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Abstract. The mixing of saline and fresh water is a process of energy dissipation. The freshwater flow that
enters an estuary from the river contains potential energy with respect to the saline ocean water. This potential
energy is able to perform work. Looking from the ocean to the river, there is a gradual transition from saline
to fresh water and an associated rise in the water level in accordance with the increase in potential energy. Al-
luvial estuaries are systems that are free to adjust dissipation processes to the energy sources that drive them,
primarily the kinetic energy of the tide and the potential energy of the river flow and to a minor extent the energy
in wind and waves. Mixing is the process that dissipates the potential energy of the fresh water. The maximum
power (MP) concept assumes that this dissipation takes place at maximum power, whereby the different mixing
mechanisms of the estuary jointly perform the work. In this paper, the power is maximized with respect to the
dispersion coefficient that reflects the combined mixing processes. The resulting equation is an additional dif-
ferential equation that can be solved in combination with the advection–dispersion equation, requiring only two
boundary conditions for the salinity and the dispersion. The new equation has been confronted with 52 salinity
distributions observed in 23 estuaries in different parts of the world and performs very well.

1 Introduction

The mixing of fresh and saline water in estuaries is governed
by the dispersion–advection equation, which results from the
combination of the salt balance and the water balance under
partial to well-mixed conditions (see e.g. Savenije, 2005).
The partially to well-mixed condition applies when the in-
crease in the salinity over the estuarine depth is gradual. The
salinity equation reads

A
∂S

∂t
+Q

∂S

∂x
−
∂

∂x

(
AD

∂S

∂x

)
= 0. (1)

Here, S [psu] is the salinity of the water, Q [L3 T−1] is
the water flow in the estuary, A [L2] is the cross-sectional
area of the flow (not necessarily equal to the storage cross
section AS), x is the distance from the estuary mouth, and
D [L2 T−1] is the dispersion coefficient. The first term re-
flects the change in the salinity over time as a result of
the balance between the advection by the water flow (sec-
ond term) and the mixing of water with different salinity by

dispersive exchange flows (third term). If there is no other
source of salinity, then the sum of these terms is zero. If we
average this equation over a tidal period, then the first term
reflects the long-term change in the salinity as a result of
the balance between the advection of fresh water from the
river and the tidal average exchange flows. In a steady state
in which the first term is zero, the equation can be simply
integrated with respect to x, yielding

Q (S− Sf)−AD
dS
dx
= 0, (2)

with the condition that at the upstream boundary dS/dx= 0
and S= Sf, which is the salinity of the fresh river water. In the
steady-state situation the discharge Q then equals the fresh-
water discharge coming from upstream, which has a neg-
ative value moving seaward; similarly the salinity gradient
S′= dS/dx is negative with the salinity decreasing in the up-
stream direction. Assuming that in a given estuary the geom-
etry A(x) is known, as is the observed salinity and discharge
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of the fresh river water, then this differential equation has two
unknowns D(x) and S(x).

In the steady state, the flushing out of salt by the fresh river
discharge is balanced by the exchange of saline and fresh wa-
ter resulting from a combination of mixing processes, which
causes an upriver flux of salt. The sketch in Fig. 1 presents the
system description with a typical longitudinal salinity distri-
bution (in red). It also shows the associated water level (in
blue), which has an upstream gradient due to the decreasing
salinity. Because of the density difference, the hydrostatic
pressures on both sides (in yellow) are not equal. The wa-
ter level at the toe of the salt intrusion curve is 1h higher,
resulting in a seaward pressure difference near the surface
and an inland pressure difference near the bottom. Although
the hydrostatic forces (the integrals of the hydrostatic pres-
sure distributions) are equal and opposed in steady state, they
have different working lines that are a distance 1h/3 apart.
This triggers an angular momentum, which drives the gravi-
tational circulation.

The dispersion coefficient of Eq. (2) is generally deter-
mined by calibration on observations of S(x) or predicted by
(semi-)empirical methods. Providing a theoretical basis for
the dispersion coefficient is not trivial. A fundamental ques-
tion is what this dispersion actually is. Is it a physical pa-
rameter, or merely a parameter that follows from averaging
the complex turbulent flow patterns in a natural watercourse?
MacCready (2004), for instance, was able to derive an analyt-
ical expression for the dispersion as a function of the salinity
gradient in addition to geometric, hydraulic, and turbulence
parameters. But this derivation also required simplifying as-
sumptions.

The complication is that there are many different mix-
ing processes at work. One can distinguish tidal shear, tidal
pumping, tidal trapping, gravitation circulation (e.g. Fis-
cher et al., 1979), and residual circulation due to the in-
teraction between ebb and flood channels (Nguyen et al.,
2008; Zhang and Savenije, 2017). And these different pro-
cesses can be split up in many subcomponents. Park and
James (1990), for instance, distinguished 66 components
grouped into 11 terms. This reductionist approach, unfortu-
nately, did not lead to more insight.

2 Applying thermodynamics to salt and fresh water
mixing

Here we take a system approach in which the assumption
is that the different mechanisms are not independent but are
jointly at work to reduce the salinity gradient that drives
the exchange flows. We use the concept of maximum power
as described by Kleidon (2016). Kleidon defines Earth sys-
tem processes as dissipative systems that conserve mass and
energy, but export entropy. These systems tend to function
at maximum power, whereby the power of the system can
be defined as the product of a process flux and the gradi-

ent driving the flux. The ability to maintain this power (i.e.
work through time) in steady state results from the exchange
fluxes at the system boundary, and when work is performed
at the maximum possible rate within the system (“maximum
power”), this equilibrium state reflects the conditions at the
system boundary. The key parameter describing the process
can then be found by maximizing the power.

From an energy perspective, we see that the freshwater
flux, which has a lower density than saline water and without
a counteracting process would float on top of the saline wa-
ter, adds potential energy to the system, while the tide, which
flows in and out of the estuary at a regular pace, creates tur-
bulence, mixes the fresh and saline water, and hence works at
reducing this potential energy. This is why dispersion predic-
tors are generally linked to the estuarine Richardson number,
which represents the ratio of the potential energy of the fresh
water entering the estuary to the kinetic energy of the tidal
flow.

In thermodynamic terms, the freshwater flux maintains a
potential energy gradient, which triggers mixing processes
that work at depleting this gradient. Because the strength
of the mixing of fresh and saline water in turn depends on
this gradient, there is an optimum at which the mixing pro-
cess performs at maximum power. From a system point of
view, it is not really relevant which particular mixing process
is dominant or how these different processes jointly reduce
the salinity gradient. What is relevant is how the optimum
flux associated with this mixing process, yielding maximum
power, depends on the dispersion.

In our case, the power derived from the potential energy
of the freshwater flux is described by the product of the up-
stream dispersive water flux and the gradient in geopotential
height driving this flux or, alternatively, the product of the
dispersive exchange flux and the water level gradient. The
optimum situation is achieved when the system is in an equi-
librium state.

The water level gradient follows from the balance between
the hydrostatic pressures of fresh and saline water (see e.g.
Savenije, 2005), resulting in

dz
dx
=−

h

2ρ
dρ
dx
, (3)

where z (=h+1h) [L] is the tidal average water level (blue
line in Fig. 1), h [L] is the tidal average water depth (horizon-
tal dashed line in Fig. 1), and ρ [M L−3] is the depth average
density of the saline water. The depth gradient is essential
for the density-driven mixing, but1h is small compared to h
(typically 1.2 % of h). Note that this equation applies to the
case in which the river flow velocity is small, which is the
case when estuaries are well mixed. Otherwise a backwater
effect should be included, but this only applies to a situation
of high river discharge when the salt intrudes by means of a
salt wedge with a sharp interface.

One can express the density of saline water as a func-
tion of the salinity: ρ= 1000+α1S, where α1 is a constant
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Figure 1. System description of the salt and fresh water mixing in an estuary, with the seaside on the left and the riverside on the right. The
water level (blue line) has a slope as a result of the salinity distribution (red line). In yellow are the hydrostatic pressure distributions on both
sides. The black arrows show the fluxes. Subscript “0” represents the downstream boundary condition.

with a value of about 25/35 because seawater with a salin-
ity of 35 psu has a density of about 1025 kg m−3. As a result,
Eq. (3) can be written as

dz
dx
=−α1

h

2ρ
S′. (4)

The upstream dispersive flux is implicit in the salt balance
Eq. (2), which in steady state can be written as

Q (S− Sf)= ADS′. (5)

The left-hand term is the salt flux due to the fresh water of the
river that pushes back the salt, whereas the right-hand term is
the dispersive intrusion of salt due to the exchange flux of the
combined mixing processes (see Fig. 1). Writing both sides
as water fluxes results in

Q=
ADS′

(S− Sf)
. (6)

The right-hand side is the water exchange flux, which is the
flux that depletes the gradient. As Eq. (6) shows, in steady
state this exchange flux is equal to the freshwater discharge.
The combination of the flux and the gradient leads to the
power of the mixing system per unit length (defined as a pos-
itive quantity):

P =−ρgQ
dz
dx
= α1Q

gh

2
S′. (7)

Applying the theory of maximum power to the dispersive
process, we need to maximize the power with regard to the
dispersion coefficient, which is the parameter representing
the mixing and which is the main unknown in salt intrusion
prediction:

dP
dD
= 0. (8)

Applying Eq. (8) with constant river discharge Q and con-
stant depth h, which is the property of an ideal alluvial estu-
ary according to Savenije (2005), leads to

dS′

dD
= 0. (9)

Using the salt balance equation where S′=Q(S− Sf)/(AD),
differentiation leads to

dS′

dD
=

dS′

dx
dx
dD
=

Q

AD

{
S′

D′
−
A′ (S− Sf)
AD′

−
(S− Sf)
D

}
,

(10)

where the prime means the gradient of the parameters with
respect to x. The application of Eq. (9) then yields

DS′

(S− Sf)D′
=
A′D

AD′
+ 1. (11)

We introduce three length scales: a=−(A−Af)/A′,
s=−(S− Sf)/S′, and d =−D/D′, where a is the conver-
gence length of an exponentially varying estuary cross sec-
tion which tends towards the cross section of the river Af,
s is length scale of the longitudinal salinity variation, and d
is length scale of the longitudinal variation of dispersion. In
macro-tidal estuaries, the part of the estuary where the salt
intrusion occurs has a much larger cross section than the up-
stream river such that Af�A and a≈−A/A′. In riverine
estuaries where this is not the case, a factor ε= (1−Af/A)
should be included. All length scales have the dimension
of [L]. In an exponentially shaped estuary, the convergence
length a is a constant, but d and s vary with x. It can be
shown that the proportion s/d equals the Van der Burgh co-
efficient K (=AD′/Q) (Van der Burgh, 1972), which in this
approach varies as a function of x, although it is generally as-
sumed as constant (e.g. Savenije, 2005; Zhang and Savenije,
2017). Using these length scales, Eq. (11) can be written as
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Figure 2. Geometry of the Maputo Estuary, showing the cross-
sectional area A (blue diamonds), the width B (red dots), and the
depth h (green triangles) on a logarithmic scale as a function of the
distance from the mouth. The inflection point at x1= 5000 m sepa-
rates the lower segment with a convergence length of a0= 2300 m
from the upper segment with a1= 16 000 m.

s

d
=

a

a+ dε
, (12a)

or

s =
ad

a+ dε
, (12b)

or

d =
as

a− sε
, (12c)

where in estuaries with a pronounced funnel shape, ε≈ 1.
Equation (12) is an additional equation to the salt balance,
which in terms of the length scales reads s=−AD/Q. As
a result, we have two differential equations with two un-
knowns: S(x) and D(x). Adding two boundary conditions at
a given point S0 and D0 would solve the system. The first
boundary condition is simply the sea salinity if the boundary
is chosen at the estuary mouth. Then the only unknown pa-
rameter left is the value for the dispersion at the boundary.
For this boundary value, empirical predictive equations have
been developed which relate theD0 to the estuarine Richard-
son number (e.g. by Gisen et al., 2015), which goes beyond
this paper. If observations of salinity distributions are avail-
able, then the value of D0 is obtained by calibration.

What the maximum power equation has contributed is that
it provides an additional equation. In the past, a solution
could only be found if an empirical equation was added de-
scribing D(x), containing an additional calibration param-
eter. In the approach by Savenije (2005) this was the em-
pirical Van der Burgh equation containing the constant Van
der Burgh coefficient K . However, with the new Eq. (12),
which in fact represents a spatially varying Van der Burgh

Figure 3. Geometry of the Limpopo Estuary, showing the cross-
sectional area A (blue diamonds), the width B (red dots), and
the depth h (green triangles) on a logarithmic scale as a function
of the distance from the mouth. There is no inflection point, but
the estuary converges exponentially towards the river cross section
Af= 800 m2, with a convergence length of 20 km.

coefficient, this additional calibration parameter is no longer
required. So this thermodynamic approach replaces the em-
pirical equation with a new physically based equation and
removes a calibration parameter, leaving only one unknown:
the dispersion at a well-chosen boundary condition.

3 Application

The two Eqs. (2) and (12) together can be solved numerically
by using a simple linear integration scheme. As a boundary
condition it requires values for S0 and D0 at a well-chosen
location. In alluvial estuaries the cross-sectional area A(x)
generally varies according to an exponential function which
often has an inflection point (see, for example, Fig. 2 describ-
ing the Maputo Estuary in Mozambique). The boundary con-
dition is best taken at this inflection point (x= x1) if the es-
tuary has one. If the estuary has no inflection point, as is the
case in the Limpopo estuary (see Fig. 3), then the boundary
condition is taken at the estuary mouth (x= 0).

The downstream part of estuaries with an inflection point
has a much shorter convergence length, giving the estuary a
typical trumped shape. This wider part is generally not longer
than about 10 km, which is the distance over which ocean
waves dissipate their energy. Beyond the inflection point, the
shape is determined by the combination of the kinetic en-
ergy of the tide and the potential energy of the river flow. If
the tidal energy is dominant over the potential energy of the
river, then the convergence is short, leading to a pronounced
funnel shape; if the potential energy of the river is large due
to regular and substantial flood flows, then the convergence
is large, which is typical for deltas. Hence, the topography
can be described by two branches:

Earth Syst. Dynam., 9, 241–247, 2018 www.earth-syst-dynam.net/9/241/2018/
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Figure 4. Application of the numerical solution to observations
in the Maputo Estuary for high water slack (HWS) and low water
slack (LWS). The green line shows the tidal average (TA) condition.
The red diamonds reflect the observations at HWS and the blue dots
the observations at LWS on 29 May 1984.

A= Af+ (A0−Af)exp(−x/a0) if 0< x < x1

A= Af+ (A1−Af)exp(− (x− x1)/a1) if x ≥ x1, (13)

where A0 and A1 are the cross-sectional areas at x= 0
and x= x1, respectively, and a0 and a1 are the convergence
lengths of the lower and upper segments. In some cases in
which ocean waves do not penetrate the estuary, there is no
inflection point and x1= 0. The Maputo (see Fig. 2) has two
segments, whereas the Limpopo Estuary (see Fig. 3), an es-
tuary in Mozambique 200 km north of the Maputo, is semi-
closed by a sandbar and has a single branch. It can also be
seen that in the Limpopo the size of the river cross section
is not negligible and that ε < 1, showing a slight curve in the
exponential functions.

Subsequently we have integrated Eqs. (2) and (12) con-
junctively by using a simple explicit numerical scheme in a
spreadsheet and confronted the solution with observations.
The solutions are fitted to the data by selecting values for S
and D at the boundary condition x= x1 (or at x= 0 for the
Limpopo). Figures 4 and 5 show applications of the solution
to selected observations in the Maputo and Limpopo estuar-
ies. In the Supplement more applications are shown, also for
other estuaries in different parts of the world.

4 Discussion and conclusion

By making use of the maximum power (MP) concept, it was
possible to derive an additional equation to describe the mix-
ing of salt and fresh water in estuaries. Together with the salt
balance equation, these two first-order and linear differential
equations only require two boundary conditions (the salin-
ity and the dispersion at some well-chosen boundary) to be

Figure 5. Application of the numerical solution to observations in
the Limpopo Estuary for high water slack (HWS) and low water
slack (LWS). The green line shows the tidal average (TA) condition.
The red diamonds reflect the observations at HWS and the blue dots
the observations at LWS on 10 August 1994.

solved. If the estuary has an inflection point in the geometry,
then the preferred boundary condition lies there; otherwise
the boundary condition is chosen at the ocean boundary.

This new equation can replace previous empirical equa-
tions, such as the Van der Burgh equation, and does not re-
quire any calibration coefficients (besides the boundary con-
ditions). The new equation appears to fit very well to obser-
vations, which adds credibility to the correctness of applying
the MP concept to fresh and salt water mixing.

The method presented here is based on a system perspec-
tive, which is holistic rather than reductionist. Reductionist
theoretical methods have tried to break down the total dis-
persion in a myriad of smaller mixing processes, some of
which are difficult to identify or to connect to conditions that
make them more or less prominent. The idea here is that in
a freely adjustable system, such as an alluvial estuary, indi-
vidual mixing processes are not independent of each other,
but rather influence each other and jointly work at reduc-
ing the salinity gradient at maximum dissipation. The result-
ing level of maximum power and dissipation is set by the
boundary conditions of the system. It is then less important
which mechanism is dominant, as long as the combined per-
formance is correct. The maximum power limit is a way to
derive this joint performance of mixing processes. The fact
that the relationship derived from maximum power works so
well in a wide range of estuaries is an indication that nat-
ural systems evolve towards maximum power, much like a
machine that approaches the maximum performance of the
Carnot limit.

Data availability. Regarding the data, all observations are avail-
able on the web at https://salinityandtides.com/data-sources/.
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Appendix A: Notation

Table A1. Notation.

Symbol Meaning Dimension Symbol Meaning Dimension

a Cross-sectional convergence length (L) Q Freshwater discharge (L3 T−1)
A Cross-sectional area (L2) s Length scale of the salinity variation (L)
Af Cross-sectional area of the river (L2) S Salinity (M L−3)
AS Storage cross-sectional area (L2) Sf Freshwater salinity (M L−3)
B Width (L) t Time (T)
d Length scale of the dispersion variation (L) x Distance (L)
D Dispersion coefficient (L2 T−1) z Water level (L)
g Gravity acceleration (L T−2) α1 Constant (–)
h Water depth (L) ε Factor (–)
K Van der Burgh’s coefficient (–) ρ Density of water (M L−3)
P Power per unit length (M L T−3) ρs Density of seawater (M L−3)

Earth Syst. Dynam., 9, 241–247, 2018 www.earth-syst-dynam.net/9/241/2018/
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