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Abstract—Web Application Programming Interfaces (APIs)
allow systems to be addressed programmatically and form the
backbone of the internet. RESTful and RPC APIs are among
the most common API architectures used. In the last decades,
researchers have proposed various techniques for automated
testing of RESTful APIs, however, to the best of the authors’
knowledge there exists no work on testing JSON-RPC (one of
the two data formats supported by RPC) APIs. To address this
limitation, we propose a grammar-based evolutionary fuzzing
approach for testing JSON-RPC APIs that uses a novel black-box
heuristic. Specifically, we use a diversity-based fitness function
based on hierarchical clustering to quantify the differences in
API method responses. Our hypothesis is that responses that are
unlike previously seen ones are an indication that new uncovered
code paths are reached. We evaluate our approach on the
XRP ledger, a large-scale industrial blockchain system that uses
JSON-RPC APIs. Our results show that the proposed approach
performs significantly better than the baseline (grammar-based
fuzzer) and covers an additional 240 branches.

Index Terms—Search-based software engineering, Fuzzing,
Test Case Generation, API testing, Hierarchical Clustering

I. INTRODUCTION

Evolutionary Algorithms (EAs) have been widely applied in
literature to automate the process of designing and executing
tests. While early research efforts focused on unit-level testing,
later studies focused on generating tests at different granularity
levels, such as integration, simulation-based, and system-level
tests [1]. The latter type of tests allows for reaching high
coverage more quickly and prevents false positives due to
implicit pre-conditions and constraints [2]. System-level tests
can be generated by using various search algorithms, including
grammar-based fuzzing [3], and evolutionary approaches [1].

To generate valid test inputs, testing approaches require a
grammar or some specifications of the APIs (e.g., OpenAPI
specification for RESTful APIs). A grammar allows one to
focus the search on the available methods without having
to explore every possible string to guess the accepted input
types. Such a grammar can be constructed from a provided
specification of the API operations.

To the best of our knowledge, all state-of-the-art system-
level test generators focus on RESTful APIs (e.g., [1], [3], [4]),
which are resource-oriented and are used by the majority of
web APIs nowadays. These generators use either white-box or
black-box heuristics. The former requires access to the source
code and promotes test cases based on their ability to cover

(or be close to) uncovered code elements (e.g., branches).
Instead, black-box heuristics do not require instrumenting
the source code but merely rely on input/output test data.
Researchers have proposed both black-box and white-box
approaches and tools for RESTful APIs, such as EvoMaster [1]
and RESTler [3].

RPC APIs differ from RESTful APIs as they are action-
oriented rather than resource-oriented. Despite their common
use over the years in enterprise systems, there is no approach
or tool that aims to generate test cases for RPC APIs. In this
paper, we aim to fill this research gap by proposing a black-
box approach for testing JSON-RPC APIs. To generate valid
test inputs, our approach uses the OpenRPC specification,
which is a standard programming language-agnostic interface
description [5]. Our contributions are as follows:

• We present a prototype tool that generates system-level
tests for JSON-RPC APIs. The tool implements three
different grammar-based black-box strategies, namely (1)
random search, (2) mutation-based fuzzing, and (3) evo-
lutionary fuzzing.

• We introduce a novel black-box fitness function based
on hierarchical clustering methods applied to responses
returned by the APIs under test.

• We describe the results of a preliminary study on Ripple’s
XRP ledger, a large-scale enterprise blockchain applica-
tion for global payments.

II. APPROACH

In this section, we will present our automated black-box
fuzzing approach that generates test cases for JSON-RPC APIs
based on a grammar. The aim of this research is to evaluate
the effectiveness of evolutionary fuzzing for JSON-RPC APIs
compared to grammar-based fuzzing.

Our approach consists of multiple different components:
(1) Grammar extraction, (2) Search algorithm, and (3) Fitness
function, which are explained in the following subsections.

A. Grammar

The OpenRPC specification [5] contains the names of all
API operations, as well as the names and schemas of the corre-
sponding parameters. Additionally, it provides information on
what the response from the API should look like. The schema
of a parameter specifies the type and constraints (e.g., range or
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enumeration values). Besides the type of each parameter, the
minimum and maximum value can be specified in the schema
for integer types, the length or minlength and maxlength can
be defined for array types, and a regular expression pattern,
as well as a list of predefined enumeration values, can be
specified for string types. Furthermore, the required field
allows for the specification of which parameters are required.
Finally, the allOf, oneOf, and anyOf terms specify whether
multiple parameters or schemas are allowed or even required.

In our approach, we parse the OpenRPC specification and
construct a grammar. This grammar is used to generate API
operation calls with inputs that match the signature of the
target API. Different valid requests per API operation can be
generated stochastically based on all the specified properties.
Although these inputs can be considered valid from the
syntactic point of view, certain inputs might still fail depending
on the specific meaning of the parameters or the method call.

B. Evolutionary Grammar-Based Fuzzing

A test case is encoded as a sequence of HTTP requests,
each including the HTTP method, the API operation, and the
API operation parameters. We apply the (µ, λ)-Evolutionary
Algorithm (EA), where µ is the number of parents while λ
indicates the number of offspring solutions being generated at
each iteration. As with any evolutionary algorithm, (µ, λ)-EA
evolves an initial population of individuals (i.e., test cases)
based on their fitness function value until a predetermined
termination criterion is met. In the following, we detail the
search initialization, the variation operator, test execution, and
termination. The fitness function used to select which test
cases to evolve is discussed in Section II-C.

Search Initialization. The population is initialized by gen-
erating a pool of µ valid test cases. The validity is guaranteed
by using the grammar described in the previous section and
applying a random sequence of derivative rules.

Variation Operator. In every iteration, the search algorithm
either generates new valid test cases or mutates previously
generated ones. Like the state-of-the-art fuzzing tools for
RESTful APIs that support mutation, our approach mutates
test cases by adding, removing or mutating parameters (e.g.,
changing the type or value). Note that there is no crossover in
(µ, λ)-EAs. In our context, applying a crossover over solutions
with incompatible derivative rules would lead to generating
invalid/malformed requests.

Test Execution. Each generated test is executed against
the System Under Test (SUT). The responses of the APIs
(represented as JSON objects) are collected and later used for
fitness function calculation. Notice that at this stage coverage
is not collected as our approach is black-box (i.e., we only
collect input/output data). At the end of every execution, the
state of the API system is reset to ensure that previously
executed test cases do not affect the next test executions.

Selection. The new population of µ individuals is selected
among the parent and offspring solutions based on their fitness
value. This elitist selection is traditional in (µ, λ)-EA as it

guarantees that the best solutions survive across the iterations
until better solutions/tests are generated.

Termination Criterion. The search algorithm ends when
the maximum number of executed test cases is reached.

C. Fitness

The fitness function plays a large role in guiding the
evolutionary fuzzer toward optimal solutions. It assigns a
numerical value (i.e., the fitness) to an individual, which in
our context represents the potential of how close a test case
is to covering unexplored code paths or finding faults in a
SUT. By evolving test cases that were able to uncover new
code paths in the SUT, there is a high probability that new
branches (linked to the previously discovered paths) in the
code can be reached.

As a black-box approach, we do not require direct access
to the code coverage obtained by each test case, allowing the
fuzzer to be language-agnostic. Instead, we try to infer whether
(additional) coverage was obtained by a test case by looking
at the diversity in the responses returned by the API.

Hierarchical Clustering. Clustering is a technique com-
monly used in data analysis to group a set of similar ob-
jects [6]. The purpose of clustering is to minimize the intra-
cluster distance and maximize the inter-cluster distance. Most
clustering methods belong to either partitioning or hierarchical
methods [7]. Partitioning methods require the number of clus-
ters as input. Since we are working in a black-box setting (and
we do not know the optimal number of clusters), partitioning
methods cannot be applied. Instead, a hierarchical clustering
algorithm was chosen as it does not have this limitation.

Hierarchical methods can be either divisive (top-down) or
agglomerative (bottom-up). An agglomerative method is less
complex, particularly effective, and a popular approach for
clustering data [6]. Agglomerative clustering is a bottom-up
approach, where each object starts in its own cluster, and pairs
of clusters are merged as one moves up the hierarchy. Similar
clusters are sequentially combined until only one cluster is
obtained. By observing the similarity between clusters at each
step, the best number of clusters can be identified.

Feature Vector Representation. Hierarchical clustering
uses the distance between feature vectors to determine which
clusters should be merged. We represent response parameter
values as a feature vector that contains all parameter values
(i.e., string, boolean, number, array, and JSON object types).
However, only primitive types (string, boolean, and number
types) can be stored in the feature vector directly. Feature
vectors have to be fixed-length. This is why for arrays, only
the first value of the array (which is a string, boolean, or
number) is embedded in the feature vector. For JSON objects,
all parameter values are extracted from the object and put in
the feature vector. To account for the fact that these parameters
are part of a JSON object, we also compute a weight vector.
The weight of a value is defined as 1 divided by the depth of
the parameter. For example, a parameter in a JSON object a
has a weight of 1

2 since this parameter is nested in a JSON
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object. If this same JSON object a contains another JSON
object b, the parameters of b have a weight of 1

3 . It is assumed
that parameters with a higher depth are less important to
differentiate between responses.

Computation of Distance. To calculate the distance be-
tween two vectors, we first compute the distance for each pair
of parameters in two feature vectors separately using a suitable
distance metric for that type. For boolean values, the distance
is either 0 (values are equal) or 1 (values are not equal). For
numbers, the distance is defined as the absolute difference
between the numbers. For string values, the Levenshtein
distance is often used [8]. This distance metric (also called
the edit distance) is the most promising metric to compare
strings by various edit operations (e.g., deletion, insertion, and
substitution of characters) [9]. It is defined as the minimum
cost (always an absolute value) of transforming one string into
another. We then multiply the distance of each parameter by
the corresponding weight.

Finally, we use the Manhattan distance (as it is the most
commonly used distance metric) to compute the total distance
between two vectors. As part of future work, we aim to
investigate the impact of using different distance metrics (e.g.,
Euclidean distance, Mahalanobis distance, maximum distance,
and the cosine similarity).

Fitness Function. The fitness function is defined as the
distance of the individual’s response object to previously
encountered response objects. We call this fitness function
Diversity-Based Fitness. Individuals that result in a (relatively)
unique response, form a new cluster and are given a high
fitness value. Individuals with responses that are very similar
to those of other individuals are given a low fitness value.
The hypothesis is that responses that are unlike what was
seen before, are an indication that new code paths are reached.
Evolving such individuals could then potentially lead to dis-
covering other new code paths. The fitness is calculated as:

FDB =
1

1 +maxSimilarity
(1)

where maxSimilarity is the similarity of the individual’s
response object to the closest response object in the clustering
instance. maxSimilarity is computed based on the distance
to the closest object and the parameter weight.

The hierarchical clusters are recomputed every three itera-
tions of the search algorithm as this will allow us to collect
more data for clustering. Additionally, it is also worth noting
that the cost of running the hierarchical clustering is negligible
compared to the cost of running a system-level test case as
resetting the state of the SUT is expensive.

D. Non-Evolutionary Grammar-Based Fuzzing

In addition to the algorithm presented in Section II-B, we
implemented two alternative test case generation algorithms:
(1) grammar-based fuzzer and (2) grammar-based mutational
fuzzer. The grammar-based fuzzer only generates requests
based on an API specification and produces completely new µ

individuals in every iteration of the search algorithm. There-
fore, no test case selection, fitness function, or mutation is
applied/computed to existing tests.

The grammar-based mutational fuzzer either generates new
test cases or mutates existing ones. The test cases to mutate
are randomly selected from the previous population at random
and without applying any fitness function. Grammar-based
(mutational) fuzzing may be inefficient at exploring the space
of API inputs, which is typically very large for complex
systems like blockchain applications.

III. EVALUATION

This section details the empirical evaluation of our approach
guided by the following research question:

RQ1 How effective is evolutionary fuzzing with regard to
structural coverage in comparison to grammar-based
fuzzing for JSON-RPC APIs?

Benchmark System. We evaluate our approach on Rippled
(v1.6.0). Rippled is a large industrial peer-to-peer software
system that runs the XRP Ledger, a decentralized crypto-
graphic ledger. XRP is one of the most popular cryptocur-
rencies in the market today. As of January 2023, Ripple’s
network has over 1.29 million transactions per day. Users
interact (e.g., manage accounts and create transactions) with
Rippled through a JSON-RPC API. In our experiments, we
run Rippled in stand-alone mode, which means it is isolated
from the rest of the peer-to-peer network and cannot contact
other (blockchain) nodes. This is done so that the experiment
does not interfere with the global network and vice versa. As
Rippled does not have a OpenRPC specification, we created
a basic specification based on the documentation available
on Ripple’s website [10]. All non-admin API operations and
corresponding parameters (and constraints) are included. The
specification has 34 unique API operations.

Experimental Protocol. All experiments are conducted on
a server with an Intel R© Xeon R© processor E5-2650 v3 @
2.30GHz (20 cores, 40 threads) and Ubuntu 20.04, running
10 simultaneous executions.

In the evaluation, we compare the following black-box
configurations: (1) a grammar-based fuzzer (i.e., no mutations,
each generation has new individuals) which acts as a baseline,
(2) a grammar-based mutational fuzzer (GB-MUT), and (3) a
grammar-based evolutionary fuzzer (GB-EVO). We configured
the GB-MUT and GB-EVO with a population of 100 individ-
uals and a mutation rate of 80%. All algorithms were set with
a search budget of 10K fitness evaluations.

After running the configurations, we instrument Rippled
to compute structural coverage over the generated tests to
quantify the performance of the approach. The instrumentation
is not used during the fuzzing process. Additionally, we want
to ensure that the server state (that may have been impacted by
previous test cases) is consistent during all tests. To this end,
data files are automatically reset and the server is restarted
before each test case.
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Fig. 2: Branches covered after 100 generations of 100 individ-
uals each. One generation equals 100 fitness evaluations and
on average takes approximately 22 minutes to be evaluated.

minutes, no additional coverage is obtained for all three runs.
In total, the Rippled system contains 130 246 branches. The
minimum branch coverage is 7293 (median), with a standard
deviation of 3.77. We don’t know what the maximum coverage
would be that can be reached through the API, as it would be
infeasibile to calculate this.

Experimental protocol. All experiments are conducted
on a server with an Intel® Xeon® processor E5-2650 v3 @
2.30GHz (20 cores, 40 threads) and Ubuntu 20.04, running
10 simultaneously executions.

In the evaluation, we compare the following configurations:
a grammar-based fuzzer (i.e., no mutations, each generation
has new individuals) which acts as a baseline, a grammar-
based mutational fuzzer (GB-MUT), and a grammar-based
evolutionary fuzzer (GB-EVO).

As we want to evaluate the performance of the approach (on
the basis of structural coverage), it is necessary to instrument
Rippled so we can compute structural coverage after each
run. Additionally, we want to ensure that the server state (that
may have been impacted by a previous test case) is consistent
during all tests. To this end, data files are automatically reset
and the server is restarted before each test case.

Since all configurations in our evaluation are randomized,
we can expect some variantion in our results. To mitigate this,
experiment are repeated 10 times (unless otherwise stated) so
that an average can be taken. We use the Wilcoxon rank-sum
test [?] with a threshold of 0.05 to determine the significance
of the results. We combine this with the Vargha-Delaney
statistic [?] to measure the effect size, which determines how
large the difference between the two approaches is.

A. Results

?? displays the distribution of the branches covered by the
three fuzzing approaches: the baseline, GB-MUT fuzzing with

Configurations Covered branches Statistics

Median IQR p-value Â12

baseline 7502 87.25 - -
80%-GB-MUT 7573.5 164.25 0.557 0.67 (medium)
80%-GB-EVO 7742.5 117.50 0.006 0.91 (large)

TABLE I: Left: Median and Inter-Quartile Range (IQR) of the
number of covered branches achieved by the three different
configurations (baseline, GB-MUT, GB-EVO). Right: p-value
and Â12 metrics of GB-MUT and GB-EVO compared to the
baseline.

an 80% mutation-generation ratio, and GB-EVO fuzzing with
an 80% mutation-generation ratio. Additionally, the medians,
Inter-Quartile Ranges (IQRs), and significance statistics are
presented in ??. The statistical significance of both GB-MUL
and GB-EVO are compared to the baseline, with the cases
that are significant highlighted in gray color. We observe that
the GB-EVO approach achieves a larger number of branches
covered compared to the baseline and GB-MUT approach. The
median number of branches covered over the 10 experiment
runs is 7742, 240 branches more than the baseline. The GB-
EVO fuzzer performs significantly better than the baseline
(p-value = 0.006), but is not able to significantly outperform
the GB-MUT approach with regards to the final obtained
branch coverage. Furthermore, the 80%-GB-MUT fuzzer is
not significantly better than the baseline.

In summary, the evolutionary fuzzing approach (GB-EVO)
was able to achieve near 7750 of branches in the Rip-
pled blockchain system. This is a significant improvement
from traditional grammar-based fuzzing (which covered 7500
branches). Furthermore, evolutionary fuzzing achieves struc-
tural coverage significantly faster than grammar-based muta-
tional fuzzing.

B. Threats to Validity

External Validity: One threat to validity is the generaliza-
tion of our study. Although, only a single benchmark system
was used to evaluate the approach, it is a large system part of
a distributed blockchain network used in industry. To increase
the confidence in our results, we plan to evaluate our approach
on more benchmark systems in future work.

Conclusion Validity: Both the mutation and evolutionary-
based approaches make use of randomness to generate and
mutate/evolve the individuals to search the problem space.
To minimize the risk that the results were influenced by
favourable randomness, we have performed the experiment
10 times with different random seeds. We have followed
the best practices for running experiments with randomized
algorithms as laid out in well-established guidelines [?]. We
used two non-parametric tests: the unpaired Wilcoxon rank-
sum test [?] and the Vargha-Delaney Â12 effect size [?] to
assess the significance and magnitude of our results.

Baseline GB-MUT GB-EVO

# 
C

ov
er

ed
 B

ra
nc

he
s

Fig. 1: Branches covered after 10K fitness function evaluations
(≈ 2200min running time).

Configurations Covered branches Statistics

Median IQR p-value Â12

Baseline 7502 87.25 - -
GB-MUT 7573.5 164.25 0.557 0.67 (medium)
GB-EVO 7742.5 117.50 0.006 0.91 (large)

TABLE I: Left: Median and Inter-Quartile Range (IQR) of the
number of covered branches achieved by the three approaches.
Right: p-value and Â12 metrics of GB-MUT and GB-EVO
compared to the baseline.

Since all algorithms are randomized, we can expect some
variability in our results. To mitigate this, the experiments are
repeated 10 times and we reported the median results. We
use the Wilcoxon rank-sum test with a threshold of 0.05 to
determine the significance of the results. We combine this with
the Vargha-Delaney statistic to measure the effect size, which
determines the magnitude of the differences.

A. Results

Fig. 1 displays the distribution of the branches covered
by the three fuzzing approaches: the baseline, GB-MUT, and
GB-EVO. Additionally, the medians, Inter-Quartile Ranges
(IQRs), and significance statistics are presented in Table I.
The statistical significance of both GB-MUT and GB-EVO are
compared to the baseline, with significant cases highlighted in
gray color. We observe that the GB-EVO approach achieves a
larger number of branches covered compared to the baseline
and the GB-MUT approach. The median number of branches
covered over the 10 experiment runs is 7742, 240 branches
more than the baseline. The GB-EVO fuzzer performs signifi-
cantly better than the baseline (p-value = 0.006), with a large
effect size according to the Â12 statistic. The GB-MUT fuzzer,
on the other hand, does not achieve a significantly higher
coverage than the baseline. In summary, the evolutionary
fuzzing approach (GB-EVO) was able to achieve nearly 7750
branches covered in the Rippled blockchain system. This
is a significant improvement from traditional grammar-based
fuzzing (which covered 7500 branches).

B. Threats to Validity

External Validity: One threat to validity is the generaliza-
tion of our study. Although only a single benchmark system

was used to evaluate the approach, it is a large system part of
a distributed blockchain network used in industry. To increase
confidence in our results, we plan to evaluate our approach on
more benchmark systems in future work.

Conclusion Validity: Both the mutation and evolutionary-
based approaches make use of randomness to generate and
mutate/evolve the individuals to search the problem space.
To minimize the risk that the results were influenced by
favourable randomness, we have performed the experiment
10 times with different random seeds. We have followed
the best practices for running experiments with randomized
algorithms as laid out in well-established guidelines [11].

IV. CONCLUSION

In this paper, we proposed an approach for black-box
fuzzing JSON-RPC APIs using a grammar-based evolutionary
algorithm. We implemented the approach in a prototype tool
and evaluated it on an industrial distributed blockchain net-
work. In future work, we plan to design a suitable selection
procedure for retaining fewer test cases while maximizing the
structural coverage. Additionally, several techniques can be
applied to optimize the fuzzing process further. A dynamic
mutation rate might improve the performance of the evolu-
tionary fuzzer. Furthermore, the approach was evaluated with
only one request to the API per individual. Related work shows
that increasing this number is an effective way to reach deeper
parts of the code. Finally, we plan to evaluate our approach
on more benchmark systems to increase confidence in the
generalizability of our results.
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