
Delft Center for Systems and Control Delft University of Technology

Master of Science Thesis

Automating scheduler design for
Networked Control Systems with

Event-Based Control
an approach with Timed Automata

P.C. Schalkwijk

June 21, 2019

Automating scheduler design for
Networked Control Systems with

Event-Based Control
an approach with Timed Automata

Master of Science Thesis

For obtaining the degree of Master of Science in Systems and Control
at Delft University of Technology

P.C. Schalkwijk

June 21, 2019

Faculty of Mechanical, Maritime and Materials Engineering · Delft University of Technology

Delft University of Technology

Copyright c© Delft Center for Systems and Control
All rights reserved.

Delft University Of Technology
Delft Center for Systems and Control

The undersigned hereby certify that they have read and recommend to the Faculty of Me-
chanical, Maritime and Materials Engineering for acceptance a thesis entitled “Automating
scheduler design for Networked Control Systems with Event-Based Control” by
P.C. Schalkwijk in partial fulfillment of the requirements for the degree of Master of
Science.

Dated: June 21, 2019

Supervisor:
dr. M. Mazo Jr.

Readers:
ir. G. Gleizer

dr. ir. S.E. Verwer

Abstract

As the use of Networked Control Systems increases, the need for control methods with more
efficient network usage also grows. These methods require a more sophisticated way of pre-
dicting their traffic, and an approach for this is using a formal modelling approach using
Timed Automata. Timed Automata have been used for over 25 years for several scheduling
problems, but have not been adopted by the control systems community for scheduling event-
triggered systems. This is a recent development for which no easy to use software tools have
been developed, and performance in real-world applications is yet untested.

In this master thesis, an existing approaches for scheduling event-triggered controllers is
implemented in a set of tools. This approach creates abstractions of communication traffic,
models them as timed automata and finds a scheduler avoiding communication conflicts. This
set of tools is used to test the scalability with respect to abstraction accuracy and number of
systems that can be connected. The set of tools can be used in the future to further improve
on the techniques used.

M.Sc. thesis P.C. Schalkwijk

vi Abstract

P.C. Schalkwijk M.Sc. thesis

Acknowledgements

I would like to thank my supervisor dr. M. Mazo Jr. for providing me with an interesting thesis
subject, that matched my skills and interests. Also, I want to thank him for his supervision
during entire process of my thesis project, and for organising weekly meetings with my peers.
During these meetings I have learned a lot, both relevant and irrelevant for my thesis. I
would like to thank ir. G. Gleizer for his help getting me started with programming traffic
abstractions. I would like dr. ir. S.E. Verwer for being on my committee and taking the time
to take an in-depth look into my research. Finally I would like to thank the Delft University
of Technology for being a constant factor in my life for the past decade.

Delft, University of Technology P.C. Schalkwijk
June 21, 2019

viii Acknowledgements

P.C. Schalkwijk M.Sc. thesis

Table of Contents

Abstract v

Acknowledgements vii

1 Introduction 1

2 Abstractions 5

2-1 Event Triggered Control Systems . 5

2-2 Partitioning the state-space . 6

2-3 Bounds on inter-event time . 8

2-3-1 Lower bound . 8

2-3-2 Upper bound . 9

2-4 Reachability Analysis . 10

3 Modelling 11

3-1 Timed Game Automata . 11

3-2 Abstraction of Event Triggered Control Systems with Timed Automata 14

3-2-1 Scheduling with a Network of Timed Automata 15

3-3 Uppaal Stratego . 16

4 Scheduling 19

4-1 Control Objective and Strategy Generation . 19

4-2 Resulting Strategy . 19

5 Problem Statement 21

M.Sc. thesis P.C. Schalkwijk

x Table of Contents

6 Tool Design 23

6-1 Abstractions . 23

6-1-1 Matlab . 23

6-1-2 Implementation . 24

6-2 Timed Automata . 25

6-2-1 Python . 25

6-2-2 Implementation . 25

6-3 Strategies . 30

6-3-1 Python . 30

6-3-2 Implementation . 30

7 Scalability 33

7-1 Scaling of Timed Automata . 33

7-2 Experiments . 33

7-2-1 Increasing accuracy . 34

7-2-2 Increasing number of systems . 34

7-3 Results . 35

7-3-1 Increasing Accuracy . 35

7-3-2 Increasing number of systems . 36

8 Conclusion and Recommendations 39

8-1 Tool design . 39

8-1-1 Conclusion . 39

8-1-2 Future work . 40

8-2 Scalability . 40

8-2-1 Conclusion . 40

8-2-2 Recommendations . 40

Acronyms 45

A Calculating the region matrices and vertices 49

A-1 Region Matrix Calculations . 49

A-2 Calculating Region Vertices . 50

P.C. Schalkwijk M.Sc. thesis

List of Figures

1-1 A schematic overview of a networked control system [1] 1

1-2 Events from time-triggered (left) to event-triggered control (right) [2] 2

1-3 General architecture of a networked embedded control system with medium access
constraints [3] . 2

1-4 Illustrative example of the state-space abstraction using convex polyhedral cones [4] 3

1-5 Control loop modelled as a Timed Automaton [5] 3

1-6 Illustrative example of a scheduling sequence modelled as a timed automaton in
Uppaal [6] . 3

2-1 Partitioning of a two-dimensional state space with m = 4. Note that the blue
arcs are only highlighting the regions R1 and R5 which have the same matrix Qs
defining them, but are not bounding these regions. [7] 7

2-2 Example of a three-dimensional conic region (blue) and its projections onto the
(x1, x2)-plane and the (x2, x3)-plane (red) [7] 7

2-3 A flow pipe computed for a 3 dimensional system [8] 10

3-1 A TGA modelling a single Control Loop . 12

3-2 Broadcasting communication m1,m2 between TA in a network 13

3-3 A single channel network with synchronising action up? [5] 15

3-4 A control loop with controllable early updates [5] 16

3-5 A basic communications network drawn in Uppaal Stratego. The guards, invariants,
synchronising actions and clock resets have been left out for simplicity 17

3-6 A basic control loop drawn in Uppaal Stratego. The guards, invariants, synchro-
nising actions and clock resets have been left out for simplicity 17

5-1 Schematic overview of the desired workflow for the entire set of tools from ab-
straction to simulation . 22

6-1 Example for base code for timed automata in Python 26

M.Sc. thesis P.C. Schalkwijk

xii List of Figures

6-2 Example of a base abstraction in Python . 27

6-3 A control loop as a Timed Automaton in Python 28

6-4 Code example of a class describing a Communications Network 29

6-5 A Network of Timed Automata as modelled in Python 29

6-6 Example of a single state in TIGA output . 30

6-7 Example of a bit of grammar to parse a state, with a node visitor class to process
the nodes that are created . 31

7-1 Plotting the number of edges in a control loop versus the number of regions in the
abstraction (left) and the average number of edges per region versus the number
of regions (right). In the right, the worst case growth is also plotted. 35

7-2 A box plot showing the difference between runs. 36

7-3 The number of states stored in memory to finding a ’winning’ strategy versus an
increasing number of regions and edges. 36

7-4 The average memory consumption in for finding a ’winning strategy versus an
increasing number of regions and edges. Average over 10 runs 37

7-5 The average computation time to finding a ’winning’ strategy versus an increasing
number of regions and edges. Average over 10 runs 37

7-6 The computation time, memory consumed and number of states stored to finding
a ’winning’ strategy versus an increasing number of control loops q 37

8-1 An schematic drawing of a Control Loop (left) with an extra broadcast channel
down, and a communications network without an internal clock (right) 41

8-2 A communications network that is usable for a time period of ∆1, and unavailable
for a period of ∆2 . 41

P.C. Schalkwijk M.Sc. thesis

Chapter 1

Introduction

The growing scale and complexity of control systems, and the current advancements in en-
abling technologies impose the next step towards Networked Control Systems (NCS). In NCS
controller, sensors and actuators can be spatially distributed and communicate digitally over
a band-limited network layer, an example shown in Figure 1-1 Advantages of using NCS are
for example increased flexibility, scalability and reconfigurability.

Figure 1-1: A schematic overview of a networked control system [1]

Applications of NCS can be found in a wide range of fields. Apart from its apparent advan-
tages, there are drawbacks to using networked control systems. We focus on one in particular:
resource constraints of the network channel. Event-based methods [9, 10, 11, 12] can minimize
the resource usage of a control-loop, and allow more control loops to be used on the same
network. These methods explicitly address constraints regarding energy, computation and
communication.

In Event-triggered Control (ETC), a triggering condition based on current measurements is
continuously monitored. On violation of the condition, an event is triggered and the control
input is updated. Usually, the actuator remembers the last control input in a sample-and-hold
manner.

M.Sc. thesis P.C. Schalkwijk

2 Introduction

Figure 1-2: Events from time-triggered (left) to event-triggered control (right) [2]

Event-based control approaches are no longer guaranteed to have a periodic update. As
schematically shown in Figure 1-2, the time between events is no longer constant. This
aperiodic behaviour creates a new challenge: the scheduling of transmissions. The maximum
number of messages that can be transmitted over the network at the same time, is limited
by the finite number of channels present in the communication network. If the network has a
number of control loops up to the number of channels, no scheduling is necessary. If there are
more control loops than channels, as found in practice, a scheduler is necessary to determine
which control loop has access to the network, while guaranteeing the stability of all control
loops. The general architecture for a networked embedded controller is shown in Figure 1-3.

Figure 1-3: General architecture of a networked embedded control system with medium access
constraints [3]

Several approaches to scheduler design exist in literature, ranging from static schedules de-
termined before runtime [13, 14] to state dependent scheduling [15, 16, 17]. In more advanced
approaches, joint design methods [3, 18] take both resource distribution and resource utilisa-
tion into account by co-designing control law, scheduler and event generator.

In [5], a different approach for scheduler design is proposed. This approach builds on the idea
presented in [4], where the inter-event time of a event-triggered system is characterized by
abstracting the state-space into regions. For each region in the state-space, the inter-event
time is lower- and upper bounded, illustrated in Figure 1-4. It is shown that this charac-
terization can be formally defined as a timed automaton, shown schematically in Figure 1-5.
In [5], multiple timed automata are connected in a network of timed automata, for which
a scheduler is designed using reachability analysis. This scheduler either waits for an event
to trigger naturally, forces controller updates at an earlier time. To prevent an undesired
over-use of forced controller updates, the number of consecutive updates is limited.

P.C. Schalkwijk M.Sc. thesis

3

Figure 1-4: Illustrative example of the
state-space abstraction using convex
polyhedral cones [4]

Figure 1-5: Control loop modelled as
a Timed Automaton [5]

Timed Automata (TA) [19] are used as a framework to capture both qualitative and quanti-
tative features of real-time systems with finite state machines extended with clocks. Timed
Game Automata (TGA), extending TA with game theory, can model a game of controller
versus environment, modelling uncertainty. By extending TGA with pricing, systems can be
analysed with respect to some defined cost. Uppaal [6] can verify real-time systems described
with timed automata, and is still actively maintained, whereas other tools such as HyTech
[20] and the TIMES tool [21] have not been updated for several years. Uppaals graphical user
interface is shown in Figure 1-6

Uppaal has several extensions, using TA for calculation of optimal paths, timed games and
stochastic behaviour using both formal and statistical analysis methods. The limiting factor
when modelling with timed automata is the number of clocks in the model: the number of
states increases exponentially with the number of clocks [19].

Figure 1-6: Illustrative example of a scheduling sequence modelled as a timed automaton in
Uppaal [6]

M.Sc. thesis P.C. Schalkwijk

4 Introduction

For simulating real-time continuous system dynamics and network behaviour, one of the tools
available is TrueTime, which extends MATLAB Simulink with existing network implementa-
tions and allows for extensions into other network implementations.

The goal of this work is to ease the use of the approach for scheduler design in [5] using Traffic
Abstractions and Timed Automata for Scheduler design by creating a tool set that can easily
be used to do system modelling, and that can be extended in future work to include other
types of abstractions.

First, we will set the preliminaries by expanding on the traffic abstraction in chapter 2, by
detailing modelling in chapter 3 and actual scheduler design in chapter 4.

Next, the problem statement in chapter 5 defines the design criteria for the tool set we want
to design, and a useful test case is proposed. In chapter 6, the software implementation of the
tool set is explained, linking the software to their theoretical counterparts in earlier chapters.
In chapter 7, the test case relating to scalability is explained in more detail, and it’s results
are discussed.

Finally, in chapter 8 this work is concluded and ideas and recommendations for future work
are proposed.

P.C. Schalkwijk M.Sc. thesis

Chapter 2

Abstractions

In this work we use an abstracted system capturing the sampling behaviour of a family of
event-triggered control systems, derived using the formal approach for as proposed in [4] and
[5]. In this chapter we will first summarize the abstraction method by revisiting the state-
space partitioning, calculating the upper and lower bounds and the use of reachability analysis
to find transitions of the system.

2-1 Event Triggered Control Systems

Following [4, 5], we will consider the traffic of Linear Time-Invariant (LTI) systems of the
form

ξ̇ = Aξ(t) +Bv(t), ξ(t) ∈ Rn, v(t) ∈ Rm (2-1)

with linear state-feedback law implemented using a sample-and-hold manner:

v(t) = v(tk) = Kξ(tk), ∀t ∈ [tk, tk+1[, k ∈ N0 (2-2)

We will use the sampling triggering law proposed in [11], also used in both [4, 5]:

tk+1 = min{t | t > tk and |e(t)|2 ≥ α|ξ(t)|2}, α ∈ (0, σ̄) ⊂ R+ (2-3)

with σ the triggering coefficient, and measurement error e(t):

e(t) = ξ(tk)− ξ(t), t ∈ [tk, tk+1), k ∈ N0 (2-4)

As in [4, 5, 7], we denote a state sample at tk by ξ(tk) = x. The inter-sample time of the
state x, τσ(x), is defined as the time between consecutive updates of the sampled state:

τσ(x) = min{t| |e(t)|2 ≥ σ|ξ(t)|2 and ξ(0) = x} (2-5)

Within the current sampling interval [tk, tk+1] the evolution of the state ξx and measurement
error ex are defined as:

ξx(tk + σ = Λ(σ)x) (2-6)

M.Sc. thesis P.C. Schalkwijk

6 Abstractions

ex(tk + σ) = [I − Λ(σ)]x (2-7)

with σ ∈ [0, tk+1 − tk] and

Λ(σ) = [I +

∫ σ

0
eArdr(A+BK)] (2-8)

Now we combine the sampled triggering law (2-5) with the state (2-6) and error (2-7) evolution
in the current sampling interval to express the inter-sample time τ(x) as:

τ(x) = min{σ > 0|xTΦ(σ)x = 0} (2-9)

where Φ(σ) is defined:

Φ(σ) = [I − Λ(σ)T][I − Λ(σ)]− αΛT (σ)Λ(σ) (2-10)

2-2 Partitioning the state-space

To remove spatial dependency In the work of [4], the state-space is abstracted into a finite
number of convex polyhedral cones Rs using isotropic covering as proposed in [22], where
s ∈ {1, . . . , q} and

⋃q
s=1Rs = Rn. General spherical coordinates are used such that x ∈

Rn : (r, θ1, . . . , θn−1), where r = |x|, (θ1, . . . , θn−1) are the angular coordinates of x. We
consider (θ1, . . . , θn−2) ∈ [0, π] and θn−1 ∈ [−π, π]. The angular coordinates are divided into
m̄ intervals, creating a total of q = m̄(n−1) intervals.

Remark 2-2.1 From [22].
Excluding the origin, all the states which lie on a line that goes through the origin have the
same inter-sample time, i.e., τ(x) = τ(λx), ∀λ 6= 0.

Base on (2-2.1) only half the state space needs to be considered. This can for example be
done by taking θn−1 ∈ [0, π]. Now, q = 2×m̄(n−1). It is also by the notion of 2-2.1) that maps
the infinite state-space to a finite abstraction, as a cone is the union of an infinite number of
rays.
For two dimensional systems, the regions can be represented as:

Rs = {x ∈ R2|xTQsx ≥ 0}, if n = 2 (2-11)

for s ∈ {1, . . . , q} and an appropriately designed Qs = QTs ∈M2(R). A graphical representa-
tion is taken from [7] and shown in Figure 2-1

For higher dimensional systems where x ∈ Rn|n ≥ 3), following the work of [7], we define a
region Rs by looking at its projections onto the (n−1) two dimensional (xi, xi+1)-planes. On
each plane (xi, xi+1), the projection of Rs can be described with a matrix Qi,i+1

s in a similar
manner as in ??. The entire region can be described as the combination of these projections:

Rs = {x ∈ Rn|xT1,2Q1,2
s x1,2 ≥ 0∧xT2,3Q2,3

s x2,3 ≥ 0∧. . .∧xTn1,nQ
n1,n
s xn1,n ≥ 0}, if n ≥ 3. (2-12)

For a system with n = 3, these projections can visualised as in In Appendix A the construction
of these region matrices for 2D and nD systems is shown.

P.C. Schalkwijk M.Sc. thesis

2-2 Partitioning the state-space 7

Figure 2-1: Partitioning of a two-dimensional state space with m = 4. Note that the blue arcs
are only highlighting the regions R1 and R5 which have the same matrix Qs defining them, but
are not bounding these regions. [7]

Figure 2-2: Example of a three-dimensional conic region (blue) and its projections onto the
(x1, x2)-plane and the (x2, x3)-plane (red) [7]

M.Sc. thesis P.C. Schalkwijk

8 Abstractions

2-3 Bounds on inter-event time

For each of the bounds on inter-sampling time a finite set of matrices Φκ,s is constructed.

2-3-1 Lower bound

For the lower bound τ s, we construct Φκ,s with κ ∈ Ks:

(xTΦκ,sx ≤ 0,∀κ ∈ Ks) =⇒ (xTΦ(σ)x ≤ 0, ∀σ ∈ [0, τ s]) (2-13)

We use the following lemma to construct Φκ,s:

Lemma 2-3.1 From [4]. Consider a time limit τ s ∈ (0, σ̄]. If

xTΦ(i,j),sx ≤ 0 ∀(i, j) ∈ Ks = ({0, . . . , Nconv} × {0, . . . ,
τ l

σ̄
}) (2-14)

then
xTΦ(σ)x ≤ 0,∀σ ∈ [0, τ s]

with Φ as in Equation 2-10 and

Φ(i,j),s := Φ̂(i,j),s + νI (2-15)

Where

Φ̂(i,j),s :=

{∑i
k=0 Lk,j(

σ̄
l)
k if j < [

τsl
σ̄],∑i

k=0 Lk,j(τ s −
σ̄
l)
k if j = [

τsl
σ̄],

(2-16)


L0,j := I −Π1,j −ΠT

1,j + (1− α)ΠT
1,jΠ1,j ,

L1,j := [(1− α)ΠT
1,j − I]Π2,j + ΠT

2,j [(1− α)Π1,j − I],

Lk≥2,j := [(1− α)ΠT
1,j − I]A

k−1

k! Π2,j + ΠT
2,j

(Ak−1)T

k! [(1− α)Π1,j − I]

+(1− α)ΠT
2,j(
∑k−1

i=1
(Ai−1)T

i!
Ak−i−1

(k−i)!)Π2,j

(2-17)

{
Π1,j := I +Mj(A+BK)

Π2,j := Nj(A+BK)
(2-18)

Mj :=

∫ j σ̄
l

0
eAsds, Nj := AMj + I (2-19)

and

v ≥ max
σ′∈[0, σ̄

l
],r∈{0,...,l−1}

λmax(Φ(σ′ + r
σ̄

l
)− Φ̃Nconv,r(σ

′)) (2-20)

where

Φ̃Nconv,r(σ
′)) :=

Nconv∑
k=0

Lk,rσ
′k. (2-21)

Proof. See [4]

P.C. Schalkwijk M.Sc. thesis

2-3 Bounds on inter-event time 9

The following approach regionally reduces the conservatism involved in Lemma 2-3.1 above
using Linear Matrix Inequalities (LMI): the Regional Lower Bound Approximation as found
in [4] for n = 2:

Theorem 2-3.1 (Regional Lower Bound Approximation[4]) Consider the inter-
sampling time set {τ1, . . . , τ q} and matrices Φκ,s satisfying ∀s ∈ {1, . . . , q},∀κ = (i, j) ∈ Ks,
0 < τ s ≤ σ̄, Φκ,s � 0. If there exist scalars εκ,s ≥ 0 such that the following LMI

Φκ,s + εκ,sQs � 0 (2-22)

holds, then ∀x ∈ Rs as defined in Equation 2-11 the inter-sample time Equation 2-9 is lower
bounded by τ s.

As shown in [7], for higher dimensional systems (n > 2) where Rs is defined by Equation 2-12,
the LMIs to consider are:

Φκ,s + ε1,2
κ,sQ̃

1,2
s + ε2,3

κ,sQ̃
2,3
s + . . .+ εn−1,n

κ,s Q̃n−1,n
s � 0 (2-23)

where εi−1,i
κ,s are nonnegative scalars.

2-3-2 Upper bound

Similarly, for the upper bound we construct Φ̄κ,s such that

(xT Φ̄κ,sx ≥ 0, ∀κ ∈ Ks) =⇒ (xTΦ(σ)x ≥ 0,∀σ ∈ [τ̄s, σ̄]) (2-24)

following Lemma 2-3.2

Lemma 2-3.2 From [4]. Consider a time limit τ̄s ∈ (τ s, σ̄]. If

xT Φ̄(i,j),sx ≥ 0 ∀(i, j) ∈ Ks = ({0, . . . , Nconv} × {
τ̄ l

σ̄
, . . . , l − 1}) (2-25)

Then

xTΦ(σ)x ≥ 0, ∀σ ∈ [τ̄s, σ̄]

with Φ as in Equation 2-10 and

Φ̄(i,j),s :=
¯̂
Φ(i,j),s + ν̄I (2-26)

¯̂
Φ(i,j),s :=

{∑i
k=0 Lk,j((j + 1) σ̄l − τ̄s)

k if j = [τ̄slσ̄],∑i
k=0 Lk,j(

σ̄
l)
k if j > [τ̄slσ̄]

, (2-27)

v̄ ≥ max
σ′∈[0, σ̄

l
],r∈{0,...,l−1}

λmax(Φ(σ′ + r
σ̄

l
)− Φ̃Nconv,r(σ

′)) (2-28)

and Lk,j given by Equation 2-17, Φ̃ given by Equation 2-21.
Proof. See [4]

M.Sc. thesis P.C. Schalkwijk

10 Abstractions

Time instance σ̄ is considered larger than the inter-sample time for any state in the state
space:

xTΦ(σ̄)x ≥ 0, ∀x ∈ Rn (2-29)

For the upper bounds, the conservatism per is regionally reduced Regional Upper Bound
Approximation is defined in [4, 7]: for n = 2:

Theorem 2-3.2 (Regional Upper Bound Approximation[4]) Consider the inter-
sampling time set {barτ1, . . . , barτq} and matrices barΦκ,s satisfying ∀s ∈ {1, . . . , q},∀κ =
(i, j) ∈ Ks, τ s < barτs ≤ σ̄, Φκ,s � 0. If there exist scalars εκ,s ≥ 0 such that the following
LMI

Φ̄κ,s + ε̄κ,sQs � 0 (2-30)

holds, then ∀x ∈ Rs as defined in Equation 2-11 the inter-sample time Equation 2-9 is lower
bounded by τ s.

As shown in [7], for higher dimensional systems (n > 2) where Rs is defined by Equation 2-12,
the LMIs to consider are:

Φ̄κ,s − ε̄1,2
κ,sQ̃

1,2
s − ε̄2,3

κ,sQ̃
2,3
s − . . .− ε̄n−1,n

κ,s Q̃n−1,n
s � 0 (2-31)

2-4 Reachability Analysis

To construct to transition map, in [5, 7, 4] reachability analysis is used together with the
notion of flow pipe:

Definition 2-4.1 (Flow Pipe [5]) The set of reachable states or the flow pipe ate the time
interval [t1, t2] from a set of initial states X0 is denoted by

X[t1,t2](X0) =
⋃

t∈[t1,t2]

{ξ(t)|ξ(0) ∈ X0} (2-32)

If the flow pipe X[t1,t2](X0) intersects with a region Rs starting from an initial set X0, a
transition from the region containing X0 to Rs. A visualisation for a flow pipe is shown in
Figure 2-3

Figure 2-3: A flow pipe computed for a 3 dimensional system [8]

P.C. Schalkwijk M.Sc. thesis

Chapter 3

Modelling

In the first section of this chapter we show the abstractions from chapter 2 will be modelled
using Timed Game Automata (TGA), as done in [5]. In the final section, we show how such
a TGA is modelled in Uppaal.

A Timed Automata (TA)) is a finite state automaton with a set of non negative real-valued
variables referred to as ’clocks’. These real-valued variables model logical clocks, and are
incremented simultaneously at the same rate, but can be reset individually. Clock constrains
are used to restrict the behaviour of the automaton.

A clock constraint in a location is referred to as a invariant. Time is allowed to progress in a
location while the invariant condition holds, and if the condition no longer holds, the location
must be left.

A clock constraint on a transition is referred to as a guard. A transition over an edge is only
allowed if all of its guards hold.

On their original introduction, TA used Büchi and Muller accepting conditions to enforce
progress conditions [19]. The simplified version used here are referred to as Timed Safety
Automata as described in [23]. These Timed Safety Automata use local invariant conditions
to enforce progress conditions. We focus on Timed Safety Automata in this work, and refer
to them as simply as TA, using the same notation as found in [5].

3-1 Timed Game Automata

For TGA we also follow the definitions in [5]: A TGA is a TA in which the set of actions
is split into controllable and uncontrollable actions. The player, or scheduler in our case,
can trigger controllable actions, and the opponent/environment can trigger uncontrollable
actions. An example of a TGA is shown in Figure 3-1, with straight and dashed showing
edges with controllable and uncontrollable actions respectively.

We define C as a set of finitely many clocks, Act as the set of finitely many actions and N0 as
the set of natural numbers including 0. A clock constraint, to be used as a guard or location

M.Sc. thesis P.C. Schalkwijk

12 Modelling

Figure 3-1: A TGA modelling a single Control Loop

invariant, has the form x ./ n or x − y ./ n for x, y ∈ C, ./∈ {≤, <,=, >,≥} and n ∈ N0. B
denotes the set of clock constraints.

Definition 3-1.1 (Timed Automaton [5])

A timed automaton is a tuple (L, l0, Act, C,E, Inv) where

• L is a set of finitely many locations

• l0 is the initial location

• Act is a set of finitely many actions

• C is a set of finitely many real-valued clocks

• E ⊆ L× Act×B(C)× 2C × L is the set of edges

• Inv :→ B(C) assigns invariants to locations

Location invariants are restricted to constraints that are downwards closed, in the form: c ≤ n
or c < n where c is a clock and n ∈ N0

Definition 3-1.2 (Timed Game Automaton [5])

A timed game automaton is a tuple (L, l0, Actc, Actu, C,E, Inv) where (L, l0, Act, C,E, Inv)
is a timed automaton and

• Actc is a set of controllable actions

• Actu is a set of uncontrollable actions

• Act = Actc ∪ Actu

• Actc ∩ Actu = Ø

P.C. Schalkwijk M.Sc. thesis

3-1 Timed Game Automata 13

Following [5], an edge from l to l′ is described as l
g,a,r−−−→ l′, if l, g, a, r, l′ ∈ E and as l −→ l′

for an arbitrary label. The semantics of a TA (and TGA) are defined as a transition system
where the current location and the current clock values are considered the state of the system.
A transition can either be a delay of some time, or taking an enabled edge. Clock assignment
functions u : C → R≥0 are used to keep track of clock values, and u |= g denotes that the
clock values of u satisfy guard g. For d ∈ R≥0, u+ d denotes the clock assignment that maps
all c ∈ C to u(c) + d. For a set clocks c ⊆ C, u[c] denotes the clock assignment that maps all
clocks in c to 0, and agress with u for the rest of the clocks in C \ c.

Definition 3-1.3 (Operational Semantics [5])

The semantics of a Timed (Game) Automaton is a transition system in which states are pairs
of location l and clock assignment u, and transitions are defined by the rules:

• Delay transition: (l, u)
d−−→
TS

(l, u + d) if u |= Inv(l) and (u + d) |= Inv(l) for a non-

negative real number d ∈ R≥0

• Discrete transition: l, u)
a−−→
TS

(l′, u′) if l
g,a,r−−−→ l′, u |= g, u′ = u[r] and u′ |= Inv(l′

A run of a timed automaton is a sequence of alternating delay and discrete transitions in the
transition system.

As in [5] we use Runs(TGA) to denote the set of runs of a timed game automaton TGA
starting from the initial state (l0, u0) where u0 is a clock assignment that maps all c ∈ C to 0.
For a finite run ρ, the last state of the run is denoted by last(ρ). The set of actions Act (3-1.2)
is assumed to consist of symbols for input actions a?, output actions a! and internal actions
∗. Synchronous communication between different TA is done with handshake synchronisation

Figure 3-2: Broadcasting communication m1,m2 between TA in a network

via input and output actions. In Figure 3-2, S broadcasts either m1 or m2 to communicate
with R1 or R2 respectively. Network of Timed Automata (NTA) describe concurrent systems

M.Sc. thesis P.C. Schalkwijk

14 Modelling

taking into account the synchronous communication. The network is composed using parallel
composition. TGA can be extended to a network by parallel composition in the form of
Network of Timed Game Automata (NTGA). An NTGA is essentially the synchronised
cartesian product of TGA.

Definition 3-1.4 (Network of Timed Game Automata[5])

Let TGAi = (Li, li0, Act
i
c, Act

i
u, C

i, Ei, Invi) be a timed game automaton for i ∈ {1, ..., n}.
The parallel composition of TGA1, ..., TGAn denoted by TGA1|...|TGAn is a timed game
automaton TGA = (L, l0, Actc, Actu, C,E, Inv) where:

• L = L1 × · · · × Ln

• l0 = (l10, . . . , l
n
0)

• Actc = {∗} ∪
⋃n
i=1{a ∈ Actic| a is a n internal action}

• Actu = {~} ∪
⋃n
i=1{a ∈ Actic| a is a n internal action}

• C = C1 ∪ · · · ∪ Cn

• E is defined according to the following rules:

- a TGA makes a move on its own via its internal action: the edge is controllable
iff the internal action is controllable

- Two TGAs move simultaneously via a synchronizing action: the edge is control-
lable iff both input and output actions are controllable (i.e. the environment has priority
over the controller)

• Inv((l1, . . . , ln)) = Inv1(l1) ∧ · · · ∧ Invn(ln)

3-2 Abstraction of Event Triggered Control Systems with Timed
Automata

The abstractions as defined in chapter 2 can be represented with a TA in the following manner

Definition 3-2.1 (Traffic Abstraction from [4, 5])

A timed automaton abstracting the triggering times behaviour of a system with triggering
coefficient σ is given by TAσ = (Lσ, lσ0 , Act

σ, Cσ, Eσ, Invσ) where

• Lσ = {Rσ1 , . . . , Rσq }

• lσ0 = Rσs such that ξ(0) ∈ Rσs

• Actσ = {∗}

• (Rσs , τ
σ
s ≤ c ≤ τ̄σs , ∗, {c}, Rσt) ∈ Eσ if X[τ

σ
s , τ̄

σ
s](Rσs) ∩Rσt 6 Ø

• Invσ(Rσs) = {c|0 ≤ c ≤ τ̄σs } for all s ∈ {1, . . . , q}

P.C. Schalkwijk M.Sc. thesis

3-2 Abstraction of Event Triggered Control Systems with Timed Automata 15

3-2-1 Scheduling with a Network of Timed Automata

In [5], an approach to scheduling using Networks of Timed Game Automata is proposed. The
network is modelled using a Timed Game Automaton with three states: Idle, InUse and Bad,
and is schematically drawn in Figure 3-3. When one of the connected control loops uses the
network, the network jumps from initial state Idle to InUse for a maximum occupation time
∆. If another control loop attempts to use the network while in location InUse, the network
goes into absorbing state Bad. After the ∆ time has passed problem-free, the network goes
back to Idle.

Figure 3-3: A single channel network with synchronising action up? [5]

Definition 3-2.2 (Communication Network [5])

Let ∆ represent the maximum channel occupancy time, a timed game au-
tomation associated with the communication network is given by TGAnet =
(Lnet, lnet0 , Actnetc , Actnetu , Cnet, Enet, Invnet) where

• Lnet = {Idle, InUse, Bad}

• lnet0 = Idle

• Actnetc = {∗}

• Actnetu = {up?}

• Cnet = {c}

• Enet ={(Idle, true, up?,{c}, InUse), (InUse,c=∆,*,Ø,Idle), (InUse, true, up?, Ø,
Bad), (Bad, true, up?, Ø, Bad)}

• Invnet(InUse) = {c|0 ≤ c ≤ ∆}, Invnet(Idle) = {c|c ≥ 0}, Invnet(Bad) = {c|c ≥ 0}

The Timed Gamed Automata for the control loops are formed using the approach from [4],
schematically shown in Figure 3-4. For each triggering condition σj a separate location R

σj
s is

used. To allow for choosing the triggering coefficient and forcing earlier updates, an additional
location Rs is included, where the triggering condition is not yet chosen. Location Ears is
the location that can be used to force an earlier update. When using the event triggering
condition, the exact update time cannot be chosen by the controller, it will lie between the
upper and lower update time. When activating the earlier update, that exact moment will be
the update time. From either a location Rσj or Ears, any of the edges can be taken, and will
activate uncontrollable action {up!}. This will trigger the communication networks {up?}.

M.Sc. thesis P.C. Schalkwijk

16 Modelling

Figure 3-4: A control loop with controllable early updates [5]

Definition 3-2.3 (Control Loop [5])

Consider a set of timed automata TAσj = (Lσj , l
σj
0 , Act

σj , Cσj , Eσj , Invσj) generated from
an event-triggered control loop with triggering coefficient σj ∈]0, σ̄[for j ∈ {1, . . . , p} and
assume that Rσ1

s = · · · = R
σp
s for all s ∈ {1, . . . , q}. Consider also a set of earlier update time

parameters {d1, d̄1, . . . , dq, d̄q} such that

∀s ∈ {1, . . . , q} ∃ j ∈ {1, . . . , p} : d̄s ≤ τ
σj
s (3-1)

Then, the timed game automata TGAcl is given by
TGAcl = (Lnet, lnet0 , Actnetc , Actnetu , Cnet, Enet, Invnet) where

• Lcl =
⋃p
j=1 L

σj ∪
⋃q
s=1{Rs, Ears}

• lcl0 = Rs such that ξ(0) ∈ Rσjs

• Actclc = Actσ1 ∪
⋃p
j=1{aclj }

• Actclu = {up!}

• Ccl = Cσ1

• Ecl =
⋃q
s=1

⋃
c∈εs{(Ears, c = 0, up!,Ø, Rt)} ∪

⋃q
s=1

⋃p
j=1{(Rs, c = 0, aclj ,Ø, R

σj
s),

(R
σj
s , ds ≤ c ≤ d̄s, ∗, {c}, Ears)} ∪

⋃q
s=1

⋃p
j=1

⋃
{t|(Rs→Rt)∈Eσj }

{(Rσjs , τσss ≤ c ≤ τ̄σj , up!, {c}, Rt)}

• Invcl(R
σj
s) = {c|c ≤ τ̄σj}, Invcl(Rs) = {c|c = 0}, Invcl(Ears) = {c|c = 0}

3-3 Uppaal Stratego

For scheduler design, we use the tool Uppaal Stratego [24] to model our control loop abstrac-
tions as defined in Definition 3-2.3 and communications network as defined in Definition 3-2.2.

P.C. Schalkwijk M.Sc. thesis

3-3 Uppaal Stratego 17

It can use an efficiënt on-the-fly algorithm for synthesis of reachability and safety objectives
as proposed in Uppaal TIGA [25], and can use pricing on hybrid clocks, allowing for the
synthesis of objectives with regard to cost under a safety objective.

In the tool Uppaal [6], a System models a NTA. Each TA is called a Process. Processes are
instantiated from parametrised Templates. Global variables can exist that can be influenced
by all Processes, and can contain clocks, integer variables, constants and broadcast channels.
Broadcast channels can be used to synchronise between different Processes. The communi-
cation network as described in Definition 3-2.2 is shown in Figure 3-5 A control loop such as

Figure 3-5: A basic communications network drawn in Uppaal Stratego. The guards, invariants,
synchronising actions and clock resets have been left out for simplicity

defined in Definition 3-2.3 is drawn in Uppaal Stratego in Figure 3-6

Figure 3-6: A basic control loop drawn in Uppaal Stratego. The guards, invariants, synchronising
actions and clock resets have been left out for simplicity

To model an abstraction as a TA, a transition table is needed, and a list of lower- and upper-
bound on inter-event time per region. Using this information, a TA defined by Definition 3-2.1
can be generated.

From this abstraction, Control Loops as for example defined by Definition 3-2.3 can be created.
Control Loops can be combined with a communications network, for example as defined in

M.Sc. thesis P.C. Schalkwijk

18 Modelling

Definition 3-2.2, and the synchronising actions for all components can be set. The entire
model now consists of a NTGA.

P.C. Schalkwijk M.Sc. thesis

Chapter 4

Scheduling

In chapter 3 we created a model is ready for use in Uppaal. To find a scheduler using Uppaal
Stratego we first define our control objective. Currently, our model is only suited for a
synthesis of a safety or reachability objective, since our model does not contain pricing.

4-1 Control Objective and Strategy Generation

The control objective of our scheduler is to avoid communication conflicts while maintaining
the individual stability of each connected system. By design, if no communication conflicts
take place, the individual systems will remain stable. The Bad location of the communica-
tions network as defined in Definition 3-2.2n Uppaal, represents a communication conflict.
Therefore, the Bad location should be avoided. This can be expressed by Uppaal Stratego in
the following way:

strategy scheduler = control: A[] not (Network.Bad). (4-1)

Translated as ’create a strategy called scheduler that controls the entire system such that it
never reaches the Bad location’ Avoiding a location, or set of locations is called a pure safety
objective by Uppaal[26]

4-2 Resulting Strategy

If successful, the synthesis results in a strategy. In this strategy, the initial location is defined,
and for each possible location in the Network of Timed Automata (NTA), a number of clock
regions is given that require a controllable action, or require to do nothing at that point.
This controllable action could for example be forcing an early trigger, or choosing a triggering
coefficient for a control loop.

A part of an example strategy for a system with 3 control loops connected to a single com-
munications network looks as following:

M.Sc. thesis P.C. Schalkwijk

20 Scheduling

1 I n i t i a l s t a t e :
2 (cl0 . R1 cl1 . R1 cl2 . R1 N e t w o r k . Off)
3 (#t i m e==cl0 . c && cl0 . c==cl1 . c && cl1 . c==cl2 . c && cl2 . c==N e t w o r k . c0 && N e t w o r k . c0==0)
4 N o t e : The ’ s t r a t e g y ’ is not g u a r a n t e e d to be a s t r a t e g y .
5
6 S t r a t e g y to a v o i d l o s i n g :
7
8
9

10
11 S t a t e : (cl0 . R1 cl1 . R31 cl2 . E a r 1 N e t w o r k . On)
12 W h e n you are in (67< cl0 . c && 10<=cl1 . c && cl2 . c==5 && cl1 . c<=30 && cl2 . c==N e t w o r k . c0

&& N e t w o r k . c0==5) | | (72< cl0 . c && cl1 . c==5 && 10<=cl2 . c && cl1 . c==N e t w o r k . c0
&& cl2 . c<=94 && N e t w o r k . c0==5) , t a k e t r a n s i t i o n cl1 . R31−>cl1 . E a r 3 1 { 30 >= c &&

5 <= c , tau , 1 }
13 W h i l e you are in (cl1 . c<5 && cl1 . c−cl0 . c<−67 && cl1 . c−cl2 . c<=−5 && cl1 . c==N e t w o r k

. c0 && cl2 . c<=94) , w a i t .

The output is very verbose, and readable for persons, but is more difficult to directly im-
plement this in software. To convert this text-based output to something more easily used
by our software package, we use a parsing expression grammar, or PEG. PEG is a type of
analytic grammar, describing a formal language by defining a set of rules. Using a python
implementation of a PEG parser, we define a grammar for the strategy description. Using
this grammar, we can divide that output into locations in the NTA, and parse the clock
regions and their corresponding actions.

P.C. Schalkwijk M.Sc. thesis

Chapter 5

Problem Statement

The main goal of this work is to design a tool set that can model a set of control systems com-
munication over a network. The control systems should be modelled with timed automata,
where the traffic is abstracted to a timed-automaton. From this modelled set, one should
be able to synthesise a scheduler that avoids scheduling conflicts. The synthesised schedul-
ing strategy should be implemented as a scheduler, combined with the continuous system
dynamics in a real-time simulation.

Summarizing, we want to design a set of tools that can:

• Abstract event-triggered control systems

• Create a Timed Automaton from this abstraction

• Create a Network of Timed Automata connecting multiple abstractions with a commu-
nications network

• Find a scheduling strategy avoiding network conflicts for such a Network of Timed
Automata

• Find a cost-optimal scheduling strategy avoiding network conflicts

• Parse the resulting strategy

• Implement the parsed strategy in with a real-time simulation environment to simulate
with system dynamics of the control loops

The entire tool chain is schematically shown in Figure 5-1.

After creating the tool set, it will be tested to generate scheduling strategies with an exper-
iment that also has some scientific relevance other than showing the capabilities of the tool
set. In order to do this, we will investigate the scalability of the scheduler design approach.

M.Sc. thesis P.C. Schalkwijk

22 Problem Statement

ABSTRACT

MATLAB

System

FINITE STATE
MODEL

Python

Abstraction

STRATEGY

Uppaal Stratego

NTA

SIMULATE

MATLAB TrueTime

Strategy Network
Simulation

Figure 5-1: Schematic overview of the desired workflow for the entire set of tools from abstraction
to simulation

Scalability

To investigate the usability in real-life applications, it is interesting to see how the method
to be used scales with increased accuracy of the traffic abstraction, and how it scales with
an increasing number of systems used in a network of timed automaton. As mentioned in
[19, 27], the number of clocks is a limiting factor in working with timed automata.

The variables measured will be the time necessary to find a strategy, the amount of memory
used to find this strategy, and the number of states that need to be visited before the search
is complete. The experiments will be discussed more in detail in chapter 7

P.C. Schalkwijk M.Sc. thesis

Chapter 6

Tool Design

In this chapter, the current state of the tool set will be described. The tools are divided into
three main categories:

1. Abstractions

2. Timed Automata

3. Strategies

For each category, we describe:

• The languages and packages used

• The concepts that are implemented, and some implementation details

6-1 Abstractions

The implementation of the abstraction approach as described in chapter 2 is based on the
code from [4] and [7]. The code allows for modelling 2D and 3D LTI systems. The entire
process from creating region matrices Qs to finding the bounds on inter-event time and a
transition table is done in MATLAB

6-1-1 Matlab

The tool uses MATLAB r2018a. It uses two packages that need to be installed:

• YALMIP [28], a toolbox for for modelling and solving optimization problems. This
solves the Linear Matrix Inequalities found when calculating the bounds on inter-event
time

• The Multi-Parametric Toolbox (MPT) [29], used for creating Polyhedra used in
the reachability analysis to create the transition table.

M.Sc. thesis P.C. Schalkwijk

24 Tool Design

6-1-2 Implementation

After describing the system and the design parameters, the process of abstracting in imple-
mented in a five-step approach by [7]. The five steps are:

1. Finding the global lower bound on the inter-event time. This corresponds to a line-
search over τ to find the first value that satisfies Lemma 2-3.1

2. Finding the value of ν, implementing Lemma 2-3.1

3. Finding the lower bound on inter-event time per region Rs using an adapted golden-
section search over σ, implementing Theorem 2-3.1

4. Finding the upper bound on inter-event time per region Rs using an adapted golden-
section search over σ, implementing Theorem 2-3.2

5. Using reachability analysis to create the transition table.

The design parameters are shown in Table 6-1:

Variable Description Unit

n State-space dimension of the abstracted system [-]
N conv Order of the Taylor series approximation of Phi [-]
sigma bar Upper limit for the global lower bound on the inter-event time [s]
sigma max Upper limit for inter-event time [s]
l 1 Number of subdivisions in the interval [0, sigma bar] [-]
l 2 Number of subdivisions in the interval [τ ,sigma max] [-]
m Number of subdivisions of θ ∈ [0, π]. This should be an even number [-]
q Number of regions for half the state space. q = mn−1 [-]
alpha Triggering coefficient [-]
del sig σ′ increment [s]
del tau i Time step size for bound tau in step i of the five steps [s]
epsilon tol Tolerance for the constraint on ε when solving LMI’s [-]
sedumi eps Precision for the YALMIP SeDuMi solver [-]

Table 6-1: Summation of the design parameters used in MATLAB to create abstractions

The first two steps together are straightforward implementations of the functions mentioned.
For the third and fourth step, it’s interesting to expand on how the line search over σ is
implemented using a bi-section search.

Bi-section Search

A bi-section search is a root-finding method for continuous functions known to have two values
with opposing signs. It finds the interval in which the zero crossing takes place, switching the
function value from one sign to the other by repeatedly bisecting the search interval. At the
start, the interval spans the entire search domain. The function f is evaluated at the edges

P.C. Schalkwijk M.Sc. thesis

6-2 Timed Automata 25

of the interval. We denote the edges of the interval with x1 and x3.The interval is split into
two sections by probing point x2 = x3+x1

2 . Either sign(f(x1)) = sign(f(x2)), indicating the
root is in the interval [x2, x3], or sign(f(x1)) 6= sign(f(x2)) and the root is in the interval
[x1, x2]. The new search interval now becomes the interval in which the root is found, and
this is repeated until the interval is sufficiently small.

In the case of Theorem 2-3.1 and Theorem 2-3.2, the function being evaluated is an LMI. This
function is not unimodal, but either the equations hold (f(x) = 0), or they don’t (f(x) = 1),
so at the switching point from f(xk) = 0 to f(xk+1) = 1 there is a jump. We are not interested
in finding a root, but the value of x where it switches from f(x) = 0 to f(x) = 1. If chosen
properly, the search interval should have only a single switch from 0 to 1 at the bound of
inter-event time.

By using an adapted bisection section search, we can find a bound on inter-event time up to
a known accuracy within a finite, known number of steps. This number of steps n depends
on the size of the initial size of the search interval d and the accuracy ε with the following
relation:

n = log2(
d

ε
) (6-1)

6-2 Timed Automata

To model the abstractions as Timed Automata, we move away from MATLAB to Python. The
main reasons to do so is that Python is a freely available language, where MATLAB is an highly
expensive piece of proprietary software. Also, it is much easier to deal with different versions,
where compatibility between different versions of MATLAB is more complicated. Scheduling
the timed automata will be done in Uppaal Stratego, as this is a tool specifically designed to
work with timed automata, and can be later expanded to using pricing information.

6-2-1 Python

Python version 3.6.8 was used to model the abstractions as Timed Automata. The required
packages are:

• shortuuid. A package to generate unique id’s based on the UUID-standard

• SciPy. SciPy is used to parse MATLAB .mat files, to import the abstractions made with
MATLAB

• NumPy. NumPy is used for several matrix operations performed.

• PyGraphViz. PyGraphviz is used to automatically generate a human-readable dia-
gram of Timed Automata using dot

6-2-2 Implementation

The following functionality is implemented in the tool:

M.Sc. thesis P.C. Schalkwijk

26 Tool Design

• Create a Timed Automaton Definition 3-2.1 from a list of lower- and upper bounds
combined with a transition table

• Create models for Control Loops such as Definition 3-2.3

• Create models for Communication Networks such as Definition 3-2.2

• Combine Control Loops and Communication Networks into a Network of Timed Au-
tomata with appropriate synchronising actions

• Export a Network of Timed Automata to a format readable by Uppaal Stratego

Base

First, a base class for Timed Automata and Timed Game Automata are made, staying close
to the formal definitions: sets are defined as python sets and the mapping function is defined
as a python dictionary. A base example is shown in Figure 6-1 An edge l

g,a,r−−−→ l′ is defined
as a tuple (l, g, a, r, l′) for a timed automaton, as defined in Definition 3-1.2.

1 """

2 N O T E : T h i s is not the a c t u a l c o d e u s e d in the tool , but s h o w s a s i m p l i f i e d v e r s i o n

to m a k e it e a s i l y u n d e r s t a n d a b l e

3 """

4
5 c l a s s ta :
6 def _ _ i n i t _ _ (s e l f) :
7 s e l f . l o c a t i o n s = set ()
8 s e l f . c l o c k s = set ()
9 s e l f . a c t i o n s = set ()

10 s e l f . e d g e s = set ()
11 s e l f . i n v a r i a n t s = d i c t ()
12
13 c l a s s tga (ta) :
14 def _ _ i n i t _ _ (s e l f) :
15 s u p e r () . _ _ i n i t _ _ ()
16 s e l f . a c t i o n s _ u = set ()
17 s e l f . a c t i o n s _ c = set ()
18 s e l f . a c t i o n s = s e l f . a c t i o n s _ u . u n i o n (s e l f . a c t i o n s _ c)

Figure 6-1: Example for base code for timed automata in Python

Abstraction

Next, we can model the traffic abstraction using this a timed automaton as a base class. The
traffic abstraction has a single clock c. We use the transition table to create the locations and
the edges between locations: each transition corresponds to an edge.
Next, we assign guards on the transitions based on the list of bounds on inter-event time: each
outgoing edge gets a guard with the bounds from the list corresponding to the originating
location.
Finally, we create a mapping of invariants to locations using the list of bounds: for each
location Rs get an invariant it’s clock c up to and including the upper bound on inter-event
time: c <= τ̄s
It should be noted that guards on clocks can only be integer values, and therefore, in the
actual tool the time-bounds are scaled by the first power of ten smaller then or equal to the
smallest accuracy used in creating the abstraction.

P.C. Schalkwijk M.Sc. thesis

6-2 Timed Automata 27

1 """

2 N O T E : T h i s is not the a c t u a l c o d e u s e d in the tool , but s h o w s a s i m p l i f i e d v e r s i o n

to m a k e it e a s i l y u n d e r s t a n d a b l e

3 """

4
5 c l a s s a b s t r a c t i o n (ta) :
6 def _ _ i n i t _ _ (self , bounds , t r a n s i t i o n s) :
7 s u p e r () . _ _ i n i t _ _ ()
8 s e l f . c l o c k s . u p d a t e ({ ’ c ’})
9 # C r e a t e l o c a t i o n s f r o m n u m b e r of b o u n d s and c r e a t e i n v a r i a n t s

10 for n , b o u n d in e n u m e r a t e (b o u n d s) :
11 s e l f . l o c a t i o n s . u p d a t e ({ f ’ { n } ’})
12 l o w e r _ b o u n d , u p p e r _ b o u n d = b o u n d

13 s e l f . i n v a r i a n t s . u p d a t e ({ f ’ { n } ’ : f ’c <={ u p p e r _ b o u n d } ’})
14
15 # C r e a t e e d g e s f r o m t r a n s i t i o n t a b l e s and b o u n d s

16 # N o t e : c u r r e n t l y , t r a n s i t i o n s is not a m a t r i x but a l i s t of l i s t s

17 # For e a c h l o c a t i o n , t h e r e is a l i s t w i t h i n d i c e s of r e a c h a b l e l o c a t i o n s

18 # We add the g u a r d and r e s e t the c l o c k ’ c ’

19 for index , i in e n u m e r a t e (t r a n s i t i o n s) :
20 for j in t r a n s i t i o n s [i] :
21 l o w e r _ b o u n d , u p p e r _ b o u n d = b o u n d s [i n d e x]
22 g u a r d = f ’ { l o w e r _ b o u n d } < c && { c <= u p p e r _ b o u n d } ’

23 e d g e = (f ’ { i n d e x } ’ , guard , None , ’ c ’ , f ’ { j } ’)
24 s e l f . e d g e s . u p d a t e (e d g e)

Figure 6-2: Example of a base abstraction in Python

Control Loop Model

Now the basics are set. We create a class that models a control loop corresponding to
Definition 3-2.3 based on an abstraction as created in python as shown above. Our control
loop distinguishes between controllable and uncontrollable actions, and will use the timed
game automaton class as a base.
In this example, we will not model a choice in triggering coefficient. It is possible however,
to force an early update.
We consider triggering in the natural triggering interval to be an uncontrollable action, so
an edge for a natural trigger will be an uncontrollable edge. Forcing an early update is
controllable, but the region we will transition to is unknown, and the edge representing it is
therefore uncontrollable.
As defined in Definition 3-2.3, we allow early updates in a window of time of d seconds before
the start of the natural triggering interval.

The design variables that are used can be defined for a control loop are show in Table 6-2
and creating a control loop in Python is shown in Figure 6-3

Variable Description Unit

sync the broadcast-channel used to synchronise timed automata in a network [-]
d size of the early trigger interval, scaled accordingly. [-]
initial location list of possible initial locations list

Table 6-2: Summation of the design parameters used in the control loop model

Communications Network Model

To model a communications network, the model as described in Definition 3-2.2 is chosen.
The network has only uncontrollable edges, and is synchronised over broadcast channel ”up?”.
The network will stay in the InUse location for delta seconds.

M.Sc. thesis P.C. Schalkwijk

28 Tool Design

1 """

2 N O T E : T h i s is not the a c t u a l c o d e u s e d in the tool , bu s h o w s a s i m p l i f i e d v e r s i o n to

for d e m o n s t r a t i o n

3 """

4
5 c l a s s C o n t r o l L o o p (tga) :
6 def _ _ i n i t _ _ (a b s t r a c t i o n , s y n c=’ up ’ , d=5) :
7 s u p e r () . _ _ i n i t _ _ ()
8 s e l f . s y n c = s y n c

9 # We c o p y the c l o c k s f r o m the a b s t r a c t i o n ta

10 s e l f . c l o c k s . u p d a t e (a b s t r a c t i o n . c l o c k s)
11
12 # We c r e a t e a set of l o c a t i o n s we w a n t to m a r k as u r g e n t : no t i m e may p a s s

in t h e s e l o c a t i o n s

13 s e l f . u r g e n t = set ()
14
15 # We c o p y the l o c a t i o n s f r o m the a b s t r a c t i o n ta and c r e a t e e a r l y t r i g g e r i n g

l o c a t i o n s

16 # We m a r k e a c h e a r l y t r i g g e r as u r g e n t and add a c o n t r o l l a b l e e d g e to e a c h

e a r l y t r i g g e r

17 for l o c a t i o n in a b s t r a c t i o n . l o c a t i o n s :
18 s e l f . l o c a t i o n s . u p d a t e ({ f ’ R { l o c a t i o n } ’})
19 s e l f . u r g e n t . u p d a t e ({ f ’ Ear { l o c a t i o n } ’})
20 g u a r d = f " "

21 e d g e = (f ’ R { l o c a t i o n } ’ , guard , i n t e r n a l _ a c t i o n , False , clocks , f ’ Ear {

l o c a t i o n } ’)
22 s e l f . e d g e s . u p d a t e (e d g e)
23 s e l f . l o c a t i o n s . u p d a t e (s e l f . u r g e n t)
24
25
26 # We c o p y the i n v a r i a n t s f r o m the a b s t r a c t i o n ta

27 s e l f . i n v a r i a n t s . u p d a t e (a b s t r a c t i o n . i n v a r i a n t s)
28
29 # We c o n v e r t the e d g e s a c c o r d i n g to the t r a n s i t i o n t a b l e f r o m (e a r l y)

l o c a t i o n s

30 for e d g e in a b s t r a c t i o n . e d g e s :
31 s e l f . e d g e s . u p d a t e ({ s e l f . u n c o n t r o l l a b l e (e d g e) })
32 s e l f . e d g e s . u p d a t e ({ s e l f . e a r l y (e d g e)}
33
34
35 def u n c o n t r o l l a b l e (self , e d g e) :
36 """ C o n v e r t an e d g e f r o m (l , g , a , c , l ’) - > (l , g , a_c , a_u , c , l ’) """

37 (start , guard , i n t e r n a l _ a c t i o n , clocks , end) = e d g e

38 r e t u r n f ’ R { s t a r t } ’ , guard , i n t e r n a l _ a c t i o n , f r o z e n s e t ({ f ’ { s e l f . s y n c }! ’})
, clocks , f ’ R { end } ’

39
40 def c o n t r o l l a b l e (self , e d g e) :
41 """ C o n v e r t an e d g e f r o m (l , g , a , c , l ’) - > (l , g , a_c , a_u , c , l ’) """

42 (start , guard , i n t e r n a l _ a c t i o n , clocks , end) = e d g e

43 r e t u r n f ’ R { s t a r t } ’ , guard , i n t e r n a l _ a c t i o n , False , clocks , f ’ R { end } ’

44
45 def e a r l y (self , e d g e)
46 """ C o n v e r t an e d g e f r o m (l , g , a , c , l ’) - > (l , g , a_c , a_u , c , l ’) """

47 (start , guard , i n t e r n a l _ a c t i o n , clocks , end) = e d g e

48 r e t u r n f ’ R { s t a r t } ’ , guard , i n t e r n a l _ a c t i o n , f r o z e n s e t ({ f ’ { s e l f . s y n c }! ’})
, clocks , f ’ R { end } ’

Figure 6-3: A control loop as a Timed Automaton in Python

Network of Timed Automata

Breaking the trend with earlier models, for the network of timed automata, for a Network
of Timed (Game) Automata, we no longer follow the formal definition. Keeping in mind the
way Uppaal models a network of timed automata, we simply keep a list of the Timed (Game)
Automata that are included in the network. An example is shown in Figure 6-5
When used in Uppaal, simply instantiating the list of Timed (Game) Automata with a syn-
chronising action will create the entire network.

Exporting to Uppaal

When the Network of Timed Automata is modelled, we want to export it to Uppaal Stratego
to do further analysis. Uppaal Stratego uses XML-files to describe Timed Automata and the

P.C. Schalkwijk M.Sc. thesis

6-2 Timed Automata 29

1 """

2 N O T E : T h i s is not the a c t u a l c o d e u s e d in the tool , but s h o w s a s i m p l i f i e d v e r s i o n

for d e m o n s t r a t i o n p u r p o s e s

3 """

4 c l a s s N e t w o r k (TGA) :
5 def _ _ i n i t _ _ (s y n c=" up " , d e l t a=" 5 ")
6 # We add the t h r e e l o c a t i o n s

7 s e l f . l o c a t i o n s . u p d a t e ({ " I d l e " , " I n U s e " , " Bad " })
8 s e l f . c l o c k s = {" c "}
9

10 # We add an u n c o n t r o l l a b l e e d g e f r o m I d l e to I n U s e on " up ?" r e s e t t i n g " c "

11 e d g e = (" I d l e " , True , False , f ’ { s y n c }? ’ , ’ c =0 ’ , " I n U s e ")
12 s e l f . e d g e s . u p d a t e ({ e d g e })
13
14 # We add an u n c o n t r o l l a b l e e d g e f r o m I n U s e to Bad on " up ?"

15 e d g e =(" I n U s e " , True , False , f ’ { s y n c }? ’ , ’ c =0 ’ , " Bad ")
16 s e l f . e d g e s . u p d a t e ({ e d g e })
17
18 # We add an u n c o n t r o l l a b l e e d g e f r o m Bad to Bad on " up ?"

19 e d g e =(" Bad " , True , False , f ’ { s y n c }? ’ , ’ c =0 ’ , " Bad ")
20 s e l f . e d g e s . u p d a t e ({ e d g e })
21
22 # We add an u n c o n t r o l l a b l e e d g e f r o m I n U s e to I d l e w i t h g u a r d " c == d e l t a "

23 e d g e =(" I n U s e " , f ’ c =={ d e l t a } ’ , False , None , ’ c =0 ’ , " I d l e ")
24 s e l f . e d g e s . u p d a t e ({ e d g e })
25
26 # We c r e a t e an i n v a r i a n t for InUse , w h e r e we can s t a y up to d e l t a s e c o n d s

27 i n v a r i a n t = {" I n U s e " : f ’ c <= { d e l t a } ’}
28 s e l f . i n v a r i a n t s . u p d a t e (i n v a r i a n t)

Figure 6-4: Code example of a class describing a Communications Network

1 """

2 N O T E : T h i s is not the a c t u a l c o d e u s e d in the tool , but s h o w s a s i m p l i f i e d v e r s i o n

to m a k e it e a s i l y u n d e r s t a n d a b l e

3 """

4
5 c l a s s nta :
6 def _ _ i n i t _ _ (∗ ta) :
7 s e l f . ta = ta

Figure 6-5: A Network of Timed Automata as modelled in Python

necessary declarations. To export our model to a XML-file that can be read by Uppaal, we
use a modified version of pyuppaal [30].
Pyuppaal was created to make Uppaal models from commandline and has support for a
graphical editor as well. It was created for Python 2.7 and some dependencies can not easily
be upgraded to Python 3.
The part in pyuppaal that exports (Networks of) Timed Automata to XML has been up-
dated to be used with Python 3, and the rest has been stripped. As Uppaal sometimes has
difficulties with multiple locations being on the same physical location in the 2D state-space
that defines visualisation of a timed automaton, support for auto-layout is also kept.
Using mixed inheritance, timed automata are turned into Templates for Uppaal, and a net-
work of timed automata is turned into a System. Some extra flexibilty is added to the Uppaal
classes. Binding it all together, the network of timed automata can now be exported to an
XML-file for Uppaal.

Uppaal from Python

Uppaal has a graphical user interface, but we are not interested in that for uses other than
visual validation of the model. We can also approach Uppaal from the command-line interface
(CLI), using the verifyta command. Python allows for system calls to the CLI via the

M.Sc. thesis P.C. Schalkwijk

30 Tool Design

subprocess module, and in our demo it is shown how this works. For more information on
verifyta, run verifyta -h from the CLI of your system running Uppaal.

6-3 Strategies

Uppaal Stratego can output two types of strategies:

• TIGA Strategies

• Stratego Strategies

The strategy as seen in section 4-2 is a TIGA strategy, a strategy with a pure safety objective.
A pure safety objective is a problem of reachability, and doesn’t include any type of pricing
or stochastics.
A Stratego strategy can be an optimization with regards to price or probability. As we have
not yet implemented pricing or probability, we focus on TIGA Strategies. A TIGA strategy
uses a lot of text, but has a clear structure. We use this structure to retrieve the valuable
information using a technique based on parsing expression grammar (PEG).

6-3-1 Python

Python version 3.6.8 was used to model the abstractions as Timed Automata. The required
packages are:

• Parsimonious [31] Parsimonious is an arbitrary-lookahead parser based on PEGs

6-3-2 Implementation

Parsimonious can parse text based on a defined grammar, dividing text into nodes. Next,
each node can be visited, and a action to be taken can be defined. Since the output for TIGA
is automatically generated, it has a relatively simple structure, and this can be described
using such a grammar. We consider a part of a strategy shown in Figure 6-6 as an example.
The strategy state can be split into two parts:

1 S t a t e : (cl0 . R1 cl1 . E a r 2 8 cl2 . E a r 3 7 N e t w o r k . Off)
2 W h i l e you are in (67< cl0 . c && 5<=cl1 . c && cl1 . c−cl2 . c<=−5 && cl2 . c<=24) | | (67<

cl0 . c && 5<=cl2 . c && cl1 . c<=40 && cl2 . c<=24 && cl2 . c−cl1 . c<=−5) , w a i t .
3 W h e n you are in (67< cl0 . c && 35<cl1 . c && cl2 . c==5 && cl2 . c==N e t w o r k . c0 && N e t w o r k . c0

==5) | | (67< cl0 . c && 10<=cl1 . c && cl2 . c==5 && cl1 . c<35 && cl2 . c==N e t w o r k . c0 &&
N e t w o r k . c0==5) | | (72< cl0 . c && cl1 . c==5 && 10<=cl2 . c && cl1 . c==N e t w o r k . c0 &&
cl2 . c<=94 && N e t w o r k . c0==5) , t a k e t r a n s i t i o n N e t w o r k . On−>N e t w o r k . Off { c0 == 5 ,
tau , 1 }

Figure 6-6: Example of a single state in TIGA output

• Locations

• Clock zones

P.C. Schalkwijk M.Sc. thesis

6-3 Strategies 31

For a combination of locations, one for each timed automaton in the network of timed au-
tomata, a number of clock regions is given.
For each clock region, an action is shown. There are two kinds of actions: ’take a transition’
or ’wait’. Clock regions with the same action are bundled together. We use this knowledge
to create a bit of grammar to parse the text. This could look like Figure 6-7.

1 T I G A G r a m m e r = G r a m m a r (
2 r ”””
3 s t a t e = s t _ o p e n l o c a t i o n s a c t i o n

4 s t _ o p e n = n e w l i n e+ ” S t a t e : ” ws∗
5 l o c a t i o n s = ”(” l o c a t i o n+ ws ”)
6 a c t i o n = (m o v e / d e l a y)+
7 ”””
8)
9

10 c l a s s T I G A P a r s e r (N o d e V i s i t o r) :
11 g r a m m a r = T I G A G r a m m a r

12
13 def v i s i t _ s t a t e (self , node , v i s i t e d _ c h i l d r e n) :
14 st_open , l o c a t i o n s , a c t i o n s = v i s i t e d _ c h i l d r e n

15 p r i n t (l o c a t i o n s)
16
17 def v i s i t _ a c t i o n (self , node , v i s i t e d _ c h i l d r e n) :
18 a c t i o n s = v i s i t e d _ c h i l d r e n

19 for a c t i o n in a c t i o n s :
20 p r i n t (a c t i o n . e x p r _ n a m e)
21
22 def g e n e r i c _ v i s i t (self , node , v i s i t e d _ c h i l d r e n) :
23 r e t u r n v i s i t e d _ c h i l d r e n

Figure 6-7: Example of a bit of grammar to parse a state, with a node visitor class to process
the nodes that are created

The entire grammar for parsing TIGA output is found in the project repository on GitHub
[32]. After defining a grammar to split the text into nodes, a node visitor can be made that
visits each node and create an appropriate action. Using this, we can for example parse the
strategy and save it in the form of a binary decision diagram or a timed automaton.

M.Sc. thesis P.C. Schalkwijk

32 Tool Design

P.C. Schalkwijk M.Sc. thesis

Chapter 7

Scalability

Small scale experiments have proven to work well, but for wide scale application of timed
automata in scheduling, it’s important to see how it scales with respect to accuracy of the
abstractions, and to the number of systems connected. Therefore, a we will test our tool by
setting up two experiments to test the scalability and discuss their results.

7-1 Scaling of Timed Automata

At each point in time the possible future behaviour of a Network of Timed Automata (NTA)
is determined by its active locations and the values of all its clocks [19]. In Uppaal, this is
considered to be the state. Although there are uncountable many of these states, in [19] it is
shown that through an equivalence relation, these states can be mapped to a finite number
of clock zones. The number of clock zones scales linearly with the number of locations, but
exponentially with the number of clocks. The reachability problem we are trying to solve is
known to be PSPACE-complete in [19].

7-2 Experiments

We are interested in the scaling with respect to accuracy of the abstraction, visible in the
number of regions Rs the state-space has been divided in, and with respect to the number
of systems present in the NTA. As the number of clocks increases linearly with the number
of systems, this is expected to have unwanted results. For each experiment, we will measure
the number of states Uppaal visits before finding a winning strategy, the amount of CPU
time it takes and the amount of internal memory is used. This is measured using Uppaals
internal measuring program based on memtime, a small utility to measure time and memory
consumption on POSIX OSes

M.Sc. thesis P.C. Schalkwijk

34 Scalability

We will do both experiments with (combinations of) the same systems modelled in the case
study (chapter 4) of [5]. The first control loop is given by:

ξ̇ =

[
0 1
−2 3

]
ξ +

[
0
1

]
v,

v =
[
1 −4

]
ξ. (7-1)

The second control loop is given by:

ξ̇ =

[
−0.5 0

0 3.5

]
ξ +

[
1
1

]
v,

v =
[
1.02 −5.62

]
ξ. (7-2)

Each experiment is characterized by two parameters:

• The number of conic regions of a systemq

• The number of systems connected to the communications network

The number of consecutive updates is limited: EarMax = 4. The systems both have a trig-
gering coefficient of σ = 0.05, and the early update can be updated from 0.005 time units
before the lower bound on the triggering time. The maximum consecutive number of updates
EarMax = 4.

For both experiments, we generate a model from the abstractions based on the definition of a
control loop in Definition 3-2.3. Control Loops are denoted cli with i the identifying number
for a control loop. The communications network is denoted Network. The control objective
is: control: A[] not (Network.Bad)

7-2-1 Increasing accuracy

To measure the performance when increasing the accuracy of the abstractions, we increase
the number of subdivisions m from 20 to 180 in steps of 20. This results in a number of
regions q = 2×mn−1 = 2×m ranging from 40 to 360 in steps of 40.

For each run we connect two systems to the communications network, one instantiation of
the first control loop, and one instantiation of the second control loop.

7-2-2 Increasing number of systems

To measure the performance when increasing the number of clocks, we increase the number
of systems connected to the communications network gradually. We alternate in the addition
of a control loop to the network: First a control loop based on an abstraction of Equation 7-1
is added, then a control loop based on an abstraction of Equation 7-2 is added. If the number
of control loops is increased again, a loop similar to the first one is added, next one similar
to the second, and so on. The number of regions per control loop is kept constant at q = 8

P.C. Schalkwijk M.Sc. thesis

7-3 Results 35

7-3 Results

7-3-1 Increasing Accuracy

First, we take a look at the way the abstraction scales as the accuracy becomes larger.
Theoretically, with our current modelling approach, the number of edges per control loop
Ne,cl can maximally become

Ne,cl = 2q2 + q

Ne,cl

q
= 2q + 1 (7-3)

growing quadratically. In worst case, the average number of edges per region grows linearly.
As shown in Figure 7-1, the number of edges and edges per regions indeed grow respectively
quadratically and linearly, but stays far away from the worst case growth in 7-3.

40 80 120 160 200 240 280 320 360

Number of regions

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

N
u

m
b

e
r

o
f

e
d

g
e

s

Number of edges vs number of regions

40 80 120 160 200 240 280 320 360

Number of regions

0

100

200

300

400

500

600

700

800

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
e
d
g
e
 p

e
r

re
g
io

n

Number of edges per region vs number of regions

Worst case growth

actual growth

Figure 7-1: Plotting the number of edges in a control loop versus the number of regions in
the abstraction (left) and the average number of edges per region versus the number of regions
(right). In the right, the worst case growth is also plotted.

In Figure 7-3 the increase of calculation versus number of regions and number of edges
respectively is shown. As expected, the number of states grows linearly with the number
edges. The number of states grows quadratically with the number of regions, which is also
to be expected as the number of edges grows quadratically with the number of regions.

Figure 7-4 shows the increase of memory consumed. The results are similar to the number of
states stored, which makes sense as most of the memory is consumed by storing the states.
In Figure 7-2, a box plot is shown for the computation time and memory consumption, to
show the variance in the experiments. For the number of states stored, no plot is made. This
number is a deterministic quantity, and doesn’t change with different runs of the experiment.

In Figure 7-5 the increase of calculation time with respect to the number of regions and
number of edges is shown. When increasing the accuracy, the time used seems to increase
irregularly. This can be because the calculation time is also dependent on the number and
size of clock zones. As the data doesn’t easily fit a pattern, the only conclusion to be drawn

M.Sc. thesis P.C. Schalkwijk

36 Scalability

40 80 120 160 200 240 280 320 360

Regions q

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

M
e

m
o

ry
 c

o
n

s
u

m
e

d
 [

K
iB

]

10
6 Standard Deviation of memory consumption (N=10)

40 80 120 160 200 240 280 320 360

0

1000

2000

3000

4000

5000

6000

7000

8000

Standard Deviation of computation time (N=10)

Figure 7-2: A box plot showing the difference between runs.

is that as the number of regions, the time necessary to find a solution is increasing with rapid
paces, but will depend on the particular abstraction.

40 80 120 160 200 240 280 320 360

Number of regions

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
u

m
b

e
r

o
f

s
ta

te
s
 s

to
re

d

10
5 Number of states vs number of regions

6221470 2894 4346 5906 8586 10358 13238 17522

Number of edges

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
u
m

b
e
r

o
f
s
ta

te
s
 s

to
re

d

10
5 Number of states vs number of edges

Figure 7-3: The number of states stored in memory to finding a ’winning’ strategy versus an
increasing number of regions and edges.

7-3-2 Increasing number of systems

When increasing the number of systems, things scale very badly. Even with an abstraction
with a very small number of regions, and therefore edges, it was only possible to find a
solution up to three control loops connected to the communication network. When trying to
add a fourth, the search was cancelled after 5 days, already having consumed almost 10 GiB
of memory. In Figure 7-6, the results for up to three control loops is shown, averaged over
10 runs. Even with only three data points, any extrapolation of the data would suggest an
enormous increase in all three variables.

P.C. Schalkwijk M.Sc. thesis

7-3 Results 37

40 80 120 160 200 240 280 320 360

Number of regions [-]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
v
e
ra

g
e
 m

e
m

o
ry

 c
o
n
s
u
m

e
d
 [
K

iB
]

10
6 Memory consumend vs number of regions

6221470 2894 4346 5906 8586 10358 13238 17522

Number of edges [-]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
v
e

ra
g

e
 m

e
m

o
ry

 c
o

n
s
u

m
e

d
 [

K
iB

]

10
6 Memory consumend vs number of edges

Figure 7-4: The average memory consumption in for finding a ’winning strategy versus an
increasing number of regions and edges. Average over 10 runs

40 80 120 160 200 240 280 320 360

Number of regions [-]

0

1000

2000

3000

4000

5000

6000

7000

8000

A
v
e
ra

g
e
 c

o
m

p
u
ta

ti
o
n
 t
im

e
 [
s
]

Computation time vs number of regions

6221470 2894 4346 5906 8586 10358 13238 17522

Number of edges [-]

0

1000

2000

3000

4000

5000

6000

7000

8000

A
v
e
ra

g
e
 c

o
m

p
u
ta

ti
o
n
 t
im

e
 [
s
]

Computation time vs number of edges

Figure 7-5: The average computation time to finding a ’winning’ strategy versus an increasing
number of regions and edges. Average over 10 runs

1 2 3

Number of Control Loops [-]

0

50

100

150

A
v
e
ra

g
e
 c

o
m

p
u
ta

ti
o
n
 t
im

e
 [
s
]

Computation time vs number of regions

1 2 3

Number of Control Loops [-]

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

A
v
e

ra
g

e
 m

e
m

o
ry

 c
o

n
s
u

m
e

d
 [

K
iB

]

10
5 Memory consumend vs number of regions

1 2 3

Number of Control Loops [-]

0

5

10

15

N
u

m
b

e
r

o
f

s
ta

te
s
 s

to
re

d

10
4 Number of states vs number of regions

Figure 7-6: The computation time, memory consumed and number of states stored to finding a
’winning’ strategy versus an increasing number of control loops q

M.Sc. thesis P.C. Schalkwijk

38 Scalability

P.C. Schalkwijk M.Sc. thesis

Chapter 8

Conclusion and Recommendations

In this chapter, we first conclude on the design criteria set in the problem statement, and
give recommendations for continuing the development in the future. Next, we review the
outcome of the scalability experiments, and discuss some paths that can be taken next to
either improve scalability, or to work with the modelling as is.

8-1 Tool design

8-1-1 Conclusion

In chapter 5, the design criteria of a set of tools was set. Several, but not all design criteria
have been met, as shown in Table 8-1.

Abstract event-triggered control systems X
Create a Timed Automaton from this abstraction X
Create a Network of Timed Automata connecting multiple abstractions
with a communications network

X

Find a scheduling strategy avoiding network conflicts
for such a Network of Timed Automata

X

Find a cost-optimal scheduling strategy avoiding network conflicts ×
Parse the resulting strategy −
Implement the parsed strategy in with a real-time simulation environment
to simulate with system dynamics of the control loops

×

Table 8-1: Table displaying design criteria that have been met

To nuance the parsing of resulting strategies, grammar for parsing strategies has been created.
However, to implement the strategy, further extension of the parsing might be necessary.
The abstraction tools in MATLAB as used by [7] have been improved to be more efficiënt, but
is still restricted to using 2D and 3D systems.

M.Sc. thesis P.C. Schalkwijk

40 Conclusion and Recommendations

For working with timed automata, a new tool in Python has been made. There has not been
any work done on simulating the system dynamics controlled by a network scheduler driven
by the strategy generated in Uppaal.

8-1-2 Future work

Future work would be to first fill in the missing items from the design criteria, pricing and
simulation, to complete the set of tools.
Next, the abstraction process could be ported to Python, removing MATLAB from the list
of required software. When moving the code to Python, it would be wise to re-think the
implementation of some parts of code. Although the code is in line with the math backing it
up, there might be smarter ways of implementing some parts. This could result in a significant
speed-up when creating abstractions. Specifically, finding an initial estimate of a global upper
bound on the inter-event time would simplify finding the upper bound. Furthermore, new
abstraction principles could be integrated into the tools, and their performance could be
compared to the current models.

8-2 Scalability

8-2-1 Conclusion

In the scalability experiments, it is shown that more accurate abstractions can also lead to
a state-space explosion. When more systems are added to the Network of Timed Automata,
increasing the number of clocks with each added system, the generation of a scheduling
strategy quickly becomes impractical. Using this approach for more than three systems
connected to a communications network is not feasible as is.

8-2-2 Recommendations

First, we recommend to try removing the clock from the communications network, reducing
the number of clocks in the system. This can be done by creating an extra synchronising
command down. Just as in the modelling in Definition 3-2.3, a transition triggers the network
using the up broadcast channel. Now, the triggering system will remain in a temporary state
for a time ∆ before going to the next location, broadcasting over the down channel. An
example of this is given in Figure 8-1.
Secondly, to increase the usability of the proposed approach, combining multiple schedulers in
a round-robin manner could be modelled. For example, continuing on the model in Figure 8-
1, one could reintroduce a clock to the Communication Network. Using this clock, we can
now define a time interval ∆1 in which we allow triggering, and a time interval ∆2 in which
the network is unavailable. Say we want to connect 9 control loops to a single network.
We divide the Communications Network in a repeating sequence of intervals of ∆1 in size,
making ∆2 = 2∆1. We model the Network in three instances as shown in Figure 8-2, with
three control loops connected to each communications network. This splits the problem into
3 problems of 3 control loops, instead of 1 problem with 9 control loops. This way, we

P.C. Schalkwijk M.Sc. thesis

8-2 Scalability 41

Figure 8-1: An schematic drawing of a Control Loop (left) with an extra broadcast channel
down, and a communications network without an internal clock (right)

might avoid the state-space explosion caused by too many clocks in a single network of timed
automata.

Figure 8-2: A communications network that is usable for a time period of ∆1, and unavailable
for a period of ∆2

M.Sc. thesis P.C. Schalkwijk

42 Conclusion and Recommendations

P.C. Schalkwijk M.Sc. thesis

Bibliography

[1] T. Yang, “Networked control system: a brief survey,” IEE Proc. - Control Theory Appl.,
vol. 153, pp. 403–412, jul 2006.

[2] W. Heemels, “Event-Triggered and Self-Triggered Control.”

[3] S. Al-Areqi, D. Gorges, S. Reimann, and S. Liu, “Event-based control and scheduling
codesign of networked embedded control systems,” in 2013 Am. Control Conf., vol. 45,
pp. 5299–5304, IEEE, jun 2013.

[4] A. S. Kolarijani and M. Mazo, “Formal Traffic Characterization of LTI Event-Triggered
Control Systems,” IEEE Trans. Control Netw. Syst., vol. 5, no. 1, pp. 274–283, 2018.

[5] D. Adzkiya and M. Mazo, “Scheduling of Event-Triggered Networked Control Systems
using Timed Game Automata,” oct 2016.

[6] G. Behrmann, A. David, and K. G. Larsen, “A Tutorial on Uppaal 4.0,” tech. rep., 2006.

[7] C. Hop, Abstraction of In-Vehicle Event- Triggered Networked Control Systems for
Scheduling. Thesis, Delft University of Technology, 2017.

[8] A. Chutinan and B. Krogh, “Computing polyhedral approximations to flow pipes for
dynamic systems,” vol. 1, no. December, pp. 2089–2094, 2002.

[9] W. Heemels, K. Johansson, and P. Tabuada, “An Introduction to Event-triggered and
Self-triggered Control,” 2012 IEEE 51st IEEE Conf. Decis. Control, pp. 3270–3285, dec
2012.

[10] K. Astrom and B. Bernhardsson, “Comparison of Riemann and Lebesgue sampling for
first order stochastic systems,” in Proc. 41st IEEE Conf. Decis. Control. 2002., vol. 2,
pp. 2011–2016, IEEE.

[11] P. Tabuada and S. Member, “Event-Triggered Real-Time Scheduling of Stabilizing Con-
trol Tasks,” vol. 52, no. 9, pp. 1680–1685, 2007.

M.Sc. thesis P.C. Schalkwijk

44 Bibliography

[12] M. Velasco, J. M. Fuertes, and P. Mart́ı, “The Self Triggered Task Model for Real-Time
Control Systems,” in Proc. 24th Real-Time Syst. Symp., pp. 67–70, 2003.

[13] H. Rehbinder and M. Sanfridson, “Scheduling of a limited communication channel for
optimal control,” in Proc. 39th IEEE Conf. Decis. Control (Cat. No.00CH37187), vol. 1,
pp. 1011–1016, IEEE, 1996.

[14] S. Longo, G. Herrmann, and P. Barber, “Optimization Approaches for Controller and
Schedule Codesign in Networked Control,” IFAC Proc. Vol., vol. 42, no. 6, pp. 301–306,
2009.

[15] A. Cervin and P. Alriksson, “Optimal On-Line Scheduling of Multiple Control Tasks: A
Case Study,” in 18th Euromicro Conf. Real-Time Syst., pp. 141–150, IEEE, 2006.

[16] M.-M. Ben Gaid, A. Cela, and Y. Hamam, “Optimal Real-Time Scheduling of Control
Tasks With State Feedback Resource Allocation,” IEEE Trans. Control Syst. Technol.,
vol. 17, pp. 309–326, mar 2009.

[17] S. Al-Areqi, D. Gorges, and S. Liu, “Robust control and scheduling codesign for net-
worked embedded control systems,” in IEEE Conf. Decis. Control Eur. Control Conf.,
vol. 45, pp. 3154–3159, IEEE, dec 2011.

[18] S. Al-Areqi, D. Gorges, and S. Liu, “Stochastic event-based control and scheduling of
large-scale networked control systems,” 2014 Eur. Control Conf. ECC 2014, pp. 2316–
2321, 2014.

[19] R. Alur and D. L. Dill, “A theory of timed automata,” Theor. Comput. Sci., vol. 126,
no. 2, pp. 183–235, 1994.

[20] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, “HYTECH: A Model Checker for Hybrid
Systems,” tech. rep.

[21] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi, “TIMES-A Tool for
Modelling and Implementation of Embedded Systems,” tech. rep.

[22] C. Fiter, L. Hetel, W. Perruquetti, and J.-P. Richard, “A state dependent sampling for
linear state feedback,” Automatica, vol. 48, pp. 1860–1867, 2012.

[23] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, “Symbolic Model Checking for Real-
Time Systems,” Inf. Comput., vol. 111, pp. 193–244, jun 1994.

[24] A. David, P. G. Jensen, K. G. Larsen, M. Mikučionis, and J. H. Taankvist, “LNCS 9035
- Uppaal Stratego,” Baier C., Tinelli C. Tools Algorithms Constr. Anal. Syst., vol. 9035,
pp. 206–211, 2015.

[25] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G. Larsen, and D. Lime, “Uppaal-
Tiga: Timed Games for Everyone,” tech. rep.

[26] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G. Larsen, and D. Lime, “Uppaal
Tiga User-manual,” tech. rep.

[27] G. Behrmann, J. Bengtsson, A. David, K. G. Larsen, P. Pettersson, and W. Yi, “UppaaL
Implementation Secrets,” pp. 3–22, 2002.

P.C. Schalkwijk M.Sc. thesis

Bibliography 45

[28] J. Lofberg, “YALMIP : a toolbox for modeling and optimization in MATLAB,” pp. 284–
289, 2005.

[29] M. Herceg, M. Kvasnica, C. N. Jones, and M. Morari, “Multi-Parametric Toolbox 3.0,”
tech. rep.

[30] M. C. Olesen, “PyUppaal,” 2008.

[31] E. Rose, “Parsimonious,” 2019.

[32] P. Schalkwijk, “Project Github Repository,” 2019.

M.Sc. thesis P.C. Schalkwijk

46 Bibliography

P.C. Schalkwijk M.Sc. thesis

Acronyms

CORA Cost-Optimal Reachability Analysis

DUT Delft University of Technology

ETC Event-triggered Control

LTI Linear Time-Invariant

LMI Linear Matrix Inequalities

LPTA Linear Priced Timed Automata

NCS Networked Control Systems

NTA Network of Timed Automata

NTGA Network of Timed Game Automata

PTA Priced Timed Automata

PTGA Priced Timed Game Automata

SMC Statistical Model Checking

SPTGA Stochastic Priced Timed Game Automata

STC Self-triggered Control

TA Timed Automata

TGA Timed Game Automata

TCTL Timed Computation Tree Logic

TSA Timed Safety Automatons

M.Sc. thesis P.C. Schalkwijk

48 Acronyms

P.C. Schalkwijk M.Sc. thesis

Appendix A

Calculating the region matrices and
vertices

From [7], Chapter 3.3, 3.4.

A-1 Region Matrix Calculations

Consider a region R1 characterized by the angles θmin = 0rad and θmax = π
4 . For each angle,

consider a line through the origin at an angle θmin, θmax respectively. Both these lines divide
the state space into two half-spaces. They can be defined by their normal vector as aTi x = 0
where x = [x1x2]T . From both these lines the normal vector ai pointing to the inside of
the region R1 is drawn. The half-spaces to which these normal vectors point are defined by
aTi x ≥ 0. The normal vectors are calculated as:

aT1 = [sin(θmin)cos(θmin)] (A-1)

aT2 = [sin(θmax)cos(θmax)] (A-2)

The intersection of the two half-spaces is exactly the region R1. Since for states that lie within
the half-spaces it holds that:

aT1 x ≥ 0

and:
aT2 x ≥ 0

for the states that lie within the intersection of the half-spaces (which is R1) it holds that:

xT (a1a
T
2)x ≥ 0

Instead of defining the matrices Qs (corresponding to the regions Rs) as Qs = (a1a
T
2) they

are defined as:
Qs = (a1a

T
2 + a2a

T
1)

M.Sc. thesis P.C. Schalkwijk

50 Calculating the region matrices and vertices

In this way the matrices Qs are made symmetric, which is numerically advantageous since the
Linear Matrix Inequality (LMI) solvers that are used to calculate the sample time bounds for
the regions Rs can handle symmetric matrices more efficiently compared to general matrices.

A-2 Calculating Region Vertices

The region polyhedra in which the state space is partitioned can be defined by their vertices.
Calculating these vertices is useful for the reachability analysis. For a two-dimensional system,
where each region is defined by one angular coordinate, the vertices can be calculated as:

x1 = cos(θ)

x2 = sin(θ) (A-3)

for both the minimum and maximum angle (θmin and θmax) for that region, resulting in two
different vertices. For an n-dimensional systems (with n ≥ 3), each region is defined by (n−1)
angular coordinates. With a minimum and maximum value for each angular coordinate, an
n-dimensional region is defined by 2(n−1) vertices. The coordinates for each vertex V can be
calculated as: 

x1 = cos(θ1) if |θ2| 6= π
2

x2 = sin(θ1) if |θ2| 6= π
2

x1 = x2 = 0 if |θ2| = π
2

x3 = |x2| tan(θ2) if |θ2| 6= π
2

x3 = 1 if θ2 = π
2

x3 = −1 if θ2 = π
2

...

x(i+1) = |xi| tan(θi) if |θi| 6= π
2

x(i+1) = 1, xi = x(i−1) = . . . = x1 = 0 if θi = π
2

x(i+1) = −1, xi = x(i−1) = . . . = x1 = 0 if θi = −π
2

...

xn = |xn−1| tan(θn−1) if |θ(n−1)| 6= π
2

xn = 1, x(n−1) = x(n−2) = . . . = x1 = 0 if θ(n−1) = π
2

xn = −1, x(n−1) = x(n−2) = . . . = x1 = 0 if θ(n−1) = −π
2

(A-4)

where θ1 ∈ [0, π] and θi ∈ [−π2 ,
π
2] for i ∈ {2, ..., (n − 1)}. Note that by considering all

angular coordinates over an interval of length π only half of the state space is considered.
With each of the n − 1 angular coordinates (lying within an interval of length π) divided
into m subintervals, this half of the state space will contain m(n1) conic regions. Due to the
aforementioned symmetry the regions in the first half of the state space can be mapped to
the second half of the state space by taking V = V for each vertex V . The entire state space
then is divided into 2×m(n−1) conic regions. Calculating the vertices in this way is consistent
with the region representation as given in Equation 2-12

P.C. Schalkwijk M.Sc. thesis

	Abstract
	Acknowledgements
	Introduction
	Abstractions
	Event Triggered Control Systems
	Partitioning the state-space
	Bounds on inter-event time
	Lower bound
	Upper bound

	Reachability Analysis

	Modelling
	Timed Game Automata
	Abstraction of Event Triggered Control Systems with Timed Automata
	Scheduling with a Network of Timed Automata

	Uppaal Stratego

	Scheduling
	Control Objective and Strategy Generation
	Resulting Strategy

	Problem Statement
	Tool Design
	Abstractions
	Matlab
	Implementation

	Timed Automata
	Python
	Implementation

	Strategies
	Python
	Implementation

	Scalability
	Scaling of Timed Automata
	Experiments
	Increasing accuracy
	Increasing number of systems

	Results
	Increasing Accuracy
	Increasing number of systems

	Conclusion and Recommendations
	Tool design
	Conclusion
	Future work

	Scalability
	Conclusion
	Recommendations

	Acronyms
	Calculating the region matrices and vertices
	Region Matrix Calculations
	Calculating Region Vertices

