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Abstract

The increasing interest in solar electric propulsion (SEP) techniques, that enable significant propellant mass

savings for a wide class of transfers, has brought about a revolution in the approach to trajectory design and

optimization, as a result of the complexity and diversity of the problem. To date, solutions of different nature

exist, but numerical methods that require significant computational effort and user experience are typically

used already in the early stages of mission design, due to the limited availability of reliable medium-to-low

fidelity design tools for SEP transfers. This research project proposes a novel method that computes transfer

performance parameters for Earth-Mars mass-optimal SEP transfers, by means of empirically derived an-

alytic relations. The method is intended for applications such as concurrent engineering and early-phase

concept development, which require the fast characterization of a broad design space. Besides accommo-

dating a wide range of currently available SEP systems, the method successfully deals with the modelling of

the effect of non-zero infinity velocity at departure and/or arrival.

The methodology that has been applied consists of a first phase of generation and characterization of the

transfers, and of the subsequent selection of the model variables and derivation of model functions and ar-

chitecture. With regard to the generation of the transfers, it is assumed that the transfers are coplanar and

that the initial and target orbits are circular. Hundreds of transfers are optimized in a semi-automatic way

and characterized in terms of thrust profile and transfer performance parameters. In the investigated design

space, different regimes are identified, but approximately 90% of the acceleration range of interest falls into

the thrust-coast-thrust profile for any combination of departure and arrival infinity velocity. For a proper de-

scription of the underlying trends in the transfer parameters, three key variables have been identified, namely

the average acceleration, the total infinity velocity and the infinity velocity at arrival (expressed as a function

of the total infinity velocity). By means of curve-fitting, analytic relations are derived that successfully de-

scribe those trends, limited to the thrust-coast-thrust class of transfers.

The method that is presented here computes near-optimal transfers in terms of ∆V cost, transfer time, trans-

fer angle and departure date. While the first three parameters are the outputs of the curve-fit model men-

tioned above, the departure date is computed by solving analytically the problem of the phasing with Mars, in

a subsequent step. The fit functions that are derived model circle-to-circle planar transfers with an accuracy

in the order of 0.1% with respect to the ∆V , 1.5% with respect to the transfer time and 1.2% with respect to the

transfer angle, successfully dealing with the dependence on the departure and arrival infinity velocities and

generating instant estimates for all relevant transfer parameters. When the model performance is considered

in relation to transfers derived in the full ephemeris model, the errors are within 1% for the ∆V , within 15%

for the transfer time and within 12% for the transfer angle, which, together with the demonstrated efficiency

and simplicity of implementation, make it suitable both for early-stage assessments and for generation of

suitable first guesses.
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1
Introduction

For missions that stay in the inner Solar System, Solar Electric Propulsion (SEP) represents nowadays an en-

abling technology, under consideration for most ongoing and future projects, especially for high∆V missions.

It is known, however, that the continuous nature of the low-thrust transfer optimization problem poses great

challenges to trajectory design [Racca, 2003]. Use of advanced optimization tools implies a significant com-

putational effort and user experience, while in the early design stages implementation of faster and simpler

techniques is advantageous. The subject of this research is related to the derivation of a model that enables

quick computation of the transfer performance parameters, which is intended for applications as concur-

rent engineering and early-stage concept development. In the present chapter, the project is put into context

with regard to mission heritage and state-of-the-art research, in Sections 1.1 and 1.2. Then, the methodology

proposed is introduced and detailed in terms of research objectives, in Section 1.3, and tasks, in Section 1.4.

1.1. Framework

The very first demonstration of SEP as primary propulsion system dates back to 1998, with Deep Space 1

within the framework of NASA’s New Millenium Program [Sovey et al., 2001]. Since then, the technology has

been used in a number of missions beyond geostationary Earth orbit (GEO) [Dankanich, 2010], the most rel-

evant listed in Table 1.1. Nowadays, SEP is considered one of the key technologies for affordable future explo-

ration missions. Its benefits are most significant for missions that stay in the inner Solar System, with specific

regard to missions that require large ∆V s, involving for example multiple targets, big inclination changes or

time-limited deep space rendezvous [Dankanich, 2010]. The decrease of the available power when moving

away from the Sun, as well as the limitations due to the solar arrays technology, are outweighed by the savings

in terms of propellant mass, related to the high exhaust velocities of these systems. This is the reason for the

frequent inclusion of such a propulsion technique in the trade-off for missions with the mentioned features.

Mission Operator Year Type Target

Deep Space 1 NASA 1998 Flyby asteroid 9969 Braille

Hayabusa JAXA 2003 Sample return near-Earth asteroid (25143 Itokawa)

SMART-1 ESA 2003 Orbiter Moon

Dawn NASA 2007 Orbiter asteroids Vesta, Ceres

Hayabusa 2 JAXA 2014 Sample return asteroid Apollo (162173 Ryugu)

Table 1.1: Deep space missions using low-thrust propulsion [Sovey et al., 2001] [Kuninaka and Kajiwara, 2011] [Estublier et al., 2007].

With regard to trajectory analysis, the revolution represented by low-thrust transfers is twofold. The advent

of new propulsion techniques creates further opportunities for efficient transfers, but it also complicates sig-

nificantly the problem of transfer design and optimization. The very low thrust provided by these systems

results in finite-time thrusting periods, meaning that the trajectory is not shaped any longer by gravitational

attraction only. The problem becomes a continuous optimization problem, requiring a fundamentally differ-

ent mathematical approach for the trajectory design [Racca, 2003].
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2 1. Introduction

A large number of methods and tools have been developed in the last 20 years to deal with low-thrust trajec-

tory design. Analytic solutions have been derived, but these are however restricted to specific cases, due to

the complexity of the problem [Conway, 2010]. There has been the effort of extending graphical techniques

such as Tisserand graphs to low-thrust transfers, although limited to simple control laws, in order to preserve

the simplified nature of the technique [Chen et al., 2008] [Campagnola et al., 2014]. Semi-analytical methods

have also become very popular, which assume a shape for the trajectory by means of a known analytic func-

tion, characterized by a small number of parameters. Those parameters are optimized by means of simple

algorithms, and possibly shaped-based solutions are combined with global optimization methods. A review

of some common shapes can be found in [Petropoulos and Sims, 2002], while a more recent discussion is

provided by [Gondelach, 2012]. Although they perform well in generating approximated optimal solutions,

the resulting trajectory may not have a feasible thrust profile, especially for SEP systems where the distance

spacecraft-Sun plays a dominant role [Kluever, 2014].

Due to the limitations that have been pointed out above, numerical optimization methods are typically em-

ployed for the design of low-thrust transfers. They are generally grouped into direct, indirect and stochastic

methods, as detailed in the comprehensive overview provided by [Conway, 2010]. While very advanced nu-

merical methods have been developed, that can deal with complex problems and generate accurate optimal

trajectories, such tools are less suitable for early-stage assessments and broad searches. In fact, in the initial

phases of a project, trajectory analysis consists in the definition of the transfer options and the characteri-

zation of a broad search space. For such activities, efficiency and simplicity of implementation are crucial

features of the methods employed, and outweigh (to a certain extent) aspects like accuracy. Figure 1.1 sums

up some of the most relevant design methods and tools that are currently used for SEP missions, in relation

to the specific phase of the trajectory analysis process.

Figure 1.1: Inventory of SEP design methods and tools, in relation to the corresponding stage of the mission analysis process.

Especially in comparison with the large number of graphical methods, look-up tables and analytic relations

that provide quick estimates for chemical propulsion transfers, the availability of such tools for SEP trajecto-

ries is very limited. A significant gap exists in terms of quick trajectory computation tools, which is shown in

Figure 1.1. They are crucial for applications such as concurrent engineering and early-stage assessments.
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1.2. State of the art

In recent literature, the potential of simple analytic relations that quickly model optimal trajectories, derived

from the analysis and characterization of pre-optimized transfers, has been identified and investigated. In

particular, the strategy proposed consists in generating quantitative trajectory data to targets of interest, and

studying a combination of physics-based and empirical functions to determine the trends in the transfer per-

formance parameters such as ∆V cost and transfer time. Such an approach is most beneficial when target

bodies such as Mars and Jupiter are addressed, which are continuously under study. The methodology was

first applied to the constant-power case, both for chemical-electric orbit-raising missions [Oh et al., 2004] and

interplanetary applications [Oh, 2006]. More recently, the analysis was extended to variable-power optimum

specific impulse transfers by the same group [Oh and Landau, 2010] [Oh and Landau, 2011] [Oh and Landau,

2013], and to some extent also to fixed non-optimum specific impulse systems [Oh and Landau, 2011].

Regarding the variable-power model, circular coplanar orbits are assumed for the celestial bodies, and several

targets in the Solar System are included. A dataset of several thousands of fixed-time mass-optimal transfers

was generated and modelled by means of both physics-based and empirical relations, resulting in a set of

analytic functions to estimate optimum specific impulse and mass fraction. Besides the transfer time and the

system parameters, infinity velocity at departure or at arrival were included as inputs1 . The reported errors

amount to a maximum of 15% for the final mass and 21% for the specific impulse, for all destinations [Oh

and Landau, 2013]. Progress made towards an extended model that accounts for more realistic fixed non-

optimum specific impulse introduced an empirical ∆V correction that depends on the thrust-to-mass ratio

and transfer time [Oh and Landau, 2011]. The reported errors for the extended model amount to a maximum

of +/-15% in the mass fraction for the majority of the data points2 [Oh and Landau, 2013].

A similar methodology has been used in more recent work to parameterize inward and outward SEP transfers

between arbitrary circular orbits. As in the previous studies, the model is derived by analysis of a database of

optimal transfers, and refers to circular coplanar orbits. The main difference in terms of problem formula-

tion lies in the setup of the optimization: mass optimal transfers are found with free transfer time, but with a

defined thrust profile (three sub-arcs: thrust-coast-thrust). As for the dataset generation, circular orbits with

arbitrary radius between 1 and 2 AU are used as departure and target orbits, instead of specific celestial bod-

ies. The four output variables∆V , transfer time, transfer angle and coast angle are parameterized with respect

to the system parameters and the orbits radii, only by means of empirical relations obtained by curve-fitting.

Infinity velocities are not included in the model. Relative errors are in order of a few percentage points for all

variables for current SEP systems, exceeding 5% only in the case of the coast angle [Kluever, 2014].

The main characteristics of the models described above are summarized in Table 1.2. Although the setups

are different, they both show the potential of analyzing pre-optimized transfers to derive more general an-

alytic relations. The errors in the computed transfer parameters are in fact compatible with the results of

preliminary assessments and options investigation, while the efficiency and simplicity of implementation of

such methods allow to carry out broad searches with a limited amount of effort and time. The difficulties of

modelling the discontinuities between different sets of families are pointed out, which results in much better

accuracies if the model is restricted to a specific thrust profile.

Model Obj Assumptions Destinations Model functions Inputs Outputs Accuracy

JPL mass

circular
celestial

bodies

empirical

physics-based

system parameters I∗sp +/−20%

coplanar flight time m∗
f

+8/−15%

fixed T OF infinity velocities m f +/−15% a

Kluever mass

circular

coplanar

t-c-t profile

arbitrary

circular

orbits

empirical

T OF 4%

system parameters ∆V < 1%

radii θT 4%

θC 7%

Table 1.2: General characteristics and performance of SEP modelling tools [Oh and Landau, 2011] [Kluever, 2014].

aFor a limited number of transfers, mass fraction errors exceed 15%. Globally non-optimal solutions that have errors greater than 50%

were omitted [Oh and Landau, 2011].

1Combined effect of non-zero departure infinity velocity and non-zero arrival infinity velocity is not taken into account.
2Results are only presented for the case of Earth-Jupiter transfers.



4 1. Introduction

1.3. Objective Definition

The research project proposes to further investigate the possibility of analyzing a database of existing optimal

transfers to derive simple analytic model functions. In the light of the conducted survey of current methods

and of the study of recent literature, in the coming paragraphs the problem is formulated and detailed, with

specific regard to the innovative aspects and methodology.

1.3.1. Problem Statement

The study is concerned with free-time mass-optimal SEP transfers between circular coplanar orbits. For a re-

alistic description of currently available SEP technology, systems with variable power and fixed non-optimum

specific impulse are considered. A relevant extension with respect to previous studies is the analysis of the

dependence of the transfer performance parameters on the departure and arrival infinity velocities. A suc-

cessful description of this dependence could extend the modelling to a wider range of real applications, and

even pave the way for a generalization to multiple-leg missions. The purpose being the development of a

novel methodology to describe these trends, rather than the repetitive examination of a large number of des-

tinations, the analysis is limited to Earth-Mars transfers. This selection obviously follows from the central role

of the planet in current exploration programs, due to its proximity and its features.

Turning to the operational aspects, it has been decided to derive analytic relations by means of a curve-fitting

process, according to the promising results found in literature. However, in order to gain more insight in the

physics of the problem, an initial phase of characterization of the transfers is introduced. First, trajectories

are optimized with no specification in terms of thrust profile3. Later, before proceeding with the examination

and data fitting, they undergo an extensive analysis and are categorized into distinct families depending on

their characteristics. Since the optimizer is not intended to introduce any novel element but is only used as a

tool to build the database, it was decided to carry out the optimization by means of existing software available

on site, that is compatible with the problem formulation and has been widely tested and used.

1.3.2. Research Questions

For proper definition of the research objectives, the aspects to be examined are formalized through two main

research questions, which are in turn structured into a number of sub-questions:

RQ1 - How can quantitative data be generated so as to effectively capture the main characteristics of mass-

optimal Earth-Mars transfers using solar electric propulsion?

RQ1.1 - What simplifications/assumptions in the problem description are needed to reduce the com-

plexity and diversity of such transfers without causing major inaccuracies?

RQ1.2 - For generation of a representative dataset, what are the key variables and what is the range of

interest and the required resolution for each of them?

RQ1.3 - What are the characteristics of the corresponding transfers in terms of thrust profile, number of

revolutions and typical values of transfer performance parameters?

RQ2 - To what extent can empirical functions derived by curve-fitting describe trends in the transfer param-

eters depending on the system parameters, and account for infinity velocity at departure and arrival?

RQ2.1 - What analytic relations describe these trends best and with what accuracy?

RQ2.2 - What is the performance of the modelling tool resulting from the combination of such model

functions in computing transfers performance parameters?

RQ2.2.1 - What is the performance in relation to transfers between circular coplanar orbits?

Is the requirement of maximum error of 5% for all transfer parameters met, when the analysis

is extended to include the effect of the infinity velocities?

RQ2.2.2 - What is the performance in relation to transfers optimized in the full ephemeris model?

Is the requirement of maximum error of 15-20% for all transfer parameters, that is typically

adopted of the intended applications, met?

3The restriction on the thrust follows from the profile used to describe SEP systems, but no specific sequence or number of arcs is

prescribed.
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1.3.3. Research Objectives

The objectives of the research can be stated as three main goals, by organizing the requirements that follow

from the research questions of Subsection 1.3.2:

OBJ1 - Generation of the database. Model description, establishment of the database structure and compo-

sition, trajectories optimization and subsequent characterization of the generated transfers.

OBJ2 - Model derivation. Examination of the quantitative data, identification of suitable analytic model

functions and integration of the derived expressions into a comprehensive architecture.

OBJ3 - Performance assessment. Model testing and assessment of the performance by means of test cases

derived under the circular coplanar assumption, as well as in the full ephemeris model.

1.4. Methodology

The three research objectives result in three project phases which, for detailed presentation of the methodol-

ogy that has been followed, are described here and organized into tasks. For illustration purposes, the break-

down structure is visualized in Figure 1.2. It is worth pointing out that the three phases of the project are

equally significant in terms of relevance and conclusions drawn, as well as of effort and time consumption.

T1 - Database generation

T1.1 - Model description: Chapter 2

Mathematical modelling of the dynamical environment and propulsion system.

T1.2 - Database structure and composition: Section 3.1

Selection of input and output variables and identification of ranges of interest as well as of discrete

values of each variable that provide sufficient resolution of the design space.

T1.3 - Trajectory optimization: Section 3.2

Implementation aspects, including introduction to the software tools, software verification, setup

and automation of the continuation problem, trajectory optimization.

T1.4 - Transfers characterization: Section 3.3

Analysis and categorization of the optimal transfers, identification of typical thrust profiles and

values of performance parameters and number of revolutions.

T2 - Model derivation

T2.1 - Analysis of zero infinity velocity transfers: Section 4.1

Identification of proper independent variables and derivation of model functions by curve fitting.

T2.2 - Analysis of non-zero infinity velocity transfers: Section 4.2

Identification of proper independent variables and derivation of model functions by curve fitting.

T2.3 - Establishment of model architecture: Chapter 5

Integration of the model functions, phasing problem and description of the full architecture.

T3 - Performance assessment

T3.1 - Residuals analysis: Section 6.1

Study of the significance and distribution of the residuals of the entire dataset.

T3.2 - Testing and verification: Section 6.2

Generation of test cases and determination of the model accuracy in the simplified dynamics.

T3.3 - Comparison with full ephemeris model: Section 6.3

Considerations on accuracy and applicability of the tool in the full ephemeris model.

For easy reference to the table of contents, the list that has just been presented includes the location of each

topic in the report. It can be noticed that the analysis spans over the five chapters that compose the core of the

document, namely Chapters 2 to 6. The remainder of the report consists of this introduction, the conclusions

that have been drawn (Chapter 7) and the additional information that is included in the appendices.
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Figure 1.2: Work Breakdown Structure for the MSc thesis project.



2
Theoretical Background

While the selection of the target and of the technology of interest is considered part of the problem statement,

as it follows from analysis of the motivation and context for the present research, the choices related to models

and methods used originate from a thorough study of the underlying theory. This study has been extensively

documented in the related literature survey [Galletti, 2017], the main findings of which are reported in the

present chapter, adequately revised and commented in the light of what has been found when carrying out

the project. Two main topics are addressed. In Section 2.1, the mathematical models used to describe the

transfers are specified, while in Section 2.2, the methods applied to optimize the transfers are introduced.

2.1. Problem Formulation

The description of the motion of a spacecraft through its interplanetary journey requires the definition of a

suitable reference frame and coordinate system for proper representation of its state vector, as well as the

identification of the most appropriate formulation of the equations of motion that determine the evolution

of such state vector. All these aspects related to the modelling of the trajectory design problem are addressed

in Subsection 2.1.1. However, the mathematical description of a transfer is not restricted to the dynamical

environment, but it must include a model for the system itself, which is the subject of Subsection 2.1.2. It

is pointed out that the considerations presented in the current section account for a twofold analysis. On

the one hand, the inventory and assessment of models that was conducted before the start of the research

project. On the other hand, the availability of functionalities already implemented in the software tools to be

used (DITAN) together with the time needed to implement and test custom ones.

2.1.1. Astrodynamics

The main reference for the writing of the following paragraphs is the theoretical background in [Wakker,

2015], to which the reader is recommended for the definition of common astronomical concepts.

State Vector Representation

This research being concerned with the interplanetary phase of Earth-Mars transfers, when the spacecraft is

outside the sphere of influence of the planets, the heliocentric reference frame is adopted for the description

of the motion. In this frame, the Sun corresponds to the origin of the axes and the ecliptic plane represents

the X Y -reference plane, as shown in Figure 2.1. The +Z -axis thus identifies the ecliptic north pole on the

celestial sphere. The +X -axis defines a reference direction with respect to the celestial sphere, which is typi-

cally the vernal equinox. Finally, the +Y -axis lies in the ecliptic and is chosen to form a right-handed frame

[Wakker, 2015]. Specifically, the mean J2000 ecliptic plane is used in this case as reference plane [Vasile, 2009].

Position and velocity of a spacecraft in the heliocentric reference frame are uniquely defined by six param-

eters, which are represented by a set of coordinates or orbital elements. Both can be expressed in several

ways, which have been considered and compared to the capabilities of the software, as outlined in [Vasile,

2009]. For the analysis of planar transfers between circular orbits, use of a planar coordinates system would

certainly simplify the formulation of boundary conditions. However, DITAN allows the use of polar coordi-

7
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Figure 2.1: Motion of a spacecraft or celestial body in the heliocentric reference frame [Curtis, 2013].

nates only for a specific dynamic model, with constant acceleration, which is not the case for SEP . For this

reason Cartesian coordinates have been adopted, which are easily implemented for planar transfers as they

decouple in-plane and out-of-plane motion as well. Moreover, they are already available in the software and

compatible with any dynamical model without the need for any modification to the source code.

It is worth mentioning that in this study the state vector is composed in fact of a total of seven elements,

since the mass is included on top of the six Cartesian coordinates that have been mentioned.

Dynamical model

The general form of the equations of motion in the full dynamical model is widely known as in Equation 2.1:

d~x

d t
=

d

d t

[
~r

~v

]
=

[
~v

~atot

]
=

[
~v

~g +~fp

]
(2.1)

It can be seen that the motion of the body is the result of two contributions: the central acceleration ~g , that

expresses the gravitational attraction of the main celestial body, and the perturbing acceleration ~fp , which

accounts for all intended or unintended perturbing factors. Typically intended perturbing effects consist of

the acceleration due to the thrust, while the unintended ones are the actual pertubations, among which the

most relevant are the atmospheric drag, the non-spherical gravitational potential, the gravitational potential

of celestial bodies other than the central one, and the solar radiation pressure.

With regard to the unperturbed motion of a spacecraft in a heliocentric orbit (i.e. ~fp =~0), the simplified

dynamics of the two-body problem (2BP) applies. The simplification follows from the assumption that one

body is significantly larger than the second one, under which the motion of this second body about the large

one is described by Equation 2.2 [Wakker, 2015]:

d2
~r

d t 2
=−

µ

r 3
~r (2.2)

where the approximation µ= G(m1 +m2) ≈ Gm1 is introduced and µ represents the gravitational parameter

of the massive body. The analytical solution of Equation 2.2 is the conic section described by Equation 2.3:

r =
H 2/µ

1+e cosθ
=

l

1+e cosθ
(2.3)

where H is the magnitude of the angular momentum (per unit mass), e the eccentricity, l the semi-latus

rectum and θ the true anomaly.
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As for the perturbed motion, an assessment has been carried out to determine the order of magnitude of

each contribution during interplanetary cruise between Earth and Mars. Table 2.1 reports the magnitude

of the perturbing accelerations for a spacecraft located halfway between Earth and Mars (1.25 AU from the

Sun) that travels in a coplanar Solar System. Contributions include the acceleration caused by Earth, Mars,

Jupiter, Moon, Earth’s oblateness, atmospheric drag, radiation pressure and thrust of a typical SEP system

(see Section B for the assumptions and the geometry used to produce Table 2.1). For reference purposes, the

main acceleration due to the Sun attraction is also included.

Acceleration Description Value [m/s2]
~fSun Sun attraction 3.8×10−4

~fE ar th Earth attraction 2.7×10−7

~fM ar s Mars attraction 3.0×10−8

~fMoon Moon attraction 3.3×10−9

~f Jup Jupiter attraction 1.5×10−7

~fdr ag atmospheric drag << 10−10

~f J2 J2 effect (Earth) << 10−10

~fr ad radiation pressure 1.8×10−8

~fT SEP thrust 10−4

Table 2.1: List of perturbing acceleration and their magnitude.

A difference of several orders of magnitude exists between the effect of the Sun and any pertubation, although

they have been computed in the worst-case scenario, with the obvious exception of the thrust that has a

significant impact. This justifies, for the preliminary design of the transfers, the adoption of a two-body

dynamical model in which the thrust represents the only perturbing force.

Propulsive force

The simplified equations of motion that follow from the preceding analysis are those of Equation 2.4:

d2
~r

d t 2
=−

µ

r 3
~r +~fT =−

µ

r 3
~r +

~T

m
(2.4)

The propulsive force ~T generated by the system is determined by the mass flow rate ṁp of the expelled gas,

the expulsion velocity ~ve , the pressure at the nozzle exit area pe , the external pressure pamb and the exit

surface vector ~Ae
1, by means of Equation 2.5:

~T =−ṁp~ve + (pe −pamb)~Ae (2.5)

In order to eliminate the pressure term, the effective exhaust velocity ce or specific impulse Isp,e are typically

used instead, as defined in Equation 2.6. Although the specific impulse is also an effective value, for ease of

notation Isp,e is reduced to Isp in the remainder of this report.

T = ṁp ce = ṁp g0Isp (2.6)

Equation 2.6 leads to the derivation of the last equation of the system, that governs the evolution of the mass:

ṁ =−ṁp =−
T

g0Isp
(2.7)

1The exit surface vector ~Ae is defined as the vector of magnitude equal to the exit surface area Ae and direction normal to such surface.
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Dynamical equations

In conclusion, a simplified dynamic environment has been adopted to describe Earth-Mars transfers, which

is summarized in Equations 2.8 to 2.10:

d~r

d t
=~v (2.8)

d~v

d t
=−

µ

r 3
~r +

~T

m
(2.9)

dm

d t
=−

T

g0Isp
(2.10)

It can be noticed that Equations 2.8 to 2.10 still refer to full 3D model dynamics. The restriction to planar

transfers between coplanar circular orbits has been achieved by the formulation of proper boundary condi-

tions, which is described in detail in Section 3.2.

2.1.2. Propulsion System

The system parameters that are relevant to the transfer design problem are those related to its propulsion

system, as it provides the propulsive force that modifies the trajectory. The complete propulsion system

model is composed of two elements: the thruster model and the power supply model, which in the case of

SEP is based on solar arrays. In the following the formulas that are relevant to the mathematical description

of both are first introduced separately and then combined.

Power Supply Model

In SEP technology, the electric power generation system is based on solar cells, which convert the incoming

solar energy into electrical energy. The generation thus depends on the availability of incoming solar power,

which in turn follows from the Sun-spacecraft distance. At heliocentric distance r AU (measured in AU), the

solar flux is derived from the solar constant W1,AU by means of Equation 2.11 [Lissauser and de Pater, 2013]:

W =
W1,AU

r 2
AU

(2.11)

where W1,AU = 1366 W/m2 is defined conventionally as the mean solar irradiance at a distance of one astro-

nomical unit [Lissauser and de Pater, 2013]. Accordingly, given a solar panel surface A and having defined the

total received solar power at 1 AU as P0 =W1,AU A, the total incoming power at arbitrary heliocentric distance

r follows from Equation 2.12:

Pin = P0

( r0

r

)2
(2.12)

Given the imperfections of the power conversion process, the corresponding generated electrical power de-

pends on an efficiency factor, introduced in Equation 2.13 as ηSP , whose value can be up to 30% for current

space-qualified technology [Fatemi et al., 2005].

PSP = ηSP Pin = ηSP P0

( r0

r

)2
(2.13)

Options exist other than the use of a constant efficiency factor for the effective representation of how the

available power decays, among which the adoption of a variable efficiency factor that accounts for degrada-

tion of the solar arrays, or the adjustment of the exponent of the power loss law. These options have been

compared in an assessment that is fully documented in Section B. It has been concluded that for the require-

ments of the intended application, the inverse-square law has sufficient accuracy for Earth-Mars transfers,

while preserving the simplicity of the relation. The effective input power generated by the solar arrays PSP is

provided to the propulsion system (specifically to the power processor unit, PPU) as well as to the spacecraft

bus:

PSP = PSC +PP PU ⇒ PP PU = ηSC PSP (2.14)

The flowchart in Figure 2.2 depicts the power distribution process to the PPU and the spacecraft bus.
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Figure 2.2: Solar power conversion process and distribution to the system.

Thruster Model

Due to the conditioning and the transformations carried out by the PPU to convert electrical input power

into thruster input power, a factor is introduced to account for this effect:

PT = ηP PU PP PU (2.15)

Besides the losses due to the efficiency of the PPU ηP PU , some more losses are associated with the electrical

efficiency ηe , which accounts for the energy used for the ionization and acceleration process:

P j = ηe PT (2.16)

In Equation 2.16, P j is the effective beam power. From a different perspective, this is the power required for

acceleration of the propellant mass flow to the exhaust velocity, as shown in Equation 2.17 [Ohndorf, 2016]:

P j =
1

2
ṁp c2

e =
1

2
T ce =

1

2
T g0Isp (2.17)

The flowchart in Figure 2.3 depicts the power conversion process from power source to thrust beam.

Figure 2.3: Power conversion process from power source to thrust beam.

The combination of Equations 2.15, 2.16 and 2.17 yields an important relation between the three key param-

eters of electric propulsion systems: thrust (T ), input power (PP PU ) and specific impulse (ISP ). Keeping in

mind that T = ṁp ce , this relation is expressed by Equation 2.18:

T =
2ηeηP PU

g0

PP PU

Isp
ṁp =

2ηeηP PU

g 2
0

PP PU

I 2
sp

(2.18)

Since the systems of interest have constant specific impulse and the efficiency factors are considered constant

as well, Equation 2.18 can be further combined with Equations 2.13 and 2.14 and the inverse-square law turns

out to be valid not only for the available power, but also for the available thrust. If one defines the overall

efficiency of the system η= ηeηP PUηSCηSP , Equation 2.18 becomes:

T =
2η

g0Isp

P0

r 2
AU

ṁp =
2η

g 2
0 I 2

sp

P0

r 2
AU

(2.19)
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2.2. Low-Thrust Transfers Optimization

Trajectory optimization is a dynamic optimization problem which is concerned with a system of non-linear

differential state equations and aims at the minimization of a defined objective function, subject to a number

of dynamic constraints and initial and terminal boundary conditions. The suitability of a specific optimiza-

tion technique to the solution of the problem depends on multiple factors, including the accuracy required,

the dimension of the search space and the properties of the performance index to be optimized. As it has

been mentioned, an existing piece of software is used to generate optimal transfers. The choice was done in

the light of the capabilities of the method that is implemented as well as of the many functionalities of the

tool, which can handle a great variety of models and constraints and can deal with the different stages of the

trajectory design problem, from guess generation to solution refinement. The purpose of this section is the

introduction of the concepts on which the software optimization tool is based. They are extensively discussed

in [Bernelli Zazzera et al., 2002], which is used as a reference for the coming paragraphs.

2.2.1. Optimal Control Problem

The differential equations that describe the dynamic model, subject of Subsection 2.1.1, are summarized in

Equation 2.20:
~̇x = ~f [~x(t),~u(t), t ] t0 ≤ t ≤ t f (2.20)

where vectors ~u(t) and~x(t) represent respectively the vector of control variables and the vector of state vari-

ables. The performance of the system is measured and represented by a functional J of the form:

J [~x,~u, t f ] =φ(~x,~u, t)
∣∣∣
t f

t0

+

∫t f

t0

L[~x,~u, t ]d t (2.21)

For a complete description of the problem, it is also necessary to specify the constraints to which state and

control variables are subjected and the boundary conditions that should be satisfied, as in Equation 2.22:

~G(~x(t),~u(t), t)≥ 0 [t0 ≤ t ≤ t f ] ~ψ(~x(t0),~x(t f ), t f ) = 0 (2.22)

The statement of the optimal control problem is equivalent to require that for the optimal control ~u∗ Equa-

tion 2.23 holds:

J∗ = φ(~x∗,~u∗, t)
∣∣∣
t∗

f

t0

+

∫t∗
f

t0

L[~x∗,~u∗, t ]d t ≤ φ(~x,~u, t)
∣∣∣
t f

t0

+

∫t f

t0

L[~x,~u, t ]d t (2.23)

Having defined the augmented performance index J̃ :

J̃ =
[
φ+~νT ~ψ

]t f

t0

+

∫t f

t0

[
L(~x,~u, t)+~λT (~f −~̇x)+~µT ~G

]
d t (2.24)

the optimality conditions are derived by looking for stationary points of J̃ [Bernelli Zazzera et al., 2002]. For

convenience, the Hamiltonian H and auxiliary function Φ are defined:

H = L(~x,~u, t)+~λT ~f (~x,~u, t)+~µT ~G(~x,~u, t) (2.25)

Φ=φ(~x0, ~x f , t f )+~νT ~ψ(~x0, ~x f , t f ) (2.26)

Because of the introduction of the multiplier functions~λ that appear in the augmented performance index J̃ ,

the size of the dynamical system is doubled, resulting in the adjoint equations Equation 2.28. By setting the

variations δ J̃ to zero, the complete set of necessary conditions (differential-algebraic equations) follows:

~̇x =

(δH

δ~λ

)T
= ~f (~x,~u, t) (2.27)

~̇λ=−

(δH

δ~x

)T
=−

(δL

δ~x

)T
−

(δ~f
δ~x

)T
~λ−

(δ~G
δ~x

)T
~µ (2.28)

(δH

δ~u

)T
=

(δL

δ~u

)T
+

(δ~f
δ~u

)T
~λ+

(δ~G
δ~u

)T
~µ= 0 (2.29)

~λ(t f )=Φ
T
x =

(δφ
δ~x

+~νT δ~ψ

δ~x

)T
∣∣∣∣
t=t f

(2.30)

(Φt +H)
∣∣

t=t f
= 0 (2.31)
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2.2.2. Direct Transcription with FET

Calculus of variations (COV) is the classical theory that deals with trajectory optimization problems and en-

ables the derivation of necessary conditions for optimality. As the resulting problem is typically difficult to

solve, numerical approaches are normally used to handle it, which, generally speaking, can be divided into

two types: direct and indirect. Indirect methods are those that, starting from COV, use the optimality con-

ditions to solve a dynamical system of double size, due to the addition of the adjoint equations. Direct

methods, instead, parameterize the continuous problem to a finite-dimensional non-linear programming

problem (NLP) [Conway, 2010]. A comprehensive description and analysis of both approaches is provided by

[Betts, 1998].

The core algorithm of the software that has been used (DITAN, Direct Interplanetary Trajectory Analysis)

belongs to the latter category and is based on a direct collocation technique using finite elements in time

[Bernelli Zazzera et al., 2002]. The general logic behind using direct transcription to solve trajectory opti-

mization problems consists in translating the original optimal control problem into a NLP problem, made up

by a number of non-linear algebraic equations and one objective function. This can be subsequently solved

with a general optimizer. For a software using direct transcription by finite elements in time (DFET), the logic

of the overall process therefore looks like in Figure 2.4.

Figure 2.4: Logic of software employing direct finite elements transcription [Bernelli Zazzera et al., 2002].

The method implemented by DFET consists of the following phases [Bernelli Zazzera et al., 2002]:

1. The general trajectory optimization problem is decomposed into M phases (either parallel or sequen-

tial), each phase divided into N finite time elements;

2. The optimization problem is stated on each phase j , thus identifying an objective function J j , dynamic

equations ~̇x = ~f j , constraints ~G j ≥ 0 and boundary conditions ~ψ j ≥ 0 (including inter-phase links);

3. In each element, state and control variables are parameterized by means of polynomial basis functions;

4. On each phase j , the problem is first formulated in the weak (integral) form and subsequently dis-

cretized by means of quadrature-sums at Gauss points;

5. A set of non-linear algebraic equations is derived that compose the NLP problem.

The features and the formulation of the NLP problem are summarized in Figure 2.5, in comparison with the

original optimal control problem.

State and control variables ~x(t) and ~u(t) Vector of NLP variables ~y

Objective function J [~x,~u, t f ] Discretized obj. function J (~y)

Non-linear differential equations Non-linear algebraic equations

Inequality constraints ~G(~x(t),~u(t), t)≥ 0 Inequality constraints ~c(~y) ≥ 0

Boundary constraints ψi (~x(t0),~x(t f ), t f ) = 0 Boundary constraints ~bl ≤~y ≤~bu

Figure 2.5: Formulation of the original optimal control problem vs. non-linear programming problem [Bernelli Zazzera et al., 2002].





3
Database Generation and Characterization

The generation of the quantitative data constitutes a fundamental part of the research since it determines

the composition and structure of the dataset in terms of characteristics of the transfers included and of the

variables used to describe them. These aspects have a strong impact on the capabilities of the tool that is the

outcome of this study, since they define what type of transfers it will be able to model, and by means of what

parameters. The purpose of the present chapter is to describe in sufficient detail what choices were made

and why during the generation of the database of trajectories, as well as to draw conclusions from the char-

acterization of the optimized transfers. In Section 3.1 the decisions taken during the setup of the database

are addressed. Section 3.2 focuses on the implementation aspects of the actual data generation, including

the verification of the SW tools and the automation of the optimization process. Attention is also given to the

numerical and practical issues encountered, which have provided an insight into the problem that was essen-

tial to tune the process and to produce meaningful results. Lastly, in Section 3.3, preliminary considerations

about the produced transfers are drawn, which are crucial to introduce the analysis of Chapter 4.

3.1. Database Composition

Several factors have contributed to the eventual structure and composition of the database of trajectories,

the most significant ones being illustrated in the following. With structure and composition of the database,

it is referred to the types of trajectories the database contains, their number, the objective function that is

optimized, the variables that are free to vary, those that are fixed, et cetera. First of all, an extensive survey of

the recent literature identified where interesting trends could be found that could be best analyzed by a curve-

fitting method. It also indicated what existing models could be improved and/or extended and what other

possibilities had not yet been explored, as summarized in Chapter 1. Secondly, applicability in the frame of

the early design stages of real missions was considered. In this regard, staying in an operational environment

for most of the duration of the project significantly enhanced insight into requirements and relevant aspects

of such studies. Lastly, the practicability of studying the different transfer options was taken into account:

computations were run only after making sure that the available software tools would provide reliable results

in a limited amount of time. Cases for which the effort required to set up and complete the optimization was

significantly outweighing the effort of the data modelling were limited as much as possible.

3.1.1. Objective Function

The first choice to be made is concerned with the selection of the type of transfers that are to be included in

the dataset. For interplanetary low-thrust transfers, those trajectories are typically of interest that make use of

low propellant mass and/or enable reaching the target in a realistically short time. One could therefore decide

to optimize the propellant mass, either for free or fixed transfer time, or the time of flight 1. Given the fact that,

for real applications, minimization of the ∆V cost is the priority, final mass has been selected as objective

function. Moreover, in line with the rationale specified above, implementation aspects were considered at

1While mass-optimal transfers can be very long and time-optimal transfers can achieve very high ∆V cost, fixing the transfer time and

optimizing the propellant mass represents a simple way of conducting a trade-off between mass and time, by evaluating the ∆V impact

of reducing the flight time compared to mass-optimal free-time transfers.
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this stage. Given the large number of transfers that are to be derived, these should not be optimized one by

one, but by automating a continuation problem. In this regard, it is important to point out that DITAN is

in general not able to jump from one family of transfers to another, for example with a different number of

revolutions. Therefore, the way the continuation problem is set up (that is to say, what initial guess is used

at each step) significantly affects the class of optimal transfers that are found. In conclusion, it was decided

to produce first a set of minimum-time transfers, which are easily optimized from propagated continuous

tangential thrust solutions. These are then used as initial guess for the mass-optimal transfers. With this

setup, mass-optimal transfers are found that have the same number of revolutions as the corresponding time-

optimal solutions, which limits the transfer times to reasonably short values.

3.1.2. Variables Selection

Following the formulation of the problem described in Section 2.1 and the selection of the objective function,

it is possible to proceed to the definition of the design space to be investigated, with regard to:

1. identification and categorization of the main design drivers and relevant variables;

2. selection of input/output parameters;

3. definition of the variation ranges for the input parameters;

4. iterative adjustment of ranges depending on preliminary analysis of the results.

Figure 3.1 visualizes the outcome of points 1 and 2 by displaying a list of the main model variables, their clas-

sification into inputs/outputs as well as into the following groups: geometric parameters, transfer-specific

parameters and system parameters. Below, characteristics and ranges of interest of each variable are de-

scribed.

Figure 3.1: Summary of the selected input/outputs parameters.

Inputs: Geometric Parameters

Since the analysis is restricted to circle-to-circle planar transfers, the only relevant geometric parameters that

affect the model are initial and final orbit radii. As the aim of this study is not only the derivation of the full

Earth-Mars model, but also the identification of an effective methodology that allows quick extension of such

a model to other destinations, it has been decided to keep those variables under the label of relevant input

parameters. However, for all the practical computations that are reported in the remaining of this report,

initial and final radii are fixed and correspond to the mean semi-major axes of the Earth and of Mars orbit.

Inputs: Transfer Parameters

Departure and arrival infinity velocities have non-zero values for several missions of practical meaning. The

initial infinity velocity is related to the launcher performance and achieved either by direct escape or by using

coast arcs or parking orbits. As for the conditions at arrival, it should be mentioned that typically the thrust

provided by SEP systems is too low for capture to Mars if the relative speed is significant. Therefore, final

infinity velocity close to zero is needed if the same low-thrust engine is used for transfer and capture, or a

separate high-thrust engine becomes necessary [Biesbroek, 2016]. In order not to lose generality, non-zero

values for the arrival infinity velocity are accounted for, which also enables future extension of the model to

multiple-leg missions. The range for the variation of the infinity velocity, both at departure and at arrival, is

selected by looking at the burns of the Hohmann transfer, since transfers for which the initial/final velocity is

smaller than the corresponding Hohmann burn are considered most meaningful. The ∆V of the Hohmann

transfer to Mars orbit amounts to 5.594 km/s, split into two burns of 2.945 and 2.649 km/s (Section A).
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For simplicity, both initial and final velocities are allowed to vary within the same range, specifically from 0 to

2 km/s.

Inputs: System Parameters

The mathematical modelling of the propulsion system carried out in Subsection 2.1.2 has identified four

parameters that have an impact on its performance: initial mass m0, power at 1 AU P0, specific impulse

Isp and propulsion system efficiency η. They define the maximum thrust-to-mass ratio at 1 AU a0 as in

Equation 3.1:

a0 =
T0

m0
=

2η

g0Isp

P0

m0
(3.1)

The thrust-to-mass ratio is the system parameter on which the thrust profile and thus the transfer charac-

teristics depend. Equation 3.1 shows that in terms of thrust-to mass-ratio independent variations of Isp ,

P0, m0 and η are equivalent to varying only one parameter while keeping the other three fixed. However, the

thrust-to-mass ratio is not comprehensive of all aspects of the propulsion system. For transfers with the same

thrust-to-mass ratio at 1 AU, different values of the specific impulse result in distinct propellant masses. For

this reason, it is decided to fix two of the four aforementioned system parameters (efficiency and initial mass)

and to vary specific impulse and power at 1 AU. To conclude, the following choices have been made after

surveying currently available technology:

• Propulsion system efficiency: a constant value of 0.65 is assumed;

• Specific impulse: it is varied within the range 1500 to 5000 s;

• Initial mass: a constant value of 1000 kg is assumed;

• Power at 1 AU: it is varied within the range 4 to 20 kW.

Outputs Parameters

As we are looking into mass-optimal trajectories, choosing the ∆V as most relevant performance parameter

follows naturally. An estimate for the propellant mass is in fact easily derived from the ∆V , and there is no

need to model it independently. The time of flight is let free to vary, and it is therefore another key output

of the optimization in such cases. Finally, it is important to have insight in the geometry of the transfers in

terms of initial and final longitudes, and as a result determine the departure and arrival dates. For this to

be achieved, the problem of the phasing with Mars should be solved. As explained in detail in Section 5.1,

departure and arrival dates can be analytically derived if transfer time and angle are known. Therefore, the

transfer angle is selected as third parameter to be modelled by curve fitting. In Figure 3.1, the initial longitude

is listed as output to show that phasing with Mars is also included in the modelling tool.

Table 3.1 shows a summary of the variables introduced above and of their characteristics. It refers to power-

to-mass ratio, which will be used in the remaining part of the report, instead of to the two distinct variables.

Variable Symbol Unit Type I/O Value Vector

Initial Radius ri [AU] Geometry I Fixed 1

Final Radius r f [AU] Geometry I Fixed 1.524

Initial Infinity Velocity v∞,i [km/s] Transfer I Varied 0-2

Final Infinity Velocity v∞, f [km/s] Transfer I Varied 0-2

P/m at 1 AU P0/m0 [W/kg] System I Varied 4-20

Specific Impulse Isp [s] System I Varied 1500-5000

Efficiency η - System I Fixed 0.65

Transfer Angle θt [◦] Geometry O - -

Initial Longitude θ0 [◦] Geometry O - -

Time of Flight T OF [days] Transfer O - -

Deltav ∆V [km/s] Transfer O - -

Table 3.1: List of the main design drivers and transfer performance parameters, divided into geometry, transfer and system parameters.
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3.1.3. Database Structure

For each of the ranges identified in the previous section, a discretization that aims at capturing a sufficient

number of intermediate points between the chosen lower and upper boundaries, without making the overall

computational effort too heavy, was selected. Discretization is needed with regard to power-to-mass ratio,

specific impulse and infinity velocity.

System Parameters

The discrete values adopted for the system parameters power-to-mass ratio and specific impulse are:

−−−→
P/m|0 =

[
4 8 12 16 20

]
W/kg (3.2)

−→
Isp =

[
1500 2667 3833 5000

]
s (3.3)

Acceptance of these discrete values was done after checking that the corresponding values of the initial thrust

cover the entire range of interest and are fairly distributed over it. As shown in Figure 3.2 and Equation 3.4, the

thrust vector covers the range 106 to 1768 mN (initial mass is always fixed at 1000 kg), which is comprehensive

of currently employed technology for such missions.

~T0 =
[
0.106 0.138 0.199 0.212 0.277

0.318 0.354 0.398 0.415 0.424

0.530 0.553 0.597 0.692 0.707

0.795 0.994 1.061 1.414 1.768
]

N

(3.4)

The distribution over this range is more dense in the lower part (T0 < 0.8 N), which is considered to be a

positive factor since in this interval variations of the performance parameters are faster, as it is shown in

Section 3.3. Moreover, the number and distribution of samples in the range T0 > 0.8 N also allow reliable

analysis of the trends in this region.

Figure 3.2: Visualization of the discrete values of the thrust at 1 AU in relation to P /m at 1 AU and Isp .
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Infinity Velocity

The discretization used in the beginning for the infinity velocity vectors proposed three discrete values of

0, 1 and 2 km/s at each end, resulting in nine possible combinations of departure/arrival infinity velocity.

However, a preliminary analysis of the results showed that a densification was required, which increased the

number from nine to 24 possible combinations. The reasons and the logic of such densification are related

to the specific trends which were found, and will be explained in detail in Section 4.2. For the time being,

it is anticipated that for those trends to be captured both a smaller step size and the exploration of specific

regions of the design space were needed. In terms of step size, the densification resulted in 10 discrete values,

instead of three, which are listed in Equation 3.5:

~v∞ =
[
0 0.125 0.25 0.5 0.75 1 1.25 1.5 1.75 2

]
km/s (3.5)

Although considering all possible combinations would produce 100 (v∞,i , v∞, f ) couples, only 24 have been

included in the database, the reason being the exploration and analysis of specific trends. As a result of these

considerations, which are the subject of Section 4.2, all the pairs of the type v∞,i = v∞, f were considered (10

couples). Moreover, 14 additional combinations were taken into account, for which v∞,i 6= v∞, f , according to

the following logic:

• three combinations for which: v∞,i + v∞, f = 0.25 km/s;

• five combinations for which: v∞,i + v∞, f = 1 km/s;

• five combinations for which: v∞,i + v∞, f = 2 km/s;

• five combinations for which: v∞,i + v∞, f = 3 km/s.

The distribution of the selected couples is visualized in Figure 3.3, over the 10×10 full matrix.

Figure 3.3: The pattern of the selected (v∞,i ,v∞, f ) couples is highlighted. The combinations of interest are marked with an ’X’, while

the colour scale refers to the values of v∞,t ot (= v∞,i +v∞, f ). It is pointed out that the (v∞,i ,v∞, f ) pairs for which v∞,i 6= v∞, f
correspond to specific values of v∞,t ot , resulting in the pattern shown, and in its symmetry.
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For the 24 cases of Figure 3.3, (v∞,i , v∞, f ) couples are reported in Table 3.2. All values are in km/s.

Family #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

v∞,i 0 0.25 0.125 0 0.25 1 0.75 0.5 0.25 0 0.75 2

v∞, f 0 0 0.125 0.25 0.25 0 0.25 0.5 0.75 1 0.75 0

Family #13 #14 #15 #16 #17 #18 #19 #20 #21 #22 #23 #24

v∞,i 1.5 1 0.5 0 1.25 2 1.75 1.5 1.25 1 1.75 2

v∞, f 0.5 1 1.5 2 1.25 1 1.25 1.5 1.75 2 1.75 2

Table 3.2: Discrete values of departure and arrival infinity velocities of the 24 families of transfers that are produced.

Database Composition

In conclusion, the choices that have been made translate into 5×4×24 = 480 distinct combinations of input

parameters, each corresponding to an optimal solution to the transfer problem. In order to make the reading

more clear, the future usage of a number of terms is introduced here:

• the term transfer is used to refer to a specific setup (i.e. combination of inputs);

• a family groups all the transfers which have the same values of initial and final infinity velocities (si-

multaneously), with any arbitrary combination of system parameters (P/m
∣∣
0,Isp );

• a group brings together all the transfers that have the same value of total infinity velocity (as in infinity

velocity at departure plus infinity velocity at arrival).

Therefore the 480 transfers that are derived are arranged into 24 families and 10 groups, as in Figure 3.4.

Figure 3.4: Representation of the layers of the database of transfers.
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3.2. Implementation Aspects

From an operational point of view, the generation of the database has been achieved by using existing soft-

ware in combination with ad hoc developed functions and scripts. Both elements are dealt with in the present

section. Subsection 3.2.1 concerns itself with explaining how the existing piece of software has been used to

implement the setup described in the previous sections. Verification of such implementation, but also of the

SW tool in general, is addressed in Subsection 3.2.2. At last, Subsection 3.2.3 provides details into how the

entire optimization process was automated.

3.2.1. Introduction to the SW Tool

The optimization of individual transfers has been entirely carried out by DITAN, since the software allows

different types of analysis, among which the options guess, optimise and improve. For the complete

optimization of each transfer, multiple DITAN calls are required according to the specific sequence outlined

in Subsection 3.2.3. Each run executes one of the following three analyses [Vasile, 2009]:

• run guess generates a guess by propagating a given control law or solving a simpler problem;

• run optimise optimizes the solution that is provided as input;

• run improve refines the mesh grid according to the quality of the input solution provided.

The type of analysis is specified in an input file that contains all the information needed to build and run

the optimization process. This file has a very complex structure, therefore only a few blocks and features are

detailed here: those that are relevant to implement the simplified dynamics and configuration of the problem.

Guess Generation

The concept used for the generation of the initial guess is forward propagation of initial conditions by using a

guessed control law. The initial conditions do not only include a guessed state vector, but most importantly a

guessed departure date and time of flight. Although the departure date is not relevant to the present case2 , the

guessed transfer time should be guessed carefully or derived from a similar solution. Moreover, among the

basic control laws available, the option chosen wastangential+, which consists of continuous tangential

positive (in the direction of the velocity vector) thrust.

Simplified Dynamics

The simplified unperturbed dynamics derived in Subsection 2.1.1, expressed in Cartesian coordinates and in

the heliocentric reference frame, is easily obtained by means of the commands:

Model 1

Center Sun

Reference Ecliptic

Bodies 0

However, Model 1 implements the full 3D dynamical model, with no restriction to the planar case. More-

over, this formulation expects the specification of Departure and Arrival bodies with respect to which

the boundary conditions are computed. This also means that the full ephemeris model would be used for the

computation. In order to restrict the problem to the circular planar case, the following needs to be done:

• use of the command Departure initial so that initial state values are defined with respect to the

body Center instead of to the planet Earth;

• use of attributes initial and final for the definition of the boundary conditions to specify them as

absolute coordinates;

• external computation of numeric values for the definition of the initial state and the boundary condi-

tions, that correspond to circular planar orbits with semimajor axes of Earth and Mars.

2Because of the use of the circle-to-circle simplification, and later adjustment of the phase.
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Boundary Conditions

Here a list of the conditions that follow from the previous paragraph. The boundary conditions needed to

force planar motion are straightforward:

bcon value state[3] initial = 0.00 bcon value state[3] final = 0.00

bcon value state[6] initial = 0.00 bcon value state[6] final = 0.00

Boundary conditions needed to specify the initial location at 1 AU, with specific value of infinity velocity:

bcon value radius initial = 149597870.7

bcon value velocity initial = [value]

bcon value radial_velocity initial = 0.00

Boundary conditions needed to specify the final location at 1.52 AU, with specific value of infinity velocity:

bcon value radius final = 227936638.9

bcon value velocity final = [value]

bcon value radial_velocity final = 0.00

It becomes clear from the form of the boundary conditions that infinity velocities are forced to be tangential,

as the magnitude of ~v∞ is added to the circular velocity at 1 or 1.52 AU. This is a simplification that is rep-

resentative of real cases, since tangential is the most efficient direction. Results confirm that the tangential

infinity velocity assumption applies to transfers optimized in the full ephemeris model (see Section 6.3).

Engine Model

The dependency of the thrust on the inverse square of the Sun-spacecraft distance can be easily modelled by

means of the built-in Model 2, by specifying maximum thrust and specific impulse [Vasile, 2009].

3.2.2. Software Verification

Although the software has been widely tested and used since its development, specific tests were run with the

purpose of verifying and familiarizing with its functions as well as verifying the setup described in Subsec-

tion 3.2.1. Optimal transfers found in literature were used as reference for the verification. Implementation

of the simplified dynamics introduced in Sections 2.1 and 3.2.1 is found in [Kluever, 2014], in which the in-

terplanetary SEP transfers are optimized with a direct optimization method. Ten test cases were extracted

from the reference, all of them for circle-to-circle planar transfers between 1 and 1.5 AU, and using an in-

verse square thrust model [Kluever, 2014]. Input parameters and outcome of the optimization are reported

in Table 3.3.

Input variables Output variables

P/m
∣∣
0 [W/kg] Isp [s] η [-] TOF [days] Transfer angle [◦] Coast angle [◦] ∆V [m/s]

7 2000 0.58 356.3 251.8 108.8 5419.6

7 3000 0.65 397.5 280.8 80.1 5426.9

7 1500 0.5 339 239.9 121 5417.1

7 1000 0.5 305.6 216.5 144 5412.9

7 5000 0.7 484.1 342.1 18.7 5441.2

10 7000 0.7 483.9 341.6 19.5 5441.1

5 3000 0.65 453.8 321.1 39.6 5436.8

15 3000 0.65 322 226.9 133.5 5414.6

20 3000 0.65 305.4 215.2 145.1 5412.7

25 3000 0.65 295.4 208.1 152.1 5411.9

Table 3.3: On the left: description of the setup. On the right: outputs of the optimization [Kluever, 2014].

The results of the verification done for this study are displayed in Figure 3.5. Errors being within 0.035%

for the ∆V , 0.45% for the transfer time and 0.35% for the transfer angle for all optimal transfers, the proper

performance of DITAN can be considered as verified3.

3After optimality of the solution has been ensured, the transfers were not refined further. We can expect errors to decrease if an improve-

ment of the mesh is performed. This is out of the scope of this section, the purpose being the verification of the agreeement between

the two pieces of software.
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Figure 3.5: Comparison of DITAN results with reference obtained from literature, with respect to ∆V , time of flight and transfer angle.
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3.2.3. Process Automation

Given the large number of optimal transfers to be derived, some additional scripting has been done to make

the optimization process as automatic as possible. First of all, for each of the transfers multiple DITAN runs

are required, with a minimum of one iteration of refinement/optimization (the mesh is first adjusted accord-

ing to the input solution, and the optimization is subsequently run with the improved mesh). Typically, more

than one of such iterations is needed, and potentially also the generation of a dedicated guess. Secondly, a

set of transfers can be generated altogether by continuation, which in this case has been implemented within

each family. On the contrary, the 24 continuation problems corresponding to the 24 families of transfers

have been initiated manually. In the coming paragraphs this logic will be detailed, by following a bottom-up

approach, from inner to outer scripting layers.

Optimization of Individual Transfers

The derivation of each optimal transfer is composed of different steps, displayed in Figure 3.6 and imple-

mented in the Python function full_optimization.py. This function calls DITAN one or more times.

If the path to an input solution is provided, this is used as initial guess, otherwise an adequate initial guess

is generated with DITAN (run guess). After a first optimization is completed (run optimise), the cor-

responding gap file that contains the maximum normalized gaps between boundary and internal nodes is

inspected. If there are elements in the file which are bigger than the specified threshold, iterative refinements

of the mesh (run improve) and subsequent optimizations (run optimise) are run until the desired ac-

curacy is achieved.

Figure 3.6: Logic of the full optimization loop for analysis of each transfer.

Continuation within Each Family of Transfers

Out of the 24 families of transfers that compose the database, a batch of nine families were generated in a first

moment to build the original dataset, while the remaining 15 were optimized in a second moment, following

the densification mentioned in Subsection 3.1.3. The continuation loop used for each of the first nine fam-

ilies is depicted in Figure 3.7. First 20 time-optimal transfers are optimized, by using as a starting point the

Figure 3.7: Continuation loop for generation of the original nine families of transfers.
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continuous thrust propagated guess with the lowest thrust level. Then, each of the time-optimal solutions is

used as guess for the corresponding mass-optimal transfer. This strategy was used because it enables to find

safely all 20 mass-optimal transfers, in an automatic way. Optimizing directly the mass from a propagated

solution would require intermediate steps or adjustments which were found hard to be automated, at least

in this setup.

As for the remaining 15 families, those were derived from the previous batch of trajectories. In this case

the continuation is reduced to the loop represented in Figure 3.8. The ’guess’ family was selected from the

previously derived ones, case by case.

Figure 3.8: Continuation loop for generation of the additional 15 families of transfers.

General Layout

The different scripting layers are integrated in an architecture that mirrors the structure of the database pre-

sented in Subsection 3.1.3. They are displayed accordingly in Figure 3.9.

Figure 3.9: Automatic generation of the database of transfers.
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3.3. Transfers Characterization

A preliminary study of the transfers was conducted before establishing the conclusive structure and compo-

sition of the database. This analysis and the plots produced include only the nine families that composed

the original dataset, and the transfers are examined from two different perspectives. Firstly, for the identi-

fication of typical values and trends of the trajectory performance parameters (Subsection 3.3.1). Secondly,

for characterization of the transfers in terms of number of revolutions, number of coast arcs and sequence

of thrusting/coasting arcs (Subsection 3.3.2). The conclusions that were drawn are summarized in Subsec-

tion 3.3.3, which also explains how those considerations led to rethink the structure of the database.

3.3.1. Preliminary Analysis of Trajectory Parameters

In the coming paragraphs DITAN outputs are visualized and examined with respect to ∆V , transfer time and

transfer angle4. Within each family, the variations of these variables with the initial thrust-to-mass ratio are

highlighted. Typical values and ranges are also compared across the families.

Delta-V

Boundary conditions being equal, the ∆V cost of the transfer typically decreases with increasing thrust-to-

mass ratio, as shown in Figure 3.10. If no infinity velocity is imparted, in the upper range of the thrust-to-mass

ratio vector the ∆V becomes really close to the Hohmann transfer (about 5594 m/s). At the lower boundary

of the thrust-to-mass ratio vector, the ∆V is about 55 m/s higher.

Figure 3.10: Evolution of the ∆V within the family 0-0 (no infinity velocity), ordered by thrust to mass ratio at 1 AU.

The same decreasing trend is observed in all the families. However, an offset between the curves exists due to

the different values of infinity velocities. For this reason, it is convenient to plot the ∆V across families after

removing this offset (equal to the sum of infinity velocity at departure and infinity velocity at arrival). In order

to illustrate the issue, the ∆V data of four distinct families is compared in Figure 3.11. The left-hand side of

the figure displays it before the removal of the offset, while the effect of the removal is shown in the right-hand

side. The format of the right-hand side is used throughout the report to represent ∆V costs. Figure 3.11 shows

that the asymptote and range identified in the case of the family 0-0 are valid for the other families as well

(offset excluded). On top of that, two more features are observed. The curves are not overlapping, meaning

that substracting the offset is not sufficient to capture the way the ∆V decreases when infinity velocities are

4The fourth intended output, namely the initial longitude/departure date, is not obtained by direct modelling of DITAN outputs, but by

a subsequent analysis which is the subject of Section 5.1.
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Figure 3.11: Evolution of the ∆V for four families of the original dataset, ordered by thrust to mass ratio at 1 AU.

non-zero. Moreover, there exist irregularities in the left side of the graph, which suggest the presence of

different regimes. This point will be further explained in Subsection 3.3.2.

Time of Flight

The transfer time also decreases with increasing thrust-to-mass ratio, up to the lower bound provided by the

Hohmann transfer (≈ 259 days). However, no offset removal is needed in this case, as shown in Figure 3.12.

In fact, the values of the time of flight are in the range 265 to 965 days for all the families. The discontinuity

observed between the first two samples and the rest of the data points suggests the presence of transfers with

diverse numbers of revolutions. Irregularities visible in the left part of the graph mirror those mentioned in

relation to the ∆V .

Figure 3.12: Evolution of the transfer time for four families of the original dataset, ordered by thrust to mass ratio at 1 AU.
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Transfer Angle

For the transfer angle, the same trends are observed as for the transfer time (see Figure 3.13). In this case

the range of interest is between 185◦ (close to the Hohmann transfer) and 680◦, which confirms that all the

transfers are completed in less than one or two revolutions.

Figure 3.13: Evolution of the transfer angle for four families of the original dataset, ordered by thrust to mass ratio at 1 AU.

3.3.2. Revolutions and Thrust Profile

The full characterization of the transfers is not limited to the performance parameters but it includes the

number of revolutions and coast arcs, especially to explain the irregularities observed in Subsection 3.3.1.

Number of Revolutions

In the investigated range, the transfers found are always shorter than two revolutions. In the upper part of the

thrust-to-mass ratio vector, thrust levels are sufficiently high to enable transfers shorter than one revolution.

However, for the samples close to the lower bound (i.e. the left part of the plots), no transfer shorter than one

revolution is allowed. Figure 3.14 shows examples of the two cases, by comparing transfers for two distinct

values of initial thrust-to-mass ratio.

Figure 3.14: Earth-Mars transfers on the ecliptic for values of the initial thrust to mass ratio of 0.14 mN/kg (left) and 0.35 mN/kg (right).
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Thrust Profile

Neither the number nor the duration of the coast arcs that define the thrust profile are imposed a priori,

therefore the sequence of ballistic/powered arcs is an output of the computation and is optimized by the

software. According to the diverse number of revolutions, the transfers present different thrust profiles in

the investigated range. Two regimes are observed: a five sub-arc profile for transfers longer than one revo-

lution, and a three sub-arc profile for those shorter than one revolution. The former includes two coast arcs

(left-hand side of Figure 3.15), while the latter only has one coast arc (right-hand side of Figure 3.15). The

Figure 3.15: Earth-Mars transfers on the ecliptic for values of the initial thrust to mass ratio of 0.14 mN/kg (left) and 0.35 mN/kg (right).

The thrust profile is highlighted: powered arcs are coloured, while ballistic arcs are black.

transition occurs at different values of the thrust-to-mass ratio across the families, thus involving a different

number of samples in each of them. For example, the transition happens between 0.138 and 0.198 mN/kg

for the family 0-0, and between 0.212 and 0.276 mN/kg for the family 2-0. The values have been reported for

these specific two families because they identify the lower and upper bounds of this ’transition range’ across

the dataset. They are compared in terms of ∆V in Figure 3.16, where the average thrust-to-mass ratio is used

as independent variable. For the time being, it is anticipated that this variable is used as it allows a better vi-

Figure 3.16: Comparison of the transition between three and five subarc regimes for two distinct families of orbits.

sualization of the trends. The theoretical explaination of this is presented in detail in Section 4.1. It should be

mentioned that the vast majority of the samples falls into the thrust-coast-thrust regime. The most restricting

case is represented by family 2-0, for which the transition occurs for the highest values of the thrust-to-mass

ratio. Even in this case, though, about 90% of the investigated range has the three-arc thrust profile.
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The analysis of the number of revolutions and coast arcs across the database confirms that the irregulari-

ties found in relation to the trajectory parameters can be traced back to the presence of distinct regimes,

which cause the observed discontinuity. From Figure 3.16, it becomes clear that in order to achieve the de-

sired model accuracy, dedicated model functions should be used for each of the two regimes. Given the fact

that the large majority of the transfers are of the type thrust-coast-thrust, covering at least 90% of the inves-

tigated thrust-to-mass ratio range for all families, it has been decided to limit the development of the model

to this class of transfers. It follows a restriction to transfers shorter than one revolution and, accordingly, to

values of the average thrust-to-mass ratio higher than 0.2 mm/s2 , while the upper bound stays unchanged.

3.3.3. Conclusions

The analysis of DITAN outputs enabled a preliminary characterization of the transfers, both in terms of out-

put parameters and of transfer profile. First of all, the performance parameters within each family of transfers

present the expected trends, specifically a decrease with increasing thrust-to-mass ratio until the bound rep-

resented by the Hohmann transfer is approached. For each parameter, ranges of interest have been identified

for the whole dataset. In the case of the∆V , the removal of an offset related to the infinity velocities is required

to allow comparison across families. With regard to the thrust profile, two distinct regimes are observed, with

a transition from a five-arc profile to a three-arc profile when the thrust-to-mass ratio increases beyond a cer-

tain threshold. The threshold depends on the values of the infinity velocities, and therefore changes across

families. Ninety percent of the thrust-to-mass ratio vector has a thrust-coast-thrust profile in all the families.

In conclusion, the trends that are observed seem to be promising for the modelling of the trajectory perfor-

mance parameters. However, the presence of different regimes complicates such modelling. For this reason,

it was decided to restrict the analysis to transfers with thrust-coast-thrust profile. This implies limiting the

validity range of the model to the mentioned 90% of the original thrust-to-mass ratio vector. For illustration

purposes, Figure 3.17 shows the modification performed to the original dataset (top) and the reduced dataset

(bottom), limited to family 0-0.

Figure 3.17: Restriction to thrust-coast-thrust transfers displayed for all trajectory parameters of the family 0-0.
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Model Derivation

The first and core element of the modelling tool consists of a number of analytic functions which are inte-

grated with one another in a specific architecture. They altogether approximate the profile of the transfer

performance parameters ∆V , transfer time and transfer angle. The derivation of the model required several

steps. First of all, the identification of the underlying trends, and of adequate independent variables to cap-

ture them. Secondly, the application of curve-fitting analysis to approximate each of the identified relations.

Finally, the design of an architecture that could effectively combine these fitting blocks. In order to simplify

the process, a methodology was adopted that comprises two consecutive stages. By analyzing the reference

family with no infinity velocity, suitable model functions have been derived for each of the performance pa-

rameters. Such analysis is the subject of Section 4.1. The same model functions have subsequently been

applied to the rest of the dataset, in order to study how to adjust them to include any combination of infinity

velocities, as explained in Section 4.2.

4.1. Analysis of Zero Infinity Velocity Transfers

Having observed similar trends across all families in Section 3.3, the purpose of the present section is the

derivation of analytic relations valid for the reference 0-0 family, which can then be extended to all transfers.

Modelling of the data is achieved through algebraic curve-fitting, and specifically by using the ordinary least

square approach for parameter estimation. Given a set of couples {xi , yi } and a generic fitting model f̃ (x), the

aim is the minimization of the root of the sum of the squares (RSS) of the algebraic residuals |yi − f̃ (xi )|. This

means finding the best fit f (x) among all fitting models f̃ (x) that minimizes the RSS:

√
n∑

i=0

|yi − f (xi )|2 ≤

√
n∑

i=0

|yi − f̃ (xi )|2 (4.1)

For each of the investigated models, the corresponding RSS was optimized by means of the built-in Matlab

function fmincon. The criteria used for the selection of a model function for each variable are:

1. Goodness of the fit, which is expressed by means of the RSS;

2. Complexity of the model, which should be reduced as much as possible;

3. Distribution of the residuals, aiming at an even distribution with respect to the independent variable.

The relevant model basis functions which were considered are listed below:

xk (polynomial)
(

1
x

)k
(hyperbolic) ekx (exponential) ek/x (modified exponential)

4.1.1. Independent Variable: Average Acceleration

The trends to be approximated are those that emerged in Subsection 3.3.1 by plotting the transfer metrics

against the initial thrust-to-mass ratio. Use of this ratio as independent parameter seems natural, however

31
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it does not account for the fact that the acceleration profile is also very much dependent on the mass evolu-

tion during the transfer. This meaning that, even if the initial thrust-to-mass ratios are equal, the propellant

consumption is strongly affected by the value of the specific impulse. As a result, also intermediate and final

values of the thrust-to-mass ratio can be very different for distinct values of specific impulse, despite hav-

ing the same thrust-to-mass ratio at departure. For this reason, the average acceleration is introduced in

Equation 4.2:

ā =
1

2

(
a0 +a f

)
=

1

2

( T0

m0
+

T f

m f

)
(4.2)

This variable accounts for both aspects of the propulsion system: the initial thrust levels and the specific

impulse. From the inverse square law of Equation 2.19 (thrust as a function of the Sun-spacecraft distance),

the thrust-to-mass ratio can then be computed at the end of the transfer:

a f =
T f

m f
=

1

m f

T0

r 2
AU

(4.3)

The use of the average acceleration as independent variable successfully deals with some of the irregularities

which are observed if the initial thrust-to-mass ratio is used. The vanishing of such irregularities is best ob-

served by comparing the top three plots of Figure 4.1, in which the initial thrust-to-mass ratio is used, with

the bottom ones, that use the average acceleration as independent variable.

Figure 4.1: Comparison between the use of initial and average acceleration as independent variable.

It is worth mentioning that unlike the initial thrust-to-mass ratio, the average acceleration is not an input to

the problem, as it depends on the final mass (i.e. on the ∆V ). However, it can be estimated from the inputs,

by approximating the final mass with that corresponding to the Hohmann transfer, as in Equation 4.4:

˜̄a =
1

2

( T0

m0
+

1

m̃ f

T0

r 2
AU

)
m̃ f = m0e−∆̃V H /g0Isp (4.4)
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The symbol ∆̃V H is used to represent an adjusted ∆VH cost. The Hohmann ∆VH should in fact be corrected

by means of the offset mentioned above before computing the final mass, to account for the infinity velocities.

Figure 4.2 analyzes the relative errors on the average acceleration brought about by using the values estimated

with this procedure. Errors have been computed for all 384 cases that compose the definitive dataset. The

histogram on the left-hand side shows how these errors are distributed between 0% and −0.035%, which is

the largest estimation error over the entire database. All errors are negative due to the fact that ∆̃V H slightly

underestimates the low-thrust ∆V , resulting in final mass lower than m̃ f , and in a real average acceleration

higher than estimated. Moreover, in the right-hand side of Figure 4.2 the maximum percent error for each ini-

tial thrust-to-mass ratio value is displayed as a bar. The aim is to show that errors are greater for lower thrust

levels, easily explained by the fact that in those cases the ∆V is farther from the Hohmann reference case.

Relative errors are in all cases very limited, therefore it can be concluded that use of the average acceleration

as independent variable is safe, besides beneficial, since it can be accurately estimated from the inputs.

Figure 4.2: Percent errors in the estimate of the average acceleration: distribution of the errors (left) and maximum relative errors (right).

4.1.2. Modelling the Data

The evolution of the trajectory performance parameters with respect to the average acceleration is modelled

according to the procedure outlined in the above. The results are presented in the following paragraphs.

Delta-V

A linear combination of hyperbolic basis functions provides a good fit for the ∆V . Figure 4.3 shows the fitting

through the data points as well as the residuals distribution. Four fit coefficients are optimized:

∆V = k0,∆V +
k1,∆V

ā
+

k2,∆V

ā2
+

k3,∆V

ā3
(4.5)

Figure 4.3: ∆V fitting through the data points: visualization, residuals distribution and goodness of fit.
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Transfer Time Modelling

A hyperbolic function provides a good fit for the transfer time, in the form of Equation 4.6.

T OF = k0,T OF +
k1,T OF

ā
(4.6)

Figure 4.4 shows the fitting through the data points as well as the residuals distribution.

Figure 4.4: Time of flight fitting through the data points: visualization, residuals distribution and goodness of fit.

Transfer Angle Modelling

A hyperbolic fitting function was chosen for the transfer angle. As for the transfer time, only two coefficients

are optimized (Equation 4.7).

θT = k0,θT
+

k1,θT

ā
(4.7)

Figure 4.5 shows the fitting through the data points as well as the residuals distribution.

Figure 4.5: Transfer angle fitting through the data points: visualization, residuals distribution and goodness of fit.
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4.1.3. Conclusions

After identification of a proper independent variable for the modelling, the best fit in a least square sense was

constructed for each of the three trajectory parameters. The model functions which were built all consist of

linear combinations of hyperbolic basis functions, with two to four parameters to be estimated:

∆V = k0,∆V +
k1,∆V

ā
+

k2,∆V

ā2
+

k3,∆V

ā3

T OF = k0,T OF +
k1,T OF

ā

θT = k0,θT
+

k1,θT

ā
The extension of the three models to the rest of the dataset is the subject of Section 4.2. It is anticipated here

that one of the outcomes of such an extension is the finding that the behaviour of the coefficients ki ,p is more

regular across families if a variant of the model functions is used. Therefore, instead of using the expressions

of Equations 4.5, 4.6 and 4.7, the models are adjusted by forcing the asymptotes to the values corresponding

to the Hohmann transfer, as in Equations 4.8 to 4.10:

∆V =∆VH +
k1,∆V

ā
+

k2,∆V

ā2
+

k3,∆V

ā3
(4.8)

T OF = T OFH +
k1,T OF

ā
(4.9)

θT = θT,H +
k1,θT

ā
(4.10)

The adjustment results in the overall improvement of the model accuracy in terms of maximum error on the

entire dataset, although the coefficients k0,p do not have the optimal value on individual families of transfers.

Figure 4.6 compares DITAN data with the adjusted model functions (i.e. those of Equations 4.8 to 4.10 that

make use of ∆VH , T OFH and θT,H ), and reports the adjusted fit coefficients as well as the goodness of the fit.

Figure 4.6: ∆V , transfer time and angle fitting through the data points: visualization, residuals distribution and goodness of fit.
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4.2. Analysis of Non-zero Infinity Velocity Transfers

The purpose of the present section is to model the dependence of the trajectory parameters on the values of

infinity velocity at departure and at arrival, since they have been found to have an impact, as already men-

tioned in Section 3.3. A preliminary analysis of the optimal transfers has shown that the effect is not sym-

metric between departure and arrival infinity velocity. Moreover, the impact of the excess velocities can be

decomposed into two contributions, which are attributed to the two distinct parameters. They are identified

and defined in Subsection 4.2.1. The two contributions are then analyzed and modelled separately, respec-

tively in Subsections 4.2.2 and 4.2.3. From this investigation, the behaviours are found to be the same for all

three trajectory parameters. However, the significance of the latter contribution is negligible in the case of

the ∆V , while it plays an important role with regard to transfer time and transfer angle. Therefore, although

plots and numerical values are reported for all the variables, the discussion and the comments are for brevity

focused on the time of flight only.

4.2.1. Identification of Independent Variables

For the characterization of the trajectory metrics across families, use of the average acceleration is not suffi-

cient to capture their evolution. For better visualization and analysis of the underlying trends, two additional

variables are defined here:

1. Total infinity velocity v∞,tot , which is the magnitude of the sum of initial and final infinity velocities:

v∞,tot = v∞,i + v∞, f (4.11)

2. Velocity fraction at arrival v̂∞, f , which is the fraction of infinity velocity at arrival, with respect to the

total infinity velocity, and accounts for the distribution of v∞,tot between departure and arrival:

v̂∞, f =
v∞, f

v∞,tot
(4.12)

In Figure 4.7, the velocity fraction at arrival is used as independent coordinate together with the average

acceleration to display the transfer time data (respectively, v̂∞, f along the X -axis and ā along the Y -axis).

Fifteen families are represented, which are arranged into three groups of different colours according to the

Figure 4.7: 3D visualization of the time of flight data against average acceleration and fraction velocity at arrival.

value of total infinity velocity v∞,tot (red: v∞,tot = 1 km/s, blue: v∞,tot = 2 km/s, green: v∞,tot = 3 km/s).

Moreover, for illustration purposes only the average acceleration range 0.2-0.8 mm/s2 is included. By visually

inspecting the data two overlapping trends emerged. Firstly, in general higher values of v∞,tot correspond

to shorter transfers. Secondly, a quadratic trend is observed on the X Z -plane of Figure 4.7. In fact, being
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average acceleration and total infinity velocity equal, the evolution of the transfer time with respect to frac-

tion velocity at arrival appears to follow a quadratic function. Visual inspection of the data suggests that the

two overlapping trends can be analyzed separately, by modelling the impact of v∞,tot first, and applying a

correction depending on v̂∞, f afterwards. By impact, it is referred to the impact of the variable of interest on

the coefficients ki ,p introduced in Subsection 4.1.2, and therefore on the shape of the function p(ā) for the

evolution of the parameter p.

Methodology

First, the behaviour of the hyperbolic coefficients is studied in relation to the total infinity velocity v∞,tot .

A selection of families is used for this analysis, specifically those for which the initial infinity velocity is equal

to the final infinity velocity. These families of transfers are in the following referred to as reference families.

Selecting the reference curves only corresponds to restricting to the Y Z -plane of Figure 4.7, for v̂∞, f = 0.5.

This is the plane represented in Figure 4.8. This restriction also explains the densification mentioned in Sub-

section 3.1.3, which was carried out with the intention of having a minimum of 10 families on this plane.

Figure 4.8: Visualization of the Y Z -plane (v̂∞, f = 0.5) on which the reference curves lie.

The second part of the modelling consists in considering the impact of v̂∞, f and implementing a related

correction. It is equivalent to analyzing the X Z -plane represented in Figure 4.9. In this regard, it is useful to

refer to groups of families, meaning that families are grouped according to the value of v∞,tot . The behaviour

of the hyperbolic coefficients is then studied within each group, and across groups. This is a reason of a

further densification, aiming at having four groups with enough resolution in terms of v̂∞, f in each group.

Subsections 4.2.2 and 4.2.3 address the two modelling steps that have just been described.

Figure 4.9: Visualization of X Z -plane used for analysis of the effect of v̂∞, f .
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4.2.2. Analysis of Reference Curves

Transfer time

The time of flight data of all 10 reference curves is included in Figure 4.10, together with the hyperbolic best fit

through the data points. It is pointed out how the curve flattens as the total infinity velocity increases, getting

closer and closer to the Hohmann asymptote.

Figure 4.10: Time of flight data of reference curves depending on average acceleration and total infinity velocity.

The lowering of the curve is mirrored by the decrease in the hyperbolic coefficient k1,T OF . In fact, this coef-

ficient is simply the excess time (compared to the Hohmann T OFH ) for a value of the average acceleration

equal to 1 mm/s2, as it follows from Equation 4.9. The evolution of k1,T OF for increasing total infinity velocity

is well approximated by a polynomial function of order two, as shown in Figure 4.11.

Figure 4.11: Hyperbolic coefficients k0,TOF and k1,TOF against total infinity velocity.

The total infinity velocity being known, the hyperbolic coefficients k0,T OF and k1,T OF of the corresponding

reference curve are then easily derived from the polynomial functions displayed in light blue in Figure 4.11

and identified by the polynomial coefficients T OFH ,and p1j,T OF (with j = 0,1,2):

k0,T OF = T OFH (4.13)

k1,T OF = p10,T OF +p11,T OF v∞,tot +p12,T OF v2
∞,tot (4.14)
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Transfer angle

Results found for the transfer angle reflect those of the transfer time. In the left-hand side of Figure 4.12 the

lowering of the data is shown, as well as the hyperbolic fitting curves through the data points. The right-hand

side of the same figure depicts the evolution of the coefficients, with the order-two polynomial fit.

Figure 4.12: Left: transfer angle data of reference curves depending on average acceleration and total infinity velocity.

Right: hyperbolic coefficients k0,θT
and k1,θT

against total infinity velocity.

The values of the coefficients k0,θT
and k1,θT

are similarly derived from the total infinity velocity, by means

of the polynomial functions displayed in light blue in the right-hand side of Figure 4.12 and identified by the

polynomial coefficients θT,H = 180◦ and p1j,θT
(with j = 0,1,2):

k0,θT
= 180◦ (4.15)

k1,θT
= p10,θT

+p11,θT
v∞,tot +p12,θT

v2
∞,tot (4.16)

Delta-V

The model function that has been identified for the ∆V comprises four instead of two hyperbolic coefficients.

Although the ∆V curves also flatten with increasing v∞,tot (left-hand side of Figure 4.13), a higher-order poly-

nomial is needed to describe the evolution of the three optimized coefficients k1,∆V , k2,∆V and k3,∆V . The

right-hand side of Figure 4.13 shows the 10 discrete values of the coefficients and the order-three polynomial

functions that best fit these data points, which are displayed in light blue and identified by the polynomial

coefficients ∆VH and pij,∆V (with i = 1,2,3 and j = 0,1,2,3). Given a specific value of total infinity velocity, the

reference curve that models the ∆V evolution with ā is uniquely determined from Equations 4.17 to 4.20:

k0,∆V =∆VH (4.17)

k1,∆V = p10,∆V +p11,∆V v∞,tot +p12,∆V v2
∞,tot +p13,∆V v3

∞,tot (4.18)

k2,∆V = p20,∆V +p21,∆V v∞,tot +p22,∆V v2
∞,tot +p23,∆V v3

∞,tot (4.19)

k3,∆V = p30,∆V +p31,∆V v∞,tot +p32,∆V v2
∞,tot +p33,∆V v3

∞,tot (4.20)
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Figure 4.13: Left: ∆V data of reference curves depending on average acceleration and total infinity velocity.

Right: hyperbolic coefficients k0,∆V to k3,∆V against total infinity velocity.

Summary

A summary of all polynomial fitting functions that approximate the hyperbolic coefficients of the reference

curves is given in Table 4.1. Values of the polynomical coefficients are also included.

p Polynomial function pi0,p pi1,p pi2,p pi3,p

∆V

k0,∆V =∆VH 5593.457 - - -

k1,∆V = p10+p11vi ,t +p12v2
i ,t

+p13v3
i ,t -0.009183 0.062361 -0.520305 2.371807

k2,∆V = p20+p21vi ,t +p322v2
i ,t
+p23v3

i ,t 0.040251 -0.251548 0.161308 0.660989

k3,∆V = p30+p31vi ,t +p32v2
i ,t

+p33v3
i ,t -0.003903 0.021781 -0.016239

-

0.008579

T OF
k0,T OF = T OFH 258.863 - - -

k1,T OF = p10 +p11vi ,t +p12v2
i ,t 1.191444 -12.909801 35.321082 -

θT
k0,θT

= 180◦ 180 - - -

k1,θT
= p10 +p11vi ,t +p12v2

i ,t 0.805611 -8.868851 24.594335 -

Table 4.1: Polynomial model functions, coefficients and goodness of the fit.
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4.2.3. Dependence on Infinity Velocity Fraction

An example of the quadratic trend mentioned in Subsection 4.2.1 is obtained if the transfer time data is plot-

ted as in Figure 4.14. In the right-hand side of the graph, the longest transfer time of each family is related

to the corresponding value of fraction velocity at arrival. Eighteen families are included, which are collected

into four groups depending on the total infinity velocity (for values of 0.25, 1, 2 and 3 km/s of v∞,tot ).

Figure 4.14: Longest transfer times across four groups of transfers. It is pointed out that the plane shown on the left is only intended for

illustration purposes: due to the differences in the values of average acceleration, each curve is sliced for a slightly different value of ā.

A similar behaviour is found for the transfer angle and ∆V as well: for simplicity the discussion is therefore

focused on the time of flight results.

Time of Flight

When the four groups are analyzed separately, a parabola provides a good fit for the hyperbolic coefficients

k1,T OF . In Figure 4.15, the empirical values of k1,T OF are displayed in dark blue, except for that of the reference

curve, which is highlighted in red. These reference hyperbolic coefficients are called k̄T OF in the remaining of

the report. Dashed lines represent parabolic fit functions which are forced through k̄T OF , as in Equation 4.21:

k1,T OF = k̄T OF −
a0,T OF

2
−

a1,T OF

4
+a0,T OF v̂∞, f +a1,T OF v̂2

∞, f (4.21)

Figure 4.15: Trends of hyperbolic coefficient k1,TOF with respect to v̂∞, f , for four groups of transfers.

Equation 4.21 defines the parabolic correction that should be applied to k̄T OF in order to find k1,T OF for

an arbitrary combination of v∞,i and v∞, f . It is noticed that distinct parabolas (and thus corrections) are

identified across groups. First of all, the convexity grows with the total infinity velocity. Moreover, the axis
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of symmetry shifts towards lower values of v̂∞, f for increasing total infinity velocity. These two trends are

confirmed by the evolution of a0,T OF and a1,T OF in Figure 4.16. Both coefficients approach zero for small

values of v∞,tot , meaning that the correction is not significant in that region of the design space.

Figure 4.16: Parabolic coefficients a0 and a1 with total infinity velocity, for four groups of transfers.

Transfer Angle

Inspection of the transfer angle data across the four groups reveals that the same conclusions can be drawn

as for the transfer time. Firstly, k1,θT
within each group can be approximated by parabolic functions (see top

of Figure 4.17). Secondly, with increasing v∞,tot , the convexity of the parabolas becomes more significant

and the axis is shifted towards the left.

Figure 4.17: Top: trends of hyperbolic coefficient k1,TOF with respect to v̂∞, f , for four groups of transfers.

Bottom: parabolic coefficients a0 and a1 with total infinity velocity, for the same groups of transfers.

In conclusion, the same type of correction can be implemented for the transfer angle hyperbolic coefficients:

k1,θT
= k̄θT

−
a0,θT

2
−

a1,θT

4
+a0,θT

v̂∞, f +a1,θT
v̂2
∞, f (4.22)

Delta-V

The maximum ∆V difference that exists within the groups of transfers amounts to 3.98 m/s, which corre-

sponds to 0.11%. Given the little significance of this error, no correction needs to be implemented for the

approximation of the ∆V .
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Summary

A summary of all the derived fitting functions needed to implement the parabolic correction on k1,T OF and

k1,θT
is given in Table 4.2. Values of the fit coefficients are also included.

p Parabolic correction Parabolic coefficients c j ,0 c j ,1 c j ,2

T OF
k1,T OF = k̄T OF −a0,T OF /2−a1,T OF /4

+a0,T OF v̂∞, f +a1,T OF v̂2
∞, f

a0,T OF = c0,0 +c0,1v∞,t +c0,2v2
∞,t -3.419336 -9.644566 0.156283

a1,T OF = c1,0 +c1,1v∞,t +c1,2v2
∞,t 5.406480 0.676210 -0.191508

θT
k1,θT

= k̄θT
−a0,θT

/2−a1,θT
/4

+a0,θT
v̂∞, f +a1,θT

v̂2
∞, f

a0,θT
= c0,0 +c0,1v∞,t +c0,2v2

∞,t -3.489972 -1.202006 0.092904

a1,θT
= c1,0 +c1,1v∞,t +c1,2v2

∞,t 3.873142 -0.096548 -0.008495

Table 4.2: Fit functions and coefficients for the parabolic correction.

4.2.4. Conclusions

In the previous paragraphs, the model functions identified for the reference family with zero infinity velocity

have been applied to the rest of the database to evaluate the behaviour of the hyperbolic coefficients across

families. First inspection of the data highlighted two overlapping trends which led to:

• the identification of total infinity velocity and fraction infinity velocity at arrival as independendent

variables;

• the definition of reference curves and of groups.

The analysis limited to the reference curves produced a number of polynomial functions which model the hy-

perbolic coefficients with respect to the total infinity velocity. Investigation of the remaining families pointed

out that for transfer time and angle a correction to this estimate is needed, if the initial infinity velocity magni-

tude differs from the final one. The correction has been modelled by a series of parabolas, which also depend

on the total infinity velocity. On the contrary, the approximation of the ∆V is considered accurate enough not

to require any further correction. Figure 4.18 compares DITAN data with the fitting models that are derived

by using the polynomial approximation with v∞,tot , and applying the parabolic correction related to v̂∞, f .

Figure 4.18: DITAN data together with the curves that result from the implementation of the parabolic correction to the reference curve.

The quadratic trends are highlighted in red.
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4.3. Model Logic

The previous paragraphs have explained the derivation of a number of fitting models, that can be combined

together to determine ∆V , time of flight and transfer angle by using the system parameters and the infinity

velocities as starting point. To conclude, a procedure that allows to identify the hyperbolic curve p(ā) for each

transfer performance parameter p is outlined:

1. from the total infinity velocity, the reference hyperbolic coefficients ki ,p and k̄p are derived by means

of polynomial fit functions;

2. from the total infinity velocity, parabolic coefficients a0,p and a1,p are derived by means of parabolic fit

functions (if applicable);

3. from the fraction infinity velocity, the correction that determines k1,p is derived from the parabola iden-

tified by k̄p , a0,p and a1,p (if applicable);

4. coefficients ki ,p are used to uniquely define the hyperbolic function p(ā).

After identification of the curve, input system parameters are used to approximate the mean acceleration

ā, and the corresponding three transfer parameters are computed. The logic of the model that is obtained

by combining the model functions is displayed in Figure 4.19, showing the flow from inputs to outputs and

highlighting each of the fitting elements (tape-like boxes).

Figure 4.19: Model logic: from input parameters to transfer performance by using a series of fitting elements.
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Model Architecture

The full logic of the modelling tool includes the approximation of the transfer performance parameters as

well as the determination of departure and arrival dates, which for the analysis of interplanetary transfers

represents a relevant aspect. While the trajectory parameters have been modelled as outputs of the optimiza-

tion, the timing of the transfer cannot be derived from DITAN due to the adoption of circular planar orbits.

Departure and arrival dates are therefore determined by solving the phasing problem separately, as will be

described in Section 5.1. After the derivation of all the elements of the model has been completed, the full

logic of the tool is detailed in Section 5.2.

5.1. Departure and Arrival Dates

The transfer time and angle being known for a specific optimal trajectory, determination of the departure

date is reduced to a purely geometrical problem. In fact, the waiting time that is needed before initiating the

transfer can be computed, so that the final position of the spacecraft matches that of planet Mars.

5.1.1. Phasing

In order to achieve phasing between the planets and the spacecraft, two boundary conditions on the space-

craft angular position need to be satisfied, at beginnning (ti ) and end (t f ) of the transfer:

θSC (ti ) = θE (ti ) θSC (t f ) = θM (t f ) (5.1)

where ti and t f are the Julian dates of departure and arrival, while the angular positions of Earth and Mars

follow from their angular velocities ωE and ωM , as in Equations 5.2:

θE (ti ) = θE (t0)+ωE (ti − t0) θM (t f ) = θM (t0)+ωM (t f − t0) (5.2)

From the application of the model which was the subject of Chapter 4 to a given set of input parameters, the

corresponding values of time of flight and transfer angle can be estimated. These are related to the variables

of Equations 5.1 to 5.2 by means of the equations below:

T OF = t f − ti (5.3)

θT = θSC (t f )−θSC (ti ) (5.4)

If the conditions of Equations 5.2 are plugged into Equation 5.4, and after some manipulations, the following

result is obtained:

θT +θE (t0)+ωE∆t = θM (t0)+ωM T OF +ωM∆t (5.5)

where ∆t = ti − t0. This stands for the waiting time between a guess departure date t0 and the departure date

ti that enables phasing with planet Mars. It is easily computed from Equation 5.6:

∆t =
θM (t0)−θE (t0)+ωM T OF −θT

ωE −ωM
(5.6)
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In conclusion, given a guess departure date t0 and the outputs T OF and θT of the curve-fit model, initial and

final longitudes of the interplanetary phase of the transfer are derived by adjusting the time of the beginning

of the transfer. The procedure directly produces depature and arrival dates:

ti = t0 +∆t t f = ti +T OF (5.7)

The achievement of phasing and rendezvous with Mars is shown in Figure 5.1, for a given optimal transfer

that is represented by the continuous line. The geometry of the transfer departing at guess departure date t0

is on the left. Phasing with Mars is achieved in this case by waiting about 40 days, as in the plot on the right.

Figure 5.1: Comparison between the geometry of transfers 40 days apart: successful phasing is on the right.

Given the fact that the geometry repeats itself every synodic period, the same type of transfer is feasible for

different departure dates, obtained by adding (or subtracting) one or more synodic periods to ti .

Mars synodic period is about 780 days:

Ts yn =
2π

ωE −ωM
≈ 778.72 days (5.8)

5.1.2. Analytical Ephemeris

The computation of the waiting time ∆t is carried out with respect to a guess departure date t0 at which the

angular position of planets Earth and Mars is assumed to be known. The fastest option to obtain an accurate

estimate for the angular position and velocity is the use of analytical planetary ephemerides such as those of

[Dysli, 1977]. In this model, orbital elements are expressed as functions of the date t (as Julian centuries since

1900). Polynomial functions up to order three are used [Dysli, 1977]. Orbital elements of Earth and Mars are

approximated by the equations of Table 5.1 1.

Earth Mars

a = 1.00000023 a = 1.523688399

e = 0.01675104−0.00004180t −0.000000126t 2 e = 0.0933129+0.0000921t −0.0000001t 2

i = 0 i = 1.850333−0.000675t +0.000013t 2

Ω= 0 Ω= 48.7864417+0.7709917t −0.0000014t 2 −0.0000053t 3

ω= 101.220833+1.719175t +0.000453t 2 +0.000003t 3 ω= 285.4317611+1.0697667t +0.000131t 2 +0.0000041t 3

ωE = 35999.04975−0.000150t −0.000003t 2 ωM = 19139.8585−0.0001808t −0.0000012t 2

ω= 358.4758+ωE t ω= 319.529425+ωM t

Table 5.1: Analytical ephemeris model made up of polynomial approximating functions [Dysli, 1977].

1Some of coefficients have been truncated for brevity.
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5.2. Tool Architecture

The full logic of the Earth-Mars transfer computation tool comprises two elements, which have been detailed

separately in the current and previous chapters. The first element consists of the curve-fit model, which was

derived by analyzing DITAN outputs for mass optimal transfers. It takes as inputs:

• system parameters: initial mass, power at 1 AU, specific impulse and system efficiency;

• infinity velocity at departure and arrival.

By combining a number of fitting blocks, it computes estimates for ∆V cost of the transfer, as well as transfer

time and angle. Its logic is displayed in the upper box of Figure 5.2. The second element is represented in

the box at the bottom of the same figure. It uses the transfer time and angle values that are the outputs of

the curve-fit model, together with analytical ephemerides, to complete the geometrical phasing with Mars.

Figure 5.2 combines both elements in the complete architecture of the modelling tool.

Figure 5.2: Full architecture of the modelling tool: curve-fit model and phase solver.

The architecture of Figure 5.2 was implemented both as a set of Matlab functions and in an Excel worksheet,

that also allows visualization of the geometry of the transfer and parametric analysis of the inputs. As was

pointed out during the setup of the database, and specifically in Subsection 3.1.2, the thrust-to-mass ratio at

1 AU and the specific impulse account for all aspects of the propulsion system that are relevant to this study.

For the generation of the transfers, it was decided to use fixed values of initial mass and system efficiency,

while varying power at 1 AU and specific impulse to cover the entire acceleration range of interest. However,

typically the set of inputs available could differ from the one used in this study. Therefore, both implemen-

tations of the modelling tool have been structured so as to accept different combinations of system input

parameters:

1. thrust-to-mass ratio and specific impulse: m0, T0 and Isp ;

2. power-to-mass ratio, efficiency and specific impulse: m0, P0, η and Isp .





6
Results and Performance Assessment

For academic results and conclusions to be reliable and credible a process of testing, verification and vali-

dation is required, that is designed for the specific project/product. The assessment of the results and the

performance of the model has been therefore structured into a number of independent stages, which are

depicted in Figure 6.1. The aim of each element is summarized below:

1. Residual Analysis:

The significance and the distribution of the residuals are analyzed on the entire dataset, in order to

evaluate the propagation of the errors of each fitting model up to the final estimates of the trajectory

parameters.

2. Testing and Verification:

The model is verified by assessing its performance on independently generated test cases, which cover

the entire design space and are derived in the simplified dynamical environment.

3. Full Ephemeris Model Comparison:

The approximate transfers that are produced by the modelling tool in the simplified dynamics are com-

pared with transfers which are optimized in the full ephemeris model. Conclusions are drawn not only

with respect to the accuracy, but also with respect to attributes such as specificity, efficiency and suit-

ability, in order to further detail the impact, the capabilities and the limitations of the result.

Each of the three steps of the process is dealt with in one of the sections that compose the present chapter.

Figure 6.1: The three stages of the model performance assessment.
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6.1. Residuals Analysis

While the goodness of each model function has been evaluated at the time of the fitting, the combination of

such functions into a more complex architecture could lead to a significant propagation of the errors to the

trajectory metrics estimates. For this reason, the modelling tool is applied to each of the set of inputs that

were selected for the generation of the database, and used to estimate the corresponding trajectory metrics.

Unlike in Chapter 4, in which each element of the model was analyzed independently, this section deals then

with an assessment of the overall accuracy of the model.

6.1.1. Residuals Distribution

In the coming paragraphs, residuals are expressed in terms of percent error, and their distribution is studied

with respect to each of the independent variables used for the modelling, namely average acceleration, total

infinity velocity and fraction infinity velocity.

Average Acceleration

A first examination of the data shows that all errors are within 0.11% for the ∆V , 1.6% for transfer time and

1.2% for transfer angle. If also the root mean square of the residuals is expressed as a percentage, the following

errors are derived:

rms∆V ,% = 0.016% rmsT OF,% = 0.306% rmsθT ,% = 0.238% (6.1)

It can be observed from the distribution of the residuals that the errors are typically greater for lower values

of the average acceleration. This is associated with the shape of the model functions and can be traced back

to the residuals of Section 4.1. Moreover, by exploring Figure 6.2, one can notice that the most significant

erros are related to specific families of transfers. With regard to the ∆V , percent errors greater than 0.05%

correspond to the families 2-0, 1.5-0.5, 2-1 and 1-2. This is explained by the use of the coefficients of the

reference curves for the entire group of families. Nonetheless, errors are well within the bounds specified

and this correlation should not be the cause of great concern. As for transfer time and transfer angle, the two

distributions of residuals mirror each other. Errors are greater than 0.5% for specific families, which can be

explained by the values of infinity velocities, as in the following.

Figure 6.2: Residuals distribution with respect to average acceleration levels, for the entire dataset.

Fraction Infinity Velocity

Examination of the same residuals according to the fraction infinity velocity at arrival clarifies the remaining

trends in their distribution. The left-hand side of Figure 6.3 confirms that, for the ∆V , the errors grow within

each group when moving away from the reference case (v̂∞, f ). This appears very clearly when observing for

example the red groups, including all families with v∞,tot = 3 km/s. Also for transfer time and transfer angle

a similar trend is observed, with greater errors for low and high v̂∞, f . This is due to the combination of the

uncertainty on the reference hyperbolic coefficients with the inaccuracies brought about by the parabolic

correction. Exceptions are the families 0-0, 0.125-0.125 and 0.25-0.25, that are located on the reference plane.

For those, errors are traced back at the fitting over the reference curves.
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Figure 6.3: Residuals distribution with respect to fraction infinity velocity at arrival, for the entire dataset.

Total Infinity Velocity

To be thorough, the distribution has also been displayed against the total infinity velocity. No further trends

are identified, besides the dependencies on average acceleration and fraction infinity velocity that have been

already discussed.

Figure 6.4: Residuals distribution with respect to total infinity velocity, for the entire dataset.

6.1.2. Conclusions

Detailed analysis of the residuals distribution has been carried out in order to identify bounds, typical values

and trends of the errors. For each of the trajectory parameters, the accuracy achieved is reported in Table 6.1

in terms of maximum percent error and root mean square. In summary, errors are found to grow, within

the limits reported, for lower values of the average acceleration, and when moving away from the reference

curves for small and great values of fraction infinity velocity at arrival.

Parameter Bounds Typical errors (RMS)

∆V +0.046/-0.106 % 0.016%

TOF +1.526/-0.906 % 0.306%

θT +1.179/-1.133 % 0.238%

Table 6.1: Accuracy of the curve-fit model, as estimated from the residuals analysis.
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6.2. Testing and Verification

Having identified by means of the residuals analysis the expected performance with respect to ∆V , time

of flight and transfer angle, accuracy levels need to be verified using test cases that are independent of the

dataset used for the derivation of the model. The purpose of the verification is twofold:

• to quantify the model accuracy in relation to optimal transfers which are generated independently from

the original data, in the simplified dynamical model;

• to compare the figures with the requirements specified in Chapter 1, to assess the suitability of the

model for the intended purpose.

6.2.1. Test Cases Selection

Testing of the modelling tool is carried out by using dedicated test cases, that are optimized with DITAN in a

fashion similar to what described in Chapter 3. The rationale behind this choice takes two aspects into con-

sideration. First, given the specificity of the models and assumptions adopted, few results in literature have

a similar set up, and none has been found that considers non-zero values of infinity velocities. Moreover, the

aim is the generation of a number of samples that cover the entire design space. Design of ad hoc test cases

allow to define the desired pattern and choose the resolution for their distribution over the design space.

A large number of possible combinations of input parameters has been generated randomly. Eighteen have

been chosen, according to a specific logic. In order to span over the entire thrust-to-mass ratio range, the

combinations of the system parameters are such that six test cases are in the range 0.2−0.6 mm/s2, six in the

range 0.6−1 mm/s2 and the final six in the range 1−1.8 mm/s2. The three groups are identified in Figure 6.5

by the symbols triangles, diamonds and circles, respectively. Furthermore, the combinations of infinity ve-

locity at departure and at arrival sample the design space so that within each of the three groups, three test

cases have total infinity velocity higher than 2 km/s, while the remaining three have v∞,tot < 2 km/s. At last,

in each subgroup one sample presents prevalence of infinity velocity at departure v̂∞, f << 0.5, one the oppo-

site situation v̂∞, f >> 0.5 and the third one is in between (v̂∞, f ≈ 0.5). The pattern that was just described is

summarized in Figure 6.5. Grey areas have been filled to point out that no transfer of the database, as well as

no test case, can fall in those regions due to the way the design parameters were defined. In order to be in the

top left region, for example, a departure infinity velocity higher than 2 km/s is required.

Figure 6.5: Distribution of the 18 test cases over the design space, in relation to thrust to mass ratio and infinity velocities.
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6.2.2. Results and Conclusions

Each of the set of inputs selected in Subsection 6.2.1 was individually optimized with DITAN and the outputs

in terms of ∆V , time of flight and transfer angle were extracted. The results are compared with the curve-fit

model outputs in Figure 6.6 (∆V s are displayed after removal of the offset).

Figure 6.6: DITAN and curve-fit model outputs are compared with respect to ∆V , transfer time and transfer angle.

The performance is more effectively evaluated in terms of percent errors against average acceleration levels,

as in Figure 6.7. Each column corresponds to one of the performance parameters, respectively ∆V , transfer

time and transfer angle, while the two rows contain the same graphs, with the only difference in the colormap.

Double visualization allows to correlate relative errors with all relevant variables, with the conclusions:

• Maximum errors: the bounds identified by the percent errors confirm that all errors are within +0.03/-

0.05% for ∆V , within +0.54/-0.35% for transfer time and within +0.40/-0.25% for transfer angle;

• RMS: RMS of the errors is 0.013% for ∆V , 0.22% for transfer time and 0.16% for transfer angle;

• Trends: errors are greater for lower average accelerations and for transfers distant from reference ones.

This assessment confirms what has been discussed in terms of accuracy during the analysis of the residuals

(Section 6.1). By comparing the figures determined above with the goals defined in Subsection 1.3.2, it is

concluded that the model performance is more than compliant with the requirement of 5% accuracy for all

transfer parameters. Errors are for all test cases, as well as on the original dataset, well within 1%.

Figure 6.7: Percent errors of ∆V , time of flight and transfer angle against average acceleration levels, depending on the total infinity

velocity and fraction infinity velocity at arrival.
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In the following the relative errors are shown in different fashions, to better visualize the trends mentioned

above. As in Figure 6.7, each column corresponds to one of the performance parameters, while the indepen-

dent variable is either the total infinity velocity (first two rows) or the fraction infinity velocity at arrival (last

two rows). Figure 6.8 confirms that larger errors are typically associated with lower acceleration levels (blue

elements of rows 1 and 3). Furthermore, rows 3 and 4, which depict the errors distribution against v̂∞, f , show

that the relative errors are in general smaller when close to the reference curves (middle part of the graphs)

than when moving towards an uneven distribution of infinity velocity between departure and arrival (outer

part of the plots).

Figure 6.8: Percent errors of ∆V , time of flight and transfer angle against total infinity velocity and fraction infinity velocity at arrival,

depending on the remaining model variables.
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6.3. Full Ephemeris Model Comparison

This section is concerned with the assessment of the model performance with respect to transfers optimized

in the full ephemeris model. The purpose is the verification of the compliance with the requirements es-

tablished in Chapter 1 and of the suitability of the method for the intended application. The optimization

was carried out in a more complex dynamical environment, which includes the use of 3D dynamics with real

ephemerides of planets and free direction for infinity velocities. This implies:

1. motion during the transfer is not restricted to the ecliptic;

2. initial and final orbits are defined by means of ephemeris data;

3. infinity velocities direction is optimized and not necessarily tangential.

As it becomes evident from the list above, the main purpose is the evaluation of the effect of the eccentricity

of the orbits and of the out-of-plane motion. No perturbation has been accounted for, including third-body

contribution at beginning and arrival, meaning that the analysis is limited to the interplanetary cruise.

6.3.1. Test Cases Selection

The four test cases that have been individually optimized in the full ephemeris model have all departure dates

in the same synodic period, and specifically in the timeframe September/October 2026. This enables to have

a similar geometry between the transfers, and therefore to better compare transfers that have a different set

of input parameters. The relevant input parameters for the four cases are summarized in Table 6.2.

Synodic Period

The choice for this specific year for the investigation is driven by the fact that mass-optimal transfers with

less than one revolution departing in late 2026 fall in the thrust-coast-thrust profile regime, as on the right of

Figure 6.9. On the contrary, when using DITAN to optimize transfers departing in the following or preceding

synodic period, a different regime is found, for example the five-subarc profile (left side of Figure 6.9). This

does not mean that thrust-coast-thrust transfers are not possible for those launch opportunities, but simply

that propellant mass can be saved by adopting five subarcs. Since DITAN does not allow for forcing a specific

thrust profile, the comparison with transfers departing in 2028 or 2024 is not meaningful, as those transfers

violate the thrust-coast-thrust assumption. For a further assessment of how the model performs over the

years, a different optimizer should be used, that allows to define a specific sequence of thrust and coast arcs.

Figure 6.9: Geometry and thrust profiles of transfers with the same set up, with departure in 2024 (left) and 2026 (right).

Input Parameters

Four transfers were selected with different values of system parameters and infinity velocities, to identify

potential correlation between those and the significance of the errors. Three values of the thrust-to-mass

ratio at 1 AU are used, specifically 0.389, 0.556 and 0.625 mN/kg. Figures of initial mass and thrust, specific

impulse and infinity velocities are listed in Table 6.2.
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Transfer # T0 [mN] m0 [kg] Isp [s] v∞,i [km/s] v∞, f [km/s]

1 0.5 900 3000 0 0

2 0.35 900 4010 1 0

3 0.5 800 3000 1 1

4 0.5 800 3000 2 0.5

Table 6.2: Input parameters of the four transfers optimized in the full dynamical model.

6.3.2. Results

Unlike previous assessments, this analysis includes all the elements of the modelling tool and conclusions

can be drawn not only with respect to trajectory parameters, but also to the launch window determination.

The four test cases are visualized in Figures 6.10 to 6.13 as projections of the spacecraft path onto the ecliptic.

Initial and final orbits are also displayed, both as real eccentric orbits and as circular approximations. The

first consideration to be made is that the significance of all errors is similar across all test cases, meaning that

a correlation with the input parameters is not found, or it represents noise compared to the other effects.

Delta-V

∆V errors are negligible for all transfers, since they never exceed 1%, independent of the values of the infin-

ity velocities. This suggests that the the way infinity velocities have been expressed by means of boundary

conditions for the tangential velocity successfully represent the real behaviour, as confirmed later.

Transfer Time

Errors in the estimation of the time of flight range between 12.2 and 14.8% for the four transfers. All of them

are in the full ephemeris model about 50 days longer than the approximation, regardless of the individual

setup. This suggests that the error is due to the specific geometry of the transfers: because of the eccentricity

of Mars orbit the rendezvous with the planet is delayed, lengthening the transfer. Analysis of other launch

opportunities could clarify this point and assess the impact of the geometry on the tranfer time error, but,

due to the unavailability of suitable optimization tools, is left for future work.

Figure 6.10: Comparison between approximated solution and optimized transfer in the full dynamic model:

T/m|0 = 0.556 mN/kg, v∞,i = 0 km/s, v∞, f = 0 km/s.

Transfer Angle

Considerations on the tranfer angle errors directly reflect those drawn for the tranfer time. Percent errors

span over the range 9.8-11.3%.
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In the following, visualization of the trajectory optimal paths and corresponding approximations is displayed

for the remaining cases. On a more general note, it is noticed that the estimated departure date and transfer

time provide very useful information for propagation of known thrust laws to generate suitable initial guesses.

In the author’s experience, if a guess departure date is available, adjusting the thrust levels and propagating

the control law in time so as to reach Mars in the guessed transfer time normally provides a very good guess

for further optimization of this type of transfers.

Figure 6.11: Comparison between approximated solution and optimized transfer in the full dynamic model:

T/m|0 = 0.389 mN/kg, v∞,i = 1 km/s, v∞, f = 0 km/s.

Moreover, it is pointed out that the trajectory parameters are produced in milliseconds for any combination

of inputs, making the model very suitable for a broad search of the design space and a fast assessment.

Figure 6.12: Comparison between approximated solution and optimized transfer in the full dynamic model:

T/m|0 = 0.625 mN/kg, v∞,i = 1 km/s, v∞, f = 1 km/s.
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Figure 6.13: Comparison between approximated solution and optimized transfer in the full dynamic model:

T/m|0 = 0.625 mN/kg, v∞,i = 2 km/s, v∞, f = 0.5 km/s.

6.3.3. Direction of Infinity Velocity

The direction of the infinity velocities is analyzed to draw considerations with regard to the assumption of

tangential infinity velocity. Figure 6.14 presents the results of this assessment, by comparing the radial com-

ponent (dark bars) with the component that lies on the plane tangential to the trajectory1. The assessment

confirms that also when the direction of the infinity velocity is given freedom, the direction tangential to the

trajectory is a very good approximation of the results obtained for optimal transfers.

Figure 6.14: Assessment of the components of the optimized infintiy velocities, for cases 2 to 4. Dark bars represent the radial

components, and are barely visible in the top graph, reason why their percent contribution has been highlighted, at the bottom.

1Since the motion is optimized in the 3D model, also the out-of-plane component needs to be taken into account.
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6.3.4. Conclusions

Detailed analysis of four test cases has been carried out in order to identify bounds and trends of the errors.

For each of the relevant parameters, typical errors are reported in Table 6.3. Some conclusions are drawn:

• Model performance:

Typical values of the errors are within 1% for the ∆V , between 12.2 and 14.8% for the time of flight and

between 9.8 and 11.3% for the transfer angle. This results in an excess time of about 50 days for all trans-

fers, 8-10 days distributed at departure, while the remaining on the arrival date. This is in agreement

with the requirements of early-stage concept development, as established in Chapter 1. Moreover, the

demonstrated efficiency and simplicity of implementation of the method confirm the suitability for fast

and broad assessments.

• Error distribution:

Errors do not appear to be correlated with the different setup of the test cases. This suggests that the

inaccuracy is mainly associated with the geometry of the transfers, that differs from the circular planar

simplification.

• Direction of the infinity velocity:

It has been shown that when transfers are optimized in the full ephemeris model and no bounds are

provided for the infinity velocity direction, the optimal direction is very close to tangential, thus legiti-

mating the simplification adopted in the study.

• First-guess generation:

Approximations of departure date and transfer time provide a valid starting point for the generation of

a first guess for the optimization process. In fact, the significance of the errors is, in the author’s expe-

rience, acceptable for proper adjustment of the control law propagation. In order to use the outputs of

the curve-fit model to provide a propagated initial guess, the strategy advised consists in:

1. propagating tangential continuous thrust from the estimated departure date;

2. adjusting the initial thrust levels so that the propagated solution reaches Mars orbit in the esti-

mated transfer time.

• Future work:

In order to assess the impact of the geometry over different years and launch opportunities, a different

optimizer that allows to force a specific arc sequence is required.

Parameter Minimum errors Maximum errors

∆V 0.1% 0.8%

TOF 12.2% 14.8%

θT 9.8% 11.3%

Departure date 7.84 days 9.94 days

Table 6.3: Model accuracy with respect to transfers optimized in the full ephemeris model.
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Conclusions

A novel technique for the assessment of the performance of Solar Electric Propulsion transfers to Mars is

proposed, which is based on the analysis and fitting of a database of pre-optimized trajectories. The moti-

vation for the development of such a model is the lack of available medium-to-low fidelity design tools for

SEP missions, that allow fast computation of transfer performance parameters in the frame of preliminary

assessments and early-stage design. During high-level concept development, the availability of fast and sim-

ple models enables to carry out analysis of a broad search space and to characterize several options. The

methodology that is proposed consists in the identification and modelling of the underlying relations of a

large trajectory dataset, and leads to the derivation of a number of fit models that accurately approximate the

transfer performance in terms of ∆V cost, transfer time and transfer angle, including a wide range of system

parameters and of departure and arrival infinity velocities.

7.1. Conclusions

It has been shown that a large dataset of optimal Earth-Mars transfers can be produced in a semi-automatic

way, that characterizes a wide design space and includes not only several system parameters, but also a sig-

nificant range of departure and arrival infinity velocities. A limited number of variables and analytic rela-

tions successfully describes the underlying trends in such a database. Modelling of the trends by means

of curve-fitting positively identifies those relations, dealing with the effect of the infinity velocities as well.

The main difficulty encountered in the modelling phase is related to the presence of different regimes in the

database. To avoid major inaccuracies, the restriction to the thrust-coast-thrust profile is needed. On this

class of transfers, the accuracy of the model that has been derived results in a maximum of 1.6% error for

the three trajectory parameters, namely ∆V , transfer time and transfer angle, which is well within the re-

quirements. This level of model performance confirms the consolidation of a modelling methodology that

can be applied to other datasets with similar structure. The accuracy with respect to transfers derived in the

full ephemeris model is well within 15% for all transfer parameters, in compliance with the requirements of

early-stage mission concept development. This, together with the efficiency and simplicity of the method,

makes the developed tool suitable for such assessments, and for the generation of initial guess solutions for

optimization.

The considerations that have just been summarized are further detailed in the following two subsections. The

research objectives and corresponding tasks that are identified in Sections 1.3 and 1.4 have been expanded

into a number of assessments. Although the activities have been organized into three distinct phases, the

considerations that were drawn are not simply listed accordingly, but they are reorganized so as to separately

answer the two main research questions formulated in Subsection 1.3.2. In fact, Subsection 7.1.1 not only

addresses the problem formulation and the database generation of Chapters 2 and 3, but also reports all the

findings related to the transfers characterization and analysis that were derived throughout the project. Later

on, in Subsection 7.1.2, the conclusions dealing with the model derivation and assessment are summarized.
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7.1.1. Answer to the First Research Question

The first research question and related sub-questions are reported here for easy reference:

RQ1 - How can quantitative data be generated so as to effectively capture the main characteristics of mass

optimal Earth-Mars transfers using solar electric propulsion?

RQ1.1 - What simplifications/assumptions in the problem description are needed to escape the diversity

and complexity of such transfers without causing major inaccuracies?

RQ1.2 - For generation of a representative dataset, which are the key variables and which is the range of

interest and the required resolution for each of them?

RQ1.3 - What are the characteristics of the corresponding transfers in terms of thrust profile, number of

revolutions and typical values of transfer performance parameters?

Problem Modelling

In the frame of interplanetary cruise between Earth and Mars, adoption of the two-body problem, only per-

turbed by the thrust acceleration, is well suited for preliminary trajectory design. With regard to the infinity

velocity modelling, the assumption of tangential direction has been validated by the analysis of transfers op-

timized in the full ephemeris model, conducted with no bounds on the velocity direction. The modelling of

SEP propulsion system is achieved by means of inverse-square power loss law, that is extended to the thrust

since a fixed specific impulse is considered, as it is representative of current SEP systems. The characteris-

tics of the propulsion system that are relevant to the trajectory analysis are thrust-to-mass ratio and specific

impulse, which are successfully captured by the use of the average acceleration as variable.

Transfer Characterization

In the investigated acceleration range, transfers have been found to follow either a three sub-arc thrust pro-

file, for transfers shorter than one revolution, or a five sub-arc profile, for transfers between one and two

revolutions. The transition between the two regimes occurs for a specific value of average acceleration, that

varies across families depending on the infinity velocity values. However, transfers with a mean acceleration

higher than 0.2 mm/s2 follow the thrust-coast-thrust profile for any combination of infinity velocities. This

range corresponds to approximately 90% of the original acceleration vector.

Relevant Variables

Three variables have been identified for proper description of the underlying trends: the average acceleration

ā, the total infinity velocity v∞,tot and the fraction infinity velocity at arrival v̂∞, f . In particular, the average

acceleration allows better comparison between systems, and therefore more regular trends, because it in-

cludes both initial thrust levels and specific impulse. Although it is not an input to the problem, it can be very

accurately estimated from the inputs (the maximum error in the entire dataset amounts to 0.035%).

Relevant Trends in the Data

Preliminary analysis of the data has identified three overlapping trends, in relation to each of the three vari-

ables. Within each family, all parameters decrease with increasing average acceleration, approaching the

reference values corresponding to the Hohmann transfers. Moreover, all transfer parameters decrease across

families for increasing total infinity velocity, the other variables being equal. Lastly, a quadratic trend is ob-

served with respect to fraction infinity velocity.

Database Generation

For generation of a large number of trajectory data, for example for extension of the model to other targets,

establishment of a continuation problem is recommended. The automation of such a process can be eas-

ily achieved by an upper layer of scripting, but requires a significant effort for familiarizing with the specific

problem and setting up the continuation properly. If a direct method such as the one implemented in DI-

TAN is used, the main issues are caused by the inability of jumping from one set of transfers to the other.

Typically, a solution is found that has the same number of revolutions as the initial guess. Moreover, such

complex problems can be only partially automated: normally the refinement of the solution requires manual

adjustments.
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7.1.2. Answer to the Second Research Question

The second research question and related sub-questions are reported here for easy reference:

RQ2 - To which extent can empirical functions derived by curve-fitting model trends in the transfer parameters

depending on the system parameters, and accounting for infinity velocity at departure and arrival?

RQ2.1 - Which analytic relations describe these trends best and with what accuracy?

RQ2.2 - Which is the performance of the modelling tool resulting from the combination of such model

functions in computing transfers performance parameters?

RQ2.2.1 - Which is the performance in relation to transfers between circular coplanar orbits? Is the

requirement of maximum percent error of 5% for all transfer parameters met,when the analysis

is extended to include the effect of the infinity velocities?

RQ2.2.2 - Which is the performance in relation to transfers optimized in the full ephemeris model? Is the

requirement of maximum percent error of 15-20% for all transfer parameters, that is typically

adopted of the intended applications, met?

Model Functions

Fit models have been derived for each of the trends mentioned in the above, that involved all three variables:

ā, v∞,tot and v̂∞, f . Firstly, within each family, the evolution of the transfer parameters is well approximated

by a linear combination of hyperbolic basis functions, resulting, for the reference family, in maximum errors

of 0.01% for the ∆V , 1% for the transfer time and 0.6% for the transfer angle. Secondly, by analyzing the

reference curves (v∞,i = v∞, f ) in relation to the total infinity velocity, the trends in the hyperbolic coefficients

are successfully modelled by polynomial functions, of order three for the∆V and of order two for transfer time

and angle. Finally, a parabolic correcting factor is derived that accounts for the distribution of the total infinity

velocity between departure and arrival. The parabolic coefficients can as well be mapped and determined

from the total infinity velocity. The correction is not needed in the case of the ∆V , for which the accuracy is

already in the order of few m/s.

Model Accuracy

The accuracy of the model has been assessed through a number of independent analyses, both for circular

coplanar transfers and for the full ephemeris model. Firstly, a study of the residuals identified bounds for the

percent errors with respect to the trajectories dataset, that amount to +0.046/-0.106% for the ∆V , +1.526/-

0.906% for the transfer time and +1.179/-1.133% for the transfer angle. Verification carried out on dedicated

test cases has shown agreement with the residuals analysis, resulting in maximum errors of +0.03/-0.5% for

the ∆V , +0.54/-0.35% for the transfer time and +0.40/-0.25% for the transfer angle. Finally, comparison with

four transfers optimized in the full ephemeris model produces errors within 1% for the ∆V , between 12.2 and

14.8% for the transfer time and between 9.8 and 11.3% for the transfer angle.

Model Performance

With regard to the model accuracy, the assessments proved compliance with the requirements, both for the

simplified and for the full model. In terms of efficiency, it enables to have instant estimates for ∆V , time

of flight and departure date, which can make the model very suitable for high-level mission concept assess-

ments. As for the limitations of the model, the comparison with the full ephemeris model shows no cor-

relation between the errors and the input parameters, suggesting that most of the inaccuracy is due to the

neglected effect of the eccentricity. Moreover, it is pointed out that the model is restricted to the thrust-coast-

thrust type of transfer, which is not always feasible, and when it is, it might not be the optimal one.

Methodology

The successful modelling of the Earth-Mars transfers is not only relevant for the development of this set of fit

functions, but most importantly because it confirms the potential of generating automatically a large number

of low-thrust transfers and modelling the underlying trends by means of empirical relations. Having consol-

idated this methodology, the extension to other targets and/or types of transfers is expected to be faster and

more straightforward.
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7.2. Recommendations for Future Work

The lessons learned of the current project are concerned with several theoretical and practical aspects. First

of all, opportunities of enriching the current model are envisaged, with the effort of enhancing the model

performance for real applications. Furthermore, one of the important outcomes of the research is the devel-

opment of a methodology that enables to extend the model in terms of validity and/or applicability. At last,

recommendations are also formulated with regard to the operational aspects of the optimization.

Model Enhancement

The limitations of the model are mainly associated with the simplifications used for the derivation of the

transfers, rather than with the methodology used. The potential of relaxing some of the assumptions is envis-

aged, although this process would most likely enhance the complexity of the model, and a trade-off between

these two aspects should be carried out. In particular, including the effect of the eccentricity of Mars is of

great interest. On the contrary, enhancement aimed at the improvement of the model performance in the

current setup is not considered very interesting, as the fit models are already very accurate. Another oppor-

tunity for enhancement would be the extension of the analysis to other classes of transfers, with a different

thrust profile. As it has been shown that the significant discontinuities between sets of transfers exist, use of

multiple model functions is advised, in order to maintain the same accuracy levels. In this line of reasoning,

also fixed-time mass-optimal transfers could be included.

Model Extension

The consolidation of a method for characterization and modelling of SEP transfers simplifies the extension

to other targets (Venus, asteroids) and/or return transfers. It is strongly advised to spend time on the investi-

gation and analysis of a few transfers before proceeding with the generation of a large dataset. The savings in

terms of time and effort that follow from a well-posed continuation problem are not to be overlooked, since

a very high level of automation can be achieved even for complex optimization processes.

Optimization

Use of an optimization tool with many functionalities and options such as DITAN has allowed to investigate

a wide class of transfers, and to gain insight into the physics of the problem. However, when a specific thrust

profile is of interest, as it was in the second part of the study, use of a dedicated optimization tool that allows

to force a specific arc sequence is recommended. Even the development of an ad-hoc optimizer could be

advantageous, due to the complexity and time consumption of propely setting up the optimization for tools

such as DITAN.



Appendices

A. Constants and Parameters Used

A brief overview of the constant parameters that were used for the calculations is included.

Values of the gravitational parameters are derived from [Wertz, 2001] and summarized in Table 1:

Celestial body Symbol Value

[m3/s2]

Sun µSun (µ) 1.3272×1020

Earth µE ar th 3.9860×1014

Mars µM ar s 4.2832×1013

Moon µMoon 4.9064×1012

Jupiter µJupi ter 1.2669×1017

Table 1: Gravitational parameters of most relevant celestial bodies. µSun is normally referred to simply as µ throughout the report.

The value used for the astronomical unit corresponds to 149597870.7 km, from which the distances of Table 2

follow. Those are used for the computation of the reference Hohmann transfers, as in Table 3.

Celestial body Distance Distance

[AU] [km]

Mercury 0.387099 0.57909176 ×108

Venus 0.723332 0.108208928 ×109

Earth 1 0.1495978707 ×109

Mars 1.523662 0.22793664 ×109

Table 2: Sun distance of most relevant celestial bodies, expressed in astronomical units and in km.

Target r f aT V1 ∆V1 Vcir c ,2 V2 ∆V2 ∆V TOF TOF

[AU] [AU ] [km/s] [km/s] [km/s] [km/s [km/s] [km/s] [days] [years]

Mercury 0.3871 0.6936 22.252 7.533 47.872 57.486 9.612 17.144 106 0.289

Venus 0.7233 0.8617 27.289 2.495 35.021 37.727 2.707 5.202 146 0.400

Mars 1.5237 1.2618 32.729 2.945 24.130 21.481 2.649 5.594 259 0.709

Table 3: Detailed computation of Hohmann transfer burns for several destinations.

Values used for the standard gravity constant and the solar constant are:

g0 = 9.80665 m/s2

W1AU = 1366 W/m2
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B. Models Used

B.1. Dynamics Model: Perturbations

It is here reported on the numerical assessment carried out during the literature review, that has led to adopt

the dynamical model that consists of the two-body problem, with the addition of the perturbing effect of the

thrust. The perturbing factors that have been included in the assessment are listed in the following, while a

comprehensive analysis can be found in [Wertz, 2001] and [Wakker, 2015].

N-body gravity

Perturbing acceleration acting on body i due to body j is:

~fnb =µ j

(~ri j

r 3
i j

−
~r j

r 3
j

)
(1)

whereµ j is the gravitational parameter of the perturbing body j , and the vectors~r j and~ri are position vectors

relative to the main attracting body [Wakker, 2015].

Atmospheric drag

The acceleration due to drag acts in the direction opposite to the relative velocity vector [Wakker, 2015]:

~fdr ag =−CD
1

2
ρ

A

m
|~v |~v =−

1

2

ρ

B
|~v |~v (2)

where ρ is the atmospheric density, ~v is the relative velocity vector, CD is the drag coefficient, A is the cross-

sectional area, m is the mass of the satellite and B is defined as ballistic coefficient. For interplanetary flights

considered in this report, the density ρ is very low if not zero, thus ~fdr ag will be neglected from now on.

Non-spherical gravity

The expression for the gravitational potential of the Earth due to the irregularities in its mass distribution,

when assumed static, is [Wakker, 2015]:
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µ

r

[
1−
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Jn

(R
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)n
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n=2

n∑
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(R

r

)n
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]
(3)

where r,φ,Λ are the spherical coordinates in geocentric rotating reference frame, R is the mean equatorial

radius, Jn , Jn,m and Λn,m are constant values associated with model parameters. The terms Pn (sinφ) are

called Legendre polynomials of degree n, while the terms Pn,m (sinφ) are associated Legendre functions of the

first kind of degree n and order m, which are defined as [Wakker, 2015]:

Pn(x) =
1

(−2)nn!

dn

d xn
(1− x2)n Pn,m (x) = (1− x2)m/2 dmPn (x)

d xm
(4)

In Equation 3 one can distinguish the Newton potential (first term) from the deviations from the gravitational

potential of a spherical body with radially symmetric mass density distribution. The latter are called zonal,

tesseral and sectorial harmonics and are displayed in Figure 1.

Figure 1: Visualization of zonal, sectoral and tesseral harmonics [Wertz, 2001].
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Since the largest of the geopotential terms is by far represented by J2, one common simplification for the

perturbing acceleration is the following [Wertz, 2001]:

~fg eo =−~∇

(
U +

µ

r

)
→ ~fg eo,J2 =−~∇

(1

2
µJ2

R2

r 3
(3sin2φ−1)

)
(5)

The maximum values of the r and φ components of ~fg eo,J2 at specified distance r are:

|~fmax,r | = 3µJ2
R2

r 4
|~fmax,φ| =

3

2
µJ2

R2

r 4
(6)

If these components are evaluated at the edge of the sphere of influence of the Earth, their values are in the

order of magnitude of 10−21 m/s2, which is already very small compared to the other terms and can therefore

be neglected when analyzing interplanetary flight, along with atmospheric drag.

Radiation Pressure

Spacecraft travelling the Solar System experience a radiation force caused by the combination of direct solar

radiation, albedo radiation and thermal radiation emitted by celestial bodies. Restricting ourselves to the

most relevant direct solar radiation acceleration, Equation 7 is reported as derived in [Wakker, 2015]:

F =CR
W A

c
(7)

where CR is the satellite’s reflectivity, W is the solar flux, c is the speed of light and A is the cross-sectional

area. It follows that the perturbing force on the satellite’s motion has the form:

~fr ad =−
F

m
~eSun =−CR

W A

mc
~eSun (8)

and acts along the line connecting the satellite and the Sun, but pointing in the direction opposite to the

Sun. A first-order approximation of the solar power density at arbitrary distance from the Sun can be ob-

tained starting from the solar constant, defined conventionally as the mean solar irradiance at a distance of

one astronomical unit: W1AU = 1366 W/m2. The solar flux at heliocentric distance r AU (measured in AU) is

[Lissauser and de Pater, 2013]:

W =
W1AU

r 2
AU

(9)

Although negligible for Earth orbits below approximately 800 km altitude [Wertz, 2001], the solar radiation

force is a dominant perturbation for interplanetary flights, and it is therefore worth investigating further for

our application.

Thrust

Generally speaking, the one intended perturbation for the ballistic flight of a spacecraft is the thrust generated

by a rocket engine1. The propulsive force has been introduced in Subsection 2.1.1, and its generation is

described by Equation 10:

T = ṁce = ṁg0Isp (10)

For low-thrust propulsion systems, the specific impulse is typically one order of magnitude higher with re-

spect to conventional chemical engines, while the thrust is much lower. For typical SEP systems, the specific

impulse is in the order of 1600 s for gridded engines and of 3000 s for plasma engines, while the specific thrust

amounts to 10−4 m/s2 [Racca, 2003].

1Sometimes, the effect of other perturbations is used advantageously for orbit design. Analysis of these cases is however beyond the

scope of this study.
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Assessment

The aim of the following paragraphs is to assess which of the elements introduced in Subsection B.1 should

be included in the dynamical model. Since their relevance can only be established quantitatively when the

performance requirements of the model to be developed are known, the focus will be in determining the or-

der of magnitude of each contribution and drawing general conclusions that apply to all Earth-Mars transfers.

The assessment is carried out by computing the values of the perturbing accelerations for a spacecraft that is

located halfway between the Earth and Mars (1.25 AU from the Sun) and travels in a coplanar Solar System.

Besides the main attracting body, the gravitation due to Earth, Moon, Mars and Jupiter are included2. Table 4

reports the assumptions made in the calculations as derived from textbooks and previous missions.

Parameter Value Unit

µSun 1.3272×1020 m3/s2

µE ar th 3.9860×1014 m3/s2

µM ar s 4.2832×1013 m3/s2

µMoon 4.9064×1012 m3/s2

µJupi ter 1.2669×1017 m3/s2

c 299792458 m/s

AU 149597870.66 km

W1AU 1366 W /m2

CR 1.5 -

A 6 m2

M 1500 kg

CD 2.5 -

Table 4: Assumptions made: lines 1-7: values from

[Wertz, 2001], line 8: value from [Lissauser and

de Pater, 2013], lines 9-12: values based on mission

heritage.

Figure 2: Sketch of the geometry used for the computations.

The results of the computation are summarized in Table 5. There are several orders of magnitude between

the gravitational attraction of the Sun and all the other terms, which justifies the adoption of a two-body dy-

namical model for the description of the problem. The most relevant perturbations are due to point-mass

attraction, specifically from the Earth and Jupiter, which are in the order of 10−7 m/s2. However, one should

keep in mind that the case of closest approach to the planets was considered, while it is hardly ever the case

and perturbing accelerations can be much smaller along the orbit. Next to gravitational forces, radiation

pressure has quite a significant impact as well, in the order of 10−8 m/s2.

Acceleration Description Value [ m
s2 ]

~fSun Sun attraction 3.8×10−4

~fE ar th Earth attraction 2.7×10−7

~fMoon Mars attraction 3.0×10−8

~fM ar s Moon attraction 3.3×10−9

~f Jup Jupiter attraction 1.5×10−7

~fdr ag atmospheric drag << 10−10

~f J2 J2 effect << 10−10

~fr ad radiation pressure 1.8×10−8

~fT low-thrust 10−4

Table 5: List of perturbing acceleration and their magnitude.

2These terms are estimated in the worst case scenario (minimum possible distance from the body) although this is often not realistic.
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B.2. Propulsion System Model

The model used to describe the decay of the available power with the Sun-spacecraft distance consists of the

inverse-square power law, with the addition of a constant efficiency factor, as in Equation 2.13. More complex

models exist, which have been compared during the review of the literature, as it is presented here to justify

the final selection. An alternative to the constant efficiency is the expression of this factor as a function of

the operating temperature TSP , which is also a function of the Sun-spacecraft distance r : ηSP (TSP (r )). Since

a high operating temperature is not the only cause for degradation of the solar arrays, ηSP is composed of

two contributions: one term ηr accounts for the mentioned effect of TSP and depends on r , while the second

term ηL accounts for the other losses and stays constant:

ηSP = ηLηr = ηL cosδ[1−CT (TSP −T0)] (11)

where δ is the angle between the normal to the surface and the Sun direction, T0 is a reference temperature

and CT is the temperature coefficient. The operating temperature of the solar arrays TSP is computed by bal-

ancing the incoming solar radiation (received by the solar array surface A) and the infrared radiation radiated

by the surface AI F , according to Equation 12:

TSP =

(W1,AUαcosδ

r 2σκǫ

)0.25
(12)

where α is the surface absorptivity in the solar spectrum, ǫ is the surface emissivity in the infrared spectrum,

σ is the Stefan-Boltzmann constant and the parameter κ represents the ratio between the areas AI F and A.

Equations 2.13, 2.14, 11 and 12 enable to build up a more sophisticated power supply model, which combines

the decrease in incoming solar radiation with the positive effect of the reduced temperature of the solar cells.

The price for the increased accuracy is clearly the complexity of this second model.

A third alternative for the power supply model consists in adopting the simple power law as in Equation 2.13,

but with an exponent τ 6= 2. Fortescue, Stark and Swinerd, for instance, suggest the adoption of τ = 1.5 to

include the effect of solar array degradation [Fortescue et al., 2003]. This solution keeps the model simple,

while approximating the trend described above by the combination of Equations 2.13 and 11.

PSP = ηSP P0

( r0

r

)1.5
(13)

The main characteristics of the three models described in the previous paragraphs are summarized in Table 6.

In order to make a proper comparison between the three, it is needed to make some considerations on how

to select the reference values that allow an effective comparison.

# Model Exponent τ Efficiency η Equations

1 Quadratic power law 2 ηSP PSP = ηSP P0

(
r0

r

)2

2 Temperature dependent 2 ηLηr (r ) PSP = ηSP P0

(
r0

r

)2

ηSP = ηL cosδ[1−CT (TSP −T0)]

TS =

(
W1,AUαcosδ

r 2σκǫ

)0.25

3 Generic power law τ ηSP PSP = ηSP P0

(
r0

r

)τ

Table 6: Characteristics of different power supply models.

In models 1 and 3, the curves are entirely defined by the constant parameter ηSP and by the reference distance

r0, which is normally associated with the Sun-Earth distance 1 AU. If the comparison was only to be carried

out between these two models, it would make sense to simply consider r0 = 1 AU and ηSP , which implies:

intersection of the two curves at Sun-Earth distance, pessimistic power estimation for model 3 with respect

to model 1 when r < 1 AU, optimistic estimation for model 3 with respect to model 1 when r > 1 AU. However,

when also model 2 is included in the evaluation, things get a bit more complicated. Since in model 2 the

efficiency is not a constant, it is sensible to make some considerations when assuming a value for η.
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If the incoming sunlight is assumed to be perpendicular to the surface of the solar panels (δ= 0◦), the overall

efficiency ηSP , in model 2, coincides with ηL when TSP = T0, which is a reference temperature, for example

the temperature at which testing of the panels is conducted. In practical cases, it is reasonable to know the

efficiency ηL at the reference temperature, and then to superimpose the variations due to the change in tem-

perature in order to obtain ηSP as a function of r . With the purpose of generating a valuable comparison, in

the following assumptions will be made for the value of the efficiency ηL , which is also the ηSP at TSP = T0 for

model 2. For models 1 and 3, the factors will be scaled such that all the three models perform equivalently at

TSP = T0 (which means at a distance r0 different than 1 AU). This can be obtained by choosing ηSP for models

1 and 3 equal to ηL in model 2, while using as reference distance r0 the distance at which TSP = T0. Table 7

summarizes the assumptions made to generate the curves shown in Figure 3. From those assumptions, a

reference distance r0 = 1.263 AU follows, as visualized in Figure 3.

Parameter Description Value Unit

Constants

W1,AU solar constant 1366 W /m2

σ Stefan-Boltzmann constant 5.6704×10−8 W /m2K 4

T0 reference temperature 293 K

Solar arrays parameters

A solar array area 30 m2

α surface absorptivity 0.75 −

ǫ surface emissivity 0.8 −

κ radiating/absorbing surface ratio 4 −

δ sun aspect angle 0 ◦

CT temperature coefficient 0.5 %/K

ηL partial efficiencya 0.2733b −

ηSP overall solar panels efficiencyc 0.3 −

Table 7: Assumptions made: lines 1-2 from [Lissauser and de Pater, 2013], lines 3-11 based on existing systems.

aEfficiency that accounts for losses other than solar array degradation when Equation 11 is applied.
bDetermined such that overall efficiency ηSP = 0.3 when the distance spacecraft-Sun is r AU = 1AU .
cEfficiency that accounts for all losses when constant efficiency model is used.

It is emphasized that the decision of taking a reference distance different than 1 AU is arbitrary, although ex-

tensively justified, as well as the assumptions presented in Table 7. The purpose of this analysis was limited

to draw general considerations about the curves in Figure 3, as the design parameters were not yet known.

Figure 3: Comparison between different power supply models.
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From Figure 3, it is noticed that for distances smaller than the reference distance both power laws, models

1 and 3, significantly overestimate the available power when getting closer to the Sun, and that the error in-

creases as the Sun-spacecraft distance decreases. Compared to model 1, model 3 brings about smaller errors

and is sufficiently close to the more accurate model 2, at least for distances bigger than 1 AU, as the ones we

are interested in. At 1 AU, the percent error in power is 19.5% for model 1 and 7.7% for model 3, and decreases

for both while getting closer to the reference distance. For distances bigger than the reference one, which in

this specific case falls about halfway between Earth and Mars (1.26 AU), the three models are more consistent

with one another. Specifically, the curve corresponding to model 3 converges asymptotically to the one of

model 2. Between 1.1 and 3.1 AU, the percent error for this model stays below 3.5%. As for model 1, there is

still a relevant offset relative to model 2, but now this is smaller and more stable than for r < r0 (for example,

11.5% at 1.5 AU, 23.8% at 2 AU), besides resulting in an underestimation of the available power, which is less

dangerous for the design.

We can conclude that for Earth-Mars transfers (r between 1 and 1.5 AU) the three models procude approx-

imately the same curve. Model 3 is much more accurate than model 1, while preserving its simplicity. On

a more practical note, model 1 is normally a built-in functionality in the software tools used for this type of

problems, while model 3 is less commonly used and would require dedicated implementation in the case of

DITAN. For very accurate estimations, model 2 is the only one that captures the trend due to the degrada-

tion of the solar arrays, which becomes more and more important for smaller distances. However, for many

practical applications such accuracy is not needed and unnecessarily complicates the problem.
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