced in Chapter 3).
This master thesis project aims at mitigating the estimation bias in certain algorithms in
order to improve their robustness, reliability and performance while investigating the following
research question.

Research question How to mitigate the effect of estimation bias in deep reinforcement
learning algorithms that can utilize demonstration data, in order to improve their performance
in robotic grasping?

1-1 Structure of the report

To provide a look into the state of the great field of deep reinforcement learning based robotics,
there are three literature survey chapters.

Chapter 2 introduces the concept and tools of deep reinforcement learning through definitions
and examples. As you will see, there are several algorithms to consider. However, the focus
will be narrowed down to state-of-the-art policy gradient based algorithms that can learn
from data, such as DDPG and TD3.

Chapter 3 provides a look into the reasons behind estimation bias and its effect on the
performance of deep reinforcement learning agents. Next to the literature survey, an intuitive
explanation for the possible reasons for both overestimation and underestimation bias is
provided. The tools utilized by the TD3 algorithm to avoid overestimation are also presented.

Chapter 4, the last introductory chapter, presents how algorithms can incorporate demonstra-
tion datasets. Training on machine-generated datasets (e.g. data from other trained agents)
is generally an easier task compared to human demonstrations. The difference between these
two is also explained in this chapter. Different repositories for available datasets to test
algorithms are also listed.

Chapter 5 describes the algorithm adjustments in order to potentially mitigate the effect of
estimation bias. Additionally, an extra modification is proposed, that might help increas-
ing the stability of algorithms when using human demonstration data. These are the main
theoretical contributions of this thesis work.

Chapter 6 describes the simulation tools and datasets that are used for the implementation and
testing of the algorithms, followed by Chapter 7 presenting the results. Chapter 8 discusses
and interprets the results and Chapter 9 concludes the thesis.

Roland Varga Master of Science Thesis

Chapter 2

Deep Reinforcement Learning for
Robotic Manipulation

2-1 Deep reinforcement learning in robotics

In the field of robot motion control, machine learning based approaches achieve better and bet-
ter results. They can be used for tasks that would otherwise be hard or tedious to implement
using the traditional approaches. For example, how should a door opening algorithm work?
Following traditional approaches we could design a path-planner and a simple controller, that
makes the robot follow the generated path. But how should this path be generated? What
should happen if the door handle slips or the rotation is stiffer than expected? To lift the
burden from the shoulders of the programmers, why not let the robot experiment and "figure
out" what could be done in different scenarios? That is where reinforcement learning comes
into the picture.
Furthermore, recent robotics research often uses high dimensional and multimodal sensor
input signals, such as image data, lidar, force sensors, end-effector position and orientation.
The development of standard controllers that can deal with such input signals is challenging,
to say the least. For this reason, learning controllers became more and more popular for
a number of application. For example, the development of robust robot manipulators can
benefit from the fusion of these multimodal sensor signals via learning, and thus reinforcement
learning is studied extensively in the recent years [10, 11, 12, 2, 13].

Sim2Real There are recently successful approaches to close the gap between simulation and
the real world [4, 15]. Training policies (controllers) in simulation and deploying them in
the real world is referred to as sim2real in the literature. In 2019, the OpenAI team built a
real-world robot hand, mimicking a human one, and trained a policy purely in simulation,
which after deployment manages to execute the desired moves on the real Rubik’s cube [4].
In the same year, Hwangbo et al. at ETH Zurich published a paper about training a policy
for a four-legged robot, again in simulation, to tackle different locomotion tasks and could
deploy it on the real robot [15].

Master of Science Thesis Roland Varga

4 Deep Reinforcement Learning for Robotic Manipulation

Choice of algorithm The previous results were not achieved using the same approach, in
fact, there is not yet a universally best algorithm for all the problems. Researchers achieved
promising results with algorithms including but not limited to the followings:

• Proximal Policy Optimization (PPO) [16]: published in 2017 by the OpenAI team

• Trust Region Policy Optimization (TRPO) [17]: this was used for the locomotion policy
development in the ANYmal project [15, 18]

• Guided Policy Search (GPS) [19]

• Soft Actor Critic (SAC) [20]: Balakuntala et al. demonstrated successful learning of
multimodal contact-rich skills on real robot [5]

• Deep Deterministic Policy Gradient (DDPG) [21]: Hansen et al. achieved promising
results on robot manipulation benchmarks in simulation [3]

• Deep Deterministic Policy Gradient from Demonstration (DDPGfD) [8]: Luo et al.
developed robust, multi-modal policies for industrial assembly tasks on a real robot [2]

• Twin-Delayed Deep Deterministic Policy Gradient (TD3) [22]

• Batch Deep Corrective Advice Communicated by Humans (BD-COACH) [6]: incorpo-
rating human corrective feedback in the learning

This list might look extensive, but the most successful algorithms in the recent years are
from the so-called actor-critic framework. Therefore, in the following chapters the theoretical
foundations are laid out for the following topics, where the consecutive ones build on or
extends the previous ones:

1. Reinforcement learning

2. Value function based methods

3. Deep Q-learning

4. Policy gradient methods (a subset of the actor-critic algorithms)

2-2 Introduction to reinforcement learning

In reinforcement learning the controlled system is typically modeled as a fully or partially
observable Markov Decision Process (MDP).

Definition 2-2.1 (Markov Decision Process). A Markov decision process is defined by the
4-tuple M = (S,A, T, R), where S denotes the set of possible states s ∈ S, A is the set
of possible discrete and/or continuous actions a ∈ A, T is the probabilistic state transition
function T (s′|s, a), which describes the probability of arriving to the s′ ∈ S state from s ∈ S
in the next time step by taking action a ∈ A. Finally, R describes the reward function
R : S ×A → R. Some definitions include the distribution of the initial state d0 and the scalar
discount factor γ ∈ (0, 1] in the tuple [23], because they are a common elements of MDPs
(they will be used extensively).

Roland Varga Master of Science Thesis

2-2 Introduction to reinforcement learning 5

One of the most important properties of MDPs is that the next state of the system s′ only
depends on its current state s and the chosen action a (Figure 2-1). This is also known as the
Markov-property. This means that the current state s should incorporate all the effects of
the previous states and actions. However, the state variables are often not measured directly,
or the measurements are corrupted by measurement noise. That is why partially observed
Markov decision processes become relevant.

... ...

Figure 2-1: Diagram of a run with the Markov decision process. The next state only depends
on the current state and the current action. The observed reward depends on the state and
optionally the action. Note that the transition between states is not necessarily deterministic.

Definition 2-2.2 (Partially observed Markov decision processes). A partially observed Markov
decision process is defined by the 6-tuple M = (S,A, T, R,O, E), where S, A, T and R are
the same as before, the set of observations is denoted by O and E is the emission function
that describes the probability of observing o ∈ O given s ∈ S.

Remark. The E(o|s) emission function can be thought of as a measurement function, and the
o measurement (observation) gives an indication of the value of the underlying s state.

Example Let us show a toy example for a reinforcement learning problem, where the previous
(and future) notions can be demonstrated. So imagine a robot living in a 4 × 6 grid world,
which is shown on Figure 2-2. In this case the S state-space is the set of possible, discrete
x and y positions. The robot always starts at the bottom left corner, which is state (0,0),
so the d0 distribution of initial state has non-zero probability only at the (0,0) location. The
goal of the robot is to reach the bottom right corner (5,0). The set of possible actions in A
are moving one in the direction of a) x, b) y, c) −x or d) −y. Our robot is a bit clumsy, so
it does not necessarily move to the desired direction, which is captured by the probabilistic
T transition function. So 90% of the time the robot makes a step in the direction requested
by the action, but 10% of the time it ends up going to the any other 3 directions. On the
boundary if the robot moves toward the boundary, it will just end up at the same place
(state). Finally, the R reward function is designed such that the robot is "encouraged" the
reach the goal:

• A reward of 10 when it steps on the goal

• A reward of -5 when going into the forest (stepping on the tree on Figure 2-2)

Master of Science Thesis Roland Varga

6 Deep Reinforcement Learning for Robotic Manipulation

• A reward of -15 when meeting with the bear, which waits on the (3,0) location

• A reward of -1 after every action executed (to encourage the robot to finish as fast as
possible)

y

x

Figure 2-2: Toy example of a reinforcement learning problem. The agent (robot) starts at the
bottom left field and its objective is to reach the goal (checkered flag). For the defined reward
function, state and action-space, and transition dynamics refer to the main text.

In a reinforcement learning problem a so-called agent interacts with an environment, which
is a Markov decision process (Figure 2-3). In the previous example, the agent would be
embedded inside the robot and is responsible for strategic decisions. At every discrete, fixed
time step the agent chooses an action at to execute in the environment, and observes an
instantaneous rt reward from the environment and the next observed state st+1.

Environment

Agent

Figure 2-3: Diagram of a general reinforcement learning problem. The agent decides on an
at action based on the last observed st state, which after execution results in rt instantaneous
reward and the new observed state st+1

.

Notations The control theory and the Reinforcement Learning (RL) literature often uses
different notations for the same variables. In control theory the state variable is often denoted

Roland Varga Master of Science Thesis

2-2 Introduction to reinforcement learning 7

by "x" while in RL it is "s". RL works only in discrete time, and it is denoted by "t". Finally,
a RL algorithms often only consider the current and the next time steps, so for convenience
the time index is often omitted for the current time step (e.g. at → a, st → s, rt → r) and
the next time step gets a prime (e.g. st+1 → s′). The previously mentioned notations are
used extensively in this report.

In a reinforcement learning problem the goal of an agent is to learn a policy π (basically a
controller), which is a distribution π(at|st) of actions at conditioned on the observed state st.
In case of a partially observed MDP, the actions are conditioned on the observation ot instead
of the "true" state st, so the distribution is denoted by π(at|ot). This means that in general we
are dealing with a non-deterministic policy. In case of our robot example, the policy function
would receive the current state (position on the grid) and would assign different probabilities
for the possible actions (direction of movement).

The agent can do explorations in the environment by following the previously mentioned
policy. A "trial run" using a policy is called an episode. An episode is essentially a trajectory
τ , so a sequence of consecutive states and actions:

τ = (s0, a0, s1, a1, . . . , sH , aH)

The length of the episode is called the horizon and it is often denoted by H and it is possibly
infinite (infinite-horizon problems). Since we are dealing with MDPs, the transition between
states based on the chosen actions is characterised by the probabilistic transition function
T . The policy function π, which determines the actions and the initial state distribution
d0(s0) are also probabilistic. This enables us to compute the probability of a certain observed
trajectory τ :

pπ(τ) = d0 (s0)
H∏

t=0
π (at | st) T (st+1 | st, at)

Intuitively, this equation is built upon the fact that the choice of action, the transitions and
the initial state distribution all have independent probabilities. So the probability of observ-
ing a given initial state s0 is exactly d0(s0) and this is multiplied with the probability of
choosing a0 which is π(a0|s0). Applying this action will result in the given state s1 with prob-
ability T (s1 | s0, a0), which is also independent of the other probabilities, so it will become
a multiplicative term. This goes on for every state, action and transition probabilities. But
why do we care about the probability of certain trajectories? It is all about the accumulated
reward that we can expect from a policy. During an episode the agent will receive rewards for
the different state-action combinations, which can be summed up. So what makes a policy
better than an other one? A common objective is the expected accumulated reward following
the policy:

J(π) = Eτ∼pπ(τ)

[
H∑

t=0
γtR (st, at)

]
(2-1)

In the equation γ ∈ (0, 1] is a discount factor, which help weighing future rewards. Usually
γ has a value close to one, but its exact value can significantly influence the performance of
long-horizon problems (problems which require long-term planning).

Master of Science Thesis Roland Varga

8 Deep Reinforcement Learning for Robotic Manipulation

2-3 Value function based methods

Now that we showed the objective of general reinforcement learning problems in (2-1), the
aim is to come up with a policy π, that will result in the highest expected reward. For this a
more traditional approach in machine learning is the so-called value function based methods.
Getting to know its mechanisms, advantages and shortcomings helps also understanding policy
gradient methods, on which this thesis work builds on. So in this section ultimately the value
function based Q-learning will be introduced, which is closely related the Deep Deterministic
Policy Gradient (DDPG) and Twin-Delayed Deep Deterministic Policy Gradient (TD3) policy
gradient algorithms (used later on). So let us see first what are value function based methods.

Formally, we could define the value of a certain state s following the policy π by the expected
accumulated reward that is about to come when starting in that state:

Vπ(s) = Eπ

[∞∑
k=0

γkR (st+k+1) | St = s

]

where t is any time step, which means that the value of a state does not depend on the actual
time index. This can only be assumed for infinite-horizon problems, that is why the k index
in the sum tends to infinity. Note that in this definition the reward function R only depends
on the state. In general it could also depend on the action taken, but for the thesis work
the instantaneous rewards will only depend on the state. There is one problem though: in
practice we usually do not know either the value function or the optimal policy (maximizing
the reward), but we can estimate both from data.

At this point we can distinguish between potential algorithms, which will determine how we
determine and update the value function and the policy:

• Level of interaction / source of data:

– Offline: data is collected in advance
– Online: data is collected by interacting with the process

• Type of experience sampling:

– Off-policy: use experiences of different policies other than π to improve π

– On-policy: use experience of π to improve π

• Model knowledge:

– Model-free: the T transition and R reward functions are not known by the rein-
forcement learning agent, only the gathered transition data

– Model-based: both T and R are known (e.g. dynamic programming)
– Model-learning: T and R are estimated from the transition data

One of the most intuitive tools for solving value function based reinforcement learning prob-
lems is the Q-learning, which is an off-policy, online, model-free algorithm. It can be intro-
duced using the toy example from the previous section. In a Q-learning approach the agent
tries to estimate the general value of not just states but state-action pairs. In our example,

Roland Varga Master of Science Thesis

2-3 Value function based methods 9

the robot agent could store for each 2D state a numerical value for all four possible actions.
This means that for the 6 possible x states, 4 y states and 4 possible actions in each state
we need to store altogether 6 × 4 × 4 = 96 values. The function that maps the states and
action to a value is called the action-value function (Q-function / Q-table). It can be defined
similarly to the state-value function, where an agent takes action a in the current time step
and then follows policy π:

Qπ(s, a) = Eπ

[∞∑
k=0

γkR (st+k+1) | St = s, At = a

]
(2-2)

Storing these values is not an issue in this simple problem, but we can already see, that this
number will increase fast as the number of state dimensions and possible actions increase. In
any case, let us assume that the robot in our example has no knowledge about the location
of the goal and about the obstacles along the way, so this Q-table is initialized with all 0s
(initializing with non-zero values can help exploration but let us keep it simple).

Now the agent is free to experiment in the environment using its policy to gather (s, a, s′, r)
tuples that can be later used to correct the values in the Q-table. A common choice for
an exploration policy in these simple problems is an ϵ-greedy policy, where there is an ϵ
probability in every time step that the agent will choose a random, possible action, and
otherwise it will exhaustively search for the highest valued action of all possible actions in
the Q-table for the current state.

We have seen how the Q-table can be initialized and how it can be used to choose the actions to
gather (s, a, s′, r) tuples (experiences). However, the values in the Q-table need to be adjusted
to improve the policy. So how can we tweak these values based on the agents experiences in
the environment? The Bellman equation enables the derivation of algorithms that aid the
improvement:

Qπ(s, a) = E
[
R(s′) + γQπ(s′, π(s′)) | St = s, At = a

]
where s′ respects the transition dynamics. It essentially describes that the values in the
a Q-table should be equal to the instantaneous reward and the discounted future rewards
following policy π. Furthermore, since we would like to refine our policy and Q-table, such
that the expected accumulated reward will be the highest, the optimal policy π∗ and optimal
Q-table Q∗ are the following:

Q∗(s, a) = max
π

Qπ(s, a) = Qπ∗(s, a) (2-3)

In case of a greedy policy (maximum exploitation of the Q-table values):

π∗(s) = arg max
a

Q∗(s, a) (2-4)

Putting Equation (2-2), (2-3) and (2-4) together results in the Bellman optimality principle:

Q∗(s, a) = E
[
R(s′) + γmax

a′
Q∗(s′, a′) | St = s, At = a

]
Now we know how the optimal Q-function (Q-table in case of discrete states and actions)
would look like but it is still not clear how to estimate it from data. The final 2 pieces of this
puzzle are provided by the bootstrapping method and the usage of temporal difference (TD)

Master of Science Thesis Roland Varga

10 Deep Reinforcement Learning for Robotic Manipulation

error. Bootstrapping in this context refers to the update of a variable using the values of its
successor states. So in case of the Q-function we can use the previous Bellman optimality
principle and turn it into an iterative update using the (s, a, s′, r) transition samples, that the
agent gathers throughout the environmental interactions:

Qπ(s, a)← R(s′, a) + γmax
a′

Qπ(s′, a′)

In theory, this kind of update would work, but in practice numerical instability can be avoided
using a learning rate α:

Qπ(s, a)← (1− α)Qπ(s, a) + α

[
R(s′, a) + γmax

a′
Qπ(s′, a′)

]
(2-5)

Qπ(s, a)← Qπ(s, a) + α

[
R(s′, a) + γmax

a′
Qπ(s′, a′)−Qπ(s, a)

]
︸ ︷︷ ︸

∆:=temporal difference

(2-6)

Note that the temporal difference ∆ can be extracted from the previous update:

Summary of Q-learning: Q-learning belongs to the family of value function based reinforce-
ment learning algorithms. In addition to the state value function V (s) it estimates the action
value function Q(s, a) (V ∗(s) = max

a
Q∗(s, a)). The algorithm works as follows:

Algorithm 1 Q-learning
Initialize Q(s, a) arbitrarily
ep← 0 (index of current episode)
while (ep < Max number of episodes) do

s← sample d0(s0)
t← 0
while (t < Length of episode) do

Choose action a based on policy derived from Q(s, a) (e.g. ϵ-greedy)
Take action a and observe r and s′

Q(s, a)← Q(s, a) + α

[
r + γmax

a′
Q(s′, a′)−Q(s, a)

]
s← s′

t← t + 1
end while
ep← ep + 1

end while

Q-learning has the benefit that it can use samples generated by any policy, since it is an
off-policy algorithm. However, there are some challenges/shortcomings that are tackled by
more advanced algorithms:

• The system either needs to have only discrete states, or the continuous ones need to be
discretized.

• It can only deal with discrete action spaces, where to determine the action a that
maximizes Q(s, a) needs to be exhaustively searched.

Roland Varga Master of Science Thesis

2-4 Deep Q-learning 11

• The computational complexity of searching the action space grows exponentially as the
action space dimension increases. In practice, due to this limitation and the previ-
ous ones, problems with high dimensional state and action spaces can quickly become
intractable.

2-4 Deep Q-learning

As mentioned in the previous section, Q-learning can only deal with systems that have discrete
state and action spaces. So systems with continuous states and actions needs to be discretized,
which is not straightforward, and can cause all sorts of problems and undesired behaviour
later on. To avoid it, deep learning might be the answer. The 2015 success of the company
DeepMind with Atari games demonstrated the potential of Deep Q-learning Network (DQN)
approaches to achieve human-level (or even better) control performances [24]. But how do
neural networks can boost the performance of Q-learning agents?

First of all, in standard Q-learning a table needs to be stored with values for all possible
combinations of states and actions (Figure 2-4). In problems with high-dimensional state-
and/or action-spaces, such as robotics problems, the values can be difficult to store and deal
with. So the idea of DQN is to approximate the Q(s, a) function with a neural network, which
requires less parameters to store and might provide generalization capabilities for states that
the agent has not explored before.

Q-table
State-action pairs

State1 & Action1

State1 & Action2

State1 & Action3

State1 & Action4

State2 & Action1

StateN & Action4

Value

Value11

Value12

Value13

Value14

Value21

ValueN4

StateN

Q-value action1

Q-value action2

Q-value action3

Q-value action4

Approximation of the Q-function

Figure 2-4: In Q-learning the state-action pairs and their corresponding values are stored one-
by-one. This means that only discrete states can be considered. Deep Q-learning enables the
generalization to continuous state-spaces. In this example, the agent in each N state can execute
4 discrete actions. Instead of storing these pairs directly, a deep neural network can be fitted on
the states.

Master of Science Thesis Roland Varga

12 Deep Reinforcement Learning for Robotic Manipulation

This basically becomes a regression problem. Let us take another look at (2-5):

Qπ(s, a)← Qπ(s, a) + α
[

R(s′, a) + γmax
a′

Qπ(s′, a′)︸ ︷︷ ︸
target Q value

−Qπ(s, a)
]

We can see that via the optimization the goal is to shape the Q function more like this target.
Also an important distinction between Q-learning and DQN is that now we are not adjusting
individual values in the Q-table for a specific state-action pair, but rather we need to adjust
the parameters of the network that approximates the Q-function (Figure 2-4). So let us
denote the parameterized Q-function by Qϕ, where ϕ denotes the network parameters. The
loss used for backpropagation can be the following:

J(ϕ) = E
[(

R(s′, a) + γmax
a′

Qπ
ϕ(s′, a′)−Qπ

ϕ(s, a)
)2

]

It is important to highlight, that we can approximate this expectation from data, and then
the only variable in this objective will be the ϕ network parameter:

J(ϕ) ≈ 1
nB

∑
(s,a,s′,r)∈B

[(
r + γmax

a′
Qπ

ϕ(s′, a′)−Qπ
ϕ(s, a)

)2
]

The (s, a, s′, r) tuples are the experiences of the agent that are sampled from the so-called
replay buffer in B mini-batches with nB samples. The replay buffer is a storage for the selected
previous experiences and the mini-batch is a subset of that. Using replay buffer is actually
necessary when dealing with neural networks. These are global function approximators and
thus previous experiences need to be stored and replayed later, otherwise the agent will
"forget" them. So a common practice is to sample B mini-batches from the replay buffer and
use stochastic gradient descent (SGD) to update ϕ:

ϕk+1 = ϕk − α∇ϕk
J(ϕk)

This update looks straightforward, however, there is a problem. The previously mentioned
target value changes with every iteration, since the Q-function changes. This means that with
the gradient steps the algorithm chases a non-stationary value. To mitigate this problem, a
second neural network, a target network can be used, parameterized by ϕtarg. This network
has the same structure and parameters, as the Q-function approximator, but its update is
delayed with a given number of steps. To avoid confusion it is important to highlight, that the
target network does not approximate the whole r + γmax

a′
Qπ

ϕ(s′, a′) term, only the Q-function
in this target. To summarize the idea:

1. Both the Q-function approximator Qϕ and the target network Qϕtarg are initialized with
the same parameters: ϕ = ϕtarg.

2. While the target network remains constant, the parameter ϕ is updated.

3. After predefined number of updates to ϕ, these parameters are copied over to update
the target network: ϕtarg ← ϕ.

4. Steps 2-3 are repeated till convergence.

Roland Varga Master of Science Thesis

2-5 Deterministic policy gradient methods, DDPG 13

So the approximation of the objective function is the following:

J(ϕk, ϕtarg,k) ≈ 1
nB

∑
(s,a,s′,r)∈B

[(
r + γmax

a′
Qπ

ϕtarg,k
(s′, a′)−Qπ

ϕk
(s, a)

)2
]

ϕtarg,k ← ϕk after given steps, otherwise ϕtarg,k remains constant

2-5 Deterministic policy gradient methods, DDPG

DQN is already an improvement compared to Q-learning, as it can deal with continuous
state-spaces. However, most physical systems, such as robots, are controlled by continuous
actions. For example, we might want to control the joint torques in a robot without manually
discretizing the range of possible torque values.

Policy gradient methods provide a way to naturally deal with continuous action spaces. Since
the thesis work will focus on deterministic policy gradient based, off-policy, actor-critic algo-
rithms, the theoretical background and motivations are restricted to those in the following.
So the concept of deterministic policy gradient will be introduced via the DDPG algorithm
developed by Lillicrap et al. in 2015 [21].

So let us consider a deterministic policy µθ : S → A, where θ denotes the parameter vector of
the µ policy (in case of neural network parametrization this contains the weights and biases).
The DQN algorithm used a greedy policy, so µ(s) = arg maxa Qϕ(s, a), which is dependent
on the action-value function. However, if we represent the policy and action-value functions
separately, we arrive to the actor-critic algorithms. The policy is called the actor, since it
determines the action based on the current state, while the Q action-value function, the critic,
gives an indication on how valuable is the chosen action in the current state (Figure 2-5).

As mentioned previously, the focus is now restricted to off-policy algorithms, as they can
derive µθ from the data collected by any other behaviour policy β(s). Let us also denote
by p(s → s′, t, β) the density at state s′ after transitioning from state s via t time steps
using the behaviour policy β. Finally, the discounted state distribution can be expressed
as ρβ(s′) :=

∫
S

∑∞
t=1 γt−1d0(s)p(s → s′, t, β) ds, similar to [25]. Using this notation, the

performance of a deterministic policy µθ can be expressed as:

Jβ(µθ) =
∫

S
ρβ(s)Qµθ (s, µθ(s)) ds

Silver et al. [25] derived the derivative of this objective function w.r.t. the hyperparameter θ
as:

∇θJβ(µθ) = Es∼ρβ

[
∇aQµθ (s, a) |s=st,a=µθ(st) ∇θµθ(s) |s=st

]
The update of the θ parameters can be implemented using this gradient. The DDPG algo-
rithm extends this deterministic policy update by approximating the Q action-value function
similarly to the DQN algorithm (it was actually motivated by the success of DQN). So after
similarly approximating the Qµθ by Qµθ

ϕ we get:

∇θJβ(µθ) = Es∼ρβ

[
∇aQµθ

ϕ (s, a) |s=st,a=µθ(st) ∇θµθ(s) |s=st

]
Master of Science Thesis Roland Varga

14 Deep Reinforcement Learning for Robotic Manipulation

reward

state

Environment

Value function

Policy

Critic

Actor

TD error

Figure 2-5: Schematics of the actor-critic framework. The actor chooses and executes an action
in the environment based on the current state. The critic observes the next state and the reward,
then computes the Temporal difference (TD) error. Based on this error both the actor and critic
are adjusted [1].

Unfortunately, by approximating the action-value function we lose the guarantee that fol-
lowing the gradient the θ parameter will converge. In any case, we can give a Monte Carlo
estimate of the previous expectation based on the collected data [21]:

∇θJβ(µθ) ≈ 1
nB

nB∑
i

∇aQµθ
ϕ (s, a) |s=si,a=µθ(si) ∇θµθ(s) |s=si

where nB is the mini-batch size, as before, and the (si, ai, s′
i, ri) tuples are randomly selected,

independent samples from the replay buffer in the mini-batch. Now we have a gradient to
update the θ policy network parameters, and the ϕ parameters can be updated as described
earlier for the DQN. The creators of DDPG proposed to use target networks for both the
policy and the action-value function, similarly to DQN. However, the target networks do not
get the parameters from the other networks directly, but via polyak-averaging using the φ
polyak coefficient (hyperparameter):

θtarg,k ← φθtarg,k + (1− φ)θk , when there is update
ϕtarg,k ← φϕtarg,k + (1− φ)ϕk , when there is update

The interested reader can find the pseudo-code of the DDPG algorithm in the paper published
by the creators [21]. The thesis project is built upon the TD3 algorithm [26], which is closely
related to DDPG. It will only be introduced in the next chapter after providing additional
background knowledge.

Roland Varga Master of Science Thesis

2-6 Summary of the chapter 15

2-6 Summary of the chapter

Reinforcement learning is a data-driven way of addressing Markov Decision Process (MDP)
problems. Value function based methods assign general values to the points of the state-
space, and the best action is chosen such that it maximizes the expected return. Although it
is possible to extend value function methods to continuous state-spaces, only discrete actions
can be considered.

Actor-critic methods decouple the selection of the action (actor) from the value function
(critic), and this enables the use of continuous action spaces. One of the most successful
actor-critic algorithms are policy gradient methods. In this chapter, the update equations of
the deterministic policy gradient algorithms were derived. From this group, the thesis work
is built upon the TD3 algorithm, an improved version of DDPG, that will be discussed still
in more details in the next chapter, after the introduction of estimation bias.

Master of Science Thesis Roland Varga

16 Deep Reinforcement Learning for Robotic Manipulation

Roland Varga Master of Science Thesis

Chapter 3

Estimation Bias of Actor Critic
Algorithms

In Q-learning the phenomenon of learning unrealistically high values for certain actions and
states, the so-called overestimation bias, has been studied in the last 2-3 decades. This chapter
focuses on the sources and effects of overestimation bias, also in actor-critic algorithms. Fur-
thermore, as part of a current research area, the characteristics and effects of underestimation
bias are also discussed, which are among the main focus points of this thesis project.

3-1 Sources of overestimation bias

Thrun et al. in their paper published in 1993 [27] attributed the overestimation bias in Q-
learning to insufficiently flexible function approximation. In 2010, van Hasselt showed that
noise in either the rewards or the state transitions can also result in overestimation [28].
Unifying these two views, in 2016 van Hasselt et al. proposed the deep double Q-learning
algorithm [29], which is effective in avoiding overestimation bias in deep reinforcement learning
problems. But can we get an intuition of the reason for overestimation bias?
Van Hasselt et al. discuss this in much more detail in their paper [29], but let us highlight a
simple case when overestimation might occur. In Figure 3-1 a dummy Q-learning problem is
shown. In this example, the blue, "true value" function, Q(s, a), only depends on the single
state, so in a certain state the instantaneous reward and discounted future reward does not
depend on the action (assumption only necessary for the visualization). A couple points
from the value function are sampled for the approximation with two polynomial functions,
which represents the Qϕ(s, a) for two possible actions, a1 and a2. It can be seen that it is a
clear case of overfitting, as both polynomials fit the sampled points really well (denoted by
X), but in other regions the approximation is unsatisfying (the two polynomials are fitted of
different set of samples). Now remember, that the target value in the Q-learning contained a
maximization step over all possible actions:

target = r + γ max
a

Q(s′, a)

Master of Science Thesis Roland Varga

18 Estimation Bias of Actor Critic Algorithms

and we wanted to make the current Q-function more like this target. It is crucial to highlight,
that as we approximate the Q-function, either with a polynomial or a neural network, in
certain regions of the state-space in our simple example (Figure 3-1) the values corresponding
to a certain actions will sometimes underestimate, sometimes overestimate the true value
function, but generally this estimation error for the two possible actions will be different. For
example, at state −2.5 taking action 1 has a value close to 1, while action 2 has a value below
−2, so one is overestimating and the other one is underestimating the value of those actions.
Now due to the maximization step in the target network update we will chose the action with
the overestimated value. Even if the value for both actions underestimate the true value, we
will choose the higher one.

Overestimation bias in discrete action setting Putting it all together, the approximation
errors in the value estimates of certain actions will sometimes result in underestimation, some-
times overestimation, independently of each other. However, due to the maximization step in
the target network update, we tend to select the overestimated values over underestimated or
even exact values. This is the intuitive reason for the overestimation bias. In a single update
step a small overestimation error has little effect, but the error can propagate through the
whole network because of the bootstrapping. For a more exact, mathematical formulation
deriving the overestimation bias (even in case of underfitting) the paper by van Hasselt et al.
[29] is highly recommended.

Overestimation bias in actor-critic framework So far the intuitive reasoning behind over-
estimation in value function based methods were presented, but does that problem persists
in actor-critic settings? A main difference is that in this case instead of the maximization
over the discrete actions, which was the root of the overestimation bias, a gradient is used
for the parameter update. Fujimoto et al. proved that overestimation is also expected in
deterministic policy gradient based actor-critic algorithms, such as Deep Deterministic Policy
Gradient (DDPG) [26].

3-2 Effects and reduction of overestimation bias

Overestimating the value of every state uniformly has little-to-no detrimental effect on the
learnt policy. In fact, initializing the value of all states with the same positive value is a
common practice in tabular Q-learning, as it can help exploration. It can be thought of as
an optimism in the face of uncertainty [28].

However, when the overestimation bias is not uniform, so different state values are overesti-
mated by varying amounts, it can harm the policy learning. Van Hasselt et al. demonstrated
in six atari games how the reduction of overestimation bias via deep double Q-learning can
improve the performance in discrete action problems [29]. In actor-critic domain (contin-
uous action-space), Fujimoto et al. showed the benefits of reducing overestimation bias of
the DDPG algorithm, and thus achieving state-of-the-art performance in different MuJoCo
environments, outperforming even the soft actor critic algorithm. So what modifications did
they make to the original DDPG algorithm for this?

Roland Varga Master of Science Thesis

3-2 Effects and reduction of overestimation bias 19

Figure 3-1: Visualization of overestimation bias introduced by the maximization operator in
Q-learning. The true value function has a single state input and its value output is the same
for all possible actions in a certain state for simplicity. The crosses indicate the samples of the
true value function that are used to create the approximations for the state-action pairs. Due
to approximation errors, the values for different actions (green and red curves on the top graph)
sometimes overestimate, sometimes underestimate the true function. However, the maximization
between the two will result in selecting overestimated values more often over underestimated ones
(bottom graph).

Master of Science Thesis Roland Varga

20 Estimation Bias of Actor Critic Algorithms

To address the issue of overestimation, Fujimoto et al. [26] proposed the Twin-Delayed Deep
Deterministic Policy Gradient (TD3) algorithm, which applies a couple of modifications to
DDPG (or any actor-critic), that help reducing this bias:

1. Delayed policy updates: updating the critic more often than the actor. This helps
avoiding that the actor exploits errors in the value estimated by the critic. Otherwise
the actor could overfit to a mistakenly overestimated value.

2. Target policy smoothing: a noise term is added to the target to avoid overfitting on
specific actions (in this case Gaussian noise with saturation). This also generally helps
developing more robust policies [26].

target = r + γQϕtarget(s′, µθtarget(s′) + ε), where ε = clip (N (0, σ),−c, c)

3. Clipped double Q-learning for actor-critic: maintaining two value functions which are
used to update the other one (in the following equation this feature is already combined
with the previous one)

target = r + γ min
i=1,2

Qϕtarget,i(s′, µθtarget,1(s′) + ε), where ε = clip (N (0, σ),−c, c) (3-1)

Together these three modifications reduce the overestimation bias and avoid overfitting to
specific actions, resulting in more stable learning and higher performance. However, it avoids
overestimation by introducing underestimation bias. The creators of TD3 claim that it is
much more favorable over overestimation bias, but this still harms the potential performance.

3-3 Dealing with underestimation bias

Although underestimated values will not propagate through the whole network like the over-
estimated ones [26], Wu et al. showed theoretically and empirically that it still negatively
effects the performance in practical applications [30].

The main source of underestimation bias in the previously mentioned TD3 algorithm is the
minimization between two critics, which is shown in Eq. (3-1). Wu et al. proved that this
bias becomes even worse as the number of critics increase [30]. Also instead of taking the
minimum, averaging the value of several critics results in overestimation (although lower
variance in the estimates). So if increasing the number of critics does not directly help, what
can be done?

Wu et al. proposed the triplet-averaged deep deterministic policy gradient (TADD) algorithm,
which weighs the estimates of multiple critics, where some have overestimation bias and
some have underestimates bias [30]. Although they proved that under mild assumptions, the
right weighing constant parameter (β ∈ (0, 1)) will result in unbiased estimates, its value is
dependent on the application and could only be found via trial end error.

Addressing the same issue, Wei et al. [31] recently proposed the Quasi-Median Delayed Deep
Deterministic Policy Gradient (QMD3) algorithm, that selects the value from an ensemble
of n critics (Q(1), Q(2), . . . , Q(n)) using the quasi-median operator. If the value estimates
are sorted in increasing order, the quasi-median operator selects the value estimate at index

Roland Varga Master of Science Thesis

3-3 Dealing with underestimation bias 21

⌊n/2⌋. So for even number of critics, it will be the value that is the lower from the two
middle values and the value that is one lower from the median in case of odd number of value
estimates.

Although the mentioned publications suggest that the reduction of underestimation bias can
result in policies with higher performance, the exact effects and nature of underestimation
bias is still an active research area with many publications [32, 33, 34, 35].

Master of Science Thesis Roland Varga

22 Estimation Bias of Actor Critic Algorithms

Roland Varga Master of Science Thesis

Chapter 4

Learning from Demonstration

It is desirable to have learning algorithms, which you can just show the task a couple of times
and then it can also replicate the behaviour. These would require relatively short time to
set up and get them running. Can we use such algorithms in deep reinforcement learning
problems to replace carefully shaped rewards, which requires a lot of engineering effort and
often result in suboptimal solutions?

4-1 Replacing shaped rewards with demonstrations

Shaped rewards can be replaced by demonstration data [8, 9, 5, 14]. For example, Vecerik
et al. from Deepmind [8] proposed the Deep Deterministic Policy Gradient from Demon-
stration (DDPGfD) algorithm to be able to use the DDPG algorithm with sparse reward
environments using demonstration data. They showed both in simulation and on a real
robot that the DDPGfD algorithm using demonstrations and sparse reward could outperform
DDPG with carefully shaped rewards. The performed task were industry assembly exercises,
such as hard drive and cable insertion, and the agent could gather more experiences from
the environment, not just the demonstration data (it will be important when comparing to
"offline" reinforcement learning algorithms). The key components of their algorithm were the
following:

• Adding demonstration to the replay buffer

• Prioritized experience replay for both the demonstration and the newly gathered data

• Using a mix of one-step and n-step return for training, to enable faster propagation of
values in the critic

• Making multiple gradient steps per environmental step

• L2 normalization on the critic and the actor network weights

Master of Science Thesis Roland Varga

24 Learning from Demonstration

• Kinesthetically controlled robot to gather human demonstration data

Using demonstration data generated by human operators can introduce different, non-trivial
challenges which requires special attention and is a focus of several research groups.

4-2 Importance of the source of demonstration data

Different sources of demonstration data and their utility in offline reinforcement learning is an
active research area. "Offline" reinforcement learning refers to a framework where the policy
needs to be developed using only the demonstration data, so without any live interaction of
the agent with the environment.

The creators of the robomimic framework (used for the implementation of this thesis) iden-
tified the following challenges when learning from demonstration data [7]:

• Data from Non-Markovian Decision Process: human demonstration substantially differs
from machine-generated one. The decisions made by human operators are affected by
several factors, such as teleoperation device, past experiences and past actions taken.
On the other hand, data generated by trained deep reinforcement learning agents are
Markovian.

• Variance in Demonstration Quality from Multiple Humans: demonstration data col-
lected from several participants has a diverse set of strategies, which vary in efficiency
and general quality [36, 37]

• Dependence on dataset size: in offline reinforcement learning the state and action space
coverage is crucial, as the agent has no opportunity to explore. More data generally
results in better coverage of both spaces and thus mostly enable better policies.

• Mismatch between training and evaluation objective: the training objective (e.g. min-
imizing Q loss) only indirectly effects the evaluation performance (e.g. success rate).
This point is also true for online reinforcement learning, such as TD3.

• Sensitivity to hyperparameter choices: studies in offline RL on machine generated
datasets suggest that they are often extremely sensitive to hyperparameter choices
[38, 39]

From this list of challenges the non-Markovian nature of the human demonstration data can
be quite problematic. In deep reinforcement learning the agent is basically trying to optimize
a Markov decision processes. So how can one still use non-Markovian demonstration data for
learning?

Mandlekar et al. [36] created an algorithm called IRIS, which incorporated temporal abstrac-
tion (memory) in the form of recurrent neural network (RNN) when learning from human
demonstration and showed promising results in standard benchmarking environments. Sim-
ilarly, behavioral cloning [40] with an RNN-policy (BC-RNN) and hierarchical behavioral
cloning (HBC) [41] are quite successful in utilizing temporal abstraction.

Roland Varga Master of Science Thesis

4-3 Available datasets for learning 25

Interestingly, state-of-the-art batch (offline) reinforcement learning algorithms such as batch-
constrained Q-learning (BCQ) [42] and conservative Q-learning (CQL) [33] perform very well
on machine-generated datasets, but fail to accomplish the task when human demonstration
is provided [7]. This highlights the importance of testing on human datasets.

4-3 Available datasets for learning

There are several available datasets and environments to test novel algorithms. The RoboTurk
project developed by the Stanford Vision and Learning Lab (SVL) enables users to remotely
operate either real or simulated robot environments to gather robotic manipulation human
demonstrations using only a web browser and a phone [37]. The datasets from this project is
used in this thesis work.

DeepMind also released several datasets for different environments, such as the DM Control
Suite, DM Locomotion, the popular Atari 2600 arcade learning environment and even real
robot [38]. Although it provides access to diverse problems in terms of action space, observa-
tion space, difficulty of exploration, action delay etc., the "only" data available is generated
by other trained agents.

The Farama Foundation released datasets generated either by human operators, non-markovian
algorithms or partially trained DRL agents [43]. The tasks include 2D navigation, locomo-
tion, MuJoCo Gym environments, Androit object manipulation etc. By the time of writing
this report all the environments except the PyBullet and Flow ones are still maintained.

Master of Science Thesis Roland Varga

26 Learning from Demonstration

Roland Varga Master of Science Thesis

Chapter 5

Algorithm Proposal

This thesis work has two main ideas for algorithm improvement:

1. Applying upper and lower bounds on the value function target values

2. Intentional underestimation of the value function around the demonstration data dis-
tribution for improved exploration

In the following sections the motivations, theoretical backgrounds and implementation details
behind these modifications are discussed. Let’s look at the value function bounds first!

5-1 Lower and upper bounds on the value functions

The algorithms presented in Chapter 3 aimed at either avoiding overestimation bias by de-
liberate underestimation or reducing the bias itself, often by the introduction of additional
critics (neural networks). These extra neural networks, however, increase the computational
requirements of the algorithms.

In this thesis work a different approach is proposed, which is based on the insight into the
possible, true critic values when using sparse rewards. As discussed in Chapter 4 using
sparse rewards over shaped one in reinforcement learning problem is preferred, since these are
easier to design and implement, suffer less from local minima. Also the increased difficulty in
exploration can be overcome by demonstration data.

The sparse reward function used from now on is as follows:

R(s′, a) =
{

1, if s′ is a terminal state
0, otherwise

A terminal state is a state, which when reached by the agent, the current episode would
normally terminate. Now let’s take another look at the bootstrapping step that is used to

Master of Science Thesis Roland Varga

28 Algorithm Proposal

update the target values in general actor-critic algorithms:

target =
{

R(s′, a), if s′ is a terminal state
R(s′, a) + γQ(s′, µ(s′)), otherwise

(5-1)

These target values are used to update the current critic estimates, by making them more like
this target (MSE loss). This means that the target values could already give an indication
if underestimation or overestimation happens. If there would be access to the optimal, "true
underlying value function", then we could determine the amount of estimation bias in the
current estimates.
It is easy to recognize, that based on (5-1), when using sparse rewards the optimal target value
of a state-action pair with which a terminal state is reached in a single step is 1, independently
of the current state (whether it is terminal or not).

target = 1, for terminal s′

Remark. If the chosen action in the previously mentioned state is not optimal and it does not
bring the system to a terminal state, then the target value for that specific state-action pair
is not necessarily equal to 1.
Lemma 5-1.1. In actor-critic framework with sparse rewards, the optimal target values of
any state-action pair is upper bounded by 1 for γ ∈ (0, 1) discount factor.

Proof. Since we are using sparse rewards, the instantaneous reward of transitioning to non-
terminal s′ state from state s using action a is 0. This means that the target value for these
transitions will only be determined by the discounted future rewards.

target = γQ(s′, µ(s′)), for non-terminal s′

A reward of 1 is only given for reaching a terminal state, which means that the maximum
cumulative reward that can be gathered is 1. Since γ ∈ (0, 1), this means that the discounted
future reward is upper bounded by 1 independently of the state or action.

Q∗(s, a) ≤ 1, ∀s, a

Because of the either positive or zero instantaneous reward, one might suspect that the optimal
state-action value function does also not take negative values. This is idea is captured and
proved in the following lemma.
Lemma 5-1.2. In actor-critic framework with sparse rewards, the optimal target values of
any state-action pair is lower bounded by 0 for γ ∈ (0, 1) discount factor.

Proof. Similarly to the previous proof, it can be used that the target values of terminal states
independent of the action is 1, which is non-negative. Also similarly to the previous case, for
non-terminal states the optimal value of a state-action pair only has contribution from the
expected discounted future reward. Since γ ∈ (0, 1) and the only possible future reward is
either 0 or 1, the expected discounted future reward cannot be negative.

Q∗(s, a) ≥ 0, ∀s, a

Roland Varga Master of Science Thesis

5-1 Lower and upper bounds on the value functions 29

Sticking together these two lemmas we can state the following theorem.

Theorem 5-1.3. When using the actor-critic framework with target networks and sparse
rewards (reward of 1 for task completion, 0 otherwise) the optimal target values do not
exceed the [0, 1] range.

0 ≤ Q∗(s, a) ≤ 1, ∀s, a

When applying these bounds to the target critic values, the resulting algorithm is named
Bounded Twin-Delayed Deep Deterministic Policy Gradient (BTD3).

Algorithm 2 Bounded TD3
Initialize the critic networks Qθ1 , Qθ2 , and the µϕ arbitrarily with parameters θ1, θ2 and ϕ
Initialize target networks θ′

1 ← θ1, θ′
2 ← θ2, ϕ′ ← ϕ

Initialize replay buffer B
ep← 0 (index of current episode)
while (ep < Max number of episodes) do

s← sample d0(s0)
t← 0
while (t < Length of episode) do

Choose action with exploration noise a ∼ µϕ(s) + ϵ, ϵ ∼ N (0, σ)
Take action a and observe r and s′

Store transition tuple (s, a, r, s′) in B

Sample mini-batch of N transitions (s, a, r, s′) from B
ã← µϕ′(s′) + ϵ, ϵ ∼ clip(N (0, σ̃),−c, c)
y ← r + γ mini=1,2 Qθ′

i
(s′, ã)

Lower and upper bounding the value estimate:
y ← max(y, 0)
y ← min(y, 1)
Update critics θi ← argminθi

N−1 ∑
(y −Qθi

(s, a))2

if t mod d then
Update ϕ by the deterministic policy gradient:
∇ϕJ(ϕ) = N−1 ∑

∇aQθ1(s, a)
∣∣
a=µϕ(s)∇ϕµϕ(s)

Update target networks:
θ′

i ← τθi + (1− τ)θ′
i

ϕ′ ← τϕ + (1− τ)ϕ′

end if
s← s′

t← t + 1
end while
ep← ep + 1

end while

Master of Science Thesis Roland Varga

30 Algorithm Proposal

5-2 Underestimation outside the demonstration

As discussed in Chapter 4, most online reinforcement learning algorithms cannot utilize
demonstration data efficiently, as they tend to explore the state-space also outside the demon-
stration data distribution. Most algorithms that work efficiently with human demonstration
data utilize imitation learning tools, such as behaviour cloning, and restricts the policy to
the demonstration data distribution. Getting behaviour cloning to offline with mixed-quality
human demonstration data is still an open challenge [7], so it might be beneficial to look into
further alternatives.

As it will also be shown in Chapter 7 in the results on a simulated cube picker robot, without
behaviour cloning or using other ways to "force" the agent to choose actions similar to the
ones in the demonstration dataset, the agent will start to explore the state-space before doing
anything similar to the dataset trajectories.

Alternatively, this thesis work proposes a novel way of utilizing demonstration data by de-
liberately underestimating the values of state-action pair around the demonstration data
distribution. Intuitively, this could be considered as a pessimism in the face of uncertainty.

The main challenge that this thesis’ author sees regarding with demonstration data comes
from the fact that these only cover a specific part of the state and action space. This is
especially true for human demonstration data. For example, when we demonstrate a pick-
and-place task to a robot via teleoperation multiple times, the trajectories and actions will be
similar to each other. This is not necessarily a problem in itself, but actor-critic algorithms
often use global function approximators, such as neural networks, to develop global value
functions and policies. The previously mentioned demonstration data only covers a very
specific part of the state and action space, and it is left to the critic network to extrapolate
to unseen scenarios, which can easily go wrong.

Let’s consider an example to show why global function approximators might handle demon-
stration data poorly. For example, in the previously mentioned pick-and-place task, in all
of the demonstration the robot will be guided closer to the object from the initial position.
Therefore, when using this data to training the critic, a neural network, what should be the
value of being in the initial state and then moving away from the object? There is no data
to determine this. The core idea of a proposed solution in this thesis project is to introduce
underestimation bias in the critic for states that the agent might encounter.

To do this, in the demonstration data the maximum and minimum values of all state and
action dimensions are stored to construct a bounding box in which all the state and action
trajectories from the demonstration data would fit inside.

smin,i ≤si ≤ smax,i ∀s ∈ B, ∀i state dimension
amin,j ≤aj ≤ amax,j ∀a ∈ B, ∀j action dimension

These lower- and upper-bounds can be used to generate random state-action pairs that are
in a proximal Euclidean distance from the demonstration data distribution. However, since
the transition dynamics is not known to the agent and could only be approximated from data
at best, we do not have the s′ next state when choosing arbitrary action a at state s, if these
are not in the demonstration data. This means that we cannot compute the target values

Roland Varga Master of Science Thesis

5-3 Putting it all together 31

similarly to the ones in the dataset. The proposed solution is to generate random (ŝ, â) pairs
and use the underestimation bias to "pull down" the values of these pairs:

ŷ ← min
i=1,2

Qθ′
i
(ŝ, â)

This new target can be incorporated in the critic loss additionally to the original loss:

lossQ = N−1 ∑
(y −Qθi

(s, a))2 + N−1 ∑
(ŷ −Qθi

(ŝ, â))2

The last piece of the puzzle is the generation of random state-action pairs. The previously
defined smin, smax, amin and amax variables can be used to define a high dimensional (dim(s)+
dim(a)) box that incorporates all the demonstration data:

smean = (smax + smin)/2
srange = (smax − smin)
amean = (amax + amin)/2
arange = (amax − amin)

ŝ ∼ U([−0.5, 0.5])Kbbm,ssrange + smean

â ∼ U([−0.5, 0.5])Kbbm,aarange + amean

Setting the Kbbm,s and Kbbm,a parameters to 1 will result in a box that covers the whole
demonstration data, and setting it to a value higher than one will incorporate a greater area
of the state and action space.

5-3 Putting it all together

Combining the proposed modification and applying them to TD3, the resulting algorithm,
called Underestimated Bounded Twin-Delayed Deep Deterministic Policy Gradient (UBTD3),
will work as follows:

Master of Science Thesis Roland Varga

32 Algorithm Proposal

Algorithm 3 Underestimated Bounded TD3
Initialize the critic networks Qθ1 , Qθ2 , and the µϕ arbitrarily with parameters θ1, θ2 and ϕ
Initialize target networks θ′

1 ← θ1, θ′
2 ← θ2, ϕ′ ← ϕ

Initialize replay buffer B
Load the normalized demonstration data into B
Pretrain on demonstration for given number of gradient steps
ep← 0 (index of current episode)
while (ep < Max number of episodes) do

s← sample d0(s0)
t← 0
while (t < Length of episode) do

Choose action with exploration noise a ∼ µϕ(s) + ϵ, ϵ ∼ N (0, σ)
Take action a and observe r and s′

Store transition tuple (s, a, r, s′) in B
Sample mini-batch of N transitions (s, a, r, s′) from B
ã← µϕ′(s′) + ϵ, ϵ ∼ clip(N (0, σ̃),−c, c)
y ← r + γ mini=1,2 Qθ′

i
(s′, ã)

Lower and upper bounding the value estimate:
y ← max(y, 0)
y ← min(y, 1)
Compute smax, smin, amax, amin
Compute smean, srange, amean, arange
Sample uniformly N number of (s, a) pairs from the following ranges:
ŝ ∼ U([−0.5, 0.5])Kbbm,ssrange + smean
â ∼ U([−0.5, 0.5])Kbbm,aarange + amean
ŷ ← mini=1,2 Qθ′

i
(ŝ, â)

ŷ ← max(ŷ, 0)
ŷ ← min(ŷ, 1)
Update critics θi ← argminθi

[
N−1 ∑

(y −Qθi
(s, a))2 + N−1 ∑

(ŷ −Qθi
(ŝ, â))2]

if t mod d then
Update ϕ by the deterministic policy gradient:
∇ϕJ(ϕ) = N−1 ∑

∇aQθ1(s, a)
∣∣
a=µϕ(s)∇ϕµϕ(s)

Update target networks:
θ′

i ← τθi + (1− τ)θ′
i

ϕ′ ← τϕ + (1− τ)ϕ′

end if
s← s′

t← t + 1
end while
ep← ep + 1

end while

Roland Varga Master of Science Thesis

Chapter 6

Implementation

To test the standard and proposed algorithms, both a standard robot manipulation simulation
environment and demonstration datasets are necessary. In the following sections these choices
are discussed.

6-1 Simulation environment, robot model

The benchmarking of different reinforcement learning algorithms can be problematic, since
authors often use custom environments (either physical or simulated) and code for the im-
plementation. To address this issue, the Stanford Vision and Learning Lab (SVL) and the
UT Robot Perception and Learning Lab (RPL) maintains the robosuite repository, which im-
plements standard simulated robotic reinforcement learning environments using the MuJoCo
physics engine [44]. It can be used to implement and test custom reinforcement learning algo-
rithms on tasks such as cube lifting, can pick and place, tool hanging and even collaborative
tasks between two robots. The cube pickup and can pick-and-place tasks are illustrated on
Figure 6-1.

The robot model, the environment and the deep reinforcement learning relevant features (e.g.
task definition, reward function, random initialization, sensor signal preprocessing, etc.) are
all provided in these benchmarking environments. The robot that is used in the simulation
is the model of the Franka Emika Panda robot arm, with 7 joints and a two finger gripper.
The only "missing" component is the policy. This thesis work focused on deriving two policy
learning algorithms, that are tested in this environment.

6-2 Demonstration datasets

The sister project of robosuite, robomimic, was implemented to provide tools for learning
from human demonstration data, collected in the robosuite environment [7]. It utilizes the

Master of Science Thesis Roland Varga

34 Implementation

Figure 6-1: Robosuite environments used for the testing of the proposed and standard algorithms.
On the left the cube lift environment is shown, where the objective of the agent is to lift the cube
from the table above a certain height. On the right, the can pick-and-place environment can be
seen, where the aim of the robot is to pick up a can randomly initialized in the left box and move
it to the bottom right compartment.

datasets provided by the RoboTurk project, which contains both machine generated and hu-
man demonstrations [37]. For the discussion about the importance of including both datasets
see Chapter 4.

In these frameworks there are available machine generated and human demonstration datasets
for both previously mentioned environments (can pick-and-place and cube lifting):

• Machine generated dataset (≈ 200 − 600, 000 samples): data from a Soft Actor Critic
algorithm that has learnt the task from scratch using shaped reward function. The
dataset consists of trail runs with different policy checkpoints during its learning process
(so not all successful).

• Multi-human dataset (≈ 30, 000 samples): demonstration dataset generated by 6 human
operators with different experience level and proficiency

• Proficient human dataset (≈ 9, 000 samples): demonstration dataset generated by a
single, skilled operator (currently not used for the tests, but could be included in future
work)

The algorithms are tested with binary completion reward, so the corresponding datasets are
used (dense reward is also available). Furthermore, the done signal is set to be one only in case
of successful task completion. Pardo et al. [45] highlighted the importance of choosing the
done signal carefully in case of time limited tasks and their work is a recommended material
for the interested reader.

The datasets used for the two tasks contain the following selected sensor signals:

• Robot arm proprioceptive data:

Roland Varga Master of Science Thesis

6-3 Hardware and software 35

– End-effector orientation
– End-effector linear velocity (only for can pick-and-place task)

• Object information:

– Object position in Cartesian space
– Object orientation in space
– Linear distance of object from the end-effector
– Orientation difference of object and end-effector

6-3 Hardware and software

All the experiments were performed on an Asus Vivobook N580GD laptop with 8th generation
Intel Core i7 processor and 16 GB of RAM. The benefits of using a GPU instead of CPU is
less clear in case of reinforcement learning, which is generally a CPU extensive task. However,
in future work moving the project to a server and testing with GPU computing is strongly
recommended.

Regarding the software, the operating system used was Pop!_OS 22.04, which is an Ubuntu-
based Linux distribution. Both the robosuite and robomimic components are implemented
in Python and were installed from source. The implementation of the TD3 algorithm (later
will be denoted as "standard") is based on the OpenAI’s Spinning Up project. The handling
of the demonstration data, pretraining on it and several logging functionalities were added
to this code. In future work, this project could be migrated to be based on the latest Stable
Baselines.

6-4 Investigated test cases

The necessary training length for the different tasks and datasets were found empirically. In
general, the more difficult can pick-and-place environment requires more trials and longer
training time than the cube lifting task. On the setup described in the previous section,
the training for the cubelift task takes around 2.5-3 hours, while the can pick-and-place
task requires roughly 6 hours. The main bottleneck for the speed is currently posed by the
environmental interaction, so the additional steps for the proposed algorithms do not influence
the training time drastically.

Due to these already quite long training times, the current tests are restricted to cubelift and
can pick-and-place tasks (even more difficult tasks could be tested if the project was moved
to a server):

1. Lift task

(a) Machine generated dataset: consists of 1500 trials (5 policy with 300 trials each)
where each episode contains 150 steps, which results in 225,000 samples altogether.
For the tests in this thesis work the episode lengths were set to 200 steps (10 seconds
in real time) instead of the 150.

Master of Science Thesis Roland Varga

36 Implementation

(b) Multi-human dataset: consists of 300 trials (6 operators with 50 trials each) where
the episodes have different lengths based on the proficiency of the operator, but
all episodes are successful. The dataset consists of 31,127 transition samples. For
the tests the episode lengths were set to 200 steps (10 seconds in real time).

2. Can pick-and-place task

(a) Machine generated dataset: consists of 3900 trials (13 policy with 300 trials each)
where each episode contains 150 steps, which results in 585,000 samples altogether.
For the tests in this thesis work the episode lengths were set to 200 steps (10 seconds
in real time) instead of the 150.

In all three previously mentioned test cases all the algorithms are tested from Chapter 5:

• TD3 with pretraining on demonstration data ("standard")

• Bounded TD3 ("BTD3")

• Underestimated Bounded TD3 ("UBTD3")

Finally, to assess the potential in controlling the value estimate of random state-action pairs
around the demonstration data distribution (UBTD3), the evolution of these values are also
investigated. The main plots in general are the critic values and performance graphs. These
are shown in Chapter 7.

Roland Varga Master of Science Thesis

Chapter 7

Results

7-1 Critic value estimates of dataset samples

There are several signals and comparison metrics that could be considered. Since the main
idea behind the proposed algorithms was to constraint the critic values (Q values), first these
are shown on Figure 7-1. The following can be concluded from the different experiments:

1. Cube lifting task with machine generated dataset: The maximum assigned critic
value stay close to the theoretical maximum of 1 for all three algorithm. However, the
standard algorithm does reach values at approximately 1.3, while the other two stay
closer. The standard algorithm produces high negative value estimates, which the BTD3
and the UBTD3 algorithms successfully avoid via the target bounds.

2. Can pick-and-place task with machine generated dataset: The two proposed
algorithms produce similar value estimates as in the previous case. The value estimate
of the standard algorithm, however, diverge from the theoretical range and have big
variance. There were less gradient steps performed in case of the standard algorithm,
since the pretraining had to be omitted due to instabilities in the value estimates.

3. Cube lifting task with human demonstration data: The two proposed algorithms,
again, produce similar value estimates as in the previous case. The value estimates of
the standard algorithm is unstable and they do not converge.

The previously mentioned Figure 7-1 only show the value of 2 transition samples (minimum
and maximum) assigned by the critic. So what if in case of the standard algorithm the highly
negative values are outliers and most values are close to the [0, 1] range? The actor loss is
actually the mean of the assigned critic values, so it is suitable to get more information about
it. The mean critic values for the three test cases are shown on Figure 7-2:

1. Cube lifting task with machine generated dataset: For both proposed algorithms
the mean critic value estimate is converging to approximately 0.5, however, as the replay

Master of Science Thesis Roland Varga

38 Results

Figure 7-1: Minimum and maximum Q values assigned by the critic to transition samples ran-
domly selected from the replay buffer (different datasets and tasks). The thick, solid lines show
the mean of four runs with four different seed values (0, 15, 22, 96). The shaded area shows 1
standard deviation of the different runs. The plots show that the 2 proposed algorithm manages
to keep the values close to the desired [0, 1] range. In case of the cubelift task with human
demonstration and the can pick-and-place task with machine generated data the standard algo-
rithm could not be pretrained before the environmental interactions, due to instability, and that
is why there are less gradient steps in case of the corresponding (blue) curve.

Roland Varga Master of Science Thesis

7-1 Critic value estimates of dataset samples 39

buffer is filling up with more and more successful episodes (since good performance is
achieved as will be seen), the slight but steady increase is expected to continue. The
mean value estimates of the standard algorithm exit the [0, 1] range at the negative end,
but still stay close to 0.

2. Can pick-and-place task with machine generated dataset: For the two proposed
algorithms the situation is similar to the cube lift task; the value estimates stay around
the middle of the [0, 1] range with slight but steady increase, which can be explained
by the replay buffer filling with successful trials (as will be shown later). The standard
algorithm produces on average even more negative value estimates than before.

3. Cube lifting task with human demonstration data: The value estimates of the
two proposed algorithms stay in the [0, 1] range, but now closer to 0 than before. For the
standard algorithm the instability that we saw in case of the minimum and maximum
critic value estimates also affect the mean value estimate and produces a diverging,
oscillatory behaviour.

Master of Science Thesis Roland Varga

40 Results

Figure 7-2: Mean of the Q values assigned by the critic to samples in the batch randomly selected
from the replay buffer (different datasets and tasks). The thick, solid lines show the mean of four
runs with four different seed values (0, 15, 22, 96). The shaded area shows 1 standard deviation
of the different runs. The plot shows that as the learning progresses the standard algorithm is
becoming more and more pessimistic about the state-action pairs in the replay buffer (despite
filling it with successful trials as will be shown later). The two proposed algorithm has a higher
mean value (more optimistic). In case of the cubelift task with human demonstration and the can
pick-and-place task with machine generated data the standard algorithm could not be pretrained
before the environmental interactions, due to instability, and that is why there are less gradient
steps in case of the corresponding (blue) curve.

Roland Varga Master of Science Thesis

7-2 Critic value estimates of random state-action samples 41

7-2 Critic value estimates of random state-action samples

The main idea behind the UBTD3 algorithm was to control the value estimates of state-
action pairs, that are around (and in) the demonstration data distribution. As discussed in
Chapter 5, if the state and action space coverage of the demonstration data is not extensive,
which is usually the case for human demonstration data, then the value estimates of relevant
state-action pairs that are not in the dataset can get arbitrarily bad. UBTD3 addresses this
issue by generating random state-action pairs around the demonstration data distribution and
deliberately introduces an underestimation bias when calculating their target value. There-
fore, it is expected that in case of this algorithm the value of random state-action pairs will
converge towards 0, the lowest possible target value due to the target bounds.

Figure 7-3 shows the critic value estimates of the random state-action pairs during pretrain-
ing. This means that there is no environmental interaction, since the main purpose with
UBTD3 was to enable the agent to perform similar behaviour to the demonstrations right
after pretraining, without extensive exploration of the state and action space. The following
observations can be made based on Figure 7-3:

1. Cube lifting task with machine generated dataset: The UBTD3 algorithm man-
ages to regulate the value of the random state-action pairs as expected. The maximum
value estimate of the standard and the BTD3 algorithm is converging to a stable value
of around 4.5, but it is actually higher than the value of 1 that is assigned to the dataset
state-action pairs during the pretraining phase (see Figure 7-1). This means that with-
out the deliberate value underestimation of random state-action pairs their values can
get higher than the values assigned to any of the demonstration samples. The minimum
values estimates are also lower than the ones for the dataset transitions.

2. Can pick-and-place task with machine generated dataset: The UBTD3 algo-
rithm manages to regulate the value of the random state-action pairs as before. The
value estimates of the standard algorithm is not plotted, since it was highly unstable.
The maximum value estimates of the BTD3 algorithm is showing an increasing trend,
at the end of the experiment it took values around 10. The minimum values are more
steady, they converge to around -10. However, these mentioned values are well out of
the [0, 1] range.

3. Cube lifting task with human demonstration data: The UBTD3 algorithm man-
ages to regulate the value of the random state-action pairs as before. The value estimates
of the BTD3 algorithms are stable, and they converge to similar values as in case of the
machine generated dataset (≈ 4 for maximum and ≈ −5 for minimum). The standard
algorithm is unstable, its value estimates are diverging.

The maximum and minimum critic values during learning for the different seeds for all three
algorithms and tasks can be found in the Appendix on Figure A-1, Figure A-3 and Figure A-5.

Master of Science Thesis Roland Varga

42 Results

Figure 7-3: During pretraining (no env. interaction), maximum and minimum Q values assigned
by the critics to randomly generated state-action pairs around the demonstration data distribution
(machine generated dataset, cubelift task). The thick, solid lines show the mean of four runs
with four different seed values (0, 15, 22, 96). The shaded areas show 1 standard deviation of
the different runs. It can be observed, that the UBTD3 algorithm manages to regulate the values
of state-action pairs that are not in the dataset and successfully assign low values to them in
the [0, 1] range. In case of the other algorithms, the value of random state-action pairs is not
directly regulated, only through the interpolation/extrapolation capabilities of the critic neural
networks. In case of the can pick-and-place task the value estimates of the standard algorithm is
not plotted, since pretraining on the demonstration data was not possible due to instabilities.

Roland Varga Master of Science Thesis

7-3 Performance of the different algorithms 43

7-3 Performance of the different algorithms

The performance of improving policies trained by the different algorithms is shown on Fig-
ure 7-4. In case of the cube lifting task, the return value of 20 means that the robot arm could
pick up the cube and hold it for 20 time steps, which is 1 second. The experiment is stopped
at this point, so the maximum achievable return value is 20. In case of the can pick-and-place
task, the can needs to stay in the correct compartment for the same 20 samples for the episode
to be fully successful. It is important to highlight, that the plots on Figure 7-4 show average
of 5 test episode returns, so it can be thought of as a form of success rate measure, where the
value 20 would correspond to 100% expected success rate. The following observations can be
mode from the different test cases:

1. Cube lifting task with machine generated dataset: All three algorithms manage
to learn the task. The lower and upper bounding the critic values (BTD3) speeds up the
policy improvement, since there are higher average return values after the same training
steps. Although the learning curve is steeper for the BTD3, the standard algorithm
converge to policies with similar (excellent) performance after enough iterations. In
case of the UBTD3 algorithm the performance is improving slower than the standard
algorithm or BTD3. Its variance is also higher, indicating that the algorithm is more
sensitive to initial conditions.

2. Can pick-and-place task with machine generated dataset: While the standard
algorithm fails, the BTD3 and the UBTD3 algorithms both manage to achieve the
task, although they both seem to converge toward less than 100% success rate. The
UBTD3 algorithm, however, has much less variance among the different seeds and it
also converges to a good performance (it would be roughly 85% success rate).

3. Cube lifting task with human demonstration data: The only algorithm that
manages to reliable achieve the task is the UBTD3 algorithm. Note that compared to
the test case with the machine generated dataset on the same task, reaching similar
level of performance here took 2500 trials instead of the previous 1000 (there is a policy
checkpoint after every fifth trial, so 500 policy checkpoint = 2500 trials).

The learning curves for the different seeds for all three algorithms and tasks can be found in
the Appendix on Figure A-2, Figure A-4 and Figure A-6.

Master of Science Thesis Roland Varga

44 Results

Figure 7-4: Average of 5 test episode returns using the policies trained by the different algorithms
as the learning progresses (different datasets and tasks). Although binary completion reward is
used, in case of the cubelift task the trial is only stopped if the robot managed to lift the cube
for 1 second, which is 20 samples. Values below 20 indicate that the grasping of the cube was
not robust and it was dropped. In case of the can pick-and-place task, the value 20 indicate that
the robot placed the can in the correct compartment and the can stayed there for the same 20
time steps (1 second). The thick, solid lines show the mean of four runs with four different seed
values (0, 15, 22, 96). The shaded areas show 1 standard deviation of the different runs.

Roland Varga Master of Science Thesis

Chapter 8

Discussion

8-1 Connection between value estimates and performance

In the previous chapter the value estimates of samples from both the given datasets and
random state-action pairs were presented. Additionally, the performance for the same test
cases were also shown. As discussed in the literature study chapters, the connection between
the critic value estimates and the system performance is an active research area. This section
aims at providing possible theories based on the empirical results.

Target bounds and performance In case of the cubelift task with the machine generated
demonstration data all three algorithm performed well. However, the maximum and minimum
value estimates of the BTD3 algorithm were closer to the [0, 1] range than the estimates of
the standard algorithm, and BTD3 performed better, so there might be connection between
the two aspects. This theory is reinforced in case of the can pick-and-place task with the
machine generated data, where simply applying the target bounds (BTD3) managed to avoid
the unstable behaviour that could be observed in case of the standard algorithm. In case
of the cubelift task with human demonstration data, however, both the standard and BTD3
algorithms fail, despite BTD3 respecting the 0 and 1 target value bounds. All-in-all, it can be
stated that applying the target bounds (BTD3) only improved performance when compared
to the standard algorithm.

Value of random state-action pairs and performance Comparing Figure 7-1 and Figure 7-
3 for the standard and the BTD3 algorithms, the value estimates of randomly generated
state-action pairs close to the demonstration data distribution can get higher than the ones
in the demonstrations themselves. This is due to interpolation/extrapolation issues probably
because of the relatively small-sized training data. This fact actually poses a theoretical
problem when trying to apply the standard algorithm or BTD3. It poses the risk for the
agent to converge toward unknown states and actions in those states, which just happened to
have high estimated values. This is what behavioural cloning also tries to avoid by making the

Master of Science Thesis Roland Varga

46 Discussion

agent favour actions similar to the demonstration dataset. Meanwhile, the proposed UBTD3
algorithm directly drives the value estimates of unknown state-action pairs to zero, which in
theory would also encourage the agent to choose actions similar to the dataset ones. The
fact that the UBTD3 algorithm was the only one that could effectively utilize the small-sized
human demonstration data is promising. It was also an improvement over BTD3 in the can
pick-and-place task with the machine generated dataset. However, in case of the cubelift task
with machine generated data UBTD3 was more sensitive to the initialization than the other
two algorithm, which resulted in on average slower learning.

8-2 Summary, future prospects

Lower- and upper-bounding the critic function by theoretical minimum and maximum values
is possible by limiting the target network outputs (BTD3 algorithm). The empirical results
showed that it is an effective way to constraint the value estimates both in terms of required
gradient steps (it converges fast), computational requirement (applying only min and max
operators) and implementation (two lines of code). It results in less extreme critic values,
which enabled improvement over the standard algorithm when using the machine-generated
datasets both in the cube lifting and the can pick-and-place tasks.

On the human demonstration data the bounded-underestimated algorithm UBTD3 vastly
outperforms both the standard algorithm and BTD3. It was also the best performing in the
can pick-and-place task with machine generated data, but was sensitive to initialization in case
of the cubelift task with machine generated dataset. Further testing is necessary to be able to
assess the potential of the proposed algorithms. Currently, the different trends were created
by averaging the results of only 4 different runs (seeds) due to the time-demanding nature
of these experiments. At least 10 runs, however, would be better to derive more accurate
statistics. Other, more difficult tasks could also be tested in the robosuite environment, such
as nut assembly.

Other future development possibilities include:

• Moving the project to a server: This would speed up the testing process.

• Experimenting with prioritized experience replay: The data distribution is changing
with the online environmental interactions and all data is sampled with the same prob-
ability. Vecerik et al. [8] showed that prioritized experience replay can greatly improve
sample efficiency.

• Using recurrent neural network (RNN) in the actor and critic networks: Mandlekar
et al. [7] (the developers of robomimic) showed that in offline learning incorporating
memory in the critic and actor is crucial when dealing with human demonstrations.
RNNs are a good choice.

Roland Varga Master of Science Thesis

Chapter 9

Conclusion

The nature and effects of estimation bias in deep reinforcement learning algorithms requires
further attention from both theoretical and practical point of view. Algorithms that manage
to overcome the undesirable overestimation bias by consistently underestimating the true
value functions suffer from the effect of underestimation bias, which is not yet researched
thoroughly.

This thesis work showed the potential in setting bounds to the value function of the TD3
algorithm in sparse reward problems to limit the estimation bias. Furthermore, it proposed
a novel way of utilizing demonstration data that cover only a specific part of the state and
action space, which is a common trait of human demonstration data.

The test cases used in the simulation showed promising results, but testing in additional
simulation environments is recommended to get a more comprehensive metric of expected
performance improvement. Additionally, based on the literature survey, extending both the
actor and critic with memory (e.g. using RNN) and using prioritized experience replay could
further improve the performance when using human demonstration data.

Master of Science Thesis Roland Varga

48 Conclusion

Roland Varga Master of Science Thesis

Appendix A

Individual Runs with Different Seeds

Master of Science Thesis Roland Varga

50 Individual Runs with Different Seeds

Figure A-1: Maximum and minimum value estimates of the different algorithms while training
on the machine generated dataset and the collected experiences in the cubelift task.

Roland Varga Master of Science Thesis

51

Figure A-2: Performance improvement of the different algorithms as the learning progresses in
the cubelift task using the machine generated dataset. During the learning process after every 5th
trail (1000 samples) the current policy is evaluated using 5 trials. In each trial the robot needs
to lift the cube and hold it for 20 samples (1 second). The figures show the average number of
terminal state samples in the 5 trials for every evaluation step.

Master of Science Thesis Roland Varga

52 Individual Runs with Different Seeds

Figure A-3: Maximum and minimum value estimates of the different algorithms while training
on the machine generated dataset and the collected experiences in the can pick-and-place task.

Roland Varga Master of Science Thesis

53

Figure A-4: Performance improvement of the different algorithms as the learning progresses in
the can pick-and-place task using the machine generated dataset. During the learning process
after every 5th trail (1000 samples) the current policy is evaluated using 5 trials. In each trial the
robot needs to lift the can and place it in the designated compartment for 20 samples (1 second).
The figures show the average number of terminal state samples in the 5 trials for every evaluation
step.

Master of Science Thesis Roland Varga

54 Individual Runs with Different Seeds

Figure A-5: Maximum and minimum value estimates of the different algorithms while training
on the human demonstration dataset and the collected experiences in the cubelift task.

Roland Varga Master of Science Thesis

55

Figure A-6: Performance improvement of the different algorithms as the learning progresses in
the cubelift task using the human demonstration dataset. During the learning process after every
5th trail (1000 samples) the current policy is evaluated using 5 trials. In each trial the robot needs
to lift the cube and hold it for 20 samples (1 second). The figures show the average number of
terminal state samples in the 5 trials for every evaluation step.

Master of Science Thesis Roland Varga

56 Individual Runs with Different Seeds

Roland Varga Master of Science Thesis

Bibliography

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction Second edition.
The MIT Press, second edition ed., 2015.

[2] J. Luo, O. Sushkov, R. Pevceviciute, W. Lian, C. Su, M. Vecerik, N. Ye, S. Schaal,
and J. Scholz, “Robust Multi-Modal Policies for Industrial Assembly via Reinforcement
Learning and Demonstrations: A Large-Scale Study,” CoRR, vol. abs/2103.11512, 3
2021.

[3] J. Hansen, K. Kastner, Y. Huang, A. Courville, D. Meger, and G. Dudek, “Learning
to Manipulate from Pixels on Rigid Body Robots with a Kinematic Critic,” tech. rep.,
Mobile Robotics Lab, McGill University, 2022.

[4] OpenAI, I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron,
A. Paino, M. Plappert, G. Powell, R. Ribas, J. Schneider, N. Tezak, J. Tworek, P. Welin-
der, L. Weng, Q. Yuan, W. Zaremba, and L. Zhang, “Solving Rubik’s Cube with a Robot
Hand,” 10 2019.

[5] M. V. Balakuntala, U. Kaur, X. Ma, J. Wachs, and R. M. Voyles, “Learning Multimodal
Contact-Rich Skills from Demonstrations Without Reward Engineering,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA), 3 2021.

[6] I. L. Bosque, Towards Corrective Deep Imitation Learning in Data Intensive Environ-
ments Helping robots to learn faster by leveraging human knowledge. PhD thesis, TU
Delft, Delft, 2021.

[7] A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang, R. Kulkarni, L. Fei-Fei,
S. Savarese, Y. Zhu, and R. Martín-Martín, “What Matters in Learning from Offline Hu-
man Demonstrations for Robot Manipulation,” in Conference on Robot Learning (CoRL),
8 2021.

[8] M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. Heess, T. Rothörl,
T. Lampe, and M. Riedmiller, “Leveraging Demonstrations for Deep Reinforcement
Learning on Robotics Problems with Sparse Rewards,” ArXiv, vol. abs/1707.08817, 7
2017.

Master of Science Thesis Roland Varga

58 Bibliography

[9] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Overcoming Ex-
ploration in Reinforcement Learning with Demonstrations,” in 2018 IEEE International
Conference on Robotics and Automation (ICRA), pp. 6292–6299, IEEE, 5 2018.

[10] M. A. Lee, Y. Zhu, K. Srinivasan, P. Shah, S. Savarese, L. Fei-Fei, A. Garg, and J. Bohg,
“Making Sense of Vision and Touch: Self-Supervised Learning of Multimodal Repre-
sentations for Contact-Rich Tasks,” in 2019 International Conference on Robotics and
Automation (ICRA), pp. 8943–8950, IEEE, 5 2019.

[11] Y. Chebotar, O. Kroemer, and J. Peters, “Learning robot tactile sensing for object ma-
nipulation,” IEEE International Conference on Intelligent Robots and Systems, pp. 3368–
3375, 10 2014.

[12] Y. Chebotar, K. Hausman, Z. Su, G. S. Sukhatme, and S. Schaal, “Self-Supervised
Regrasping using Spatio-Temporal Tactile Features and Reinforcement Learning,”
in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 1960–1966, 2016.

[13] Y. Chebotar, M. Kalakrishnan, A. Yahya, A. Li, S. Schaal, and S. Levine, “Path In-
tegral Guided Policy Search,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA), pp. 3381–3388, 2017.

[14] T. Hester, O. Pietquin, M. Lanctot, T. Schaul, D. Horgan, J. Quan, A. Sendonaris,
G. Dulac-Arnold, J. Agapiou, and J. Z. Leibo, “Deep Q-Learning from Demonstrations,”
in The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18), 2018.

[15] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, and M. Hutter,
“Learning agile and dynamic motor skills for legged robots,” Science Robotics, vol. 4, 1
2019.

[16] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal Policy
Optimization Algorithms,” CoRR, 7 2017.

[17] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, “Trust Region Policy
Optimization,” CoRR, 2 2015.

[18] V. Tsounis, M. Alge, J. Lee, F. Farshidian, and M. Hutter, “DeepGait: Planning and
Control of Quadrupedal Gaits using Deep Reinforcement Learning,” IEEE Robotics and
Automation Letters, vol. 5, pp. 3699–3706, 9 2020.

[19] S. Levine and V. Koltun, “Guided Policy Search,” in Proceedings of the 30th International
Conference on Machine Learning, 2013.

[20] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft Actor-Critic: Off-Policy Maximum
Entropy Deep Reinforcement Learning with a Stochastic Actor,” CoRR, 1 2018.

[21] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning,” CoRR, 9 2015.

[22] S. Dankwa and W. Zheng, “Twin-Delayed DDPG: A Deep Reinforcement Learning Tech-
nique to Model a Continuous Movement of an Intelligent Robot Agent,” in ACM Inter-
national Conference Proceeding Series, Association for Computing Machinery, 8 2019.

Roland Varga Master of Science Thesis

59

[23] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline Reinforcement Learning: Tutorial,
Review, and Perspectives on Open Problems,” 5 2020.

[24] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,
I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-
level control through deep reinforcement learning,” Nature, vol. 518, pp. 529–533, 2 2015.

[25] D. Silver, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller, “Deterministic Policy
Gradient Algorithms,” in 31st International Conference on Machine Learning, ICML
2014, 2014.

[26] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing Function Approximation Error in
Actor-Critic Methods,” in 2018 International Conference on Machine Learning, 2 2018.

[27] S. Thrun and A. Schwartz, “Issues in Using Function Approximation for Reinforcement
Learning,” in Proceedings of the 1993 Connectionist Models Summer School, 1993.

[28] H. Van Hasselt, “Double Q-learning,” in Advances in Neural Information Processing
Systems, 2010.

[29] H. van Hasselt, A. Guez, and D. Silver, “Deep Reinforcement Learning with Double
Q-learning,” in AAAI’16: Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, 9 2016.

[30] D. Wu, X. Dong, J. Shen, and S. C. Hoi, “Reducing Estimation Bias via Triplet-Average
Deep Deterministic Policy Gradient,” IEEE Transactions on Neural Networks and Learn-
ing Systems, vol. 31, pp. 4933–4945, 11 2020.

[31] W. Wei, Y. Zhang, J. Liang, L. Li, and Y. Li, “Controlling Underestimation Bias in
Reinforcement Learning via Quasi-median Operation,” in Proceedings of the AAAI Con-
ference on Artificial Intelligence, pp. 8621–8628, 2022.

[32] S. Li, Q. Tang, Y. Pang, X. Ma, and G. Wang, “Balancing Value Underestimation and
Overestimation with Realistic Actor-Critic,” CoRR, 10 2022.

[33] A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Conservative Q-Learning for Offline Rein-
forcement Learning,” in Advances in Neural Information Processing Systems (NeurIPS),
6 2020.

[34] H. Jiang, G. Li, J. Xie, and J. Yang, “Action Candidate Driven Clipped Double Q-
Learning for Discrete and Continuous Action Tasks,” IEEE Transactions on Neural Net-
works and Learning Systems, 2022.

[35] B. Saglam, E. Duran, D. C. Cicek, F. B. Mutlu, and S. S. Kozat, “Estimation Error
Correction in Deep Reinforcement Learning for Deterministic Actor-Critic Methods,”
in Proceedings - International Conference on Tools with Artificial Intelligence, ICTAI,
vol. 2021-November, pp. 137–144, IEEE Computer Society, 2021.

[36] A. Mandlekar, F. Ramos, B. Boots, S. Savarese, L. Fei-Fei, A. Garg, and D. Fox, “IRIS:
Implicit Reinforcement without Interaction at Scale for Learning Control from Offline

Master of Science Thesis Roland Varga

60 Bibliography

Robot Manipulation Data,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA), pp. 4414–4420, IEEE, 5 2020.

[37] A. Mandlekar, J. Booher, M. Spero, A. Tung, A. Gupta, Y. Zhu, A. Garg,
S. Savarese, and L. Fei-Fei, “Scaling Robot Supervision to Hundreds of Hours with
RoboTurk: Robotic Manipulation Dataset through Human Reasoning and Dexterity,”
in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 1048–1055, IEEE, 11 2019.

[38] C. Gulcehre, Z. Wang, A. Novikov, T. L. Paine, S. G. Colmenarejo, K. Zolna, R. Agarwal,
J. Merel, D. Mankowitz, C. Paduraru, G. Dulac-Arnold, J. Li, M. Norouzi, M. Hoffman,
O. Nachum, G. Tucker, N. Heess, and N. de Freitas, “RL Unplugged: A Suite of Bench-
marks for Offline Reinforcement Learning,” in 34th Conference on Neural Information
Processing Systems (NeurIPS 2020), vol. 33, pp. 7248–7259, 6 2020.

[39] T. L. Paine, C. Paduraru, A. Michi, C. Gulcehre, K. Zolna, A. Novikov, Z. Wang, and
N. de Freitas, “Hyperparameter Selection for Offline Reinforcement Learning,” ArXiv,
vol. abs/2007.09055, 7 2020.

[40] D. A. Pomerleau, “ALVINN: AN AUTONOMOUS LAND VEHICLE IN A NEURAL
NETWORK,” in Advances in Neural Information Processing Systems 1 (NIPS 1988),
1988.

[41] A. Mandlekar, D. Xu, R. Martín-Martín, S. Savarese, and L. Fei-Fei, “Learning to Gen-
eralize Across Long-Horizon Tasks from Human Demonstrations,” in Robotics Science
and Systems (RSS), 3 2020.

[42] S. Fujimoto, D. Meger, and D. Precup, “Off-Policy Deep Reinforcement Learning without
Exploration,” in 36th International Conference on Machine Learning, 12 2019.

[43] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine, “D4RL: Datasets for Deep
Data-Driven Reinforcement Learning,” arXiv preprint arXiv:2004.07219, 4 2020.

[44] Y. Zhu, J. Wong, A. Mandlekar, and R. Martín-Martín, “robosuite: A Modular Simu-
lation Framework and Benchmark for Robot Learning,” CoRR, vol. abs/2009.12293, 9
2020.

[45] F. Pardo, A. Tavakoli, V. Levdik, and P. Kormushev, “Time Limits in Reinforcement
Learning,” CoRR, 12 2017.

Roland Varga Master of Science Thesis

Glossary

List of Acronyms

DDPG Deep Deterministic Policy Gradient
TD3 Twin-Delayed Deep Deterministic Policy Gradient
DQN Deep Q-learning Network
SGD stochastic gradient descent
DDPGfD Deep Deterministic Policy Gradient from Demonstration
RL Reinforcement Learning
TD Temporal difference
MDP Markov Decision Process
TADD triplet-averaged deep deterministic policy gradient
QMD3 Quasi-Median Delayed Deep Deterministic Policy Gradient
RNN recurrent neural network
BD-COACH Batch Deep Corrective Advice Communicated by Humans
BTD3 Bounded Twin-Delayed Deep Deterministic Policy Gradient
UBTD3 Underestimated Bounded Twin-Delayed Deep Deterministic Policy Gradient

List of Symbols

α Learning rate
γ Discount factor
A Set of possible actions
O Set of observations (partially observable MDP)
S Set of possible states
µθ Deterministic policy parametrized by θ

Master of Science Thesis Roland Varga

62 Glossary

π Policy, decision making rule
τ Episode; trajectory of states and actions
a Action
d0 Initial state distribution
H Time horizon of the reinforcement learning problem
o Observation (partially observable MDP)
Qϕ Q-function approximation using a neural network with ϕ parameter vector
R Reward function
s State
s′ Next state
t Discrete time index

Roland Varga Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Table of Contents
	List of Figures
	Acknowledgements

	Main Matter
	Introduction
	Structure of the report

	Deep Reinforcement Learning for Robotic Manipulation
	Deep reinforcement learning in robotics
	Introduction to reinforcement learning
	Value function based methods
	Deep Q-learning
	Deterministic policy gradient methods, DDPG
	Summary of the chapter

	Estimation Bias of Actor Critic Algorithms
	Sources of overestimation bias
	Effects and reduction of overestimation bias
	Dealing with underestimation bias

	Learning from Demonstration
	Replacing shaped rewards with demonstrations
	Importance of the source of demonstration data
	Available datasets for learning

	Algorithm Proposal
	Lower and upper bounds on the value functions
	Underestimation outside the demonstration
	Putting it all together

	Implementation
	Simulation environment, robot model
	Demonstration datasets
	Hardware and software
	Investigated test cases

	Results
	Critic value estimates of dataset samples
	Critic value estimates of random state-action samples
	Performance of the different algorithms

	Discussion
	Connection between value estimates and performance
	Summary, future prospects

	Conclusion

	Appendices
	Individual Runs with Different Seeds

	Back Matter
	Bibliography
	Glossary
	List of Acronyms
	List of Symbols

