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Keywords: Electric-vehicle smart charging requires quick decision-making under uncertainty while enforcing strict
Decision transformer electricity grid and user requirements. Mathematical optimization becomes too slow at scale, while online

Large language models
Electric vehicle
Smart charging
Graph neural networks

reinforcement learning struggles with sparse rewards and safety. This paper proposes GNN-DT, a topology-
aware Decision Transformer that combines graph neural network embeddings with sequence modeling to
learn charging policies from offline trajectories. The method operates over variable numbers of vehicles and
chargers without retraining. Evaluated on realistic smart charging scenarios, GNN-DT achieves near-optimal
performance, reaching rewards within 5 percent of an oracle solver while using up to 10x fewer training
trajectories than baseline methods. It consistently outperforms online and offline reinforcement learning
approaches and generalizes to unseen fleet sizes and network topologies. Inference runs in milliseconds, making
the approach suitable for real-time deployment in large-scale charging systems.

1. Introduction uncertainty regarding arrivals, departures, and energy demand [1].
Mathematical optimization and model predictive control can produce

Electric vehicle (EV) smart charging requires coordinating large high-quality schedules, but they become computationally expensive as
numbers of vehicles over long time horizons while respecting user re-
quirements, electricity prices, and grid capacity constraints. In practice,
charge point operators (CPOs) must make decisions in real-time under

fleet size and network complexity increase, limiting their use in real-
time operations. Online reinforcement learning (RL) offers adaptability
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but often struggles with sparse rewards, safety constraints, and poor
generalization across changing charging infrastructures. As a result, a
gap remains between scalable, real-time control and methods that can
effectively leverage historical charging data while generalizing across
variable fleet sizes and network topologies.

1.1. Literature review

Mathematical and stochastic optimization provide strong baselines
when models and forecasts are reliable [2]. Mixed-integer, robust, and
chance-constrained formulations encode safety and quality-of-service
constraints directly in the mathematical formulation. Furthermore,
model predictive control (MPC) adds receding-horizon adaptation to
track forecasts and market signals [3]. These methods are transpar-
ent, support sensitivity analysis, and offer explicit constraint guaran-
tees [4]. However, as EV fleets scale, topologies vary, and forecast
errors accumulate, repeated large-scale reoptimization becomes bur-
densome [5] and static formulations struggle to remain responsive [6].
Therefore, accurately modeling the uncertainty and scalability become
key bottlenecks of mathematical optimization.

To relax modeling assumptions and improve adaptability, RL [7] has
been applied to EV charging [8]. Actor—critic and value-based methods
such as Deep Deterministic Policy Gradient (DDPG) [9], and Soft Actor—
Critic (SAC) [10], have shown improvements over heuristics in both
single-station and fleet settings. Graph Neural Networks (GNN) based
formulations have the potential to exploit relational structure to scale
across layouts and demand patterns [11]. Moreover, multi-agent (MA)
RL methods assign local decision-making to stations or aggregators,
hence simplifying the problem even more, but at the cost of optimality
convergence [12]. Despite these advances, online RL often fails to learn
under sparse or delayed rewards [13]. Most importantly, RL is sensitive
to design choices, has difficulty enforcing strict operational constraints,
and convergence can degrade in large, heterogeneous systems [14]. The
need for more efficient training and stronger generalization motivates
an offline learning paradigm.

Offline RL addresses safety and data-efficiency by training policies
from logged trajectories collected under heuristic or optimized EV
dispatch. Offline RL is particularly efficient in sparse-reward settings
where the whole expert trajectories are provided [15]. Recent work
builds detailed microgrid and charging models with PV, residential
loads, storage, Vehicle to Grid (V2G), and nonlinear charging, and casts
scheduling as a mathematical programming problem solved offline.
Extrapolation error is limited by keeping the learned policy using
behavioral cloning (BC) close to the data support, and tractability is
improved by grouping EVs into sets and issuing set-level actions [16].
Pretraining with expert trajectories further accelerates learning and
supports robustness to overloads and cost objectives on grid bench-
marks. For example, BC on expert trajectories followed by online RL
training using Proximal Policy Optimization (PPO) can help acceler-
ate training, requiring fewer training epochs [17]. Beyond charging,
offline energy-management studies show that dataset quality and dis-
tribution shift remain central. Strategies that constrain policies toward
the dataset distribution and periodically update with new EV session
data improve efficiency and adaptability [18]. Overall, offline RL can
provide safe and effective charging policies when extrapolation is
controlled and dataset coverage is strong, but sensitivity to distribution
shift, long horizons, and data quality remains.

Decision Transformers (DT) offer a complementary path for of-
fline policy extraction by modeling trajectories as sequences of states,
actions, and return-to-go [19]. This formulation leverages success-
ful historical behavior, uses the attention mechanism over long hori-
zons, and enables return conditioning at inference to target different
operating points. Hence, DTs can mitigate sparse rewards and re-
duce task-specific retraining. These properties directly address two
offline RL limitations: long-range credit assignment and sensitivity to
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dataset composition. However, pure trajectory stitching can fail in non-
stationary or stochastic settings where high returns occur by chance.
Therefore, value-aware regularization (e.g., Q-regularized DT [20])
improves robustness by preferring actions with both sequence support
and high estimated value [21]. Currently, transformer-based policies
have not been designed to respect dynamic graph structure (variable
numbers of EVs/chargers and changing connectivity) while preserving
generalization and constraint awareness.

1.2. Our contributions

To address the need for efficient and adaptive decision-making
in complex and dynamically evolving energy systems, GNN-DT' is
introduced. GNN-DT is a topology-aware DT for EV smart charging that
operates over variable network sizes without input padding or retrain-
ing. This design provides a general foundation for sequential control
under dynamic connectivity and physical constraints, addressing the
gaps identified in Table 1.

GNN-DT combines Graph Neural Network (GNN) embeddings with
sequence modeling to support dynamic state and action spaces that
arise from changing numbers of EVs, chargers, and grid connections.
Unlike existing GNN-transformer approaches, GNN-DT incorporates a
residual action decoding mechanism that maps fixed-length transformer
outputs to node-level charging actions using state-dependent graph em-
beddings, thereby enabling consistent decision-making under changing
topologies. The approach is evaluated on a realistic multi-objective EV
charging optimization problem with sparse rewards, long horizons, and
aggregated grid constraints, achieving near-optimal performance while
maintaining real-time inference.

The main contributions are summarized as follows:

+ Introducing a DT architecture that integrates GNN embeddings to
handle variable state and action spaces, enabling learning without
input padding or retraining and improving sample efficiency and
generalization across different EV charging scenarios.

Showing through systematic comparison that both online and
offline RL baselines, trained on Optimal, Random, and Business-
as-Usual datasets of varying sizes, achieve lower performance
than GNN-DT on realistic EV charging optimization tasks.
Demonstrating that the size and composition of the offline train-
ing dataset strongly affect DT performance, and that combining
expert and non-expert trajectories leads to higher rewards than
training on single-policy datasets alone.

2. Problem formulation

In this section, an introduction to offline RL and the mathematical
formulation of the EV charging optimization problem is presented as
an example of what type of problems can be solved by the proposed
GNN-DT methodology (see Table 2).

2.1. Offline RL

Offline RL aims to learn a policy zy(a | s) that maximizes the
expected discounted return E[Y7°, 7' R(s;, a,)] without additional inter-
actions with the environment [22]. A Markov Decision Process (MDP)
is defined by the tuple (S, A, P, R,y), where S is the state space, A the
action space, P the transition function, R the reward function, y € (0, 1]
the discount factor [7]. In the offline setting, a static dataset D =
{(s,a,r)}, collected by a (potentially suboptimal) policy, is provided.
DTs leverage this dataset by treating RL trajectories as sequences,
learning to predict actions that maximize returns based on previously

1 The code can be found at https://github.com/StavrosOrf/DT4EVs and
https://github.com/distributionnetworksTUDelft/DT4EVs.
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Table 1
Literature review of EV smart-charging methods across three categories: mathematical/stochastic optimization, online, and offline RL. Columns summarize the
algorithm class, key advantages/limitations, and typical settings.

Ref. Category Algorithm Advantages Limitations Setting
[3] Math. Opt. MPC Receding horizon and optimal Needs short-term forecasts Operation
[4] Math. Opt. MPC Safety under uncertainty Conservative; scenario scaling Planning
[6] Math. Opt. DR sched. Peak shaving; QoS-aware Static; limited adaptability Planning
[9] Online RL DDPG Continuous actions; DR-aware Sparse rewards; hard safety Operation
[10] Online RL SAC Structured policy improvement Convergence/tuning sensitivity Operation
[11] Online RL GNN-RL Relational bias; layout transfer Training complexity Operation
[12] MA RL Q-Learning Scales via locality Non-stationarity; convergence Operation
[13] MA RL Q-Learning Fairness—-efficiency trade-off Stability at scale Operation
[14] Safe RL Constrained SAC Safety filter; constraint aware Performance hit; tuning Operation
[15] Offline RL Behavior Cloning Good for sparse rewards Dataset quality sensitivity Operation
[16] Offline RL Behavior Cloning Limits extrapolation Dataset coverage limits Operation
[17] Off/Online RL BC + PPO Faster learning Expert bias; transfer limits Operation
[18] Off/Online RL BC + Q-Learning Robust to shift Comms infra; divergence tuning Operation
Ours Seq. Model GNN-DT Topology-aware, adaptive architecture, generalization Higher training cost Operation

Table 2
Notation for the EV charging optimization problem.
Symbol Name Description
Sets
T Set of timesteps Time horizon for optimization
1 Set of charging stations All EV charging stations
w Set of charger groups Chargers grouped by local transformer connections
J; Set of charging sessions Charging sessions at charger i
Indexes

t Timestep index

i Charger index

Jj Session index

w Charger group index

Discrete time step

Individual EV charging station

Charging session at a charger

Charger groups connected to transformers

Parameters

15, Arrival time Time EV j arrives at charger i

t;’ ; Departure time Time EV j departs charger i

e, Desired battery capacity Desired battery energy at departure for session j at charger i
€, Arrival battery energy Battery energy at EV arrival

€€ Battery limits Min/max allowable battery energy

g;fl,ﬁ’, Charging power limits Min/max charging power

gzl,ﬁ;l Discharging power limits Min/max discharging power

o Total power limit Desired aggregated power

mr i Electricity prices Prices for charging/discharging at timestep ¢

At Time interval Duration of each timestep

Py Group power limit Power limit for group w at timestep ¢

Variables

PPy, Charging/discharging power Power assigned at charger i, timestep ¢

o} o7, Binary operation indicators Indicates if charger i charges (+ ) or discharges (-) at timestep ¢
it EV battery energy Battery level for session j at charger i, timestep ¢

p,Z Total aggregated power Net total power across all chargers at timestep ¢

collected experiences. A key component in DTs is the return-to-go (RTG),
which for a time step 7 can be defined as: G, = ZZ:: y*'r,, representing
the discounted cumulative reward from 7 until the terminal time T.
Offline RL is particularly beneficial when real-time exploration is costly
or impractical, while sufficient historical data are available.

2.2. The EV smart charging problem

Working closely with a CPO, it was evident that existing heuristic
and mathematical programming charging strategies don’t scale effi-
ciently as EV fleets grow. To address this, the state-action space and
objectives were designed around real-world operational constraints and
assumptions provided by the CPO. A set of 7 charging stations indexed
i is considered, all assumed to be controlled by a CPO over a time
window 7, divided into T non-overlapping intervals. Since the chargers
can be spread around the city, there are charger groups w € W, that can

have a lower-level aggregated power limits representing connections
to local power transformers. For a given time window, each charging
station i operates a set of .J non-overlapping charging sessions, denoted
by J; = {ji--»Jy,i}, where j;; represents the jth charging event at
the ith charging station and J; = |J;| is the total number of charging
sessions seen by charging station i in an episode. A charging session is
then represented as j;; : {t;”i,t;"i,ﬁjy,-,ejj}, Vj,i, where 1,14, 5 and e*
represent the arrival time, departure time, maximum charging power,
and the desired battery energy level at the departure time. The primary
goal is to minimize the total energy cost given by:

A=Y Y (1) p - 117 py) &)
teT i€l

p;, and p;, denote the charging or discharging power of the ith charg-

ing station during time interval . I} and I1; are the charging and

discharging costs, respectively. Along with minimizing the total energy
costs , the CPO also wants the aggregate power of all the charging
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stations (ptZ =Dier pft —p;,) to remain below the set power limit p;. By
doing so, the CPO avoids paying penalties due to overuse of network
capacity. Hence, the total power capacity limit penalty is defined as:

At )= Y, max{0, pF - 7). @
teT

Maintaining the desired battery charge at departure is crucial for EV

user satisfaction. This behavior is modeled as:

I

S 2
£t =Y Y (Xt -p-e,) ®)

i€l jeJ; r=rj?7,.

Eq. (3) defines a sparse reward added at each EV departure based on its
departure energy level. Building on the objective functions described by
Egs. (1)-(3), the overall EV charging problem is formulated as a mixed
integer programming (MIP) problem, subject to lower-level operational
constraints (e.g., EV battery, power levels) as detailed below:

max Y [— 100 max{0, pZ — p*}
protpT.o” teT
+2<At H+plt lt_Hptr lt)
iel (4)
I
Js! 2
+ *
_102<Z(pi,‘rwir_plrwl‘r)_ej,i> )]
JET; 1:1]”..‘.
Subject to:
ﬁw’ = 2 plf i,t Pi; w;t Vi, Yw, Vt 5)
iew;
¢ Se i Se, Vj, Vi, Vt (6)
ejir=¢€ir1t (P:, : a’?:, +p, o) At Vj, Vi, Vt 7
€= e Vj, Vi, Vil 1 =19, ®)
PSP <P vj, Vi, Vi ©
gT_ Zp, 2P, Vj, Vi, Vt (10)
co  to, <1 Vi, Vt (11

it —

The multi-objective optimization function in Eq. (4) integrates
Egs. (1)-(3) using experimentally determined coefficients based on
practical importance. The power of a single charger i is modeled using
four decision variables, p* - * and p~ - w~, where »™ and w~ are
binary variables, to differentiate between charging and discharging
behaviors and enable charging power to get values in ranges 0 U
[pt.7"], and discharging power in [p~,p ] U 0. Eq. (5) defines the

locally aggregated transformer power limits p for chargers belonging to
groups W,. Egs. (6)—(8) address EV battery constraints during operation
with a minimum and maximum capacity of e, e, and energy e? at
time of arrival 7. Egs. (9) and (10) impose charging and discharging
power limits for every charger-EV session combination. To prevent
simultaneous charging and discharging, the binary variables v and
%S are constrained by (11).

2.3. EV charging MDP

The optimal EV charging problem can be framed as an MDP: M =
(S, A,P,R), where S is the state space, A is the action space, P is
the transition probability function, and R is the reward function. At
any time step 7, the state s, € S is represented by a dynamic graph
G, = (N,E&), where W, is the set of nodes and &, is the set of
edges. The graph is dynamic since the number of nodes in the state
and action graph can vary in each step, because of EVs’ arrival and
departures. Each node n € N, has a feature vector x,, € R?, capturing
node-dependent information such as power limits and prices.

An EV node represents the current battery state and the remaining
time until departure. A charging station node captures its physical
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charging and discharging power limits. A transformer node encodes
the available feeder capacity that constrains the total power drawn
by downstream chargers. A system-level node aggregates global con-
text, including time-of-day information, electricity prices, and recent
aggregate power consumption.

The action space a, € A is represented by a dynamic graph G* =
(Nf‘, &), where nodes j\/f correspond to the decision variables of the
optimization problem (e.g., EVs). Each node n € N represents a single
action g;, € a,, scaled by the corresponding charger’s maximum power
limit. For charging, ¢;, € [0,1], and for discharging, a;, € [-1,0).
The transition function P(s,,; | s,,a,) accounts for uncertainties in EV
arrivals, departures, energy demands, and grid fluctuations. Finally,
the reward function follows the multi-objective formulation in Eq. (4)
and is defined per timestep as R(s,,a,) = f; — 100/, — 10f3. It promotes
low charging costs while penalizing violations of aggregated power
limits and unmet energy requirements at EV departure. The first two
terms capture immediate economic costs and network constraint vio-
lations, whereas the third term provides a sparse signal at departure
time, introducing long-term temporal dependencies. The weighting
coefficients were selected empirically to preserve the optimal solution
of the underlying MIP while ensuring stable and effective learning.

3. GNN-based decision transformer

The training pipeline of GNN-DT, illustrated in Fig. 1, consists of
four steps. First, EV charging scenarios are generated using stochas-
tic processes for arrival, departure, and pricing. Second, each sce-
nario is solved using multiple charging strategies, including heuristic,
business-as-usual, and optimal solvers, to generate state-action trajec-
tories. Third, the resulting trajectories are aggregated into an offline
dataset. Finally, the GNN-DT model is trained in a supervised manner
to predict charging actions from sequences of past states, actions, and
returns-to-go. The model architecture is detailed in Fig. 2.

3.1. Sequence embeddings

In GNN-DT, each input “modality” is processed by a specialized
embedding network. The state graph passes through the State Embedder,
the action through the Action Embedder, and the return-to-go value
through a simple Multi-Layer Perceptron (MLP). Compared to standard
MLP embedders, GNNs provide embeddings for states and actions
invariant to the number of nodes by capturing the graph structure. This
design makes GNN-DT more sample-efficient during training and better
at generalizing to unseen environments.

In detail, the State Embedder consists of L consecutive Graph Convo-

lutional Network (GCN) [23] layers, which aggregate information from
neighboring nodes as follows:
* = (D124, 0712 WD), 12)
where xﬁ’) € RN denotes the node embeddings at layer ! with
N, number of nodes, W € Rf*fi+1 are trainable weights, o(-) is a
nonlinear activation (ReLU), A, is the adjacency matrix of the state
graph G,, and D is the degree matrix for normalization. After the final
layer, a mean pooling operation produces a fixed-size state embedding:
5 = ] N Zne, quLt , where x{" is the embedding of node n at the
Lth layer This pooling step ensures that the state embedding is in-
variant to the number of nodes in the graph, enabling the architecture
to scale with any number of EVs or chargers. Similarly, the Action
Embedder processes the action graph ¢* = (N?,&") through C GCN
layers followed by mean pooling, producing the action embedding
a,. All embedding vectors (states, actions, or the return-to-go value)
have the same dimensions. This design leverages the dynamic and
invariant nature of GCN-based embeddings, allowing the DT to handle
variable-sized graphs.
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Forward pass

Dataset | Backward pass GNN-DT
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Fig. 1. Overview of the proposed training pipeline. Initially, random EV charging scenarios are generated and are solved using business-as-usual and heuristic
strategies employed by charge point operators. The problems are also solved optimally using solvers, such as Gurobi. After the dataset is generated, the GNN-DT

model is trained in a supervised learning manner.
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Fig. 2. Overview of the GNN-DT architecture. The input sequence, comprising return-to-go, action, and state, is processed through specialized embedding modules.

The action graph ¢* = (N2,

&%), with nodes N* c W,, and the state graph G, = (V,,&,) are encoded using GNN-based embedders to produce embeddings of

dimension F,. These embeddings serve as inputs to a GPT-2-based causal transformer, which predicts the next action token. The predicted action token acts as
a decoder, generating actions by multiplying with specific GNN state node embeddings.

3.2. Decoding actions

Once the embedding sequence of length K is constructed,” it is
passed through the causal transformer GPT-2 to produce a fixed-size
output vector y, € RFL for each step. Because DT architectures inher-
ently generate outputs of fixed dimensions, an additional mechanism
is required to manage dynamic action spaces. To address this, GNN-
DT implements a residual connection that merges the final GCN layer
embeddings x(L) with the transformer output y, for every step of
the sequence. Specifically, for each node n € N}, its corresponding
state embedding x(L) RXFL js retrieved and is multiplied by the
transformer output token y, € R™FL, yielding the final action for
node n: 4,, = y| - xiﬁ). By repeating for every step ¢ and every node
n € N the final action vector 4, is generated. This design allows the
model to maintain a fixed-size output from the DT while dynamically
adapting to any number of nodes (and hence actions). It effectively
combines the high-level context learned by the transformer with the
node-specific state information captured by the GNN, enabling robust,
scalable decision-making even as the graph structure changes.

3.3. Action masking and loss function
The proposed GNN-DT model is trained via supervised learning

using an offline trajectory dataset [19], similarly to offline RL. Specifi-
cally, the GPT-2 model is initialized with its default pre-trained weights,

2 During inference the action (a,) and RTG (IAK,) of the last step ¢ are filled
with zeros as they are not known.

which are subsequently fine-tuned end-to-end for the EV charging
optimization task. In GNN-DT, the learning of infeasible actions, such
as charging an unavailable EV, is avoided through action masking. At
each time step ¢, a mask vector m,, which has the same dimension as
a,, is generated with zeros marking invalid actions and ones marking
valid actions. For example, an action is invalid when the 4;, # 0 and
no EV is connected at charger i. The mean squared error between the
predicted actions a, and ground-truth actions a, from expert or offline
trajectories is employed as the loss function. For a window of length K
ending at time ¢, training loss is defined as:

1
1 ~
=% 2 [a.-

By incorporating the mask into the loss calculation (elementwise mul-
tiplication), a focus solely on valid actions is enforced, thereby preserv-
ing meaningful gradient updates.

13

4. Experimental setup

The dataset generation and the evaluation experiments are con-
ducted using the EV2Gym simulator [24], which leverages real-world
data distributions, including EV arrivals, EV specifications, electricity
prices, etc. This setup ensures a realistic environment where the state
and action spaces accurately reflect real charging stations’ operational
complexity. A scenario with 25 chargers is chosen, allowing up to
25 EVs to be connected simultaneously. In this configuration, the
action vector has up to 25 variables (one per EV), while the state
vector contains around 150 variables describing EV statuses, charger
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c) BaU Dataset (K = 10) d) Online RL

Fig. 3. Training performance comparison for online and offline RL algorithms averaged over 5 random seeds. The line shows the mean, while the colored outline
shows the standard deviation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3

Algorithm hyperparameters for small- and large-scale settings.

Hyperparameter Small scale Large scale
Batch size 128 64
Learning rate 1074 1074
Weight decay 107# 107#
Steps per iteration 1000 3000
Decoder layers 3 3
Attention heads 4 4
Embedding dimension 128 256
GNN embedder feat. dim. 16 16
GNN hidden dimension 32 64
GCN layers 3 3
Epochs 250 400
CPU memory (GB) 8 40
Time limit (h) 10 46

conditions, power transformer constraints, and broader environmental
factors. Consequently, the resulting optimization problem is in the
moderate-to-large scale range, reflecting the key complexities of real-
world EV charging. Each training process is repeated 10 times with
random seeds to ensure statistically robust findings. All reported re-
wards represent the average performance over f50 evaluation scenarios,
each featuring different configurations (electricity prices, EV behavior,
power limits, etc.). Training was carried out on an NVIDIA A10 GPU
paired with 11 CPU cores and 80 GB of RAM, using the AdamW
optimizer and a LambdaLR scheduler. Baseline RL agents converged in
2-5 h, while the proposed GNN-DT required up to 10 h of training.
Default hyperparameters were used for all baseline RL methods. Table
3 lists the full set of hyperparameters employed to train the DTs.

4.1. Dataset generation

Offline RL algorithms, including DTs, can learn policies from trajec-
tories without the need for online interaction with the environment.
Consequently, the quality of the gathered training trajectories has a
substantial impact on the learning process. In this work, three distinct
strategies were used to generate trajectories:

» Random Actions: Uniformly sampled actions in the range [-1, 1]
were applied to the simulator.

» Business-as-Usual (BaU): A Round Robin charging policy com-
monly employed by CPOs, which sequentially allocates charging
power among EVs to balance fairness and efficiency.

» Optimal Policies: Optimal solutions derived from solving offline
the mathematical problem described in Section 2.2 for randomly
generated scenarios.

Each trajectory consists of 300 state-action-reward-action mask tuples,
with each timestep representing a 15-minute interval, resulting in a

total of three simulated days. This combination of random, typical, and
expert data provides a comprehensive basis for evaluating how GNN-DT
learns from diverse offline trajectories.

5. Experiments

In this section, a comprehensive set of experiments is presented
to evaluate the proposed method’s performance, both during training
and under varied test conditions. Different dataset types and sample
sizes are examined to determine their impact on learning efficiency and
convergence.

5.1. Training performance

Fig. 3 compares the proposed GNN-DT against multiple baselines,
including the classic DT [19] and Q-DT [20], which both rely on
flattened state representations due to their inability to directly process
graph-structured data. In these baseline methods, empty chargers and
unavailable actions are replaced by zeros, so the action vector is always
the same size. Several well-known online RL algorithms from the
Stable-Baselines-3 [25] framework are evaluated, such as SAC, DDPG,
Twin Delayed DDPG (TD3), Trust Region Policy Optimization (TRPO),
PPO, and Truncated Quantile Critics (TQC). Also, offline RL algorithms
from D3RLPY [26], namely Implicit Q-Learning (IQL), Conservative Q-
Learning (CQL), and BC, are also included. The offline RL algorithms
(IQL, CQL, BC, DT, Q-DT, and GNN-DT) are trained on three datasets
(Optimal, Random, and BaU ), each comprising 10.000 trajectories. A red
dotted line marks the optimal reward, which represents the experimen-
tal maximum achievable reward obtained by solving the deterministic
MIP knowing the future (Oracle) defined in Eq. (4). This oracle re-
ward serves as an upper bound and helps contextualize the relative
performance of each method. It is important to note that the EV smart
charging problem requires real-time (1-5 min intervals) optimization
solutions for large-scale, highly stochastic scenarios, where metaheuris-
tic algorithms, stochastic optimization, and MPC methods fail due to
computational constraints. By contrast, once trained (over 2-24 h),
RL agents can deliver real-time charging schedules on an ordinary
computer in milliseconds.

In Figs. 3.a—c, the DT-based approaches use a context length K = 10.
As expected, the Optimal dataset provides the highest-quality informa-
tion, enabling GNN-DT to converge rapidly toward near-oracle perfor-
mance, while classic DT, Q-DT, and the other offline RL algorithms lag
far behind, showcasing GNN-DT’s improved sample efficiency. With the
Random dataset, the limited quality of data leads all methods to plateau
at lower reward values, although GNN-DT still surpasses the other
baselines. An intriguing behavior is observed with the BaU dataset,
where classic DT, BC, and IQL converge at rewards exceeding those
of GNN-DT. In contrast, the online RL algorithms displayed in Fig.
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Comparison of maximum episode rewards (x10°) for baselines and GNN-DT across datasets and context lengths
(K) over 10 random seeds. Bold indicates the highest value within each dataset and K category.

Dataset Avg. training dataset reward K=2 K =10
DT Q-DT GNN-DT DT Q-DT GNN-DT
Random 100 -2.37 + 0.39 -1.91  -1.97 -082 -212 -209 -1.16
Random 1000 -1.93 -2.04 -0.86 -2.11 -2.01 -1.18
Random 10000 -1.76 -2.04 -1.25 -1.81 -1.98 -0.98
BaU 100 -0.67 + 0.07 -0.79 -0.74 -0.59 -0.79 -0.72 —-0.56
BaU 1000 -0.71 —-0.66 -0.65 -0.64 -0.71 -0.57
BaU 10000 -0.69 —-0.66 —-0.66 -0.44 -0.74 —-0.53
Optimal 100 —-0.01 + 0.01 -0.67 -0.91 -0.15 -1.12 —-0.90 -0.14
Optimal 1000 -0.63 -0.67 -0.10 -0.87 -0.86 -0.09
Optimal 10000 -0.63  -0.80  —0.04 -0.72  -0.90  —0.07
3.d struggle to achieve comparable improvements, suggesting that pure
online exploration is insufficient for solving this complex EV charging Table 5

optimization problem with sparse rewards. In the rest of this section,
the online and offline RL baselines are omitted, as their performance is
substantially inferior to that of DT, Q-DT, and GNN-DT.

5.2. Dataset impact

In Table 4, the maximum episode reward is compared for small,
medium, and large datasets (100, 1.000, and 10.000 trajectories),
under two different context lengths (K 2 and K = 10), and 5
random seeds. The left side of Table 4 reports the dataset type, the
number of trajectories, and the average reward in each dataset. All
baselines achieve performance above the Random dataset’s average
reward. However, only GNN-DT consistently approaches the Optimal
dataset’s performance, reaching as close as —0.04 x 105 compared to the
—0.01 x 10° optimal reward. This advantage becomes especially evident
at the largest dataset size (10.000 trajectories), highlighting the benefits
of the graph-based embedding layer. Overall, GNN-DT outperforms the
baselines across all datasets and both context lengths, with the single
exception of the BaU dataset at K = 10. Interestingly, a larger context
window does not always translate into higher rewards, potentially due
to the problem setting. Similarly, the dataset size appears to have
minimal impact on Q-DT, whereas DT and GNN-DT generally improve
with more trajectories. These findings underscore that both the quality
and quantity of offline data, coupled with the GNN-DT architecture, are
key to achieving superior performance.

5.3. Enhancing training datasets

The previous section highlighted that the quality of trajectories in
the training dataset is the most influential factor for achieving high
performance. In this section, the potential of creating new datasets is
explored by mixing existing ones can further improve performance. The
Optimal and Random datasets are combined in different proportions,
as summarized in Table 5. A noteworthy result is that supplementing
the Optimal dataset with “less useful” (Random) trajectories consistently
boosts performance. In particular, GNN-DT with K = 10, trained on a
mix of 250 Optimal and 750 Random trajectories, achieves near-oracle
results, deviating by only —0.001 x 10° from the optimal reward. A
similar trend emerges when blending BaU and Random datasets shown
in Table 6. While the BaU dataset alone performs worse than the
Optimal dataset, mixing it with Random data still yields improvements,
with the 75% BaU and 25% Random combination showing the best
results. Overall, these findings indicate that carefully integrating high-
and lower-quality data can enhance policy learning beyond what purely
Optimal or purely Random datasets can provide.

Maximum reward of GNN-DT trained on merged Optimal and Random datasets
for K =2 and K = 10. Performance improves despite lower average training
rewards, highlighting the importance of dataset diversity. Highest rewards per
K are highlighted with bold.

Dataset Total Traj. Avg. dataset GNN-DT reward (x10°)
reward

K=2 K =10
Random (Rnd.) 100% 1000 -2.37 + 0.39 —-0.863 -1.187
Opt. 25% + Rnd. 75% 1000 -1.78 + 1.07 —0.045 -0.020
Opt. 50% + Rnd. 50% 1000 -1.18 + 1.19 —-0.021 —-0.040
Opt. 75% + Rnd. 25% 1000 —-0.60 + 1.03 -0.073 —-0.057
Optimal (Opt.) 100% 1000 —0.01 + 0.01 —0.108 —0.099

Table 6

Maximum reward of GNN-DT trained on merged BaU-Random datasets for
K =2 and K = 10. The bold indicates the training dataset with the highest
evaluation reward.

Dataset Total Traj. Avg. dataset GNN-DT reward (x10%)
reward
K=2 k=10
Random (Rnd.) 100% 1000 —-2.37 + 0.39 -0.863 -1.187
BaU 25% + Rnd. 75% 1000 -1.93 + 0.80 -0.578 —-0.461
BaU 50% + Rnd. 50% 1000 —1.51 + 0.87 —0.665 —0.447
BaU 75% + Rnd. 25% 1000 -1.09 + 0.76 —0.421 -0.471
BaU 100% 1000 —0.01 + 0.01 —0.654 —-0.572
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Fig. 4. GNN-DT performance for larger context lengths (K).
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Average reward trained over 5 runs with different seeds for Optimal and Mixed datasets.

DT State GNN Action GNN Res. Con. Action mask Optimal (x10°) Mixed (x10%)
v X X X X —0.69 +0.03 -0.95+0.39
v GCN X X X -0.71 £ 0.02 —-0.77 £ 0.17
v GCN X v X —0.18 +0.03 —0.16 + 0.07
v GCN GCN v X -0.11+0.03 —0.12+0.04
4 GAT GAT v v —0.14 £ 0.07 —0.15 +0.06
v GCN GCN v v —0.09 +0.02 —0.10 + 0.04

5.4. Impact of larger context lengths (K)

Fig. 4 demonstrates that the context length K plays a key role in
the performance of GNN-DT, with diminishing returns beyond a certain
point. For high-quality datasets like Optimal, moderate context lengths
(K = 5to K = 10) yield the best results, while larger K values do
not improve performance significantly. For suboptimal datasets like
BaU and Random, the performance is lower overall, and longer context
lengths seem to offer meaningful improvements, particularly when
using the BaU dataset. Thus, selecting an appropriate context length
is crucial for achieving better performance, while the quality of the
dataset remains the most influential factor.

5.5. Component ablation study

To better understand the contribution of each architectural com-
ponent, an ablation study is conducted by systematically removing
or replacing elements of the model. The model is then trained with
the Optimal and Mixed (Opt.25% +Rand.75%). The results in Table
7 reveal that neither a plain DT nor a DT augmented solely with
a state-GNN submodule achieves competitive performance. Notably,
adding the residual connection atop the state-GNN leads to a signif-
icant improvement, from —0.77 x 10° to —0.16 x 105 on the Mixed
dataset, demonstrating its importance for effective credit assignment
over dynamic inputs. Removing action masking or replacing the GCN
module with a Graph Attention Network (GAT) [27] similarly degrades
performance, indicating that each component provides distinct and
complementary benefits. Ultimately, only the full GNN-DT architec-
ture achieves strong performance across both the Mixed and Optimal
datasets.

5.6. Average results of EV charging

Table 8 shows a comparison of key EV charging metrics for the 25-
station problem after 100 evaluations, including heuristic algorithms,
Charge As Fast as Possible (CAFAP) and BaU, and DT variants with the
optimal solution, which assumes future knowledge.

The performance of the proposed algorithms was assessed using
several evaluation metrics. For example, user satisfaction [%] captures
the extent to which the state of charge at departure (ej,,d) of each
electric vehicle j € J meets its target e;f, thus defined as:

. . 1 €jd*
User Satisfaction [%] = — ) -100%. 14)
JEJ

[T e
Energy charged [kWh] was measured as the total amount of energy
delivered to the vehicles during the charging sessions, while energy
discharged [kWh] was quantified as the energy returned from vehicles
to the grid. Power violations [kW] were tracked to identify instances
in which operational limits were exceeded, ensuring system feasibility.
Finally, the overall charging cost [€] was evaluated by accounting
for the time-varying electricity prices during charging and discharging
periods, thus reflecting the economic performance of the strategy.
GNN-DT shows remarkable performance, achieving a close approxi-
mation to the optimal solution, particularly in user satisfaction (99.3%
+ 0.03%) and power violation (21.7 + 22.8 kW). It outperforms both
BaU and DT variants in terms of energy discharged, power violation,
and costs. Notably, GNN-DT performs well even compared to Q-DT,

while maintaining competitive execution time, albeit slightly slower
than the simpler models. The results underscore the effectiveness of
GNN-DT in managing complex EV charging tasks, demonstrating its
potential for real-world applications where future knowledge is not
available.

5.7. Illustrative example of EV charging

After the model is trained, the behavior of the best baseline models
trained (DT, Q-DT, GNN-DT) is compared against the heuristic BaU and
mathematical optimization algorithm in an EV charging scenario. Fig.
5(a) presents the SoC progress for three EVs connected one after the
other to a single charger throughout the simulation, while Fig. 5(b)
shows the actions of all chargers taken by each algorithm. At the begin-
ning of the simulation, EVs arrive at the charging station with unknown
initial SoCs. Upon connection, they communicate their departure times
and desired SoC levels to the CPO. Leveraging this information, along
with real-time electricity price signals and power constraints, each
algorithm determines optimal charging and discharging actions.

In Fig. 5(a), the heuristic BaU algorithm consistently overcharges
the EVs, often exceeding the desired SoC levels. In contrast, both
DT and Q-DT fail to satisfy the desired SoC. Conversely, GNN-DT
successfully achieves the desired SoC for all EVs, closely mirroring the
behavior of the optimal algorithm. This demonstrates GNN-DT’s ability
to precisely control charging based on dynamic state information. Fig.
5(b) provides further insights into the actions taken by each algo-
rithm. The optimal solution primarily employs maximum charging or
discharging power, since it knows the future. In comparison, GNN-DT
exhibits a more refined approach, modulating charging power within a
range of —6 to 11 kW. Baseline DT and Q-DT display a narrower range
of actions, limiting their ability to optimize the charging schedules
and adapt to varying conditions. These results underscore the superior
capability of GNN-DT in managing the complexities of EV charging
dynamics.

5.8. Generalization and scalability analysis

Evaluating the generalization of RL models across varying state tran-
sition probabilities is crucial for ensuring consistent performance under
diverse conditions [28]. To evaluate the generalization capabilities of
GNN-DT, three additional environments with different state transition
probabilities are designed. The key environment variables that directly
impact the state transition dynamics are visualized in Fig. 6. In detail,
Fig. 6a—d presents the probability distributions of EV arrival time,
departure time, duration of stay, and state of SoC at arrival across four
scenarios: the original training environment and environments with
small, medium, and extreme variations. These plots help quantify the
extent of variation in each case. Additionally, Fig. 6e illustrates the
temporal distribution of the power limit in each scenario, providing
further insight into the differences in environment configuration.

In Fig. 7(a), the generalization capabilities of GNN-DT and other
baselines are assessed in environments with small, medium, and ex-
treme variations in state transition probabilities. While the baseline
methods experience significant performance drops as the evaluation
environment deviates from the training setting, GNN-DT maintains
strong performance across all scenarios. This highlights the critical role
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Comparison of key EV charging metrics for the 25-station problem after 100 evaluation scenarios, for heuristic algorithms (CAFAP & BaU) and DT variants with

the optimal solution, which assumes future knowledge.

Algorithm Energy charged Energy discharged User satisfaction Power violation Costs Reward Exec. time
[MWh] [MWh] [%] [kwW] [€] [-10°] [sec/step]
CAFAP 1.3 +£0.2 0.00 + 0.00 100.0 + 0.0 1289.2 + 261.8 =277 + 165 -1.974 + 0.283 0.001
BaU 1.3 £ 0.2 0.00 + 0.00 99.9 + 0.2 10.5 + 9.4 —255 + 156 —-0.679 + 0.067 0.001
DT 0.9 + 0.1 0.03 + 0.01 944 + 1.6 58.7 + 28.3 —173 + 104 —0.462 + 0.093 0.006
Q-DT 1.0 + 0.1 0.00 + 0.00 93.6 + 2.1 20.1 + 21.4 —187 + 113 —-0.665 + 0.135 0.010
GNN-DT (Ours) 0.9 + 0.1 0.19 + 0.03 99.3 + 0.2 21.7 + 22.8 —142 + 89 —-0.027 + 0.023 0.023
Optimal (Offline) 1.9 + 0.2 1.08 + 0.19 99.1 + 0.2 2.0 + 46 -119 + 84 —0.020 + 0.015 -
Desired SoC —=— GNN-DT QT

—e— BaU —e— DT *

1.0

Optimal (Offline)
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Fig. 5. Comparison of smart charging algorithms for a single simulation day.

of GNN-based embeddings in improving model robustness and gener-
alization. A key advantage of the GNN-DT architecture, not present in
classic DTs, is its invariance to problem size, i.e., the same RL agent
can be applied to both smaller and larger-scale environments. Fig.
7(b) illustrates the scalability and generalization performance of GNN-
DT compared to the BaU algorithm and the Optimal policy. GNN-DT,
trained on a 25-charger setup, was tested in environments with 5, 50,
75, and 100 chargers. GNN-DT’s performance predictably declines at
larger scales, since it wasn’t trained on these problem instances. Nev-
ertheless, GNN-DT still outperforms the BaU heuristic, demonstrating
robustness to problem-size variation. Training GNN-DT on a mix of EV
charger numbers could potentially further improve its adaptability.

The scalability and effectiveness of GNN-DT were tested when
trained on a significantly larger optimization problem involving 250
charging stations. In this scenario, the model must handle up to 250
action variables per step and over 1000 state variables, which include
critical information such as power limits and battery levels. The results
presented in Table 9 demonstrate that GNN-DT shows promise for
addressing more complex optimization tasks. However, the model re-
quires a substantial increase in both the number of training trajectories
and memory resources to maintain efficiency, highlighting a well-
known limitation of DT-based approaches. Scaling the problem 10x
roughly multiplies GPU memory usage, e.g. storing 3000 trajectories
takes ~2 GB for 25 chargers versus ~20 GB for 250. While this can bot-
tleneck large-scale training, parallelization and mini-batching mitigate
it, and overall compute scales with the transformer’s context length K
(see Fig. 4), pointing to interesting directions for very large problem
graphs as future work.

6. Discussion

The experimental results show that GNN-DT achieves strong per-
formance across a range of EV charging scenarios, including unseen
fleet sizes, network topologies, and stochastic variations in arrivals and
prices. The ablation results confirm that permutation-equivariant graph
embeddings and the residual decoding mechanism are both necessary
to achieve these gains.

Table 9
Max. reward of GNN-DT in a large-scale EV charging optimization task with
250 chargers.

Total trajectories Avg. dataset reward GNN-DT reward

Random 3000 -22.39 + 1.49 -9.34
BaU 3000 —6.67 + 0.32 —4.23
Optimal 3000 —-0.08 + 0.03 -0.27

At the same time, several limitations should be noted. First, GNN-
DT incurs a higher training-time memory cost than conventional RL
methods. The memory footprint scales with the number of graph nodes,
sequence length, and batch size, which can become a bottleneck for
very large charging networks. Second, the performance of GNN-DT
depends on the quality and coverage of the offline dataset. Limited or
biased datasets reduce robustness and increase sensitivity to distribu-
tion shift, highlighting the need for careful dataset construction. Third,
although the model generalizes across moderate topology changes,
performance degrades when applied to network structures that differ
significantly from those seen during training, indicating sensitivity to
large topology shifts.

Despite these limitations, inference remains fast and suitable for
real-time deployment once training is completed. Addressing memory
scaling, dataset efficiency, and robustness to extreme topology changes
are important directions for future work.

7. Conclusions

This work demonstrates that offline sequence-based policies can
achieve near-optimal performance for large-scale EV smart charging un-
der realistic uncertainty. The proposed GNN-DT approach consistently
outperforms online and offline RL baselines in terms of cost, con-
straint satisfaction, and user satisfaction, while remaining suitable for
real-time deployment and generalizing across fleet sizes and network
configurations. The results underscore the importance of integrating
structured representations with high-quality offline data for informed
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decision-making in complex energy systems. Future work will focus on
improving memory efficiency and robustness to larger topology shifts.
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