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H I G H L I G H T S

Topology-aware Decision Transformer 
for EV smart charging.
Learns from offline trajectories and is 
real-time suitable.
Outperforms strong RL/MPC baselines 
using fewer trajectories.
Generalizes across EV fleet sizes and 
network topologies without retraining.
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 A B S T R A C T

Electric-vehicle smart charging requires quick decision-making under uncertainty while enforcing strict 
electricity grid and user requirements. Mathematical optimization becomes too slow at scale, while online 
reinforcement learning struggles with sparse rewards and safety. This paper proposes GNN-DT, a topology-
aware Decision Transformer that combines graph neural network embeddings with sequence modeling to 
learn charging policies from offline trajectories. The method operates over variable numbers of vehicles and 
chargers without retraining. Evaluated on realistic smart charging scenarios, GNN-DT achieves near-optimal 
performance, reaching rewards within 5 percent of an oracle solver while using up to 10× fewer training 
trajectories than baseline methods. It consistently outperforms online and offline reinforcement learning 
approaches and generalizes to unseen fleet sizes and network topologies. Inference runs in milliseconds, making 
the approach suitable for real-time deployment in large-scale charging systems.
. Introduction

Electric vehicle (EV) smart charging requires coordinating large 
umbers of vehicles over long time horizons while respecting user re-
uirements, electricity prices, and grid capacity constraints. In practice, 
harge point operators (CPOs) must make decisions in real-time under 
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uncertainty regarding arrivals, departures, and energy demand [1]. 
Mathematical optimization and model predictive control can produce 
high-quality schedules, but they become computationally expensive as 
fleet size and network complexity increase, limiting their use in real-
time operations. Online reinforcement learning (RL) offers adaptability 
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but often struggles with sparse rewards, safety constraints, and poor 
generalization across changing charging infrastructures. As a result, a 
gap remains between scalable, real-time control and methods that can 
effectively leverage historical charging data while generalizing across 
variable fleet sizes and network topologies. 

1.1. Literature review

Mathematical and stochastic optimization provide strong baselines 
when models and forecasts are reliable [2]. Mixed-integer, robust, and 
chance-constrained formulations encode safety and quality-of-service 
constraints directly in the mathematical formulation. Furthermore, 
model predictive control (MPC) adds receding-horizon adaptation to 
track forecasts and market signals [3]. These methods are transpar-
ent, support sensitivity analysis, and offer explicit constraint guaran-
tees [4]. However, as EV fleets scale, topologies vary, and forecast 
errors accumulate, repeated large-scale reoptimization becomes bur-
densome [5] and static formulations struggle to remain responsive [6]. 
Therefore, accurately modeling the uncertainty and scalability become 
key bottlenecks of mathematical optimization.

To relax modeling assumptions and improve adaptability, RL [7] has 
been applied to EV charging [8]. Actor–critic and value-based methods 
such as Deep Deterministic Policy Gradient (DDPG) [9], and Soft Actor–
Critic (SAC) [10], have shown improvements over heuristics in both 
single-station and fleet settings. Graph Neural Networks (GNN) based 
formulations have the potential to exploit relational structure to scale 
across layouts and demand patterns [11]. Moreover, multi-agent (MA) 
RL methods assign local decision-making to stations or aggregators, 
hence simplifying the problem even more, but at the cost of optimality 
convergence [12]. Despite these advances, online RL often fails to learn 
under sparse or delayed rewards [13]. Most importantly, RL is sensitive 
to design choices, has difficulty enforcing strict operational constraints, 
and convergence can degrade in large, heterogeneous systems [14]. The 
need for more efficient training and stronger generalization motivates 
an offline learning paradigm.

Offline RL addresses safety and data-efficiency by training policies 
from logged trajectories collected under heuristic or optimized EV 
dispatch. Offline RL is particularly efficient in sparse-reward settings 
where the whole expert trajectories are provided [15]. Recent work 
builds detailed microgrid and charging models with PV, residential 
loads, storage, Vehicle to Grid (V2G), and nonlinear charging, and casts 
scheduling as a mathematical programming problem solved offline. 
Extrapolation error is limited by keeping the learned policy using 
behavioral cloning (BC) close to the data support, and tractability is 
improved by grouping EVs into sets and issuing set-level actions [16]. 
Pretraining with expert trajectories further accelerates learning and 
supports robustness to overloads and cost objectives on grid bench-
marks. For example, BC on expert trajectories followed by online RL 
training using Proximal Policy Optimization (PPO) can help acceler-
ate training, requiring fewer training epochs [17]. Beyond charging, 
offline energy-management studies show that dataset quality and dis-
tribution shift remain central. Strategies that constrain policies toward 
the dataset distribution and periodically update with new EV session 
data improve efficiency and adaptability [18]. Overall, offline RL can 
provide safe and effective charging policies when extrapolation is 
controlled and dataset coverage is strong, but sensitivity to distribution 
shift, long horizons, and data quality remains. 

Decision Transformers (DT) offer a complementary path for of-
fline policy extraction by modeling trajectories as sequences of states, 
actions, and return-to-go [19]. This formulation leverages success-
ful historical behavior, uses the attention mechanism over long hori-
zons, and enables return conditioning at inference to target different 
operating points. Hence, DTs can mitigate sparse rewards and re-
duce task-specific retraining. These properties directly address two 
offline RL limitations: long-range credit assignment and sensitivity to 
2 
dataset composition. However, pure trajectory stitching can fail in non-
stationary or stochastic settings where high returns occur by chance. 
Therefore, value-aware regularization (e.g., Q-regularized DT [20]) 
improves robustness by preferring actions with both sequence support 
and high estimated value [21]. Currently, transformer-based policies 
have not been designed to respect dynamic graph structure (variable 
numbers of EVs/chargers and changing connectivity) while preserving 
generalization and constraint awareness. 

1.2. Our contributions

To address the need for efficient and adaptive decision-making 
in complex and dynamically evolving energy systems, GNN-DT1 is 
introduced. GNN-DT is a topology-aware DT for EV smart charging that 
operates over variable network sizes without input padding or retrain-
ing. This design provides a general foundation for sequential control 
under dynamic connectivity and physical constraints, addressing the 
gaps identified in Table  1.

GNN-DT combines Graph Neural Network (GNN) embeddings with 
sequence modeling to support dynamic state and action spaces that 
arise from changing numbers of EVs, chargers, and grid connections. 
Unlike existing GNN-transformer approaches, GNN-DT incorporates a 
residual action decoding mechanism that maps fixed-length transformer 
outputs to node-level charging actions using state-dependent graph em-
beddings, thereby enabling consistent decision-making under changing 
topologies. The approach is evaluated on a realistic multi-objective EV 
charging optimization problem with sparse rewards, long horizons, and 
aggregated grid constraints, achieving near-optimal performance while 
maintaining real-time inference.

The main contributions are summarized as follows:

• Introducing a DT architecture that integrates GNN embeddings to 
handle variable state and action spaces, enabling learning without 
input padding or retraining and improving sample efficiency and 
generalization across different EV charging scenarios.

• Showing through systematic comparison that both online and 
offline RL baselines, trained on Optimal, Random, and Business-
as-Usual datasets of varying sizes, achieve lower performance 
than GNN-DT on realistic EV charging optimization tasks.

• Demonstrating that the size and composition of the offline train-
ing dataset strongly affect DT performance, and that combining 
expert and non-expert trajectories leads to higher rewards than 
training on single-policy datasets alone.

2. Problem formulation

In this section, an introduction to offline RL and the mathematical 
formulation of the EV charging optimization problem is presented as 
an example of what type of problems can be solved by the proposed 
GNN-DT methodology (see Table  2).

2.1. Offline RL

Offline RL aims to learn a policy 𝜋𝜃(𝑎 ∣ 𝑠) that maximizes the 
expected discounted return E[∑∞

𝑡=0 𝛾
𝑡𝑅(𝑠𝑡, 𝑎𝑡)

] without additional inter-
actions with the environment [22]. A Markov Decision Process (MDP) 
is defined by the tuple (𝑆,𝐴, 𝑃 ,𝑅, 𝛾), where 𝑆 is the state space, 𝐴 the 
action space, 𝑃  the transition function, 𝑅 the reward function, 𝛾 ∈ (0, 1]
the discount factor [7]. In the offline setting, a static dataset  =
{(𝑠, 𝑎, 𝑟)}, collected by a (potentially suboptimal) policy, is provided. 
DTs leverage this dataset by treating RL trajectories as sequences, 
learning to predict actions that maximize returns based on previously 

1 The code can be found at https://github.com/StavrosOrf/DT4EVs and 
https://github.com/distributionnetworksTUDelft/DT4EVs.

https://github.com/StavrosOrf/DT4EVs
https://github.com/distributionnetworksTUDelft/DT4EVs
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Table 1
Literature review of EV smart-charging methods across three categories: mathematical/stochastic optimization, online, and offline RL. Columns summarize the 
algorithm class, key advantages/limitations, and typical settings.
 Ref. Category Algorithm Advantages Limitations Setting  
 [3] Math. Opt. MPC Receding horizon and optimal Needs short-term forecasts Operation 
 [4] Math. Opt. MPC Safety under uncertainty Conservative; scenario scaling Planning  
 [6] Math. Opt. DR sched. Peak shaving; QoS-aware Static; limited adaptability Planning  
 [9] Online RL DDPG Continuous actions; DR-aware Sparse rewards; hard safety Operation 
 [10] Online RL SAC Structured policy improvement Convergence/tuning sensitivity Operation 
 [11] Online RL GNN-RL Relational bias; layout transfer Training complexity Operation 
 [12] MA RL Q-Learning Scales via locality Non-stationarity; convergence Operation 
 [13] MA RL Q-Learning Fairness–efficiency trade-off Stability at scale Operation 
 [14] Safe RL Constrained SAC Safety filter; constraint aware Performance hit; tuning Operation 
 [15] Offline RL Behavior Cloning Good for sparse rewards Dataset quality sensitivity Operation 
 [16] Offline RL Behavior Cloning Limits extrapolation Dataset coverage limits Operation 
 [17] Off/Online RL BC + PPO Faster learning Expert bias; transfer limits Operation 
 [18] Off/Online RL BC + Q-Learning Robust to shift Comms infra; divergence tuning Operation 
 Ours Seq. Model GNN-DT Topology-aware, adaptive architecture, generalization Higher training cost Operation 
Table 2
Notation for the EV charging optimization problem.
 Symbol Name Description  
 Sets
  Set of timesteps Time horizon for optimization  
  Set of charging stations All EV charging stations  
  Set of charger groups Chargers grouped by local transformer connections  
 𝑖 Set of charging sessions Charging sessions at charger 𝑖  
 Indexes
 𝑡 Timestep index Discrete time step  
 𝑖 Charger index Individual EV charging station  
 𝑗 Session index Charging session at a charger  
 𝑤 Charger group index Charger groups connected to transformers  
 Parameters
 𝑡𝑎𝑗,𝑖 Arrival time Time EV 𝑗 arrives at charger 𝑖  
 𝑡𝑑𝑗,𝑖 Departure time Time EV 𝑗 departs charger 𝑖  
 𝑒∗𝑗,𝑖 Desired battery capacity Desired battery energy at departure for session 𝑗 at charger 𝑖  
 𝑒𝑎𝑗,𝑖 Arrival battery energy Battery energy at EV arrival  
 𝑒𝑗,𝑖 , 𝑒𝑗,𝑖 Battery limits Min/max allowable battery energy  
 𝑝+

𝑗,𝑖
, 𝑝+𝑗,𝑖 Charging power limits Min/max charging power  

 𝑝−
𝑗,𝑖
, 𝑝−𝑗,𝑖 Discharging power limits Min/max discharging power  

 𝑝∗𝑡 Total power limit Desired aggregated power  
 𝛱+

𝑡 ,𝛱
−
𝑡 Electricity prices Prices for charging/discharging at timestep 𝑡  

 𝛥𝑡 Time interval Duration of each timestep  
 𝑝𝑤,𝑡 Group power limit Power limit for group 𝑤 at timestep 𝑡  
 Variables
 𝑝+𝑖,𝑡 , 𝑝−𝑖,𝑡 Charging/discharging power Power assigned at charger 𝑖, timestep 𝑡  
 𝜔+

𝑖,𝑡 , 𝜔
−
𝑖,𝑡 Binary operation indicators Indicates if charger 𝑖 charges (+ ) or discharges (−) at timestep 𝑡  

 𝑒𝑗,𝑖,𝑡 EV battery energy Battery level for session 𝑗 at charger 𝑖, timestep 𝑡  
 𝑝∑𝑡 Total aggregated power Net total power across all chargers at timestep 𝑡  
collected experiences. A key component in DTs is the return-to-go (RTG), 
which for a time step 𝑡 can be defined as: 𝐺𝑡 =

∑𝑇
𝜏=𝑡 𝛾

𝜏−𝑡 𝑟𝜏 , representing 
the discounted cumulative reward from 𝑡 until the terminal time 𝑇 . 
Offline RL is particularly beneficial when real-time exploration is costly 
or impractical, while sufficient historical data are available.

2.2. The EV smart charging problem

Working closely with a CPO, it was evident that existing heuristic 
and mathematical programming charging strategies don’t scale effi-
ciently as EV fleets grow. To address this, the state–action space and 
objectives were designed around real-world operational constraints and 
assumptions provided by the CPO. A set of  charging stations indexed 
i is considered, all assumed to be controlled by a CPO over a time 
window  , divided into 𝑇  non-overlapping intervals. Since the chargers 
can be spread around the city, there are charger groups 𝑤 ∈  , that can 
3 
have a lower-level aggregated power limits representing connections 
to local power transformers. For a given time window, each charging 
station 𝑖 operates a set of   non-overlapping charging sessions, denoted 
by 𝑖 = {𝑗1,𝑖,… , 𝑗𝐽𝑖 ,𝑖}, where 𝑗𝑗,𝑖 represents the 𝑗th charging event at 
the 𝑖th charging station and 𝐽𝑖 = |𝑖| is the total number of charging 
sessions seen by charging station i in an episode. A charging session is 
then represented as 𝑗𝑗,𝑖 ∶ {𝑡𝑎𝑗,𝑖, 𝑡

𝑑
𝑗,𝑖, 𝑝̄𝑗,𝑖, 𝑒

∗
𝑗,𝑖}, ∀𝑗, 𝑖, where 𝑡𝑎, 𝑡𝑑 , 𝑝̄ and 𝑒∗

represent the arrival time, departure time, maximum charging power, 
and the desired battery energy level at the departure time. The primary 
goal is to minimize the total energy cost given by: 
𝑓1(𝑝+, 𝑝−) =

∑

𝑡∈

∑

𝑖∈
𝛥𝑡
(

𝛱+
𝑡 𝑝+𝑖,𝑡 −𝛱−

𝑡 𝑝−𝑖,𝑡
)

(1)

𝑝+𝑖,𝑡 and 𝑝−𝑖,𝑡 denote the charging or discharging power of the 𝑖th charg-
ing station during time interval 𝑡. 𝛱+

𝑡  and 𝛱−
𝑡  are the charging and 

discharging costs, respectively. Along with minimizing the total energy 
costs , the CPO also wants the aggregate power of all the charging 
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stations (𝑝
∑

𝑡 =
∑

𝑖∈ 𝑝
+
𝑖,𝑡−𝑝−𝑖,𝑡) to remain below the set power limit 𝑝∗𝑡 . By 

doing so, the CPO avoids paying penalties due to overuse of network 
capacity. Hence, the total power capacity limit penalty is defined as: 
𝑓2(𝑝+, 𝑝−) =

∑

𝑡∈
max{0, 𝑝

∑

𝑡 − 𝑝∗𝑡 }, (2)

Maintaining the desired battery charge at departure is crucial for EV 
user satisfaction. This behavior is modeled as: 

𝑓3(𝑝+, 𝑝−) =
∑

𝑖∈

∑

𝑗∈𝑖

(

𝑡𝑑𝑗,𝑖
∑

𝑡=𝑡𝑎𝑗,𝑖

(𝑝+𝑖,𝑡 − 𝑝−𝑖,𝑡) − 𝑒∗𝑗,𝑖
)2

(3)

Eq. (3) defines a sparse reward added at each EV departure based on its 
departure energy level. Building on the objective functions described by 
Eqs. (1)–(3), the overall EV charging problem is formulated as a mixed 
integer programming (MIP) problem, subject to lower-level operational 
constraints (e.g., EV battery, power levels) as detailed below: 

max
𝑝+ ,𝜔+ ,𝑝− ,𝜔−

∑

𝑡∈

[

− 100 max{0, 𝑝
∑

𝑡 − 𝑝∗𝑡 }

+
∑

𝑖∈

(

𝛥𝑡
(

𝛱+
𝑡 𝑝

+
𝑖,𝑡𝜔

+
𝑖,𝑡 −𝛱−

𝑡 𝑝
−
𝑖,𝑡𝜔

−
𝑖,𝑡
)

− 10
∑

𝑗∈𝑖

(

𝑡𝑑𝑗,𝑖
∑

𝜏=𝑡𝑎𝑗,𝑖

(

𝑝+𝑖,𝜏𝜔
+
𝑖,𝜏 − 𝑝−𝑖,𝜏𝜔

−
𝑖,𝜏
)

− 𝑒∗𝑗,𝑖
)2 )]

(4)

Subject to:
𝑝𝑤,𝑡 ≥

∑

𝑖∈𝑖

𝑝+𝑖,𝑡 ⋅ 𝜔
+
𝑖,𝑡 − 𝑝−𝑖,𝑡 ⋅ 𝜔

−
𝑖,𝑡 ∀𝑖, ∀𝑤, ∀𝑡 (5)

𝑒𝑗,𝑖 ≤ 𝑒𝑗,𝑖,𝑡 ≤ 𝑒𝑗,𝑖 ∀𝑗, ∀𝑖, ∀𝑡 (6)

𝑒𝑗,𝑖,𝑡 = 𝑒𝑗,𝑖,𝑡−1 + (𝑝+𝑖,𝑡 ⋅ 𝜔
+
𝑖,𝑡 + 𝑝−𝑖,𝑡 ⋅ 𝜔

−
𝑖,𝑡) ⋅ 𝛥𝑡 ∀𝑗, ∀𝑖, ∀𝑡 (7)

𝑒𝑗,𝑖,𝑡 = 𝑒𝑎𝑗,𝑖 ∀𝑗, ∀𝑖, ∀𝑡| 𝑡 = 𝑡𝑎𝑗,𝑖 (8)

𝑝+
𝑗,𝑖

≤ 𝑝+𝑖,𝑡 ≤ 𝑝+𝑗,𝑖 ∀𝑗, ∀𝑖, ∀𝑡 (9)

𝑝−
𝑗,𝑖

≥ 𝑝−𝑖,𝑡 ≥ 𝑝−𝑗,𝑖 ∀𝑗, ∀𝑖, ∀𝑡 (10)

𝜔+
𝑖,𝑡 + 𝜔−

𝑖,𝑡 ≤ 1 ∀𝑖, ∀𝑡 (11)

The multi-objective optimization function in Eq. (4) integrates 
Eqs. (1)–(3) using experimentally determined coefficients based on 
practical importance. The power of a single charger 𝑖 is modeled using 
four decision variables, 𝑝+ ⋅ 𝜔+ and 𝑝− ⋅ 𝜔−, where 𝜔+ and 𝜔− are 
binary variables, to differentiate between charging and discharging 
behaviors and enable charging power to get values in ranges 0 ∪
[𝑝+, 𝑝+], and discharging power in [𝑝−, 𝑝−] ∪ 0. Eq. (5) defines the 
locally aggregated transformer power limits 𝑝 for chargers belonging to 
groups 𝑖. Eqs. (6)–(8) address EV battery constraints during operation 
with a minimum and maximum capacity of 𝑒, 𝑒, and energy 𝑒𝑎 at 
time of arrival 𝑡𝑎. Eqs. (9) and (10) impose charging and discharging 
power limits for every charger–EV session combination. To prevent 
simultaneous charging and discharging, the binary variables 𝜔ch and 
𝜔dis are constrained by (11).

2.3. EV charging MDP

The optimal EV charging problem can be framed as an MDP:  =
( ,, , 𝑅), where 𝑆 is the state space, 𝐴 is the action space, 𝑃  is 
the transition probability function, and 𝑅 is the reward function. At 
any time step 𝑡, the state 𝒔𝑡 ∈  is represented by a dynamic graph 
𝑡 = (𝑡, 𝑡), where 𝑡 is the set of nodes and 𝑡 is the set of 
edges. The graph is dynamic since the number of nodes in the state 
and action graph can vary in each step, because of EVs’ arrival and 
departures. Each node 𝑛 ∈ 𝑡 has a feature vector 𝒙𝑛,𝑡 ∈ R𝑑 , capturing 
node-dependent information such as power limits and prices.

An EV node represents the current battery state and the remaining 
time until departure. A charging station node captures its physical 
4 
charging and discharging power limits. A transformer node encodes 
the available feeder capacity that constrains the total power drawn 
by downstream chargers. A system-level node aggregates global con-
text, including time-of-day information, electricity prices, and recent 
aggregate power consumption.

The action space 𝐚𝑡 ∈  is represented by a dynamic graph 𝐚𝑡 =
( 𝐚

𝑡 , 
𝐚
𝑡 ), where nodes  𝐚

𝑡  correspond to the decision variables of the 
optimization problem (e.g., EVs). Each node 𝑛 ∈  𝐚

𝑡  represents a single 
action 𝑎𝑖,𝑡 ∈ 𝐚𝑡, scaled by the corresponding charger’s maximum power 
limit. For charging, 𝑎𝑖,𝑡 ∈ [0, 1], and for discharging, 𝑎𝑖,𝑡 ∈ [−1, 0). 
The transition function (𝒔𝑡+1 ∣ 𝒔𝑡, 𝐚𝑡) accounts for uncertainties in EV 
arrivals, departures, energy demands, and grid fluctuations.  Finally, 
the reward function follows the multi-objective formulation in Eq. (4) 
and is defined per timestep as 𝑅(𝒔𝑡, 𝐚𝑡) = 𝑓1 −100𝑓2 −10𝑓3. It promotes 
low charging costs while penalizing violations of aggregated power 
limits and unmet energy requirements at EV departure. The first two 
terms capture immediate economic costs and network constraint vio-
lations, whereas the third term provides a sparse signal at departure 
time, introducing long-term temporal dependencies. The weighting 
coefficients were selected empirically to preserve the optimal solution 
of the underlying MIP while ensuring stable and effective learning.

3. GNN-based decision transformer

The training pipeline of GNN-DT, illustrated in Fig.  1, consists of 
four steps. First, EV charging scenarios are generated using stochas-
tic processes for arrival, departure, and pricing. Second, each sce-
nario is solved using multiple charging strategies, including heuristic, 
business-as-usual, and optimal solvers, to generate state–action trajec-
tories. Third, the resulting trajectories are aggregated into an offline 
dataset. Finally, the GNN-DT model is trained in a supervised manner 
to predict charging actions from sequences of past states, actions, and 
returns-to-go. The model architecture is detailed in Fig.  2.

3.1. Sequence embeddings

In GNN-DT, each input ‘‘modality’’ is processed by a specialized 
embedding network. The state graph passes through the State Embedder, 
the action through the Action Embedder, and the return-to-go value 
through a simple Multi-Layer Perceptron (MLP). Compared to standard 
MLP embedders, GNNs provide embeddings for states and actions 
invariant to the number of nodes by capturing the graph structure. This 
design makes GNN-DT more sample-efficient during training and better 
at generalizing to unseen environments.

In detail, the State Embedder consists of 𝐿 consecutive Graph Convo-
lutional Network (GCN) [23] layers, which aggregate information from 
neighboring nodes as follows: 

𝒙(𝑙+1)𝑡 = 𝜎
(

𝐷−1∕2𝐴𝑡𝐷
−1∕2𝒙(𝑙)𝑡 𝑊 (𝑙)

)

, (12)

where 𝒙(𝑙)𝑡 ∈ R𝑁𝑡×𝐹𝑙  denotes the node embeddings at layer 𝑙 with 
𝑁𝑡 number of nodes, 𝑊 (𝑙) ∈ R𝐹𝑙×𝐹𝑙+1  are trainable weights, 𝜎(⋅) is a 
nonlinear activation (ReLU), 𝐴𝑡 is the adjacency matrix of the state 
graph 𝑡, and 𝐷 is the degree matrix for normalization. After the final 
layer, a mean-pooling operation produces a fixed-size state embedding: 
𝒔𝑡 = 1

|𝑡|

∑

𝑛∈𝑡
𝒙(𝐿)𝑛,𝑡 , where 𝒙(𝐿)𝑛  is the embedding of node 𝑛 at the 

𝐿th layer. This pooling step ensures that the state embedding is in-
variant to the number of nodes in the graph, enabling the architecture 
to scale with any number of EVs or chargers. Similarly, the Action 
Embedder processes the action graph 𝐚𝑡 = ( 𝐚

𝑡 , 
𝐚
𝑡 ) through 𝐶 GCN 

layers followed by mean pooling, producing the action embedding 
𝐚𝑡. All embedding vectors (states, actions, or the return-to-go value) 
have the same dimensions. This design leverages the dynamic and 
invariant nature of GCN-based embeddings, allowing the DT to handle 
variable-sized graphs.
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Fig. 1. Overview of the proposed training pipeline. Initially, random EV charging scenarios are generated and are solved using business-as-usual and heuristic 
strategies employed by charge point operators. The problems are also solved optimally using solvers, such as Gurobi. After the dataset is generated, the GNN-DT 
model is trained in a supervised learning manner.
Fig. 2. Overview of the GNN-DT architecture. The input sequence, comprising return-to-go, action, and state, is processed through specialized embedding modules. 
The action graph 𝐚

𝑡 = ( 𝐚
𝑡 , 

𝐚
𝑡 ), with nodes  𝐚

𝑡 ⊂ 𝑡, and the state graph 𝑡 = (𝑡, 𝑡) are encoded using GNN-based embedders to produce embeddings of 
dimension 𝐹𝐿. These embeddings serve as inputs to a GPT-2–based causal transformer, which predicts the next action token. The predicted action token acts as 
a decoder, generating actions by multiplying with specific GNN state node embeddings.
 

3.2. Decoding actions

Once the embedding sequence of length 𝐾 is constructed,2 it is 
passed through the causal transformer GPT-2 to produce a fixed-size 
output vector 𝒚𝑡 ∈ R𝐹𝐿  for each step. Because DT architectures inher-
ently generate outputs of fixed dimensions, an additional mechanism 
is required to manage dynamic action spaces. To address this, GNN-
DT implements a residual connection that merges the final GCN layer 
embeddings 𝒙(𝐿)𝑡  with the transformer output 𝒚𝑡 for every step of 
the sequence. Specifically, for each node 𝑛 ∈  𝐚

𝑡 , its corresponding 
state embedding 𝒙(𝐿)𝑛,𝑡 ∈ R1×𝐹𝐿  is retrieved and is multiplied by the 
transformer output token 𝒚𝑡 ∈ R1×𝐹𝐿 , yielding the final action for 
node 𝑛: â𝑛,𝑡 = 𝒚𝖳𝑡 ⋅ 𝒙(𝐿)𝑛,𝑡 . By repeating for every step 𝑡 and every node 
𝑛 ∈  𝐚

𝑡  the final action vector 𝐚̂𝑡 is generated. This design allows the 
model to maintain a fixed-size output from the DT while dynamically 
adapting to any number of nodes (and hence actions). It effectively 
combines the high-level context learned by the transformer with the 
node-specific state information captured by the GNN, enabling robust, 
scalable decision-making even as the graph structure changes.

3.3. Action masking and loss function

The proposed GNN-DT model is trained via supervised learning 
using an offline trajectory dataset [19], similarly to offline RL. Specifi-
cally, the GPT-2 model is initialized with its default pre-trained weights,

2 During inference the action (𝐚𝑡) and RTG (𝑹̂𝑡) of the last step 𝑡 are filled 
with zeros as they are not known.
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which are subsequently fine-tuned end-to-end for the EV charging 
optimization task. In GNN-DT, the learning of infeasible actions, such 
as charging an unavailable EV, is avoided through action masking. At 
each time step 𝑡, a mask vector 𝐦𝑡, which has the same dimension as 
𝐚𝑡, is generated with zeros marking invalid actions and ones marking 
valid actions. For example, an action is invalid when the 𝑎𝑖,𝑡 ≠ 0 and 
no EV is connected at charger 𝑖. The mean squared error between the 
predicted actions ̂𝐚𝑡 and ground-truth actions 𝐚𝑡 from expert or offline 
trajectories is employed as the loss function. For a window of length 𝐾
ending at time 𝑡, training loss is defined as: 

 = 1
𝐾

𝑡
∑

𝜏=𝑡−𝐾

‖

‖

‖

(𝐚̂𝜏 − 𝐚𝜏 )◦𝐦𝜏
‖

‖

‖

2. (13)

By incorporating the mask into the loss calculation (elementwise mul-
tiplication), a focus solely on valid actions is enforced, thereby preserv-
ing meaningful gradient updates.

4. Experimental setup

The dataset generation and the evaluation experiments are con-
ducted using the EV2Gym simulator [24], which leverages real-world 
data distributions, including EV arrivals, EV specifications, electricity 
prices, etc. This setup ensures a realistic environment where the state 
and action spaces accurately reflect real charging stations’ operational 
complexity. A scenario with 25 chargers is chosen, allowing up to 
25 EVs to be connected simultaneously. In this configuration, the 
action vector has up to 25 variables (one per EV), while the state 
vector contains around 150 variables describing EV statuses, charger 
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Fig. 3. Training performance comparison for online and offline RL algorithms averaged over 5 random seeds. The line shows the mean, while the colored outline 
shows the standard deviation.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 3
Algorithm hyperparameters for small- and large-scale settings.
 Hyperparameter Small scale Large scale 
 Batch size 128 64  
 Learning rate 10−4 10−4  
 Weight decay 10−4 10−4  
 Steps per iteration 1000 3000  
 Decoder layers 3 3  
 Attention heads 4 4  
 Embedding dimension 128 256  
 GNN embedder feat. dim. 16 16  
 GNN hidden dimension 32 64  
 GCN layers 3 3  
 Epochs 250 400  
 CPU memory (GB) 8 40  
 Time limit (h) 10 46  

conditions, power transformer constraints, and broader environmental 
factors. Consequently, the resulting optimization problem is in the 
moderate-to-large scale range, reflecting the key complexities of real-
world EV charging. Each training process is repeated 10 times with 
random seeds to ensure statistically robust findings. All reported re-
wards represent the average performance over f50 evaluation scenarios, 
each featuring different configurations (electricity prices, EV behavior, 
power limits, etc.).  Training was carried out on an NVIDIA A10 GPU 
paired with 11 CPU cores and 80 GB of RAM, using the AdamW 
optimizer and a LambdaLR scheduler. Baseline RL agents converged in 
2–5 h, while the proposed GNN-DT required up to 10 h of training. 
Default hyperparameters were used for all baseline RL methods. Table 
3 lists the full set of hyperparameters employed to train the DTs.

4.1. Dataset generation

Offline RL algorithms, including DTs, can learn policies from trajec-
tories without the need for online interaction with the environment. 
Consequently, the quality of the gathered training trajectories has a 
substantial impact on the learning process. In this work, three distinct 
strategies were used to generate trajectories:

• Random Actions: Uniformly sampled actions in the range [−1, 1]
were applied to the simulator.

• Business-as-Usual (BaU): A Round Robin charging policy com-
monly employed by CPOs, which sequentially allocates charging 
power among EVs to balance fairness and efficiency.

• Optimal Policies: Optimal solutions derived from solving offline 
the mathematical problem described in Section 2.2 for randomly 
generated scenarios.

Each trajectory consists of 300 state–action-reward-action mask tuples, 
with each timestep representing a 15-minute interval, resulting in a 
6 
total of three simulated days. This combination of random, typical, and 
expert data provides a comprehensive basis for evaluating how GNN-DT 
learns from diverse offline trajectories.

5. Experiments

In this section, a comprehensive set of experiments is presented 
to evaluate the proposed method’s performance, both during training 
and under varied test conditions. Different dataset types and sample 
sizes are examined to determine their impact on learning efficiency and 
convergence.

5.1. Training performance

Fig.  3 compares the proposed GNN-DT against multiple baselines, 
including the classic DT [19] and Q-DT [20], which both rely on 
flattened state representations due to their inability to directly process 
graph-structured data. In these baseline methods, empty chargers and 
unavailable actions are replaced by zeros, so the action vector is always 
the same size. Several well-known online RL algorithms from the 
Stable-Baselines-3 [25] framework are evaluated, such as SAC, DDPG, 
Twin Delayed DDPG (TD3), Trust Region Policy Optimization (TRPO), 
PPO, and Truncated Quantile Critics (TQC). Also, offline RL algorithms 
from D3RLPY [26], namely Implicit Q-Learning (IQL), Conservative Q-
Learning (CQL), and BC, are also included. The offline RL algorithms 
(IQL, CQL, BC, DT, Q-DT, and GNN-DT) are trained on three datasets 
(Optimal, Random, and BaU), each comprising 10.000 trajectories. A red 
dotted line marks the optimal reward, which represents the experimen-
tal maximum achievable reward obtained by solving the deterministic 
MIP knowing the future (Oracle) defined in Eq. (4). This oracle re-
ward serves as an upper bound and helps contextualize the relative 
performance of each method. It is important to note that the EV smart 
charging problem requires real-time (1–5 min intervals) optimization 
solutions for large-scale, highly stochastic scenarios, where metaheuris-
tic algorithms, stochastic optimization, and MPC methods fail due to 
computational constraints. By contrast, once trained (over 2–24 h), 
RL agents can deliver real-time charging schedules on an ordinary 
computer in milliseconds.

In Figs.  3.a–c, the DT-based approaches use a context length 𝐾 = 10. 
As expected, the Optimal dataset provides the highest-quality informa-
tion, enabling GNN-DT to converge rapidly toward near-oracle perfor-
mance, while classic DT, Q-DT, and the other offline RL algorithms lag 
far behind, showcasing GNN-DT’s improved sample efficiency. With the
Random dataset, the limited quality of data leads all methods to plateau 
at lower reward values, although GNN-DT still surpasses the other 
baselines. An intriguing behavior is observed with the BaU dataset, 
where classic DT, BC, and IQL converge at rewards exceeding those 
of GNN-DT. In contrast, the online RL algorithms displayed in Fig. 
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Table 4
Comparison of maximum episode rewards (×105) for baselines and GNN-DT across datasets and context lengths 
(𝐾) over 10 random seeds. Bold indicates the highest value within each dataset and 𝐾 category.
 Dataset Avg. training dataset reward K = 2 K = 10
 DT Q-DT GNN-DT DT Q-DT GNN-DT 
 Random 100 −2.37 ± 0.39 −1.91 −1.97 −𝟎.𝟖𝟐 −2.12 −2.09 −1.16  
 Random 1000 −1.93 −2.04 −0.86 −2.11 −2.01 −1.18  
 Random 10000 −1.76 −2.04 −1.25 −1.81 −1.98 −𝟎.𝟗𝟖  
 BaU 100 −0.67 ± 0.07 −0.79 −0.74 −𝟎.𝟓𝟗 −0.79 −0.72 −0.56  
 BaU 1000 −0.71 −0.66 −0.65 −0.64 −0.71 −0.57  
 BaU 10000 −0.69 −0.66 −0.66 −𝟎.𝟒𝟒 −0.74 −0.53  
 Optimal 100 −0.01 ± 0.01 −0.67 −0.91 −0.15 −1.12 −0.90 −0.14  
 Optimal 1000 −0.63 −0.67 −0.10 −0.87 −0.86 −0.09  
 Optimal 10000 −0.63 −0.80 −𝟎.𝟎𝟒 −0.72 −0.90 −𝟎.𝟎𝟕  
3.d struggle to achieve comparable improvements, suggesting that pure 
online exploration is insufficient for solving this complex EV charging 
optimization problem with sparse rewards. In the rest of this section, 
the online and offline RL baselines are omitted, as their performance is 
substantially inferior to that of DT, Q-DT, and GNN-DT.

5.2. Dataset impact

In Table  4, the maximum episode reward is compared for small, 
medium, and large datasets (100, 1.000, and 10.000 trajectories), 
under two different context lengths (𝐾 = 2 and 𝐾 = 10), and 5 
random seeds. The left side of Table  4 reports the dataset type, the 
number of trajectories, and the average reward in each dataset. All 
baselines achieve performance above the Random dataset’s average 
reward. However, only GNN-DT consistently approaches the Optimal
dataset’s performance, reaching as close as −0.04×105 compared to the 
−0.01×105 optimal reward. This advantage becomes especially evident 
at the largest dataset size (10.000 trajectories), highlighting the benefits 
of the graph-based embedding layer. Overall, GNN-DT outperforms the 
baselines across all datasets and both context lengths, with the single 
exception of the BaU dataset at 𝐾 = 10. Interestingly, a larger context 
window does not always translate into higher rewards, potentially due 
to the problem setting. Similarly, the dataset size appears to have 
minimal impact on Q-DT, whereas DT and GNN-DT generally improve 
with more trajectories. These findings underscore that both the quality 
and quantity of offline data, coupled with the GNN-DT architecture, are 
key to achieving superior performance.

5.3. Enhancing training datasets

The previous section highlighted that the quality of trajectories in 
the training dataset is the most influential factor for achieving high 
performance. In this section, the potential of creating new datasets is 
explored by mixing existing ones can further improve performance. The
Optimal and Random datasets are combined in different proportions, 
as summarized in Table  5. A noteworthy result is that supplementing 
the Optimal dataset with ‘‘less useful’’ (Random) trajectories consistently 
boosts performance. In particular, GNN-DT with 𝐾 = 10, trained on a 
mix of 250 Optimal and 750 Random trajectories, achieves near-oracle 
results, deviating by only −0.001 × 105 from the optimal reward. A 
similar trend emerges when blending BaU and Random datasets shown 
in Table  6. While the BaU dataset alone performs worse than the 
Optimal dataset, mixing it with Random data still yields improvements, 
with the 75% BaU and 25% Random combination showing the best 
results. Overall, these findings indicate that carefully integrating high- 
and lower-quality data can enhance policy learning beyond what purely
Optimal or purely Random datasets can provide.
7 
Table 5
Maximum reward of GNN-DT trained on merged Optimal and Random datasets 
for 𝐾 = 2 and 𝐾 = 10. Performance improves despite lower average training 
rewards, highlighting the importance of dataset diversity. Highest rewards per 
𝐾 are highlighted with bold.
 Dataset Total Traj. Avg. dataset 

reward
GNN-DT reward (×105)

 K = 2 K = 10  
 Random (Rnd.) 100% 1000 −2.37 ± 0.39 −0.863 −1.187  
 Opt. 25% + Rnd. 75% 1000 −1.78 ± 1.07 −0.045 −𝟎.𝟎𝟐𝟎  
 Opt. 50% + Rnd. 50% 1000 −1.18 ± 1.19 −𝟎.𝟎𝟐𝟏 −0.040  
 Opt. 75% + Rnd. 25% 1000 −0.60 ± 1.03 −0.073 −0.057  
 Optimal (Opt.) 100% 1000 −0.01 ± 0.01 −0.108 −0.099  

Table 6
Maximum reward of GNN-DT trained on merged BaU-Random datasets for 
𝐾 = 2 and 𝐾 = 10. The bold indicates the training dataset with the highest 
evaluation reward.
 Dataset Total Traj. Avg. dataset 

reward
GNN-DT reward (×105)

 K = 2 k = 10  
 Random (Rnd.) 100% 1000 −2.37 ± 0.39 −0.863 −1.187  
 BaU 25% + Rnd. 75% 1000 −1.93 ± 0.80 −0.578 −0.461  
 BaU 50% + Rnd. 50% 1000 −1.51 ± 0.87 −0.665 −𝟎.𝟒𝟒𝟕  
 BaU 75% + Rnd. 25% 1000 −1.09 ± 0.76 −𝟎.𝟒𝟐𝟏 −0.471  
 BaU 100% 1000 −0.01 ± 0.01 −0.654 −0.572  

Fig. 4. GNN-DT performance for larger context lengths (K).
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Table 7
Average reward trained over 5 runs with different seeds for Optimal and Mixed datasets.
 DT State GNN Action GNN Res. Con. Action mask Optimal (×105) Mixed (×105) 
 3 7 7 7 7 −0.69 ± 0.03 −0.95 ± 0.39  
 3 GCN 7 7 7 −0.71 ± 0.02 −0.77 ± 0.17  
 3 GCN 7 3 7 −0.18 ± 0.03 −0.16 ± 0.07  
 3 GCN GCN 3 7 −0.11 ± 0.03 −0.12 ± 0.04  
 3 GAT GAT 3 3 −0.14 ± 0.07 −0.15 ± 0.06  
 3 GCN GCN 3 3 −𝟎.𝟎𝟗 ± 𝟎.𝟎𝟐 −𝟎.𝟏𝟎 ± 𝟎.𝟎𝟒  
5.4. Impact of larger context lengths (K)

Fig.  4 demonstrates that the context length 𝐾 plays a key role in 
the performance of GNN-DT, with diminishing returns beyond a certain 
point. For high-quality datasets like Optimal, moderate context lengths 
(𝐾 = 5 to 𝐾 = 10) yield the best results, while larger 𝐾 values do 
not improve performance significantly. For suboptimal datasets like
BaU and Random, the performance is lower overall, and longer context 
lengths seem to offer meaningful improvements, particularly when 
using the BaU dataset. Thus, selecting an appropriate context length 
is crucial for achieving better performance, while the quality of the 
dataset remains the most influential factor.

5.5. Component ablation study

To better understand the contribution of each architectural com-
ponent, an ablation study is conducted by systematically removing 
or replacing elements of the model. The model is then trained with 
the Optimal and Mixed (Opt.25% +Rand.75%). The results in Table 
7 reveal that neither a plain DT nor a DT augmented solely with 
a state-GNN submodule achieves competitive performance. Notably, 
adding the residual connection atop the state-GNN leads to a signif-
icant improvement, from −0.77 × 105 to −0.16 × 105 on the Mixed
dataset, demonstrating its importance for effective credit assignment 
over dynamic inputs. Removing action masking or replacing the GCN 
module with a Graph Attention Network (GAT) [27] similarly degrades 
performance, indicating that each component provides distinct and 
complementary benefits. Ultimately, only the full GNN-DT architec-
ture achieves strong performance across both the Mixed and Optimal
datasets.

5.6. Average results of EV charging

Table  8 shows a comparison of key EV charging metrics for the 25-
station problem after 100 evaluations, including heuristic algorithms, 
Charge As Fast as Possible (CAFAP) and BaU, and DT variants with the 
optimal solution, which assumes future knowledge.

The performance of the proposed algorithms was assessed using 
several evaluation metrics. For example, user satisfaction [%] captures 
the extent to which the state of charge at departure (𝑒𝑗,𝑡𝑑 ) of each 
electric vehicle 𝑗 ∈   meets its target 𝑒∗𝑗 , thus defined as: 

User Satisfaction [%] = 1
| |

∑

𝑗∈

( 𝑒𝑗,𝑡𝑑
𝑒𝑗

∗)

⋅ 100%. (14)

Energy charged [kWh] was measured as the total amount of energy 
delivered to the vehicles during the charging sessions, while energy 
discharged [kWh] was quantified as the energy returned from vehicles 
to the grid. Power violations [kW] were tracked to identify instances 
in which operational limits were exceeded, ensuring system feasibility. 
Finally, the overall charging cost [e] was evaluated by accounting 
for the time-varying electricity prices during charging and discharging 
periods, thus reflecting the economic performance of the strategy.

GNN-DT shows remarkable performance, achieving a close approxi-
mation to the optimal solution, particularly in user satisfaction (99.3% 
± 0.03%) and power violation (21.7 ± 22.8 kW). It outperforms both 
BaU and DT variants in terms of energy discharged, power violation, 
and costs.  Notably, GNN-DT performs well even compared to Q-DT, 
8 
while maintaining competitive execution time, albeit slightly slower 
than the simpler models. The results underscore the effectiveness of 
GNN-DT in managing complex EV charging tasks, demonstrating its 
potential for real-world applications where future knowledge is not 
available.

5.7. Illustrative example of EV charging

After the model is trained, the behavior of the best baseline models 
trained (DT, Q-DT, GNN-DT) is compared against the heuristic BaU and 
mathematical optimization algorithm in an EV charging scenario. Fig. 
5(a) presents the SoC progress for three EVs connected one after the 
other to a single charger throughout the simulation, while Fig.  5(b) 
shows the actions of all chargers taken by each algorithm. At the begin-
ning of the simulation, EVs arrive at the charging station with unknown 
initial SoCs. Upon connection, they communicate their departure times 
and desired SoC levels to the CPO. Leveraging this information, along 
with real-time electricity price signals and power constraints, each 
algorithm determines optimal charging and discharging actions.

In Fig.  5(a), the heuristic BaU algorithm consistently overcharges 
the EVs, often exceeding the desired SoC levels. In contrast, both 
DT and Q-DT fail to satisfy the desired SoC. Conversely, GNN-DT 
successfully achieves the desired SoC for all EVs, closely mirroring the 
behavior of the optimal algorithm. This demonstrates GNN-DT’s ability 
to precisely control charging based on dynamic state information. Fig. 
5(b) provides further insights into the actions taken by each algo-
rithm. The optimal solution primarily employs maximum charging or 
discharging power, since it knows the future. In comparison, GNN-DT 
exhibits a more refined approach, modulating charging power within a 
range of −6 to 11 kW. Baseline DT and Q-DT display a narrower range 
of actions, limiting their ability to optimize the charging schedules 
and adapt to varying conditions. These results underscore the superior 
capability of GNN-DT in managing the complexities of EV charging 
dynamics.

5.8. Generalization and scalability analysis

Evaluating the generalization of RL models across varying state tran-
sition probabilities is crucial for ensuring consistent performance under 
diverse conditions [28]. To evaluate the generalization capabilities of 
GNN-DT, three additional environments with different state transition 
probabilities are designed. The key environment variables that directly 
impact the state transition dynamics are visualized in Fig.  6. In detail, 
Fig.  6a–d presents the probability distributions of EV arrival time, 
departure time, duration of stay, and state of SoC at arrival across four 
scenarios: the original training environment and environments with 
small, medium, and extreme variations. These plots help quantify the 
extent of variation in each case. Additionally, Fig.  6e illustrates the 
temporal distribution of the power limit in each scenario, providing 
further insight into the differences in environment configuration.

In Fig.  7(a), the generalization capabilities of GNN-DT and other 
baselines are assessed in environments with small, medium, and ex-
treme variations in state transition probabilities. While the baseline 
methods experience significant performance drops as the evaluation 
environment deviates from the training setting, GNN-DT maintains 
strong performance across all scenarios. This highlights the critical role 
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Table 8
Comparison of key EV charging metrics for the 25-station problem after 100 evaluation scenarios, for heuristic algorithms (CAFAP & BaU) and DT variants with 
the optimal solution, which assumes future knowledge.
 Algorithm Energy charged Energy discharged User satisfaction Power violation Costs Reward Exec. time 
 [MWh] [MWh] [%] [kW] [€] [-105] [sec/step]  
 CAFAP 1.3 ± 0.2 0.00 ± 0.00 100.0 ± 0.0 1289.2 ± 261.8 −277 ± 165 −1.974 ± 0.283 0.001  
 BaU 1.3 ± 0.2 0.00 ± 0.00 99.9 ± 0.2 10.5 ± 9.4 −255 ± 156 −0.679 ± 0.067 0.001  
 DT 0.9 ± 0.1 0.03 ± 0.01 94.4 ± 1.6 58.7 ± 28.3 −173 ± 104 −0.462 ± 0.093 0.006  
 Q-DT 1.0 ± 0.1 0.00 ± 0.00 93.6 ± 2.1 20.1 ± 21.4 −187 ± 113 −0.665 ± 0.135 0.010  
 GNN-DT (Ours) 0.9 ± 0.1 0.19 ± 0.03 99.3 ± 0.2 21.7 ± 22.8 −142 ± 89 −0.027 ± 0.023 0.023  
 Optimal (Offline) 1.9 ± 0.2 1.08 ± 0.19 99.1 ± 0.2 2.0 ± 4.6 −119 ± 84 −0.020 ± 0.015 –  
 
(a) EVs’ battery level progression over time.

  
(b) Charger Actions.

 

Fig. 5. Comparison of smart charging algorithms for a single simulation day.
of GNN-based embeddings in improving model robustness and gener-
alization. A key advantage of the GNN-DT architecture, not present in 
classic DTs, is its invariance to problem size, i.e., the same RL agent 
can be applied to both smaller and larger-scale environments. Fig. 
7(b) illustrates the scalability and generalization performance of GNN-
DT compared to the BaU algorithm and the Optimal policy. GNN-DT, 
trained on a 25-charger setup, was tested in environments with 5, 50, 
75, and 100 chargers. GNN-DT’s performance predictably declines at 
larger scales, since it wasn’t trained on these problem instances. Nev-
ertheless, GNN-DT still outperforms the BaU heuristic, demonstrating 
robustness to problem-size variation. Training GNN-DT on a mix of EV 
charger numbers could potentially further improve its adaptability.

The scalability and effectiveness of GNN-DT were tested when 
trained on a significantly larger optimization problem involving 250 
charging stations. In this scenario, the model must handle up to 250 
action variables per step and over 1000 state variables, which include 
critical information such as power limits and battery levels. The results 
presented in Table  9 demonstrate that GNN-DT shows promise for 
addressing more complex optimization tasks. However, the model re-
quires a substantial increase in both the number of training trajectories 
and memory resources to maintain efficiency, highlighting a well-
known limitation of DT-based approaches. Scaling the problem 10×
roughly multiplies GPU memory usage, e.g. storing 3000 trajectories 
takes ≈2 GB for 25 chargers versus ≈20 GB for 250. While this can bot-
tleneck large-scale training, parallelization and mini-batching mitigate 
it, and overall compute scales with the transformer’s context length K 
(see Fig.  4), pointing to interesting directions for very large problem 
graphs as future work.

6. Discussion

The experimental results show that GNN-DT achieves strong per-
formance across a range of EV charging scenarios, including unseen 
fleet sizes, network topologies, and stochastic variations in arrivals and 
prices. The ablation results confirm that permutation-equivariant graph 
embeddings and the residual decoding mechanism are both necessary 
to achieve these gains.
9 
Table 9
Max. reward of GNN-DT in a large-scale EV charging optimization task with 
250 chargers.
 Total trajectories Avg. dataset reward GNN-DT reward 
 Random 3000 −22.39 ± 1.49 −9.34  
 BaU 3000 −6.67 ± 0.32 −4.23  
 Optimal 3000 −0.08 ± 0.03 −𝟎.𝟐𝟕  

At the same time, several limitations should be noted. First, GNN-
DT incurs a higher training-time memory cost than conventional RL 
methods. The memory footprint scales with the number of graph nodes, 
sequence length, and batch size, which can become a bottleneck for 
very large charging networks. Second, the performance of GNN-DT 
depends on the quality and coverage of the offline dataset. Limited or 
biased datasets reduce robustness and increase sensitivity to distribu-
tion shift, highlighting the need for careful dataset construction. Third, 
although the model generalizes across moderate topology changes, 
performance degrades when applied to network structures that differ 
significantly from those seen during training, indicating sensitivity to 
large topology shifts.

Despite these limitations, inference remains fast and suitable for 
real-time deployment once training is completed. Addressing memory 
scaling, dataset efficiency, and robustness to extreme topology changes 
are important directions for future work.

7. Conclusions

This work demonstrates that offline sequence-based policies can 
achieve near-optimal performance for large-scale EV smart charging un-
der realistic uncertainty. The proposed GNN-DT approach consistently 
outperforms online and offline RL baselines in terms of cost, con-
straint satisfaction, and user satisfaction, while remaining suitable for 
real-time deployment and generalizing across fleet sizes and network 
configurations. The results underscore the importance of integrating 
structured representations with high-quality offline data for informed 
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(a) Arrival time.

  
(b) Departure time.

  
(c) Time of stay.

 

 
(d) SoC at arrival.

 
(e) Power limit.

Fig. 6. Overview of the five key state transition variables across different scenarios: (a) arrival time, (b) departure time, (c) power limit, (d) state of charge upon 
arrival, and (e) time of stay.
 
(a) Unseen state transition probabilities.

  
(b) Evaluating on different size problems.

 

Fig. 7. Generalization performance of the proposed model, depicting the average rewards achieved across 100 randomly generated scenarios in previously unseen 
environments.
decision-making in complex energy systems. Future work will focus on 
improving memory efficiency and robustness to larger topology shifts. 
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