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Abstract
In this article, the problem of the optimal reset control design for Lipschitz non-
linear systems is addressed. The reset controller includes a base linear controller
and a reset law that enforces resets to the controller states. The reset law design is
strongly dependent on the appropriate design of the base controller. For this rea-
son, in this article, the base controller and reset law are simultaneously designed.
More precisely, an optimal dynamic output feedback is considered as the base
controller which minimizes the upper bound of a quadratic performance index,
and a reset law is used to improve the transient response of the closed-loop
system. This design is done in a full offline procedure. The problem is trans-
formed into a set of linear matrix inequalities (LMIs), and the reset controller is
obtained by solving an offline LMI optimization problem. Finally, two examples
are presented to illustrate the effectiveness and validity of the proposed method.

K E Y W O R D S

dynamic output feedback, linear matrix inequalities, Lipschitz condition, reset control systems,
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1 INTRODUCTION

Reset controllers are a class of hybrid controllers that were first introduced by Clegg1 to overcome the fundamental lim-
itations of linear feedback control design. A reset controller is a linear controller equipped with a resetting mechanism
that resets all or part of the controller states whenever some triggering condition is satisfied.2,3 Reset controllers provide
more flexibility in controller design, which can improve the system transient response.4,5 During the last decades, reset
control systems have attracted much attention from the control community.6–16

Generally, reset control design consists of two main steps: base controller design and reset law design. Over recent
years, a large number of studies have only focused on the second step (i.e., reset law design). For example in Reference 17,
the optimal reset law design problem was converted to a linear quadratic regulation problem and the optimal reset law
was then designed by solving algebraic Riccati equations. In Reference 18, a reset law was obtained for Lipschitz uncertain
systems using model predictive strategy (MPS). The problem of reset law design was addressed for linear systems under
norm-bounded uncertainty in Reference 19. A discrete-time triggered reset law was proposed to adapt reset control to
computer-based implementation in Reference 20. An observer-based reset law was presented for uncertain systems based
on MPS in Reference 21. An event-triggered-based optimal reset law was provided for the typical head-positioning system
of Hard disk drives in Reference 22. A systematic Lyapunov-based approach to design a reset law was presented for a
class of nonlinear time-delay systems in Reference 23. An optimal reset law was designed for Lipschitz nonlinear systems
based on guaranteed cost control approach in Reference 24.
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However, in recent years, few articles have dealt with the systematic design of both stages of the reset control design
(i.e., base controller and reset law design). For example in Reference 25, a reset gain-scheduling dynamic controller was
provided based on MPS for polytopic linear parameter varying systems. In Reference 26, a reset dynamic output feedback
controller was proposed and a genetic algorithm was applied to minimize a cost function to find the reset times. The reset
control design procedure presented in Reference 26 was extended to a class of uncertain linear systems in Reference 27.

Although the base controller and reset law are designed in the methods presented in References 25–27, there are some
challenges in their implementation. In fact, these methods involve offline and online steps. In the offline step, sufficient
conditions for existence of base controller are obtained in terms of linear matrix inequalities (LMIs). Then, the after-reset
values of the controller states are determined by solving an online optimization problem based on MPS at reset instants.
The implementation of these methods demands a large computational burden due to the complex numerical optimization
problem that has to be solved at each reset instant. As a result, these methods may not be useful for real-time applications
with small sampling time. This motivates the current study.

In this article, the problem of reset control design for a class of nonlinear systems is addressed. In an offline design
procedure, the base controller and reset law are simultaneously designed. Reset law is an additional degree of freedom
in the control design, which can improve the transient response of the closed-loop system. In this article, the after-reset
values are obtained based on a condition involving use of the Lyapunov function. Unlike the methods based on the Clegg
integrator, the after-reset values of the controller states are not necessarily a zero vector, but the values that guarantee a
negative drop in the Lyapunov function value. This problem is transferred to an offline LMI optimization problem. Thus,
the reset controller is designed by solving this problem. Finally, two examples are given to illustrate the effectiveness and
merits of the proposed theoretical results.

The main contributions of this article are summarized as follows:

1. In this article, the base controller and reset law are simultaneously designed for Lipschitz nonlinear systems.
2. The proposed reset controller is designed in a full offline procedure. Therefore, the computational issues do not affect

its real-time implementation.
3. This problem is transformed into an LMI optimization problem, which can readily be solved via standard numerical

software.

The article is organized as follows. The problem formulation is provided in Section 2. The main results are presented
in Section 3. The simulation results are given in Section 4. Finally, Section 5 concludes this article.

2 PROBLEM FORMULATION

Consider a class of nonlinear systems described as follows:

ẋp = Axp + Bu +Hf
(

xp
)
,

y = Cxp,
(1)

where xp ∈ R
np is the state vector, u ∈ Rnu is the control input vector, y ∈ R

ny is the output vector. f (xp) ∈ R
nf is a non-

linear function satisfying the Lipschitz condition locally on a set D ⊂ R
np ; namely, there exists a constant matrix Lp

such that

||f (xp) − f (x̃p)|| ≤ ||Lp(xp − x̃p)||, ∀xp, x̃p ∈ D, (2)

where f (0) = 0.
We consider the following structure for the reset controller:

ẋc = Acxc + Bce xc ∉ Mr

x+c = 𝜌

(
xp, xc

)
xc ∈ Mr

u = Ccxc,

(3)
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SHAHBAZZADEH et al. 3

where xc ∈ Rnc and x+c represent the reset controller state vector and after-reset controller state vector, respectively. The
error e is defined as the difference between the reference signal r and the system output y (i.e., e = r − y). The after-reset
value 𝜌

(
xp, xc

)
is a continuous function dependent on the plant and controller states. Mr is the reset surface or jump set.

The following structure is considered for the reset law:

𝜌

(
xp, xc

)
= Λxp(tk) + Ξxc(tk), (4)

where Λ ∈ R
nc×np and Ξ ∈ Rnc×nc are reset map matrices, and tk are reset times for k = 1, 2, … .

Assumption 1. In this article, the regulation problem is investigated for the sake of simplicity, and the
reference signal r is set to zero.

Substituting the reset controller (3) into the system (1) with r = 0, the dynamic equation of the closed-loop system is
obtained as

̇x = ̄Ax +Hf (xp) x ∉ M
x+ = ARx x ∈ M

y = Cx,

(5)

where x = [xT
p xT

c ]T with

̄A =

[
A BCc

− BcC Ac

]

, AR =

[
I 0
Λ Ξ

]

, H =

[
H
0

]

, C =
[

C 0
]
,

and M is the reset surface defined by Beker et al.28

M =
{

x ∈ R
np+nc |e = 0 & x+ ≠ x

}
. (6)

Remark 1. In practice, the reset surface M can be modified based on a discrete-time zero-crossing method.19

That is:

M =
{

x ∈ R
np+nc

,K ∈ N|e((K − 1)Ts)e(KTs) ≤ 0 & x+ ≠ x
}
, (7)

where Ts is the sampling time.

Assumption 2. In this article, we assume that the controller dynamic order is equal to the number of system
states (i.e., nc = np).

Remark 2. If the reset condition and after-reset values are selected improperly, beating and deadlock phe-
nomena may occur, which can destroy the existence of solutions.29 In order to avoid these phenomena, it is
assumed that the after-reset values are not elements of the reset condition. That is:

If x(tk) ∈ M then x(t+k ) ∉ M. (8)

Remark 3. The solution of a reset control system may contain an infinite number of reset actions within a
compact time interval, which is called Zeno solution. To avoid this phenomenon, the resetting rate can be
restricted by defining a positive constant t

𝜌

. Then, the reset action can only occur at least after t
𝜌

seconds,
which is known as temporal regularization. The closed-loop reset system (5) with temporal regulation is
expressed as

{
�̇� = 1, ̇x = ̄Ax +Hf (xp) x ∉ M or 𝜏 < t

𝜌

𝜏

+ = 0, x+ = ARx x ∈ M and 𝜏 ≥ t
𝜌

,

(9)

where t
𝜌

is the minimum time between two subsequent reset times (i.e., tk+1 − tk > t
𝜌

).
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4 SHAHBAZZADEH et al.

The goal of this article is to design a reset controller in the form of (3) which minimizes the upper bound of a quadratic
performance index and improves the system transient response.

3 MAIN RESULTS

This section is devoted to design the reset controller for Lipschitz nonlinear systems based on the minimization of the
following quadratic cost function:

 =
∫

∞

0
(xT

p (t)xp(t) + uT(t)u(t))dt, , > 0, (10)

where  and are symmetric weight matrices.
The above equation can be written as follows:

 =
∫

∞

0
xT(t) ̂x(t)dt, (11)

where

̂ =

[
 0
0 CT

cCc

]

.

First, the following proposition is borrowed from Reference 28 to prove the main results presented in this article.

Proposition 1. Suppose there exists a positive-definite, continuously differentiable, radially unbounded func-
tion V ∶ Rn → R such that

{
̇V(x̄) < 0 x̄ ∉ M (12)
ΔV(x̄)∶=V(x̄+) − V(x̄) ≤ 0 x̄ ∈ M, (13)

then, the closed-loop reset system (5) is asymptotically stable.

Theorem 1. Consider the closed-loop reset system (5). If for a given positive scalar 𝜀, there exist symmetric
positive definite matrices R ∈ R

np×np
, S ∈ R

np×np , matrices K ∈ R
nu×np

,L ∈ R
np×ny

,E ∈ R
np×np

,N ∈ R
np×np

,F ∈
R

np×np
,G ∈ R

np×np , and a positive scalar 𝛾 such that the following LMI optimization problem is feasible:

min 𝛾

subject to

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ψ11 Ψ12 H 𝜀RLT
p R KT

∗ Ψ22 SH 𝜀LT
p I 0

∗ ∗ −𝜀I 0 0 0
∗ ∗ ∗ −𝜀I 0 0
∗ ∗ ∗ ∗ −−1 0
∗ ∗ ∗ ∗ ∗ −−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0,

Ψ11 = AR + RAT + BK + KTBT
,

Ψ12 = A + ET
,

Ψ22 = ATS + SA − LC − CTLT
,

(14)

[
R I
∗ S

]

> 0, (15)
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SHAHBAZZADEH et al. 5

⎡
⎢
⎢
⎢
⎣

− 𝛾 xT
p (0) xT

p (0)S + xT
c (0)N

∗ −R −I
∗ ∗ −S

⎤
⎥
⎥
⎥
⎦

≤ 0, (16)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

− R −I R GT

∗ −S I S + FT

∗ ∗ −R −I
∗ ∗ ∗ −S

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≤ 0, (17)

then, the closed-loop system (5) is asymptotically stable, and the upper bound of the cost function (10) is
minimized.

In addition, the controller matrices and reset map matrices are respectively obtained as

⎧
⎪
⎨
⎪
⎩

Ac = N−1(E + LCR − SAR − SBK)M−T

Bc = N−1L
Cc = KM−T

,

(18)

and

{
Λ = N−1F
Ξ = N−1(G − SR − FR)M−T

.

(19)

Proof of Theorem. The base controller design is borrowed from Reference 30. Let us consider the following
Lyapunov function candidate

V(x) = xT(t)Px(t), (20)

where P is a symmetric positive definite matrix.
Calculating the time-derivative of V(x) along the solutions of (5) leads to

̇V(x) = xT(t)
(
̄ATP + P ̄A

)
x(t) + f T(xp)H

T
Px(t) + xT(t)PHf (xp). (21)

The condition ̇V(x) < 0 is fulfilled if the following condition is satisfied:

̇V(x) < −(xT
p (t)xp(t) + uT(t)u(t)). (22)

The above inequality can be rewritten as

xT(t)
(
̄ATP + P ̄A + ̂

)
x(t) + f T(xp)H

T
Px(t) + xT(t)PHf (xp) < 0. (23)

The following inequality holds based on the condition (2):

0 ≤ 𝜀xT(t)L
T
p Lpx(t) − 𝜀f T

p (xp)fp(xp), (24)

where 𝜀 is an arbitrary positive scalar and

Lp =

[
Lp 0
0 0

]

.
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6 SHAHBAZZADEH et al.

Adding the inequality (24) to (23), we have

̇V(x) < xT(t)
(
̄ATP + P ̄A + ̂

)
x(t) + f T(xp)H

T
Px(t)

+ xT(t)PHf (xp) + 𝜀xT
p (t)LT

p Lpxp(t) − 𝜀f T(xp)f (xp).
(25)

By defining the augmented state vector 𝜂(t) = [xT(t) f T(xp)]T, the above inequality can be expressed as

̇V(x) < 𝜂

T(t)

[
̄ATP + P ̄A + ̂ + 𝜀L

T
p Lp PH

∗ −𝜀I

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Σ

𝜂(t). (26)

Hence, the condition ̇V(x) < 0 holds if Σ < 0 is satisfied.
Now, we partition the Lyapunov matrix P as31

P =

[
S(np×np) N(np×np)

∗ W(np×np)

]

, P−1 =

[
R(np×np) M(np×np)

∗ T(np×np)

]

. (27)

Note that PP−1 = I yields the following condition:

M = (I − RS)N−T
. (28)

Letting the matrices

Γ1 =

[
R I

MT 0

]

, Γ2 =

[
I S
0 NT

]

, (29)

we can conclude that

PΓ1 = Γ2. (30)

Therefore, if the following condition is satisfied, P > 0 is fulfilled:

ΓT
1 PΓ1 = ΓT

1Γ2 =

[
R I
∗ S

]

> 0. (31)

Pre- and post-multiplying both sides of Σ < 0 by diag{ΓT
1 , I}, we have

[
ΓT

1 0
0 I

]

Σ

[
Γ1 0
0 I

]

< 0. (32)

The above matrix inequality involves the following matrices:

ΓT
1 P ̄AΓ1 =

[
I 0
S N

][
A BCc

− BcC Ac

][
R I

MT 0

]

=

[
Θ11 Θ12

Θ21 Θ22

]

Θ11 =AR + BCcMT
,

Θ12 =A,

Θ21 =SAR − NBcCR + SBCcMT + NAcMT
,

Θ22 =SA − NBcC,

(33)
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SHAHBAZZADEH et al. 7

ΓT
1
̂Γ1 =

[
R M
I 0

][
 0
0 CT

cCc

][
R I

MT 0

]

=

[
R M
I 0

][
I 0
0 CT

c

][
 0
0 

][
I 0
0 Cc

][
R I

MT 0

]

=

[
R MCT

c

I 0

][
 0
0 

][
R I

CcMT 0

]

,

(34)

𝜀ΓT
1 L

T
p LpΓ1 =𝜀

[
R M
I 0

][
LT

p 0
0 0

][
Lp 0
0 0

][
R I

MT 0

]

=

[
𝜀RLT

p

𝜀LT
p

]

𝜀

−1
[
𝜀LpR 𝜀Lp

]
,

(35)

ΓT
1 PH =

[
I 0
S N

][
H
0

]

=

[
H

SH

]

. (36)

By using the Schur complement lemma, the inequality (32) is equivalent to

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Υ11 Υ12 H 𝜀RLT
p R MCT

c

∗ Υ22 SH 𝜀LT
p I 0

∗ ∗ −𝜀I 0 0 0
∗ ∗ ∗ −𝜀I 0 0
∗ ∗ ∗ ∗ −−1 0
∗ ∗ ∗ ∗ ∗ −−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0,

Υ11 = RAT +MCT
c BT + AR + BCcMT

,

Υ12 = A + RATS +MCT
c BTS − RCTBT

c NT +MAT
c NT

,

Υ22 = ATS − CTBT
c NT + SA − NBcC,

(37)

By performing the change of variables (18) to (37), the LMI (14) can be obtained.
Integrating both sides of (22) from 0 to ∞ leads to

V(x(∞)) − V(x(0)) ≤ −
∫

∞

0
(xT

p (t)xp(t) + uT(t)u(t))dt = − . (38)

From the condition (22), we conclude that V(x(∞)) = 0. Therefore, we obtain

 ≤ V(x(0)) = xT(0)Px(0) ≤ 𝛾, (39)

where 𝛾 is the upper bound of the cost function  .
Applying the Schur complement lemma to the inequality (39), we have

[
− 𝛾 xT(0)P
∗ −P

]

≤ 0. (40)

Pre- and post-multiplying both sides of (40) by diag{I,ΓT
1} and its transpose yields

[
− 𝛾 xT(0)Γ2

∗ −ΓT
1Γ2

]

≤ 0. (41)
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8 SHAHBAZZADEH et al.

Substituting (29) into (41), we obtain the LMI condition given in (16).
From (13) and (5), we can obtain

ΔV(x) = xT(t)
(

AT
RPAR − P

)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟



x(t) ≤ 0. (42)

Hence, if the condition  < 0 holds, ΔV(x) ≤ 0 is satisfied.
Applying the Schur complement lemma to  < 0 results in

[
− P AT

RP
∗ −P

]

≤ 0. (43)

Performing a congruence transformation to (43) by diag{ΓT
1 , I} and its transpose, we have

[
Ω11 Ω12

∗ Ω22

]

≤ 0,

Ω11 = ΓT
1 PΓ1 = −

[
R I
∗ S

]

,

Ω12 = ΓT
1 AT

RPΓ1 =

[
R M
I 0

][
I ΛT

0 ΞT

][
I S
0 NT

]

=

[
R RS + RΛTNT +MΞTNT

I S + ΛTNT

]

,

Ω22 = −

[
R I
∗ S

]

.

(44)

By applying the change of variables (19) to (44), we get the LMI (17). This concludes the proof of
Theorem 1. ▪

Remark 4. According to the condition (16), if the initial conditions of the controller states are equal to zero
(i.e., xc(0) = 0), the decision variable matrix N can be selected as an identity matrix (i.e., N = I) for the sake
of simplicity.

Remark 5. Note that the conditions provided in Theorem 1 are LMIs for a given scalar 𝜀. Therefore, the
optimal solution of this problem can be readily approached by solving LMI-based problems on a grid in 𝜀.

Remark 6. It can be shown by the inverse of the Schur complement that not all the eigenvalues of the matrix in
the condition (17) become negative, and some eigenvalues may be very small positive numbers (for example,
smaller than 10−12), so that the solver considers them as 0 and as a result, the message “Successfully solved”
is displayed. However, the following condition can be checked in the reset instants:

xT(t)
(

AT
RPAR − P

)
x(t) ≤ 0. (45)

If the above condition is satisfied, the controller states can jump to specified values called after-reset values.

The design conditions of the reset controller in form of (3) for linear systems are presented in the following
corollary.

Corollary 1. Consider the closed-loop reset system (5) with f (xp) = 0. If there exist symmetric positive definite
matrices R ∈ R

np×np
, S ∈ R

np×np , matrices K ∈ R
nu×np

,L ∈ R
np×ny

,E ∈ R
np×np

,N ∈ R
np×np

,F ∈ R
np×np

,G ∈
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SHAHBAZZADEH et al. 9

R
np×np , and a positive scalar 𝛾 such that the following LMI optimization problem is feasible:

min 𝛾

subject to (15)–(17) and

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Ψ11 Ψ12 R KT

∗ Ψ22 I 0
∗ ∗ −−1 0
∗ ∗ ∗ −−1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (46)

then, the closed-loop system (5) with f (xp) = 0 is asymptotically stable, and the upper bound of the cost function
(10) is minimized. In addition, the controller matrices and reset map matrices are respectively obtained from (18)
and (19).

Remark 7. In this article, the reset controller is designed offline; therefore, the computational load does
not affect the real-time implementation of the proposed control method, unlike the methods presented in
References 18–23, 25–27.

4 SIMULATION RESULTS

In this section, the performance of the designed reset controller is compared with the base controller, which is an optimal
dynamic output feedback controller. For this reason, two examples are given to show the effectiveness and efficiency
of the proposed method. The LMI optimization problems are solved by using the YALMIP interface32 with the MOSEK
solver.33 In the examples, the initial conditions of the controller states are chosen to be zero, so Remark 4 is used in the
controller design. In addition, the temporal regularization parameter t

𝜌

is set to 0.1 s.

Example 1. Consider the following nonlinear system18:

ẋp(t) =

[
− 8 1
0 0

]

xp(t) +

[
1
2

]

u(t) +

[
0.5
− 1.5

]
xp2 (t)

1 + x2
p1
(t)

,

y(t) =
[
64 0

]
xp(t).

The weighting matrices are selected as  = I2 and = 0.1.
After solving the LMI optimization problem in Theorem 1 with 𝜀 = 2.5, the controller and reset map

matrices are respectively calculated as

Ac =

[
− 10613 −82022
1155.9 8937.3

]

, Bc =

[
− 1.9828
0.4946

]

, Cc =
[
671.21 5188.5

]
, (47)

and

Λ =

[
− 23.873 3.0882

3.089 −0.40072

]

, Ξ =

[
− 0.0058894 −0.15428
− 0.0002331 0.012068

]

. (48)

Let the initial conditions be x(0) = [0.5 − 0.5]T. The simulation results are shown in Figures 1–3. The
responses of the closed-loop system with the base controller and reset controller are presented in the Figure 1.
Although the base controller is an optimal dynamic output feedback controller, the system transient response
is improved by using the reset controller, as can be seen from Figure 1. The control input and the controller
states are depicted in Figure 2. It is evident from the blue dash-dotted line in this figure that the reset action
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10 SHAHBAZZADEH et al.

F I G U R E 1 The system states x(t) in Example 1.

F I G U R E 2 The control input u(t) and the controller states xc(t) in Example 1.

occurs at 0.0235 s. According to the condition (13), the reset action causes the Lyapunov function to decrease
at the reset instant as seen in Figure 3. This can improve the closed-loop system performance. For this reason,
the comparative results are provided in Table 1. From this table, we can easily see that the reset controller has
more satisfactory performance than the base controller.

Example 2. Consider a well-mixed continuous stirred tank reactor (CSTR) in which the following isother-
mal, liquid-phase, multi-component chemical reaction A ⇆ B → C is being carried out. The CSTR dynamics
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SHAHBAZZADEH et al. 11

F I G U R E 3 The decrement in the Lyapunov function V(x(t)) value at the reset instant in Example 1.

T A B L E 1 Comparison of the performance index  in Example 1.

Base controller Reset controller

 1.8149 1.1834

can be expressed in the following form18,34:

ẋp(t) =
⎡
⎢
⎢
⎢
⎣

− 4 0.8796 0
3 −3.6388 0
0 1.7592 −1

⎤
⎥
⎥
⎥
⎦

xp(t) +
⎡
⎢
⎢
⎢
⎣

0
1
0

⎤
⎥
⎥
⎥
⎦

u(t) +
⎡
⎢
⎢
⎢
⎣

0.5
− 1.5

1

⎤
⎥
⎥
⎥
⎦

x2
p2
(t),

y(t) =
[
0 0 1

]
xp(t).

The initial conditions are set to be x(0) = [0.5 − 0.75 0.1], and the weighting matrices  and  are respec-
tively chosen as I2 and 0.001.

By solving the optimization problem in Theorem 1 with 𝜀 = 1, the controller and reset map matrices are
computed as

Ac =
⎡
⎢
⎢
⎢
⎣

182.25 −273.74 29.231
132.3 −198.11 19.722

20.712 −29.049 −5.1521

⎤
⎥
⎥
⎥
⎦

, Bc =
⎡
⎢
⎢
⎢
⎣

− 24.432
− 12.178
23.624

⎤
⎥
⎥
⎥
⎦

, Cc =
[
− 16.632 24.55 −2.0941

]
, (49)

and

Λ =
⎡
⎢
⎢
⎢
⎣

− 15.473 −10.914 −3.5167
− 10.914 −7.9384 −3.0096
− 3.5178 −3.0102 −5.1947

⎤
⎥
⎥
⎥
⎦

, Ξ = 10−3

⎡
⎢
⎢
⎢
⎣

7.1466 −10.817 1.4757
2.2045 −3.5968 0.32936
2.9241 −3.966 −0.77827

⎤
⎥
⎥
⎥
⎦

. (50)
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12 SHAHBAZZADEH et al.

F I G U R E 4 The system states x(t) in Example 2.

F I G U R E 5 The control input u(t) and the controller states xc(t) in Example 2.

It is evident from Figure 4 that although the state x1(t) remains almost unchanged, the transient response of
the states x2(t) and x3(t) by using the reset controller is better than the base controller. The controller states
and control input are shown in Figure 5. According to this figure, the controller states are reset at 0.1423 s.
Therefore, a sharp drop in the Lyapunov function is observed at this time, as shown in Figure 6. This may
improve the overall transient performance of the system. The comparison of the performance index is given
in Table 2. This comparison verifies the performance improvement of the reset controller compared to the
base controller.
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SHAHBAZZADEH et al. 13

F I G U R E 6 The decrement in the Lyapunov function V(x(t)) value at the reset instant in Example 2.

T A B L E 2 Comparison of the performance index  in Example 2.

Base controller Reset controller

 0.088078 0.080035

5 CONCLUSION

The reset control design problem for a class of Lipschitz nonlinear systems is investigated in this article. In order to
determine the after-reset controller states, Lyapunov theory is used in this article. The power of using Lyapunov function
method in reset controller design comes from its generality, which is applicable to linear or nonlinear, finite dimen-
sional or infinite dimensional, time-varying or time-invariant systems. In this study, the controller states are reset to
values which lead to a drop in the Lyapunov function value. This may improve the overall transient performance of
the closed-loop system. This problem is successfully converted into an offline LMI optimization problem, which can be
easily solved by standard numerical software. The obtained results demonstrate the effectiveness and advantages of the
proposed control method. In future work, the problem of reset controller design in a full offline procedure for time-delay
systems will be investigated.
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