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[1] Knowledge of hydrological model complexity can aid selection of an optimal prediction
model out of a set of available models. Optimal model selection is formalized as selection
of the least complex model out of a subset of models that have lower empirical risk. This
may be considered equivalent to minimizing an upper bound on prediction error, defined
here as the mathematical expectation of empirical risk. In this paper, we derive an upper
bound that is free from assumptions on data and underlying process distribution as well as
on independence of model predictions over time. We demonstrate that hydrological model
complexity, as defined in the presented theoretical framework, plays an important role in
determining the upper bound. The model complexity also acts as a stabilizer to a
hydrological model selection problem if it is deemed ill-posed. We provide an algorithm for
computing complexity of any arbitrary hydrological model. We also demonstrate that
hydrological model complexity has a geometric interpretation as the size of model output
space. The presented theory is applied to quantify complexities of two hydrological model
structures: SAC-SMA and SIXPAR. It detects that SAC-SMA is indeed more complex than
SIXPAR. We also develop an algorithm to estimate the upper bound on prediction error,
which is applied on five different rainfall-runoff model structures that vary in complexity.
We show that a model selection problem is stabilized by regularizing it with model
complexity. Complexity regularized model selection yields models that are robust in
predicting future but yet unseen data.
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1. Introduction

[2] Hydrological models are conceptualizations and
need to be assessed [Gupta et al., 1998] against observa-
tions of a variable of prediction interest. By prediction of a
variable of interest, we mean the deterministic, simulated
output of the model in response to the measured inputs
alone (i.e., in the example of section 5, the precipitation
and evapotranspiration). Models are estimated on a finite
data sample which even when uncorrupted by measurement
errors can lead to uncertainty about the model, out of the
available candidates, that best approximates the underlying
processes. A model estimated on a finite sample may sig-
nificantly differ from a model estimated on a sufficiently
large sample size due to sampling uncertainty. This leads to
uncertainty in predicting future events. However, even at
large sample sizes where prediction uncertainty due to sam-

pling uncertainty vanishes, two entirely different model
structures or conceptualizations may yield similar predic-
tions. These issues are closely linked to the issue of ill-
posed hydrological model selection problems. Issues of
uniqueness and stability limit the possibility of well-posed
model identification [Gupta and Sorooshian, 1983; Vapnik,
2002; Renard et al., 2010]. While the former is a result of
model predictive equation specification leading to nonuni-
que global optima, the latter is linked to a model’s capacity
to recreate data with little or no hydrological information
or the model’s complexity relative to the amount of avail-
able data [Vapnik, 2002; Pande et al., 2009, 2012].

[3] A hydrological model selection problem is ill-posed
(in Hadamard’s sense) if the optimal solution of the selec-
tion problem either does not exist, is not unique or is not
stable. Here by optimal model we imply that the estimated
model is closest in its predictions of a variable of interest to
the observed in some notion of closeness. By stability, we
here mean parametric stability and distinguish it from its
use in dynamical systems. A solution is stable if small per-
turbations in the parameters of the (solution) model result
in small perturbations in its predictions of a variable of in-
terest. We here note that the parameters can also represent
combinations of various subcomponents of a model, thus
this definition of stability is applicable in a broader context
of model structures. We posit a regularized hydrological
model selection approach that restricts the set of solutions,
where the regularization is with respect to the complexity
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of the problem, and can ‘‘correct’’ the ill-posedness of a
model selection problem (in Tikhonov’s sense) [Vapnik,
1982]. The regularization achieves this correction by
restricting the set of solutions to a smaller set where stabil-
ity is ensured. The use of regularization methods is one of
several ways for solving ill-posed problems and hydrologi-
cal model complexity is one possible basis for stabilization
(to regularize). However, the role of hydrological model
complexity, as it is in this paper, is closely tied to predic-
tion uncertainty due to sampling uncertainty. The paper
therefore studies the issues of ill-posed hydrological model
selection problems and hydrological prediction uncertainty
through its treatment of model complexity.

[4] We define the empirical risk � (also called empirical
error, finite sample prediction error, or finite sample model
performance) as the mean absolute difference between
observed and model predictions of a variable of interest.
For small sample sizes N, the empirical risk can signifi-
cantly differ from its expected value, the expected empiri-
cal risk. The selection of a model that performs best in
expected sense on future unseen data depends on the
expected empirical risk (i.e., the expected risk in valida-
tion) rather than the empirical risk estimated on a single
data realization of finite length. Therefore, we use expected
empirical risk to assess the prediction error or model per-
formance. Since an infinite number of realizations is
needed to calculate a mathematical expectation, the
expected empirical risk cannot be calculated directly and
has to be approximated.

[5] We express the expected empirical risk in terms of
the empirical risk and an upper bound on the deviation of
the empirical risk from its expected value. The size of this
deviation depends on the convergence rate of the empirical
risk to the expected empirical risk. Model complexity influ-
ences this rate. An upper bound for the expected empirical
risk can be given by a sum of empirical risk and a function
of complexity and sample size [Pande et al., 2012].

[6] The related issues of prediction uncertainty, that we
thus address, are associated with the predictability problem
of second or third kind of Kumar [2011] since the deviation
of the empirical risk from the expected risk can either be
due to uncertain boundary conditions, inadequate model
structure or changes in the error of the observations of the
output being assessed against. Novel techniques for effi-
cient parameter uncertainty estimation, data assimilation,
numerical integration, and multimodel ensemble prediction
have been introduced to better describe or tame hydrologi-
cal prediction uncertainty [such as Vrugt et al., 2009; Mor-
adkhani et al., 2005; Kavetski and Clark, 2010; Parrish et
al., 2012]. Bayesian approaches to hydrological model
selection, prediction uncertainty, model complexity, and
regularization have also been well studied [Schwarz, 1978;
Jakeman and Hornberger, 1993; Young et al., 1996; Cava-
naugh and Neath, 1999; Ye et al., 2008; Gelman et al.,
2008]. The use of prior distribution as a regularization term
in a log-likelihood maximization is similar in form to the
regularization proposed in this paper [Gelman et al., 2008].
Ye et al. [2008] compared AIC, BIC, and KIC measures
and showed that an effective complexity measure (and thus
regularization based on it) in KIC, being a finite (though
asymptotically large) sample version of BIC [Ye et al.,
2008], depends on the Hessian of the likelihood function at

the optimum under certain regularity conditions [Cava-
naugh and Neath, 1999; Ye et al., 2008]. Meanwhile in
BIC it depends on model parameter dimensionality. The
regularity conditions are used to replace the need for full
specification (that the observations are generated by a
member of the model space specified by a likelihood func-
tion). These conditions exploit the second-order Taylor se-
ries expansion of a log-likelihood function, certain
assumptions on the prior and large sample size arguments
to justify the use of KIC for model selection [Cavanaugh
and Neath, 1999]. The use of KIC for model selection may
however not be accurate for finite sample sizes. This is
because it is a good approximation for posterior model
probability (integral of the likelihood function over the pa-
rameter space) with an error of O(N�1), where N is the
sample size, when the likelihood function is normally dis-
tributed [Slate, 1994; Tierney and Kadane, 1986] or when
the log-likelihood function is highly peaked near its maxi-
mum even for small N [Kass and Raftery, 1995]. Such con-
ditions rarely hold on the likelihood functions when N is
finite, in particular when it is small.

[7] Jakeman and Hornberger [1993] and Young et al.
[1996] used complexity measures related to the information
matrix. In particular, the seminal work of Young et al.
[1996] on model complexity is quite different from the
notion of complexity discussed in this paper. They identify
a model with lower complexity than another model by
identifying the ‘‘dominant modes’’ of the more complex
model. The lower order model is identified on the basis of
noise-free simulated data from the higher order more com-
plex model. The identification is based on YIC measure
that refers to the inverse of the instrumental product matrix
and is related to the information matrix. The lower order
model explains the output of the more complex model
almost exactly and without ambiguity.

[8] The treatment of prediction uncertainty here
excludes numerical inadequacies in computing the states of
a system under consideration [Kavetski and Clark, 2010].
Further, the aim is not to discuss hydrological model struc-
ture improvements since we only analyze the convergence
of the empirical risk of a hydrological model to its expected
value (for a given hydrological variable of prediction inter-
est) and its dependence on model complexity and available
number of observations. This in turn is conditional on the
set of candidate hydrological models or on a given model
structure and elucidates the relationship between hydrologi-
cal prediction uncertainty, data finiteness and model (struc-
ture) complexity [Ye et al., 2008; Clement, 2011; Pande
et al., 2012].

[9] Here the role of model complexity relative to data
availability in ill-posed hydrological problems (in Hada-
mard’s sense) and in bounding the expected empirical risk
is recognized. The ill-posedness in hydrological model
selection problems appears due to the possibility of the
many-to-one mapping from a set of hydrological processes
to a response variable such as streamflow. The many-to-
one mapping can yield solutions to hydrological model
selection, which in turn is a selection of hydrological proc-
esses, that either are unstable, nonunique, or nonexistent.
Solutions to model selection problems are deemed unstable
when a small variation in the observed variable of interest,
with respect to which the process of model selection
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(of process conceptualizations) is being undertaken, results
in large variation in the preferred sets of hydrological pro-
cess conceptualizations.

[10] We emphasize that model complexity plays the role
of a stabilizer to restrict the set of solutions of an ill-posed
hydrological model selection problem to a subset of the
original set that is compact. A compact set is a set that is
bounded and closed. The restriction of the set of solutions
to a compactum treats the issues of nonexistence of a solu-
tion. Thus, this restriction regularizes the model selection
problem, correcting the ill-posedness by restricting the set
of solutions to a subset where the problem has a solution
that exists, is unique and stable for any set of observations
such as streamflow or evaporation (or any other hydrologi-
cal variable of interest) with respect to which the model
selection problem is defined. The hydrological model selec-
tion is then well posed in Tikhonov’s sense.

[11] The role of model complexity as a stabilizer has
been undertaken in other type of problems such as den-
sity estimation problems [Vapnik, 1982]. However, a sta-
bilizer does not have to be a measure of complexity;
other choices for stabilization are available. But predic-
tion uncertainty crucially depends on model complexity
as defined in this paper. We make minimal assumptions
on the data and the underlying distributions. These
assumptions are explicitly stated. Nonetheless, it is the
issue of obtaining unstable solutions which translates into
finding a widely different process conceptualization as
the number of observations for model selection increases,
that unsettles a modeler the most. Selecting widely differ-
ent process conceptualizations also implies different
model complexities, affecting our confidence in its pre-
dictions. This is because the uncertainty in model predic-
tion, in the sense of the probability in exceedance by an
arbitrary positive number of the deviation of empirical
risk from its expectation, is bounded from above by a
function of model complexity and sample size. Widely
different model complexities for similar sample sizes
would imply different prediction uncertainties and hence
a lack of confidence in model predictions.

[12] We identify an upper bound on the expected em-
pirical risk for any hydrological model as a function of
empirical risk, model complexity, and sample size. This
upper bound for any given sample size serves to distin-
guish between models. This is akin to regularized hydro-
logical model selection wherein a model with minimal
complexity is selected from those which have lower em-
pirical risk [Pande et al., 2009]. Many concentration
inequalities (inequalities that can bound the deviation of a
random variable from its expected value) exist to estimate
such bounds [Boucheron et al., 2004], but most are appli-
cable in hydrological model estimation only when model
predictions are assumed to be independent between any
two time steps. Since such model predictions are never in-
dependent between time steps, we use Markov’s inequal-
ity that does not require independence in model
predictions.

[13] Further, since the treatment of ill-posedness and
prediction uncertainty crucially depend on the estimation
of model complexity, we look at the computation of
model complexity along with its geometric interpretation.
We use mean absolute error as a measure of the empirical

risk that can be interpreted as a measure of distance
between the observed and predicted in a N-dimensional
space, where N is the sample size. Here the sample size is
the number of data points of a time series of a hydrologi-
cal variable of interest such as streamflow or evaporation.
Under a mild assumption, we show that the empirical risk
depends on the distance of a prediction from its mathe-
matical expectation, whose probability of exceedance is a
function of model complexity and sample size. Using the
same probability of exceedance, we show that model com-
plexity, within the framework presented, is the expected
absolute deviation of model prediction from the expecta-
tion of model prediction. This is not an assumption but it
is a consequence of the theory presented in the paper. This
geometrically describes model complexity as a summary
statistic (expectation) of the size of model output space
(measured by mean absolute deviation of predictions from
expected values).

[14] The paper is organized as follows. Section 2 deals
with prediction uncertainty, ill-posedness, and the role of
model complexity. Section 3 then further discusses the
notion of model complexity while section 4 provides a
geometrical interpretation of model complexity. Section 5
then presents two algorithms to implement the theory
presented and applies it on SAC-SMA and SIXPAR
model structures. Section 6 presents a third algorithm to
estimate an upper bound on expected empirical error. It
is applied on five other nonlinear rainfall-runoff model
structures using Guadalupe river basin data set (of daily
streamflow, precipitation, and potential evapotranspira-
tion) to determine models with optimal complexity on
different sample sizes. It is also used to rank the model
structures in terms of its (complexity regularized) suit-
ability for the study area and compare it with the rank-
ings provided by model selection without complexity
regularization and BIC criterion. Finally, section 7
concludes.

2. Prediction Uncertainty and Ill-Posedness

[15] We define � as the absolute deviation of model pre-
diction from the observed at time t, � tð Þ ¼ jy0 tð Þ � y tð Þj,
where y0 tð Þ is an observation of a hydrological variable of
interest at time t, such as streamflow Q(t), and y(t) the
model prediction. By prediction error, we mean the error
that a model makes in predicting a variable of interest at
some unobserved time t. It is assumed that its value is
observed after the prediction has been made. Thus in case
of streamflow, �(t) measures the deviation of the predicted
hydrograph Q(t) from the observed hydrograph Q0 tð Þ. It
follows that j� tð Þ � E � tð Þ½ �j ¼ jjy0 tð Þ � y tð Þj � E jy0 tð Þ�½
y tð Þj�j where E is an expectation operator, formally defined
as E � tð Þ½ � ¼

R
� tð ÞP � tð Þð Þd�. Here P :ð Þ is a probability dis-

tribution function. Since � tð Þ ¼ � t; y0; uð Þ, it then follows
that E � tð Þ½ � ¼

RR
� t; y0; uð ÞP y0; uð Þdy0du where u is a time

series of input forcings. Similarly the expectation of the
model output is defined as E y tð Þ½ � ¼

R
y t; uð ÞP uð Þdu. Since

the distribution of u affects the expectation operator, we
note that the expectation operator of y(t) depends on P(u).
However, the sensitivity of the expectation operator to P(u)
has been suppressed in the remainder of the paper for nota-
tional convenience.
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[16] We can obtain the expected value of �(t) by

E � tð Þ½ � ¼ lim
M!1

XM

j¼1
� tð Þj=M , where M is the number of

realizations and � tð Þj; t ¼ 1; . . . ;N is the jth realization of
a N-dimensional prediction vector. In section 5, we
describe an algorithm to generate such a set of realizations.
We assume that the absolute deviations j� tð Þ � E � tð Þ½ �j are
of the order of the absolute deviation of model prediction
from the expected prediction jy tð Þ � E y tð Þ½ �j at time t, i.e.,
Assumption 1: For some � > 0, let j� tð Þ � E � tð Þ½ �j �
�jy tð Þ � E y tð Þ½ �j for any admissible observed sequence of
outputs y0 tð Þ. The interpretation of the assumption and � is
discussed in a broader context, at the end of this section.

[17] By using the triangle inequality (that states that jaþ
bj � jaj þ jbj for any two real numbers a and b) and
Assumption 1 we can bound the absolute deviation of em-

pirical risk
XN

t¼1
� tð Þ=N

� �
from expected empirical riskXN

t¼1
E � tð Þ½ �=N

� �
:

j
XN

t¼1

� tð Þ �
XN

t¼1

E � tð Þ½ �j

N
�

XN

t¼1

j� tð Þ � E � tð Þ½ �j

N

�

XN

t¼1

�jy tð Þ � E y tð Þ½ �j

N

ð1Þ

As shown later, this last term introduces a tradeoff between
model complexity and sample size.

[18] For any �� 0, let A and B be two events such that

�� <

j
XN

t¼1

� tð Þ �
XN

t¼1

E � tð Þ½ �j

N
ðAÞ

�� <

XN

t¼1

�jy tð Þ � E y tð Þ½ �j

N
ðBÞ

[19] Since the right-hand side (RHS) of event A is less
than or equal to the RHS of event B, it follows that event B
is true whenever event A is true (or A) B). Thus
P Að Þ � P Bð Þ. Here P(A) denotes the probability that event
A is true. then

P

j
XN

t¼1

� tð Þ �
XN

t¼1

E � tð Þ½ �j

N
> ��

0
BBBB@

1
CCCCA � P

XN

t¼1

jy tð Þ � E y tð Þ½ �j

N
> �

0
BBBB@

1
CCCCA
ð2Þ

[20] Using the inequalities in (1), we have now
devised an upper bound on the probability of exceed-
ance for the absolute deviation of empirical risk from
expected empirical risk in inequality (2) above. We here
note that no assumptions have been made on the nature
of the distribution from which � is being sampled. There
exist upper bounds, other than the one presented later in
the paper, for the LHS (left-hand side) of inequality (2),

had � been independently distributed (i.e., if
P �tj�t0 6¼t

� �
¼ P �tð Þ, �t, and �t0 are independently distrib-

uted). This is most often not the case for hydrological
models, underlying the need for devising an upper
bound on the LHS in inequality (2) that does not rely on
the independence assumption.

[21] The RHS probability of inequality (2) is estimated
by Markov’s inequality [Boucheron et al., 2004].
Lemma 1: (Markov’s inequality). If X is an arbitrary pos-
itive random variable and t> 0, then

P X � tð Þ � E X 2½ �
t2

[22] By applying Markov’s inequality on the RHS of in-
equality (2) we obtain inequality (3) below. The RHS can
be split into two terms by expanding the quadratic term and
using the linearity of the expectation operator. We obtain:

P
XN

t¼1

jy tð Þ � E y tð Þ½ �j > N�

 !
�

E
XN

t¼1

jy tð Þ � E y tð Þ½ �j
 !2
2
4

3
5

N 2�2

ð3Þ

¼ 1

N2�2
E
XN

t¼1

jy tð Þ � E y tð Þ½ �j2
" #

þ2
XN

t¼1

Xt�1

t0¼1

E jy tð Þ � E y tð Þ½ �jjy t0ð Þ � E y t0ð Þ½ �j½ �
ð3aÞ

[23] From this equation, we note that the first term in
(3a) contains the sum of variances of y(t). The second term

is a sum of N N�1ð Þ
2 positive terms. Hence, the RHS of in-

equality (3) is always positive.
[24] Further we note that the numerator of the RHS, i.e.,

E
XN

t¼1
jy tð Þ � E y tð Þ½ �j

� �2
� �

, is of O N2ð Þ or less. From

this we can conclude that the numerator can be bounded
from above by a polynomial of N with a maximum order of

2. If we maximize P
XN

t¼1
jy tð Þ � E y tð Þ½ �j > N�

� �
N2�2

with respect to � for each N and denote the value of � that
corresponds to that maximum by �N

max , the inequality in (3)
holds with equality. A function to estimate the RHS can
therefore be obtained by fitting a second-order polynomial

of N to the maximum P
XN

t¼1
jy tð Þ � E y tð Þ½ �j > N�N

max

� �
N2�N

max
2.

[25] Let h ¼ �0; �1; �2f g be a parameter set that defines
the coefficients of the second-order polynomial f h;Nð Þ
describing the RHS of inequality (3). Also, let F h;Nð Þ ¼
f h;Nð Þ=N2 and let � be any nonnegative value. We can
then rewrite inequality (3) to:

P
XN

t¼1

jy tð Þ � E y tð Þ½ �j > N�

 !
� f h;Nð Þ

N2�2
¼ F h;Nð Þ

�2
ð4Þ

[26] We now note that by substituting this new upper
bound into inequality (2) we obtain an upper bound for the
probability:
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P

j
XN

t¼1

� tð Þ �
XN

t¼1

E � tð Þ½ �j

N
> ��

0
BBBB@

1
CCCCA �

F h;Nð Þ
�2

ð5Þ

[27] Then, if we denote �N as the empirical risk on a

sample set of size N �N ¼
XN

t¼1
jy0 tð Þ � y tð Þj=N

� �
and

equating � ¼ F h;Nð Þ
�2 � 0, it holds with probability (1��)

that j�N � E �N½ �j � ��. Substituting
ffiffiffiffiffiffiffiffiffiffiffi
F h;Nð Þ
�

q
for � gives:

jE �N½ � � �N j � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F h;Nð Þ
�

s
ð6Þ

[28] We now have an upper bound on the allowable
range for the deviation of the empirical risk from the
expected empirical risk. Model complexity is embedded in
this inequality containing expected empirical risk and em-
pirical risk. In presence of minimal data the upper bound
(RHS of equation (5)) on the range is crucial. The problem
is stable if the upper bound in the inequality is small for all
N since the solutions such as selected process conceptuali-
zations do not vary widely as N increases. Here ‘‘small’’
may be defined relative to measurement errors present in
the data set. We also note that the RHS bounds the devia-
tion of the empirical risk from its expected value and the
capacity to have such larger deviations depends on the rich-
ness or complexity of the underlying model structure.
Thus, two estimation problems can be ordered based on the
respective magnitudes of the RHS for any N. Since for the
same N and a fixed �, what distinguishes the RHS of the
two problems is the parameter set h, which identifies model
complexity or complexity of model estimation.

[29] We note that the inequality (6) provides an upper
bound on the expected empirical risk:

E �N½ � � �N þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F h;Nð Þ
�

s
ð7Þ

[30] Minimizing the upper bound in the RHS of inequal-
ity (7) yields a model with smaller expected empirical risk
than most of the other potential models. Hence it is pre-
ferred for simulating the unknown future. Thus, a trade-off
between empirical risk and a measure of complexity, as in
RHS of (7), bounds the prediction uncertainty of a pre-
ferred model. It also demonstrates the role that model com-
plexity plays in bounding prediction uncertainty in addition
to its role of inducing stability.

[31] We note that F h;Nð Þ in the RHS also acts as stabi-
lizer to a potential ill-posed hydrological model selection
problem where F h;Nð Þ is a continuous mapping from a
model space (of potential hydrological process conceptuali-
zations) to a positive real line (F h;Nð Þ is nonnegative for
any model by definition, see inequality (4)). The minimiza-
tion of the RHS of (7) is a Lagrangian equivalent of mini-
mizing the empirical risk subject to a constraint on F h;Nð Þ
of type

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F h;Nð Þ

p
� c where c is some positive constant. A

Lagrangian formulation represents a constrained minimiza-

tion (or a maximization) problem as an unconstrained prob-
lem (the Lagrangian), where the constraints enter the
objective function in penalized form. The penalty is defined
by Lagrange multipliers that in turn quantify how binding
the constraints are to the problem. The constrained prob-
lem, whose Lagrangian is equivalent to the RHS of inequal-
ity (7), is to minimize the empirical risk with respect to the
model parameters and h and subject to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F h;Nð Þ

p
� c.

Such a constrained minimization ensures that two selected
models with close empirical risk are not arbitrarily different
(in terms of parameterization, including process conceptu-
alizations). Uniqueness and existence of a solution to a
hydrological model selection problem can be ensured by a
certain choice of � such that the constrained model selec-
tion is restricted to a certain subset of the original hypothe-
sis space as long as it can be ensured that the global
minimizer lies in this subset. Thus, the RHS of inequality
(7) poses any ill-posed hydrological selection problem as a
well-posed one [Vapnik, 1982, pp. 23 and 308].

[32] Thus, the role of � is to control the degree to which a
hydrological model selection problem is regularized. How-
ever, it is a consequence of Assumption 1. Regarding the lat-
ter, �> 0 can be shown to exist for any hydrological model
selection problem based on the triangle inequality such that
Assumption 1 holds. Therefore, Assumption 1 can be stated
as a proposition under minimal assumption (boundedness of
hydrological model prediction in the variables of interest).
However inequality (1), which is a direct consequence of
Assumption 1, is not tight due to the minimalist nature of
Assumption 1. Consequently inequalities (6) and (7) are
weak (though definition and computation of model complex-
ity based on inequality (4) remains unharmed).

[33] Finally, if we let � be some function of N such that
� ! 0 as N!1, the convergence of jE �N½ � � �N j ! 0 as
N ! 1 is ensured. Thus Assumption 1 does not appear to
be a strict assumption if � as an appropriate function of N
can be found such that the preferred model that minimizes
the empirical risk is stable for all N and limits to the model
that minimizes the expected empirical risk. We relegate its
more formal treatment in hydrology to future research.

3. Model Complexity

[34] In the previous section, we suggested that the func-

tion that bounds P
XN

t¼1
jy tð Þ � E y tð Þ½ �j > N�

� �
N2�2 (in-

equality (4)) is a second-order polynomial of data size N,
depending on complexity h. Let f h;Nð Þ ¼ �2N 2þ
�1N þ �0, where h ¼ �0; �1; �2f g. We now formulate an
answer to the question as to why this function indeed
depends on complexity. First, we show why f h;Nð Þ
informs us about the rate of convergence of PN (for brevity

reasons, we define PN ¼ P
XN

t¼1
jy tð Þ � E y tð Þ½ �j > N�

� �
),

i.e., how PN converges to an asymptote with increasing N.
In the next section, we show why h is a measure of com-
plexity, by using its geometric interpretation of a statistic
measuring the size of model output space.

[35] We start by taking a closer look at inequality (4). A
smaller value of f h;Nð Þ, for a given value of N, implies a
tighter upper bound and hence allows smaller values for
PN. For increasing N, PN will reach a certain asymptote,
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and the rate at which this takes place is no larger than the
change of f h;Nð Þ for increasing N. Further, the rate at
which PN reaches an asymptote for a particular model, the
convergence rate, depends on complexity of a model [Vap-
nik, 1982] and allows an intercomparison between any two
models. We note that a more complex model intuitively
requires more observations to have credible predictions
than a less complex model. This translates to a notion that
probability with which empirical risk of a more complex
model deviates from its expected value by a certain thresh-
old (called the probability of error) is higher than that of a
less complex model for a given number of observations
(sample size). The rate at which the probability of error
approaches an asymptote (here to 0), i.e., the rate of con-
vergence, is therefore faster for a less complex model. We
note that the rate of convergence is defined on the left-hand
side (LHS) of inequality (5). However, if the RHS of in-
equality (5) meaningfully controls the rate of convergence,
it should depend on model complexity. Based on our con-
struct, we note that any measure of model complexity
appearing in the RHS of (5) should also bound the rate of
convergence of model predictions to its expected value as
shown in inequality (4). If then, f h;Nð Þ is represented by a
polynomial of maximum order 2, the values of the coeffi-
cients of the polynomial between two models of suffi-
ciently different complexity should be different. Hence h
(the coefficients of the polynomial) is a measure of
complexity.

[36] The parameter set h determines the rate of increase
between two maximum values of PN N 2�2 for two subse-
quent N, i.e., it measures

max
�
jPNþ1 N þ 1ð Þ2�2j �max

�
jPN N 2�2j ð8Þ

We note that the rate of convergence of PN is the rate at
which jPNþ1 � PN j ! 0 with increasing N and for any pos-
itive �. This rate of convergence is also embodied in the
behavior of max

�
jPNþ1 � PN j�2 with N. Further, if

N2 max
�
jPNþ1 � PN j�2 diverges faster for one model com-

pared to the other, the more divergent model is more com-
plex. This is because a faster rate of divergence of the
above quantity implies a slower rate of convergence of
max
�
jPNþ1 � PN j�2 (since the N2 term in N2 max

�
jPNþ1 �

PN j�2 contributes to its divergence and this contribution is
the same for any model, given that PNþ1 � PN converges
to zero for any � and for any model). This in turn embodies
the rate at which jPNþ1 � PN j ! 0 with increasing N and
for any positive �.

[37] An equivalence between (8) and max
�

PNþ1 � PNð Þ�2

is now shown in the following (in equations (9) and (10))
for large N. We note that for N >> 1, the following holds,

N 2 max
�
jPNþ1 � PN j�2 � max

�
jPNþ1 N þ 1ð Þ2 � PN N 2j�2 ð9Þ

[38] This approximate equality is interpreted and shown
to hold for a simple example. We consider a mapping y : Rd

x Rd ! R, where y c; xð Þ ¼ cT x if c and x are defined as col-
umn vectors. Further, let c be a vector with constant compo-
nents and x be a vector with i.i.d. (independently and

identically distributed) stochastic components with 0 mean
and variance 1. We note that such a mapping represents a
class of linear functions on x with parameters c 2 Rd .

[39] Then, since x has zero mean and using the linearity of
the expectation operator (defined on the distribution of x):

Var yð Þ ¼ E y� E y½ �½ �2 ¼ E cT x� E cT x½ �½ �2

¼ E cT x½ �2 ¼ E
Xd

i¼1

cixi

" #2

¼ E
Xd

i¼1

cixi

 !2
2
4

3
5

¼ E
Xd

i¼1

c2
i x2

i þ 2
Xd

i¼1

Xi�1

j¼1

cixicjxj

" #
¼
Xd

i¼1

c2
i E xi½ �2

Since Var xið Þ ¼ E xi � E xi½ �½ �2 ¼ E xi½ �2 ¼ 1, it follows
that:

Var yð Þ ¼
Xd

i¼1

c2
i E xi½ �2 ¼

Xd

i¼1

c2
i ¼ jjcjj

We now use inequality (3) to define an upper bound on the
probability PN. Substituting the above gives:

PN �
NVar yð Þ

N2�2
¼ jjcjj

N�2

Applying this to equation (9), we get for the LHS:

N2 max
�
jPNþ1 � PN j�2 ¼ N2j jjcjj

2

N þ 1
� jjcjj

2

N
j ¼ N 2j �jjcjj

N N þ 1ð Þ j � jjcjj

For the RHS of (9) we note that all variables in the equation
are positive and therefore the absolute value operator may
be removed:

max
�
jPNþ1ðN þ 1Þ2�2j �max

�
jPN N2�2j

¼ max
�
jjjcjjðN þ 1Þj �max

�
jjjcjjNj ¼ jjcjjðN þ 1� NÞ ¼ jjcjj

[40] Hence LHS � RHS. The example allows an inter-
pretation of equation (9), that either side of the equality
estimates the norm of the parameters of the class of linear
functions (or more generally the norm of the constants of
the defined mapping). The norm of the parameters of linear
regressors is used as stabilizers, one example being of ridge
regression to correct ill-posedness issues such as the pres-
ence of multicollinearity in linear regression problems
[Marquardt and Snee, 1975]. Further, we note that the RHS
of equation (9) is the quantity defined in (8) that is expected
to measure model complexity. Indeed, the norm of the pa-
rameters of linear regressors is often used as a measure of
complexity that affects prediction uncertainty (see, e.g.,
Theorem 5.1 of Vapnik [2002]).

[41] Finally, we show that the expression in (8) (that is
measured by h) is related to the rate of convergence embod-
ied in the LHS of (9). We note that max jaþ bj �
max jaj þmax jbj where a and b are two arbitrary variables.
(8a; b it holds that jaj � max jaj and jbj � max jbj. Hence
jaþbj�maxjajþmaxjbj, since jaþbj�jajþjbj�maxjajþ
maxjbj8a;b, but then also maxjaþbj�maxjajþmaxjbj.)
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By substituting aþb by a, it can be shown that
maxjaj�maxjbj�maxja�bj. It then follows that:

max
�
jPNþ1 N þ 1ð Þ2�2j �max

�
jPN N 2�2j

� max� jPNþ1 N þ 1ð Þ2 � PN N 2j�2
ð10Þ

[42] We note that the inequality (10) holds with equality
for the example of linear mappings y c; xð Þ with
LHS¼RHS¼ jjcjj. In Figure 1, multiple curves PN N 2�2

are drawn for subsequent N. The model used to generate
these curves is a conceptual hydrological model. More
details on these calculations can be found in section 5. The
maxima with respect to � of these curves are used for the
fitting of f h;Nð Þ. As one can see, the distance between the
maxima of two subsequent curves (LHS of (10)), denoted
by ‘‘a,’’ increases for increasing N. The RHS of (10) is indi-
cated by ‘‘b’’ and should never be smaller than a. In this
figure the maximum �’s for the different curves are very
close to each other and therefore note that a � b.

[43] However, we note that a � b holds for any model
when N is large. Since then, PN ! PNþ1 and thus �N

max that
maximizes PN N 2�2 converges to �Nþ1

max that maximizes
PNþ1 N þ 1ð Þ2�2. This is because for large N, PN is no longer
a function of N and therefore the �N

max that maximizes
PN N 2�2 is independent of N. Thus for large N it follows that:

PNþ1 N þ 1ð Þ2 �Nþ1
max

� �2 � PN N 2 �N
max

� �2

� PNþ1 N þ 1ð Þ2 � PN N2
� �

�N
max

� �2

or,

max
�

PNþ1 N þ 1ð Þ2�2
� �

�max
�

PN N 2�2
� �

� max
�

PNþ1 N þ 1ð Þ2 � PN N 2
� �

�2

or, a � b.

[44] Here we note that a model with larger complexity will
have a value of h such that the curve f h;Nð Þ will be pointwise
greater than that of a less complex model. Thus, the LHS of in-
equality (10) will be larger, which may imply a larger RHS in
inequality (10) at least for a significantly different LHS.
Finally, we note that if the LHS is significantly different for
two models, then the RHS will be also significantly different.
From approximation (9), the larger the RHS is, the higher is
the model’s complexity. Meanwhile the LHS is the derivate of
f h;Nð Þ with respect to N and depends on h. Thus significant
differences in h measure differences in complexity.

4. Geometric Interpretation

[45] A geometric interpretation exists for the function
F h;Nð Þ in inequality (4). We note that the expected value of
model output is a centroid of model output space (populated
by model output points with certain probability) while a model
output point itself can be anywhere in model output space.
Both are points in a N-dimensional space where the model out-
put space defines a region wherein a model prediction point
may lie. The probability that the distance between those values
exceeds a threshold is larger when the size of model output
space is larger. In this case an average of such a distance for a
finite sample of size N will also be larger. If � represents the

threshold and
XN

t¼1
jyðtÞ � E y tð Þ½ �j

� �
=N represents the dis-

tance between two N-dimensional vectors yN tð Þ ¼ y 1ð Þ;ð
y 2ð Þ; . . . ; y Nð ÞÞ and E yN tð Þ½ � ¼ E y 1ð Þ½ �; E y 2ð Þ½ �; . . . ;ð
E y Nð Þ½ �Þ, this should imply that the probability on the LHS of
inequality (4) is larger if the size of model output space is
larger. For a sufficiently tight upper bound in (4), this leads to
a larger RHS for any N and �.

[46] Two model output spaces are exemplified in Figure
2. Both output spaces have the same shape but the sizes dif-

fer. For both models the probability PN ¼
XN

t¼1
jy tð Þ�

�
E y tð Þ½ �j=N > �Þ in inequality (4) can be calculated by divid-
ing the number of points yN tð Þ outside the circle by the total
number of realizations of yN tð Þ. Since model output space 1
is significantly larger than model output space 2, more real-
izations of yN tð Þ will lie outside the circle and thus the prob-
ability is larger for model 1. In case of a sufficiently tight
upper bound, the function of complexity, F h;Nð Þ should
also be larger. By sufficiently tight we mean that while com-
paring two models, a smaller LHS implies a smaller RHS.

[47] In the previous section, we defined f h;Nð Þ such that
for any N there exists �N

max such that inequality (4) holds
with equality. Also, we note that it holds that

P

 
lim
N!1

XN

t¼1

jyðtÞ�E yðtÞ½ �j

N >�N
max

!
¼ lim

N!1
P

 XN

t¼1

jy tð Þ�E y tð Þ½ �j

N >�N
max

!
:

Details on this can be found in the supporting information.
The following then holds for large N :

P lim
N!1

XN

t¼1

jy tð Þ � E y tð Þ½ �j

N
> �N

max

0
BBBB@

1
CCCCA¼ lim

N!1

1

�N
max

2
F h;Nð Þ

¼ �2

�N
max

2

ð11Þ

Figure 1. Multiple curves PN N 2�2 are drawn for subse-
quent N. The distance between the maxima with respect to
� of two subsequent curves is denoted by aj;jþ1 (LHS of
(10)), where j is the sample size. For larger N this distance
increases due to the second-order polynomial that fits these
maxima. The RHS of (10) is indicated by bj;jþ1 and is
approximately equal to aj;jþ1.
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We here note that this last fraction is always less or equal
to 1 because of the way �2 is constructed. Further, we
define �2 as the asymptotic complexity. The LHS of the in-
equality inside the probability can be rewritten as an
expected value, E jy tð Þ � E y tð Þ½ �j½ �, a constant. Denoting
�� ¼ E jy tð Þ � E y tð Þ½ �j½ �, we have from (11):

P E jy tð Þ � E y tð Þ½ �j½ � > �ð Þ ¼ 1 for � � ��
0 for � > ��

	
ð12Þ

[48] We note that �
�

maximizes PN N 2�2 as N ! 1,
since PN¼ 1 for �

�
and PN¼ 0 for any � > ��. Thus we

have, �� ¼ �N
max as N ! 1. Finally using (11) and (12),

we have �2

��2 ¼ 1 and thus

�2 ¼ ��2 ¼ E jy tð Þ � E y tð Þ½ �j½ �2 ð13Þ

[49] From (13) we can make the following conclusion: if
the model output space is large, we expect the absolute
deviation of a model prediction point from its expected
value to be large as well (RHS of (13)). Thus �2, the as-

ymptotic complexity, is large if the size of model output
space is large.

5. Quantification of Model Structure
Complexity: A Comparison of Complexities of
SAC-SMA and SIXPAR Model Structures

[50] We now explicitly present the algorithm to quantify
model complexity based on the theory presented and apply
it on two hydrological model structures, SAC-SMA and
SIXPAR at daily time steps. These model structures have
been extensively studied in the literature with the latter
model structure used as a simplification of the former [Bur-
nash, 1995; Duan et al., 1992]. In the supporting informa-
tion, short descriptions of both model structures are given.
Tables 1 and 2 display the parameter ranges used in this
study for SAC-SMA and SIXPAR, respectively.

[51] The objective of this application is to show that the
theory distinguishes between the complexity of the two
model structures when they have equivalent parameter
ranges (with similar upper and lower zone capacities and
similar corresponding recession parameters). In order to
compute the complexity, the probability of exceedance in
(4) has to be estimated. Therefore, M realizations of sam-
ples of size N are needed, with N ranging from low to ‘‘suf-
ficiently’’ high values. For this application, we choose
M¼ 2000 (number of realizations) and let the maximum
value of N be 5000 (¼Nmax). Smaller values of N are then
obtained by subsampling data sequences of smaller sizes.
Thus, a total 2000 sequences of 5000 data points for daily
precipitation and evapotranspiration are sampled at once.

[52] In order to randomly sample data sets that are realis-
tic (in hydrologic sense), a simple weather ‘‘resampler’’ is
constructed and used. The weather resampler is such that it
can at least preserve a basin specific correlation structure
between evapotranspiration and precipitation. For the
application presented here, we use over 30 years of daily
precipitation and potential evapotranspiration data from
Guadalupe river basin in the United States [Duan et al.,
2006] from which the weather resampler generates the
required matrix of data sequences.

[53] The weather ‘‘resampler’’ is described in the follow-
ing algorithm.

Algorithm 1. (A simple weather resampler):
1. Obtain daily precipitation and potential evapotranspi-

ration data for a basin.
2. Identify wet (a set of contiguous days with positive

precipitation) and dry (a set of contiguous days with zero
precipitation) spell pairs for each month: determine the

Figure 2. Determination of model complexity by meas-
uring the size of model output space. In two model output
spaces of different size a circle with radius � is drawn. The
vector E yN tð Þ½ � and one instantiation of yN tð Þ are indicated
with points. For a larger output space, the probability of
points yN tð Þ lying outside this circle is larger which implies
the model’s complexity is larger.

Table 1. Parameter Ranges for SAC-SMA Model

Parameter Range

UZTWM (mm) 1–150
UZK (day�1) 0.1–0.5
ADIMP 0–0.4
ZPERC 1–250
LZTWM (mm) 1–1000
LZFPM (mm) 1–1000
LZPK (day�1) 0.0001–0.025
RSERV 0.3
UZWFM (mm) 1–150
PCTIM 0–0.1
RIVA 0
REXP 1–5
LZFSM (mm) 1–1000
LZSK (day�1) 0.01–0.25
PFREE 0.0–0.6
SIDE 0.0

Table 2. Parameter Ranges for SIXPAR Model

Parameter Range

UM (mm) 0–300
BM (mm) 0–3000
z 0–1
UK (day�1) 0–0.5
BK (day�1) 0–0.0796
x 0–10
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amount and length of spell pairs and attach an identifier to
each spell.

3. Construct a 1 month sample for each month: condi-
tioned on a selected month, randomly sample (with replace-
ment) spell pairs, along with evapotranspiration values for
the same days, across different years for the same month,
appending these wet-dry spells till the total length of the
sequence exceeds 30 days.

4. Repeat step 3 for all 12 months of a year.
5. Permute the months (if correlation between months is

to be removed), while maintaining the order of sequences
within each month, to create one year sample.

6. Repeat steps 4 and 5 and create one realization data
sequence at daily time steps with Nmax data points.

7. Repeat step 6 to create M realizations of Nmax data
points.

[54] Using the weather resampler, we obtain M sequen-
ces of Nmax data points for daily precipitation and potential
evapotranspiration. For each realization, data sequences of
smaller sample sizes N ¼ 200 : 50 : Nmax are obtained by
sampling its first N data points.

[55] We here note that the performance of the weather
generator in replicating the statistical properties of the orig-
inal time series crucially depends on the preservation of the
wet/dry spell characteristics [Lall et al., 1996; Mehrotra
et al., 2012; Lee and Ouarda, 2012]. We note that it is a
multivariate uniform kernel resampler conditioned on a
month that assumes independence of one wet/dry spell pair
from another. This assumption can be restrictive but it can
be relaxed by introducing resampling weights based on
proximity in time or uniformly resampling blocks of wet/
dry spells, each containing more than one wet/dry spell
pair. See, for example, Yu [1994], Meir [2000], and Kund-
zewicz and Robson [2004] on the statistical properties of
the class of weakly ‘‘mixing’’ processes, which are the
processes for which the future depends only weakly on the
past (such as ARMA process that is an exponential mixing
process) and for the justification of using block resampling
along the same lines as Algorithm 1. Thus, the simple
weather resampler as detailed in Algorithm 1 can be
improved by extending the definition of a block to contain
more than one wet/dry spell pair. A study of the sensitivity
of complexity quantification to a weather resampler is left
for future research.

[56] Further, we note that our weather resampler is just
one out of many possible algorithms to generate realistic
time series of input forcings. The characteristics of the
algorithm attempts to replicate P(u) of a particular basin in
the definition of the expectation operators defined in sec-
tion 2 and improving this algorithm will improve the preci-
sion of the analysis.

[57] In order to evaluate the LHS of inequality (4) for a
model structure either of SAC-SMA or SIXPAR, we need
to sample its parameter sets from feasible ranges. Since the
choice for a particular parameter set influences the empiri-
cal risk and its expected value, multiple parameter sets for
both models are sampled. Table 1 shows the ranges that are
used for the parameters of SAC-SMA. The ranges of SIX-
PAR model are adapted (shown in Table 2) to get equiva-
lent ranges, e.g., the total lower/upper zone storage
capacity of SAC-SMA is the same as the upper and lower

zone storage capacity of SIXPAR and the geometric means
of the upper and lower zone recession coefficients are the
same as the upper and lower zone recession coefficients of
SIXPAR. This is done so that the effect of magnitude of pa-
rameters on model complexity can be removed before com-
paring model complexities of SAC-SMA and SIXPAR
[Pande et al., 2012]. Five hundred different parameter sets
are then sampled from the respective ranges using hyper-
cube sampling.

[58] Finally, Algorithm 2 presented below is applied on
SAC-SMA and SIXPAR using the data generated by Algo-
rithm 1 to estimate the respective model complexities over
500 parameter sets based on inequality (4).

Algorithm 2. (Quantification of model complexity):
1. For each parameter set of a model, estimate the left-

hand side (LHS) probability in inequality (4), for different
values of N and � using M samples of data set of size N,
resampled using Algorithm 1.

2. Find ~f Nð Þ, a maximum of PN 2�2 with respect to � for
each N. Let the � that maximizes PN 2�2 be �N

max .
3. Repeat steps 1 and 2 for N ¼ 200 : 50 : Nmax .
4. Determine the set of coefficients h ¼ �0; �1; �2f g of

f h;Nð Þ ¼ �2N 2 þ �1N þ �0 that fits data points ~f Nð Þ;



N ¼ 200 : 50 : Nmax g, where model complexity is repre-
sented by h ¼ �0; �1; �2f g.

5. Repeat steps 1–4 to estimate complexity for different
parameter sets of a model structure.

[59] The first four steps of Algorithm 2 estimate the com-
plexity of one parameter set only. Taking the median val-
ues of the ranges from Tables 1 and 2 (for SAC-SMA and
SIXPAR, respectively), two equivalent parameter sets are
obtained. Figure 3a plots the probability of exceedance, PN,
from (4) against � for these parameter sets for N(sample
size)¼ 200 and 4000. The rate at which this probability of
exceedance converges as sample size increases, is the rate
of convergence. As noted before, a slower rate of conver-
gence implies higher complexity. An estimate of �

�
can

also be obtained from this figure. As N!1 the range of �
in which the transition of PN from 1 to 0 takes place
shrinks, eventually converging to the Heaviside function of
(12). The value of �� thus lies in the range of this ‘‘transi-
tion’’ in Figure 3a. But then, also a range of �2 (asymptotic
complexity) can be estimated from it, since �2 ¼ ��2. Fig-
ure 3a therefore also suggests that the asymptotic complex-
ity of SIXPAR model structure is lower than of SAC-SMA
model structure.

[60] Algorithm 2 is applied to obtain 500 estimates of
f h;Nð Þ, corresponding to 500 parameter sets that are
sampled for each model structure. Figure 3b shows the dis-
tributions of probability of exceedances for SIXPAR and
SAC-SMA at �N

max (estimated in step 2 of Algorithm 2) for
different values of N, using the model predictions based on
500 parameter set samples for each model structure. It also
shows the medians of model predictions (solid lines). The
observation that the median probability of exceedance for
SIXPAR is pointwise lower than SAC-SMA indicates that
SAC-SMA is more complex than SIXPAR. The boxplots at
N ¼ 500; 1000; :::; 4000 give an indication of the spread of
the probability of exceedance across the different parame-
ter sets. A second observation that the interquantile ranges
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of SAC-SMA and SIXPAR for the same N do not overlap
significantly, further supports the claim that the median val-
ues of the probability of exceedances, PN, of both models
are different.

[61] Further the coefficient �2, that is estimated in step 4
of Algorithm 2, is the asymptotic complexity and can be
used to compare complexities of SAC-SMA and SIXPAR.
Figure 4 shows the boxplots of �2 for each model structure
(over 500 parameter sets). It shows that various quantile
values of �2 of SIXPAR are smaller than those of SAC-
SMA. It therefore suggests that the asymptotic complexity
of SIXPAR is lower than that of SAC-SMA.

[62] 6. Complexity Regularized Model Selection: Inter-
comparison Between Different Rainfall-Runoff Model
Structures

[63] Section 5 quantified and compared the complexities
of two model structures SAC-SMA and SIXPAR. In this
section, we provide another algorithm that estimates the

upper bound on prediction error given by inequality (7).
The algorithm is then implemented for five different model
structures of varying complexities (that are quantified by
Algorithm 2). The algorithm is presented below as Algo-
rithm 3.

Algorithm 3. (Estimation of upper bound on predic-
tion error):

1. Sample P parameter sets for a model structure Ml.
2. For K values of c ¼ �ffiffiffi

�
p between cmin ; cmaxð Þ on a loga-

rithmic scale, calculate T1 ¼ �N þ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F h;Nð Þ

p
for each pa-

rameter set on a data set D of length N (F h;Nð Þ is
computed by Algorithm 2).

3. For each c, determine the minimum of T1 over the P
different parameter sets. The minimum of T1 yields an opti-
mal parameter set.

4. Calculate T2 ¼ �N 0 for each optimal set corresponding
to a value of c obtained in step 3 on another data set D0, in-
dependent of D, of length N0.

5. Minimize T2 and denote the parameter set and c corre-
sponding to the minimum obtained in step 4 by ��l;N and
c�l;N .

6. Repeat steps 1–4 over the different model structures
l ¼ 1; . . . ; L.

7. Calculate T3 ¼ �N 0 0 for parameter set ��l;N correspond-
ing to each model structure Ml on a third independent data
set D00 of length N00 and rank the model structures 1 to L,
where 1 is given to the structure that has the lowest value
of T3.

[64] The algorithm is implemented for P¼ 500, L¼ 5
(the five model structures are described in Appendix A),
K¼ 10000, cmin ¼ 10�3, cmax ¼ 103, N0 ¼N00 ¼ 5 years
and N takes values of 1

3,
1
2, and 1 year for three different

experiments. Daily precipitation, evaporation, and stream-
flow data set of Guadalupe river basin [Duan et al., 2006]
is used to implement the algorithm. The data lengths
N0 ¼N00 ¼ 5 years are sufficiently large such that sampling
uncertainty is minimal.

[65] Algorithm 3 selects a model of optimal complexity
for each model structure l in steps 2–4. The model for a

Figure 3. Probability of exceedance against � and N. (a)

P
XN

t¼1

jy tð Þ � E y tð Þ½ �j > N�

 !
against � for SAC-SMA

and SIXPAR model are shown for N¼ 200 and N¼ 4000.
The probability of exceedance converges for any � as N!
1. (b) The spread of the probability of exceedance versus
N at � ¼ �N

max , across 500 different parameter samples of
respective model structures. The lines show the median
value at each sample size.

Figure 4. Boxplot of asymptotic complexity. Boxplot for
�2 (asymptotic complexity) of SAC-SMA and SIXPAR
model for parameters sampled from the ranges in Table 1
(SAC-SMA) and ranges equivalent to these ranges (SIX-
PAR). This figure shows that the asymptotic complexity of
SIXPAR model is lower than that of SAC-SMA model.
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given model structure Ml is selected by a split sample test.
The split sample test obtains a penalty c�l;N such that the
upper bound on prediction uncertainty (from equation (7))
is tightest for a model that minimizes this upper bound.
The model that then minimizes the upper bound is the
model selected from the model structure Ml when the data
size is N. The model selected from Ml that corresponds to
��l;N is then complexity regularized and has ‘‘optimal’’ com-
plexity for the given data size N.

[66] The model corresponding to ��l;N has better perform-
ance on future unseen data than a model, say corresponding
to a parameter set ~�l;N that is selected by only minimizing
�N on data D of length N (unregularized model selection).
This especially holds for small sample size N. The robust-
ness in the performance of complexity regularized hydro-
logical model is due to stability imparted by controlling for
complexity. Further, it is a consistent estimator in the sense
that ��l;N ! ~�l;N as N becomes large.

[67] For a given model structure Ml, a model selected
based on complexity regularization ð��l;N Þ performs better
than a model that is selected without regularization ~�l;N on
future unseen data. The performance of ð��l;N Þ on an inde-
pendent data set is a better representative of what a model
structure Ml is capable of than ~�l;N . Hence, the perform-
ance of ð��l;N Þ on an independent data set D00 of length N00 is
used to rank model structures in terms of their suitability to
model the underlying processes of the study area (step 7).

[68] The performances of the models with parameters
ð��l;N Þ (obtained from step 5 of Algorithm 3) and ~�l;N are
compared against the model performance of models corre-
sponding to all other P – 1 parameter sets (P¼ 500). This
is done on a test data set D̂ of size N̂ ¼ 5 years. The test
data set does not overlap with the data sets D of size N that
are used to estimate ð��l;N Þ. The same data sets D are also
used to estimate ~�l;N . Figure 5a displays the boxplots of the
differences between the empirical errors corresponding to
P – 1 parameter sets (excluding ð��l;N Þ) and the empirical
error computed by a model with ð��l;N Þ. It is done so for

three nonoverlapping data sets D of size N for model struc-
ture 1, i.e., l¼ 1. The size of data set D takes values of
N ¼ 1

3,
1
2, and 1 year. Similarly, Figure 5b displays the box-

plots of the differences between the empirical errors of
models corresponding to P – 1 parameter sets (excluding
~�l;N ) and the empirical error computed by a model with
~�l;N .

[69] Figure 5a demonstrates that complexity regularized
model performance is relatively stable with increasing sam-
ple size in the sense that the fraction of positive differences
do not reduce or increase with increasing sample size. The
fraction of positive differences in errors decreases with
increasing sample size for unregularized model selection.
However, regularized model selection is more often better
than nearly all other P – 1 models for all sample sizes than
unregularized model selection. The distribution of differences
is also shifted more to the left for regularized selection than
for unregularized model selection for nearly all sample sizes.

[70] Figure 5 suggests that complexity becomes less rele-
vant (or complexity regularized model selection converges
to nonregularized model selection) when large data sets are
used. This is a desirable property, often termed as consis-
tency, since complexity regularized risk function such as
on the RHS of equation (7) converges to expected empiri-
cal risk. Yet another observation that the distribution of the
differences in error for complexity regularized model selec-
tion is shifted more to lower (negative) values than unregu-
larized model selection is evidence of robust performance
of complexity regularized model selection. This robust per-
formance of complexity regularized model selection is due
to stability (in Tihonov’s sense) imparted to the model
selection problem by penalizing model complexity.

[71] Figure 6 further demonstrates the stability (and thus
robustness) introduced by complexity regularization in
model selection problems. It plots the kernel cumulative
density estimate of the difference between the performance
(empirical error) of models corresponding to ��l;N

� �
and

~�l;N for model structure 1 where 3 different lengths of D,

Figure 5. Distribution of the difference between the performance (empirical error) of models corre-
sponding to a supposed optimal parameter set ��l;N or ~�l;N and all 499 other parameter sets on a test set
D00 from 1990 to 1994 for model structure 1. (a) Regularized model selection ð��l;N Þ. (b) Unregularized

model selection ~�l;N

� �
.
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N ¼ 1
3,

1
2, and 1 year are used to estimate ��l;N

� �
and ~�l;N .

Twenty-four realizations of D for a given N are considered.
These 24 realizations are all even years between 1948 and
1970 and between 1978 and 2000. The empirical errors are
estimated on the same test data set of length 5 years from
1972 to 1976 such that it does not overlap with D. The dis-
tribution functions are fat tailed for negative values for
sample sizes smaller than 1 year, while it is a Heaviside
function at 0 for N¼ 1 year. The skewness in the distribu-
tion function reduces as the sample size increases, ‘‘con-
verging’’ to the Heaviside function for N¼ 1 year. This
demonstrates that complexity regularization is effective in
producing robust performance for small sample size. Fur-
ther, the figure demonstrates that complexity regularized
model selection selects a consistent model.

[72] The model structures 1–3 are now assessed based on
complexity regularized model selection. For a given data D
of length N and a model structure Ml, steps 1–5 of Algo-
rithm 3 provide a model corresponding to the parameter set
��l;N that performs better than most other models corre-
sponding to the other P – 1 parameter sets over future but
yet unseen data. The performance of such a model on an in-
dependent data set D00 (from the same underlying but
unknown distribution) therefore represents the best per-
formance that the model structure Ml can provide.

[73] Algorithm 3 is repeatedly applied using 5 years of
data from 1973 to 1977 to construct 15, 10, and 5 data sets
D of lengths N ¼ 1

3, N ¼ 1
2, and N¼ 1 year, respectively

(for each N, various realizations of D are nonoverlapping)
and eight data sets D00 of length N00 ¼ 5 years spanning
from 1948 to 1997 that do not overlap with D or D0. For
each combination of D and D00, step 7 of algorithm 3 calcu-
lates the ranking of the three model structures. One realiza-
tion of D0 of length N0 ¼ 5 years is also required for
regularized model selection (see steps 4 and 5 of Algorithm
3). A period from 1978 to 1982 is used for D0. This period
is ignored for unregularized model selection since it only
requires nonoverlapping data sets D and D00. This results in
a total of 15�8, 10�8, and 5�8 orderings for N ¼ 1

3, N ¼ 1
2,

and N¼ 1 year lengths of D, respectively. Note that a
model is selected for a given model structure on each real-
ization of D of length N. Thus, three models corresponding
to the three model structures are selected on each D. These
models represent the best that the corresponding model
structures can do in replicating the observations. The per-
formance of these models on a nonoverlapping data set D00

is therefore used to rank the corresponding structures in
terms of their (complexity regularized) suitability for the
study area. The frequency with which a model structure is
ranked the best over the combinations of one realization of
D and all eight realizations of D00 for a given N is then
estimated.

[74] The mean and standard deviation of these frequen-
cies for each model structure and N is provided in Table 3.
The table also provides the same statistics for unregularized
model selection, i.e., when model complexity is not regu-
larized when selecting a model for a given model using D.
The table demonstrates that both regularized and unregular-
ized model selection find model structure 2 to be the best
structure for the study area at N¼ 1 year. The mean fre-
quency is nearly the same and high for both. The standard
deviation is low relative to the magnitude of mean fre-
quency in both the cases. For N ¼ 1

2 year, the mean fre-
quency of structure 2 for regularized model selection
remains the same with standard deviation slightly higher
than at N¼ 1 year. This is not the case for unregularized
model selection; its mean frequency of structure being the
best is lower at N ¼ 1

2 year than at N¼ 1 year. The standard
deviation is also higher at N ¼ 1

2 year than at N¼ 1 year. Its
standard deviation is also marginally higher than that of
regularized model selection at N ¼ 1

2 year. Thus, at N ¼ 1
2

year, regularized model selection finds the winning model
structure (i.e., 2, which is asymptotically the best given its
converged performance at N¼ 1 year for both regularized
and unregularized model selection) with higher confidence
than unregularized model selection. By confidence here we
mean that the mean frequency of structure 2 is 2 standard
deviations away from 0 in the case of regularized model
selection, unlike the unregularized case. At N ¼ 1

3 year, the

Figure 6. Kernel cumulative density estimate of the dif-
ference between the performance (empirical error) of mod-
els corresponding to ��l;N and ~�l;N for model structure 1.

Table 3. Mean and Standard Deviation (in Square Brackets) of Winning Frequencies for a Given Na

Regularized Unregularized

N ¼ 1
3 year N ¼ 1

2 year N¼ 1 year N ¼ 1
3 year r N ¼ 1

2 year N¼ 1 year

Structure 1 0.47 [0.35] 0.13 [0.32] 0.13 [0.26] 0.27 [0.38] 0.16 [0.32] 0.13 [0.14]
Structure 2 0.4 [0.37] 0.75 [0.41] 0.75 [0.36] 0.48 [0.47] 0.56 [0.43] 0.78 [0.36]
Structure 3 0.13 [0.21] 0.13 [0.31] 0.13 [0.09] 0.26 [0.39] 0.28 [0.41] 0.1 [0.13]

aTwo cases of complexity regularized and unregularized model selection are contrasted. 15, 10, and 5 nonoverlapping data sets D of lengths N ¼ 1
3,

N ¼ 1
2 and N¼ 1 year, respectively, and eight nonoverlapping data sets D00 of length N00 ¼ 5 years are considered.
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standard deviation of winning frequencies of model struc-
ture 2 for regularized model selection is still lower than
corresponding standard deviation for the unregularized
case. However, this time the regularized model selection
finds model structure 1 to be a better choice for the study
area based on mean wining frequency. Meanwhile unregu-
larized model selection still chooses model structure 2 as
the best although with higher standard deviation than regu-
larized model selection at N ¼ 1

3 year and unregularized
model selection at N ¼ 1

2 year.
[75] The standard deviation of winning frequencies of a

model structure is higher for unregularized than regularized
model selection at each N, except for model structure 1 at
N¼ 1 year (where both regularized and unregularized
model selection appear to have converged to each other in
distribution sense). This indicates that complexity regulari-
zation stabilizes model selection since the variation in the
rankings of the three model structures is lower for regular-
ized model selection. However, stabilizing the variance of
ranking introduces certain bias, especially at low sample
size. This is probably the reason why regularized model
selection at N ¼ 1

3 year finds structure 1 to be marginally
better suited for the study area than structure 2. Nonethe-
less, for regularized model selection, all the model struc-
tures quickly converge to their asymptotic mean
frequencies already at N ¼ 1

2 year. This is not the case for
unregularized model selection.

[76] Figure 7 plots the mean and the standard deviation
of the winning frequencies for model structure 2 for differ-
ent values of N and for regularized and unregularized
model selection. The faster convergence of mean frequency
of being the best structure to its asymptotic value for regu-
larized model selection than unregularized model selection
is evident. Further, the difference in the standard deviation
of the frequencies reduces with increasing sample sizes. It
again demonstrates the role complexity as a stabilizer to
model selection problems. It controls for potential ill-
posedness in model selection by controlling the variance of

selecting a model for a given model structure. Finally, the
convergence of the ordering of model structures provided
by regularized and unregularized model selection at N¼ 1
year (as shown in Table 3 and Figure 7) is evidence of con-
sistent selection by the former.

[77] The ordering of model structures based on complex-
ity regularized selection is also compared with the ordering
estimated by BIC [Kass and Raftery, 1995]. The estimation
of BIC requires maximum likelihood parameter estimation.
We therefore acknowledge a weakness of such a compari-
son since we here limit ourselves to P samples of parameter
sets for each model structure Ml. We also note that BIC
tends to favor higher order models. BIC is estimated based
on the following steps for each model structure: (1) A Gen-
eral Likelihood function and a Markov Chain Monte Carlo
parameter sampler used in Pande [2013b] is used to obtain
maximum likelihood parameter estimates that includes the
parameters of the model structure and the parameters of the
error model. (2) The maximum likelihood parameter esti-
mates of the error model (after excluding the maximum
likelihood parameters of the model) are then used alongside
the P sampled parameter sets to estimate a model that has
the maximum likelihood value amongst P candidates mod-
els corresponding to the P sampled parameter sets. (3) BIC
is estimated using the parameter set out of the sampled P
parameter sets, that maximizes the General Likelihood
function.

[78] The General Likelihood function assumes a general
distribution for the errors (residuals) between observations
and model predictions. It accommodates autocorrelation
and nonzero higher order moments of error (such as skew-
ness and kurtosis). The parameters that describe the distri-
bution of errors therefore include parameters related to the
considered hydrological model structure and the parameters
related to the general distribution function for errors that
are not explained by the model structure.

[79] Table 4 shows the resulting frequencies for the
ordering, using the estimation of BIC on the same eight test
sets D00 as used in Table 3. BIC favors model structure 3
over the other two model structures.

[80] Algorithm 3 is applied again to order model struc-
tures 1, 4, and 5 (see Appendix A, for its description) using
D and D00 realizations covering same periods for N ¼ 1

3,
1
2, 1

years as for the analysis of model structures 1–3. Addi-
tional realizations of D of length N¼ 2 years are considered
in order to demonstrate the convergence of regularized
model selection to unregularized model selection. This is
required since the complexities of considered model struc-
tures are different from the complexities of model struc-
tures 1–3 (see Figure 8). All D and D00 realizations are
nonoverlapping except for N¼ 2 years where a moving
window of 2 years from 1973 to 1978 is considered. This is
required to avoid any overlap between D, D0, and D00 for

Figure 7. Mean and standard deviations of winning fre-
quencies of model stucture 2 for N ¼ 1

3,
1
2, and 1 year. In

regularized model selection a faster convergence is seen
than in unregularized model selection.

Table 4. Frequencies of Rank Numbers Based on Eight Nonover-
lapping Data Sets D00 Using BIC

Rank 1 Rank 2 Rank 3

Model 1 0 0.375 0.625
Model 2 0 0.625 0.375
Model 3 1 0 0
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the case of regularized model selection (see steps 4 and 5
of Algorithm 3).

[81] Table 5 provides the results of model structure
ordering for structures 1, 4, and 5. The table has the same
construct as Table 3. Similar to Table 3, it also demon-
strates that complexity regularization stabilizes model
selection. The ranking based on regularized model selec-
tion is stable with standard deviation of frequencies of
being the best model structure lower than unregualrized
model selection. The unregularized model selection is
highly unstable given that the rankings change till they con-
vergence to the ranking of model structures under regular-
ized model selection (in the sense of the best model
structure) for N¼ 2 years (the rankings, as well as the mean
and standard deviation of the frequencies of each model
structure being the best, is similar for N¼ 2 years and
N¼ 5 years for unregularized model selection).

[82] Figure 9 provides the mean and standard deviation
of the frequencies of model structure 4 that is asymptoti-
cally the best structure amongst 1, 4, and 5 for both regular-
ized and unregualrized model selection (see Table 5). The
figure has the same construct as Figure 7. Similar to Figure

7, the mean of winning frequencies converge faster with
increasing N to the asymptote for regularized model selec-
tion. Meanwhile, its standard deviation of the winning fre-
quencies remains smaller than unregularized model
selection.

7. Discussion and Conclusions

[83] This paper dealt with the problem of ill-posedness
in hydrologic model estimation and hydrologic prediction
uncertainty by expressing the latter as a trade-off between
empirical risk and model complexity. We made no assump-
tions on the probability distribution of underlying processes
and allowed dependency in model predictions over time.
We formulated an expression for expected empirical risk in
terms of empirical risk and a function of complexity, i.e.,
E �N½ � � �N þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F h;Nð Þ=�

p
. We also provided a geomet-

ric interpretation of model complexity as a statistic meas-
uring the size of model output space. We however note that
the notion of complexity used in this paper is not unique,
several other notions exist [see, e.g., Ye et al., 2008; Young
et al., 1996].

[84] We emphasized the need to consider model com-
plexity if the expected empirical risk of two different mod-
els is to be compared given a finite sample for model
estimation. In doing so, we provided an algorithm to calcu-
late model complexity of an arbitrary hydrologic model
and applied it to two hydrological model structures, SIX-
PAR and SAC-SMA. We found SIXPAR to have a smaller
asymptotic complexity than SAC-SMA. We also provided
an algorithm (Algorithm 3) based on the presented theory
to calculate the prediction error. We applied it on five com-
plex model structures with multiple states and fluxes that
differed only in the number of routing reservoirs. The com-
plexity regularized model selection based on Algorithm 3
was then compared with unregularized model selection that
involved no penalization on model complexity. Both the
selection problems were found to converge which provided
evidence that complexity regularized model selection is a

Figure 8. Boxplot of asymptotic complexity (�2) for
model structures 1–5. The figure shows a similar asymp-
totic complexity for model structures 1–3, but different val-
ues for model structures 4 and 5.

Figure 9. Mean and standard deviations of winning fre-
quencies of model structure 4 for N ¼ 1

3,
1
2, 1, and 2 year.

Table 5. Mean and Standard Deviation (in Square Brackets) of
Winning Frequencies for a Given Na

N ¼ 1
3 year N ¼ 1

2 year N¼ 1 year N¼ 2 year

Regularized
Structure 1 0.18 [0.17] 0.11 [0.16] 0.03 [0.05] 0.1 [0.10]
Structure 4 0.74 [0.23] 0.83 [0.19] 0.78 [0.44] 0.68 [0.40]
Structure 5 0.09 [0.14] 0.06 [0.12] 0.20 [0.27] 0.23 [0.26]
Unregularized
Structure 1 0.32 [0.41] 0.38 [0.43] 0.60 [0.42] 0.20 [0.17]
Structure 4 0.08 [0.23] 0.08 [0.24] 0.15 [0.21] 0.53 [0.26]
Structure 5 0.61 [0.47] 0.55 [0.42] 0.25 [0.22] 0.28 [0.28]

aTwo cases of complexity regularized and unregularized model selection
are contrasted. 15, 10, and 5 nonoverlapping data sets D of lengths N ¼ 1

3,
N ¼ 1

2, and N¼ 1 year, respectively, and five overlapping data sets D of
lengths N¼ 2 year are considered. For data sets D00 eight nonoverlapping
sets of length N00 ¼ 5 years are used.
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consistent estimator. Further, it provided supporting evi-
dence for the role of complexity regularization as a stabi-
lizer of model selection problems. The regularized model
selection was better able to pick the same model structure
as the best approximation on small sample sizes. The varia-
tion in picking the winner and in calculating the frequen-
cies of being a winner were also lower for regularized
model selection than for unregularized model selection at
almost all considered sample sizes.

[85] The theory presented is limited by Assumption 1
and restricted by the lack of assumptions on the underlying
process distribution, data and on the type of hydrological
models used since additional assumptions can facilitate
tighter bounds. Assumption 1 simplifies the relationship
between the deviation of empirical risk from its expected
value and the deviation of prediction of a hydrological vari-
able of interest from its expected value. It assumes that the
former is a multiple of the latter, and therefore implicitly
assumes that the effect of observed time series of a hydro-
logical variable can be encapsulated by a multiplier. Such
an assumption can result in weak upper bounds on rates of
convergence such as in (5) which in turn may result in con-
servative assessment of prediction uncertainty. The lack of
assumptions on the underlying process distribution such as
the assumptions on the error structure and related probabil-
ity distributions can also result in weak upper bounds on
the rate of convergence. However, a lack of such assump-
tions is deliberate since it makes the presented theory
generic and applicable to a wide variety of hydrological
modeling problems.

[86] Our geometric interpretation of model complexity
in part relies on that E jy tð Þ � E y tð Þ½ �j½ � ¼ lim

N!1XN

t¼1
jy tð Þ � E y tð Þ½ �j

� �
=N , where model predictions are

dependent over time. We intend to further investigate the
validity of this statement and estimate complexity of vari-
ous hydrological models to infer contribution of model rel-
ative to input data to prediction complexity and
uncertainty.

Appendix A: Model Structures 1–5

[87] Five conceptual rainfall-runoff model structures
are considered. All five structures have explicit represen-
tation of the unsaturated and saturated zones as nonlinear
reservoirs. The evaporation is a nonlinear function of the
storage (moisture) in the unsaturated zone in all the model
structures. The overland flow is a nonlinear function of
moisture in the unsaturated zone except for model struc-
ture 4 where it is also nonlinearly related to the inverse of
lower zone (saturated) moisture content. Interception is
not considered by any of the model structures except by
model structure 5. Daily precipitation and potential evap-
otranspiration are nonlinearly transformed to overland
flow and actual evaporation, respectively, by all the model
structures. The unsaturated zone contributes to the satu-
rated zone through percolation that itself is a nonlinear
function of storage in the unsaturated zone in all the struc-
tures. The lower reservoir contributes subsurface runoff as
a linear function of its storage. The overland flow and the
subsurface flows are then routed through a set of linear
reservoirs. The five structures also differ in the number of

routing reservoirs. Model structure 1 has three routing res-
ervoirs connected in series, model structures 2 and 4 have
two reservoirs connected in series and model structures 3
and 5 have only one routing reservoir. For a general
description of the model structures, readers are referred to
Pande [2013b].

[88] Acknowledgments. The authors thank the Editor and four refer-
ees including Paul Smith and Bellie Sivakumar for their comments that
helped to improve the quality of the paper.
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