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Abstract

This study focuses on solving steady state fluid-structure interaction (FSI) problems sub-
jected to incompressible flow at low Reynolds numbers and linear elastic structural behavior.
The fluid-structure interface geometry is described with a levelset method (LSM). The gov-
erning equations are discretized in space with the eXtended Finite Element Method (XFEM).
At the fluid-structure interface, a traction and a no-slip condition are enforced to model the
interaction between the two phases. Combining XFEM and LSM gives crisp and clear phys-
ical behavior at the fluid-structure interface, which is beneficial for topology optimization
purposes. Two different solvers, a staggered and a monolithic solver, are used to test the
accuracy of the results of the steady state solution and to check whether a numerically con-
sistent Jacobian is built. The results show that the implementation needs to be improved in
order to monolithically solve the system successfully. Finite differences are used to check the
consistency of the Jacobian and show that Jacobian terms related to the levelset field are in-
consistent. The proposed LSM introduces secondary coupling between neighboring elements,
which is not correctly handled in the current implementation.
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Chapter 1

Introduction

Background Fluid structure interaction is the field of research working on the interaction
of a movable or deformable structures with internal or external fluid flows. It is a very pop-
ular field of research and has a wide variety of practical implications. At one end of the
FSI-spectrum lies vibro-acoustics, which looks at the interaction between a structure and
linearized fluid flow (i.e. sound-propagation). At the other side of the spectrum one looks
at large displacements of structures and non-linear fluid behavior. The latter problems, in
particular, gained a lot of interest with the development of computational power. The whole
spectrum of FSI is part of our every day live: airplane wings in air, blood flow in the human
heart, vocal cords producing sounds and cable stayed bridges in the wind. Advanced FSI
modeling is important to be able to accurately predict performance of systems that have
become more and more complex over the years (aircrafts, bridges, micro-fluidic systems).
In the old days, FSI problems have been analyzed using analytic or semi-analytic methods,
but these methods are cumbersome, complex to use and based on strong assumptions, such
as inviscid flow, harmonic motion and so on. This strongly limits the applicability of these
methods to everyday problems. Today, methods rely more on approximation methods, such
as Finite Element or Finite Volume Methods. Prediction and also optimization of FSI behav-
ior, with the mentioned approximation methods, is a very hot research topic. This research
is focused on FSI modeling with eXtended Finite Element Method (XFEM), which is a fairly
new approach [Gerstenberger and Wall, 2008a, 2010]. A novel approach based on the XFEM
and levelset method (LSM), using superposed meshes is implemented and is investigated
to determine its characteristics. This particular approach has very promising characteris-
tics for optimization procedures in terms of crisp interface definition. Optimization of FSI
problems has mostly been done using density- or porosity-based methods that struggle with
accurate physical behavior at the fluid-structure interface. Many different methods, such as
the Arbitrary-Lagrangian-Eulerian method, have been developed in the past to successfully
model FSI problems, but an XFEM approach has the potential to be more computationally
efficient during optimization.

Goal The goal of this thesis to set up a monolithic solver to find the steady state solution of
a FSI problem. A monolithic solver requires a numerically consistent Jacobian. By numerical
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2 Introduction

testing and characterization of the model, information is gathered to provide insights into how
this model can be improved and used within an optimization framework in future research.
Both the used methods and the implementation of these methods in Matlab pose many
difficult challenges and, hence, careful documentation on these challenges is very valuable for
future work.

Methodology The basis for this research is provided by the Newton-Raphson method for
solving non-linear systems of equations. Using the non-linear equations and the first derivative
of these equations with respect to the solution, the solution is found in an iterative manner.
We need to make sure all ingredients of the iterative process are correct, so different numerical
setups are implemented to test the ingredients separately. The results of these different
setups are presented and analyzed to be able to provide guidelines for improvements in future
research.

Nomenclature In this report, the following notations are used: lower case bold symbols a
denote vectors and upper case A denote matrices, unless explicitly defined otherwise. Non-
bold lowercase symbols a indicate scalars. On occasion, the Einstein convention is used aij ,
where i = 1...3 and j = 1...3 and repeated indices mean summation. Both super- and subscript
f and s indicate fluid and structure, respectively. Superscript and subscript n indicates a
nodal value. For derivatives both d and ∂ are used to denote total and partial derivative,
respectively. Sometimes the word phase is used to refer to either fluid or structure. Finally,
the levelset based XFEM model for FSI problems implemented in Matlab, that is the focus
of this research, will be referred to as the ‘XFEM model’.

Report outline The report is structured as follows: Chapter 2 presents some general concepts
to help the unfamiliar reader with understanding the complete XFEM model. The complete
model is presented in Chapter 3. In Chapter 4, the results and analysis of simulation with
staggered solver are presented to show that the FSI problem can be solved. Chapter 5 presents
results and analysis on a monolithic approach for solving the system, which is needed in
order to continue with future research on Topology Optimization using this XFEM model.
Chapter 6 presents a short discussion, but most importantly illustrates the potential of the
XFEM model for future research. The report ends with conclusions and recommendations in
Chapter 7. Chapter 2 to Chapter 5 all end with a short summary to give an overview of what
was presented in that chapter.
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Chapter 2

General Concepts

This chapter presents some general concepts related to levelset based modeling of fluid-
structure interaction problems with the eXtended Finite Element Method. These concepts
are the basic ingredients of the complete XFEM model that will be presented Chapter 3.
It is included help readers, who are unfamiliar with the concepts. Section 2-1 will present
eXtended Finite Element Method (XFEM), as a numerical modeling technique. Section 2-
2 explains how levelset method (LSM) is used to define geometries. The Newton-Rapshon
method is presented in Section 2-3 as an iterative solver to find the solution of a non-linear
problem. Section 2-4 presents some mathematical details on differentiation methods used in
numerical modeling and optimization. The chapter is summarized in Section 2-5.

2-1 eXtended Finite Element Method (XFEM)

XFEM1 is a versatile numerical tool for the analysis of problems characterized by disconti-
nuities, localized deformations and complex geometries. Originally, it was proposed to model
crack discontinuities [Belytschko and Black, 1999], but in recent years the method has also
been used to model the discontinuities of grains [Moës and Belytschko, 2002], FSI problems
[Gerstenberger and Wall, 2008a] and many more. In XFEM, discontinuities do not have to
coincide with elements edges. Hence, they may lie within an element as shown in Figure 2-1a.
The discontinuity cuts the element in different parts, introducing an interface Γ+ within the
element. This interface corresponds to the geometry of the Ω− domain, which may contain
a fluid or a structure. The interface Γ+ is defined independently of the FE mesh, and its
location within the FE mesh can also be changed independently of the mesh, i.e. the mesh
does not have to be to fitted to the edge of domain Ω− and the topology of the mesh remains
fixed. Suppose the interface location is updated (see Figure 2-1b), the mesh does not have to
be changed to fit the new interface. In other words, the need for remeshing during a bound-
ary update is omitted, saving computation time and numerical noise. This is advantageous,

1In literature XFEM, the Partition of Unity (PUM) and Generalized Finite Element Method (GFEM) are
often used to model discontinuities. All methods are based on the Partition of Unity principle and can be
considered equivalent. These methods differ by the used strategy to introduce a discontinuity.
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Γ+

Ω+

Ω−

(a) A FE element containing a discontinu-
ity - The interface Γ+ separates domains
Ω− and Ω+

Γ+

Ω+

Ω−

(b) A FE element containing a discontinu-
ity - The interface is shifted without chang-
ing the topology of the element

Figure 2-1: Discontinuity within a Finite Element

however, handling the discontinuities does require a more elaborate framework than FEM can
provide. For details on boundary remeshing the reader is referred to Wall et al. [2006]. This
section will start with a short introduction to the Finite Element Method (FEM) in general.
Section 2-1-2 will present how the FEM-framework is extended to handle the discontinuities
shown in Figure 2-1.

2-1-1 Introduction to FEM

Many engineering problems are represented by governing partial differential equations. The
analytical solution of these governing equations is difficult, or even impossible, to find in most
practical situations. A common reason is that the problem has a very complex geometry,
see Figure 2-8. FEM was introduced to approximate the solution of these partial differential
equations. FEM divides the problem spatially into sub-problems, called Finite Elements (FE),
of which we are able to find the solution. These FE can have shapes like triangles, rectangles,
tetrahedrons and cubes. The combination of the solution of all the sub-problems should give
an approximate solution of the overall problem. FEM helps engineers to analyze and model
a wide variety of engineering problems such as stress analysis, heat transfer, fluid flow and
electromagnetics by computer simulation. FEM has a strong mathematical framework as will
be shown below, but for more details on that the reader is referred to Fish and Belytschko
[2007].

General approach

There are several ways to use FEM, but in general the FEM approach consists of the following
five steps [Fish and Belytschko, 2007]:

1. Pre-processing: subdividing the domain Ω into finite elements Ωe, i.e. mesh generation;

2. Processing element formulation: development of equations for elements to describe be-
havior at specific discrete points, called nodes;

3. Processing assembly: obtaining equations for the whole system based on the equations
of the individual elements;
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2-1 eXtended Finite Element Method (XFEM) 5

4. Processing solving the system of equations;

5. Post-processing: determining relevant quantities (the response), such as displacements,
velocities or pressure and visualizations of the response.

At step 2 the behavior is usually described with partial differential equations, i.e. the strong
form. The strong form holds for every mathematical point in the domain and therefore the
solution is difficult to find in many practical situations. Approximations of the solution are
possible, if the strong form is rewritten into a weak formulation. There are many different
methods to approximate the solution of the weak form each having their own characteristics.
In this research, a Galerkin approach has been used. The Galerkin approach makes use of
the partition of unity principle, which is the foundation for the extension to XFEM.

Strong and weak formulation and Weighted Residuals

To illustrate the concept of the strong and weak formulation and the concept of weighted
minimal residual, we setup a simple, arbitrary problem in strong form:

D(u(x)) = f(x) , (2-1)

where D is a differential operator acting on a function u to produce function f . This is
the simplest way to represent partial differential equations, which are used to model many
different engineering problems. An example of such a problem is a linear structure subjected
to external forces, such that it will deform according to Ku = f , where K is the stiffness
matrix, u are the displacements and f is the external force.

As we assume Eq. (2-1) does not have an analytical solution, we wish to approximate u by
uh, according to Eq. (2-2). The solution is then found only for a set discrete points, called
nodes, within the domain and this turns weak formulation into a system of equations. The
approximation is a linear combination of basis functions chosen from a linearly independent
set:

u ≈ uh =
n∑
i=1
uiN i , (2-2)

where ui are nodal values and N i represents the interpolation between these nodes. Between
the nodal points the solution is interpolated with the shape functions Ni. When Eq. (2-2) is
plugged into Eq. (2-1) this will generally not give f(x). The error that is introduced by the
approximation is called the residual:

R(x) = D(uh(x))− f(x) 6= 0 . (2-3)

The notion of the Method of Weighted Residuals is to force this residual to zero in some
average sense over the domain of computation Ω, using the weak formulation:∫

Ω
R(x)W idΩ = 0 i = 1, 2, 3...n , (2-4)

where W i are the weight functions and i is the number of unknown variables in uh. The
result is a set of n algebraic equations. Depending on the choice for the weight function, the
approximation methods differ. The Galerkin method uses the derivatives of the approximation
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6 General Concepts

function with respect to the nodal values. If the approximating function is chosen as Eq. (2-2),
this gives:

W i = ∂uh

∂ui
. (2-5)

This means that in the Galerkin method the weight functions are equal to basis functions,
W i = N i. The Galerkin method is used in Finite Element Methods to approximate the
solution of a partial differential equation. In FEM, the basis functions N i are usually called
shape functions and the unknowns uhi are the nodal values of the state variables. As men-
tioned the domain is subdivided into elements, which are associated to the nodes. For the
linear structural problem introduced earlier, the approximation in Eq. (2-2) will represent the
displacement field of the structure. To find this displacement field the Galerkin method is
used to force the residual R to zero. An option to do so is to derive Eq. (2-4) with respect to
the state variables ui, namely:

J = d
∫

ΩR(x)W idΩ
dui

. (2-6)

This derivative is called the Jacobian of the system and for linear structural problems is equal
to the system’s constant stiffness matrix K. In case of non-linear equations, this derivative is
valuable too. Even though it is not constant it can be used within a Newton-Raphson method
to iteratively solve the non-linear equations, see Section 2-3 for more details. This is a very
brief explanation on FEM, but it does serve as a preliminary to XFEM in Section 2-1-2. For
more details on FEM for the Navier-Stokes (NS) equations used in this work, the reader is
referred to Section 3-2.

Choice of elements

The domain in FEM is subdivided into elements that all together will give the approximate
solution. Many different elements can be chosen, depending on the dimension of the domain.
In this research, Q4-elements are used, which are quadrilateral elements with 4 nodes and
bilinear interpolation (see Figure 2-2). The shape functions in reference coordinates for this
type of element are presented in Eq. (2-7) to Eq. (2-10).

Figure 2-2: The 4-node bi-linear quadrilateral Q4 element [Felippa, 2013] - η and ξ are the
natural coordinates and range from -1 to 1
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2-1 eXtended Finite Element Method (XFEM) 7

N1 = 1
4(1− ξ)(1− η) (2-7)

N2 = 1
4(1 + ξ)(1− η) (2-8)

N3 = 1
4(1 + ξ)(1 + η) (2-9)

N4 = 1
4(1− ξ)(1 + η) (2-10)

2-1-2 Extending FEM to XFEM

XFEM is an extension of FEM related to the approximation is defined in Eq. (2-2). In short,
XFEM enriches existing nodes with additional Degrees Of Freedom (DOFs) to be able to
capture a discontinuity within an element, see Figure 2-3. The nature of this discontinuity
may have different physical interpretations and may change location within the element during
simulation and/or optimization, as was explained in Figure 2-1. The concept is discussed
below using a simple 1-D example.

Figure 2-3: The bi-linear quadrilateral Q4 element with a discontinuity inside the element - The
discontinuity may, for example, be a transition from solid material (grey area) to fluid material
(red area).

Partition of Unity concept in XFEM

The foundation of XFEM is the partition of unity concept. A partition of unity in general is
defined as a collection of functions Ni(x) whose values sum up to unity at each point x in
the solution domain Ω:

n∑
i=1

Ni(x) = 1 ∀x ∈ Ω , (2-11)

where n is the number of functions. In the context of FEM, the functions Ni(x) are called
shape functions and by definition all Lagrangian FE shape functions satisfy the partition of
unity property. Actually, Eq. (2-11) is a mathematical representation of a more mechanical
statement, namely that the FE shape functions should be able to represent rigid body trans-
lation [Belytschko et al., 2009]. In case of discontinuities, Eq. (2-2) is extended and a vector
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8 General Concepts

field uh(x) can be approximated by:

uh(x) =
n∑
i=1

Ni(x)ui︸ ︷︷ ︸
FE interpolation

+
n∑
i=1

Ni(x)
m∑
j=1

Ej(x)qij︸ ︷︷ ︸
enrichment

, (2-12)

where superscript h denotes the approximate field, Ni the regular FEM shape functions,
ui are the regular nodal DOF values and qi are the enrichment DOF values. The terms
‘regular’ and ‘enrichment’ make reference to the fact that the ‘regular’ interpolation field is
considered as the background field upon which the ‘enrichment’ is added. Ej(x) is called the
enrichment function and in XFEM usually is a Heaviside function and m is number of terms
in Ej needed to represent the discontinuity. Figure 2-6 illustrates the concept visually for a
1D truss element. Figure 2-4a shows a truss element and the following standard FEM shape
functions:

N1 = x

L
,

N2 = 1− x

L
.

(2-13)

The shape functions in Figure 2-4a are related to the FE interpolation term of Eq. (2-12).
From Eq. (2-13) and Figure 2-4a it is easily verified that these linear FE interpolation functions
sum up to unity2. Figure 2-5a shows what happens, if these shape functions are multiplied
with a Heaviside function, which is defined as follows3:

H =
{

1 if x ≥ L/2
0 if x < L/2 . (2-14)

The effect of the Heaviside enrichment is visualized in Figure 2-4 to Figure 2-6. The following
remarks explain the figures.

1. Figure 2-4a shows a truss element with two nodes and the associated shape functions
from Eq. (2-13). The blue line shows the sum of the shape functions, corresponding to
Eq. (2-11). With unit displacement for u and no enrichments, Eq. (2-12) will result in
the normal displacement shown Figure 2-4b. The truss, in its initial position is depicted
as the red truss, will undergo a unit rigid body displacement, which is depicted with the
blue truss. Only one dimension is regarded, so the fact that blue truss lies lower than
the red truss should be ignored. The latter holds also for Figure 2-5 and Figure 2-6.

2. The enrichment term of Eq. (2-12), using the Heaviside function of Eq. (2-14), is shown
in Figure 2-5a. With unit displacement for q, the physical situation will look as shown
in Figure 2-5b. The Heaviside enrichment has introduced a gap with unit length. The
truss element is separated into two parts. In this gap no material is present, i.e. void
space.

3. If all terms in Eq. (2-12) are summed up the displacement field, with unit nodal values for
u and q, looks as shown in Figure 2-6a. The physical situation is shown in Figure 2-6b.

2Note: The shape functions for the Q4-element also sum up to 1, see Eq. (2-7) to Eq. (2-10)
3For explanation purposes the domain where the Heaviside functions has a value 1 or 0 is arbitrarily chosen

by the author. However, this domain is often defined by a LSM.
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2-1 eXtended Finite Element Method (XFEM) 9

(a) Standard FEM element model incl. shape func-
tions associated

(b) Standard FEM element model with rigid body
displacement

Figure 2-4: Standard FE interpolation term
∑n
i=1Ni(x)ui - See also remark 1

Again the truss element is separated into two parts by the Heaviside enrichment. Both
parts of the blue truss are displaced with unit distance, due to the FE term in Eq. (2-
12), but the right part has additional displacement, due to the enrichment term. This
illustrates how the standard FEM approach is enriched to incorporate discontinuities.

XFEM discretization In order to use XFEM to discretize the equations that describe your
system, the approximation of a vector field of first order l = 1 over an n-noded enriched
element, with all nodes enriched, is rewritten in FE matrix notation:

uh(x) = N(x)u+N(x)NE(x)q , (2-15)

where N is a l× (l×n) matrix containing the standard FE shape functions, NE is a (l×n)×
(l×m×n) matrix containing the extra basis terms for the enrichment, u is a l×n× 1 vector
with the standard DOFs and q is a (l×m×n)×1 vector containing the extra DOFs [Simone,
2012]. When Eq. (2-15) is plugged into the weak formulation of the governing equations
describing the system, one ends up with a matrix form suitable for solving with numerical
algorithms [Kreissl and Maute, 2012; Gerstenberger and Wall, 2008a,b, 2010].

Problems with XFEM Unfortunately some problems need to be addressed when using
XFEM. Below, these problems are listed without any details. For the details on these prob-
lems the reader is referred to the overview written by Fries and Belytschko [2010].

• The Kronecker-delta property is lost: in the FEM-approximation shape functions corre-
sponding to a node should have value 1 at that node and value 0 at all other nodes. In
XFEM, this no longer holds, due to the Heaviside enrichment in intersected elements,
see the left node in Figure 2-5a. In this research, this problem is circumvented as the
enrichment is used to turn parts of the elemental domain off, i.e. either Ω− or Ω+ is
deleted from the solution and considered as void. Hence there is no need to deal with
this as in crack modeling [Fries and Belytschko, 2010].
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(a) Discontinuous shape functions of the enrichment
term

(b) Discontinuous element with unit Heaviside dis-
placement

Figure 2-5: The enrichment term
∑n
i=1Ni(x)E(x)qi with the Heaviside enrichment H - See

also remark 2

(a) Discontinuous displacement field (b) Displaced discontinuous element

Figure 2-6: Illustration of Partition of Unity concept - The figures on the left show a truss
element and associated discontinuous shape functions. The figures on the right show the physical
situation based on unit Heaviside displacement and unit displacement fields - See also remark 3.
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2-2 Levelset method (LSM) 11

• Elements are cut by the discontinuity but still need to be integrated. The discontinuity
changes the shape of the domain, see Figure 2-3. Gaussian quadrature can only be
used for integration over standard elemental shapes like triangles and rectangles. The
red area is not a standard shape and hence this area needs to be triangulated before
integration is possible, see Section 3-2-3.

• The XFEM formulation could lead to ill-conditioned problems (near singular matrices),
when the discontinuity leaves a very small part of an element). The use of a pre-
conditioner helps with this problem.

2-2 Levelset method (LSM)

LSMs are numerical techniques to track interfaces and geometries. They were originally
proposed by Osher and Sethian [1988] to model moving interfaces in multi-phase flows in
crystal growth and flame propagation problems. Unlike density-based methods, LSMs use
an implicit description of interfaces to parametrize the geometry. This implicit description
allows easy treatment of topological changes of the geometry [Van Dijk et al., 2013]. This
section will shortly introduce the concept of LSMs. The actual LSM, used in this research, is
presented in Section 3-1.

2-2-1 The concept of levelset methods

A crisp description of the interface between two material phases can be defined, by means of
the iso-contour lines of a levelset function. Commonly the LSMs divide the computational
domain in three parts: the material domain Ω, the void domain (D \ Ω) and the material
interface Γ as:

φ(x) < c⇔ x ∈ Ω (material) ,

φ(x) = c⇔ x ∈ Γ (interface) ,

φ(x) > c⇔ x ∈ D\Ω (void) ,

(2-16)

where φ is the levelset field (LSF), c is the constant iso-contour interface value (usually c = 0)
and x is a point in the design domain D. Void, in this context, means that there is no material
present, or it is ignored and not part of the physical solution. Figure 2-7 shows an example of a
LSF with a zero contour geometry description of a bridge like structure. By changing the LSF
the geometry is changed. When combined with a suitable modeling approach and geometry
mapping, LSMs allow for a more accurate and physically correct mechanical model in the
vicinity of the interfaces [Van Dijk et al., 2013]. This is a big benefit compared to modeling
with density based methods, where intermediate densities around the fluid-structure interface
give nonphysical behavior. This is illustrated in Figure 2-8. For fluid-structure interaction
problems in particular, a crisp description of the interface is needed, as this interface is used
to couple the solid domain with the fluid domain. Another important remark to remember is
that one of the arguments to use the XFEM, is that this discretization technique also allows
for a sharply defined interface, even though the interface does not coincide with element edges.

XFEM and LSM fit together perfectly regarding the definition and handling of crisp interfaces.
This is particularly valuable in models where the interface is part of the physical problem, for
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12 General Concepts

(a) A levelset function - The intersection be-
tween the levelset function and the green zero
iso-plane describes the contour of the geometry

(b) The red contour Γ is the zero contour of the
levelset function in Figure 2-7a - The domain is
separated in three parts according to Eq. (2-16)

Figure 2-7: Illustration of the levelset method (LSM) to describe geometries

instance, in FSI problems. Moreover, this flexible way of describing the geometry with LSMs
has a lot of potential in topology optimization [Kreissl and Maute, 2012].

2-3 Non-linear solver - Newton-Raphson

Engineering problems are often described by a set of non-linear equations. If the weak formu-
lation of the problem is discretized according to Section 2-1, a non-linear solver is applied to
iteratively find the solution. In FEM, a widely used non-linear solver is the Newton-Raphson
solver. It is used to find zeros of some function. Within the FEM context, this means to find
an approximated solution of the problem, that gives a residual close to zero, see Eq. (2-4).
The method aims to successively find better solutions for the problem based on first order
Taylor approximations. For systems of equation the Newton-Raphson process can be written
as follows:

xn+1 = xn −
f(xn)
F ′(xn) . (2-17)

In Eq. (2-17), xn denotes the n-th approximation of the solution of function f . In FEM
context, the function f is the residual and F ′ the first order derivative of f with respect to
the solution xn, i.e. the Jacobian, see also Section 2-1-1. In essence, the non-linear problem is
solved by successively solving a linearization of the non-linear problem. The update process is
illustrated for a 1D example in Figure 2-9. This solver process has inspired a wide variety of
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2-4 Differentiation in numerical modeling 13

Figure 2-8: Optimized geometries for a classic L-bracket problem - Levelset based interface on
the left, density based on the right with unphysical intermediate densities [James and Martins,
2012]

Figure 2-9: A 1D Newton-Raphson update process - http://commons.wikimedia.org/wiki/
File:Newton-Raphson_method.png

gradient-based solvers, each being more suitable for particular problems. Without presenting
much more details, some characteristics of this method are:

• Quadratic convergence in the neighborhood of the solution;

• Success of the solver strongly depends on the initial guess;

• The possibility exists that the solver overshoots the desired solution;

• The derivative in stationairy points is zero thus the process terminates.

There are multiple techniques to handle (some of) the problems mentioned above. These
techniques, however, require that the residual and Jacobian are correct. After this has been
verified, one can look into these tuning methods.

2-4 Differentiation in numerical modeling

Derivatives, in the most general sense, are measures of how a function changes as its input
changes, i.e. how sensitive the function is to a change in input. This concept is of crucial
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importance in calculus and numerical modeling. If correctly used, the derivative information
leads the way to find a (local) minimum or maximum. Although other methods, such as the
bi-section method, can also be used, derivatives usually are efficient and accurate in finding
the extremes. As mentioned, one aims to reduce the residual error in FEM modeling to zero,
by using the Jacobian to update the solution. In optimization, one aims to minimize some
objective function by changing some design variables, using the derivative of the objective
function with respect to the design variables. To find the derivatives of a function f(x), one
has several options and below Finite Differences and analytical derivatives will be presented.

2-4-1 Finite Differences

The derivative in FD is defined as the ratio between the difference of the perturbed system
and the original system, and the step size. If the step size goes to zero in the limit, one ends
up with an analytic derivative. Below only first order derivatives are presented for simplicity:

f ′ = lim
∆x→0

f(x+ ∆x)− f(x)
∆x ≈ f(x+ ∆x)− f(x)

∆x → Forward difference , (2-18)

f ′ ≈ f(x)− f(x−∆x)
∆x → Backward difference , (2-19)

f ′ ≈ f(x+ ∆x)− f(x−∆x)
2∆x → Central difference , (2-20)

where f(x) is the function describing your system, x is the variable and ∆x is the step size.
The differences between these three methods are illustrated in Figure 2-10. Although finite

Figure 2-10: Finite Differences - The purple line shows the slope of analytic derivative df(x)/dx
at point x, the green line the slope according to backward differences in Eq. (2-19), the blue line
according to central differences in Eq. (2-20) and the red line according to forward differences in
Eq. (2-18).

difference methods are very easy to apply, one should take care during application, because
these methods have shortcomings. Choosing step size is difficult but crucial because large
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2-4 Differentiation in numerical modeling 15

step sizes can suffer from truncation errors and small sizes can lead to condition errors (for
instance, as a result of round-off errors). Computational efficiency, accuracy and consistency
depend heavily on the type of solvers used to solve the discretized system, but in general
finite differences are costly because for every variable at least one (two for central finite
differences) extra evaluation of the system response is needed [Van Keulen et al., 2005]. The
error introduced by the approximations in Eq. (2-18) to Eq. (2-20) is an order lower for
central differences, which is supported by Figure 2-10. It shows that central differences gives
the best approximation of the slope, since the purple and blue line are approximately parallel.
Analytical derivatives are preferred over Finite Differences (FD) from an accuracy point of
view, but unfortunately sometimes a lack of analytical relation forces one to use FD.

2-4-2 Discrete analytical derivatives - Adjoint formulation

For analytical derivatives it is important to include all dependencies on all (intermediate)
variables in the chain rule. They are used in both modeling and optimization algorithms.
Implementation of the analytical derivatives in FEM is usually a rather difficult, but rewarding
process from an accuracy and efficiency point of view. In some optimization procedures,
another technique can be used to make the computation of the sensitivity more efficient, i.e.
the derivative of the system’s response function with respect to design variables4. The adjoint
method is an efficient method to do sensitivity analysis when the number of response functions
is less than the number of design variables [Van Keulen et al., 2005]5. In essence, the adjoint
method uses a Lagrange multiplier to get rid of the state variable vector sensitivity, which is
expensive to compute. Starting with a standard response function z, which is a function of
the design variables s and the state variables u(s) it can be augmented as follows:

z∗(s,u(s)) = z(s,u(s)) + λT (f(s)−K(s)u(s)) . (2-21)

The term after the Lagrange Multiplier λ may be recognized as the residual formulation for
linear elastic structural problem from Eq. (2-3). When this equation is derived with respect
to the design variables s, rearranged and rewritten in index notation, the result will lead to
a particular choice for λ that avoids computation of the state sensitivity du/dsj :

dz∗i
dsj

= ∂zi
∂sj

+ λTi

(
∂f

∂sj
− ∂K

∂sj
u

)
+
(
∂z

∂u
− λTi K

)
du

dsj
. (2-22)

The last term on the right hand side in Eq. (2-22) determines the λ that cancels whole term
itself, leaving only:

dz∗i
dsj

= ∂zi
∂sj

+K−T
(
∂zi
∂u

)T
︸ ︷︷ ︸

λT
i

(
∂f

∂sj
− ∂K

∂sj
u

)
. (2-23)

This last equation shows that the Lagrange Multiplier uses the stiffness matrix of a linear
elastic structural problem. If the external force f is a constant, the stiffness matrix equals the

4The topic of Topology Optimization has not been touched in this research, however, it will be part of
future research with this XFEM model. This section is included to emphasize the importance of a numerically
consistent Jacobian.

5If the number of response functions is more than the number of the design variables, the so called direct
method is used.
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16 General Concepts

system’s Jacobian. Hence, one needs the system’s Jacobian for the adjoint formulation. The
state sensitivity in FEM models is expensive to compute and avoiding this with the adjoint
formulation is a smart choice in (X)FEM-based optimization.

2-5 Summary

The general concepts in this chapter provide background to obtain a better understanding
of the complete XFEM model, presented in Chapter 3. In this research, an FSI problem is
modeled with spatial XFEM discretization in combination with LSM geometry description.
XFEM is based on regular FEM, but allows the modeling of discontinuities with relative
ease. The location of these discontinuities can be determined by a LSM. With both FEM and
XFEM, the goal is to find an approximated solution of the governing partial differential equa-
tions. The method of weighted residuals and the Galerkin approach provide the framework
to iteratively find the approximated solution of non-linear problems.

The LSM is a flexible way to describe the geometry of a system by taking the zero-contour
of the LSF. It provides a crisp interface, which is suitable for problems where the interface is
a crucial part of the problem. FSI problems are a good example of problems where physics
at the interface determine the behavior of the whole system. Additionally, due to the flexible
geometry description, the method is also useful in optimization, where the initial geometry is
altered to improve the system’s performance.

The solution of the partial differential equations describing the system can be found iteratively
with a Newton-Raphson method. This method solves a non-linear problem by solving a
sequence of linearized problems using first order derivatives. In FEM context, the solver
reduces the residual by updating the solution based on the system’s Jacobian.

First order derivatives can be computed both numerically and analytically. A numerical
method is the FD method. In this method the derivatives are approximated by the difference
of the perturbed response and the non-perturbed response divided by the perturbation size.
It is a simple concept, but there are some practical complications, such as choosing the correct
step size. The analytical derivatives use the chain rule and are more accurate and computa-
tionally efficient in most situations. Implementational effort is higher, but it is usually worth
the effort. In optimization problems involving many design variables and few responses, the
adjoint formulation is the best approach to compute the system’s sensitivity with respect to
the design variables efficiently. As with the Newton-Raphson method, the adjoint formulation
requires a numerically consistent Jacobian of the system. This emphasizes the need to build
a correct residual and to find a numerically consistent Jacobian.
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Chapter 3

The complete XFEM model

In this research, a 2 dimensional fluid-structure interaction (FSI) problem is modeled with
LSM and XFEM. This approach is particularly interesting to investigate from the point of
view of optimization, because of the flexible geometry description and crisp interfaces. As
was already mentioned in Chapter 2, both solving the system and the adjoint formulation
for optimization benefit from a numerically consistent Jacobian. This chapter explains how
the Jacobian is built. It starts with explaining the geometry description, which is done using
a levelset method in Section 3-1. The physics of the system and the residuals are presented
in Section 3-2. Both Section 3-1 and Section 3-2 contain information on how to build a
numerically consistent Jacobian, which is the topic of Section 3-3. Section 3-4 presents how
the Jacobian is used to solve the system with a staggered and monolithic approach. Section 3-5
presents the actual physical problem that is modeled. The chapter ends with a summary.

3-1 Levelset procedure

The geometries of both fluid and structure in our XFEM model are determined by a zero
contour of the levelset field (LSF). The zero contour intersects with element edges on both
fluid and structural mesh. This separates the mesh into a material and a void domain,
as explained in Section 2-2, describing the geometry as such. The lines separating these two
domains are the material to void interfaces. Along these interfaces the fluid-structure coupling
will take place and this is where the levelset feature of crisp interfaces proves its potential.
This section will discuss the use of the two meshes in Section 3-1-1, the LSF initialization
in Section 3-1-2, the tracking of the structural interface in Section 3-1-3, the fluid levelset
update procedure in Section 3-1-4 and it will conclude with some reflection on the current
implementation of the method.

3-1-1 Separate meshes - 3-field setup

The idea of this XFEM-based FSI model is to use two separate, superposed meshes for the
two phases (fluid and structure) in the computational domain, with a third field to transfer
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18 The complete XFEM model

information between the two meshes. Figure 3-1 illustrates the 3-field setup. Superposed, in
this context, means that the structural mesh is projected onto the fluid mesh. Using the

Γ+
f

Ω+

Ω−f

Fluid field Struc. bar Structural field

Γ+
s

Ω+
s

Ω−

us

tf

Figure 3-1: 3-field setup - The fluid domain is on the left, the structural domain on the right.
The arrows indicate the transfer of FSI coupling information from one domain to the other through
the structural bars; tf and us traction and structural displacements and velocities, respectively.
The grey areas represent voids.

eXtended Finite Element Method (XFEM)-feature to model discontinuities and turn off parts
of a mesh, the structure is considered as a void in the fluid mesh and vice versa, see grey areas
in Figure 3-1. The geometry of these voids is determined by a zero levelset contour and the
interfaces between phase and void are the interfaces where the fluid-structure coupling takes
place, according the FSI conditions presented in Section 3-2. The fluid problem is solved
on an fixed Eulerian mesh and the structural problem is solved on a deformable Lagrangian
mesh. This is a common approach in FSI, since the governing partial differential equations
for fluids and structures exhibit different mathematical characteristics. In general, structural
constitutive behavior is given in terms of material coordinates, which corresponds to the
Langragian representation. In fluid modeling, the relevant physical quantities are generally
not known in terms of material coordinates and hence a choice is made for the Eulerian
representation.

Figure 3-2 to Figure 3-4 illustrate the approach. Figure 3-2 shows the undeformed Eulerian
fluid mesh with an arbitrary initial fluid-structure interface. Figure 3-3 shows an arbitrarily
deformed fluid-structure interface on an accordingly deformed mesh. The fluid-structure
interface, as shown in Figure 3-2 and Figure 3-3, is defined by the zero levelset contour. From
the XFEM perspective: the interfaces indicate the edge of the void in the mesh. The same
sign convention is used for both the fluid and structural level set field, namely positive nodes
(φi > 0) belong to the solid phase (void in the fluid mesh), negative nodes (φi < 0) belong to
the fluid phase (void in the structural mesh). This sign convention is important to remember,
when doing Finite Element (FE) interpolation. Since two meshes are used, two levelset fields
are defined. They are initialized in the undeformed configuration, where fluid and structural
mesh coincide, see Section 3-1-2. However, as soon as the structure starts to deform and the
structural solution is projected onto the fluid mesh, the projection changes and the result
is as shown in Figure 3-4. The structural bars mentioned earlier are the key component in
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FS interface

Fixed mesh

Void

xf

yf ξf

ηf

Figure 3-2: Fixed fluid mesh with zero levelset contour in blue lines to indicate fluid to void edge
as fluid-structure interface - Inside the contour lies the void domain.

xf

yf ξf

ηf

FS interface

Deformed mesh

Void

Figure 3-3: Deformed structural mesh with zero levelset contour in blue lines to indicate structure
to void edge as fluid-structure interface - Outside the contour lies the void domain

this structural projection onto the fluid mesh. The red dots indicate an intersection between
deformed structure and fixed fluid mesh, and these intersections are computed using the
structural bars. The intersections between the deformed structure and the fixed fluid mesh
provide the information the XFEM solver needs to determine which nodes to enrich and what
part of the domain to consider as void or material.

3-1-2 Levelset initialization

The LSF is determined by a signed distance function. In essence, this function computes the
Eucledian distance from a node to an interface, which gives the absolute nodal levelset value.
Then according to the sign convention mentioned earlier, the actual levelset value is given
a positive sign in the structural domain and a negative sign in the fluid domain. In order
to initialize the LSF, we define the zero levelset contour as a function the dimensions of the
structure shown in Figure 3-5. A loop over all nodes in both meshes determines whether
the y-coordinate of a node is smaller than the height of the beam without semicircular top
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xf

yf ξf

ηf

FS interface

Figure 3-4: Deformed structure projected onto fixed fluid mesh, such that all void areas are filled
with the other phase and physical FSI domain is complete.

h − r. If this is the case, the nodes left of the structure are given the Eucledian/horizontal
distance ‖d1‖ as difference between the nodal x-coordinate and the x-coordinate of the left
vertical part of the interface. For nodes right of the structure the difference between the
nodal x-coordinate and the x-coordinate of the right vertical part of the interface is used. For
nodes between the two vertical parts of interface the minimum of the horizontal distances
to the two interfaces is used. If the nodal y-coordinate is bigger than h − r, the Eucledian
distance ‖d2‖ is defined as the distance from the node to the center point cp of the of the
semi-circle minus the radius r. The sign is determined by whether a node lies in- or outside
the levelset contour, see the + and - in Figure 3-5. This procedure is straightforward, but
it does have some implications. The fluid levelset update procedure gives a slightly different
result as will be explained in Section 3-1-4. Another important remark to add is that the blue
bars connecting the intersection points, depicted by the red dots in Figure 3-5, are structural
bars and define the third field. Hence, the structural bars are determined by initialization of
the LSF and the undeformed meshes. The bars are used to keep track of the interface of the
structure in the Eulerian reference frame. The initialization is equal for both the fluid and
the structural mesh as the structural mesh is not deformed yet, implying that both meshes
will contain intersected elements. Because the structure is modeled on a Lagrangian mesh,
the structural LSF is fixed, in contrast to the fluid LSF.

3-1-3 Tracking structural interface deformation

The structural displacements at the interface are tracked using the third field, called the
structural bars. The structural bars are defined between the initial zero-contour and the
Eulerian mesh as shown in Figure 3-5. This third field does not have any physical contribution,
i.e. it is solely defined to transfer information from one mesh to the other, as is illustrated
in Figure 3-1. These bars are displaced using the nodal displacement field of the previous
Newton-Raphson iteration1 at the zero contour of the structural mesh. This setup allows

1More details on the solver are presented Section 3-4

Thijs Bosma Master of Science Thesis



3-1 Levelset procedure 21

r

‖d2‖

‖d1‖
h

+

−

y
x

bars

w

cp

Figure 3-5: Initialization of the levelset field - Dashed blue line is the actual geometry, the
continuous blue line is the discretized geometry, which also determines the structural bars between
the intersection points (the red dots). Parameters h, w, r = w/2 and cp indicate the height,
the width, the radius and center point of the top of the structural beam, respectively. See also
Figure 3-23 for the complete problem setup.

to track the Langragian interface in an Eulerian reference frame and is similar to the 3-field
setup of Gerstenberger and Wall [2008a].

A standard intersection configuration
As mentioned the initialization of the LSF fixes the interface for the structure and determines
the structural bars. We consider a standard intersection configuration, see Figure 3-6, to
illustrate how the Lagrangian structural interface is tracked. The coordinates of the intersec-

P Γ,0
2

P Γ,0
1

P n
s,1 P n

s,2

P n
s,3P n

s,4

b1

Struc. Elem.

Figure 3-6: An intersected structural element considered in undeformed and initial configuration
- The red dots are the intersection points between the zero contour and the structural element
edges. These red dots will also be defined as the bar ending points.

tion points P Γ,0
1 and P Γ,0

2 are determined by intersections between the zero contour of the
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structural LSF φns and the element edges, and can be written as:

P Γ,0
1 =

[
xΓ

1
yΓ

1

]
P Γ,0

2 =
[
xΓ

2
yΓ

2

]
. (3-1)

As we are considering the undeformed configuration, the points P Γ,0
1 and P Γ,0

2 , actually, also
determine the bar ending points, which will be called P b

1 and P b
2. The line connecting the bar

ending points is the structural bar. In the undeformed configuration the fluid and structural
mesh coincide, but as soon as the structure starts to deform this is no longer true. To keep
track of the bar ending points in the Eulerian reference frame, the displacements at the bar
ending points are interpolated using the nodal solutions for the displacements unx and uny as
well as the shape functions N+, evaluated at the bar ending points P b

1 and P b
2, which gives:

ubx1 = N+
P

b1
1
· unx ,

uby1 = N+
P

b1
1
· uny ,

ubx2 = N+
P

b1
2
· unx ,

uby2 = N+
P

b1
2
· uny .

(3-2)

Using these displacements the coordinates of the bar ending points is updated from their
initial position in Eq. (3-1) as follows;

P b
1 =

[
xΓ

1 + ubx1
yΓ

1 + uby1

]
P b

2 =
[
xΓ

2 + ubx2
yΓ

2 + uby2

]
. (3-3)

Eq. (3-3) represents the global coordinates of the bar ending points in the Eulerian reference
frame. In Figure 3-7, the updated configuration from Eq. (3-3) is illustrated. Figure 3-7 shows

b2

P b1
2

P b1
1

P n
f,1 P n

f,2

P n
f,3P n

f,4

b1

Fluid Elem.

i
Figure 3-7: The updated location of the structural bar within the fluid element that coincided
with the undeformed structural element from Figure 3-6 - The bar ending points have moved
(green dots) and hence also the intersection points (red dots).

the displaced bar b1, the bar endpoints P b11 and P b12 , and the fluid element containing the bar.
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One can see that in this deformed state the endpoint P b1
2 no longer lies on the fluid element

edge and the distinction between P Γ,0
2 and P b1

2 becomes clear. The bar b2 was originally
located in the element sharing the top element edge with the element shown in Figure 3-7.
Because of the new displacement field, this bar has also moved and now intersects with the
element edge to give a changed intersection point (the red dot).

3-1-4 Fluid levelset update

With the updated location of the bars, representing the actual location of the structure to
void interface in the Eulerian reference frame, the intersection points between the bars and
the Eulerian mesh have changed. These updated intersection points are the ingredients for
the fluid levelset update.

Structural projection and intersections

In the previous section, it was explained how the structural interface was tracked within the
Eulerian mesh, using the structural bars. The intersections between the structural bars and
the fluid element edges, called projected intersection points, will provide the information for
the fluid levelset update procedure to update the LSF and hence the void area in the fluid
mesh. The following steps are part of this projection:

1. Compute the projected intersection points between the bars and the fluid element edges
in global and local coordinates;

2. Divide the bars into sub-bars at the intersections points and compute location of the
sub-bar endpoints in global and local coordinates;

3. Compute the outward normal to the sub-bars in global coordinates, pointing from struc-
ture to fluid;

4. Compute Gauss points and weights on the sub-bars in global and local coordinates.

The last three steps are done for Gaussian integration purposes of the traction, discussed in
Section 3-2-3. The process is illustrated by Figure 3-8.

The fluid LS update procedure

With the projection of the structure onto the fluid mesh, it is possible to calculate the new
fluid levelset field. For each node, connected to an intersected element, the perpendicular
distance to the closest interface is calculated, with the interface defined as the straight line
between two intersection points (see red dashed line Figure 3-8). The intersection points are
found by straight forward vector computation, as will be shown in this section. Element edges
are defined between the nodal coordinates defined below:

P n
1 =

[
xn1
yn1

]
, P n

2 =
[
xn2
yn2

]
, P n

3 =
[
xn3
yn3

]
, P n

4 =
[
xn4
yn4

]
. (3-4)
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y

x

sub-bars
Gauss points

Figure 3-8: Projected deformed structure on fluid mesh with bar endpoints as green dots,
intersections as red dots, Gauss points as blue dots and the red dashed line as the interface
between the projected intersection points

The bars are defined between the bar endpoints in Eq. (3-3) and may be located with respect
to an element edge as shown in Figure 3-9. To solve for the local coordinates r and s, a
system of equations can be set up that represents the location of the intersection point based
on both line segments, namely:

P b
1 + (P b

2 − P b
1) · s = P n

1 + (P n
2 − P n

1 ) · r , (3-5)

which can be rewritten to:

[
(P b

2 − P b
1) (P n

1 − P n
2 )
]

︸ ︷︷ ︸
A

·
[
s
r

]
︸︷︷︸
x

= P n
1 − P b

1︸ ︷︷ ︸
b

. (3-6)

The previous equation has the form of A · x = b, which is helpful when determining the
derivatives later on in this section. The location of the intersection point P Γ

1 in global
coordinates can than be found after Eq. (3-6) is solved, with the following formula:

P Γ
1 = P n

1 + (P n
2 − P n

1 ) · r . (3-7)

In this research, the mesh size compared to size of the structure is chosen such that only
one interface per element is possible. This means each intersected fluid element will have 2
intersection points with the structural bars computed according to Eq. (3-6) and Eq. (3-7).
With these two projected intersection points, the perpendicular distance from each node i to
the interface can be found as follows:
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P n
2

P n
1

P b
2

P b
1

P Γ
1

r

s

Figure 3-9: Bar intersection with fluid element edge - s and r are local coordinates of the
intersection point along the element edge and the bar, respectively. The configuration is chosen
arbitrarily, just to illustrate how the structural bars may intersect 1 of the 4 element edges.

1. Define the interface vector m between in the projected intersection points, i.e. the red
dashed line in Figure 3-10:

m = P Γ
2 − P Γ

1 =
[
xΓ

2
yΓ

2

]
−
[
xΓ

1
yΓ

1

]
=
[
xΓ
m

yΓ
m

]
; (3-8)

2. Define the normal nm to the interface vector m:

m⊥ = nm =
[
−yΓ

m

xΓ
m

]
; (3-9)

3. Assemble into a matrix B = [m −nm] to represent a new interface/normal reference
frame. Node i has nodal coordinates P n

i and local coordinates/ratios w.r.t the new
interface/normal frame oi:

oi =
[
o1
o2

]
i

= B−1 · [P n
i − P Γ

1 ] ; (3-10)

4. The perpendicular vector from P n
i to the interface is defined as:

di = (P Γ
1 +m · o1i)− P n

i , (3-11)

with P Γ
1 +m · o1 being the global coordinates in the Eulerian mesh of the orthogonally

projected point op on the interface, see Figure 3-10;

5. The perpendicular distance and hence the absolute levelset value is then given as ‖di‖.

As we know the outward normal nm of the structural bars, these will be used to give the
correct sign to the new nodal levelset values on an elemental level. For example, the lower
element in Figure 3-10 has nodal levelset values as follows:

sign(φef ) =
[
φsign1 φsign2 φsign3 φsign4

]
=
[
−1 1 1 −1

]
. (3-12)
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This procedure is done in a loop over all nodes connected to intersected elements. Each node
is connected to multiple elements and all these elements are checked on intersections. In
each connected element, a perpendicular distance is computed, if it exists inside the element.
Otherwise the distance to the closest intersection point is used. From all calculated distances
for that node, the absolute nodal levelset value is set to minimum calculated distance. This
is illustrated in Figure 3-10 at node P n

4 , where the blue dashed line is the distance to the
closest intersection point in the top element and the green dashed line is the actual absolute
levelset value, given by the bottom element. The updated nodal levelset values per element
can than be found as:

φef =


φsign1 · ‖d1‖
φsign2 · ‖d2‖
φsign3 · ‖d3‖
φsign4 · ‖d4‖

 . (3-13)

+
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Figure 3-10: Nodal perpendicular distances (green lines) to the interfaces between the projected
intersection points.
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Visualization of the update process

An overview of the fluid levelset update process is shown in Figure 3-11. On the left, the
undeformed configuration is shown, which defines the structural bars between the intersection
points of the zero contour and the fixed element edges. The blue bar is actually located
between the two red intersection points, which is denoted by the black dashed lines between
the green bar ending points and red intersection points. On the right, the location of the
structure with respect to fluid mesh has been updated according to the structural displacement
field and hence the location of the structural bar with respect to the fluid element has changed.
The intersections between bar and element edges determine the nodal levelset field, denoted
by the green dashed arrow in the fluid element.

StructureF luid

Bar

(a) Definition of the structural bars - Structural
bar is shown enlarged and next to zero contour
to illustrate the 3 field setup, but is, actually,
located between the red intersection points

StructureF luid

(b) Updated location of the structural bar -
Structural bar lies on the structure to void in-
terface and intersects a fluid element resulting
in projected intersection points (red dots)

Figure 3-11: Overview update process of the fluid levelset field - The undeformed configuration
on the left and a deformed configuration on the right, where the same intersected fluid element
is shown but the structural projection has changed

3-1-5 Fluid levelset field derivatives

In Section 3-3, it will be explained that for the Jacobian to be consistent we need, amongst
other contributions, the derivative of the fluid LSF with respect to the structural state vari-
ables. Section 3-1-4 explains that the fluid levelset field is function of the projected inter-
section points and that the projected intersection points are a function of the structural
displacements. These dependencies are important for computing analytical derivatives as is
shown in Eq. (3-14):

dφfi

(
P Γ

1,2 (uns )
)

duns
= ∂φfi
∂P Γ

1,2

dP Γ
1,2

duns
, (3-14)
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where uns are the nodal displacements from the structural mesh in both x- and y-direction
used in Eq. (3-2), φfi is the nodal levelset value of the i-th fluid node and P Γ

1,2 both projected
intersection points within the fluid element giving the orthogonal distance for node i. Due
to the geometric vector setup of the LSM described in Section 3-1-4, there is an analytical
relation for Eq. (3-14).

Derivatives - Nodal levelset value with respect to projected intersection points

The absolute nodal levelset value is given by ‖di‖ and therefore the derivative of this with
respect to projected intersection points looks as follows:

∂‖di‖
∂P Γ

1,2
= 1
‖di‖

∂di

∂P Γ
1,2

=


∂di

∂xΓ
1

∂di

∂yΓ
1

∂di

∂xΓ
2

∂di

∂yΓ
2

 , (3-15)

where di is defined Eq. (3-11). Using the chain rule again gives:

∂di

∂P Γ
1,2

= ∂P Γ
1

∂P Γ
1,2

+ ∂m

∂P Γ
1,2
o1i +m ∂o1i

∂P Γ
1,2

, (3-16)

where the individual derivative terms look as follows:2

∂P Γ
1

∂P Γ
1,2

=


(

1
0

) (
0
0

)
(

0
1

) (
0
0

)
 , (3-17)

∂m

∂P Γ
1,2

=


(
−1
0

) (
0
−1

)
(

1
0

) (
0
1

)
 , (3-18)

∂o1

∂P Γ
1,2

=


B−1

(
o1 − 1
−o2

)
B−1

(
o2

o1 − 1

)

B−1
(
−o1
o2

)
B−1

(
−o2
−o1

)
 . (3-19)

After all these terms are plugged into Eq. (3-15), the final step is to give the derivatives
the correct sign according to φsigni . The levelset derivative with respect to the projected
intersection points is written as follows:

∂φfi
∂P Γ

1,2
= φsignf,i

∂‖di‖
∂P Γ

1,2
. (3-20)

This method can be extended to multiple intersections quite easily, however, in this research
we do not consider cases with multiple intersections, as this poses difficulties for integration
of the residual contributions.

2The entries are presented in similar order regarding the denominator, as in Eq. (3-15)
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Derivatives - Projected intersections points with respect to structural displacements

For the second term on the right hand side in Eq. (3-14) we need the derivatives of the
projected intersection points with respect to nodal displacements. Using Figure 3-9 again,
these derivatives can be found as described below. If we differentiate Eq. (3-7) with respect
to a dummy variable ũ, which is later to be substituted by all four coordinates of the two bar
ending points, we get the following:

dP Γ
1,2

dũ = (P n
2 − P n

1 ) · dr
dũ . (3-21)

The ∂r/∂ũ can be found differentiating Eq. (3-6) with respect to ũ:

∂A

∂ũ
· x+A · ∂x

∂ũ
− ∂b

∂ũ
= 0 , (3-22)

which can be rewritten as:

dx
dũ =

ds
dũdr
dũ

 = A−1
[
∂b

∂ũ
− ∂A

∂ũ
·
[
s
r

]]
. (3-23)

Evaluating all terms in Eq. (3-23) with the structural displacements at the bar ending points
gives the following:

• For ũ = ubx1:
∂b

∂ubx1
=
[
−1
0

]
,

∂A

∂ubx1
=
[
1 0
0 0

]
. (3-24)

• For ũ = uby1:
∂b

∂uby1
=
[

0
−1

]
,

∂A

∂uby1
=
[

0 0
−1 0

]
. (3-25)

• For ũ = ubx2:
∂b

∂ubx2
=
[
0
0

]
,

∂A

∂ubx2
=
[
1 0
0 0

]
. (3-26)

• For ũ = uby2:
∂b

∂uby2
=
[
0
0

]
,

∂A

∂uby2
=
[
1 0
0 0

]
. (3-27)

This leads to the following solutions for Eq. (3-23):

• For ũ = ubx1: 
ds

dubx1dr
dubx1

 = A−1
[
−1 + s

0

]
. (3-28)
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• For ũ = uby1: 
ds

duby1
dr

duby1

 = A−1
[
−s
0

]
. (3-29)

• For ũ = ubx2: 
ds

dubx2dr
dubx2

 = A−1
[

0
−1 + r

]
. (3-30)

• For ũ = uby2: 
ds

duby2
dr
∂uby2

 = A−1
[

0
−r

]
. (3-31)

The bottom rows of these last four equations can be plugged into Eq. (3-21). The derivatives of
the intersection point coordinates with respect to the nodal structural displacement are then
found, according to Eq. (3-2), by post-multiplication with the shape functions N+ evaluated
at the bar ending points:

dP Γ
1,2

dunxj
=

dP Γ
1,2

dubxk
N+(P bk) ,

dP Γ
1,2

dunyj
=

dP Γ
1,2

dubyk
N+(P bk) ,

dP Γ
1,2

duns
=

dP Γ
1,2

dunxj
∪

dP Γ
1,2

∂unyj
,

(3-32)

where 1,2 denotes the both projected intersection points, j the j-th node of the structural
element, k the k-th bar endpoint and n the n-th structural element containing bar b. Section 3-
3 will present how all these terms are incorporated to find a consistent Jacobian.

Levelset field consistency

A problem with this levelset method (LSM), that needs to be addressed, occurs in cases
of large displacement of the structure, within a Newton-Raphson iteration. In that case,
an element initially belonging to the void phase can be found completely immersed in the
material phase and vice versa. Before and after the update the element did not contain
any intersections and so the procedure described above does not work to update the nodal
levelset values. This results in unprocessed elements, which gives local errors in the levelset
field. These unprocessed elements will be erroneous void or material elements.
The solution to this problem is a floodfill algorithm3. This algorithm essentially sets all nodal
fluid levelset values to either 1 or -1 depending on the domain, except for the nodes that are

3The idea of the floodfill is based on floodfill algorithms used in paint-programs http://en.wikipedia.
org/wiki/Flood_fill
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3-1 Levelset procedure 31

connected to intersected elements. The latter will be handled by the LSM presented earlier.
Every node is flagged to indicate whether it has been processed by the signed distance function
setup. A loop over all elements determines the correct phase using material information from
the neighboring elements, starting with elements connected to intersected elements as they
hold correct phase information. When all the nodes are processed the algorithm is done. For
more details and illustrations on this algorithm, the reader is referred to Aloun [2012].

3-1-6 Reflection on proposed levelset method

The proposed LSM has been designed to compute analytical derivatives used in the Jacobian,
which is desired from an computational efficiency standpoint, see Section 3-3. Without pre-
senting any specific details, it should be noted that the current Matlab implementation has
some shortcomings and characteristics that one has to be aware off. These shortcomings and
characteristics should be taken into account when the results are analyzed later on in Chap-
ter 4. A characteristic of this method is that the the fluid levelset is unable to perfectly track
the structural projection. The consequences are loss of interface information and intersections
that are impossible to handle in the current setup (code break down). These characteristics
and shortcomings are presented below, as they have been encountered several times during
this research and reduce robustness of the XFEM model.

Characteristic - Discrepancy between projection and fluid levelset

The LSF of the structure is determined by the procedure described in Section 3-1-2 and is
fixed, due to the Lagrangian setup. The fluid levelset is updated according to the method
described in Section 3-1-4 and, hence, there will always be a discrepancy between the two
meshes. This is definitely not uncommon in FSI and it implies the use of approximating
projection techniques to transfer information from one mesh to the other, see Section 3-2-3.
With more complex structural shapes this discrepancy increases and will reduce accuracy of
the results. The discrepancy is illustrated by Figure 3-124.

Shortcomings - Handling different intersection configurations

An essential part of this XFEM model is handling all potential intersection configurations.
This is, however, not easy in all cases. Below two problems will be discussed that negatively
influence the results, reduce the freedom of choosing mesh coarseness and should be fixed for
future research to make the code more robust and generally applicable to other geometries.

Multiple intersections along one element edge In this research, the mesh is chosen such
that multiple interfaces within a fluid element do not occur; the geometry of the structure
is big compared to the size of the fluid elements. However, the first shortcoming relates to
the case where a sharp corner of the structure is projected onto the shared edge between
two fluid elements. The configuration is illustrated by Figure 3-13 within the red circle.
The figure shows a corner of the projected structure that has just crossed an fluid element

4In Section 5-3-3 at Problem 3, the explanation for the discrepancy is presented.
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Figure 3-12: Mesh discrepancy - Grey is void in fluid mesh and does not align perfectly with the
white wire frame of the structure. The discrepancy is clearly visible, especially at the top of the
beam, where the structural details are finer.

Figure 3-13: Problematic intersections - Double intersections on one element edge in red circle
and submersed bar in yellow circle

edge. The element edge is intersected twice, such that the left element has two interfaces
inside the element and the right element has two intersections on the same element edge.
The intersection configuration of the left element can in theory be handled by XFEM with
additional enrichments, but the current Matlab implementation is not ready for that. The
element on the right gives trouble, as intersection points on one edge give an fluid interface
aligned with that edge. Local remeshing of the two concerned elements, if the situation occurs,
is the most elegant way to handle this configuration, but this solution is too advanced for this
research [Gerstenberger and Wall, 2008b]. However, it is recommended for future research.
In this research, this configuration is prevented by using a fine mesh. The mesh refinement
should aim to reduce sharp corners of the structure on the right. An example of fine mesh is
depicted in Figure 3-14. Prevention is not the most robust way to handle this problem, since
it uses information on the geometry of this particular problem.

Submersed bars - Traction loss The second situation that gives problems, occurs when a
structural bar is completely submersed in a fluid element and does not intersect any fluid

Thijs Bosma Master of Science Thesis



3-2 Fluid Structure Interaction 33

Figure 3-14: Refined mesh to handle multiple intersection case - The structure has a smoother
interface, which is less likely to create a problematic intersection configuration.

element edges. The routine that projects the fluid traction onto the structural interface, see
Section 3-2-3, only projects traction information onto the bars that actually intersect the
elements edges. This is a minor problem, but it does result in loss of physical information.
The configuration is also shown in Figure 3-13 within the yellow circle. If one wants to handle
this problem, again local mesh refinement would be a good option.

3-2 Fluid Structure Interaction

Fluid-structure interaction is the physical field on which this research is focused. As men-
tioned in the introduction, the domain in FSI problems contains both a structure and a fluid
interacting with each other at a shared interface. The LSM from Section 3-1 determines the
geometry of the system and FSI provides the governing partial differential equations that de-
scribe the physical behavior of separated parts of the domain and the interaction between the
two. This section is built up as follows: Section 3-2-1 and Section 3-2-2 present the equations
that describe the physics of the system. Section 3-2-3 explains how the fluid and structure
are coupled to complete the FSI model.

3-2-1 Mechanics

To derive the governing equations that describe the physics of a system, one has to choose for a
reference frame. In FSI, there are three choices 1) Eulerian/spatial 2) Lagrangian/material or
3) Arbitrary Lagrangian Eulerian (ALE) description. In this work, we have chosen an Eulerian
description for the fluid and a Lagrangian description for the structure. Eulerian means that
the reference frame of the observer is fixed in space and Lagrangian means that the observer
travels with the material. This choice implies the use of two different meshes, which is a key
feature in this work mentioned in Section 3-1-1. The ALE description is very popular in FSI
and characterized by an observer moving with the fluid-structure interface and a deformable
mesh, which is remeshed to fit the updated interface. XFEM has the advantage of not
having to re-mesh, saving computational effort and reducing numerical noise. It is possible
to use an ALE description within the framework presented in this research, but that would
make the XFEM model more complicated. Nevertheless Gerstenberger and Wall [2010] did
propose an XFEM-ALE model, which proves to be advantageous in complex fluid-structure
interaction cases (especially complex geometries). The choice for one of these reference frames
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34 The complete XFEM model

is important for the mathematics (convective terms), but all three should describe the same
physical behavior.

Fluid mechanics

The complete Navier-Stokes equations consist of conservation of mass, conservation of mo-
mentum and conservation of energy. These equations are complemented with Navier’s law,
Fourier’s law and the equations of state to fully determine the state of the fluid. The equations
of conservation look as follows:

∂ρf
∂t

+ ρf
∂vi
∂xi

= 0→ conservation of mass ,

∂ρfvi
∂t

+ ∂ρfvi
∂xj

vj = ∂pδij
∂xj

+ ∂τij
∂xj

+ ρffi → conservation of momentum , (3-33)

∂ρfE

∂t
+ ∂ρfEvi

∂xi
+ ∂pvi

∂xi
− ∂τijvi

∂xj
+ ∂qi
∂xi

= ρffivi → conservation of energy ,

where ρf is density of the fluid, vi is fluid velocity, p is fluid pressure, τij is the tensor of
viscous stresses, fi are external body forces, E is internal energy and qi is heat flux due
to conduction. Important to note is that in Eq. (3-2-1) there are 5 equations to determine
ρf , vi and E, but there are 10 more unknowns: p, 6 shear stresses τij = τji, i 6= j and 3
flux components of qi. The following equations are introduced to determine the remaining
unknowns:

τij = τji = µ( ∂vi
∂xj

+ ∂vj
∂xi

)− 2
3δijµ

∂vk
∂xk

→ Navier’s law , (3-34)

qi = k
∂T

∂xi
→ Fourier’s law , (3-35)

ρf = constant, E = cT → Equations of state . (3-36)

Here, the Navier-Stokes (NS) equations are presented in local/differential and dimensional
form using the the Einstein convention in a Carthesian and Eulerian reference frame. Depend-
ing on assumptions on, for instance, compressibility or low Reynolds numbers the equations
above can be simplified. This is the topic of the next section.

Incompressible Navier Stokes equations
The NS equations can be simplified by assuming the following

1. Temperature and energy are constant

2. Density is independent of time and location

3. No external/body forces

The first assumption gets rid of the conservation of energy equation. The second assumption
drops the first term in the conservation of mass equation. This means that state variables
in the fluid will only be velocities and pressure. The mass equation is reduced to an incom-
pressibility condition. In other words, the velocity field is divergence free. This on its turn
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drops the last term in Navier’s law. Thus the incompressible NS5 equations can be written
as follows:

ρf
∂vi
∂t︸ ︷︷ ︸

Unsteady
acceleration

+ ρfvj
∂vi
∂xj︸ ︷︷ ︸

Convective
acceleration

= ∂σij
∂xj︸ ︷︷ ︸

Pressure gradient
and Viscosity

→ momentum balance , (3-37)

∂vi
∂xi

= 0→ mass balance/incompressibility condtion , (3-38)

where σij = −pδij+µ( ∂vi
∂xj

+ ∂vj

∂xi
). Note that the relation for the stress tensor σij is Stokes’ law

and that µ is the dynamic viscosity6. Since there is a linear relation between stress tensor and
the strain rate tensor, we are considering a Newtonian fluid. Additionally, in this research,
we solve for the static steady state solution, i.e. time integration is dropped7. The steady
state solution is found by solving the equations in Eq. (3-39) and Eq. (3-40):

ρfvj
∂vi
∂xj
− ∂σij
∂xj

= 0 , (3-39)

∂vi
∂xi

= 0 , (3-40)

where again σij = −pδij +µ( ∂vi
∂xj

+ ∂vj

∂xi
) and the time dependent terms are dropped. Modeling

these incompressible NS equations with Finite Element Method (FEM) has been studied
extensively over the last 30 years. Although this research does not focus the mathematical
details on this particular topic, some interesting remarks are [Donea and Huerta, 2004]:

1. The presence of non-linear and non-symmetric convective terms in the momentum equa-
tion can give rise to numerical instabilities. Multiple options to solve this problem have
been proposed, but in this research Streamline-Upwind/Petrov Galerkin (SUPG) has
been used, which introduces artificial diffusion in convection dominated cases.

2. The incompressibilty condition also can give rise to numerical instabilities. Pressure in
the incompressible NS equations is not related to any constitutive relation. Its presence
in the momentum equation has the purpose of introducing an additional DOF to satisfy
the incompressibility constraint. The role of the pressure variable is to adjust itself in-
stantaneously, in order to satisfy the condition of divergence-free velocity. Pressure acts
as a Lagrange Multiplier of the incompressibility constraint and thus there is coupling
between the velocity and the pressure unknowns, which could lead to instabilities when
equal order interpolation is used. This problem is handled by Pressure-Stabilized/Petrov
Galerkin (PSPG) stabilization.

3. In Eq. (3-38), one sees that only spatial derivatives of the pressure are present in the
momentum equation. This could lead to negative pressures in the solution of the model.

5To get an idea of incompressible flow check out: http://www.youtube.com/watch?v=p08_KlTKP50
6In the full NS equations the stress tensor σij is defined as σij = −pδij + τij . In this notation, the isotropic

part −pδij and the non-isotropic or deviatoric part τij are separated.
7The Matlab code is setup for time integration but with a very large time step, we only solve for the

steady state solution
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Physically, these negative pressure do not have any relevance, but instead one should
look at the pressure differences. Suppose one adds a constant reference pressure to the
pressure in Eq. (3-37), the derivative operator will kick this constant out of the equation
and hence this should not affect to solution for the velocity field. However, in this way
it is able to get rid of the negative pressure, which intuitively makes no sense at first.

Both these stabilization techniques are based on perturbing the weight functions in the weak
formulation. These stabilization techniques are standard procedure in FEM modeling for
FSI and hence are considered as a black box by the author. Details on these stabilization
techniques are beyond the scope of this work and for that the reader is referred to, for instance,
Donea and Huerta [2004] and Fries and Matthies [2005].

Static non dimensional weak formulation - Fluid
It is quite common to work with non dimensional parameters. This makes the equations sim-
pler and highlights the most important/dominant terms. The non dimensional variables that
have been defined in this research are presented in App. A. Choices for the particular refer-
ence parameters depend on what one expects to be the most dominant physical phenomenon.
This is important, especially for time dependent values in the NS equations. The choices
in this research are mostly based on dynamics of the fluid. Plugging these non dimensional
variables into Eq. (3-39) and Eq. (3-40), using the Gauss Theorem and integration by parts
gives the following formula for the residual defined in Section 2-1-1:

RΩ
f =


∫
Ω

(
δviρf

(
∂vi
∂xj

vj

)
+ 1

2

(
∂δvi
∂xj

+ ∂δvj
∂xi

)
σij

)
dΩ

∫
Ω δp

∂vi
∂xi

dΩ

 (3-41)

and

RΓ
f =

∫Γ δvinj
(
−pδij + µ

(
∂vi
∂xj

+ ∂vj
∂xi

))
dΓ

0

 , (3-42)

with µ = 1/Re.8 The total elemental static residual is than given as:

Rf = RΩ
f ∪RΓ

f . (3-43)

The equations above are presented in non-dimensional variables and throughout the rest of
the report the equations are dimensionless unless stated otherwise. The derivation of the
residual equations can be found in App. A. One can see that the total elemental residual is
a combination of both volume and boundary residuals, which is a direct result of the Gauss
theorem and integration by parts. These boundary integrals make it possible to incorporate
boundary conditions into the system (see next Section 3-2-3). Note the static indicates that
residual is time independent and only regards the steady state solution. This residual is
numerically computed using Gaussian quadrature.

8Re is the non-dimensional Reynolds number. The Reynolds number is the ratio between inertia and viscous
forces.

Thijs Bosma Master of Science Thesis



3-2 Fluid Structure Interaction 37

Structural mechanics

For the structure we choose a linear elastic model. We consider a structural model that
neglects inertia terms and damping terms, i.e. no time dependent terms, and looks as follows:

− ∂σij
∂xj

= 0 , (3-44)

where σij = C : ε = Cijklεkl with C the fourth order Right Cauchy-Green tensor and ε
is the Euler Almansi strain tensor to denote Hooke’s law for continuous media. Actually,
Eq. (3-44) is the abstract representation of the constitutive equation stating stiffness matrix
times displacement equals external forces (here zero). Neglecting the time dependent terms
is motivated by a low Reynolds number that indicates laminar flow. In this research on 2D
FSI problems, a plane strain model is chosen for the structure. This model assumes that the
normal and shear strains related to the third dimension z are zero. Linear elasticity theory
assumes small deformations and a linear relation between stress and strain.

Static non dimensional weak formulation - Structure
Without presenting intermediate steps the nodal static residual for the structure is:

Rs = RΩ
s ∪RΓ

s =
∫

Ω
δui

(
−∂σij
∂xij

)
dΩ

=
∫

Ω
δui

(
σij

∂δui
∂xj

)
dΩ−

∫
Γ
σijδuinjdΓ , (3-45)

where σij = σji. The residuals for fluid and structure can be discretized in space using XFEM,
see Section 2-1. This decretization turns all the equations above into vector equations.

3-2-2 Initialization and boundary conditions

In order to solve the governing equations in the previous section, an initial solution and bound-
ary conditions (BCs) need to be specified. The boundary conditions are directly incorporated
into the residual by means of the boundary terms, see Eq. (3-43) and Eq. (3-45). Initialization
determines the state of the system at the start of the solving process. The initialization in
this research has the following form:

vfi = vfi,0 → velocity for fluid in Ω , (3-46)

pf = pf0 → pressure for fluid in Ω , (3-47)
usi = usi,0 → displacement for structure in Ω , (3-48)
u̇si = u̇si,0 → velocity for structure in Ω . (3-49)

Two remarks on these pretty straightforward equations are:

1. The pressure initialization can be used to prevent negative pressures in the solution;
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2. We consider u̇i also as a independent variable for the structure in a state space represen-
tation, which comes in handy when the fluid and structure are coupled through no-slip
boundary conditions. The structural velocities in initial and steady state configuration
are zero, as if the structure was a rigid wall. If the system is also solved for time, the
structural velocities at time steps prior to steady state will not be zero. The relation
between ui and u̇i needs to be defined for time integration purposes and for details on
this the reader is referred to Aloun [2012]. In this research, the relation is not needed,
as the the structural velocities are set to zero.

Boundary conditions need to be introduced to cope with the spatial derivatives. These condi-
tions can be subdivided into Dirichlet or Neumann boundary conditions. Dirichlet boundary
conditions specify the solution of the problem on (a certain part of) the boundary Γ, while
Neumann boundary conditions specify the derivative of the solution of the problem on (a
certain part of) the boundary Γ:

vi = vi,in/out → fluid velocity at in or outlet on Γ , (3-50)
vi = vi,rigid wall = 0 → fluid velocity at rigid wall on Γ , (3-51)

p = pin/out → fluid pressure at in or outlet on Γ , (3-52)
ui = ui,fixed → fixed structural displacement Γ . (3-53)

Eq. (3-50) can represent a parabolic velocity profile at the inlet and Eq. (3-51) represents the
no-slip condition. Eq. (3-52) can represent setting the outlet pressure equal to the pressure
of the environment outside the domain. Eq. (3-53) may denote a clamping condition for
the structure. Application of these regular boundary conditions is common practice in FEM
modeling of fluids and therefore considered as a black-box by the author. In addition to these
boundary conditions at the standard boundaries of domain, boundary conditions at the fluid
structure interface are defined.

Fluid structure interface conditions

In FSI, the communication between the structure and fluid is key. Two relations are respon-
sible for the FSI coupling, namely:

vi = u̇i → no-slip on Γsf , (3-54)
σfijni = σsijni → traction balance on Γsf . (3-55)

The first equation states that the fluid has to follow the structure with equal velocity, i.e. the
fluid is not allowed to leave or penetrate the structure, and the second equation represents a
traction balance between fluid and structure. In case of using XFEM, the interface between
fluid and structure lies within intersected elements. This makes the coupling more complicated
and Gerstenberger and Wall [2010] have developed a method to work with these interface
conditions, which will be the topic of Section 3-2-3.

3-2-3 FSI coupling in XFEM

The projection of the deformed structure onto the fluid mesh results in intersected elements
for the fluid, as can be seen in Figure 3-15. These intersected elements are partially turned
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off by XFEM and at the material to void interface the actual FSI takes place according to
Eq. (3-54) and Eq. (3-55). These interface boundary conditions give a direct contribution
to the residuals in Eq. (3-43) and Eq. (3-45). However, these residuals contain boundary
terms related to the regular element boundary Γ, while the intersected boundary elements
have a embedded boundary, called Γ+. This means the Dirichlet boundary condition cannot
be applied directly. The elemental contributions from intersected elements (the residuals

Γ Γ+

Ω+

Ω−

Figure 3-15: Intersected element with embedded boundary Γ+

without boundary terms) are approximated by Gaussian quadrature after triangulation of
the active part of the element based on the zero contour of the LSF. The contribution of
each triangle is computed using 7 Gauss points. The void part of an element does not give a
contribution to the integration of the residual. Depending on the intersection configuration
the triangulation can look as shown in Figure 3-16. Two interesting notes to make here are:

1. The use of XFEM and LSM essentially shifts the effort in FEMmodeling from remeshing
to numerical integration in the intersected elements. The domain that is turned off is
deleted from the solution as mentioned in Section 2-1-2. The shape functions in the
void domain can be considered as zero, see also Kreissl and Maute [2012].

2. To compute the solutions at the Gauss points, the standard FEM nodes are used. The
enriched nodes from Eq. (2-12) are only used to visualize the solution at the interface.
This only works for models, where parts of the domain are turned off.

Γ+

I

II

IV

III

(a) Triangulation with opposing inter-
sected element edges - Area of integration
is area I plus area II

Γ+

I

II

IV

III

(b) Triangulation with neighbouring inter-
sected element edges - Area of integration
is area I plus area II plus area III.

Figure 3-16: Triangulation of intersected elements into 4 areas for integration purposes
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No-slip condition at the fluid-structure interface

The no-slip condition at the fluid-structure interface, i.e. Eq. (3-54), gives residual contribu-
tions to the fluid via the structural velocities at the interface. This follows from the weak
formulation of the Dirichlet boundary condition. For an embedded interface this boundary
condition looks as follows:

(vini)Γ+ = (u̇ini)Γ+ , (3-56)

where vi are the fluid velocities in x- and y-direction, u̇i the structural velocities in x- and y-
direction and ni is the normal to the interface Γ+. As mentioned, a state space representation
is used, where the structural velocities are introduced independently. They are not part
of the solution, but they do give contributions to the system at the embedded interface.
Gerstenberger and Wall [2010] have developed a method to handle the no-slip boundary
constraint at the embedded interface. The main concept of this method is to introduce a new
stress field σσij as an unknown and use this new stress field to define a Lagrange Multiplier to
enforce the Dirichlet boundary condition. The stress field and displacement field are coupled by
matching the strain tensors computed from each velocity field to condense out the contribution
of additional stress field. The procedure looks as follows:

1. In the NS equations, the Cauchy stress tensor is defined as:

σfij = −pδij + µ

(
∂vi
∂xj

+ ∂vj
∂xi

)
. (3-57)

2. The strain based on the fluid velocities is:

εvij = 1
2

(
∂vi
∂xj

+ ∂vj
∂xi

)
. (3-58)

3. The strain based on the new unknown stress field σσij is defined as:

εσij = 1
2µ(σσij + pδij) . (3-59)

4. And the Lagrange Multiplier is defined as:

λi = njσ
σ
ij . (3-60)

With the equations above the total weak formulation for an intersected element can be ex-
plicitly written as:∫

Ω−

(
δviρf

(
∂vi
∂t

+ vj
∂vi
∂xj

)
+ 1

2

(
∂δvi
∂xj

+ ∂δvj
∂xi

)
σfij + δp

∂vi
∂xi

)
dΩ− −

∫
Γ
δvinjσ

f
ijdΓ

−
∫

Γ+
δvinjσ

σ
ijdΓ+ → boundary term analogous to Γ

− k
∫

Ω−
γij(εσij − εvij)dΩ− → compatibility condition

−
∫

Γ+
γijnj(vi − u̇i)dΓ+ → boundary condition , (3-61)
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3-2 Fluid Structure Interaction 41

where γij is the weighing function associated with σσij , k is a constant compatibility scaling
factor to improve numerical stability and the boundary condition corresponds to Eq. (3-56).
Since we have introduced σσij as an unknown, we need to find a solution for it. We continue
by condensing out the new stress field, on an element level, by solving:

k

∫
Ω−

γij(εσij − εvij)dΩ +
∫

Γ+
γijnj(vi − u̇i)dΓ+ = 0 . (3-62)

Once σσij is determined it can be substituted into:

−
∫

Γ+
δvinjσ

σ
ijdΓ+ (3-63)

to give the elemental contribution to the residual for an intersected element. The imple-
mentation of the system of equations of Eq. (3-62), after discretization, can be found in
Appendix B9.

Numerical integration with Gaussian quadrature
The integral in Eq. (3-63) to determine the residual is approximated using a three-point
Gaussian integration, as shown in Figure 3-17. After the coordinates and the weights of the
Gauss points are determined with respect to fluid element, the structural velocities u̇i at the
Gauss points are interpolated. Using the shape functions of the positive phase N+

i of the
structural mesh and the nodal values of the structural element, associated with the structural
bar, the structural velocities are determined at the interface and transferred to the fluid to
give both residual and Jacobian contributions. In Figure 3-17, the fluid-structure interface is

P Γ
2

P Γ
1

P n
1 P n

2

P n
3P n

4
u̇

Figure 3-17: Gauss points (blue dots) on the interface for numerical integration of the no-slip
condition in fluid elements.

perceived identically by the fluid and structural mesh, but it was already shown in Section 3-
1 the implemented method of projecting the deformed structural mesh onto the fixed fluid
mesh can result in intersection case as shown in Figure 3-18. The dashed red line depicts
the fluid-structure surface as perceived by the fluid, the blue lines represent structural bars

9The author has not done any work on this particular part of the model and hence cannot be considered
as an expert. This section is included as it is an essential part of the model, but far from trivial.
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Figure 3-18: Projected Gauss points (blue dots) on the interface for numerical integration of the
no-slip condition in fluid elements with a discrepancy between the fluid interface and the actual
location of the structural bars.

with the green dot as bar endpoint. From this surface, orthogonal projection is done onto the
fluid-structure interface of the structural mesh. This orthogonal projection gives the point on
the other mesh closest to the Gauss point. This projection point holds the information, found
by interpolation from the bar ending points, on structural velocities and is transferred to the
fluid mesh. This discrepancy between the two meshes is a source of inaccuracy, but when the
geometric details of the structure (corners) are sufficiently bulky (fine mesh) compared to the
fluid elements, the error will be less significant.

Traction condition at the fluid-structure interface

The traction boundary condition is handled in similar fashion as the no-slip boundary con-
dition, except a two-point integration is used. The fluid traction is applied as a residual
contribution to the whole system. By means of Lagrange Multipliers, the fluid traction is ap-
plied to the structure as an external force, according to the setup of Maute et al. [2003]. The
Jacobian contribution is determined by the derivative of the structural residual with respect
to the fluid state variables. Figure 3-19 shows a structural sub-bar in an intersected fluid
element. Again in this configuration the fluid and structure perceive the interface identically.
The sub-bar is associated to a structural element, but the structural element is not shown in
Figure 3-19. The traction vector at a Gauss point on the interface is defined as:

tG,p = (σf · n)G,p , (3-64)

where superscript G,p denotes the p-th Gauss point on this sub-bar, σf denotes the regular
fluid stress tensor, defined in Eq. (3-57), and n the normal vector to the interface. The
traction vector is visualized in Figure 3-19. As was shown in Figure 3-8, every structural
bar, associated with a particular structural element, was subdivided into sub-bars using the
projected intersection points. Effectively, this means that sub-bars lie within different fluid
elements and therefore the residual contribution is be computed per sub-bar. The residual
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Figure 3-19: Gauss points (blue dots) on structural bar and the bar is defined between the
intersections points P Γ

1 and P Γ
2 within a fluid element

contribution of the traction of one sub-bar can be written as follows:

RSB
s =

∫
Γ+
δu · tfdΓ+ =

k∑
p

N−G,p · t
G,p · wG,p , (3-65)

where wG,p denote the weight of the p-th Gauss point of the sub-bar and k is the number
of Gauss points on the sub-bar. In order to compute this stress tensor, the pressure and
velocities at the Gauss points need to be interpolated from the nodal values at nodes P n

1 ...P
n
4

on the fluid mesh, again using the FE element interpolation with shape functions N− from
the negative phase, i.e. the fluid domain. This looks as follows:

vG,p = (N− · v)G,p , (3-66)
pG,p = (N− · p)G,p , (3-67)

where v and p are the nodal values for fluid velocity and pressure, respectively. For the fluid
traction vector we need the spatial derivatives of the velocities defined above:

(
∂v

∂xi

)G,p
=
(
∂N−

∂xi
· v
)G,p

, (3-68)

where xi, with i = 1..2, indicates x and y, respectively. When the equations above are
plugged into the traction vector Eq. (3-57) and derived with respect to the fluid Degrees Of
Freedom (DOFs) the result is the following:

(
∂t

∂p

)G,p
=
[
−n1N

−

−n2N
−

]G,p
, (3-69)

(
∂t

∂vx

)G,p
=

2µ∂N
−

∂x
n1 + µ

∂N−

∂y
n2

µ
∂N−

∂y
n1


G,p

, (3-70)
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(
∂t

∂vy

)G,p
=

 µ
∂N−

∂x
n2

2µ∂N
−

∂y
n2 + µ

∂N−

∂x
n1


G,p

. (3-71)

The terms above are needed to find the Jacobian contribution of the traction. Again we
also consider the case where the perceived interfaces are different. Figure 3-20 depicts the
situation.

P Γ
2

P Γ
1

P n
2

P n
3

P n
1

P n
4

Figure 3-20: Projected Gauss points (blue dots) on the structural bars for numerical integration
of the traction condition in structural elements with a discrepancy between the fluid interface and
the actual location of the structural bars.

Projected Gauss points (blue dots) on the interface for numerical integration of the no-slip-
condition in fluid elements with a discrepancy between the fluid interface and the actual
location of the structural bars.

Essentially, the procedure is exactly the same as for the no-slip-condition, but in this case the
Gauss points are computed on the sub-bars and projected onto the fluid mesh. Again these
projection points provide the information velocities and pressure to calculate the fluid stress
tensor and henceforth the structural residual and Jacobian contribution.

Numerical integration with Gaussian quadrature
Eq. (3-65) showed that the residual is approximated by Gaussian quadrature as follows:

RSB
s =

k∑
p

N−G,p · t
G,p · wG,p , (3-72)

where wG,p denotes the weight of the p-th Gauss point of the sub-bar and k is the number
of Gauss points on the sub-bar. The residual for the parental structural element is found by
summation of the all sub-bars in the element:

Re+
s =

ns∑
i

RSB
s,i , (3-73)
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where ns is the number of sub-bars of the parental structural bar. The Jacobian contributions
from the sub-bars to the parental element follow from the residuals as follows:

(
∂RSB

s

∂vx

)
=

k∑
p

N−G,p ·
(
∂t

∂vx

)G,p
· wG,p , (3-74)

(
∂RSB

s

∂vy

)
=

k∑
p

N−G,p ·
(
∂t

∂vy

)G,p
· wG,p , (3-75)

(
∂RSB

s

∂p

)
=

k∑
p

N−G,p ·
(
∂t

∂p

)G,p
· wG,p . (3-76)

This leads to the elemental Jacobian contribution as follows:

(
∂Re

s

∂vx

)
=

k∑
i

(
∂RSB

s,i

∂vx

)
, (3-77)

(
∂Re

s

∂vy

)
=

k∑
i

(
∂RSB

s,i

∂vy

)
, (3-78)

(
∂Re

s

∂p

)
=

k∑
i

(
∂RSB

s,i

∂p

)
, (3-79)

where again k is the number of sub-bars in the parental element and RSB
s,i is the structural

residual of the i-th sub-bar. It cannot be emphasized enough that the sub-bars are always
associated with same parental structural element e, but the fluid element containing them
differs depending on the structural projection. A structural bar can have multiple sub-bars
located within different fluid elements, but all contribute to the same structural element.
These Jacobian contributions are part of the complete Jacobian presented in Section 3-3.

3-3 Consistent Jacobian

As mentioned earlier, the goal is to solve the FSI system with a monolithic setup. To do
so, a numerically consistent Jacobian is desired. A Jacobian, in mathematical terms, is the
matrix of all first-order partial derivatives of a vector-valued function. In this research, this
relates to the partial derivatives of the residual with respect to state variables of the spatially
discretized problem. Numerically consistent means that the Jacobian matrix contains the
partial derivatives, that represent the slope of the residual function at the particular solution
for the state variable (remember Figure 2-10). The motivation to find this numerically consis-
tent Jacobian is that it provides high convergence rates for Newton-Raphson-like non-linear
solvers and high accuracy for sensitivity analysis prior to optimization. In the previous sec-
tions, we have already built parts of the Jacobian of the system, according to the elemental
and boundary condition contributions. This section will present an overview of the Jacobian
contributions and some additional terms related to the fluid changing LSF.
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3-3-1 Jacobian overview

In general and abstract notation, we can define our system in the following way:

Rtot =
[
Rs

Rf

]
, u∗ =

usu̇s
uf

 , u =
[
us
uf

]
, (3-80)

where Rtot represents the system’s total residual vector and the individual terms in u∗ and
u look as follows:

us =
[
ux
uy

]
, u̇s =

[
u̇x
u̇y

]
, uf =

 pvx
vy

 , (3-81)

indicating structural displacements in x- and y-direction, structural velocities in x- and y-
direction, fluid pressure, fluid velocity in x- and y-direction, respectively. The vector of state
variables is represented by u and it contains the discretized solution of the system. The
asterisk ∗ indicates state space representation, i.e. in u∗, we have independently introduced
the structural velocities u̇s (see item 2 in Section 3-2-2) to incorporate the no-slip condition
at the embedded fluid-structure interface. The no-slip condition, at the embedded interface
for steady state, implies: [

u̇x
u̇y

]
s

=
[
vx
vy

]
f

=
[
0
0

]
, (3-82)

omitting the need to define the relation between us and u̇s. In Figure 3-18 and Figure 3-
20, it is shown that, due to the mismatch between the two meshes, a projection method
is needed to transfer physical information from one material to the other. The structural
residual contains elemental, regular boundary and fluid dependent traction contributions,
and the fluid residual contains elemental, regular boundary and structural dependent no-
slip condition contributions. This means that both fluid and structural residual depend on
structural and fluid variables, but also on the fluid LSF10. This is represented in the following
formula:

Rtot =

Rs

(
us,uf ,φf (us)

)
Rf

(
u̇s,uf ,φf (us)

) . (3-83)

Remembering that the fluid LSF φf changes as a function function of the structural displace-
ments, we can define the Jacobian in state space using the chain-rule as follows:

J∗ = dRtot

du∗ =


dRs

dus
dRs

du̇s
dRs

duf
dRf

dus
dRf

du̇s
dRf

duf

 =


∂Rs

∂us
+ ∂Rs

∂φf

dφf
dus

dRs

du̇s
dRs

duf
∂Rf

∂φf

dφf
dus

dRf

du̇s
dRf

duf

 , (3-84)

where the different terms of the Jacobian are:

1. ∂Rs
∂us

is the linear stiffness matrix of the structure;

10They also depend on the structural LSF, but this is fixed and therefore does not show up explicitly in the
Jacobian
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2. ∂Rs
∂φf

dφf

dus
is the Jacobian contribution due to the dependence of the traction on the

changing fluid LSF (projection);

3. dRs
du̇s

= 0, since the structural residual does not depend on the structural velocities;

4. dRs
duf

is the Jacobian contribution of the traction interface condition, defined in Eq. (3-77)
to Eq. (3-79);

5. ∂Rf

∂φf

dφf

dus
is the Jacobian contribution due to the dependence of the no-slip condition

(projection) and the intersected fluid elements on the changing fluid LSF;

6. dRf

du̇s
is the Jacobian contribution of the no-slip condition, described in Section 3-2-3,

where u̇s = vf from (3-82);

7. dRf

duf
is the non-linear stiffness matrix of the fluid.

The consequences of the implemented LSM are clearly visible in Eq. (3-84) as two LSF
dependent terms show up, namely term 2 and 5. For a numerically consistent Jacobian all
these terms need to be incorporated. The most interesting terms in Eq. (3-84) are terms
2 and 5 and will be referred to as the LSF Jacobian terms (LSFJ). Focusing on term 5, it
written out as follows:

∂Rf

(
u̇s,uf ,φf (us)

)
∂us

= ∂Rf

∂φf

dφf
dus

. (3-85)

The first part of the term on the right-hand side Eq. (3-85) is determined using finite dif-
ferences due to a lack of analytical dependencies. This finite differencing is straightforward,
however, one should take care of preventing sign changes of the nodal levelset value, due to
the perturbation. A sign change would mean that the node in question has moved from fluid
to void domain or vice versa and that should be prevented. Prevention is done by switching
between forward, backward and central differencing, if a sign change occurs. The second part
of the term is determined analytically according to the method described in Section 3-3-2,
using the results from Section 3-1-4 and can be regarded as the Jacobian of the fluid LSF.

In this research, term 6 is ignored and hence will not be part of the analytic Jacobian. In
Section 5-3, this term will be computed with finite differences for a simple test problem and
it will be shown that this term contributes little to the Jacobian, compared to the stiffness
matrix. This motivates the choice to ignore it and it is expected that the consequences for
the monolithic solving process will be minimal. Strictly speaking, however, this does imply
that a numerically consistent Jacobian is not built in this work. The Jacobian, in state space,
can now be rewritten to:

J∗ =


∂Rs

∂us
+
�
�
�
�
�>
ignored

∂Rs

∂φf

dφf
dus �

�
���

0
dRs

du̇s
dRs

duf
∂Rf

∂φf

dφf
dus

dRf

du̇s
dRf

duf

 =


∂Rs

∂us
0 dRs

duf
∂Rf

∂φf

dφf
dus

dRf

du̇s
dRf

duf

 . (3-86)

Since we are only interested in the structural displacements and not in the structural velocities,
the state space representation needs to be dropped. For this we make use of Eq. (3-82), where
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an explicit relation between velocities is shown, which allows us to add the no-slip condition
contribution to fluid velocity related terms, as follows:

J = dRtot

du


dRs

dus
dRs

duf
∂Rf

∂φf

dφf
dus

dRf

du̇s
+ dRf

duf

 , (3-87)

where, according to Eq. (3-80) the lower right term, in detail, looks as follows:

dRf

du̇s
+ dRf

duf
=
[

dRf

dp

(dRf

dvx
+ dRf

du̇x

) (
dRf

dvy
+ dRf

du̇y

)]
, (3-88)

with Eq. (3-82) to complete the Jacobian. The terms between the curved brackets consist of
an elemental and no-slip condition Jacobian contribution.

3-3-2 Analytical terms

As mentioned, the Jacobian of the fluid LSF is computed analytically, because it can enhance
numerical performance. The fluid levelset field setup, as presented in Section 3-1-4, allows
to find ∂φf/∂us analytically. The fluid LSF is a function of the intersection points in an
element as was shown in Figure 3-10. The intersection points are a function of the structural
displacements. The derivative of φf with respect to the structural variables is rewritten as:(dφf

dus

)e
=
(
∂φf

∂P Γ
1,2

dP Γ
1,2

dus

)e
, (3-89)

where i denotes the i-th intersection point and e denotes the e-th fluid element. Both terms
on the right-hand side have been determined in Section 3-1-5. Per fluid element this deriva-
tive information is stored as follows: each element has 4 nodal levelset values for the fluid
and 8 structural nodal displacements (2 spatial directions for the structural displacements).
This gives two matrices of 4 × 4 for the fluid LS derivative with respect to the structural
displacements:

∂φf
∂usx

=



∂φ1
∂usx1

∂φ1
∂usx2

∂φ1
∂usx3

∂φ1
∂usx4

∂φ2
∂usx1

∂φ2
∂usx2

∂φ2
∂usx3

∂φ2
∂usx4

∂φ3
∂usx1

∂φ3
∂usx2

∂φ3
∂usx3

∂φ1
∂usx4

∂φ4
∂usx1

∂φ4
∂usx2

∂φ4
∂usx3

∂φ4
∂usx4


(3-90)

and

∂φf
∂usy

=



∂φ1
∂usy1

∂φ1
∂usy2

∂φ1
∂usy3

∂φ1
∂usy4

∂φ2
∂usy1

∂φ2
∂usy2

∂φ2
∂usy3

∂φ2
∂usy4

∂φ3
∂usy1

∂φ3
∂usy2

∂φ3
∂usy3

∂φ1
∂usy4

∂φ4
∂usy1

∂φ4
∂usy2

∂φ4
∂usy3

∂φ4
∂usy4


, (3-91)
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where ∂φi/∂usyj denotes the derivative of nodal levelset value of the i-th node with respect
to y-displacement of the j-th structural node. For each element the matrices above can be
found with Eq. (3-89). These matrices are multiplied with finite differenced term for the fluid
residual to complete the Jacobian.

3-4 FSI solvers

In this research, two different solvers have been implemented and investigated, a monolithic
and a staggered solver. Both solvers try to find the approximated FEM solution at steady
state. They differ in which individual Jacobian terms are used and how this information is
used to update the solution. The monolithic setup uses the complete Jacobian in Eq. (3-87)
and updates fluid and structure at the same time. The staggered solver ignores the off-diagonal
terms in Eq. (3-87) and updates the fluid and structure separately. The residuals, however,
include all information in both solvers. The coupling information is the most challenging to
implement and ignoring this information allows one to check other parts of the model without
running into problems related to the ignored terms. A complete Jacobian, however, containing
all information on the phases and coupling between the phases, is needed in the sensitivity
analysis for optimization. In other words, if one wants to use this model for optimization
purposes, the monolithic setup needs to be used. The staggered setup, on the other hand,
provides useful insights into the model and can be used to benchmark the problem, if the
residual build-up is correct. In Chapter 4, the results of the staggered solver are presented
and in Chapter 5 the results of the monolithic setup are presented. This section is written to
introduce the two different solvers and their characteristics, see Section 3-4-1 and Section 3-
4-2.

3-4-1 Monolithic solver

A monolithic solver is the same as the classical Newton-Raphson solver presented in Section 2-
3 for multivariable functions. Monolithic refers to the fact that the complete system of
equations is solved at once. The complete Jacobian in Eq. (3-87) is used and it updates both
phases simultaneously. It is a widely used solver in FEM and the challenge lies in finding the
numerically consistent Jacobian semi-analytically. The next section presents the overview of
the Matlab-code, that has been used in this work.

Code overview - Monolithic

The structure of the code that has been implemented follows the steps presented in Section 2-
1-1. In summary, the code looks as is shown in Figure 3-21. The model is set up in the
pre-processing stage. In this stage, all the required information is gathered and defined to
start Newton-Raphson solver. Within the Newton-Raphson solver the fluid levelset field
is updated, the residual and Jacobian are computed and unless convergence is reached the
solution is updated. As mentioned earlier, the fluid levelset field is updated according to
the displacements of of the previous solution. This results in a lag between the void in the
fluid mesh and the structure, until convergence is reached. After convergence is reached the
solution is visualized with Paraview for further analysis.

Master of Science Thesis Thijs Bosma



50 The complete XFEM model

Pre-processor

wRGeometry

wRInitialRconditions

wRMaterialRproperties

wRXFEMRandRsolverRparameters

wRBoundaryRconditions

wRMesh

wRLevelsetRfieldRzfinalRforRstructure.

wRInitialRsolution

         Processing        

    Newton-Raphson solver

wRFluidRLSRupdate

wRResidualRandRJacobianRRRRRRRRRRRRRRRRRRRRR

wRSolveRglobalRsystem

wRCheckRconvergence

wRUpdateRsolution

Post-processor

wRVisualizationRetc+

 

Fluid LS update

wRCreateRstructuralRbars

wRDisplaceRstructuralRbars

wRProjectRstructuralRbarsRontoR

fluidRmesh

wRComputeRdistanceRfromRnodeR

toRinterfaceRbetweenRprojectedR

intersectionRpoints

Residual and Jacobian

RPElementalRcontributions

RPNodalRconstraintsRzBC.

RPLineRconstraintsRzBC.

RPFSIRinterface

RRRRoRTractionRPRnowslipRPRLSFJR

Figure 3-21: Code overview monolithic setup - The great majority of this Matlab code was
developed at the research group of Prof. Kurt Maute at the University of Colorado, Boulder, CO,
USA

3-4-2 Staggered solver

The other solver used in this work is a spatially staggered Newton-Raphson solver. A staggered
setup is a common method to solve FSI problems. Staggered schemes in general introduce a
asynchronous solution between the flow and structure. In this research, we do not introduce
a time shift, but a spatial shift. The fluid and structural problem are solved separately.
The solver scheme is illustrated by Figure 3-22. In Figure 3-22, superscript ns indicates the
Newton-Raphson update stage of the solver, where a fluid stage consists of multiple classical
Newton-Raphson updates for the fluid and a structural stage of one Newton-Raphson update
for the structure. Each Newton-Raphson update is computed with a direct solve. The dashed
arrows indicate a transfer of information and the solid arrows a Newton-Raphson update
stage. The small dots along the solid arrows represent a Newton-Raphson update. The
process can be described as follows; at arrow 1 information on the location/displacements
of the structure is transferred to be input for fluid Newton-Raphson solve stage at arrow 2.
The results from stage 2 are then transferred with arrow 3 as an externally applied traction
force to structure for the structure Newton-Raphson update stage at arrow 4. At arrow 5 a
partial update for the structure is done and the process repeats itself until convergence. It
takes two solve stages to update both fluid and structure and each solve stage consists of 1
to 3 Newton-Raphson updates. The Jacobian terms used for these Newton-Raphson updates
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Figure 3-22: Staggered setup - Solid arrows indicate solution updates, dashed arrows indicate
coupling information transfer. Individual Newton-Raphson updates are indicated with the small
dots along the solid arrows.

are the diagonal terms in Eq. (3-87)11. The partial update is done according to the following
formula:

un+1
s = αs · uns + (1− αs) · un−1

s . (3-92)

Eq. (3-92) essentially shows that the new structural solution is combination of the two previous
solutions. This smooths the structural update process and prevents wiggling around the
steady state solution, boosting convergence. Motivation to start with updating the fluid first
is motivated by the fact that the initialization of the fluid has no physical relevance and
hence neither does the applied traction. The result of the scheme is a converged steady state
solution. The next section will give more details on how the code is, actually, structured from
start to end of the solver.

Code structure - Staggered

The framework of the monolithic solver in Section 3-4-1 is used to set up the staggered
solver. It is important to note that within the staggered Newton-Raphson solver, there
is a switch that determines whether the fluid or the structure is updated, such that the
update scheme is represented by Figure 3-22. Explicitly and chronologically written out the
staggered Newton-Raphson solver looks as is shown in Alg. 1 in Appendix C. Each fluid
stage multiple Newton-Raphson updates are done, until the fluid residual is smaller than εth.
For the linear structure this εth threshold is reached after one Newton-Raphson update. The
overall convergence is reached when the norm of the total residual and the structural update
vector is small. This combination of convergence criteria is needed to make the two separated
problems ‘communicate’. The criterion on the structural displacements also relates to the fluid
problem, since the LSM presented in Section 3-1 depends on the structural displacements.
The two problems may have small residual norms individually, but that does not guarantee
a fluid levelset field that fits the structural projection. The staggered setup is not the most
efficient FSI solver, but it does allow to track the update process and see the characteristics
of the staggered solver. The difference between the staggered setup and the code presented in

11The staggered solver is similar to the block-Gauss-Seidell method, which is often used in FSI modeling.
Standard block-Gauss-Seidell methods, however, include all coupling terms in contrast to this staggered ap-
proach.
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Figure 3-21 is that the staggered setup contains an additional loop over the Newton-Raphson
solver and a switch to determine to update either the fluid or the structural solution.

3-5 The problem setup

In this research, the modeled physical problem has been taken from the COMSOL Multi-
physics model library. The results from COMSOL are computed using the ALE method for
FSI problems, which has proved itself in the past. The 2D geometry of the problem is shown
in Figure 3-23. The third dimension has unit length. The problem consists of a horizontal
flow channel with a vertical structural beam fixed at the bottom near the middle of the tunnel.
The fluid flows from left to right and it imposes a force on the deformable structure, resulting
from viscous forces and fluid pressure12.

300

100

100

50

5

vinf poutf

Figure 3-23: Geometry of the benchmark problem incl. boundary conditions at the in- and outlet
- Dimensions in µm

3-5-1 Boundary conditions

In order solve differential equations, boundary conditions need to be defined. These boundary
conditions have a clear physical interpretation.

Fluid
The boundary conditions for the fluid are the following:

• Parabolic inlet conditions - On the left of the domain the fluid flows in with a parabolic
velocity profile, see Figure 3-23;

• Zero pressure outlet - On the right of the domain the outlet pressure is zero13;
12A very cool video on this problem including optimization by Nick Jenkins (CU Boulder): http://www.

youtube.com/watch?v=qTBe3XoXmP4&feature=c4-overview&list=UU5UIdaNroLAvIlFbk4XGfDg
13This problem is part of the COMSOL Multiphysics library, but it is slightly adapted to be able to model

the similar problem in Matlab. The outlet pressure boundary condition is only zero pressure and does not
include zero traction.
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• No-slip condition walls - The fluid velocity is zero at the bottom and top horizontal
walls, vf = 0 [m/s], to prevent the fluid from escaping the domain in the vertical
direction;

• No-slip condition fluid-structure interface - The fluid velocity at the fluid-structure
interface is equal to velocity of the structure, vf = u̇s [m/s], as the fluid is not allowed
to leave or penetrate the structure.

Structure
The boundary conditions for the structure are the following:

• Clamped beam - The structure is clamped at the bottom fixing all DOFs, i.e. uwalls = 0;

• Traction condition fluid-structure interface - The fluid applies an external force σf · n
to the structure at the fluid-structure interface.

3-5-2 Material parameters

The material parameters describe the characteristics of the materials used to model the prob-
lem. In the XFEM code, all these parameters are non-dimensionalized, see also App. A.

Fluid
The fluid parameters are the following:

• Fluid density - ρf = 1000 [kg/m3];

• Dynamic viscosity - µ = 0.001 [Pa · s];

• Velocity mean of parabolic inlet - vmeanf = 0.0333 [m/s];

• Reynolds number - Re = 1.11 [−];

Structure
The structural parameters are the following:

• Young’s modulus - E = 2 · 105 [Pa];

• Poisson’s ratio - ν = 0.33 [−].

As mentioned the structure is linear elastic with a plane strain model. This Young’s modulus
is very low (very flexible material) as it is 106 times lower than that of steel. The Poisson’s
ratio is equal to that of steel.
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Figure 3-24: Initial levelset field with zero contour in white to depict initial geometry - The color
legend shows the signed distance nodal levelset value.

3-5-3 Initial configuration

The geometry description, in this XFEM model, is done with a levelset method and the
initialization of the levelset field determines the geometry. The initialization of the levelset
field is shown Figure 3-24. The nodal levelset values are shown together with the levelset zero
contour in white to depict the undeformed structure. One might have noticed the mesh is
divided into three sub-areas with the middle part containing the structure. This middle part
has smallest elements, i.e. finest mesh, because the most interesting physics occur around
structure and therefore a finer mesh is desired to give more accurate results. The beam is
located just left to the middle of the middle area, as it will deform to the right. In ALE-
methods for FSI, the body fitted mesh usually is finer and finer near the fluid-structure
interface for similar reasons. In XFEM, the freedom to choose the refined area is big, but
should be tuned towards the expected physical phenomena.

3-6 Summary

In this research, a 2D FSI problem is modeled, using XFEM and LSM. The combination
of XFEM and LSM gives a flexible geometry description, which is beneficial, especially, for
topology optimization. Together LSM, XFEM and the governing equations provide the frame-
work to build a numerically consistent Jacobian. Both solution and optimization procedures
benefit from a numerically consistent Jacobian and therefore much effort is put into finding
it.

The geometry of the system is described by the zero-contour of the LSF and this gives a
crisp and physically relevant fluid-structure interface. The Lagrangian structural domain
is projected onto the Eulerian fluid domain and a third field is defined to determine the
intersections between the two domains. One material domain is considered void in the mesh
of the other domain by exploiting the XFEM-feature of turning parts of the mesh off. The
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third field has no phyiscal interpretation, it is only used to transfer coupling information
from one mesh to the other. It is defined by structural bars, which track the structure to
void interface in the Eulerian reference frame. While the structural LSF is constant, the LSF
for the fluid is defined as the orthogonal distance from node to fluid to void interface. This
interface is determined by the intersections of the structural bars with the fluid element edges.
This rather elaborate setup has the advantage that analytical derivatives can be determined,
which are needed for the numerically consistent Jacobian. The current implementation of
this LSM has some negative consequences regarding mesh discrepancy and unmanageable
projection configurations.

In this research, FSI is modeled by the incompressible steady state Navier-Stokes equations
for the fluid and a linear elastic material in plane strain for the structure. These governing
equations are rewritten into the weak formulation to allow approximations with the Galerkin
approach and incorporation of boundary conditions. At the interface between fluid and struc-
ture no-slip and traction conditions are applied. Since in XFEM the fluid-structure interface
lies within intersected elements, the advanced method developed by Gerstenberger and Wall
[2010] is implemented to handle the no-slip condition. To approximate the integrals of the
weak formulation, Gaussian quadrature is used.

Due to the introduction of the LSF geometry description, finding the numerically consistent
Jacobian is a more complex process, as the fluid LSF depends on the structural displacements.
This gives additional terms that are important, especially for the fluid. The fluid residual
is a function of the fluid LSF and the state variables, such that the fluid residual derived
with respect to structural DOFs can be separated into two terms. The first being the fluid
residual with respect to fluid LSF and the second the fluid LSF with respect to the structural
displacements, see Eq. (3-85). The first term is computed with Finite Differences and the
second is computed analytically using the setup of Section 3-1.

With the Jacobian, the system can be solved to find the steady state solution. Two different
solvers are used in this research, which use the Jacobian differently. The staggered setup
solves the fluid and structure problem separately and ignores several coupling terms in the
Jacobian. The monolithic setup uses the complete Jacobian. The residuals built during both
solving processes are equal. Using two different solvers, that use different information, helps
to pinpoint potential problems with the model.

The actual physical FSI problem solved in this work is a 2D tunnel in which a fluid flows from
left to right. Near the middle of the tunnel a beam is fixed at the bottom. This problem is
part of the COMSOL model library and the results from the Matlab model are compared
to the results that COMSOL produces using an ALE method for FSI problems.
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Chapter 4

Model verification - Staggered setup

This chapter presents the results and analysis of the staggered setup. This staggered setup
will provide information on whether the fluid levelset update procedure works correctly, on
convergence rates of the separate domains and on the current residual build-up to see whether
it is capable of finding a steady state solution. The ultimate goal is to be able to conclude
that the residual build-up is done correctly such that the steady state solution found with
this XFEM model is similar to that of the COMSOL benchmark. Relating this back to
Section 2-3 means finding out whether the function we define is able to describe the solution
of the physical problem we investigate. The residuals in both the monolithic and staggered
solver include all elemental, boundary and FSI contributions, but the Jacobians differ, as
was explained is Section 3-4. Previous experience with the used XFEM model showed that
single fluid or structural problems produced correct results. In Section 4-1, the steady state
solution of the XFEM model and the COMSOL model are presented. In Section 4-2, some
characteristics of the staggered solver are presented. In Section 4-3, analysis of these results
is presented.

4-1 Results - Staggered setup

In this section, the steady state solutions from the XFEM model and COMSOL are presented.
Some first observations are made, which will be used in the analysis in Section 4-3. The
problem setup for these results was presented in Section 3-5. The mesh used for these results
is: left 20× 79, middle 60× 79, right 20× 79 elements per sub-area.

4-1-1 Steady state solution - XFEM model

At steady state, the displacement field of the structure and the pressure and velocity field
of the fluid no longer change. The external force applied to the structure by the fluid is in
equilibrium with the structural displacement field times the structural stiffness matrix. This
situation is shown in Figure 4-1 to Figure 4-2b with the non-dimensional numbers denoting
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Figure 4-1: Steady state solution XFEM model - Fluid velocity field and structural displacement
with structural mesh

the magnitudes of the nodal values. Figure 4-3 shows the velocity and displacement field
separated into x- and y-direction.

Fluid velocity Figure 4-1 shows the deformed structure with the velocity field. The highest
velocities are found directly above the top of the beam. The incompressible fluid is squeezed
through the narrow passage and hence the highest velocities should be found there. This
‘squeezing’ is also nicely illustrated by Figure 4-3b, where left of the structure the fluid
moves up (positive velocities in y-direction) and right of the structure the fluid moves down.
The undeformed length of the beam was halve the height of the domain, such that in the
deformed configuration the passage above the beam will be slightly higher than halve the
height of the domain. This would mean that, if we presume a parabolic flow profile between
the top of the beam and the upper wall, the maximum velocity should be less than twice the
maximum velocity at the inlet. This is the case, namely 1.5 at the inlet versus 2.81 above the
beam. Along the upper and lower wall and the fluid-structure interface, the velocities are zero
indicated with the dark blue, according to the no-slip condition. The deformed Lagrangian
mesh is also visible within the structure.

Fluid pressure Figure 4-2a shows the deformed structure with the pressure field. In Sec-
tion 3-2, it was mentioned that pressure essentially acts as a Lagrange Multiplier on incom-
pressible condition, i.e. the pressure gradient acts as a force to prevent volume change of the
fluid. This supports the observation that on the left side of the domain the pressures are
highest and lowest on the right. The fluid is squeezed through the passage above the beam
and afterwards the available flow area increases again. Figure 4-2b shows 20 pressure contour
lines, which help to relate the pressure more accurately to the location within the domain,
making the comparison with the COMSOL results easier. Within the pressure field the mesh
is also visible to illustrate the refinement around the structure.
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(a) Fluid pressure field field with fluid mesh and structural displacement

(b) Fluid pressure contours and structural displacement

Figure 4-2: Steady state pressure field XFEM model

Thijs Bosma Master of Science Thesis



4-1 Results - Staggered setup 59

(a) Fluid velocity and structural displacement in x-direction

(b) Fluid velocity and structural displacement in y-direction

Figure 4-3: Steady state velocity and displacement field in x- and y-direction XFEM model

Structural displacements Both Figure 4-1 and Figure 4-2a show the deformed structure
and the colors indicate the magnitude of the displacement. The biggest displacements occur
at the top of the beam with a maximum of 0.206 × 50 ≈ 10[µm]. This displacement is
rather big compared to the length of the structure, indicating that the assumption of small
deformations is no longer valid. Physically, these results to not have any relevance, since a
linear elastic material was used, but this highlights the ability of XFEM model to cope with
large displacements. In future research, a non-linear material model may be implemented to
improve the physical relevance of the results.

4-1-2 Steady state solution - COMSOL benchmark

In this section, the results of the COMSOL simulation of the problem setup from Section 3-5
are presented. As mentioned, this particular problem is part of the COMSOL model li-
brary. Take note that the default outlet condition in COMSOL includes a traction-free outlet
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condition, which should be changed to match Section 3-5. In Figure 4-4a, the magnitude
of the velocity field is plotted together with the deformed structure. Figure 4-4b shows 20
pressure contours and the extremes of the displacements. Figure 4-5 show the velocity and
displacement field separated in x- and y-direction.

(a) Fluid velocity [m/s] and structural displacement [µm]

(b) Fluid pressure contours [Pa] and extremes of structural displacement [µm]

Figure 4-4: Steady state solutions - COMSOL

4-2 Solver studies

This section presents some studies on the characteristics of the staggered solver. These studies
have been performed on a different problem setup than presented in Section 3-51. However,

1The differences with the problem setup in Section 3-5 are 1) a plane stress model is used for the structure
in contrast to a plane strain model 2) the mean inlet velocity at the left boundary was 22.2 [mm/s] instead
of 33.3 [mm/s] 3) the Poisson’s ratio is 0.3 instead of 0.33 and 4) no outlet condition instead of zero pressure
condition
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(a) Fluid velocity [m/s] and structural displacement [µm] in x-direction

(b) Fluid velocity [m/s] and structural displacement [µm] in y-direction

Figure 4-5: Steady state velocity and displacement field in x- and y-direction - COMSOL

the quantitative information that these results provide will also apply to modeling of the actual
problem setup.

4-2-1 Solver stages

One of the key features of this staggered setup is that the fluid and structure are solved
separately. A couple of intermediate solutions are presented in Figure 4-6. These figures help
to understand the residual development presented in Section 4-2-2. The consequences of a
staggered setup are clearly visible in Figure 4-6. The figures show the solution after both fluid
and structure have gone through an update stage an equal number of times. Since the fluid
is updated first, the fluid levelset has not been updated towards the new displacements yet,
such that a big discrepancy between the meshes occurs, which is illustrated by the white void
areas in Figure 4-6c and Figure 4-6d. These intermediate results have absolutely no physical
relevance, only the fully converged solution corresponds to the physics of the system. The
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fact that the void area is visible also illustrates the crisp material to void interfaces. There are
no intermediate density elements present around the interface. Even though Figure 4-6e and
Figure 4-6f show solutions that are not fully converged yet, one can see that this discrepancy
reduces when getting closer to the steady state solution. Essentially, as the updates of the
structure approach zero, the fluid levelset takes its final form.

(a) Initial velocity field (b) Initial pressure field

(c) Velocity field after fluid update stage 1 (d) Pressure field after update stage 1

(e) Velocity field after fluid update stage 2 (f) Pressure field after update stage 2

(g) Velocity field after fluid update stage 3 (h) Pressure field after update stage 3

(i) Velocity field after fluid udpate stage 4 (j) Pressure field after update stage 4

Figure 4-6: A typical staggered solving process

4-2-2 Convergence plots

In addition to the visualization of the solving process in Figure 4-6, the residual development
has also been plotted in Figure 4-7. These residual plots give insight into the convergence
rate of the solver and how the rate is affected by the staggered setup. Below some comments
are presented to highlight the most interesting information in the plots.
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(a) Residuals in fluid update stages

(b) Residuals in structural update stages

(c) Residuals chronologically

Figure 4-7: Convergence plots of the staggered solve process
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Figure 4-7a and Figure 4-7b show the residual development within the update stages per
phase. In Figure 4-7c, the same information as in Figure 4-7a and Figure 4-7b is combined to
show the process in chronological order until convergence of the complete system is reached
according to Alg. 1 in Appendix C.

The update stages for the fluid are characterized by almost straight lines until big jumps in
residual occur, see Figure 4-7a. These jumps occur because at the start of each fluid stage
the LSF updated according to the new structural displacement field and hence new elements
are intersected making new DOFs part of the solution. These new DOFs may not have been
updated yet and still hold an old solution. More details on this phenomenon can be found
in Section 4-3-2. The straight lines before the jumps indicate near quadratic convergence,
i.e. suggesting a numerically consistent Jacobian, for a single fluid problem with constant
LSF/geometry. Due to the linear elastic material model, only one update per structural
update stage is needed, see Figure 4-7b. This zigzagging of the structural residual is the
result of an updated external force applied by the fluid to the structure.

Both Figure 4-7a and Figure 4-7b show that the total residual is dominated by the phase that
is not updated. During the fluid update stages, the traction applied to the structure changes
and, hence, one can see a change in structural residual during the fluid update stages. The
other way around is different. In the structural update stages, the fluid LSF is not updated,
the discrepancy between the meshes stays the same, the structural velocities are always zero
and,hence , the interface no-slip condition and elemental contributions to the fluid residual
do not change.

The update threshold line plotted in these figures is used to determine whether an individual
phase is converged or not. If the the residual lies below this line, the update is skipped and
the next update stage of the other phase starts. Figure 4-7c shows 4 instances where all three
residuals lie below this threshold. However, only the last instance has a physically relevant
solution, because at that point the two meshes show the least discrepancy, i.e. the fluid LSF
has also reached steady state. This is the consequence of the fact that structural displacement
field no longer changes, which is shown in Figure 4-8. This plot is related to the earlier remark
on making the two phases ‘communicate’ even though they are solved separately. This figure
shows the norm of the update vector for both phases. From this figure it can also be concluded
that it took the process 14 Newton-Raphson updates and 4 update stages per phase to reach
steady state.

4-2-3 Parameter studies

To improve results and convergence some basic parameter studies have been done. It may
be noted that many more studies can and should be performed, and that the results of many
of these studies, such as the under-relaxation, heavily depend on the coarseness of the mesh.
Nonetheless some quantitative conclusions can be drawn from these studies, which may be
useful for future research.

Mesh refinement

If a FEMmodel behaves correctly, a finer and finer mesh should, in theory, reach the analytical
solution of the partial differential equations. The other way around the coarser your mesh, the

Thijs Bosma Master of Science Thesis



4-2 Solver studies 65

Figure 4-8: Norm of the single phase update vectors - The fluid update vector contains velocity
and pressure terms and the structural update vector only displacements

Element area No. of elements Max. displacement
1.157e-3 13824 0.1457
8.424e-4 21360 0.1561
5.192e-4 30816 0.1561
3.809e-4 42000 0.1561

Table 4-1: Results of mesh refinement

less accurate your results. There is always a trade-off between accuracy and computational
effort, as more elements take more computational effort. Therefore, a small mesh refinement
study has been done to verify that the steady state solution converges towards a particular
solution with finer and finer meshes. Table 4-1 shows results indicating that the XFEM model
works correctly, namely if smaller and smaller elements are used, the maximum displacement
in steady state does not change anymore. All results in Section 4-2-2 and Section 4-2-3 are
based on the second mesh in Table 4-12.

Under-relaxation

As mentioned earlier in Section 3-4-2, a type of underrelaxation for the staggered solver has
been used in this study. After each structural update stage, we choose to update the structural
solution with a fixed percentage of that update, denoted by the factor αs. This smooths the
solution towards steady state. Moreover, it influences the convergence of the problem quite
strongly. Table 4-2 illustrates this influence. The less update stages are needed, the less time
the solver needs and, hence, the results in Section 4-2-2 are based on the underrelaxation
parameter αs of 0.95. This 0.95 is not a coincidence, namely it is approximately the ratio
between the maximum displacement at steady state (0.1561) and the maximum displacement
of the first non-underrelaxed, overshooting solution for the structure (0.1653). This 0.95 factor

2The mesh used for these results is: left 24 × 72, middle 36 × 72, right 36 × 72 elements per sub-area.
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αs No. of update stages per phase
0.8 7
0.9 5
0.95 4
1 5

Table 4-2: Under-relaxtion parameter αs for the structure

basically forces the structure straight towards the steady state solution after one update. In
steady state, the structure is not updated anymore, such that the fluid levelset immediately
catches up with the structural displacements and, hence, convergence is reached way quicker.
It is important to stress that the 0.95 factor is fully dependent on a converged fluid solution
for its initial geometry. If one chooses to reduce the amount of update steps per stage,
this parameter αs will most certainly change. This analysis suggests that the computational
effort of this staggered setup is strongly dominated by the fluid levelset field (LSF) updates,
in the sense that the LSM determines the amount of stages needed. Unfortunately this
fixed under-relaxation parameter does not guarantee the best performance of the solver for
other geometries. However, it can be concluded that, if the fluid is converged during the first
update stage and the steady state solution of the structure is expected to experience smaller
traction forces than the undeformed shape, that this under-relaxation parameter should always
be smaller than 1.

4-3 Analysis - Staggered setup

This section presents analysis of the results presented in the previous sections. Firstly, the
results of the COMSOL and XFEM simulation are compared to benchmark the XFEM model
for FSI problems. Secondly, a quantitative analysis on convergence of the XFEM model is
done.

4-3-1 COMSOL comparison

The coloring of Figure 4-1 to Figure 4-2a and Figure 4-4 suggest that the results are reasonably
similar at first sight. The velocity and pressure field show similar patterns and the deformed
structures almost have the same shape. In Table 4-3, the extreme values of all the state
variables are presented.
Table 4-3 shows that most numbers are of the same order. The biggest differences are found
in rows starting with a red colored state variable. The minimum pressure of the XFEM model
is about 35% lower than the COMSOL model. This is a rather significant difference and this
should be investigated in future research. A possible lead can be the non-smooth pressure
contour to the right of the structure in Figure 4-2b. At this pressure contour unexpected
behavior is clearly visible. Taking a closer look at Figure 4-2b shows that all contours that
cross an edge between the refined mesh and a coarser mesh show an unexpected course.
The displacement field also shows differences. Both x- and y-displacements extremes are off
in magnitude. Furthermore, the distribution of y-displacements in Figure 4-3 and Figure 4-5
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State variable XFEM COMSOL

vmaxf,x [m/s] 0.0936 0.0881

vmaxf,y [m/s] 0.0370 0.0338

vminf,x [m/s] -8.8578e-4 -8.0429e-4

vminf,y [m/s] -0.0288 -0.0262

pmax [Pa] 30.384 30.512

pmin [Pa] -6.786 -10.472

umaxs,x [µm] 10.300 8.3388

umaxs,y [µm] 0.695 0.3115

umins,x [µm] 0 0

umins,y [µm] -0.705 -1.3788

Table 4-3: The extreme values of the steady state solutions - The XFEM-results are dimension-
alized according to App. A

is very different. It may also be noted that the lack of displacement in y-direction could be
related to the abundance in x-displacement. Again future research should be performed to
find out what the reason for this difference is.

This comparison is not enough to fully validate the XFEM model. It, however, gives enough
confidence to continue with this XFEM model. The results show that the residuals built
in this model allow to numerically find a steady state solution, which resembles the steady
state solution found with COMSOL. Future research should quantitatively point out the
reasons, that explain these differences. Below a list with clear differences between the models
is presented that will be part of the explanation for the differences:

• Element types - The XFEM model uses quadrilaterals for the non-intersected elements,
while COMSOL uses triangular elements throughout the domain;

• Mesh/Discretization - The COMSOL model uses a body fitted mesh, while the XFEM
model always contains discrepancy between the two meshes, see Section 3-1-6. Addition-
ally, the nodes at which the extremes occur may not have the same Eulerian coordinates,
due to different discretizations;

• FE interpolation - Both fluid problems are solved using linear FE interpolation, but the
COMSOL model uses quadratic interpolation and the XFEM model linear interpolation
for the displacements. Linear interpolation results in stiffer structures, but oddly enough
Table 4-3 shows opposite results as the displacements in x-direction are bigger for the
XFEM model;

• Loss of traction information - The current setup is unable to handle structural bars that
are completely submersed within a fluid element (no intersections), which means a loss
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of physical information, see Section 3-1-6. On these structural bars no external force is
applied even though phyiscally there should be.

4-3-2 Convergence in XFEM models with changing DOFs

This section presents an in-depth analysis on convergence of the staggered Newton-Raphson
solver in XFEM. It is a general analysis and can be applied to every XFEM-based problem
with changing DOFs during the solving process. The changing of the DOFs is a consequence
of a changing levelset field on an Eulerian mesh. This is inherent to the methods used in
this research and one has to realize the consequences on both the convergence criteria and
the convergence rate. Another problem related to changing DOFs was that of the levelset
field consistency mentioned in Section 3-1-5. Hence the motivation to implement the flood-fill
algorithm has similar grounds as the analysis found below. Both are related to the changing
DOFs.

Convergence criteria

In XFEM, a wide variety of convergence criteria can be used. The convergence criteria, in this
study, are specifically setup towards the goal of the simulation, namely a converged steady
state solution. At this converged steady state solution we know that the residual and the
solution update should be close to zero. Furthermore, we expect to see a big drop in residual
comparing the final state to one of the first states, see also App. F. A common measure to
check whether vectors are close to zero, without inspecting each individual vector entry, is
the 2-norm. For two or three entry vectors this norm gives the Eucledian distance. For a
vector x with n entries the 2-norm is defined as follows:

‖x‖2 =
√
x · x =

√
x2

1 + x2
2 + ...+ x2

n . (4-1)

The norm of the residual vector R can be used as an indication of how well the FEM-
approximation satisfies the solution of the partial differential equations in the weak form. If
we compare the residual of a certain updated solution with a residual from an earlier solution,
by taking the ratio between the two, one can track how much the solution has improved.
These relative residuals are independent of the number of entries in the residual vector and
therefore often used in FEM. However, in the XFEM model of this research, the number of
entries in the residual varies with the number of intersected fluid elements. Essentially, after
each levelset update a different mesh is used, which makes the comparison between residuals
more difficult. The dependence on the number of entries has crawled back into the criteria.
This can be explained as follows: Suppose we have two residual vectors, Rref with a entries
and Rn with b entries, and we assume that all entries in both vectors are ε, the relative
residual can be written as follows:

‖Rn‖
‖Rref‖

=
√
b · ε2
√
a · ε2

=

√
b

a
ε . (4-2)

Eq. (4-2) shows that, if, for some unlikely reason, the entries of the residual vectors remain
equal to ε, the relative residual can still reduce, if the levelset updates reduces the number of
entries in b, i.e. b < a. In fluid flow analysis, it is common to take the residual after the first
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update as a reference residual, since the initial solution usually has no physical relevance to
the system. The initial solution in our setup is not physically relevant and, hence, while the
solution is updated, the number of DOFS changes. In this XFEM model, fluid DOFs change
during the solving process, because fluid levelset field changes. Literature has not presented
a standard method to deal with this yet.

The effect of the changing number of entries has not been accounted for in this research. We
just say that, if the residual is small enough, it will represent the physics. The reference
residuals used in App. F are the residuals built after the first Newton-Raphson update of
fluid. This solution gives the first reasonable solution for the fluid and holds a structure that
has not yet been deformed.

Convergence rate in XFEM

The previous section explains the consequences of the changing DOFs for the relative residual,
but there is more to it. Changing free DOFs also imply a changing solution update related
to these new DOFs. This means that the update does not build upon the solution from the
previous Newton-Raphson iteration. In a classical Newton-Raphson solving process, one adds
the update to the previous solution until convergence, where each update is related to the
same DOFs. With changing DOFs a classical Newton-Raphson update scheme is impossible.
Essentially, after each levelset update a ‘new’ FEM problem with a different initialization
is solved. Continuing with this line of thought and relating it to the quest for finding the
numerically consistent Jacobian, one can philosophize that quadratic convergence, even with
using a numerically consistent Jacobian in a system with changing DOFs, is impossible3.

In order to understand the consequences of this characteristic of the changing DOFs in XFEM,
it is useful to visualize this change. In XFEM terminology, the DOFs that are part the solution
are called active DOFs and the levelset field determines which DOFs are part of the solution,
see Figure 4-9. Figure 4-9a shows the active DOFs, related to the intersected fluid elements
and depicted by the red squares, in the undeformed configuration. These nodes together with
the standard nodes from the rest of the fluid domain (white area) are used to build the residual
and Jacobian to produce a solution update. If a solution update contains displacements, which
are big compared to the element size, the fluid to void configuration might look like what is
shown in Figure 4-9b. Here the pink fluid to void interface has changed significantly, due to
the fluid levelset update and, hence, to active DOFs related to both intersected and normal
fluid elements have changed. The colored areas relate Figure 4-9a to Figure 4-9b and mean
the following:

• Green - Intersected elements in undeformed configuration.

• Light red - ‘Semi-active’ elements, which contain both active and non-active nodes.

• Light blue - Strictly void elements, i.e. all nodes are non-active and or not part of the
fluid solution.

3In numerical modeling perfect quadratic convergence is hard to achieve, due to round-off errors and the
like. However, these numerical artifacts exist both for FEM and XFEM. The effects of changing DOFs is a
whole different problem
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FLUID

V OID

V OID

(a) Active DOFs (red squares) around in-
terface (pink line) in the undeformed con-
figuration on the fluid mesh - Grey indicates
void, white fluid domain.

(b) Active DOFs (red squares) around in-
terface (pink line) in the deformed config-
uration on the fluid mesh - Colors are ex-
plained in the bullet list.

Figure 4-9: Changed fluid DOFs after a fluid LSF update - Both the number and individual
nodes changed.

The location of the active nodes with respect to these areas in the deformed configuration
lies at the bottom of the argument against quadratic convergence, in models with changing
DOFs. Take, for instance, the inactive nodes, which are connected to light blue elements.
These light blue elements were not part of the active domain in Figure 4-9a and hence have
not experienced an update. Suppose we regard the first Newton-Raphson update, this means
that the nodes in the light blue still hold the values of the initialization, when their respective
elements are intersected after a fluid LSF update. These initialization values are then used to
build the next update upon. Because these elements ‘do not know about the update’, they will
most likely have negative effect on the residual in the connected elements4. The elements in
the light red area are partly updated, so an similar analysis can be done, but the effects on the
residual from these elements are expected to be less significant. One can also argue that even
the elements that are active in both configurations will negatively influence the convergence.
For instance, the elements in the green area were intersected in the undeformed configuration
and, hence, the no-slip condition forces the velocities to zero in that element. In the deformed
configuration these elements are no longer intersected and the further they are away from the
new interface, the higher the fluid velocities will be for the converged solution. However,
when the residual is built the element still contains zero velocities. The total negative effect
is illustrated nicely in Figure 4-7a by the big jumps in fluid residual after an update stage.

4A metaphor to understand the effect of the changing DOFs is that of a play in development. A director
(the solver) has more actors (the nodes) available than he can use on stage (the active domain). The rest of the
actors are back-stage (the non-active domain) waiting to be called upon the stage. During practice, the director
decides continuously to change and improve (the update) the script, based on what he sees (the solution). He
calls 10 actors on stage and sends 3 actors backstage (the switching between active and non-active domain).
The actors on stage that have been present for a while are aware of the changes in the script, but the director
‘forgets’ to brief the new actors on the changes in the script. The new actors act their part, however, since
they are unaware of the changes in the script, they negatively influence the momentum of the scene.
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Figure 4-10: The pressure field plotted right after the fluid levelset update in the second fluid
update stage - A weird solution is visible in the area where the undeformed structure was located.
Furthermore the pressure field has not adapted yet to the new configuration.

Figure 4-10 confirms the previous analysis as a weird solution is visible right after the fluid
levelset update. The same areas as in Figure 4-9 are (partly) visible in Figure 4-10; the green
rectangle corresponds to semi-active elements in the initial configuration and the light blue
corresponds to the inactive elements. The pressure field extremes are still situated around
the area of the undeformed structure. This weird solution negatively affects the convergence
rate of the solver and causes the big jump in fluid residual. As the solver progresses and the
solution gets closer to the final steady state solution, the DOFs do not change anymore and
from that point on, quadratic convergence may be expected. Unfortunately the benefit of
quadratic convergence is less significant in the final stages of the process. If displacements are
small compared to the element size(either coarse mesh or stiff structure), such that the fluid
levelset updates remain small and the fluid to void interface stays within the same intersected
elements, the negative effect will be minimized.
Based on this qualitative analysis, it can be concluded that the changing of the DOFs influ-
ences the behavior of the solving process. The extent of this influence on the monolithic setup
is yet to be determined quantitatively. This analysis leads to very interesting research pos-
sibilities for the future. Updating the non-active domain might enhance numerical stability
and convergence of the solving process. Setting nodal values of the non-active nodes to the
average of the active nodal values of neighboring elements, for instance, sends the solution in
the non-active domain in similar direction as the update of the active domain. Another option
would be to prevent changing of the DOFs with an ALE approach, which was developed in
Gerstenberger and Wall [2008b].

4-4 Summary

In this chapter, the results from the XFEM model, using the staggered setup, and the COM-
SOL model are presented. The results of the XFEM model were produced using optimal
settings based on some basic parameter studies. The staggered solving process is charac-
terized by the separated updates, which is clearly visible in both the intermediate solutions
in Figure 4-6 and the associated residual development in Figure 4-7. The most interesting
observations are the big jumps in the residual plots, which are the consequences of a change
in DOFs, due to the fluid LSF update.
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Further analysis of the results of both models shows that the results are moderately close to
each other. For the continuation of this research the Matlab results are sufficient, i.e. the
staggered setup is able to find a steady state solution, based on the implemented residual build-
up. At first sight the results look similar, but a more quantitative analysis shows interesting
differences, regarding the structural displacements and pressure contours. Future research
should be performed to determine what can explain these differences and more elaborate
validation of the XFEM model is needed.

The fact that in the XFEM model the fluid DOFs change, due to a changing fluid LSF, has
some rather interesting consequences. Firstly, the number of entries in the residual vector
changes. If one uses relative residuals as convergence criteria, one has to realize that the
norms of the residual vector use a different number of entries. Even more interesting is the
effect of the changing DOFs on the convergence rate. In the staggered setup, this manifests
itself by big jumps in residuals and a qualitative analysis predicts that also the monolithic
setup will be affected. Even with a numerically consistent Jacobian the desired quadratic
convergence of the monolithic solver is impossible, since the consecutive updates do not build
upon the solution from the previous update iteration. After each LSF update a new FSI
problem with a different initialization is solved. Since XFEM turns of particular elements,
these elements will not be updated, even though the rest of the domain is updated. As soon
these ‘forgotten’ elements become part of the solution, they still hold an old solution and
therefore influence the convergence rate negatively. Future research should be performed to
verify and quantify the effects on the monolithic convergence rate and to see whether methods
need to be developed and implemented to improve the convergence.
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Chapter 5

Model verification - Monolithic setup

The previous chapter shows us that the XFEM model is capable of finding a steady state
solution with the current residual build-up. The next step then is to check whether the
complete Jacobian is numerically consistent. In the monolithic setup, all Jacobian entries
Eq. (3-87) are used in the Newton-Raphson solver, in contrast to the staggered setup. Since
this model was set up because of its flexible geometry description and the sensitivity-analysis
requires a complete Jacobian, investigation on behavior and characteristics of the monolithic
setup is valuable. Below the results of a number of tests are shown, which provide information
on the monolithic setup. In Section 5-1, exploded solutions of the monolithic setup are
presented. Section 5-2 present results used to answer the question why the monolithic setup
is unable to find the steady state solution in Section 5-3.

5-1 Results - Monolithic setup

The results of the monolithic solving process are presented in Figure 5-1. These figures show
the solution just before the solver broke down. The solution exploded and hence the code
was not able to continue anymore. The results show that both the velocity and the pressure
field are approximately zero in the entire domain. This is not a correct solution for steady
state. The question now is ‘Why did the solution explode?’. As mentioned in Section 3-4-1
Newton-Raphson solvers sometimes need some tuning to be able to robustly find the correct
solution. However, even the tuned solvers require that the solver ingredients are correct to
produce a relevant solution, i.e. the residual and Jacobian should be correct. As the staggered
solver proved to be able to find the steady state solution similar to COMSOL, the Jacobian
should be investigated to check that it is numerically consistent.

5-2 Jacobian - 2 element Finite Differences

As is shown in Section 5-1, the monolithic setup does not work. This suggests that the
Jacobian sends the solving process in the wrong direction. The construction of the numerically
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(a) Fluid velocity and displacement

(b) Fluid pressure and displacement

Figure 5-1: The exploded solution of the monolithic solver

consistent Jacobian in this XFEM model is complex, both conceptually and from the point
of view of implementation in Matlab. Code-bugs can occur and sometimes are very difficult
to find. Reducing the complexity of the problems and designing simple numerical tests help
providing insight into where errors occur. Finite differences, for instance, can be used to
check derivatives. It is a brute force method to check whether the Jacobian of the system
is numerically consistent with the residual. Within some tolerance range, the analytical
Jacobian and FD Jacobian should be equal. This FD approach is only able to give insight
into whether the Jacobian is consistent with the residual, and cannot say anything about the
residual itself. That is why a staggered setup has also been used. Choosing the step size for
the FD is not easy and hence a sweep has been done to determine the influence of the step
size. Below the results for two different configurations are presented and discussed as different
configurations illustrate and/or highlight different problems. Both problems contain fluid on
the left and structure on the right. For the fluid a linearly increasing velocity field and for
the structure a uniformly zero displacement field is shown. The pressure field is uniformly
non-zero. The big difference between the two configurations is that in the left problem only
the left element is intersected, while in the right problem both elements are intersected and
the fluid-structure interface crosses the shared element edge.
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(a) Two elements with element 1 on the
left intersected

(b) Two elements with both element 1 and
2 intersected

Figure 5-2: Simplified FSI problems - Finite difference configurations with two elements

5-2-1 The finite differences process

Computing the Jacobian with central finite differences is computationally expensive, but
usually provides better results than forward or backward FD, see Section 2-4-1. For each
perturbed DOF the complete residual is built twice, and in systems with many DOFs that
computationally expensive. This motivates the choice to work with a simple problems with few
DOFs. The simple problems in Figure 5-2 have no physical relevance, but do give great insight
into the numerical and mathematical process behind the complete model. As mentioned, using
the correct step size is crucial. A step size that is too big gives wrong derivative information
and a step size that is too small leads to numerical problems related to round-off errors and
tolerances used within the model. In this work, a sweep over different step sizes is done
(detailed results omitted) to find a suitable step size of 1e−8. The finite difference algorithm
can be found in Alg. 3 in Appendix C.

5-2-2 Methods to compare Jacobians

To compare the analytic and FD Jacobian, one has several options. In this work, a combina-
tion of methods has been used to compare the Jacobians on both global and individual entry
level. The methods used are the following and the results are presented in Section 5-3:

• Spy on location of entries - The spy function in Matlab gives insight in the locations of
non-zero entries of sparse matrices; nz at the bottom of the plots indicates the number
of non-zero entries1.

• Frobenius norm on absolute numbers - The Frobenius norm is defined as the square
root of the sum of all entries squared and is a measure to check the absolute values of
all entries on a global level.

• Signs on entry pairs - Each entry in a Jacobian has an associated entry in the other
Jacobian, corresponding to the same state variables. The signs of these associated
entries should be equal.If one multiplies the signs of each entry entry-wise with the
entries of the other Jacobian and both entries of the entry pair have the same sign, the
result is 1.

1Note that non-zero entries may include Inf and NaN
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Note that one has a lot of freedom in methods to compare Jacobians, so the method should be
adjusted to produce the desired information. Different methods may lead to different insights.

5-3 Finite Differences - Results

In this section, the results of the finite differences and the analytic Jacobian for the two
setups are given and the most interesting observations are presented. The reader is warned
at forehand that only the structural displacements in x-direction have been perturbed (see
Section 5-3-4 for an explanation). First the results of the configuration in Figure 5-2a are
presented, then the configuration in Figure 5-2b. These results and the consequent analysis
should be inspiration for future research.

5-3-1 Two elements with only left element intersected

The most relevant results for the one intersection case are presented in Figure 5-3 and Figure 5-
4. Figure 5-3 shows that the location of the entries and the Frobenius norm are good. These

Figure 5-3: Spy plots and Frobenius norm of the complete analytic and FD Jacobian for two
elements problem with left element intersected

results suggest that the analytic Jacobian is consistent with the residual. We label the entries
in Eq. (3-87) as follows:

J =


∂Rs

∂us

dRs

duf
∂Rf

∂φf

dφf
dus

∂Rf

∂u̇s
+ dRf

duf

 =
[
Jss Jsf
Jfs Jff

]
. (5-1)

to simplify the notation of the individual terms. Table 5-1 presents the Frob. norms of the
difference between the two Jacobians and the number of entries with different signs of the
individual Jacobian terms of Eq. (3-87). The zeros in the third column indicate that the signs
of all entries are equal for both full Jacobians. The Frob. norms of the difference between
the two Jacobians is in the order of 10−8, which is very small.
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Jacobian Frob. norm No. entry pairs with unequal signs
Jss* 1.3077e− 08 0
Jsf 3.2266e− 08 0
Jfs 4.0942e− 05 0
Jff 6.6347e− 06 0

Table 5-1: Two elements, one intersection - Frobenius norms of the difference between the ana-
lytic and FD Jacobian of each individual part of the Jacobian (* The missing traction contribution
has been accounted for, see Figure 5-4)

Two remarks may be added to the Frob. norms of Jfs and Jff . The first is that the levelset
field Jacobian term (LSFJ) Jfs contains some geometrical mismatch contributing to a larger
difference between the two Jacobians, which is discussed as Problem 3 in Section 5-3-3. The
second is that fluid Jacobian Jff appeared to be sensitive to the step size. Explanations for
this observation are unknown to the author and future research on this might be interesting.
On a global level it may be stated that the spy plots and norms show that for configuration
Section 5-2a the analytic and FD Jacobian are pretty much equal.

Missing traction contribution Unfortunately the spy-plots and norms in Figure 5-3 are
somewhat misleading, as they do not show separate Jacobian contributions. The dependence

Figure 5-4: Two elements, only left element intersected - Spy plot and Frobenius norm of the
analytic structural Jacobian, FD Jacobian and FD traction Jacobian. The Frobenius norm of the
FD traction Jacobian is negligle compared to the other Frob. norms.

of the traction on the structural displacements through the fluid levelset is not explicitly shown
in the complete spy-plots. It is present in the FD Jacobian, but not in the analytic Jacobian
and this cannot be found by looking only at the spy-plots. This illustrates the necessity of
using multiple methods to compare the Jacobian or even break the analysis down into sub-
problems. Figure 5-4 shows that the additional contribution to the structural Jacobian may
be neglected as the Frob. norm of the FD traction Jacobian is very small (Frob. norm =
0.5) compared to the actual stiffness matrix entries of the structure (Frob. norm = 6.4e5).
Additionally, the linear structural model used in this work is relatively simple, it converges
in one update, and the lack of this contribution will not pose a significant problem. In terms
of a numerically consistent Jacobian, it is a minor inconsistency.
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5-3-2 Two elements with both elements intersected

The previous section shows promising results as they suggest that the analytic Jacobian is built
consistently with the residual for that particular configuration. To fortify this statement, in a
more general sense, the other configuration is also tested. In Figure 5-5, the most interesting
results for the configuration in Figure 5-2b are presented, as only the Jfs part of the Jacobian
shows errors. In App. E, the rest of the results is presented for completeness. Below results
are presented that give insight into the problems at hand. To remind the reader: from
Eq. (3-85) and Eq. (3-89) can be deduced that the complete term can be written as follows:

Jfs = ∂Rf

∂φf

∂φf

∂P Γ
dP Γ

dus
. (5-2)

This equation mathematically illustrates the following statements:

• The projected intersection points P Γ are computed based on nodal structural displace-
ments us;

• The nodal fluid levelset values φf are computed based on the projected intersection
points P Γ;

• The fluid residual Rf is computed based on the nodal fluid levelset values φf .

This information was already presented in Section 3-1-4, but is repeated here, because it is
important to be able truly understand the process on both elemental and global level. A quick

Figure 5-5: Two elements, both intersections - Spy plot and Frobenius norm of the analytic
structural Jfs and the FD Jfs. Both entries and Frob. norms differ.

look at the spy-plots in Figure 5-5 shows that the Jfs is off on both the number of entries
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(nz = 60 vs. nz = 72) and the absolute values of the entries (Frob. norm = 434 vs Frob.
norm = 385). This part of the Jacobian consists of three parts, as presented in Eq. (5-2).
The term ∂Rf/∂φf is computed with finite differences, while for the term ∂φf/∂P

Γ and
∂P Γ/∂us an analytic approach has been implemented, as presented in Section 3-1-4. The
FD term is rather difficult to check and unlikely to be erroneous. The combination of term
∂φf/∂P

Γ and ∂P Γ/∂us equals ∂φ/∂us and is easy to check with FD.

Check levelset sensitivities Just like checking the Jacobian of the system by FD, it is
possible to check the ‘Jacobian of the levelset field’. This Jacobian gives the sensitivity of
the fluid levelset field with respect to the structural displacements, i.e. ∂φ/∂us in Eq. (3-90)
and Eq. (3-91). The results of the FD and the analytical build-up for the fluid levelset field
sensitivities with respect to structural displacements are presented in Table 5-2, Table 5-3 and
Table 5-4. In all three tables, each entry contains the first order derivative of φi (columns)
with respect to usx,n(rows), where i = 1..6 according to the node numbering in Figure 5-6 (see
also Eq. (3-90) and Eq. (3-91)). The central question when looking at Table 5-2, Table 5-

∂φi ∂usx1 ∂usx2 ∂usx3 ∂usx4 ∂usx5 ∂usx6
∂φ1 -0.3333 -0.6667 0 0 0 0
∂φ2 -0.1179 -0.4714 -0.1179 0 0 0
∂φ3 0 -0.2357 -0.2357 0 0 -0.2357
∂φ4 -0.1179 -0.4714 -0.1179 0 0 0
∂φ5 0 -0.2357 -0.2357 0 0 -0.2357
∂φ6 0 0 -0.3333 0 0 -0.6667

Table 5-2: FD on levelset field for both elements - The sensitivities of nodal levelset values φi
with respect to all structural displacements in x-direction

∂φi ∂usx1 ∂usx2 ∂usx3 ∂usx4 ∂usx5 ∂usx6
∂φ1 -0.3333 -0.6667 0 0 0 0
∂φ2 -0.1179 -0.4714 -0.1179 0 0 0
∂φ3 -0.1179 -0.4714 -0.1179 0 0 0
∂φ4 -0.1179 -0.4714 -0.1179 0 0 0

Table 5-3: Analytic levelset field for element 1 - The sensitivities of nodal levelset values φi with
respect to all structural displacementsin x-direction. The red filled cells contain different numbers
than the FD results of Table 5-2. The green cells are correct for element 1, but incorrect for
element 2, see Table 5-4.

3 and Table 5-4 is Which nodal fluid levelset values will be affected by a perturbation in the
structural x-displacements? This question is crucial, since it is strongly related to the question
whether a residual change will occur when a structural displacement is perturbed. To answer
these questions, it is useful to look at Figure 5-62. This schematic will be useful to see to
consequences of a structural perturbation, as will be shown Section 5-3-3.

2Note that this configuration was particularly designed such that all nodes except for node 1 and 6 have
an orthogonal distance within an element they are connected to.
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∂φi ∂usx1 ∂usx2 ∂usx3 ∂usx4 ∂usx5 ∂usx6
∂φ2 0 -0.2357 -0.2357 0 0 -0.2357
∂φ3 0 -0.2357 -0.2357 0 0 -0.2357
∂φ5 0 -0.2357 -0.2357 0 0 -0.2357
∂φ6 0 0.0000 -0.3333 0 0 -0.6667

Table 5-4: Analytic levelset field for element 2 - The sensitivities of nodal levelset values φi with
respect to all structural displacementsin x-direction. The red filled cells contain different numbers
than the FD results of Table 5-2. The green cells are correct for element 2, but incorrect for
element 1, see Table 5-3.

P Γ
1

P Γ
2

P Γ
3

ū1, φ1 ū2, φ2 ū5, φ5

ū4, φ4 ū3, φ3 ū6, φ6

P φ
1

P φ
2

P φ
3

− + +

− − +

b2

b1

Elem. 1 Elem. 2

Fluid Structure

Figure 5-6: A schematic overview of the two element Finite Difference setup of Figure 5-2b -
For more information on the content of this figure the reader is referred to items 1 to 10
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The following list explains what is shown in Figure 5-6:

1. Every subscripted integer denotes a particular node or point within the global system;

2. The Lagrangian structural mesh is undeformed and hence coincides with the Eulerian
fluid mesh, i.e. actually two meshes are present, but it appears to be only one. The
same can be stated for the nodes;

3. ūi denote the vectors of nodal degrees of freedom from fluid and structural mesh for
the i-th node [ūs ūf ]i = [usx usy vfx vfy pf ]i;

4. φi denote the nodal levelset values on the fluid mesh, which correspond to the norms of
the green dashed vectors (-/+ indicates fluid or structural domain, respectively);

5. The straight blue line represents the two structural bars b1 and b2 projected onto the
fluid mesh. These bars are connected through their end points coinciding with P Γ

2 ;

6. P Γ
j , where j = 1..3 indicates the j-th intersection between the structural bars and the

element edges, or also projected intersection point;

7. Initial displacements are zero and so the structural bar end points coincide with the
projected intersection points P Γ

j (see also Figure 3-7 to remember the distinction);

8. P φ
k , where k = 1..3 indicates the k-th intersection between the zero-contour of the fluid

levelset based the nodal levelset values φi and the element edges;

9. The purple line represents the fluid to void interface based on the fluid levelset field
(LSF). The reason why the purple and blue line do not coincide is explained in Section 5-
3-3 as Problem 3;

10. For node 1 and 6 no orthogonal distance to an interface exists within the domain and
so the distance is set equal to the distance to the closest intersection point.

A quick review on the results in Table 5-2, Table 5-3 and Table 5-4, with Figure 5-6 in mind,
shows that the nodes connected to only one element (nodes 1,4,5 and 6) have similar results
for the analytic and FD setup, denoted by the uncolored cells. The shared nodes (nodes 2 and
3) show good results for the fluid element containing the orthogonal projection for that node,
see the green filled cells in Table 5-3 and Table 5-4. For instance, node 2 has an orthogonal
distance within element 1 and Table 5-3 indicates that the derivatives are equal to the FD
results. The red filled cells indicate erroneous information compared to the equivalent FD
values in Table 5-2. These incorrect fluid LSF Jacobian entries will partly explain, why spy
Frob. norms in Figure 5-5 are different, if neighboring elements are intersected. Further
analysis is presented in the next section.

5-3-3 Detailed analysis of results

The previous section shows that trouble occurs with the levelset derivatives, as soon as mul-
tiple neighboring elements are intersected. In other words, the analytic Jacobian is not con-
sistent. To understand where the problem originates from, we have go back to the levelset
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procedure as described in Section 3-1-4 and Section 5-2. In short, the procedure finds the
signed orthogonal distance to the closest interface and the sensitivity of this distance with
respect to nodal structural displacements. A schematic overview of the two element problem
with these orthogonal distances, depicted by the green dashed arrows, is shown in Figure 5-6.
It may be noted that finding the nodal levelset value is done on a neighboring element level,
by looking for the closest interface within the all elements connected to the node in question.
This results in dependencies, according Eq. (3-1) to Eq. (3-13), as shown in Table 5-5. An

Nod. LS value Domain Proj. int. points Nod. displacements (x and y)
φ1 - (fluid) P Γ

1 ūs1 ū
s
2 ū

s
3 ū

s
4

φ2 + (structure) P Γ
1 P

Γ
2 ūs1 ū

s
2 ū

s
3 ū

s
4

φ3 - (fluid) P Γ
3 P

Γ
2 ūs2 ū

s
5 ū

s
6 ū

s
3

φ4 - (fluid) P Γ
1 P

Γ
2 ūs1 ū

s
2 ū

s
3 ū

s
4

φ5 + (structure) P Γ
3 P

Γ
2 ūs2 ū

s
5 ū

s
6 ū

s
3

φ6 + (structure) P Γ
3 ūs2 ū

s
5 ū

s
6 ū

s
3

Table 5-5: Nodal levelset dependencies on projected intersection points and structural displace-
ments - The rows starting with the blue filled cells contain information the shared nodes of Fig-
ure 5-6. The projection intersection points and the nodal displacements have different parental
elements for both nodes.

example helps to understand the information in Table 5-5:

1. Take the upper node left node of element 1, i.e. node 4;

2. The green arrow points at the closest interface and hence its length is the absolute nodal
levelset value (- indicates it is a fluid node, see column 2);

3. The closest interface for node 4 is defined between the projected intersection points P Γ
1

and P Γ
2 (see column 3);

4. Points P Γ
1 and P Γ

2 are the intersections of structural bar b1 and the lower and right
element edge of element 1;

5. The location of bar b1 is determined nodal structural displacements ū1 to ū4 through
the bar ending points (see column 4).

The previous steps follow the reversed process of Section 3-1-4 and hold for each node to fill
a row in Table 5-5. This table shows that the shared nodes 2 and 3 couple the two elements
through the levelset field formulation; node 2 is connected to element 1, but its nodal levelset
value used nodal displacements from element 2 (see column 4).

Eventually, it is the goal to compute the derivative of the fluid residual with respect to the
structural displacements, see Eq. (5-2). This equation shows three different pieces of the
puzzle that need to be connected. The MATLAB-code that connects the pieces can be found
in Appendix D. For readers not familiar with the rest of the code and all the variable names,
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a short summary of the code is presented in Alg. 2 in Appendix C. Alg. 2 indicates that
each intersected fluid element is regarded individually by looping over all intersected fluid
elements. This was already indicated with Eq. (3-89). Hence for each individual element, it
is determined which structural bar intersects with one of the 4 element edges. As is shown in
Figure 5-6, element 1 intersected by b1 and element 2 by b2. This is where the first problem
with the current code structure appears. Additionally, the above gives information to identify
in total three problems.

Problem 1 - Nodal dependence on neighboring elements Suppose the loop in Alg. 2 in
Appendix C has started and element 1 is being regarded in Figure 5-6. Element 1 contains
projected intersection points P Γ

1 and P Γ
2 . The derivative of these projection points with

respect to the four nodal structural displacements usi (Eq. (3-32) or the third term in Eq. (5-
2) on the right hand side) for element 1 can be written as follows:

dP Γ
j

dusn
=


dP Γ

1
dusn
dP Γ

2
dusn

 . (5-3)

where j = 1,2 to indicate projected intersection points 1 and 2. Now we zoom in on node
3. In Table 5-5, we see that the nodal levelset value for node 3 is determined with projected
intersection points P Γ

2 and P Γ
3 , such that the derivative of the levelset value with respect to

the projected intersection points can be written as follows:

∂φ3

∂P Γ
j

=
[
∂φ3

∂P Γ
2

∂φ3

∂P Γ
3

]
, (5-4)

where j = 2, 3 to indicate projected intersection points 2 and 3. When equation Eq. (5-3)
and Eq. (5-4) are multiplied a mismatch occurs because different projected intersection points
are used. The nodal level-set value is connected to the wrong nodal displacements. So even
though Eq. (5-3) and Eq. (5-4) may individually be computed correctly, they are non fitting
puzzle pieces, on an elemental level. The same holds for node 2, if element 2 is regarded.
Essentially, this mismatch will always occur in the current implementation, when a particular
node within an element uses information from a neighboring intersected element. The result
is an erroneous ∂φ/us term on an elemental level, which was already shown in Table 5-2 to
Table 5-4 with the red filled cells. As the levelset update procedure is developed, such that
the nodal levelset values are independent of the element that is regarded, one should find
equal values for entries for node 2 and 3 in both elements. This is, however, not the case as
can be seen in the red and green filled cells in Table 5-3 and Table 5-4.

Problem 1 points out the fact that the current implementation needs to be improved. Eq. (3-
89) is computed on an elemental level, but should be computed on a nodal level and then stored
on an elemental level. This problem can be solved by keeping track of which element contains
the orthogonal distance to the closest interface for each node individually. Important to note
is that the correct information is already computed, if the element containing the orthogonal
distance is regarded. This means minor changes to the current implementation.
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Problem 2 - Secondary coupling Another problem with the current code setup relates to
the missing entries in the analytic Jacobian, see Figure 5-5. This problem can be understood
by regarding a perturbed system. The central FD-loop to determine the Finite Differenced
Jacobian starts with perturbing the structural DOFs. The first DOF that is perturbed (back-
wards) is the x-displacement of node 1. This perturbation results in a displacement of struc-
tural bar b1, according to Eq. (3-3), as is shown in Figure 5-7. In Figure 5-7, an exaggerated

P Γ∗

1

ū∗1, φ
∗

1 φ∗2

φ∗4

P φ∗

1

P φ∗

2

− + +

− − +

b∗1

Elem. 1 Elem. 2

Figure 5-7: Two element setup with x-displacement of node 1 perturbed - Superscript ∗ indicates
a changed variable, due to a structural perturbation of node 1. The grey lines and dots in the
background depict the Figure 5-6.

perturbation of nodal x-displacement of node 1 and its effects is shown in colors, while grey
in the background indicates the original situation of Figure 5-6. From this figure, it can be
concluded that a perturbation of displacement in node 1, not only affects the fluid residual of
element 1 but also the fluid residual of element 2, meaning coupling on neighboring element
level has been introduced. The transition from Figure 5-6 to Figure 5-7 occurs according to
Section 3-1-4 and can be summarized as follows:

• The structural perturbation displaces the bar ending points;

• The displacement of the bar results in changed intersection points;

• The changed intersection points give a changed nodal levelset values;

• The changed nodal levelset values give a changed zero contour of the LSF;

• A changed zero contour means changed intersections between the zero contour and the
element edges;

Figure 5-6 shows green arrows from node 2 and 4 touching at the interface, while Figure 5-7
shows that the these arrows have shifted. The nodal levelset value of node 2 has changed, due
to the perturbed displacement in node 1, and that results in shifted zero contour points φ∗j
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on the element edges of both element 1 and 2. The zero contour points on the shared element
edge, for the configuration in Figure 5-6, can be computed as follows:

P φ
2 = P n

2 + φ2
φ2 − φ3

· (P n
3 − P n

2 ) . (5-5)

The zero contour points on the shared element edge, for the configuration in Figure 5-7, can
be computed as follows:

P φ∗

2 = P n
2 + φ∗2

φ∗2 − φ3
· (P n

3 − P n
2 ) ; (5-6)

and because φ∗2 > φ2, due to the shift of the structural bar, we can say:

P φ
2 6= P φ∗

2 . (5-7)

The purple in Figure 5-7, the fluid to void interface, has moved in element 2 and hence the
elemental (domain of integration, see Figure 3-16) and no-slip condition contributions (pro-
jection, see Figure 3-183) to the residual are affected. Concluding; the fluid LSF introduces
additional coupling between neighboring elements, which is not present in normal FEM. Sim-
ilar conclusions hold for perturbing nodes 2,3 and 6. Nodes 4 and 5 are not connected to an
intersected element edge and hence will not give any contribution to the location of the bar
ending points (shape functions are zero in Eq. (3-32)). This analysis is perfectly reflected by
the filled columns 1,2,3 and 6 and the empty entries in columns 4 and 5 on the right spy-plot
in Figure 5-5. Nodes 1,2,3, and 6 are coupled to both elements and a change in displacements
at these nodes gives a change in the fluid residual. The latter is the definition of an individual
Jacobian entry.

In the current code setup, this secondary effect is not incorporated and that explains the
missing entries in the analytic Jacobian. Extending this line thought towards the full model
of Section 3-5, one needs to incorporate these secondary dependencies in future work in
addition to the local dependencies. The local dependencies are already calculated correctly
as is illustrated by the single intersection 2 element case.

Every nodal displacement value determining the location of one of the structural bar ending
points is coupled to all elements containing element edges intersecting with that structural bar.

It may, however, be possible to ignore these secondary effects as they appear to be small in
Figure 5-7, but this can only be checked, if Problem 1 is fixed first. The current implemen-
tation is written from the perspective of the fluid elements, so it is recommended to address
this problem from the perspective of the structural bars. An important question to investi-
gate in this perspective is ‘How many intersection points does a structural bar have with the
fluid mesh?’. All these intersection points depend on the location of the bar ending points
and hence depend on the structural displacements determining the location of the bar ending
points. More research on this topic is needed.

3In hindsight, we unknowingly had assumed that the projected intersection points and zero contour inter-
section points coincided. This is only true for long straight geometries, such as the left and right side of the
beam in this particular problem setup.
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Problem 3 - Zero contour and projection mismatch There is a third problem with the
current code structure regarding Jfs, namely the mismatch between the projected intersection
points P Γ

j and zero levelset contour points P φ
j , where j = 1..3. In Figure 5-6, this mismatch

is illustrated. The location of the zero levelset contour along the bottom element edge of
element 1 can be computed as follows:

P φ
1 = P n

1 + φ1
φ1 − φ2

(P n
2 − P n

1 ) . (5-8)

The location of the projected intersection point along the bottom element edge of element 1
was already computed in Eq. (3-7) as:

P Γ
1 = P n

1 + r(P n
2 − P n

1 ) , (5-9)

or equivalently:

r = P Γ
1 − P n

1
P n

2 − P n
1

(5-10)

where r is the local coordinate of the projected intersection point along the the element
edge. Eq. (5-8) and Eq. (5-9) are very similar equations and will produce equal results, i.e.
P φ

1 = P Γ
1 , if the following is true:

r = P Γ
1 − P n

1
P n

2 − P n
1

= φ1
φ1 − φ2

(5-11)

To investigate Eq. (5-11), we draw a schematic of the bottom edge of element 1 in Figure 5-6
and structural bar b1, as shown in Figure 5-8. In Section 3-1-4, it was explained that, if a

P Γ
1

P Γ
2

φ2φ1
P n

2P φ
1

P n
1

d1

b1
−

+

d2

Figure 5-8: Mismatch between the projected intersection points and the zero contour intersection
points for 2 element case - The projected intersection point P Γ

1 does not coincide with the zero
contour intersection point P φ

1 , because the nodal absolute nodal levelset value d2 is not equal to
(P n

2 − P
Γ
1 ).

node does not have an orthogonal distance within an element, the absolute nodal levelset
value will be set equal to the distance from that node to the closest intersection point. Node
1 in Figure 5-6 does not have an orthogonal distance and the closest projected intersection
point is P Γ

1 . This means that φ1 can be defined as:

φ1 = −‖d1‖ = −(P Γ
1 − P n

1 ) , (5-12)

where the minus sign corresponds to the sign convention of negative fluid levelset values. If
we plug Eq. (5-12) into Eq. (5-11), we can deduce a relation for φ2 as follows:

P Γ
1 − P n

1
P n

2 − P n
1

= −(P Γ
1 − P n

1 )
−(P Γ

1 − P n
1 )− φ2

→ φ2 = P n
2 − P Γ

1 . (5-13)
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However, Eq. (5-13) contradicts with what we see in Figure 5-8, namely that the orthogonal
distance of node 2 is given by d2 such that:

φ2 = ‖d2‖ < P n
2 − P Γ

1 . (5-14)

From this, we can conclude that Eq. (5-11) is not true and that P φ
1 6= P Γ

1 . This is visually
supported by Figure 5-8. Since ‖d2‖ < P n

2 − P Γ
1 the zero contour point P φ

1 will lie to the
right of P Γ

1 .

So far, this analysis has focused on the 2 element case of Figure 5-2b and Figure 5-6, where
the lower left node was used to illustrate the mismatch between the zero contour intersection
points and the projected intersection points. This node does not have an orthogonal distance
within an element and that is the cause of the mismatch. However, the same analysis can be
done for the situation shown in Figure 5-9. In this figure a lower element contains a vertical
bar, such that the nodal levelset value is correctly set to −(P n

2 − P Γ
1 ) It is the explanation

for the mesh discrepancy mentioned in Section 3-1-6. Figure 5-9 shows that, if an element

P Γ
j

P φ
j

Figure 5-9: Zero contour and projection points mismatch at the top of the structural beam - The
fluid residual relates to the purple interface, while the levelset field relates to the blue interface.

sharing the edge in Figure 5-8 contains a vertical bar, the distance is correctly assigned as
−(P Γ

1 − P n
1 ), resulting in the mesh discrepancy.

Essentially, if two neighboring elements contain structural bars connected under an angle, this
geometric mismatch shows up. The bigger the angle the bigger the mismatch and hence with
heavily curved interfaces, such as to top of the beam, the mismatch/discrepancy becomes
bigger and bigger. The mesh discrepancy is handled with projection methods, but there is
another problem. The nodal levelset values are computed based on the projected intersection
points P Γ

j and zero levelset contour is calculated using the nodal levelset values φi. The other
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potential problem arising from this geometric mismatch is related to Eq. (5-2). The fluid
residual derivative is computed based on the zero levelset contour of the fluid levelset P φ

i .
The levelset derivative, however, is computed based on the projected intersection points P Γ

i .
This means that both terms do not regard the variation around the same interface, as the
projected intersection points and the zero contour intersection points do not always coincide.
This may written down as follows:

dRf

dus
= ∂Rf

∂φf

[
P φ
] dφf

[
P Γ
]

dus
, (5-15)

where the square brackets indicate ‘variation around’ and not dependence. This problem only
affects the Jacobian of the fluid and it is expected that finer meshes will show less mismatch.
The mismatch is inherent to the current implementation of the used levelset method and the
extent of the consequences should be investigated in future work, noting that the first two
problems should be addressed first. A possible fix is to hack into the fluid levelset routine
of Section 3-1-4 and compute the zero levelset contour points based on the fluid levelset and
then use those points to calculate the levelset related derivatives instead.

5-3-4 Choosing a correct 2 element problem

As mentioned, FD gives a lot of good information on potential problems, but designing the
correct 2 element problem is not trivial. Below some remarks are presented, that could help
the design process in future work. This list present some lessons learned during this work,
but it cannot guarantee an ever successful FD process.

• Initialization of fluid - The fluid should be initialized with a non-zero velocity field and
non-uniform pressure field. Otherwise the Jfs Jacobian term shows big differences with
the FD Jacobian. Future work can be done to find the reasons for this problem.

• Geometric symmetry - Symmetric configurations often do not show errors or even in-
troduce additional problems. It can be helpful to try symmetric configurations and
to see the difference between non-symmetric configurations, however, solely looking at
symmetric problems most likely will not provide enough conclusive information. To
illustrate: Problem 1 will always occur for nodes with equal orthogonal distance within
multiple elements, see Figure 5-10. The min-operation4 in Matlab then just chooses
the first entry. The consequent problem then comes from the fact the sensitivity of the
distances with respect to P Γ

1 and P Γ
3 show opposite signs and hence derivative infor-

mation from one element is incorrect for the other element. One should take care of
preventing similar configurations.

• No orthogonal distance within the connected element - In some configurations, node 4
and 5 do not have an orthogonal distance within the one element they are connected to
and hence the distance is set to the closest intersection point, see Figure 5-11. Similar
configurations can occur in the complete model and this has the potential to introduce
errors. This problem is also related to the use of the min-operation.

4http://www.mathworks.nl/help/matlab/ref/min.html
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P Γ
1

P Γ
2

P Γ
3

φ2 φ2

Figure 5-10: Symmetric two element setup with middle bottom node having equal orthogonal
distance within both elements

P Γ
1

P Γ
2

φ4

P Γ
3

Figure 5-11: The orthogonal distance to the closest interface from upper left node is depicted
by the black dashed line, however, the min-operation sets it to the length of the green dashed
arrow

• No perturbation of y-displacements - In the two element cases of this chapter, structural
perturbations in y-direction are skipped, because they result in bar ending points located
outside the domain. It is possible to design 2 element configurations, that shift the
problem from the y-direction to the x-direction (top three nodes have equal nodal fluid
levelset sign, but opposite to sign of bottom three). This configuration has not been
investigated and hence it is impossible to state anything about the consequences of the
structural perturbations in y-direction. It is, however, unlikely that major new problems
occur when perturbing in y-direction.

5-4 Summary

The current implementation of the XFEM model is unable to find the steady state solution
with the monolithic setup. Since it was shown that a staggered solver is able to solve the
system, the Jacobian was the next target to investigate. The Jacobian was investigated using
finite differences and two different simplified problems. The first problem was a two element
problem with one intersected element. This setup did not show any major problems and it
was used to motivate to ignore the dependence of the traction on the fluid LSF.

The other problem was also a two, element problem but with both elements intersected. This
problem showed significant differences between the analytic and FD Jacobian, regarding the
LSFJ Jfs term and more specifically the ∂φf/∂us term. This indicates that the Jacobian is
inconsistent for this problem. Three problems related to this term have been identified and
explain why the system can not be solved monolithically:
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• Nodes regarded from a particular element give erroneous multiplications for levelset
field derivative terms when information from a neighboring element is needed;

• The fluid LSF introduces secondary coupling between elements and this coupling is not
incorporated in the current setup;

• Fluid residuals and fluid LSF calculations are performed on different domains, due to a
small geometric mismatch.

The first problem needs to be fixed first, by keeping track of what fluid contains the interface
associated with the nodal levelset value. Regarding the second problem it should be inves-
tigated, whether the secondary coupling contributes significantly. If so, it should be fixed,
knowing that each nodal displacement, associated to the a structural bar ending point, is
coupled to all elements containing element edges intersecting with that structural bar. The
third problem decreases with a finer mesh, but its consequences are yet to be determined.
Designing a suitable simplified problem is not easy and one should be aware of the difficul-
ties. The list presented in Section 5-3-4 provides information on encountered problems in the
design process.
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Chapter 6

Discussion

The XFEM model, developed and analyzed in this research, is conceptually complex and
difficult to implement correctly. The current implementation needs to be fixed and improved,
in order to robustly solve the system with the monolithic setup and to use it within an
optimization framework. The problems regard the construction of a numerically consistent
Jacobian. In addition, the code is not yet capable of handling all potential intersection con-
figurations. This leads to less flexibility, regarding modeled geometries, because the mesh has
to be adapted to prevent certain configurations. Additionally, a loss of traction information
in certain configurations reduces the accuracy of the steady state solution. Using a fine mesh
is advised, because this reduces the chances of unmanageable intersections occurring and it
reduces the mesh discrepancies. An optimization procedure should have as much freedom
as possible to update the geometry without running into problems with the model itself and
that is why more work on the implementation is needed. It may be noted that the suggested
fixes cannot guarantee a problem free model. However, fixing the mentioned problems is the
first step for future research. Without these fixes the model can never be tested to its full
potential in an optimization framework. An interesting question to ask at this point is ‘Is it
worth the effort?’. The next section shows that it is definitely worth the effort.

Multiple beams

The big advantage of this model is that it is easy to change the initial geometry of the
structure. Since the LSF is defined with a signed distance function, the LSF zero contour can
be changed with minimal effort. For instance, adding an extra structural beam on the same
Lagrangian mesh gives the steady state shown in Figure 6-1. The second beam in Figure 6-1
is added by the using the same Matlab routine to generate the first bar, but with a spatial
shift. In both routines, there is an if-statement to check whether the y-coordinate of a node
lies below the height of the beam using a ≤ sign, see also Section 3-1-2. This if-statement
defines structural beams at the bottom wall. If we change that sign in one routine to ≥, reduce
the mean inlet velocity with a factor 10, and also assign the clamped boundary condition to
the top wall, the beam flips to the top wall and the result is shown in Figure 6-2. Both
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(a) Two beams fixed on bottom wall with
velocity field

(b) Two beams fixed on bottom wall with
pressure field

Figure 6-1: Two beams fixed at the bottom wall

(a) One beam fixed on bottom wall, one on
top wall with velocity field

(b) One beam fixed on bottom wall, one on
top wall with pressure field

Figure 6-2: One beam fixed on bottom wall, one on top wall

Figure 6-1 and Figure 6-2 already show consequences of changing the topology of the system.
Suppose one requires minimal displacements of the left beam, the design in Figure 6-2 is more
suitable. If we drop the routine used for Figure 6-1 and Figure 6-2, where a signed distance
function is used, and just define an initial LSF with 1 and -1, the freedom to choose an initial
configuration is endless. With only 1 for-loop and two if-statements a capital letter T can be
modeled. This is shown in Figure 6-3. The figures, shown in this section, give some taste of

(a) The capital letter T with velocity field (b) The capital letter T with pressure field

Figure 6-3: FSI simulation of the capital letter T

the flexible geometry description referred to so often in this report. For all the problems the
same mesh has been used. The figures visualize that it is worth the effort to fix the monolithic
solver and use it in an optimization procedure. In these examples, the initial configurations
are defined manually, but it is clear that an optimization algorithm perform this task quite
easily in order to improve the system’s performance to the desired objective. Using this model
for optimization purposes would be a very interesting research topic, since the alternatives,
such as the density-based approach, struggle with the physics at the interface. It has the
potential to be applied successfully to optimization of FSI problems that are more complex
than, for instance, given in Yoon [2010]. In that study, they mention that levelset based
modeling for FSI problems has greater potential than their method, regarding optimization
of transient FSI problems. Since the current implementation is not yet ready, the next section
presents a list of research topics for the future.
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Chapter 7

Conclusions and Recommendations

The ultimate goal of this research was to solve the system monolithically using a numerically
consistent Jacobian, however the current setup needs to be improved to be able to do so. The
XFEM model has not been tested to its full potential, because the system can not be solved
monolithically yet. The method will show its benefits, in particular, when it is used within an
optimization framework. The crisp FSI boundary definition gives good physical behavior in
the vicinity of the interfaces, which is a major advantage compared to density based methods
for optimization.

The fluid-structure interface is described with a LSM. The LSM of this research uses a signed
distance function to determine the nodal levelset values. This setup allows the computation of
analytical derivatives, that are needed for a numerically consistent Jacobian. Some drawbacks
of the current implementation are the ever present discrepancy between the two meshes and
the inability to robustly handle every geometric intersection configuration between the two
superposed meshes.

Simulation with a staggered setup showed that the model was capable of finding a steady state
solution close to the solution of a COMSOL simulation. The staggered setup ignored parts
of the Jacobian such that potential errors in those parts did not affect the solving process.
Based on quantitative analysis of the solving process, it was philosophized that even with a
numerically consistent Jacobian the current model will not show quadratic convergence rates
in the monolithic setup, due to the changing DOFs on the fluid mesh.

A finite differences check on the Jacobian showed that it was not numerically consistent, which
explains the observation that the monolithic setup could not find the steady state solution.
Three different problems are identified that need to be fixed and/or investigated further.
The first problem occurs when nodes, connected to an intersected element, use interface
information from an neighboring intersected element to compute the nodal levelset value and
its derivatives. The second problem is related to introduction of secondary coupling between
elements through the LSF, which is not present in the current Jacobian build-up. The third
problem regards the geometric mismatch between the zero levelset contour of the fluid and the
actual structural projection onto the fluid mesh. The mismatch in this last problem becomes
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smaller and smaller with a finer mesh and hence future research should determine whether
this has any consequences for a stable monolithic solving process.

Overall it can be stated that this research contributes to the identification of characteristics
and limitations of the model and the current implementation. Many different aspects of
the model have been investigated, but the main focus was to find a numerically consistent
Jacobian. Future research should focus on fixing the monolithic setup and more quantitative
validation of the results. The overall concept is still very promising and it opens a world
of new and exciting research possibilities. The next section provides suggestions on future
research.

Future research

Below, a list of possible research directions is presented. They have been organized into 5
categories, each having their own relevance for future research. The necessary steps have to
be taken to continue with this model, the others should be regarded as inspiration. The im-
provements will increase the robustness over the code. The extensions will produce additional
potentially relevant results that are not presented in this report. More validation studies need
to be performed in order to confirm that the results of the model are useful. The last category
is that of optimization, which was the primary motivation for developing this model.

1. Necessary steps

• Fix monolithic setup - The monolithic setup can be fixed by tackling the three
problems mentioned in Section 5-3-3 regarding Jfs. The numerically consistent
Jacobian is needed for optimization and is expected to improve computation time
significantly. This is particularly desirable for future research.

2. Improvements

• Include pre-conditioner - In XFEM, it is common practice to use a pre-conditioner
to improve numerical performance. The current code already has a LSF dependent
pre-conditioner implemented, however this to work the fluid LSF Jacobian needs
to be fixed first.
• Local mesh refinement - To handle the multiple intersections along one element
edge and submerged structural beams, local mesh refinement would be an excellent
choice. Smartly dividing the associated elements into smaller elements, if one of
the problematic situations occurs, would greatly increase the freedom to choose
different meshes and success of an optimization algorithm.
• Tuning the monolithic solver - Newton-Raphson solver can be tuned to improve
numerical performance and stability. Two interesting research options, related to
the problems mention in Section 2-3, are
– Relaxation - The size of the update can be regulated by a scalar, as is shown

in Eq. (7-1):

xn+1 = xn − α ·
f(xn)
f ′(xn) . (7-1)
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The scalar α can be different for both phases and even vary when the solver
progresses.

– Quadratic initialization of the structural solution - The levelset initialization
defines the fluid-structure interface perpendicular to the horizontal element
edges. The ∂φf/∂P Γ term, in particular, contains a lot of zeros in this con-
figuration, while it is highly non-linear.

3. Extensions

• Time integration - The current code already has the ability to do time integration,
but first the steady state should be found with the monolithic solver.
• Non-linear structural model - The current structure uses a linear elastic material
model, which is, actually, no longer valid for the large displacements shown in the
results. Implementation of a non-linear structural model will increase the physical
relevance of the results.

4. Validation

• Benchmarking - The results of the XFEMmodel showed differences with the results
from the COMSOL simulation. Displacements and pressure differences were the
most noticeable. Further research should determine what the reasons for these
differences are.
• Jff sensitivity to step size - The fluid Jacobian and no-slip condition Jacobian
appeared to be sensitive to the step size in of the FD. It is unclear which one and
why this part of the Jacobian is so sensitive to different step sizes. The initial
solution also appeared to have a significant influence on the success of the FD
comparison.
• Mesh mismatch - The mismatch between the fluid and structural mesh reduce the
accuracy of the results. This discrepancy increases with more complex geometries,
which is unfortunate from the perspective of optimization. Some measures to
investigate how big this discrepancy is, are the lengths of both material to void
interfaces, the areas filled with material and the length of the projection vectors.
• Zero contour of the LSF and projection mismatch - Since this problem reduces
with a finer mesh and it should be checked whether this mismatch disturbs the
monolithic solving process.
• Finite differences accuracy - Although the current FD setup already provides a lot
of interesting information, it can be improved as follows:
– Make the step size DOF type dependent - The absolute numbers for fluid

pressure and velocity and structural displacement differ quite a lot and so the
relative impact of the step size differs per type of DOF.

– Relate the step size of the solution perturbation to the step size of the ∂Rf/∂φ
perturbation - In Section 3-3, it was explained that ∂Rf/∂φ is computed with
finite differences. For term ∂Rf/∂φ a perturbation of the levelset field gives
a geometrical change of the fluid domain. The aim is to make the geometrical
change in the projected intersection points P Γ

1,2 and fluid levelset zero contour
points P φ

1,2 from the analytic setup for ∂Rf/∂φf approximately equal (see
Figure 5-6).
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5. Optimization

• Sensitivity check - Optimization might be possible with a inconsistent Jacobian.
After the fluid LSF Jacobian is fixed, a sensitivity check might show that these
terms are negligible for a correct adjoint formulation.
• Gradient based Topology Optimization - As soon as a correct sensitivity informa-
tion can be computed, the fun begins and the model can show its full potential.
It is expected that the model will produce much better physical solutions during
optimization of more complex FSI problems.
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Appendix A

Derivation of weak form of non
dimensional Navier-Stokes equations

This appendix explains how the NV equations are non-dimensionalized and rewritten into the
weak formulation, see Section 3-2:
The reference parameters to non-dimensionalize all parameters in this research have the fol-
lowing physical interpretation:

• Reference length Lr - Height of the beam 5e− 5[m];

• Reference density ρr - Density of the fluid 1000[kg/m3];

• Reference viscosity µr - Viscosity of the fluid 1e− 3[Pa · s];

• Reference velocity vr - Mean velocity of the parabolic inlet condition 0.0333[m/s] ;

• Reference pressure pr - Dynamic pressure defined as ρr · v2
r = 1.10889[Pa];

• Reference time tr - The ratio between the reference length and reference velocity Lr/vr =
1.5e− 3[s]

These reference parameters are used for both fluid and structure. For the fluid the dimensional
incompressible Navier-Stokes (NS) equations look as follows:

ρf
∂vi
∂t

+ ρfvj
∂vi
∂xj

= ∂

∂xj

(
−pδij + µ( ∂vi

∂xj
+ ∂vj
∂xi

)
)

(A-1)

∂vi
∂xi

= 0 . (A-2)

The non dimensional parameters are defined as follows:

ρ̂f = ρf
ρr
, v̂i = vi

vr
, p̂ = p

ρrv2
r

, x̂i = xi
Lr
,

µ̂ = µ

Lrρrvr
= 1
Re

, t̂ = t

tr
, tr = Lr

vr
, (A-3)
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98 Derivation of weak form of non dimensional Navier-Stokes equations

where ˆ indicates a non dimensional variable, no hat a dimensional variable and subscript r
reference parameter.
Plugging the non dimensional parameters in term by term gives:

ρf
∂vi
∂t

= ρrρ̂
∂vrv̂i

∂tr t̂
= ρrvr

tr

(
ρ̂
∂v̂i

∂t̂

)
= ρrv

2
r

Lr

(
Lr
vrtr

)(
ρ̂
∂v̂i

∂t̂

)
(A-4)

ρfvj
∂vi
∂xj

= ρrρ̂vrv̂j
∂vrv̂i
∂Lrx̂j

= ρrv
2
r

Lr

(
ρ̂v̂j

∂v̂i
∂x̂j

)
, (A-5)

∂p

∂xj
δij = ∂ρrv

2
r p̂

∂Lrx̂j
δij = ρrv

2
r

Lr

(
∂p̂

∂x̂j
δij

)
, (A-6)

∂

∂xj

(
µr(

∂vi
∂xj

+ ∂vj
∂xi

)
)

= ∂

∂Lrx̂j

(
µr(

∂vrv̂i
∂Lrx̂j

+ ∂vrv̂j
∂Lrx̂i

)
)

= vr
L2
r

(
µr(

∂2v̂i
∂x̂j∂x̂j

+ ∂2v̂j
∂x̂i∂x̂j

)
)

. (A-7)

Putting all the terms back together again and dividing by ρrv
2
r

Lr
gives:

Lr
vrtr

(
ρ̂
∂v̂i

∂t̂

)
+ ρ̂v̂j

∂v̂i
∂x̂j

= − ∂p̂

∂x̂j
δij + µr

ρrvrLr

(
∂2v̂i

∂x̂j∂x̂j
+ ∂2v̂j
∂x̂i∂x̂j

)
, (A-8)

where Lr
vrtr

= 1
St

= 1 and µr
ρrvrLr

= 1
Re

= µ̂. St is the non dimensionless Strouhal number
is an indication oscillations in the system and Re is the Reynolds number as an indication
of the ratio between inertia and viscous forces. The final form we use to derive the weak
formulation:

ρ̂
∂v̂i

∂t̂
+ ρ̂v̂j

∂v̂i
∂x̂j

= − ∂p̂

∂x̂j
δij + µ̂

(
∂2v̂i

∂x̂j∂x̂j
+ ∂2v̂j
∂x̂i∂x̂j

)
= ∂σ̂ij
∂x̂j

. (A-9)

Casting the final last equation into the weak form looks as follows:

Rf =
∫

Ω
δvi

[
ρ̂
∂v̂i

∂t̂
+ ρ̂v̂j

∂v̂i
∂x̂j

+ ∂p̂

∂x̂j
δij − µ̂

(
∂2v̂i

∂x̂j∂x̂j
+ ∂2v̂j
∂x̂i∂x̂j

)]
dΩ = 0 . (A-10)

Note do note confuse the delta from δvi with δij . The delta with indices is the Kronecker
delta. The other delta indicates a variation in velocity. To reduce the order, convert the
second derivatives to boundary terms and to be able to enforce boundary traction conditions
we will use the Gauss theorem and integration by parts. Doing this term by term gives the
following:∫

Ω
δvi

∂p̂

∂x̂j
δijdΩ =

∫
Ω

∂

∂x̂j
(δvip̂δij) dΩ−

∫
Ω

∂δvi
∂x̂j

(p̂δij) dΩ

=
∫

Γ
(δvip̂δijnj) dΓ−

∫
Ω

∂δvi
∂x̂j

(p̂δij) dΩ , (A-11)
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∫
Ω
δvi

(
−µ̂

(
∂2v̂i

∂x̂j∂x̂j

))
dΩ = −

[∫
Ω

∂

∂x̂j

(
δviµ̂

(
∂v̂i
∂x̂j

))
dΩ−

∫
Ω

∂δvi
∂x̂j

µ̂

(
∂v̂i
∂x̂j

)
dΩ
]

= −
[∫

Γ
δviµ̂

(
∂v̂i
∂x̂j

)
njdΓ−

∫
Ω

∂δvi
∂x̂j

µ̂

(
∂v̂i
∂x̂j

)
dΩ
]

, (A-12)

∫
Ω
δvi

(
−µ̂

(
∂2v̂j
∂x̂i∂x̂j

))
dΩ = −

[∫
Ω

∂

∂x̂j

(
δviµ̂

(
∂v̂j
∂x̂i

))
dΩ−

∫
Ω

∂δvi
∂x̂j

µ̂

(
∂v̂j
∂x̂i

)
dΩ
]

= −
[∫

Γ
δviµ̂

(
∂v̂j
∂x̂i

)
njdΓ−

∫
Ω

∂δvi
∂x̂j

µ̂

(
∂v̂j
∂x̂i

)
dΩ
]

, (A-13)

where nj denotes the outward unit vector on interface Γ. Combining all these terms now
gives:

Rf,static =
∫

Ω
δviρ̂

(
∂v̂i

∂t̂
+ v̂j

∂v̂i
∂x̂j

)
+ ∂δvi
∂x̂j

(
−p̂δij + µ̂

(
∂v̂i
∂x̂j

+ ∂v̂j
∂x̂i

))
dΩ

−
∫

Γ
δvinj

(
−p̂δij + µ̂

(
∂v̂i
∂x̂j

+ ∂v̂j
∂x̂i

))
dΓ . (A-14)

The same methods holds for the derivation of the non dimensional incompressibility condition
and is straightforward. Hence, the details on that are omitted.
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Appendix B

No-slip condition - Condensing out the
additional stress field in intersected

elements

This appendix shows how to condense out the additional stress field, when applying the no-slip
condition at the embedded interface Γ+, see Section 3-2-3:
The system of equations in Eq. (3-62) can be written as follows:

σσ = [Kσσ]−1 {F σv − (Kσv +Gσv)v −Kσpp} . (B-1)

The contribution to the momentum equations can be written as:

−GT
σv [Kσσ]−1 {F σv − (Kσv +Gσv)v +Kσpp} . (B-2)

Continuing in 2D all contributions are defined below. The contribution from the compatibility
condition can be written as: ∫

Ω

[
γ11 γ12 γ22

] εv11 − εσ11
εv12 − εσ12
εv22 − εσ22

dΩ (B-3)

and if Eq. (3-57), Eq. (3-58) and Eq. (3-59) are plugged in this gives:

∫
Ω

[
γ11 γ12 γ22

]

εv11 −

1
2µ(σσ11 + p)

εv11 −
1

2µσ
σ
12

εv22 −
1

2µ(σσ22 + p)

dΩ . (B-4)

The compatibility matrices are the given by:

Kσσ = − k

2µ


∫
Ω γ11γ11dΩ 0 0

0
∫

Ω γ12γ12dΩ 0
0 0

∫
Ω γ22γ22dΩ

 , (B-5)
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Kσp = − k

2µ


∫

Ω γ11p
0∫

Ω γ22pdΩ

 , (B-6)

Kσv = k



∫
Ω γ11

∂v1
∂x1

dΩ 0∫
Ω γ12

∂v1
∂x2

dΩ
∫

Ω γ12
∂v2
∂x1

dΩ

0
∫

Ω γ22
∂v2
∂x2

dΩ

 . (B-7)

The XFEM weak form can be written as:∫
Γ+
δvinjσ

σ
ijdΓ+ =

∫
Γ+

(δv1(n1σ
σ
11 + (n2σ

σ
12) + δv2(n1σ

σ
21 + (n2σ

σ
22)dΓ+

= Gvσσσ = GT
vσσσ (B-8)

The third and final term in Eq. (3-61) can be written as:∫
Γ+
γijnj(vi − u̇i)dΓ+

=
∫

Γ+
(γ11n1(v1 − u̇1) + γ12n2(v1 − u̇1) + γ12n1(v2 − u̇2) + γ22n2(v2 − u̇2))dΓ+

=
∫

Γ+
(γ11n1v1 + γ12(n1v2 + n2v1) + γ22n2v2)dΓ+

−
∫

Γ+
(γ11n1u̇1 + γ12(n1u̇2 + n2u̇1) + γ22n2u̇2)dΓ+

= Gσvv − F σv (B-9)

with:

Gσv


∫
Γ+ γ11v1n1dΓ+ 0∫
Γ+ γ12v1n2dΓ+ ∫

Γ+ γ12v2n1dΓ+

0
∫

Γ+ γ22v2n2dΓ+

 , (B-10)

F σv


∫

Γ+ γ11u̇1n1dΓ+∫
Γ+ γ12(u̇1n2 + u̇2n1)dΓ+∫

Γ+ γ22u̇2n2dΓ+

 . (B-11)
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Appendix C

Algorithms

Data: Staggered Newton-Raphson solver
Result: Converged solution per phase for current fluid levelset field
initialization;
// Staggered loop
while ‖R‖ > ε do

for i = 1 : 2 do
if i = 1 then

// Newton-Raphson update stage: Fluid
for ie = 1 : 4 do

if ie = 1 then
update fluid levelset field φf

end
build R and J ;
store ‖R‖;
if ‖R‖ < εth then

break
end
solve and update fluid;

end
else

// Newton-Raphson update stage: Structure
for ie = 1 : 2 do

build R and J ;
store ‖R‖;
if ‖R‖ < εth then

break
end
solve and partially update structure;

end
end

end
end

Algorithm 1: Steps in the staggered Newton-Raphson solver
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Result: The Jacobian contribution ∂Rf/∂us
// Loop over all fluid elements
for i = 1 : no. fld elems do

if Elem is intersected then
// ∂P Γ

i /∂u
n
s

Calc. Eq. (3-23) to Eq. (3-32)
Reorganize ∂φf/∂P Γ

i

// ∂φf/∂us
Calc. Eq. (3-89)
// Loop over all nodal LS values
for in = 1 : 4 do

Central FD to calc. ∂Rf/∂φin
end
// ∂Rf/∂us
Calc. Eq. (3-85)

end
end

Algorithm 2: Loop to determine ∂Rf/∂us in the current implementation

Result: The FD Jacobian
initialization zero Jacobian matrix;
// Backward (i = 1) and Forward loop (i = 2)
for i = 1 : 2 do

for ie = 1 : no. of state variables do
if i = 1 then

Perturb solution backwards for state variable ie ;
else

Perturb solution forwards for state variable ie
end
Build residual ;
if i = 1 then

Substract residual from Jacobian-matrix at column ie ;
else

Add residual to Jacobian-matrix at column ie ;
end

end
end
Divide Jacobian by twice the step size;

Algorithm 3: The finite differencing process
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Appendix D

MATLAB code for fluid residual to
structural displacements Jacobian

1 function [ drf_dus , dphidus_all ] = alexfem_drfdus ( numelems_stc , numelems_fld
, bardata , ux , uy , fetopo , ex , ey , iscfld , sctfld , sbcfld , . . .

2 nsbfld , levsign , ep , edof , fsol , fn , fdot , edginfo_glb , uxdot , uydot , ndftot ,
uxdof , uydof , ddistvec_glb )

3
4 % ALEXFEM_DRFDUS
5 % This function computes the derivatives of the non-smoothed fluid

residual
6 % with respect to the structural displacement dofs. It is needed for the
7 % computation of the derivatives of the smoothed fluid residual with
8 % respect to the structural displacement dofs.
9
10 % get solution vector of any element
11 edf=edof ( 1 , 2 : end ) ;
12 edt=reshape ( fsol (edf , 1 ) , 1 , [ ] ) ;
13
14 % get total number of dofs per element
15 [ ntdof ]=alexfem_addofs (ep ( 1 , : ) , edt ) ;
16
17 % get total number of elements
18 numelems=numelems_stc+numelems_fld ;
19
20 % initialize cell array for storing elemental dphi_dus matrices
21 dphidus_all=cell ( numelems , 1 ) ;
22
23 % initialize final drf/dus Jacobian
24 drf_dus=sparse ( ndftot , ndftot ) ;
25
26 % loop over fluid elements
27 for ie=1:numelems_fld
28 iglb=ie+numelems_stc ;
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29
30 % check if fluid element is intersected
31 if iscfld ( iglb )==0
32 continue ;
33 end
34
35 % initialize dphi/dus matrix of element
36 dphidus_elem=sparse (4 , ndftot ) ;
37
38 % initialize drf/dphi of element
39 drdphi_elem=sparse ( ndftot , 4 ) ;
40
41 % get number of intersections
42 nsct=iscfld ( iglb ) ;
43
44 % edge intersection information
45 edginfo=cell2mat ( sctfld (iglb , 1 : nsct ) ’ ) ;
46 edginfo=unique ( edginfo , ’rows’ ,’stable’ ) ;
47
48
49 % get fluid node coordinates
50 pin=zeros ( 4 , 2 ) ;
51
52 for in=1:4
53 pin (in , : ) =[ex (iglb , in ) ey (iglb , in ) ] ;
54 end
55
56 % number of intersection points
57 npts=size ( edginfo , 1 ) ;
58
59 % vector of s-values along fluid element edges
60 svalvec=edginfo ( : , 2 ) ;
61
62 % vector of interected edge IDs
63 edgevec=edginfo ( : , 3 ) ;
64
65 % initialize intersection points coordinates
66 x_gamma=zeros (npts , 1 ) ;
67 y_gamma=zeros (npts , 1 ) ;
68
69 % build intersection points coordinates
70 for ip=1:npts
71 edge=edgevec (ip ) ;
72
73 switch edge
74
75 case 1
76 x_gamma (ip )=ex (iglb , 1 )+svalvec (ip ) ∗abs (ex (iglb , 2 )−ex (iglb

, 1 ) ) ;
77 y_gamma (ip )=ey (iglb , 1 ) ;
78
79 case 2
80 x_gamma (ip )=ex (iglb , 2 ) ;
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81 y_gamma (ip )=ey (iglb , 2 )+svalvec (ip ) ∗abs (ey (iglb , 3 )−ey (iglb
, 2 ) ) ;

82
83 case 3
84 x_gamma (ip )=ex (iglb , 3 )−svalvec (ip ) ∗abs (ex (iglb , 4 )−ex (iglb

, 3 ) ) ;
85 y_gamma (ip )=ey (iglb , 3 ) ;
86
87 case 4
88 x_gamma (ip )=ex (iglb , 4 ) ;
89 y_gamma (ip )=ey (iglb , 4 )−svalvec (ip ) ∗abs (ey (iglb , 4 )−ey (iglb

, 1 ) ) ;
90 end
91 end
92
93 % store intersection point coordinates
94 pi_gamma=[x_gamma y_gamma ] ;
95
96 % associate node IDs with closest respective intersection point IDs
97 gamma_ids=zeros ( 4 , 1 ) ;
98
99 for in=1:4
100 dist=zeros (npts , 1 ) ;
101
102 for ip=1:npts
103 dist (ip )=norm ( [ x_gamma (ip ) y_gamma (ip ) ]− [ex (iglb , in ) ey (iglb ,

in ) ] ) ;
104 end
105
106 [ ~ , gamma_ids (in ) ]=min ( dist ) ;
107 end
108
109
110 % Reorganize nodal level -set value derivatives
111 for in=1:4
112 if isempty ( ddistvec_glb{iglb , in })
113 ddistvec_glb{iglb , in}=[0 0 ;0 0 ] ;
114 end
115 end
116
117 dphi_dpig {1 ,1}=[ ddistvec_glb{iglb , 1 } ( 1 , : ) ; ddistvec_glb{iglb , 2 } ( 1 , : ) ;

ddistvec_glb{iglb , 3 } ( 1 , : ) ; ddistvec_glb{iglb , 4 } ( 1 , : ) ] ;
118 dphi_dpig {2 ,1}=[ ddistvec_glb{iglb , 1 } ( 2 , : ) ; ddistvec_glb{iglb , 2 } ( 2 , : ) ;

ddistvec_glb{iglb , 3 } ( 2 , : ) ; ddistvec_glb{iglb , 4 } ( 2 , : ) ] ;
119
120
121 % get ID of intersecting bar for each intersection point
122 bar_ids=edginfo ( : , 1 ) ;
123
124 % get ID of parent structural element for each intersection point
125 stc_ids=zeros ( length ( bar_ids ) , 1 ) ;
126 for ip=1:npts
127 stc_ids (ip )=bardata{bar_ids (ip ) , 1 } ;
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128 end
129
130 % initilize (s,r) for every intersection point
131 s_r=zeros (npts , 2 ) ;
132
133 % edge map
134 map=[1 2 ; 2 3 ; 3 4 ; 4 1 ] ;
135
136 % initialize dr/dub derivatives
137 dr_dub=zeros (npts , 4 ) ;
138
139 % loop over intersection points: compute (r,s)
140 for ip=1:npts
141 bar_id=bar_ids (ip ) ;
142 edg_id=edginfo (ip , 3 ) ;
143
144 A=[(bardata{bar_id ,3} ’−bardata{bar_id , 2 } ’ ) ( pin ( map ( edg_id , 1 ) , : )

’−pin ( map ( edg_id , 2 ) , : ) ’ ) ] ;
145 b=pin ( map ( edg_id , 1 ) , : ) ’−bardata{bar_id , 2 } ’ ;
146
147 % get inverse of matrix A
148 B=inv (A ) ;
149
150 s_r (ip , : )=B∗b ; % s_r(:,2) should be equal to edginfo(:,2)
151
152 % compute dr/dub derivatives
153 dr_dub (ip , 1 )=B ( 2 , 1 )∗(−1+s_r (ip , 1 ) ) ; % dr/dux1b
154 dr_dub (ip , 2 )=B ( 2 , 1 ) ∗( −s_r (ip , 1 ) ) ; % dr/dux2b
155 dr_dub (ip , 3 )=B ( 2 , 2 )∗(−1+s_r (ip , 2 ) ) ; % dr/duy1b
156 dr_dub (ip , 4 )=B ( 2 , 2 ) ∗( −s_r (ip , 2 ) ) ; % dr/duy2b
157 end
158
159 % initialize dpi_gamma/dub derivatives
160 dpig_dub=cell (npts , 4 ) ;
161
162 % loop over intersection points: compute dpi_gamma/dub derivatives
163 for ip=1:npts
164 edg_id=edginfo (ip , 3 ) ;
165
166 dpig_dub{ip ,1}=(pin ( map ( edg_id , 2 ) , : ) ’−pin ( map ( edg_id , 1 ) , : ) ’ ) ∗

dr_dub (ip , 1 ) ; % dpig/dux1b
167 dpig_dub{ip ,2}=(pin ( map ( edg_id , 2 ) , : ) ’−pin ( map ( edg_id , 1 ) , : ) ’ ) ∗

dr_dub (ip , 2 ) ; % dpig/dux2b
168 dpig_dub{ip ,3}=(pin ( map ( edg_id , 2 ) , : ) ’−pin ( map ( edg_id , 1 ) , : ) ’ ) ∗

dr_dub (ip , 3 ) ; % dpig/duy1b
169 dpig_dub{ip ,4}=(pin ( map ( edg_id , 2 ) , : ) ’−pin ( map ( edg_id , 1 ) , : ) ’ ) ∗

dr_dub (ip , 4 ) ; % dpig/duy2b
170 end
171
172 % initialize shape functions cell array for post-multiplication
173 shapemat=cell (npts , 2 ) ;
174
175 % loop over intersection points of fluid element
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176
177 for ip=1:npts
178 bar_id=bar_ids (ip ) ;
179 stc_id=bardata{bar_ids (ip ) , 1 } ;
180
181 % loop over end points of intersecting bar
182 for ibp=1:2
183
184 % compute local coordinates of bar ending point
185 xlgp=[bardata{bar_id ,(1+ibp ) }(1) bardata{bar_id ,(3+ibp ) }(1) ] ;
186 ylgp=[bardata{bar_id ,(1+ibp ) }(2) bardata{bar_id ,(3+ibp ) }(2) ] ;
187
188 xloc=[xlgp ( 1 , 2 ) ylgp ( 1 , 2 ) ] ;
189
190 % compute shape functions at bar ending point in solid phase
191 [ Ne ]=xfem4getsol (ex ( stc_id , : ) ,ey ( stc_id , : ) , ep ( stc_id , : ) , xloc ,

’l’ , 1 , 0 ) ;
192
193 % store shape functions at bar ending point
194 shapemat{ip , ibp}=Ne ;
195 end
196 end
197
198 % initialize dpi_gamma/dun derivatives
199 dpig_dun=cell (npts , 4 ) ;
200
201 % loop over intersection points: compute dpi_gamma/dun derivatives
202 for ip=1:npts
203
204 % dpig/duxn (structural element of bar ending point 1)
205 dpig_dun{ip ,1}=dpig_dub{ip , 1}∗ shapemat{ip , 1 } ;
206
207 % dpig/duxn (structural element of bar ending point 2)
208 dpig_dun{ip ,2}=dpig_dub{ip , 2}∗ shapemat{ip , 2 } ;
209
210 % dpig/duyn (structural element of bar ending point 1)
211 dpig_dun{ip ,3}=dpig_dub{ip , 3}∗ shapemat{ip , 1 } ;
212
213 % dpig/duyn (structural element of bar ending point 2)
214 dpig_dun{ip ,4}=dpig_dub{ip , 4}∗ shapemat{ip , 2 } ;
215 end
216
217 % loop over intersection points: compute dphi/duxn and dphi/duyn
218 for ip=1:npts
219
220 % separate dphii/dpig derivatives
221 dphi1_dp=dphi_dpig{ip , 1 } ( 1 , : ) ’ ;
222 dphi2_dp=dphi_dpig{ip , 1 } ( 2 , : ) ’ ;
223 dphi3_dp=dphi_dpig{ip , 1 } ( 3 , : ) ’ ;
224 dphi4_dp=dphi_dpig{ip , 1 } ( 4 , : ) ’ ;
225
226 % get ID of parent structural element of intersecting bar
227 stc_id=stc_ids (ip ) ;
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228
229 % get dof sorting info of element
230 [ ntdof , numdof , aldofs ]=alexfem_addofs (ep ( stc_id , : ) , edt ) ;
231
232 % initialize dphi/dus for (fld. elem./stc. elem) w/o Lagr. mult.
233 dphidus=zeros (4 , numdof ) ;
234
235 % extrct structural dofs IDs
236 dxdof=4:7: numdof ;
237 dydof=5:7: numdof ;
238
239 % compute dphi/dus for (fld. elem./stc. elem) w/o Lagr. mult.
240 dphidus (1 , dxdof )=dphi1_dp ’ ∗ ( dpig_dun{ip ,1}+dpig_dun{ip , 2 } ) ;
241 dphidus (1 , dydof )=dphi1_dp ’ ∗ ( dpig_dun{ip ,3}+dpig_dun{ip , 4 } ) ;
242
243 dphidus (2 , dxdof )=dphi2_dp ’ ∗ ( dpig_dun{ip ,1}+dpig_dun{ip , 2 } ) ;
244 dphidus (2 , dydof )=dphi2_dp ’ ∗ ( dpig_dun{ip ,3}+dpig_dun{ip , 4 } ) ;
245
246 dphidus (3 , dxdof )=dphi3_dp ’ ∗ ( dpig_dun{ip ,1}+dpig_dun{ip , 2 } ) ;
247 dphidus (3 , dydof )=dphi3_dp ’ ∗ ( dpig_dun{ip ,3}+dpig_dun{ip , 4 } ) ;
248
249 dphidus (4 , dxdof )=dphi4_dp ’ ∗ ( dpig_dun{ip ,1}+dpig_dun{ip , 2 } ) ;
250 dphidus (4 , dydof )=dphi4_dp ’ ∗ ( dpig_dun{ip ,3}+dpig_dun{ip , 4 } ) ;
251
252
253 % initialize dphi/dus for (fld. elem./stc. elem) with Lagr. mult.
254 dphidus_temp=zeros (4 , ntdof ) ;
255
256 % compute dphi/dus for (fld. elem./stc. elem) with Lagr. mult.
257 dphidus_temp ( : , ( aldofs ) )=dphidus ;
258
259 % get global adresses of the structural element ’s dofs
260 glbaddr_stc=edof ( stc_id , 2 : end ) ;
261
262 % store dphi/dus for (fld. elem./stc. elem) in the global system
263 dphidus_elem ( : , glbaddr_stc )=dphidus_elem ( : , glbaddr_stc )+

dphidus_temp ;
264 end
265
266 % store elemental dphidus in global cell array
267 dphidus_all{iglb ,1}=dphidus_elem ;
268
269 % set value of epsilon for forward and backward perturbation
270 depsilon=1e−8;
271
272 % loop over fluid element nodes: compute dr/dphi of element
273 for in=1:4
274
275 % initialize cell array for storing the perturbated responses
276 res_prtbd=cell ( 2 , 1 ) ;
277
278 res_prtbd{1 ,1}=zeros ( ndftot , 1 ) ;
279 res_prtbd{2 ,1}=zeros ( ndftot , 1 ) ;
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280
281 % initialize flag for forw., backw. and central differencing
282 pert=zeros ( 2 , 1 ) ;
283
284 % loop over the perturbated states: forward and backward
285 for ipt=1:2
286
287 % get solution vector of element
288 edf=edof (iglb , 2 : end ) ;
289
290 edt=reshape ( fsol (edf , 1 ) , 1 , [ ] ) ;
291 edn=extract ( edof (ie , : ) , fn ) ;
292 edot=extract ( edof (ie , : ) , fdot ) ;
293
294 % nodal level set values of element
295 levs=ep{iglb , 4 } ;
296
297 % perturbate level set value of node
298 switch ipt
299
300 % ipt==1: forward perturbation
301 case 1
302
303 % check if perturbation changes nodal level set sign
304 if sign ( levs (in )+depsilon )==sign ( levs (in ) )
305 levs (in )=levs (in )+depsilon ;
306 pert (ipt , 1 ) =1;
307
308 else
309 pert (ipt , 1 ) =0;
310 end
311
312 % ipt==2: backward perturbation
313 case 2
314
315 % check if pert. changes nodal level set sign
316 if sign ( levs (in )−depsilon )==sign ( levs (in ) )
317 levs (in )=levs (in )−depsilon ;
318 pert (ipt , 1 )=−1;
319
320 else
321 pert (ipt , 1 ) =0;
322 end
323 end
324
325 % copy element properties to apply perturbation
326 ep_prtb=ep ;
327
328 % store the perturbation in copy of element properties
329 ep_prtb{iglb ,4}=levs ;
330
331 % compute nodal volume contribution of element
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332 [ res_vol ]=xfem4ir (ex (iglb , : ) , ey (iglb , : ) ,edt , edn , edot , ep_prtb (
iglb , : ) ) ;

333
334 % get addresses of residual contributions in global system
335 glbaddr=edof (iglb , 2 : end ) ;
336
337 % insert residual contributions into global residual
338 revol_glb=zeros ( ndftot , 1 ) ;
339 revol_glb ( glbaddr )=revol_glb ( glbaddr )+res_vol ;
340 res_prtbd{ipt ,1}=res_prtbd{ipt ,1}+revol_glb ;
341
342 % compute necessary interface information for integration
343 [ ne , dnex , dney , nestd , wgp , epc , ifcinfo ]=alexfem_intinfo (ex (iglb

, : ) , ey (iglb , : ) , ep_prtb (iglb , : ) ,edt , levs ) ;
344
345 % get edge intersection points
346 edginfo=edginfo_glb{iglb , 1 } ;
347 [ esct , edpts , edgpba ]=alexfem_edgisctFD (ex (iglb , : ) , ey (iglb , : ) ,

edginfo , ep_prtb (iglb , : ) ) ;
348
349 nedc=0;
350
351 % loop over interfaces
352 for ib=1:esct
353
354 % extract edge intersection points
355 edgpt1 = edpts (2∗ ( ib−1)+1 , : ) ;
356 edgpt2 = edpts (2∗ ( ib−1)+2 , : ) ;
357
358 % compute intersection normal
359 dedg=(edgpt2−edgpt1 ) ’ ;
360 norml=[dedg (2 ) ; −dedg (1 ) ] ;
361
362 % initialize vector of velocity along interface
363 cxvec=1234∗ones (10 ,1 ) ;
364 cyvec=1234∗ones (10 ,1 ) ;
365
366 % initialize vector of s-values along interface
367 svec =1234∗ones (10 ,1 ) ;
368
369 nprc=0;
370
371 % loop over sub-bars
372 for is=1:nsbfld ( iglb )
373
374 % get ID of parent bar
375 ids=cell2mat ( sbcfld{iglb , is }(1) ) ;
376 pbid=ids (1 ) ;
377
378 % skip sub-bar if parent bar ID is not in edge

intersection pba
379 if ~ismember (pbid , edgpba ) ; continue ; end
380
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381 % loop over sub-bar Gauss points
382 for ig=1:2
383
384 % get ID of parent structural element of bar
385 stcid=cell2mat ( sbcfld{iglb , is }(6) ) ;
386
387 % get global coordinates of Gauss point
388 gpts=cell2mat ( sbcfld{iglb , is}(1+ig ) ) ;
389
390 % compute s-value of projected Gauss point along

interface
391 A = [ dedg norml ] ;
392 r = gpts − edgpt1 ;
393 s = A\r ’ ;
394
395 % check needed on s(1)
396 sval=min ( [ 1 , max ( [ s (1 ) , 0 ] ) ] ) ;
397
398 % compute local coordinates of Gauss point
399 [ xlocfld ]=xfem4loc (gpts ’ , ex (iglb , : ) , ey (iglb , : ) ) ;
400 xlocstc =xlocfld ;
401
402 % compute structural velocity at Gauss point
403 stcnoids=fetopo ( stcid , 2 : 5 ) ;
404 cx=getSol4i ( uxdot ( stcnoids ) , xlocstc ’ ) ;
405 cy=getSol4i ( uydot ( stcnoids ) , xlocstc ’ ) ;
406
407 % store projected values
408 nprc=nprc+1;
409 svec ( nprc )=sval ;
410 cxvec ( nprc )=cx ;
411 cyvec ( nprc )=cy ;
412 end
413
414 % extrapolate structural velocities at edge

intersection points
415 cxedg=1234∗ones ( 2 , 1 ) ;
416 cyedg=1234∗ones ( 2 , 1 ) ;
417
418 if ( nprc==2 && length ( unique ( svec ( 1 : nprc ) ) )==2) | | (

nprc==4 && length ( unique ( svec ( 1 : nprc ) ) )==4)
419
420 nedc=nedc+1;
421 cxedg ( nedc )=interp1 ( svec ( 1 : nprc ) , cxvec ( 1 : nprc ) ,0 ,

’linear’ ,’extrap’ ) ;
422 cyedg ( nedc )=interp1 ( svec ( 1 : nprc ) , cyvec ( 1 : nprc ) ,0 ,

’linear’ ,’extrap’ ) ;
423
424 nedc=nedc+1;
425 cxedg ( nedc )=interp1 ( svec ( 1 : nprc ) , cxvec ( 1 : nprc ) ,1 ,

’linear’ ,’extrap’ ) ;
426 cyedg ( nedc )=interp1 ( svec ( 1 : nprc ) , cyvec ( 1 : nprc ) ,1 ,

’linear’ ,’extrap’ ) ;
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427
428 else
429 cxedg=zeros ( 2 , 1 ) ;
430 cyedg=zeros ( 2 , 1 ) ;
431 end
432
433 end
434
435 % get Gauss points and weights along fluid element

interface
436 xlgploc=ifcinfo{ib , 1 } { 1 } ( : , 2 ) ;
437 ylgploc=ifcinfo{ib , 1 } { 2 } ( : , 2 ) ;
438
439 wlgp=ifcinfo{ib , 1 } {3} ;
440
441 % reorganize Gauss point information
442 gpts=zeros ( 3 , 2 ) ;
443 gpts ( : , 1 )=xlgploc ;
444 gpts ( : , 2 )=ylgploc ;
445
446 edgptsloc=cell ( 2 , 1 ) ;
447
448 % get local coordinates of interface edge points
449 [ edgptsloc {1 ,1}]= xfem4loc ( edgpt1 ’ , ex (iglb , : ) , ey (iglb , : ) ) ;
450 [ edgptsloc {2 ,1}]= xfem4loc ( edgpt2 ’ , ex (iglb , : ) ,ey (iglb , : ) ) ;
451
452 % delete empty entries in interface edge velocities

vector
453 cxedg ( cxedg==1234) = [ ] ;
454 cyedg ( cyedg==1234) = [ ] ;
455
456 % insert interface edge velocities into interface

velocity vector
457 cxvec ( ( nprc+1) : ( nprc+2) )=cxedg ;
458 cyvec ( ( nprc+1) : ( nprc+2) )=cyedg ;
459
460 % delete empty entries in interface velocity vector
461 cxvec ( cxvec==1234) = [ ] ;
462 cyvec ( cyvec==1234) = [ ] ;
463
464 % insert s-values of interface edge points into s-values

vector
465 svec ( nprc+1)=0;
466 svec ( nprc+2)=1;
467 svec ( svec==1234) = [ ] ;
468
469 % interpolate structural velocities at fluid interface

Gauss points
470 if norm ( cxedg )==0 && norm ( cyedg )==0;
471 ifcvelx=zeros ( 3 , 1 ) ;
472 ifcvely=zeros ( 3 , 1 ) ;
473 else
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474 [ ifcvelx ]=alexfem_edgintpol ( edgptsloc , gpts , wlgp , svec ,
cxvec ) ;

475 [ ifcvely ]=alexfem_edgintpol ( edgptsloc , gpts , wlgp , svec ,
cyvec ) ;

476 end
477
478 % extract necessary information for the interface

integration
479 epe=ep_prtb{iglb , 5 } ;
480
481 nel=ifcinfo{ib , 2 } {1} ; % line integration shape

functions
482 dnelx=ifcinfo{ib , 2 } {2} ; % x-derivatives of shape

functions
483 dnely=ifcinfo{ib , 2 } {3} ; % y-derivatives of shape

functions
484
485 nelstd=ifcinfo{ib , 4 } ; % standard shape functions
486 nrml=ifcinfo{ib , 5 } ( : , 1 ) ; % interface normal
487
488 % get addresses and values of necessary dofs
489 [ ntdof , numdof , aldofs , fldof , soltfld ,~ ,~ ,~ ,~ ]=

alexfem_addofs ( ep_prtb (iglb , : ) , edt ) ;
490
491 % compute fluid boundary Jacobian and residual

contributions
492 [ recal ]=alexfem_inscon ( soltfld , nrml , . . .
493 ne , dnex , dney , wgp , nestd , . . .
494 nel , dnelx , dnely , wlgp , nelstd , . . .
495 epe ( 2 : end ) ,epc , ifcvelx , ifcvely , 1 ) ;
496
497 % store residual contributions on an elemental basis
498 reale=zeros ( numdof , 1 ) ;
499 res_ifc=zeros ( ntdof , 1 ) ;
500
501 reale ( fldof )=recal ; % without Lagrange multipliers
502 res_ifc ( aldofs )=reale ; % with Lagrange multipliers
503
504 reifc_glb=zeros ( ndftot , 1 ) ;
505 % get addresses of residual contributions in global

system
506 glbaddr=edof (iglb , 2 : end ) ;
507
508 % insert residual contributions into global residual
509 reifc_glb ( glbaddr )=reifc_glb ( glbaddr )+res_ifc ;
510
511 res_prtbd{ipt ,1}=res_prtbd{ipt ,1}+reifc_glb ;
512 end
513 end
514
515 % finite differencing: get delta_X
516 delta_x=(pert ( 1 , 1 )−pert ( 2 , 1 ) ) ∗depsilon ;
517
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518 % finite differencing: compute dr/dphi for given node
519 drdphi_elem ( : , in )=(res_prtbd{1 ,1}−res_prtbd {2 ,1}) /delta_x ;
520
521 end
522
523 dphidus_elem=−abs ( dphidus_elem ) ;
524
525 % post-multiply dr/dphi with dphi/dus of element to get dr/dus
526 drdus_elem=drdphi_elem∗dphidus_elem ;
527
528 % insert contributions into global system
529 drf_dus=drf_dus+drdus_elem ;
530 end
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Appendix E

Spy-plots for the two elements, two
intersections case

The rest of the results of the 2 element FD with both elements intersected:

Figure E-1: Two elements, two intersections - Spy plot and Frobenius norm of the complete
analytic Jacobian, FD Jacobian
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Figure E-2: Two elements, two intersections - Spy plot and Frobenius norm of the analytic
structural Jacobian, FD structural Jacobian and FD traction Jacobian

Figure E-3: Two elements, two intersections Jsf - Spy plot and Frobenius norm of the analytic
structural Jacobian and FD Jacobian
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118 Spy-plots for the two elements, two intersections case

Figure E-4: Two elements, two intersections Jff - Spy plot and Frobenius norm of the analytic
structural Jacobian and FD Jacobian
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Appendix F

Relative residual plots - Staggered
setup

This appendix contains relative residual plots associated with Figure 4-7:

(a) Relative residuals in fluid stages

(b) Relative residuals in structural stages

Figure F-1: Convergence plots - Relative to the residuals of the solution after the first fluid
Newton-Raphson update
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Glossary

List of Acronyms

FSI fluid-structure interaction

XFEM eXtended Finite Element Method

FEM Finite Element Method

FE Finite Element

LSM levelset method

LSF levelset field

LSFJ levelset field Jacobian term

NS Navier-Stokes

PUM Partition of Unity

GFEM Generalized Finite Element Method

DOFs Degrees Of Freedom

FD Finite Differences

ALE Arbitrary Lagrangian Eulerian

SUPG Streamline-Upwind/Petrov Galerkin

PSPG Pressure-Stabilized/Petrov Galerkin
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