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Abstract
The Port of Antwerp is the second­largest container port in Europe. The rising demand for container
transport requires significant investments in infrastructure projects. Macomi helps the Port of Antwerp
to determine the effect of different projects on the throughput of the port using simulation. In this thesis,
the aim is to create algorithms for the introduced online variant of the lock scheduling problem which
are applicable for a real­time simulation. In addition, an algorithmic approach to recover the existing
schedule when a vessel is delayed is required. To achieve these goals, three online lock scheduling
algorithms are introduced and tested on realistic problem instances. Their run­time is negligible com­
pared to exact methods and the resulting lock schedules are competitive. Assuming a constant lockage
duration during scheduling allows the number of interactions to be reduced significantly with a small
decrease in lock schedule quality. The online lock scheduling algorithms could also be applied to the
problem of disruption management. The results are comparable to the high­performing adaptive large
neighbourhood search meta­heuristic.
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1
Introduction

Locks are used in different settings along the waterway. They allow vessels to traverse inclining land­
scapes and other obstacles like hydroelectric dams. By ensuring a constant water level in ports they
smooth the process of loading and unloading. Inefficient scheduling of lock operations can add severe
delays to the journey of a vessel when the demand is high. Delays of up to three days are reported at
the Three Gorges Dam in China during peak season.

The Port of Antwerp is the second­largest container port in Europe and expects an ever­increasing
demand for the foreseeable future. Infrastructure projects are costly and have a long lifespan. It is,
therefore, crucial to identify possible bottlenecks early and resolve them efficiently. By simulating the
arrivals of vessels and their movements throughout the port realistically, this can be achieved. In addi­
tion, simulation can aid in determining the effectiveness of said projects to resolve the bottleneck.

1.1. Problem statement
This thesis is a result of an internship at Macomi, a company that focuses on optimisation and simu­
lation of complex problems. Together with the Port of Antwerp, they are creating a simulation of the
complete port to create the aforementioned tool. The arrivals are simulated based on historical data
and projections of future demands. Each vessel traverses the port according to realistic sailing rules.
The problem left to solve is to create an efficient schedule for all of the locks and to resolve conflicts
once a vessel is not able to arrive at the lock as scheduled due to a delay. An efficient lock schedule
minimises the waiting time and the number of lockage operations. In addition, it ensures that there are
no outliers with extreme delays.

In the simulation, vessels need to traverse several restricting elements, like tide windows, swing
zones and locks. Because of the limited manoeuvrability of large sea­going vessels, they must have a
plan to travel from one place to another without having to wait. Due to the relation with other schedules
and the nature of arrivals, it is required to solve an unexplored version of the lock scheduling problem
where vessels arrive over time and need to be added to the existing lock schedule. The first part of this
work introduces algorithms for this online lock scheduling problem where the information of all arrivals
is not known at the start.

In the second part of this thesis, disruption management is treated. Once a lock schedule has been
constructed, vessels could arrive at other moments than planned. When this occurs, it is important to
find a change in the schedule that accommodates this delay while also minimising the existing objective
and the number of vessels affected by it.

1.2. Research questions
The main research objective of this work is two­fold. First, it is to create efficient algorithms for the
online lock scheduling problem. Then, it aims to compare different solution methods on their ability to
resolve disruptions. The main research question is as follow;

Which solution methods prove to be the most effective to automate the lock scheduling and
real­time disruption recovery for the Port of Antwerp?

1



2 1. Introduction

A set of sub­questions have been defined to help answer the main research question based on
each part of the objectives. The following questions help to answer the lock scheduling part;

1. How can the lock scheduling problem posed by the Port of Antwerp be defined as an optimisation
problem?

2. What algorithms can solve the defined lock scheduling problem?

3. How can problem abstraction during scheduling contribute to fewer interactions with vessels?

For the disruption management part, the following sub­questions are defined;

1. What algorithms can be used for disruption management?

2. Which parameters do affect the quality of the recoveries?

1.3. Contributions
In this thesis, a new variant of the generalised lock scheduling problem relevant for the Port of Antwerp is
introduced. From the literature research, it is concluded that existing solution methods are not sufficient
to solve the posed problem. A framework for online lock scheduling algorithms is introduced and three
algorithms using this framework are presented. It is shown that the algorithms create competitive
solutions with exact algorithms on small problem instances. By abstracting the lockage duration during
scheduling, the number of interactions with vessels is limited. A systematic approach to convert an
abstract lock schedule into a detailed lock schedule is presented. Experiments show that this reduces
the interactions by approximately one third while increasing the average and maximum waiting time by
10% depending on the objective function used.

The introduced online lock scheduling algorithms are applied to the problem of disruption manage­
ment and compared to an adaptive large neighbourhood search meta­heuristic. One of the algorithms
performs similar to the meta­heuristic based on the number of disagreements on the placement of the
disrupted vessel for random disruptions on realistic lock schedules.

1.4. Document structure
This section explains the structure of the remaining document. Chapter 2 starts with providing a more
elaborated explanation of the lock scheduling problem and the variant examined in this work. Then,
chapter 3 presents the existing methods found in the literature regarding lock scheduling, disruption
management and related problems. In chapter 4 a data­analysis on all the lockages of 2019 in the Port
of Antwerp is performed. Algorithms for the online lock scheduling problem are presented and analysed
in chapter 5. Then, in chapter 6 the same algorithms are applied for disruption management and
compared to a meta­heuristic. The results of the different experiments are summarised and discussed
in chapter 7. Finally, chapter 8 concludes this thesis by answering the research questions and providing
future research directions.



2
Problem statement

In this chapter, the lock scheduling problem is explained. First, a definition of the generalised lock
scheduling problem is provided. Then, some common abstractions are explained. Finally, the lock
scheduling situation at the Port of Antwerp and the lock scheduling problem that is the focus of this
work is presented as a mathematical model and corresponding objective functions.

2.1. The generalised lock scheduling problem
The generalised lock scheduling problem consists of three components; locks, chambers and vessels.
There are one or more consecutive locks, each with its own set of parallel chambers. Locks may have
both homo­ and heterogeneous chambers. A chamber is defined by its length, width and processing
duration. Similarly, every vessel has a length, width and speed. Additionally, each vessel has to pass
through one or more consecutive locks in either upstream or downstream direction. Figure 2.1 system­
atically shows the possible flows of a vessel. Vessels can enter and leave the waterway at any point
between locks.

Figure 2.1: Schematic illustration of the generalised lock scheduling problem [1].

The placement of multiple vessels inside a chamber is called a lockage and computing the optimal
lockage allocation is related to a well­known NP­complete problem, 2D bin­packing, with additional
constraints. Although vessels are in reality not a true rectangle, they can be represented as such when
safety margins are taken into account. Also, when placing vessels not adjacent to the quay it is required
to secure it to a larger vessel. However, it is forbidden to secure onto a sea­going vessel [2]. Verstichel
and Vanden Berghe [3] composed an extended overview of all the different requirements including
illustrations.

Scheduling the sequence of lockages is less restricted. As vessels can overtake each other, the
lockage at each lock can contain different sets of vessels. However, it is required that the vessel must
be able to travel between the locks in the allocated period.

The purpose of a lock scheduling algorithm is to have vessels wait less at locks. Therefore the
objective function can be defined by the (weighted) waiting time or tardiness of a vessel for a single

3



4 2. Problem statement

lock. When a vessel has to traverse several locks the time it is in the system from start to finish becomes
relevant.

An objective with only the total waiting time will create schedules where some vessels are delayed
severe to allow others to pass through fast. Sometimes a first­come­first­serve constraint is enforced
to ensure fairness among the vessels. However, it is also possible to prevent large peaks in waiting
time by including the maximum waiting time or squaring the individual delays.

Complementary to these objective components is water usage. There are several cases when this
becomes a significant factor. For example in cases of drought or to prevent salinization at locations
where a lock separates salty from freshwater. The water usage can be measured by the number of
lockages.

The objective function is a proxy of the desired properties of an efficient lock schedule. The goal is
to minimise the waiting time and number of lockages while also ensuring fairness among the vessels
as outliers are undesirable. However, the weights provided to each of the components of the objective
function can affect the absolute value. It is therefore not sufficient to compare algorithms solely on their
relative objective function.

2.2. Lock scheduling abstractions
The lock scheduling problem gains its complexity mainly from two components; the vessel placement
problem and the variable lockage duration based on the vessels allocated in the lockage. There exist
abstractions of the lock scheduling problem which deal with these matters to reduce the complexity of
the problem.

The vessel placement problem is solved to ensure that a lockage never exceeds the capacity of the
chamber. Instead of defining the capacity of a chamber by its length and width, it is also possible to
define the number of vessels it can fit. This is especially useful when the vessels are homogeneous in
their sizes or when a few groups of vessels can be defined. Finally, some algorithms treat the capacity
of a chamber as infinite.

The duration of a lockage operation could be set to a fixed duration to avoid changing it continuously
when adding vessels. This is reasonable when the entering and exiting duration’s are negligible com­
pared to the processing duration. It also depends on the context and types of vessels. When vessels
can enter the lock at the same time, this can be accurately estimated. However, large vessels, that
require tugboats, take more time and are less manoeuvrable.

2.3. The lock scheduling problem at the Port of Antwerp
The Port of Antwerp is reachable from the North Sea through the river called the Westerschelde and
welcomes all types of vessels, ranging from barges to large sea­going vessels. A large part of them
needs to pass a lock. However, there is also traffic towards berths that are next to the river. The different
locks at the Port of Antwerp are highlighted in Figure 2.2 and Table 2.1 shows their characteristics. The
first four locks provide access to the right bank of the port. Under normal circumstances, the Van
Cauweleartsluis is reserved for barges only. Because there is only data available about sea­going
vessels, barges and this lock are omitted from this work.

Table 2.1: Characteristics of the locks at the Port of Antwerp.

Lock Length (m) Width (m)

Zandvlietsluis 500 57
Berendrechtsluis 500 68
Boudewijnsluis 360 45
Van Cauweleartsluis 270 35
Kieldrechtsluis 500 66
Kallosluis 360 50

Large sea­going vessels are not easily manoeuvrable and need to plan their journey along the river
from the North Sea towards the port. Therefore, a lock schedule is created with a rolling horizon of at
least 12 hours. To prevent large disruptions affecting the schedule, it is required to have 15 minutes of
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buffer between every lockage during scheduling.
Throughout the day, new vessels are planning their journey through the port. It is not possible to

stop already started processes, and completely altering the existing schedule will cause issues with the
schedules of other parts of the port. It is therefore required to add new vessels to the existing schedule
and only slightly affects the vessels planned around it. This type of scheduling where new vessels
are added to an existing schedule is called online scheduling and is different from creating the optimal
schedule provided with all the arrivals from the beginning.

The simulation currently envisioned by Macomi has online algorithms for all the different bottlenecks
in the port. Examples of this are the berths and locks but also tide windows and narrow passages. A
vessel becomes an agent which has to sail along the river and port according to the relevant schedules
in real­time. Movements between two locks do occur at the Port of Antwerp. However, due to the
simulation design and the bottlenecks between locks, this is handled by a backtracking path­finding
algorithm which is not part of this thesis.

Figure 2.2: Map of the Port of Antwerp with each lock highlighted.
.

2.4. Formal problem definition
In the posed online lock scheduling problem there is a single lock with𝑚 heterogeneous chambers and
a sequence of 𝑛 vessels that arrive online. Let 𝐶 = {𝑐1, ..., 𝑐𝑚} be the set of chambers. Then, let 𝐿𝑐 be
the length,𝑊𝑐 the width and 𝑃𝑐 the processing duration of chamber 𝑐 ∈ 𝐶.

Let 𝑉 = {𝑣1, ..., 𝑣𝑛} be the set of vessels. With 𝑙𝑣 the length, 𝑤𝑣 the width and 𝑝𝑣 the entry and exit
duration of vessel 𝑣 ∈ 𝑉. In addition, the arrival of vessel 𝑣 is defined by its direction 𝑑𝑣 and the arrival
time 𝑎𝑣. There are two types of directions, either up­ or downstream.

Let 𝐿𝑐 = {𝑙1, ..., 𝑙𝑘} be the set of lockages processed by chamber 𝑐 ∈ 𝐶 and 𝐿 = ⋃𝑚𝑐=1 𝐿𝑐 be the set
of all lockages. Then, let 𝑑𝑙 be the direction of lockage 𝑙 ∈ 𝐿 and 𝑠𝑙 and 𝑒𝑙 its start and end times.

Each chamber, 𝑐, processes its set of lockages, 𝐿𝑐, in alternating direction. Consecutive lockages 𝑙
and 𝑙′ must adhere to the following set of constraints where 𝐵 is a constant buffer between sequential
lockages;

𝑠𝑙′ ≥ 𝑒𝑙 + 𝐵 (2.1)
𝑑𝑙 ≠ 𝑑𝑙′ (2.2)

Let 𝑉𝑙 = {𝑣1, ..., 𝑣𝑛} be the set of vessels processed by lockage 𝑙. A vessel can only be processed
by a lockage if the lockage is in the same direction as the vessel arrives. Equations (2.3) and (2.4)
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ensure that every vessel is processed by a single lockage. Equation (2.5) enforces that the direction
of a vessel and the lockage it is placed in are in the same direction.

𝑉𝑙 ∩ 𝑉𝑙′ = ∅ ∀𝑙, 𝑙′ ∈ 𝐿 (2.3)
𝑣 ∈ 𝑉𝑙 ∃𝑙 ∈ 𝐿, ∀𝑣 ∈ 𝑉 (2.4)
𝑑𝑣 = 𝑑𝑙 ∀𝑣 ∈ 𝑉𝑙 , 𝑙 ∈ 𝐿 (2.5)

The duration of a lockage is dependent on its chamber and the vessels it processed. In addition,
when vessels arrive not exactly after each other, the duration increases. Each vessel retrieves a re­
quested time of arrival (𝑟𝑎𝑣). Equation (2.6) ensures that the requested time of arrival is after the first
moment the vessel actually can arrive. Equation (2.7) ensures enough time between the sequential
arrival of the vessels 𝑣 and 𝑣′. The start and end time of a lockage are defined by Equations (2.8)
and (2.9). Finally, Equation (2.10) is an helper variable that is used in the objective function.

𝑟𝑎𝑣 ≥ 𝑎𝑣 ∀𝑣 ∈ 𝑉 (2.6)
𝑟𝑎𝑣′ ≥ 𝑟𝑎𝑣 + 𝑝𝑣 (2.7)
𝑠𝑙 = 𝑚𝑖𝑛𝑣∈𝑉𝑙(𝑟𝑎𝑣) ∀𝑙 ∈ 𝐿 (2.8)

𝑒𝑙 = 𝑚𝑎𝑥𝑣∈𝑉𝑙(𝑟𝑎𝑣 + 𝑝𝑣) + 𝑃𝑐 + ∑
𝑣∈𝑉𝑙

𝑝𝑣 ∀𝑙 ∈ 𝐿𝑐 , 𝑐 ∈ 𝐶 (2.9)

𝑒𝑣 = 𝑒𝑙 ∀𝑣 ∈ 𝑉𝑙 , 𝑙 ∈ 𝐿 (2.10)

A schedule requires to have a fixed position for each vessel in a lockage. This position is defined
by a 𝑥𝑣 and 𝑦𝑣 coordinate relative to the bottom left of the chamber. Equations (2.11) and (2.12) ensure
that a vessel is placed within the dimensions of the chamber. A vessel must be moored onto the left or
the right side of the chamber. The binary decision variable 𝑚𝑙𝑣 indicates if vessel 𝑣 is moored onto the
left side. Equation (2.13) enforces the correct 𝑥 coordinate of vessel 𝑣 based on the side it is moored
on.

0 ≤ 𝑥𝑣 ≤ 𝑊𝑐 −𝑤𝑣 ∀𝑣 ∈ 𝑉𝑙 , 𝑙 ∈ 𝐿𝑐 , 𝑐 ∈ 𝐶 (2.11)
0 ≤ 𝑦𝑣 ≤ 𝐿𝑐 − 𝑙𝑣 ∀𝑣 ∈ 𝑉𝑙 , 𝑙 ∈ 𝐿𝑐 , 𝑐 ∈ 𝐶 (2.12)

𝑥𝑣 = {
0 if 𝑚𝑙𝑣 = 1,
𝑊𝑐 −𝑤𝑣 if 𝑚𝑙𝑣 = 0

∀𝑣 ∈ 𝑉𝑙 , 𝑙 ∈ 𝐿𝑐 , 𝑐 ∈ 𝐶 (2.13)

When multiple vessels are positioned within a lockage, they are not allowed to overlap. The func­
tions 𝑠𝑎𝑚𝑒_𝑠𝑖𝑑𝑒(𝑣, 𝑙) returns the vessels in the same lockage 𝑙 on the same side of vessel 𝑣. Between
vessels 𝑣, 𝑣′ ∈ 𝑉𝑙, it is required to have a minimum vertical distance of 𝑣𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑣, 𝑣′) when moored
onto the same side of the chamber. Equations (2.14) and (2.15) ensure that two vessels on the same
side do not overlap and that the minimum distance is enforced.

|𝑦𝑣 − 𝑦𝑣′ − 𝑙𝑣′ | ≥ 𝑣𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑣, 𝑣′) ∀𝑣′ ∈ 𝑠𝑎𝑚𝑒_𝑠𝑖𝑑𝑒(𝑣, 𝑙), 𝑣 ∈ 𝑉𝑙 , 𝑙 ∈ 𝐿 (2.14)
𝑦𝑣 ≤ 𝑦𝑣′ + 𝑙𝑣′ ∨ 𝑦𝑣 ≥ 𝑦𝑣′ + 𝑙𝑣′ ∀𝑣′ ∈ 𝑠𝑎𝑚𝑒_𝑠𝑖𝑑𝑒(𝑣, 𝑙), 𝑣 ∈ 𝑉𝑙 , 𝑙 ∈ 𝐿 (2.15)

When vessels share the same vertical position on opposite sides of the chamber, a minimum hori­
zontal distance between them is required. The function 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒_𝑠𝑖𝑑𝑒_𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔(𝑣, 𝑙) returns the
set of vessels in 𝑙 that are moored on the opposite side of vessel 𝑣 and share some overlapping 𝑦
position. The horizontal distance required between these vessels are retrieved with ℎ𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑣, 𝑣′).
Equation (2.16) enforces the additional horizontal distance for these vessels.

|𝑥𝑣 + 𝑙𝑣 − 𝑥𝑣′ | ≥ ℎ𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑣, 𝑣′) ∀𝑣′ ∈ 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒_𝑠𝑖𝑑𝑒_𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔(𝑣, 𝑙), 𝑣 ∈ 𝑉𝑙 , 𝑙 ∈ 𝐿 (2.16)

Equations (2.17) to (2.25) summarise the different decision variables and list their domain. The
requested arrival times of a vessel at a lock is defined up to a minute. This can be modelled as an
integer since the first event in the problem. It is therefore also required to provide the parameters as
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an integer representing the minutes since the same moment.

𝑑𝑣 , 𝑣 ∈ 𝑉, 𝑑𝑣 ∈ {0, 1} (2.17)
𝑥𝑣 , 𝑣 ∈ 𝑉, 𝑥𝑣 ∈ ℤ, 0 ≤ 𝑥𝑣 ≤ 𝑚𝑎𝑥𝑐∈𝐶(𝑊𝑐) (2.18)
𝑦𝑣 , 𝑣 ∈ 𝑉, 𝑦𝑣 ∈ ℤ, 0 ≤ 𝑦𝑣 ≤ 𝑚𝑎𝑥𝑐∈𝐶(𝐿𝑐) (2.19)

𝑟𝑎𝑣 , 𝑣 ∈ 𝑉, 𝑟𝑎𝑣 ∈ ℤ, 0 ≤ 𝑟𝑎𝑣 (2.20)
𝑒𝑣 , 𝑣 ∈ 𝑉, 𝑒𝑣 ∈ ℤ, 0 ≤ 𝑒𝑣 (2.21)

𝑉𝑙 , 𝑙 ∈ 𝐿, 𝑉𝑙 ⊆ 𝑉 (2.22)
𝑑𝑙 , 𝑙 ∈ 𝐿, 𝑑𝑙 ∈ {0, 1} (2.23)

𝑠𝑙 , 𝑙 ∈ 𝐿, 𝑠𝑙 ∈ ℤ, 0 ≤ 𝑠𝑙 (2.24)
𝑒𝑙 , 𝑙 ∈ 𝐿, 𝑒𝑙 ∈ ℤ, 0 ≤ 𝑒𝑙 (2.25)

2.5. Objective function
With the formal model definition presented, it is possible to define the different objective functions
introduced in Section 2.1 more precise. The objective functions presented in this section are used for
the different experiments throughout the thesis. The different objective function component weights
(𝐾𝑖) are defined at each experiment. Each objective function includes the number of lockages. They
differ in their method of measuring delays and whether outliers are avoided by squaring the individual
delays or by including the maximum delay.

1. Squared waiting time: 𝐾1 ∑𝑣∈𝑉(𝑟𝑎𝑣 − 𝑎𝑣)2 + 𝐾2 ∑𝑙∈𝐿(1)

2. Squared tardiness: 𝐾1 ∑𝑣∈𝑉(𝑒𝑣 − 𝑎𝑣)2 + 𝐾2 ∑𝑙∈𝐿(1)

3. Summed waiting time: 𝐾1 ∑𝑣∈𝑉(𝑟𝑎𝑣 − 𝑎𝑣) + 𝐾2𝑚𝑎𝑥𝑣∈𝑉(𝑟𝑎𝑣 − 𝑎𝑣) + 𝐾3 ∑𝑙∈𝐿(1)

4. Summed tardiness: 𝐾1 ∑𝑣∈𝑉(𝑒𝑣 − 𝑎𝑣) + 𝐾2𝑚𝑎𝑥𝑣∈𝑉(𝑒𝑣 − 𝑎𝑣) + 𝐾3 ∑𝑙∈𝐿(1)





3
Literature review

In this chapter, the existing approaches related to the posed problem are evaluated. First, the literature
related to the lock scheduling problem is presented. Subsequently, the disruption management part
is assessed. In both sections, the differences between the posed problem and the problem solved by
the existing methods are highlighted. Additionally, related scheduling problems are evaluated in both
sections.

3.1. Lock scheduling
In this section, the literature on the generalised lock scheduling problem is presented. First, the algo­
rithms that solve a version of the problem in polynomial time to optimality are examined. After providing
an NP­hardness proof for a variant of the problem, the exponential exact algorithms are presented.
Heuristics are also used to find solutions within a limited amount of time. Finally, solutions for related
problems are assessed.

3.1.1. Polynomial time algorithms
The lock scheduling problem for a single chamber with constant lockage duration has been analysed
by Hermans [4]. Its dynamic program finds the optimal solution in polynomial time when the capacity
of the lock is limited to a single vessel. The same problem without capacity constraints is compared
to the job shop scheduling problem by Passchyn et al. [5]. It concludes that the complexity of the
problem cannot be derived from the available literature. It provides a polynomial­time algorithm based
on the shortest path in an acyclic graph. Additionally, it proves that problems with an arbitrary chamber
capacity represented by an integer can still be solved in polynomial time when enforcing a first­come­
first­serve constraint.

The problem with constant lockage duration is extended to multiple chambers by Passchyn et al.
[6]. A dynamic program to minimise the total waiting time in polynomial time is presented, given that the
number of chambers is a constant. Again it is assumed that the capacity of a lock can be represented
in terms of a number of vessels.

3.1.2. Exponential algorithms
The previous section presented some of the polynomial­time algorithms for the lock scheduling problem
with abstractions. However, there are NP­hardness proofs for slightly more complicated versions of
the problem. Passchyn and Spieksma showed that minimising the total waiting time for two identical
sequential locks with a constant lockage duration is NP­hard even if every vessel travels in the same
direction [7]. The existence of exponential algorithms for the more general variants of the problem
comes therefore at no surprise.

Verstichel et al. present a mixed­integer linear program (MILP) for the lock scheduling problem with
a single lock with heterogeneous chambers [8]. This work is extended by the same authors in terms
of a benders decomposition [9]. It reduces the run­time by adding vessels to lockages and lockages
to chambers using a MILP and solving the vessel placement sub­problem separately. Additionally, it

9
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further reduces the run­time by replacing the exact vessel placement algorithm with a heuristic called
multi­order best­fit.

Ji et al. extended the formulation of Verstichel et al. to include sequential lock movements [10]. The
same authors additionally formulated another model for the same problem based on a multi­commodity
network [11]. Experiments using these formulations show an unpredictable run­time which can reach
over 16 hours for problems with 20 vessels and two chambers.

3.1.3. Heuristics
All exact exponential algorithms in the previous subsection were formulated as a MILP. Van Adrichem
tried to improve such formulations by splitting the search space into small chunks and solving them
separately [12]. It is not able to outperform the baseline during busy moments.

Ji et al. noticed similarities between the lock scheduling problem and the well­studied vehicle routing
problem [13]. A large neighbourhood search, well known within the vehicle routing problem literature,
is used to solve the problem for a single lock. Destroy and repair operations are based on general
operations used for other problems.

Neighbourhood search techniques have also been applied to the lock scheduling problem by others.
However, these approachesmakemore simplifying assumptions than Ji et al. Prandtstetter et al. solves
the interdependent lock scheduling problem with identical chambers [14]. It presents operations that
destroy and repair a schedule in one pass and are specifically crafted for the problem at hand.

Verstichel et al. presented a neighbourhood search for the lock scheduling problem with a single
lock with identical chambers where the solution is defined by an ordering of vessels [15]. Provided with
this ordering, heuristics will determine the feasibility of the vessel placement sub­problem and the start
time is defined by the latest arriving vessel. Verstichel and Vanden Berghe explored the same problem
and approach but applied late acceptance criteria [16].

When solving the generalised lock scheduling problem it is required to determine a position for
every vessel inside the lock. Verstichel et al. introduced different methods for this [2]. First, it presents
an exact MILP which also formed the basis of several of the exponential algorithms presented earlier.
Then two heuristics are presented which are not computationally intensive and produce solutions with
a small optimality gap. One of these heuristics is used in combination with the aforementioned benders
decomposition of an exact MILP.

3.1.4. Related problems
Zhang et al. examined another online problem of scheduling the passage of vessels on a restricted
2­way waterway where large vessels cause other vessels from the opposite direction to wait for them
[17]. It investigated the influence of different priority rules and concluded that significant improvements
can be made. However, the difference between these waterways and locks are evident. At a lock,
an alternative behaviour is required between upstream and downstream while the improvement on the
waterways is gained by grouping vessels in the same direction.

The lock scheduling problem can be represented as a flexible job shop scheduling problem with par­
allel batch processing machines, incompatible job families and job dependent set­up times combined
with the vessel placement sub­problem. MILP and constraint programming are common approaches
to solve such problems [18]. However, because of their computational complexity and unpredictable
run­time, they are no good fit for online problems. Therefore, often, dispatching rules are developed
which act as a static online heuristic. These rules can be created by a human with experience but could
also be learned automatically. Jun et al. creates training and validation sets using exact methods and
trains a random forest to create such dispatching rules [19].

In terms of traffic in both directions, it is possible to compare a landing strip with a locks chamber.
In this sense, an airport can be compared with a lock of multiple chambers which are individually
operated. There are also differences. A locks chamber has an alternating direction of operations and
can process multiple vessels at a time. Continuous operation in the same direction is possible at a
strip and sometimes even required [20]. However, the main difference is that planes can wait before
entering the strip. This can either be at the terminal or in the sky.

3.1.5. Conclusion
From the literature on the lock scheduling problem, it is clear that the problem at hand is hard to solve
and no exact polynomial algorithm is to exist for the offline and online case. Additionally, except for the
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related job shop scheduling problem, no algorithms for online lock scheduling exist.

3.2. Disruption management
The lock scheduling problem only recently gained traction compared to other parts of maritime and port
related optimisation problems. To the best of my knowledge, no definition of a disruption management
problem or solution approach exists in the literature. Therefore, only the approaches for disruption
management on related problems are examined in this section.

3.2.1. Related problems
Airline operations can be disrupted due to several factors. Resources of the airline, for example, crew,
aircraft or fuel, could become unavailable. In addition, external factors could affect the operations.
Examples of this are the weather and traffic. Su et al. created a survey of the possible causes, mitiga­
tions and methods for disruption management for airlines [21]. Methods are divided between solving
either disruptions for solely aircraft, crew or both. Often exact approaches are used for the individ­
ual disruptions. However, neighbourhood search techniques are also applied for integrated disruption
management. The objective function for these decisions is clearly defined when the costs of each deci­
sion are known. However, a majority of the mitigations do not apply to vessel disruption management.
It is not possible to cancel a vessel that is already on the river towards the port. In addition, such
vessels are less manoeuvrable in comparison to aircraft that can wait in both the air and at an airport.
Also, cargo is cannot be transferred to other vessels.

Subramaniam et al. [22] survey disruption management in the context of job­shop scheduling. The
survey lists 17 different commonly studied disruptions. From this list, five general disruptions with their
repair operation are identified. After applying the repair operation to the affected job, sequential jobs
can be right­shifted until no jobs are overlapping anymore [23]. Subramaniam et al. present a heuristic
where the disrupted job gets rescheduled to its new optimal position [24]. While the lock scheduling
problem is related to the job shop scheduling problem, these approaches do not incorporate batching
of jobs which is similar to placing vessels together in a lockage.

3.2.2. Conclusion
Disruption management is unexplored for the lock scheduling problem in the literature. However, it is
well studied for other types of problems. The significant differences between the types of mitigations
and the freedom to apply them, rule them unusable for lock scheduling.





4
Data analysis and problem instance

generation
In this chapter, the data provided by the Port of Antwerp about all lockages of 2019 is analysed. Then it
is explained how this data is used to generate realistic problem instances which are used in experiments
in the next chapters.

4.1. Data analysis
The Port of Antwerp provided a data­set containing all the lockages with the sea­going vessels of 2019.
It reports the moment the doors of the lock opened and closed and the arrival and departure of every
vessel. In addition, the maximum length and width of each vessel are known. As there is no data
available about barges, the Van Cauwelaertsluis is not included in this analysis.

Figure 4.1 presents details about the lockages and the number of vessels transferred, split out
over different time windows and by each lock. The first two graphs show that the number of lockages
processed per lock per day is roughly similar for every lock. However, the Kieldrecht­ and Kallosluis
transfer fewer vessels per day. From the third graph, it is clear that the majority of the lockages contain
only a single vessel. Although, it could occasionally reach up to seven.

The final three graphs present the trends of vessels processed over different periods. During the
fourth month of 2019, the Kieldrechtsluis was closed due to maintenance. This explains both the sharp
decrease and increase for the Kieldrechtsluis and Kallosluis respectively. The latter processed the
vessels of the former as they both lead to the left bank. Besides a small reduction in vessels in the
morning, there seem to be no other seasonal effects.

4.2. Realistic problem instance generation
This section explains the process of generating problem instances that will be used in the subsequent
chapters. First, some general remarks regarding the problem instances are made. Then the method
of converting the historical arrivals directly into a problem instance is treated. Finally, the patterns in
the historical data are used together with demand projections to generate realistic arrivals.

The Port of Antwerp has two banks that are reachable by different sets of locks. Each bank has a
main point of entry where the largest locks are situated. For the left bank, this is the Kieldrechtsluis. For
the right bank, they are the Berendrechtsluis and Zandvlietsluis. The algorithms designed in this work
are tailored to create lock schedules for a single lock with multiple chambers. Therefore, each bank is
reduced to its main entry point during experiments. By redirecting the traffic of the other locks towards
these main locks, the demand will become larger than in reality. This is by no means a simplification of
the problem. In addition, it resolves the problem with the closure of the Kieldrechtsluis as all the traffic
was redirected to the Kallosluis. These vessels are now redirected back to the Kieldrechtsluis.

Provided with this set of vessels that need to be processed by a lock, it is important to determine
a realistic moment for which the vessel requests to be scheduled in the lock. When using the realised
arrival times as input for the lock scheduling algorithms it becomes easy to generate a schedule. To
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Figure 4.1: Data analysis performed on the data­set provided by the Port of Antwerp containing all historical lockages of 2019.

prevent this, the times a vessel is arriving at the start of the Westerschelde is used instead. This will
spread out the vessels as they do not travel the river at an equal speed and requires the algorithms to
create a schedule by themselves.

Based on confidential yearly demand projections for the year 2030 and the hourly, daily and monthly
patterns in the historical data of 2019, it is possible to generate additional arrivals. These arrivals are
converted into a problem instance in the samemanner as explained for the historical arrivals. In addition
to the same patterns and the historical arrivals, it is possible to generate more problem instances similar
to historical 2019.

Each experiment will explain how many problem instances are generated and the duration of these
instances. Some experiments are faster than others and can create schedules for extended durations
of a few months up to a year. For others, this might not be feasible or useful. In addition to the number
of problem instances, each experiment states how the arrivals are ordered. It is possible to add vessels
in chronological ordering. However, sometimes this does not hold in practice and a random ordering
could be required.



5
Online lock scheduling

This chapter treats the online lock scheduling part of the research questions. First, three different online
lock scheduling algorithms are presented that use an abstraction of constant lockage duration to reduce
the number of interactions. Then, the applicability of a heuristic for the vessel placement sub­problem
is examined. Using this heuristic the run­time of the algorithms is analysed theoretically and empirically
on artificial instances. The algorithms will be compared with an exact offline algorithm on small problem
instances and relatively on realistic size problems. Finally, the trade­off between solution quality and
interactions with vessels is made by comparing the algorithms with an online algorithm that directly
creates detailed lock schedules.

5.1. Online lock scheduling algorithms
This section introduces three different online algorithms for the posed lock scheduling problem. It does
so, by first reiterating the different design constraints and explaining a framework in which the algorithms
have to operate. Then, the different algorithms are presented.

5.1.1. Lock scheduling framework
Information about a vessel comes available over time when a vessel arrives close to the Port. It is
therefore important to be able to decide on a single vessel. Algorithm 1 presents pseudo­code repre­
senting the framework in which all the algorithms will operate. During the first step, the lock scheduling
algorithms return a set of proposals to accommodate the vessel. Then, out of all the options, a single
proposal is selected. This is based on the objective function and the feasibility of the proposal regarding
other schedules at the port. Finally, the selected proposal has to be executed onto the lock schedule
to finalise it.

Algorithm 1 Framework for the online lock scheduling algorithms
Require: 𝑣𝑒𝑠𝑠𝑒𝑙, 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑇𝑖𝑚𝑒, 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛
𝑎𝑙𝑙𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 ← DetermineAllProposals(𝑣𝑒𝑠𝑠𝑒𝑙, 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑇𝑖𝑚𝑒, 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛)
𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙 ←SelectProposal(𝑎𝑙𝑙𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠)
ExecuteProposal(𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙)

Every proposal has to be evaluated before a selection can be made. It is trivial to determine the
objective difference regarding the lock schedule. However, when the algorithms are used in a simulation
of the complete port, this becomes more complex. It is therefore desirable to minimise the number
of interactions with vessels. This is achieved by assuming a constant lockage duration during the
scheduling phase. This allows the algorithms to add vessels to a lockage without the requirement of
interacting with each vessel in that lockage to ensure the new duration is fine by them. At the end of this
chapter, an experiment will be performed to analyse if this indeed reduces the number of interactions
with vessels. But during the other experiments, a constant lockage duration of 60 minutes is assumed.
This allows at least one vessel to be added to the lockage, have the lock move to the other direction
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and have some additional time left. The number of vessels in the lockage may require more time than
the constant lockage duration. During the conversion, sequential lockages are right­shifted to make
room for such lockages.

5.1.2. Lock scheduling algorithms
Two online scheduling algorithms are created which differ in their abilities to affect other vessels and
lockages than the vessel currently scheduled. Algorithm 2 presents the logic which each of these
algorithms shares. When a vessel cannot be allocated with the current arrival time, the algorithm will
delay the vessel and try again until at least a single solution is found. For a lockage to accommodate
a vessel, it must traverse in the right direction, the vessel must arrive before the start of a lockage and
the vessel placement sub­problem must be solved for the vessels already in the lockage together with
the currently scheduled vessel.

The difference between the two online scheduling algorithms are implemented in the feasibility
checks and explained as follows;

1. Default: This algorithm is not able to delay other lockages. A new lockage is therefore only
created if there is enough time between the predecessor and the successor. As the lockage
duration is assumed to be constant a vessel can always be added to a lockage if the vessel
placement sub­problem can be solved.

2. Non­Greedy: This algorithm extends the default algorithm and is allowed to delay other lockages.
Therefore it will always propose solutions for creating a lockage as it will push its successors onto
later in time.

Algorithm 2 Basic algorithm for the online lock scheduling algorithms.
Require: 𝑙𝑜𝑐𝑘𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒, 𝑣𝑒𝑠𝑠𝑒𝑙, 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑇𝑖𝑚𝑒, 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛
if 𝑙𝑜𝑐𝑘𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 is empty then

Propose to create lockage at 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑇𝑖𝑚𝑒
Return

end if

𝑙𝑜𝑐𝑘𝑎𝑔𝑒𝐵𝑒𝑓𝑜𝑟𝑒𝑉𝑒𝑠𝑠𝑒𝑙𝐴𝑟𝑟𝑖𝑣𝑎𝑙 ←DetermineLockageBeforeVesselArrival(𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑇𝑖𝑚𝑒)
𝑙𝑜𝑐𝑘𝑎𝑔𝑒𝐴𝑓𝑡𝑒𝑟𝑉𝑒𝑠𝑠𝑒𝑙𝐴𝑟𝑟𝑖𝑣𝑎𝑙 ←DetermineLockageAfterVesselArrival(𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑇𝑖𝑚𝑒)

if DoesLockageAccomodateVessel(𝑙𝑜𝑐𝑘𝑎𝑔𝑒𝐵𝑒𝑓𝑜𝑟𝑒𝑉𝑒𝑠𝑠𝑒𝑙𝐴𝑟𝑟𝑖𝑣𝑎𝑙, 𝑣𝑒𝑠𝑠𝑒𝑙) then
Propose to add vessel to 𝑙𝑜𝑐𝑘𝑎𝑔𝑒𝐵𝑒𝑓𝑜𝑟𝑒𝑉𝑒𝑠𝑠𝑒𝑙𝐴𝑟𝑟𝑖𝑣𝑎𝑙

end if

if DoesLockageAccomodateVessel(𝑙𝑜𝑐𝑘𝑎𝑔𝑒𝐴𝑓𝑡𝑒𝑟𝑉𝑒𝑠𝑠𝑒𝑙𝐴𝑟𝑟𝑖𝑣𝑎𝑙, 𝑣𝑒𝑠𝑠𝑒𝑙) then
Propose to add vessel to 𝑙𝑜𝑐𝑘𝑎𝑔𝑒𝐴𝑓𝑡𝑒𝑟𝑉𝑒𝑠𝑠𝑒𝑙𝐴𝑟𝑟𝑖𝑣𝑎𝑙

end if

if CanCreateLockageAfter(𝑙𝑜𝑐𝑘𝑎𝑔𝑒𝐵𝑒𝑓𝑜𝑟𝑒𝑉𝑒𝑠𝑠𝑒𝑙𝐴𝑟𝑟𝑖𝑣𝑎𝑙, 𝑣𝑒𝑠𝑠𝑒𝑙) then
Propose to create lockage after 𝑙𝑜𝑐𝑘𝑎𝑔𝑒𝐵𝑒𝑓𝑜𝑟𝑒𝑉𝑒𝑠𝑠𝑒𝑙𝐴𝑟𝑟𝑖𝑣𝑎𝑙

end if

if CanCreateLockageAfter(𝑙𝑜𝑐𝑘𝑎𝑔𝑒𝐴𝑓𝑡𝑒𝑟𝑉𝑒𝑠𝑠𝑒𝑙𝐴𝑟𝑟𝑖𝑣𝑎𝑙, 𝑣𝑒𝑠𝑠𝑒𝑙) then
Propose to create lockage after 𝑙𝑜𝑐𝑘𝑎𝑔𝑒𝐴𝑓𝑡𝑒𝑟𝑉𝑒𝑠𝑠𝑒𝑙𝐴𝑟𝑟𝑖𝑣𝑎𝑙

end if

if no proposal is created then
Delay vessel until end of 𝑙𝑜𝑐𝑘𝑎𝑔𝑒𝐴𝑓𝑡𝑒𝑟𝑉𝑒𝑠𝑠𝑒𝑙𝐴𝑟𝑟𝑖𝑣𝑎𝑙 and reschedule it

end if
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5.1.3. Local improvement
Online algorithms are known to make sub­optimal decisions due to incomplete knowledge about the
problem at the moment of decision making. To improve the quality of the resulting lock schedules,
a third algorithm is introduced. This algorithm is called Improved and uses the same logic as the
Non­Greedy algorithm. However, each proposal will be evaluated and if possible improved.

Figure 5.1: Example where the ordering in which vessels are added affect the number of lockages required to allocate all vessels.

Figure 5.1 shows that the ordering in which vessels are added to the lock schedule is important.
If the vessels are scheduled in another order there would only be two lockages required. The first
improvement aims to solve this problem. Whenever a new lockage is created for a single vessel, it
tries to find different subsets of the neighbours of that lockage that fit together.

Another method to correct sub­optimal decisions based on the ordering of arrivals is changing two
vessels based on their waiting time. When creating a new lockage for a vessel, it might be beneficial to
replace that vessel with another vessel in an earlier lockage. This will not be effective when the arrivals
are in chronological ordering. However, it allows revising the ordering in the schedule when the arrivals
are more randomly ordered.

5.2. The vessel placement sub­problem
Each of the online lock scheduling algorithms often has to solve the vessel placement sub­problem.
Due to the large variety of vessels arriving at the Port of Antwerp, it is not possible to represent the
capacity of the locks with an integer like some algorithms in the literature. TheMulti­Order Best­Fit (MO­
BF) heuristic is a state­of­the­art heuristic to solve this NP­hard problem [2]. It extends the commonly
used best­fit heuristics and derivatives by using different orderings in which the vessels are considered.
Examples of such orderings are based on width, length and area.

To assess the applicability of MO­BF for the lock scheduling situation at the Port of Antwerp, it is
compared with an exact algorithm that tries every possible permutation of the vessels. This is the
algorithm currently used by Macomi. The algorithms are compared on their ability to recreate historical
lockage and their run­time complexity.

5.2.1. Ability to recreate historical lockages
The algorithm used to solve the vessel placement sub­problem must create realistic results. This is
validated by reconstructing historical lockages. It is expected that a significant part of the lockages
can be reconstructed. The historical dataset with all the lockages of 2019 is used for this. It contains
14139 lockage of which 9126 transport only a single vessel. As these are trivially solvable given that
the dimensions are correct, they are omitted from the validation.

Table 5.1: Overview of the required safety buffer during the vessel placement problem based on the length of a vessel.

Vessel length (m) Safety buffer (m)

<80 5
<180 15
<250 20
≥250 30

To ensure safe operation of a lock, it is required to maintain buffers between vessels. Table 5.1
contains an overview of the safety buffers required in the vertical direction based on the length of
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a vessel. Additionally, it is important to have at least 13 meters in the horizontal direction to allow
tugboats to leave the lock. 39 lockages have been removed from the data­set as they contain one or
more vessels which width does not fit inside the lock with the buffer for the tugboats. In reality, these
lockages might have locked the tugboats along or managed to leave with a smaller safety distance.

Table 5.2 shows that both algorithms can recreate a significant proportion of the historical lockages.
The heuristic fails on 5 additional cases. Each of these cases were lockages with three or more vessels.
It is interesting to note that the exact algorithm is also not able to reconstruct every lockage.

Table 5.2: Results of the vessel placement sub­problem validation on historical lockages with two or more vessels in 2019.

Algorithm Solved Failed

Multi­Order Best­Fit 4810 (96,7%) 164 (3.3%)
Exact 4815 (96,8%) 159 (3.2%)

The experiment has been repeated for instances with at least three vessels and a gradually re­
duced safety buffer to mimic situations where the constraint is not enforced thoroughly. The results are
presented in Table 5.3. It shows that the algorithms can reconstruct more lockages when the buffers
are reduced. However, there remain a few lockages which both algorithms cannot solve even when all
buffers are removed. As there are only a few of such cases, they are treated as input errors with the
dataset.

Table 5.3: Results of the vessel placement sub­problem validation on historical lockages with three or more vessels in 2019 with
reduced safety buffers.

Safety buffer reduction (m) Failures of exact algorithm Failures of multi­order best­fit heuristic

0 79 (6.38%) 84 (6.78%)
1 49 (3.95%) 51 (4.12%)
2 34 (2.74%) 35 (2.82%)
5 13 (1.05%) 13 (1.05%)
10 4 (0.32%) 4 (0.32%)
15 4 (0.32%) 4 (0.32%)
20 3 (0.24%) 3 (0.24%)
25 2 (0.16%) 2 (0.16%)
30 2 (0.16%) 2 (0.16%)

5.2.2. Run­time analysis
The run­time of both algorithms is analysed as follows. First, the time required to solve all the historical
lockages is compared. Then a carefully constructed instance that can be indefinitely scaled is solved.
For these experiments, the implementation of Imahori and Yagiura [25] is used. It has a theoretical
run­time complexity of 𝒪(𝑛 log𝑛) due to the usage of a heap and a doubly­linked list to represent the
skyline. All experiments are run on Windows 10 with an Intel i7 processor and 12GB of RAM and are
implemented in C#.

Figure 5.2 shows the run­time of both algorithms for solving all historical lockages ten times. The
ordering in which the vessels were provided to the algorithms is randomly shuffled. The results are
presented per lockage size. It is clear that the algorithms are competitive for problems with 4 or fewer
vessels. For larger lockages, the heuristic can find a solution faster.

In addition to the historical lockages, the algorithms are also compared on a problem that required
the MO­BF heuristic to perform all its possible actions. It consists of three vessels of 3x2 and 2 vessels
of 1x3. No buffers are assumed. As depicted in Figure 5.3, provided with a lock of 5x6, the algorithm
completely fills the lock with vessels (grey) and wasted space (orange). It is therefore possible to
increase the problem size by stackingmultiple problems onto each other. This is achieved by increasing
the length of the lock and adding more vessels with the same ratios. This is relevant for the case when
the demand on the locks increases or when the barges are added to the simulation.
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Figure 5.2: Run­time of the different algorithms for the vessel placement sub­problem on historical lockages.

The MO­BF heuristic can solve problems with up to 140 vessels within a millisecond. However, the
exact algorithm requires between 4 and 5 seconds for problems with 10 vessels.

Figure 5.3: Example of the smallest problem instance of the empirical run time analysis for the vessel placement sub­problem.

5.3. Theoretical run­time analysis
Provided with the state­of­the­art heuristic to solve the vessel placement sub­problem it is possible to
determine the theoretical run­time analysis of the algorithms. This starts with the basic algorithm and
more details, including the local improvements, are added throughout this section. Then the run­time
of the evaluation of the proposals and the execution of the selected proposal is analysed.
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5.3.1. Creating proposals
The input of this algorithm consists of 𝑛 vessels. In the worst case, each vessel is placed in its lockage
causing 𝑛 lockages. The pointers to each lockage in a linked list per chamber are stored in a self­
balancing tree based on their start time. This allows the lockage after the arrival time to be determined
with a run­time complexity of 𝒪(log𝑛). The neighbours of this lockage can be retrieved in constant
time.

The multi­order best­fit heuristic has a run­time of 𝒪(𝑘 log 𝑘) with 𝑘 being the number of vessels in
a lockage. In theory, every vessel could fit inside a lockage. However, as this is in practice lower we
use 𝑘 as the maximum number of vessels that can fit inside a lock.

Creating a new lockage only requires validating that enough time is between the predecessor and
successor. Both lockages can be retrieved in constant time after the retrieval of the lockage after the
vessel arrival due to the linked list.

The run­time complexity of the algorithm without recursion is 𝒪(𝑙𝑜𝑔𝑛 + 𝑘𝑙𝑜𝑔𝑘). In the worst­case,
each vessel arrives at the same time and in the same direction causing the algorithm to execute 2𝑛
recursive calls. This results in 𝒪(𝑛𝑙𝑜𝑔𝑛 + 𝑛𝑘𝑙𝑜𝑔𝑘). Finally, in the cases where a lock schedule for
an extended period is created, we can assume that 𝑘 << 𝑛 and the run­time complexity for the basic
algorithm is reduced to 𝒪(𝑛𝑙𝑜𝑔𝑛).

The aforementioned run­time complexity holds for the Default algorithm. However, the Non­Greedy
algorithm can delay an arbitrary number of lockages. Delaying a lockage is similar to determining the
possibility of adding a new lockage in terms of checks. It can thus be performed in constant time. The
run­time complexity of the algorithm without recursion is therefore changed into 𝒪(𝑛 + 𝑙𝑜𝑔𝑛 + 𝑘𝑙𝑜𝑔𝑘).
Using the same number of recursive calls and the assumption about 𝑘 results in a run­time complexity
for the Non­Greedy algorithm of 𝒪(𝑛2).

5.3.2. Local improvement
The previous subsection provided a run­time complexity analysis for the Default and Non­Greedy al­
gorithms. The Improved scheduler requires a different analysis because of its method of adapting
existing proposals. For the following analysis, it is assumed that the number of returned proposals by
the Non­Greedy algorithm can be limited by the constant 𝐺.

Algorithm 3 provides a detailed description of the first local improvement which combines three
lockages into two. The predecessor of the new lockage is retrieved in 𝒪(𝑙𝑜𝑔𝑛) from the self­balancing
tree. Provided with this lockage it is possible to retrieve the next two lockages in the same direction
in constant time. This is due to the linked list and the fact that a neighbouring lockage in the same
direction is at a maximum distance of two lockages.

Every vessel in the first predecessor that could arrive before the start of the second predecessor
can be selected in 𝒪(𝑘) due to a hash­map with the earliest arrivals of each vessel. In the worst case,
every vessel in the predecessor and the arriving vessel could arrive before the predecessor of the
predecessor. This results in 𝒪(2𝑘 + 1) = 𝒪(𝑘) vessels of which 𝒪(2𝑘) subsets can be created. For
each subset, it is determined if the multi­order best­fit heuristic can place all the arrivals in the chamber
which takes 𝒪(𝑘𝑙𝑜𝑔𝑘). The same applies to the complement of the subset. Therefore the total run­time
complexity of this local improvement is 𝒪(𝐺2𝑘𝑘𝑙𝑜𝑔𝑘 + 𝐺𝑙𝑜𝑔𝑛).

The second local improvement requires less effort to analyse and is provided in pseudo­code in
Algorithm 4. Again the predecessor in the same direction of the new lockage gets retrieved in 𝒪(𝑙𝑜𝑔𝑛).
Then, for every vessel inside the predecessor, it is determined if the arriving vessel can be replaced
with it. All this requires is performing the multi­order best­fit heuristic for 𝒪(𝑘) times. Therefore the total
run­time complexity of this local improvement is 𝒪(𝐺𝑘2𝑙𝑜𝑔𝑘 + 𝐺𝑙𝑜𝑔𝑛).

The local improvements are executed once for every arriving vessel. Therefore the run­time com­
plexity of the Improved lock scheduling algorithm is𝒪(𝑛2+𝑛𝐺2𝑘𝑘𝑙𝑜𝑔𝑘+𝑛𝐺𝑙𝑜𝑔𝑛+𝑛𝐺𝑘2𝑙𝑜𝑔𝑘+𝑛𝐺𝑙𝑜𝑔𝑛) =
𝒪(𝑛2+𝑛𝐺2𝑘𝑘𝑙𝑜𝑔𝑘). To conclude, a summary of all the run­time complexity results to create a schedule
with 𝑛 vessels is presented in Table 5.4.

5.3.3. Evaluation of proposals
During the simulation, selecting which action to execute depends on more than an objective function
evaluation. The feasibility and objective function differences for the other schedules in the port need
to be evaluated. A backtracking algorithm is used to find a feasible path for every vessel across the
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Algorithm 3 Pseudo­code of local improvement which reduces three lockages into two.
Require: 𝑙𝑜𝑐𝑘𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒, 𝑣𝑒𝑠𝑠𝑒𝑙, 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑇𝑖𝑚𝑒, 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛
𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟←DetermineLockageBeforeVesselArrival(𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑇𝑖𝑚𝑒)
𝑓𝑖𝑟𝑠𝑡𝐼𝑛𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛←DeterminePredecessorInDirection(𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟, 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛)
𝑠𝑒𝑐𝑜𝑛𝑑𝐼𝑛𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛←DeterminePredecessorInDirection(𝑓𝑖𝑟𝑠𝑡𝐼𝑛𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛, 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛)

𝑣𝑒𝑠𝑠𝑒𝑙𝑠←𝑠𝑒𝑐𝑜𝑛𝑑𝐼𝑛𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛.𝑉𝑒𝑠𝑠𝑒𝑙𝑠 ∪ 𝑓𝑖𝑟𝑠𝑡𝐼𝑛𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛.𝑣𝑒𝑠𝑠𝑒𝑙𝑠 ∪ 𝑣𝑒𝑠𝑠𝑒𝑙
𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑉𝑒𝑠𝑠𝑒𝑙𝑠←DetermineAllVesselsWhichCanArriveAt(𝑣𝑒𝑠𝑠𝑒𝑙𝑠, 𝑠𝑒𝑐𝑜𝑛𝑑𝐼𝑛𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛)
for each 𝑠𝑢𝑏𝑠𝑒𝑡 ⊂ 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑉𝑒𝑠𝑠𝑒𝑙𝑠 do

if not MultiOrderBestFit(𝑠𝑢𝑏𝑠𝑒𝑡) then
Continue

else if not MultiOrderBestFit(𝑣𝑒𝑠𝑠𝑒𝑙𝑠 ⧵ 𝑠𝑢𝑏𝑠𝑒𝑡) then
Continue

else
Propose to create lockage with subset and another with its complement

end if
end for

Algorithm 4 Pseudo­code of local improvement which swaps two vessels to reduce the tardiness.
Require: 𝑙𝑜𝑐𝑘𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒, 𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔𝑉𝑒𝑠𝑠𝑒𝑙, 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑇𝑖𝑚𝑒, 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛
𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟←DetermineLockageBeforeVesselArrival(𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑇𝑖𝑚𝑒)
𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝐼𝑛𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛←DeterminePredecessorInDirection(𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟, 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛)
for each 𝑣𝑒𝑠𝑠𝑒𝑙 ∈ 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝐼𝑛𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 do

𝑣𝑒𝑠𝑠𝑒𝑙𝑠←𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝐼𝑛𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ∪ 𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔𝑉𝑒𝑠𝑠𝑒𝑙 ⧵ 𝑣𝑒𝑠𝑠𝑒𝑙
if MultiOrderBestFit(𝑣𝑒𝑠𝑠𝑒𝑙𝑠) then

Propose to swap 𝑣𝑒𝑠𝑠𝑒𝑙 with 𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔𝑉𝑒𝑠𝑠𝑒𝑙
end if

end for

different restricting elements. As this pathfinding algorithm will dominate the run­time of the evaluation,
the run­time complexity analysis of the lock schedule proposal evaluation is omitted.

5.3.4. Execution of proposal
A lock schedule consists of various data structures to allow the efficient execution of operations. This
is a trade­off between memory and run­time complexity. As stated earlier a self­balancing tree is used
to store pointers to lockages in a linked list based on their start time. Additionally, there are hash maps
used to point to the same pointers based on the lockage and vessel identifiers.

A proposal consists of different actions which have to be performed on the lock schedule. During
the following analysis of these actions, it is assumed that the key­value pairs of the hash­maps are well
distributed. This allows the assumption of constant time complexity for every operation on them.

1. Create new lockage, 𝑙, at time 𝑡: (𝒪(𝑙𝑜𝑔𝑛)) First, the lockage before time 𝑡 has to be retrieved
from the self­balancing tree which takes 𝒪(𝑙𝑜𝑔𝑛) time. The new lockage is in constant time added
to the linked list. Finally, the linked list element is added to the self­balancing tree again in 𝒪(𝑙𝑜𝑔𝑛)
time.

2. Add vessel, 𝑣, to lockage 𝑙: (𝒪(1)) The usage of the hash­map allows to retrieve the lockage
in constant time. Adding the vessel to the lockage object and the hash­map connecting vessels
with lockages also takes constant time.

3. Remove vessel, 𝑣, from current lockage: (𝒪(1)) The lockage of the vessel is retrieved in con­
stant time from the hash­map. Removing the vessel to the lockage object and the hash­map
connecting vessels with lockages also takes constant time.

4. Update the duration or start time of lockage 𝑙: (𝒪(1)) The mentioned attributes are values
stored in the lockage which can be retrieved in constant time. The feasibility of such changes can
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Table 5.4: Summary of the run­time complexity analysis results to create a schedule with 𝑛 vessels by the online lock scheduling
algorithms.

Algorithm Run­time complexity

Default 𝒪(𝑛𝑙𝑜𝑔𝑛)
Non­Greedy 𝒪(𝑛2)
Improved 𝒪(𝑛2 + 𝑛𝐺2𝑘𝑘𝑙𝑜𝑔𝑘)

be determined in constant time by comparing the times of the neighbours.

As a lockage never gets removed, every proposal creates a single new lockage for the arriving
vessel. This happens for a maximum op 𝑛 times. Therefore the time complexity of the execution of the
proposals throughout the complete simulation is 𝒪(𝑛𝑙𝑜𝑔𝑛).

5.4. Empirical run­time analysis
In this section, the theoretical run­time analysis of the previous section is validated. When analysing
the run­time there are two instance characteristics of interest; the inter­arrival time controls how close
the vessel arrive at each other and the plannings horizon determines over which period vessels are
arriving. Both control the number of vessels and thus the amount of work the algorithms are required
to perform. During the following experiments, the influence of these parameters on the run­time of the
online lock scheduling algorithms is analysed.

To gain precise control over the relevant parameters, arrivals are generated for the following exper­
iments. Arrivals will be sampled from a Poisson process. The dimensions of a vessel are uniformly
random selected from any vessel in the 2019 data­set. The values for the parameters during the exper­
iments are presented in Table 5.5 and are based on the data analysis on historical lockages. Arrivals
are generated for both a single and double chamber lock. The dimensions are similar to those of the
main entry points of the left and right bank respectively.

With these parameters, 25 instances will be generated for each parameter combination. Because
each instance is a realisation of a random process the number of vessels per instance is not fixed.
Therefore the run­time divided by the number of vessels is reported. The algorithms will solve every
instance in both a chronological ordering and with 10 random arrival orders. All experiments are run
on windows 10 with an Intel i7 processor and 12GB of RAM and are implemented in C#.

The framework for the online lock scheduling algorithms requires an objective function to select the
best proposal. During these experiments, this objective is based on the summed waiting time objective
function. Exact weights for each of these components are irrelevant for the run­time. No significant
differences have been observed when the experiment is repeated with different objective functions and
weights.

Table 5.5: Parameters with their default value and range for the run­time analysis of the online lock scheduling algorithms.

Parameter Unit Default value Range

Inter arrival time hours 0.6 [0.3, 0,35, 0.4, 0.45, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
Horizon days 2 [1, 2, 4, 8, 16, 32, 64, 128, 256]

5.4.1. Hypothesis
It is expected that increasing the horizon will cause a polynomial growth in the run­time for every algo­
rithm. This is caused by maintaining the different data structures of the lock schedule. Increasing the
horizon will cause these data structures to grow.

When the inter­arrival time decreases, vessels arrive closer to each other. This increases the num­
ber of possibilities to combine vessels inside a lockage. All algorithms are expected to have an increase
in run­time due to the additional vessels. However, the additional vessel combination is expected to
have a more severe impact on the Non­Greedy and especially the Improved algorithm. This is because
these algorithms have the possibilities to move already placed vessels.
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The parameters of the problems are equal for both locks. It is expected that instances with the
single chamber lock require more time to be solved. Provided with an equal amount of vessels, a
single chamber becomes more crowded as there is less room to spread the arriving vessels. This
causes the algorithms to combine vessels more often together. Similarly, it is expected that a random
ordering takes more time compared to the chronological ordering as there are more lockages to correct.

5.4.2. Results
Figures 5.4 and 5.5 show the run­time of the algorithms on the generated instances on the instances
with both a single and a double chamber lock. The trends in the results are similar for both graphs.

Decreasing the inter­arrival time increases the run­time of the algorithms. This is especially no­
ticeable for the improved algorithm. Increasing the horizon of the experiment increases the run­time
linearly for all algorithms. In addition, it is clear that chronological arrivals are beneficial in terms of
run­time in comparison with random arrival orderings.

Figure 5.4: Run­time of the online lock scheduling algorithms on artificial instances with a single chamber. Default values for the
inter­arrival time and the horizon are 0.6 hours and 2 days respectively.

5.5. Comparison with exact lock scheduling algorithms
Three different algorithms for the unexplored online lock scheduling problem are introduced in the
previous sections. Their run­time is analysed compared to each other. However, to determine their
ability to create lock schedules of high quality it is important to have a fixed baseline. In this section, an
exact offline algorithm is used to find the optimal solution for small problem instances. The algorithms
are compared on their relative objective difference with the optimal solution. First, the used exact
algorithm and the adaptions made to it are explained. Then, the experimental setup is presented
and some considerations regarding the objective function are discussed. The hypothesis is presented
before the results are provided.

5.5.1. Exact offline algorithm
Verstichel et al. [8] present a mixed­integer linear program (MILP) to solve the lock scheduling problem
with a single lock of multiple chambers to optimality. Ji et al. [26] extend this MILP formulation to
include sequential lock movements and perform an interesting comparison between two formulations
regarding lock chambers. Verstichel et al. classify chambers by their characteristics (e.g. length, width
and lockage duration) into a type. Then lockages are created for each type and each lockage needs
to be assigned to a physical chamber. Experiments showed that this makes sense when there are
several chambers of the same type but it actually increases the computational complexity of the model
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Figure 5.5: Run­time of the online lock scheduling algorithm on artificial instances with two chambers. Default values for the
inter­arrival time and the horizon are 0.6 hours and 2 days respectively.

by introducing additional variables if each chamber is unique. In the case of the port of Antwerp, all the
locks have different dimensions. Therefore the modifications mentioned by Ji et al. are applied.

As barges are not included in the experiments there is no possibility for vessels to moor onto each
other. Therefore the variables𝑚𝑙𝑖𝑗 and𝑚𝑟𝑖𝑗 which represent that vessel 𝑖 and 𝑗 are moored left or right
onto each other can be replaced with 𝑚𝑙𝑖. This variable indicates if the vessel is moored onto the left
quay of the lock. In the case this is not true, the vessel is moored onto the right quay. This reduces the
number of variables from 𝒪(𝑛2) into 𝒪(𝑛).

In addition, it is required to replace the constraints A.14 ­ A.31 and A.44 ­ A.61. Just like in the
referenced paper, only the changes for the upstream vessel are presented for conciseness. However,
the same applies to the downstream vessels. Equation (5.1) and Equation (5.2) ensure that the x
coordinates of the vessels are fixed by the side of the lock they are moored to.

𝑥𝑖 ≤ (1 −𝑚𝑙𝑖)𝑊 ∀𝑖 ∈ 𝑁 (5.1)

𝑥𝑖 +𝑤𝑖 ≥ (∑
𝑘∈𝑀𝑡

𝑓𝑖𝑘 −𝑚𝑙𝑖)𝑊𝑡 ∀𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇𝑌𝑃𝐸𝑆 (5.2)

Finally, there are several constraints that can be dropped as they do not apply to the lock scheduling
practices assessed in this work. Constraints A.9 and A.39 are omitted because the draught of a vessel
is not considered in the lock schedule. The same applies to tide windows. Therefore constraints A.66
& A.67 are omitted. Additionally, it is assumed that the duration of a lockage is constant by the online
scheduling algorithms. Constraint A.70 is therefore omitted.

The complete model including downstream ships is added in Appendix A.

5.5.2. Experiment setup
From the historical dataset, a continuously increasing sequence of arrivals is randomly selected until
solving the problems becomes infeasible within a practical time limit of 12 hours. For each problem
size, 10 instances are created for the exact algorithm. From these instances, 10 additional instances
are created for the online lock scheduling algorithms by shuffling the arrival order randomly.

The objective function of the MILP presented by Verstichel et al. only considers the waiting time and
the number of lockages containing a vessel. The formulation of Ji et al. does not consider the number of
lockages at all. However, in the lock scheduling problem treated in this work, it is considered important
to include both filled and empty lockages.
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The scheduling part of both formulations is based on the work of Balakrishnan et al. [27]. In this
work, it is noticed that other formulations based on the vehicle routing problem could be used to adjust
the meaning of 𝑠𝑒𝑞𝑘𝑙 such that it is only set to 1 iif lockage 𝑘 is directly processed before lockage 𝑙. This
could be used to determine the number of empty lockages. However, it would also require significantly
more variables and constraints to be added. To prevent increasing the complexity of the model further,
it is opted to omit counting the empty lockages during this experiment.

During the following experiments, only the summed waiting time objective function is used. The
squared waiting time objective function cannot be used as it would destroy the linear properties of the
formulation. The different weights for the objective function components are listed in Table 5.6.

Table 5.6: Overview of the different objective weights used in the exact lock scheduling experiments.

Identifier Total waiting time Maximum waiting time Number of lockages

Equal objective 1 1 1
Waiting time only 1 1 0
Realistic objective 1 2 30
Lockage only 0 0 1

5.5.3. Hypothesis
Based on the run­times of the exact algorithm reported in the literature it is expected that the run­timewill
increase exponentially with an increasing problem size in terms of the number of vessels. In addition,
it is expected that the run­time is significantly large compared to the online lock scheduling algorithms.
The final hypothesis regarding the exact lock scheduling algorithm on its own is that the problems with
the lockage only objective function are solved in less time compared to the other objective functions.
This is because it requires only solving the vessel placement sub­problem without actual scheduling.
It is possible to let every lockage start after the arrival of the final vessel.

Compared to the online lock scheduling algorithms it is expected that the exact algorithm always
finds a solution with an equal or better objective evaluation. Finally, it is expected that the Improved
online lock scheduling algorithm finds better solutions compared to the Non­Greedy and Default algo­
rithms.

5.5.4. Results
The experiment with the exact lock scheduling algorithm has been performed on a virtual machine
using Ubuntu 20.04.2 LTS, a dual­core processor and 32GB of RAM. The model is implemented in C#
using the state­of­the­art CP­SAT hybrid solver from Google OR­Tools [28]. The results of the run­time
analysis are listed in Appendix B and support the hypothesis that the algorithm is too slow for online
lock scheduling. Within the time limit, the algorithm is able to solve problems up to 10 and 19 vessels
for the left and right bank respectively. In addition, the model has also been solved using the Google
OR­Tools supported MIP solver, SCIP. However, the observed run­time was higher compared to the
CP­SAT hybrid solver.

Figures 5.6 to 5.9 shows the relative objective of the online algorithms compared to the optimal
objective value. In addition, it also shows the relative values of every objective component. The first
thing to notice is that all but the lockage only objective results in the same solutions. This holds for
both the left and the right bank and for every online algorithm. In subsequent experiments comparing
the online algorithms by themselves, it will become apparent that the currently used problem instances
are too small for differences based on the objective function.

The Non­Greedy and Improved algorithms use fewer lockages compared to the optimal solution.
However, their waiting time is higher. Also, the algorithms do not differ in objective function often. This
is again attributed to the problem size.

Comparing the algorithms on the problem with a lockage only objective shows that the non­greedy
and improved algorithms are good at minimising the number of lockages. This is especially true in the
case of two locks.
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Figure 5.6: Comparison of the online algorithms with the optimal solution on small realistic problem instances on the left bank.
The objective function is to minimise the total waiting time, the maximum waiting time and the number of lockages with equal
waits.

Figure 5.7: Comparison of the online algorithms with the optimal solution on small realistic problem instances on the left bank.
The objective function is to minimise the total waiting time and the maximum waiting time.
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Figure 5.8: Comparison of the online algorithms with the optimal solution on small realistic problem instances on the left bank.
The objective function is to minimise the total waiting time, the maximum waiting time and the number of lockages.

Figure 5.9: Comparison of the online algorithms with the optimal solution on small realistic problem instances on the left bank.
The objective function is to minimise the number of lockages.
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Figure 5.10: Comparison of the online algorithms with the optimal solution on small realistic problem instances on the right bank.
The objective function is to minimise the total waiting time, the maximum waiting time and the number of lockages with equal
waits.

Figure 5.11: Comparison of the online algorithms with the optimal solution on small realistic problem instances on the right bank.
The objective function is to minimise the total waiting time and the maximum waiting time.
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Figure 5.12: Comparison of the online algorithms with the optimal solution on small realistic problem instances on the right bank.
The objective function is to minimise the total waiting time, the maximum waiting time and the number of lockages.

Figure 5.13: Comparison of the online algorithms with the optimal solution on small realistic problem instances on the right bank.
The objective function is to minimise the number of lockages.

5.6. Relative lock scheduling comparison
The exact algorithm is not able to solve problem instances of realistic sizes within a reasonable time
limit. On these small instances, no significant differences are noticeable between the Non­Greedy and
Improved algorithms. Therefore the online lock scheduling algorithms are compared on large problems
which the exact algorithm cannot solve. In this section, first, the experimental setup is explained. Then
the hypothesis is provided before the results are presented.

5.6.1. Experiment setup
The experiments are performed with 15 different sets of arrivals and departures based on the arrivals
of 2019. Each set produces 10 random and one chronological arrival orderings. The length of each
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instance is a complete year. Instances are created for each bank.
During the experiments both the summed waiting time and the squared waiting time objective func­

tions are used. For the squared objective function, the weight of the number of lockages is increased.
The summed waiting time objective function has two experiments. First, the weight of the maximum
waiting time is increased while the weight of the total waiting time and the number of lockages is set to
1 and 30 respectively. Then the weight of the lockages is increased with the weight of the total waiting
time set at 1 and the maximum waiting time at 2. Both these objectives are similar to the realistic ob­
jective function as introduced during the experiment with the exact algorithm. However, this time the
empty lockages are also included.

5.6.2. Hypothesis
Because scheduling vessels in chronological ordering is a good heuristic for a schedule with little waiting
time, it is expected that all the algorithms perform better when the arrivals are chronological.

The distinction between the Default and the other algorithm observed during the comparison with the
exact algorithm is expected to continue. In addition, due to the larger problem instances, it is expected
that the Improved algorithm creates better solutions in comparison with the Non­Greedy algorithm.

Regarding the weights of the objective function components, it is expected that increasing the weight
of the number of lockages will reduce them. This will cause an increase in the average and maximum
waiting time. In addition, increasing the weight of the maximum waiting time will increase the average
waiting time. No effect on the number of lockages is expected as a new lockage is not contributing
towards reducing the maximum waiting time.

5.6.3. Results
The results of the experiments with the realistic objective function are depicted in Figures 5.14 to 5.17.
Increasing the weight of the maximum waiting time causes a small increase in the number of lockages.
However, it creates a lock schedule where the maximum waiting time is drastically reduced while the
average waiting time remains relatively constant. This trend applies to both banks and the Non­Greedy
and Improved algorithms. The Default algorithm results in schedules with extreme maximum waiting
times and is not shown in the graph.

Increasing the weight of the number of lockages with the same objective function causes both the
average and maximum waiting time to increase. When the number of lockages is drastically reduced
compared to the schedule with a low weight, the average waiting time starts to rise quickly. Again, the
Default algorithm is not competitive with the other two algorithms in terms of average and maximum
waiting time.

Figures 5.18 and 5.19 shows the results of the squared objective function where the weight of the
number of lockages is increased. The same trends as with the realistic objective function are present.
However, this time the average waiting time increases harder and the maximum waiting time remains
less compared to the other objective function. In addition, the weight of the number of lockages must
be relatively high to reach a similar number of lockages as the realistic objective function.

For every objective function, it holds that the Non­Greedy and Improved algorithm have a lower
average waiting time and user number of lockages when the ordering of vessels is random. However,
the maximum waiting time is larger compared to the chronological ordering. These two algorithms
always perform better than the Default algorithm. The Improved algorithm also outperforms the Non­
Greedy algorithm. It is especially good at reducing the number of lockages.
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(a) Chronological ordering (b) Random ordering

Figure 5.14: Relative comparison of the online lock scheduling algorithms on realistic instances with the realistic objective function
for the left bank where the weight of the maximum waiting time is increased.

(a) Chronological ordering (b) Random ordering

Figure 5.15: Relative comparison of the online lock scheduling algorithms on realistic instances with the realistic objective function
for the right bank where the weight of the maximum waiting time is increased.

(a) Chronological ordering (b) Random ordering

Figure 5.16: Relative comparison of the online lock scheduling algorithms on realistic instances with the realistic objective function
for the left bank where the weight of the number of lockages is increased.

(a) Chronological ordering (b) Random ordering

Figure 5.17: Relative comparison of the online lock scheduling algorithms on realistic instances with the realistic objective function
for the right bank where the weight of the number of lockages is increased.
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(a) Chronological ordering (b) Random ordering

Figure 5.18: Relative comparison of the online lock scheduling algorithms on realistic instances with an objective function where
individual waiting times are squared for the left bank.

(a) Chronological ordering (b) Random ordering

Figure 5.19: Relative comparison of the online lock scheduling algorithms on realistic instances with an objective function where
individual waiting times are squared for the right bank.

5.7. Comparison between detailed and abstracted scheduling
In Section 5.1 three online lock scheduling algorithms are presented. It is argued that using a constant
lockage duration during scheduling is justified. Arguments for this are the reduced number of interac­
tions with vessels which reduces the complexity of a simulation. Additionally, it is expected that the
quality of the lock schedule is not severely affected when converted into a detailed schedule afterwards.

In this section, experiments are performed to evaluate these claims. We first introduce an online
lock scheduling algorithm that does not make this simplifying assumption. A method of converting an
abstract lock schedule into a detailed lock schedule is presented. Then both detailed and abstracted
algorithms will solve problem instances and the results are compared based on the objective function
and the number of times interaction with a vessel is required.

5.7.1. Detailed online lock scheduling algorithm
Similar to the abstract online lock scheduling algorithm, the detailed algorithm has to provide different
proposals for an arriving vessel. Therefore, the detailed algorithm is based on the same logic as the
abstract algorithms. The Improved algorithm is adapted to use the actual lockage duration based on
the vessels inside the lockage. This introduces additional complexity to the calculation as it is possible
for the first vessel to enter the chamber before the second vessel arrives.

5.7.2. Converting an abstract lock schedule
When scheduling with a constant lockage duration, the algorithms often create lockages that will take
more time in reality. Therefore an abstract schedule must be converted into a detailed schedule. A
simplistic approach, which does no additional optimisation, is the following push­back method.

1. Create an empty detailed lock schedule.

2. Starting at the first lockage in the abstract schedule, the actual lockage duration is determined
based on the vessels allocated.



5.7. Comparison between detailed and abstracted scheduling 33

3. Based on the predecessor in the detailed lock schedule and the vessels inside the lockage, the
earliest start­time of the lockage is determined.

4. A new lockage is added to the detailed lock schedule with the updated start time and duration.

5. The conversion continues with the next lockage in the abstract schedule at step 3.

Note that using this method, lockage gets pushed back towards a later start time if a lockage turns
out to use more than the time anticipated. However, the contrary is also true; when a lockage takes
less time than scheduled, the sequential lockage could start earlier if the vessels are able to arrive at
that moment.

5.7.3. Experiment setup
During the experiments, both the abstract and detailed online lock scheduling algorithms schedule all
the arrivals. The schedule of the abstract algorithms is converted according to the push­back method.
Each vessel requires 10 minutes to enter and another 10 minutes to exit the lock in the final detailed
schedules. Instances are based on three months of historical arrivals and one month of generated
arrivals for 2030.

25 instances with random arrival orderings are generated per bank and year of arrivals in addition
to chronological arrivals. The constant lockage duration is varied for the abstract algorithms. Each
instance is solved using three objective functions. The realistic and waiting time only objective func­
tions are selected from the experiment with the exact algorithm. In addition, the squared waiting time
objective of the relative comparison is used with a weight of 900 for the number of lockages. This is
roughly similar to 30 minutes additional delay, depending on the number of vessels getting delayed.
The objective of optimising solely the number of lockages is omitted as it is not realistic and does not
vary depending on the constant lockage duration.

Because the detailed schedule contains a starting time of a vessel, a vessel could arrive before
another vessel is able to reach the lock. It is therefore not possible to use the start time of a lockage as
the reference for the waiting time. During these experiments, the waiting time is replaced with tardiness.

During each step of the process of creating a detailed lock schedule, it is counted how often a
vessel would have been questioned. The interactions are counted during both the evaluation of every
proposal, the execution of the selected proposal and during the conversion of an abstract schedule into
a detailed one. During the following operations, the number of vessels inside that lockage is counted.

1. Adding a vessel to a lockage

2. Changing the start time of a lockage

3. Changing the duration of a lockage

5.7.4. Hypothesis
Based on the earlier made assumption, it is expected that the abstract algorithms require significantly
fewer interactions while still providing results of similar quality. As mentioned, the objective function
is not a perfect measurement of the quality of a lock schedule. This is especially true when squaring
individual waiting times. A small increase in the total waiting time could result in a significant objective
difference. It is therefore that besides the objective function, this comparison is also made based on
the average and maximum waiting time combined with the number of lockages.

5.7.5. Results
Figures 5.20 and 5.21 show the relative objective, its components and the number of interactions of the
abstract algorithms compared to the detailed algorithm when using the realistic objective function. The
improved abstract algorithms performs best and therefore its results are listed. The optimal relative
objective is achieved with a constant lockage duration between 50 and 55 minutes. It reduces the
interactions with between 32 and 40% while increasing the average waiting time with 11 and 15%.
Figures 5.22 and 5.23 and Figures 5.24 and 5.25 show the same results when using the squared
and waiting time only objective functions respectively. Table 5.7 summaries the results and shows the
relative differences for the optimal constant lockage duration.
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The trends are similar for every objective function. When the constant lockage duration increases
the relative total and maximum tardiness increases. However, the number of lockages decreases.
This is because when scheduling lockages with a long duration, more vessels can be added to it.
Interestingly, even in the case that the number of lockages was not included, the abstract algorithms
tend to use fewer lockages compared to the detailed algorithm.

Table 5.7: Overview of the optimal constant lockage duration, the relative number of interactions and the different objective
components for different objective functions with the improved abstract algorithm.

Objective
function

Optimal constant
lockage duration

(min)

Relative
objective
function

Relative
number of
interactions

Relative
average
tardiness

Relative
maximum
tardiness

Relative
number of
lockages

Realistic 50­56 1.03­1.05 0.60­0.68 1.10­1.15 1.13­1.30 0.89­0.92
Squared 54­58 1.12­1.17 0.61­0.68 1.08­1.13 1.08­1.21 0.94­0.97
Waiting time only 44­48 1.05­1.07 0.58­0.65 0.98­1.02 1.00­1.15 0.93­0.97

5.8. Summary
This chapter introduced a framework for online lock scheduling algorithms. Three algorithms based
upon this framework are presented and compared on their run­time and solution quality. The assump­
tion that a constant lockage duration reduces the interactions while having a limited impact on the lock
schedule quality is validated.

There are differences in the run­time of the algorithms. However, each of them shows the same
trends with a varying inter­arrival time and plannings horizon. In addition, the run­time remains within
a few milliseconds per arrival. This would be a negligible part of a simulation for the complete Port of
Antwerp.

Compared to an offline exact lock scheduling algorithm, the online algorithms are extremely fast and
competitive on the lock schedule quality. Often, the algorithms result in fewer lockages and a slightly
higher average and maximum waiting time.

The Improved algorithm outperforms the other two algorithms on realistic problem instances with
different objective functions. The Default algorithm is by no means competitive with the other two
algorithms. Different objective functions result in lock schedules with different characteristics.

Experiments with both a constant and a detailed lockage duration show a predictable reduction in
interactions per constant lockage duration. There is a small increase in the average tardiness and
a decrease in the number of lockages. Especially, the maximum tardiness increases when using a
constant lockage duration. The experiments also show that none of the objective functions is a perfect
proxy of the lock schedule quality.
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Figure 5.20: Relative objective and fraction of interactions required for the abstract algorithms compared to the detailed online
lock scheduling algorithm using the realistic objective function.

Figure 5.21: Relative objective components of the resulting schedules of the abstract algorithms compared to the detailed online
lock scheduling algorithm using the realistic objective function.
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Figure 5.22: Relative objective and fraction of interactions required for the abstract algorithms compared to the detailed online
lock scheduling algorithm using the squared objective function.

Figure 5.23: Relative objective components of the resulting schedules of the abstract algorithms compared to the detailed online
lock scheduling algorithm using the squared objective function.



5.8. Summary 37

Figure 5.24: Relative objective and fraction of interactions required for the abstract algorithms compared to the detailed online
lock scheduling algorithm using the squared waiting time only function.

Figure 5.25: Relative objective components of the resulting schedules of the abstract algorithms compared to the detailed online
lock scheduling algorithm using the waiting time only objective function.





6
Disruption management

A disruption occurs when a vessel is not able to arrive at the moment it is scheduled in the initial
schedule. This chapter first introduces the problem related to disruption management and the available
mitigations. Then, the selected algorithmic approaches to solve the problem are explained. Different
metrics to define the quality of a recovery are defined before the results are presented.

6.1. The disruption management problem
Vessels try to reach the locks at exactly the moment they are planned. However, they may not always
succeed. This section explains the possible types of delays and tries to provide a ballpark in which
they might occur. In addition, examples of the possible mitigations are provided. All information in this
section is provided by lockmasters at the Port of Antwerp.

The most occurring delay of vessels is between 5 and 10 minutes. This is within the 15 minutes
buffer between lockages. Therefore it won’t cause severe issues for the schedule. In addition, vessels
never arrive earlier than anticipated as they can always travel slower along their route.

In the rare cases that a vessel is delayed for a longer duration, significant rescheduling could be
required. There are several possible actions to take. However, all of them will introduce additional
waiting times to vessels. First of all, barges have less priority compared to vessels. It is therefore
possible to remove barges from the lockage to ensure it can start as soon as possible as the delayed
vessel arrives. Complementary, a delay for departing vessels is preferred over arriving vessels. This
is because arriving vessels are likely already travelling towards the port while departing vessels only
leave their berth shortly before entering the lock.

When delaying the lockage of the delayed vessel will cause too much delay for other vessels or
subsequent lockages, it is possible to move the vessel to a later lockage. However, in such cases, it
must be ensured the vessel can be delayed that much in addition to its current delay. It is therefore
sometimes possible to delay the entire existing schedule for a few minutes as the delayed vessel is not
able to wait for the next lockage.

6.2. Algorithms
This section introduces how the in chapter 5 introduced online lock scheduling algorithms can be used
for disruption management. Then the different neighbourhood search algorithms for lock scheduling
are assessed on their applicability for disruption management. The most promising of them is selected
and extended to focus the search around the disruption.

6.2.1. Online lock scheduling algorithms
During the comparison between abstract and detailed online lock scheduling, it was explained how the
abstract algorithms could operate with a detailed schedule. It is required for disruption management to
not assume a constant lockage duration and allocated specific arrival times for each vessel.

Each of the three abstract algorithms is converted and used for disruption management. This is
achieved by removing the disrupted vessel from the existing schedule and rescheduling it with its up­

39
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dated arrival time. The Non­Greedy and Improved algorithms can delay other lockages. Therefore
they can execute a right­shift of the entire schedule when no other feasible solution can be found. In
addition, the Improved algorithm can perform a small local search using the local improvements already
defined.

6.2.2. Neighbourhood search
The existing online lock scheduling algorithms are limited in their search for better lock schedules
because every change must be related to the disrupted vessel. Neighbourhood search techniques can
explore a larger part of the search space. It has been successfully applied to disruption management
for airlines. Similar algorithms exist to create an initial lock schedule.

Neighbourhood search consists of creating an initial solution and adapting it continuously to find
better solutions. This is similar to disruption management where the initial solution consists of the
disrupted lock schedule. Table 6.1 shows the different neighbourhood search algorithms applied to
lock scheduling together with the characteristics of the resulting schedule. An algorithm that has all
three properties can be directly integrated.

Table 6.1: Overview of the research regarding neighbourhood search techniques for lock scheduling and the properties of their
resulting schedule. More properties of the resulting schedule available is better.

Authors Year Vessel allocation Heterogeneous chambers Non­constant lockage duration

Ji et al. [13] 2019 yes yes yes
Prandtstetter et al. [14] 2015 no no yes
Verstichel and Vanden Berghe [16] 2009 yes yes no
Verstichel et al. [15] 2011 no yes no

Based on the table, one can easily observe that only the algorithm of Ji et al. fulfils all the re­
quirements of a detailed lock schedule. This adaptive large neighbourhood search (ALNS) algorithm is
selected and consists of several destroy and repair operations which are also applicable for other prob­
lems. A destroyed lock schedule is repaired by scheduling each removed vessel using the Improved
detailed lock scheduling algorithm.

As the online algorithms are known to result in sub­optimal lock schedules it is expected that the
ALNS requires additional help to focus on the disruption. Therefore, the following additional destroy
operations are proposed;

1. Related arrivals and directions: there already exists an operation that selects a random vessel
and then continues with finding the most similar vessels based on their arrival time. The intro­
duced operation only selects vessels in the same direction to guide the search towards solving
the disruption with only affecting lockages in the same direction.

2. Related to disruption: both the introduced destroy operation and the operation it is based on
select a random vessel to start with. This makes sense when creating an initial schedule where
optimisations can be achieved everywhere. However, during disruption management, it is de­
sired to only affect the minimum required number of vessels. Therefore two additional destroy
operations that use the same logic to select related vessels but start with the disrupted vessel are
introduced.

6.3. Objective function
While solving the disruption it is important to keep the objective function similar to the one used during
scheduling. This is to prevent changing the schedule significantly. In addition, a balance between the
objectives of the scheduling algorithms and the number of vessels affected is required. Similar to the
experiment where abstract and detailed lock scheduling is compared, it is required to use tardiness
instead of waiting time during these experiments because of the detailed lock schedules.

By definition, a vessel is affected when both the start and end of the lockage it is placed is is earlier
than initially planned. In addition, when a lockage finishes later it is also affected. To discourage
affecting a large number of vessels more severe than a few, the number of affected vessels is squared.
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Another approach to reduce the number of vessels affected and to focus the search on the disruption
is penalising affecting vessels far from the disruption. This large penalty is applied when a vessel, more
than 24 hours after the disruption, gets affected. In addition, to reduce the search space where such
large penalties are given, the input for the algorithm is cut­off at 48 hours after the disruption.

6.4. Experiment design
Because the lock schedule is created by the online lock scheduling algorithms, it is not possible to
compare the performance of the disruption resolution based on the objective function. The ALNS is
expected to find some changes to the schedule that could improve the objective function while not
contributing to resolving the disruption. Therefore, the lockage containing the disrupted vessel in the
final schedules of the online algorithms and the ALNS is compared. When there is a difference in the
vessels, start and/or end time of the lockage, this is called a disagreement.

Each experiment starts with an initial schedule created by one of the online lock scheduling algo­
rithms. These algorithms are both the detailed and the abstract version of the online lock scheduling
algorithms. For the latter, the resulting schedules are converted into a detailed schedule using the
push­back method. A constant lockage duration of 60 minutes is used. All the experiments are per­
formed using the summed waiting time objective function with the weights of the realistic variant as in­
troduced by the comparison of the online lock scheduling algorithms and the exact algorithm. Because
the hyper­parameters could be different for other objective functions only a single objective function is
evaluated.

A smaller inter­arrival time allows the algorithms to change more vessels to resolve the disruption.
The instances of the disruption management experiments are therefore based on generated arrivals
for 2030. The length of these schedules is irrelevant because of the cut­off after 48 hours. A vessel
is randomly selected from the initial schedule and delayed for a predefined duration. This ranges from
two until 40 minutes with increments of two minutes.

These instances are used to determine the effect of the disruption duration and the initial scheduling
algorithm on the quality of the resolution. Because the disrupted vessel is randomly selected, it is
possible to reuse the same schedule a few times. 11 schedules are created and from each schedule
10 vessels are randomly selected. Each algorithm will solve 720 instances per disruption duration and
2400 instances per initial algorithm.

In addition to the realistic problem instances, instances are generated similarly as for the run­time
analysis of the online lock scheduling algorithms. This time, only the inter­arrival time is of interest. It
ranges from 0.3 until 0.55 hours with 0.05 hour increments. The resulting schedules contain significantly
more vessels per hour compared to the realistic instances. This is relevant for the case when traffic
increases and barges are added to the simulation. Again every online lock scheduling algorithm is used
to create the initial schedule. The disruption duration range from 15 until 25 minutes with increments
of 5 minutes.

The next section explains the hyper­parameter tuning of the ALNS. The optimal parameters found
during this process are used during the experiments. First, the lock scheduling objective function is
used to solve the disruptions on the realistic and generated problem instances. Then the number of
affected vessels is added to the objective function to determine if it helps to focus the ALNS on the
disruption.

6.5. Hyper­parameter tuning
The paper introducing the ALNS for lock scheduling provides the optimal parameters for the algorithm.
However, given that the problem at hand is slightly different and also changes to the objective function
are made, it is not possible to use them straight away. This section describes the parameters that might
need to be adjusted and the method used to find the optimal value.

Because of the different objective functions and problems at hand, it is reasonable to expect that
parameters related to the objective could be improved. Therefore the initial temperature, which is
defined as a fraction of the initial objective, and the cooling rate are selected for the hyper­parameter
tuning.

The number of iterations per segment and the number of segments are also related to the objective
function and how fast it converges. However, the run­time of the algorithm is still, with a few seconds,
relatively small. In addition, early experiments showed that the objective converged well before the
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final iteration is reached. Therefore, these parameters are not included in the hyper­parameter tuning.
The maximum number of vessels the ALNS is allowed to destroy in a single iteration has initially

been set to 50. However, there are fewer arrives per day. This implies that the whole schedule would
be renewed. As this is not the goal of disruption management, smaller values are evaluated during the
hyper­parameter tuning.

An overview of all the parameters of the ALNS and its default values are presented in Table 6.2. It
also contains the range of the parameters subject to the hyper­parameter tuning and the final selected
values. Due to the limited number of parameters, it is possible to use a grid search among all parame­
ters combinations. Experiments with these parameters are performed on problem instances generated
in a similar manner as explained in the previous section. However, to prevent over­fitting the historical
arrivals of 2019 are used.

Table 6.2: Overview of the parameters of the adaptive large neighbourhood search with the original value provided by Ji et al.
[13] In addition, the range of values evaluated during hyper­parameter tuning and the selected values are listed when applicable.

Parameter Default Range Selected

Iterations per segment 50 ­ ­
Number of segements 20 ­ ­
Maximum degree of disruption 50 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 5
Initial temperature 0.2 [0.001, 0.01, 0.1, 0.2] 0.001
Cooling rate 0.995 [0.9, 0.95, 0.995] 0.995
Reaction factor 0.05 ­ ­
K1 0.0 ­ ­
K2 1.0 ­ ­
K3 0.1 ­ ­

Based on the number of disagreements there is no difference between any parameter combination.
However, when optimising the objective functions, the ALNS performs better with the minimal initial
temperature. With a higher temperature, it accepts worse solutions too often to find better solutions. In
addition, when increasing the maximum degree of disruption the algorithm tends to find better solutions.
However, this parameter was added to the hyper­parameter tuning to prevent rescheduling all the
vessels in the schedule. Therefore it is set to 5, after which the largest decline in the objective is
reached. The cooling rate did not influence the quality of the resulting lock schedule and is therefore
set to the default value.

6.6. Hypothesis
If the ALNS can provide an advantage over the online lock scheduling algorithms, it is expected that it
often disagrees with them. In addition, it is expected that including the number of affected vessels in
the objective function increases the number of disagreements as the search should be focused on the
already affected vessel. Finally, assuming that the ALNS is providing the expected advantage over the
online lock scheduling algorithms, it is expected that decreasing the inter­arrival time will increase the
number of disagreements. This is because the shorter inter­arrival time causes vessels to be placed
together in lockages. This allows for more optimisation where the ALNS is expected to excel.

6.7. Results
The effect of the disruption duration on the disagreements between the online lock scheduling algo­
rithms and the ALNS on the realistic problem instances is depicted in Figure 6.1. It shows a sharp
increase in disagreements for the Default algorithm after a duration of 15 minutes is reached. This
is the default buffer between lockages. Its essential working becomes clear as it requires little to no
rescheduling. The other online algorithms have close to no disagreements with the ALNS.

The results for the generated problem instances are depicted in Figure 6.3. The first graph shows the
number of disagreements between the ALNS and the online lock scheduling algorithms for a variable
inter­arrival time. Although the inter­arrival time is higher on realistic instances, it shows the increase
in disagreements with a decreasing inter­arrival time. The second graph has a fixed inter­arrival time
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Figure 6.1: Fraction of solutions with a disagreement between online lock scheduling algorithms and the adaptive large neigh­
bourhood search on realistic problem instances with different disruption durations and all algorithms used to create the initial
schedule on instances.

of 0.5 hours. It shows that including the number of affected vessels in the objective function decreases
the number of disagreements.
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Figure 6.2: Fraction of solutions with a disagreement between online lock scheduling algorithms and the adaptive large neigh­
bourhood search on realistic problem instances with different algorithms used to create the initial schedule on instances with all
disruption durations.

Figure 6.3: Fraction of disagreements between online lock scheduling algorithms and the adaptive large neighbourhood search
on generated problem instances. Left shows the results for a variable inter­arrival time. Right shows the difference between
including the number of affected vessels in the objective function with a fixed inter­arrival time of 0.5 hours.
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Discussion

This chapter provides an overview of the performed experiments and discusses their results. The dif­
ferent online lock scheduling algorithms are summarised before assessing the experiments comparing
their performance. Then, the trade­off between lock schedule quality and the number of interactions is
discussed. Finally, the experiments regarding disruption management are considered.

7.1. Lock scheduling algorithms and results
In chapter 5, three algorithms for the online lock scheduling problem were introduced. Each of these
algorithms operates in a framework of generating proposals for the arriving vessel, selecting the best
proposal and executing it. They vary in their ability to affect already­scheduled vessels and lockages.
The Default algorithm is not able to change the position of scheduled vessels and is thus forced to make
greedy decisions. Both the Non­Greedy and the Improved algorithms are allowed to come back to their
decision and change the position of already scheduled vessels. The Non­Greedy algorithm is able to
delay other vessels in order to create a new lockage. This is improved upon by the Improved algorithm
by means of a local search where proposals are improved. All three algorithms use the multi­order
best­fit heuristic to determine an allocation for all the vessels inside the locks chamber.

The algorithms are intended to be used in a simulation where a vessel plans its journey through
multiple schedules. Changing the position of vessels requires the other schedules to check feasibility
again. To reduce the number of interactions and thus the complexity of the simulation, a constant
lockage duration is used during scheduling.

The introduced algorithms are compared to an exact offline lock scheduling algorithm in section 5.5.
This algorithm has an advantage over the online algorithms because it knows all the arrivals from
the start. The comparison could only be performed on small problem instances due to the extended
run­time of the exact algorithm. On these instances the Non­Greedy and Improved algorithms are
competitive. The number of lockages used is close and often slightly less compared to the optimal
solution. In addition, the average and maximum waiting­time are doubled compared to the optimal
solution. No significant differences between the right and left banks are observed.

In the previous comparison, it already became clear that being able to affect already planned vessels
provides an advantage. The Default algorithm performed less compared to the others even on very
small problem instances. However, there was little to no difference between the Non­Greedy and
Improved algorithms. Except when solely minimising the number of lockages. Therefore the algorithms
are compared relative to each other in section 5.6.

The Improved online lock scheduling algorithm outperforms the other algorithms on all three objec­
tive functions. The Default algorithm only comes close to the other algorithms when the vessels arrive
in chronological ordering. This shows that scheduling in chronological ordering is a fairly good heuris­
tic. Being able to come back to previously made actions and correct them later is especially useful
when the ordering is random. The Non­Greedy and Improved algorithm result in schedules with fewer
lockages and a lower average waiting time. However, the maximum waiting time increases compared
to the chronological ordering.

Overall, the Improved algorithm performs similar on small problems and better on large instances
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compared to the Non­Greedy algorithm. The Default algorithm is by no means competitive with the
other algorithms.

7.2. Trade­off between interactions and lock schedule quality
During scheduling, a constant lockage duration is used to reduce the number of interactions with ves­
sels. After the schedule is completed, it gets converted into a detailed lock schedule using a push­back
method. The online lock scheduling algorithms do not directly optimise for the final objective function
due to this operation. The experiments in section 5.7 analyse how this affects the final lock schedule
and how many interactions are avoided using this method.

The results show that the number of reduced interactions is relatively constant based on the used
constant lockage duration. The optimal constant lockage duration varies based on the objective func­
tion. However, it remains below the duration of a lockage with 2 vessels.

Table 5.7 summarises the results for the optimal constant lockage duration for the abstract Improved
algorithm. It shows that the relative objective function is a poor proxy for the actual metrics. This holds
especially for the squared objective function. The number of interactions is reduced by one third when
selecting the optimal constant lockage duration. This increases the average and maximum waiting
time by approximately 10%. When excluding the number of lockages from the objective function the
average waiting time becomes roughly equal.

Overall, it is concluded that using a constant lockage duration simplifies creating the lock schedule
while having a small impact on the quality of the produces schedule.

7.3. Disruption management
Chapter 6 applied the online lock scheduling algorithms for the problem of disruption management.
The algorithms are compared to an adaptive large neighbourhood search meta­heuristic. This meta­
heuristic has originally been designed to create initial lock schedules but could solve disruptions with
minimal adaptions. Additional destroy operators are introduced that are focused on solving the disrup­
tion instead of global optimisation.

Because of the sub­optimal schedules created by the online lock scheduling algorithms and the
tendency of the meta­heuristic to optimise the complete schedule, it is not possible to compare the al­
gorithms for disruption management based on the objective function. Even when the algorithms resolve
the disruption equally, the objective function could be different if an improvement is found somewhere
in the lock schedule. As a proxy for the quality of the resolution of the disruption the position of the
disrupted vessel is compared. If the meta­heuristic finds a different position for the disrupted vessel it
is assumed to be a better resolution.

The results presented in section 6.7 show that the meta­heuristic always finds the same position for
the disrupted vessel as the Non­Greedy algorithm. Especially when the inter­arrival time of the vessels
is low, the Improved algorithm disagrees with the meta­heuristic. The Improved algorithm proposes
the same actions as the Non­Greedy together with some extra locally improved actions. Therefore, the
Improved algorithm always finds equal or better actions. When the meta­heuristic agrees with the Non­
Greedy algorithm but disagrees with the Improved algorithm, it is assumed that the latter has found the
best resolution.

Overall, it is concluded that the Non­Greedy and Improved online lock scheduling algorithms are
competitive with ALNS based on the position of the disrupted vessel. However, it must be noted that
the used metric is not a perfect proxy for the quality of the resolution.
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Conclusion

The research questions posed in the introduction are answered in this chapter. The first section answers
the sub­questions before answering the main research question. Then research directions that could
further improve the presented work are discussed.

8.1. Research questions
The posed sub­questions regarding lock scheduling and their answers are as following;

• How can the lock scheduling problem posed by the Port of Antwerp be defined as an
optimisation problem?
Chapter 2 introduced the generalised lock scheduling problem where the arrivals of all vessels
are known from the beginning and the possible objective function components. It continued with
an adaption to accommodate the use­case of the Port of Antwerp. This implies that vessels are
gradually added to the schedule in no particular ordering.

• What algorithms can solve the defined lock scheduling problem?
In chapter 3, the existing solution methods for variants of the lock scheduling problem were dis­
cussed. Particular variants with strict and limiting assumptions about the locks and vessels have
exact polynomial­time algorithms. Both exact mixed­integer linear programs and heuristics have
been applied to less restricted problems. Run­times of the exact algorithms are unpredictable
and too large, even for small problem instances. In addition, none of the existing methods was
designed for incrementally expanding an existing lock schedule.
A framework for online lock scheduling algorithms is introduced in section 5.1. The procedure
consists of three steps; First, a number of possible actions to accommodate the vessel are cre­
ated. Then the actions are evaluated based on the objective function. Finally, the best action
is performed on the existing schedule. In the same section, three different algorithms are pre­
sented which use this framework to solve the online lock scheduling problem. They vary in their
capabilities of affecting vessels once they are planned.

• How can problem abstraction during scheduling contribute to fewer interactions with ves­
sels?
Section 5.7 introduced a method to convert a lock schedule where every lockage has a constant
duration into a detailed schedule with a duration based on the vessels placed in a lockage. Two
versions of the online lock scheduling algorithms are compared on the number of interactions they
require and the quality of the resulting lock schedule for different objective functions. One version
uses a constant lockage duration while the other determines the duration based on the vessels
in the lockage. It shows that an appropriate constant lockage duration reduces the interactions
significantly with a small effect on the average and maximum tardiness.

The posed sub­questions regarding disruption management and their answers are as following;
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• What algorithms can be used for disruption management?
The literature review showed in chapter 3 that the disruption management problem is unexplored
in the context of lock scheduling. Section 6.2 explains how the detailed version of the online lock
scheduling algorithms can be used to solve this problem. In addition, the most suitable algorithm
from the available neighbourhood search algorithms in the literature is selected and adapted for
disruptionmanagement. These algorithms have in common that they remove one ormore vessels
from an existing schedule and add them again using standard lock scheduling techniques.

• Which parameters do affect the quality of the recoveries?
Defining the quality of a disruption resolution depends on both the number of vessels affected
and the additional delay and lockages in the updated lock schedule. However, it is impossible
to just use these metrics to evaluate a recovery. This is because disruption unrelated operations
could be performed. This work compares the position of the disrupted vessel in the resolution of
different algorithms. There is no pattern in the number of disagreements for the different initial lock
scheduling algorithms. When the disruption duration is smaller than the buffer between lockages,
even the Default lock scheduling algorithms agrees often with the other algorithms. Decreasing
the inter­arrival time of vessels causes an increase in the number of disagreements.

With all the sub­questions answered, the main research questions can be answered;

Which solution methods prove to be the most effective to automate the lock scheduling and
real­time disruption recovery for the Port of Antwerp?

It can be concluded that the Improved online lock scheduling algorithm using a constant lockage
duration is the most suitable for the Port of Antwerp. This algorithm results in lock schedules with the
best objective of all the compared algorithms. While its run­time is higher, it is still within a few millisec­
onds per vessel. Finally, the constant lockage duration helps to reduce the number of interactions with
vessels.

The Detailed online lock scheduling algorithm with detailed lockage durations is competitive with the
adaptive large neighbourhood search for disruption management based on the lockage of the disrupted
vessel. Due to the unnecessary global optimisation and additional run­time of the meta­heuristic, it can
be concluded that the online algorithm is more suitable. The improved version of the online algorithms
only suggests additional possibilities of resolving the disruption. It can therefore also be used.

8.2. Future research directions
This section identifies six directions future research could take to improve or built upon the presented
work. Five of them are detailed and focused on creating the initial lock schedule. The final research
direction is broader and is related to the disruption management problem.

• Adding barges to the arrivals: Through the period in which this thesis is created, no data was
available about the arrivals of barges. These types of vessels have lower priority and are planned
within a shorter horizon. However, the large number of them is expected to affect the algorithms.
The different experiments could be repeated with the barges included to determine their impact
and if the conclusions still hold.

• Better optimality gap determination: The exact algorithm used to determine the optimal lock
scheduling algorithm is not able to solve large problem instances to optimality within a reasonable
amount of time. In addition, the used objective function is limited as it does not include empty
lockages. To determine the performance of the online lock scheduling algorithm compared to
an objective baseline, other algorithms are required. When an exact algorithm turns out to be
insufficient, meta­heuristics like the adaptive large neighbourhood search could be used.

• Additional local search operators: The Improved algorithms utilise two local search operators
to improve upon the Non­Greedy algorithm. Future research could focus on finding additional
operators and determine their individual contributions. Especially search operators comparing
lockages of different chambers are unexplored.
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• Integration with realistic port simulation: During the experiments it was assumed that a vessel
can always be delayed. This is because there were no other schedules around the lock schedules.
To determine the actual effect of scheduling with a constant lockage duration it would be good to
include other realistic schedules which must cooperate.

• Trade­off due to lock scheduling abstractions: In this work the trade­off between interactions
with vessels and lock schedule quality caused by using a constant lockage duration is explored.
Another commonly made abstraction is regarding the capacity of a locks chamber and replaces
the vessel placement sub­problem with a number of vessels. It is interesting to determine if a
similar approach of dealing with this abstraction exists. In addition, the trade­off could also be
made with offline algorithms.

• Using different meta­heuristics for disruptionmanagement: The online lock scheduling algo­
rithms are comparative with an adaptive large neighbourhood search meta­heuristic for disruption
management. As these algorithms are rather simple it is likely that some meta­heuristic could im­
prove upon them.
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A
Mixed Integer Linear Program

Formulation

A.1. Parameters
𝑁, 𝑁′: Set of upstream, downstream vessels, indexed by 𝑖, 𝑗.
𝑀, 𝑀′: Set of the upstream, downstream lockages, indexed by 𝑘, 𝑙.
𝑤𝑖, 𝑙𝑖: Width and length of upstream vessel 𝑖.
𝑤′𝑖 , 𝑙′𝑖 : Width and length of downstream vessel 𝑖.
𝑑𝐹𝑖, 𝑑𝐵𝑖: Minimal distance between upstream vessel 𝑖 and the front, back of the chamber.
𝑑𝐹′𝑖 , 𝑑𝐵′𝑖 : Minimal distance between downstream vessel 𝑖 and the front, back of the chamber.
𝑠𝐿𝑖𝑗: Minimal safety distance between upstream vessels 𝑖 and 𝑗 when they are lying behind each other.
𝑠𝐿′𝑖𝑗: Minimal safety distance between downstream vessels 𝑖 and 𝑗 when they are lying next to each other.
𝑠𝑊𝑖𝑗: Minimal safety distance between upstream vessels 𝑖 and 𝑗 when they are lying behind each other.
𝑠𝑊′

𝑖𝑗: Minimal safety distance between downstream vessels 𝑖 and 𝑗 when they are lying next to each other.
𝑟𝑖, 𝑟′𝑖 : Arrival time of upstream, downstream vessel 𝑖 at the coordination point.

𝑈: Set of physical chambers indexed by 𝑢.
𝑊𝑢, 𝐿𝑢: Width and length of the chamber 𝑢.
𝑊,𝐿: Maximal width and length over all chambers
𝑀𝑢, 𝑀′

𝑢: Subset of M, reserved for upstream, downstream lockages performed on chamber 𝑢.
𝑝: Constant lockage duration.
𝑠𝑒𝑡𝑢𝑝𝑘𝑙: Minimal setup time between lockages 𝑘 and 𝑙 when they are processed by the same chamber. De­
pends on the direction of lockages 𝑘 and 𝑙.
𝐶𝑚𝑎𝑥: Big M constant used as an upper bound for the completion time.

A.2. Variables
xi, yi: Integer variables that define the 𝑥 and 𝑦 position of vessel 𝑖 (front left corner).
bij: Binary variable indicating whether vessel 𝑖is to the left of vessel 𝑗 or not.
leftij: Binary variable indicating whether vessel 𝑖 is behind vessel 𝑗 or not.
mli: Binary variable indicating whether vessel 𝑖 is moored onto the left side of the chamber or not.
zk: Binary variable that indicates whether lockage 𝑘 is used or not.
fik: Binary variable that indicates whether vessel 𝑖 is processed in lockage 𝑘 or not.
vij: Binary variable that indicates whether vessels 𝑖 and 𝑗 are processed in the same lockage or not.
ci: Departure time of vessel 𝑖.
Ck: Completion time of lockage 𝑘.
seqkl: Binary variable that indicated whether lockage 𝑘 precedes lockage 𝑙 or not.
Tmax: Maximum waiting time of all vessels.
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A.3. Objective function
The values of 𝐾1, 𝐾2 and 𝐾3 are variable and are defined for each experiment performed with the algorithm.

𝐾1 ∑
𝑘∈𝑁∪𝑁′

(𝑐𝑖 − 𝑝 − 𝑟𝑖) + 𝐾2𝑇𝑚𝑎𝑥 + 𝐾3 ∑
𝑘∈𝑀∪𝑀′

𝑍𝑘 (A.1)

A.4. Constraints
The following blocks of constraints models the scheduling part of the lock scheduling problem.

𝑐𝑖 ≥ 𝐶𝑚𝑎𝑥(𝑓𝑖𝑘 − 1) + 𝐶𝑘, ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝑀 (A.2)
𝑐𝑖 ≤ 𝐶𝑚𝑎𝑥(1 − 𝑓𝑖𝑘) + 𝐶𝑘, ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝑀 (A.3)
𝑐′𝑖 ≥ 𝐶𝑚𝑎𝑥(𝑓𝑖𝑘 − 1) + 𝐶′𝑘, ∀𝑖 ∈ 𝑁′, 𝑘 ∈ 𝑀′ (A.4)
𝑐′𝑖 ≤ 𝐶𝑚𝑎𝑥(1 − 𝑓𝑖𝑘) + 𝐶′𝑘, ∀𝑖 ∈ 𝑁′, 𝑘 ∈ 𝑀′ (A.5)

𝑝𝑘 ≥ 𝑝𝑧𝑘, ∀𝑘 ∈ 𝑀 (A.6)
𝑝𝑘 ≥ 𝑝𝑧𝑘, ∀𝑘 ∈ 𝑀′ (A.7)

𝐶𝑙 − 𝐶𝑘 ≥ 𝑝𝑙 + 𝑠𝑒𝑡𝑢𝑝𝑘𝑙 − 2𝐶𝑚𝑎𝑥(1 − 𝑠𝑒𝑞𝑘𝑙), ∀𝑘 < 𝑙 ∈ 𝑀𝑢 ∪𝑀′
𝑢, 𝑢 ∈ 𝑈 (A.8)

𝐶𝑘 − 𝐶𝑙 ≥ 𝑝𝑘 + 𝑠𝑒𝑡𝑢𝑝𝑘𝑙 − 2𝐶𝑚𝑎𝑥(1 − 𝑠𝑒𝑞𝑘𝑙), ∀𝑘 < 𝑙 ∈ 𝑀𝑢 ∪𝑀′
𝑢, 𝑢 ∈ 𝑈 (A.9)

𝐶𝑘 − 𝑃𝑘 ≥ 𝑓𝑖𝑘𝑟𝑖, ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝑀 (A.10)
𝐶𝑘 − 𝑃𝑘 ≥ 𝑓𝑖𝑘𝑟𝑖, ∀𝑖 ∈ 𝑁′, 𝑘 ∈ 𝑀′ (A.11)

𝑍𝑘 ≤∑
𝑖∈𝑁
𝑓𝑖𝑘, ∀𝑘 ∈ 𝑀 (A.12)

𝑍𝑘 ≤ ∑
𝑖∈𝑁′

𝑓𝑖𝑘, ∀𝑘 ∈ 𝑀′ (A.13)

The following block of constraints are transitive constraints and are used to break symmetry.

𝑍𝑘+1 ≤ 𝑍𝑘, ∀𝑘 ∈ 𝑀𝑢 ∪𝑀′
𝑢, 𝑢 ∈ 𝑈 (A.14)

𝐶𝑘 ≤ 𝐶𝑘+1, ∀𝑘 ∈ 𝑀𝑢 ∪𝑀′
𝑢, 𝑢 ∈ 𝑈 (A.15)

The following constraint is used for the objective function.

𝑇𝑚𝑎𝑥 ≥ 𝑐𝑖 − 𝑟𝑖 − 𝑝, ∀𝑖 ∈ 𝑁 ∪ 𝑁′ (A.16)

The following blocks of constraints models the ship placement part of the lock scheduling problem for the upstream
vessels.

𝑙𝑒𝑓𝑡𝑖𝑗 + 𝑙𝑒𝑓𝑡𝑗𝑖 + 𝑏𝑖𝑗 + 𝑏𝑗𝑖 + (1 − 𝑓𝑖𝑘) + (1 − 𝑓𝑗𝑘) ≥ 1, ∀𝑖 < 𝑗, 𝑖, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝑀 (A.17)
𝑥𝑖 − 𝑥𝑗 +𝑊𝑙𝑒𝑓𝑡𝑖𝑗 ≤ 𝑊 −𝑤𝑖, ∀𝑖, 𝑗 ∈ 𝑁 (A.18)

𝑦𝑖 − 𝑦𝑗 + 𝐿𝑏𝑖𝑗 ≤ 𝐿 − 𝑙𝑖, ∀𝑖, 𝑗 ∈ 𝑁 (A.19)
𝑥𝑗 − 𝑥𝑖 + (𝑊 + 𝑠𝑊𝑖𝑗)(1 − 𝑙𝑒𝑓𝑡𝑖𝑗 + 𝑏𝑖𝑗) ≥ 𝑤𝑖 + 𝑠𝑊𝑖𝑗, ∀𝑖, 𝑗 ∈ 𝑁 (A.20)
𝑦𝑗 − 𝑦𝑖 + (𝐿 + 𝑠𝐿𝑖𝑗)(1 − 𝑏𝑖𝑗 − 𝑙𝑒𝑓𝑡𝑖𝑗) ≥ 𝑙𝑖 + 𝑠𝐿𝑖𝑗, ∀𝑖, 𝑗 ∈ 𝑁 (A.21)

𝑥𝑖 +𝑤𝑖 ≤ 𝑊𝑢 + (1 − 𝑓𝑖𝑘)𝑊, ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝑀𝑢, 𝑢 ∈ 𝑈 (A.22)
𝑦𝑖 + 𝑙𝑖 ≤ 𝐿𝑢 + (1 − 𝑓𝑖𝑘)𝐿, ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝑀𝑢, 𝑢 ∈ 𝑈 (A.23)

𝑦𝑖 ≥ 𝑑𝐹𝑖, ∀𝑖 ∈ 𝑁 (A.24)
𝑦𝑖 + 𝑙𝑖 ≤ 𝐿𝑢 − 𝑑𝐵𝑖 + (1 − 𝑓𝑖𝑘), ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝑀𝑢, 𝑢 ∈ 𝑈 (A.25)
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∑
𝑘∈𝑀

𝑓𝑖𝑘 = 1, ∀𝑖 ∈ 𝑁 (A.26)

𝑓𝑖𝑘 ≤ 𝑍𝑘, ∀𝑖 ∈ 𝑛, 𝑘 ∈ 𝑀 (A.27)
𝑥𝑖 ≤ (1 −𝑚𝑙𝑖)𝑊, ∀𝑖 ∈ 𝑁 (A.28)

𝑥𝑖 +𝑤𝑖 ≥ ( ∑
𝑘∈𝑀𝑢

𝑓𝑖𝑘 −𝑚𝑙𝑖)𝑊𝑢, ∀𝑖 ∈ 𝑁, 𝑢 ∈ 𝑈 (A.29)

The following blocks of constraints models the ship placement part of the lock scheduling problem for the
downstream vessels.

𝑙𝑒𝑓𝑡𝑖𝑗 + 𝑙𝑒𝑓𝑡𝑗𝑖 + 𝑏𝑖𝑗 + 𝑏𝑗𝑖 + (1 − 𝑓𝑖𝑘) + (1 − 𝑓𝑗𝑘) ≥ 1, ∀𝑖 < 𝑗, 𝑖, 𝑗 ∈ 𝑁′, 𝑘 ∈ 𝑀′ (A.30)
𝑥𝑖 − 𝑥𝑗 +𝑊𝑙𝑒𝑓𝑡𝑖𝑗 ≤ 𝑊 −𝑤𝑖, ∀𝑖, 𝑗 ∈ 𝑁′ (A.31)

𝑦𝑖 − 𝑦𝑗 + 𝐿𝑏𝑖𝑗 ≤ 𝐿 − 𝑙𝑖, ∀𝑖, 𝑗 ∈ 𝑁′ (A.32)
𝑥𝑗 − 𝑥𝑖 + (𝑊 + 𝑠𝑊𝑖𝑗)(1 − 𝑙𝑒𝑓𝑡𝑖𝑗 + 𝑏𝑖𝑗) ≥ 𝑤𝑖 + 𝑠𝑊𝑖𝑗, ∀𝑖, 𝑗 ∈ 𝑁′ (A.33)
𝑦𝑗 − 𝑦𝑖 + (𝐿 + 𝑠𝐿𝑖𝑗)(1 − 𝑏𝑖𝑗 − 𝑙𝑒𝑓𝑡𝑖𝑗) ≥ 𝑙𝑖 + 𝑠𝐿𝑖𝑗, ∀𝑖, 𝑗 ∈ 𝑁′ (A.34)

𝑥𝑖 +𝑤𝑖 ≤ 𝑊𝑢 + (1 − 𝑓𝑖𝑘)𝑊, ∀𝑖 ∈ 𝑁′, 𝑘 ∈ 𝑀′
𝑢, 𝑢 ∈ 𝑈 (A.35)

𝑦𝑖 + 𝑙𝑖 ≤ 𝐿𝑢 + (1 − 𝑓𝑖𝑘)𝐿, ∀𝑖 ∈ 𝑁′, 𝑘 ∈ 𝑀′
𝑢, 𝑢 ∈ 𝑈 (A.36)

𝑦𝑖 ≥ 𝑑𝐹𝑖, ∀𝑖 ∈ 𝑁 (A.37)
𝑦𝑖 + 𝑙𝑖 ≤ 𝐿𝑢 − 𝑑𝐵𝑖 + (1 − 𝑓𝑖𝑘), ∀𝑖 ∈ 𝑁′, 𝑘 ∈ 𝑀′

𝑢, 𝑢 ∈ 𝑈 (A.38)

∑
𝑘∈𝑀′

𝑓𝑖𝑘 = 1, ∀𝑖 ∈ 𝑁′ (A.39)

𝑓𝑖𝑘 ≤ 𝑍𝑘, ∀𝑖 ∈ 𝑛, 𝑘 ∈ 𝑀′ (A.40)
𝑥𝑖 ≤ (1 −𝑚𝑙𝑖)𝑊, ∀𝑖 ∈ 𝑁′ (A.41)

𝑥𝑖 +𝑤𝑖 ≥ ( ∑
𝑘∈𝑀′𝑢

𝑓𝑖𝑘 −𝑚𝑙𝑖)𝑊𝑢, ∀𝑖 ∈ 𝑁′, 𝑢 ∈ 𝑈 (A.42)

The following block of constraints formulate bounds and integrality constraints on the variables.

𝑙𝑒𝑓𝑡𝑖𝑗, 𝑏𝑖𝑗, 𝑚𝑙𝑖𝑗 ∈ {0, 1}, ∀𝑖, 𝑗 ∈ 𝑁 ∪ 𝑁′ (A.43)
𝑣𝑖𝑗 ∈ {0, 1}, ∀𝑖 < 𝑗, 𝑖, 𝑗 ∈ 𝑁 ∪ 𝑁′ (A.44)

0 ≤ 𝑥𝑖 ≤ 𝑊, ∀𝑖 ∈ 𝑁 ∪ 𝑁′ (A.45)
0 ≤ 𝑦𝑖 ≤ 𝐿, ∀𝑖 ∈ 𝑁 ∪ 𝑁′ (A.46)
0 ≤ 𝑐𝑖 ≤ 𝐶𝑚𝑎𝑥, ∀𝑖 ∈ 𝑁 ∪ 𝑁′ (A.47)
0 ≤ 𝐶𝑘 ≤ 𝐶𝑚𝑎𝑥, ∀𝑘 ∈ 𝑀 ∪𝑀′ (A.48)

𝑓𝑖𝑘 ∈ {0, 1}, ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝑀 (A.49)
𝑓𝑖𝑘 ∈ {0, 1}, ∀𝑖 ∈ 𝑁′, 𝑘 ∈ 𝑀′ (A.50)
𝑧𝑘 ∈ {0, 1}, ∀𝑘 ∈ 𝑀 ∪𝑀′ (A.51)

𝑠𝑒𝑞𝑘 ∈ {0, 1}, ∀𝑘 ∈ 𝑀 ∪𝑀′ (A.52)
𝑇𝑚𝑎𝑥 ≥ 0 (A.53)





B
Exact lock scheduling run­time analysis

Figure B.1: Run­time of the exact algorithm for various objective functions on the left bank of the Port of Antwerp.
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Figure B.2: Run­time of the exact algorithm for various objective functions on the right bank of the Port of Antwerp.
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Algorithms for the online lock scheduling problem
Rico Hageman Neil Yorke-Smith

Abstract—We introduce the online variant of the Single Lock
Scheduling Problem (SLSP-ONLINE). Three effective and de-
terministic algorithms based on an algorithmic framework are
constructed and used to approach this problem. A benchmark
with an offline exact algorithm shows that the algorithms are
competitive in terms of solution quality on small problem
instances. By assuming a constant lockage duration during
scheduling, we aim to reduce the number of interactions with
vessels. We demonstrate in simulations based on realistic arrivals
that the abstraction reduces the interactions significantly with
only a small effect on the tardiness of vessels.

Index Terms—Lock scheduling problem

I. INTRODUCTION

Maritime infrastructure projects are costly and have a long
lifespan. It is, therefore, crucial to identify potential bottle-
necks early and resolve them efficiently. By simulating the
arrivals of vessels and their movements throughout the port
realistically, this can be achieved. In addition, simulation can
aid in determining the effectiveness of said projects to resolve
the bottleneck.

The lock scheduling problem only recently gained traction
compared to other parts of maritime and port related optimisa-
tion problems. The problems studied in the literature are often
small with arrivals of a few days. In addition, the algorithms
are designed to solve the offline variant of the problem where
all the arrivals are known at the start and no restrictions are
placed on the lock schedule by other schedules.

With this paper, we make the following contributions to the
existing literature. First, we introduce the online variant of the
single lock scheduling problem (SLSP-ONLINE) and argue
when it is relevant to solve it.

Second, we introduce and benchmark three online schedul-
ing algorithms to solve the posed problem using a constant
lockage duration. They differ in their ability to affect already
scheduled vessels. On small instances, they are competitive
with exact offline methods.

Third, the trade-off between solution quality and the inter-
actions with vessels due to a constant lockage duration during
scheduling is discussed. We demonstrate on large realistic
problem instances that the number of interactions can be
significantly reduced in exchange for a small effect on the
schedule quality.

II. RELATED WORK

The lock scheduling problem knows all kinds of variants and
abstractions with their own complexity and solution methods.
In general, without abstractions, the problem is NP-hard due
to the hidden 2D bin packing problem when placing vessels
inside a lockage.

When considering the single-chamber lock scheduling prob-
lem with a constant lockage duration and a capacity of a
single vessel, a polynomial-time dynamic program exists [1].
Removing the capacity restrictions completely, allows one
to create an algorithm based on the shortest path in an
acyclic graph [2]. As long as the capacity of the chamber
can be represented by an integer it is possible to minimise the
total waiting time for the same problem with a single lock
containing parallel chambers using a dynamic problem [3].

Complete and detailed lock schedules require a position
for each vessel in their lockage. This vessel placement sub-
problem is related to a well-known NP-complete problem,
2D bin-packing, with additional constraints. Verstichel and
Vanden Berghe [4] composed an extended overview of all the
different requirements including illustrations. Different mixed-
integer linear programs are created to solve this lock schedul-
ing problem. Formulations based on the job-shop scheduling
problem are used for the single and sequential lock scheduling
problems [5, 6]. In addition, a multi-commodity network
formulation is used to solve the sequential lock scheduling
problem [7]. Each of the mentioned exact algorithms has an
unpredictable large run-time, which can reach over 16 hours
for problems with 20 vessels and two chambers. In addition,
they do not include the number of empty lockages in the
objective function.

Verstichel et al. [8] introduced different methods for solving
the vessel placement sub-problem. First, it presents an exact
MILP which also formed the basis of several of the exponential
algorithms presented earlier. Then two heuristics are presented
which are not computationally intensive and produce solutions
with a small optimality gap. These heuristics are used in
combination with a benders decomposition to reduce the run-
time [9].

Neighbourhood search is a commonly used meta-heuristic
to solve the lock scheduling problem. Verstichel et al. [10]
presented a neighbourhood search for the lock scheduling
problem with a single lock with identical chambers where the
solution is defined by an ordering of vessels. Provided with
this ordering, heuristics will determine the feasibility of the
vessel placement sub-problem and the start time is defined
by the latest arriving vessel. Verstichel and Vanden Berghe
[11] explored the same problem and approach but applied late
acceptance criteria. Prandstetter et al. [12] solves the inter-
dependent lock scheduling problem with identical chambers.
It presents operations that destroy and repair a schedule in
one pass and are specifically crafted for the problem at hand.
Ji et al. [13] applies an adaptive large neighbourhood search
based on the vehicle routing problem and uses general destroy



and repair operations to solve the generalised lock scheduling
problem.

Summarising, the literature does not explain how to solve
a lock scheduling problem relevant for simulations as the
available solution methods fail to simultaneously address all of
the following (1) sub-second run-time per vessel, (2) realistic
objective function and (3) allows vessels to arrive in an online
fashion.

III. PROBLEM STATEMENT

A. Problem motivation

Simulations of a port consist of vessels that traverse several
restricting elements like tide windows and locks. In addition,
the arrival of a vessel at its destination is scheduled to prevent
multiple vessels moor to the same spot. Finding a feasible
solution for this problem is hard given that scheduling the
sub-components in isolation is often NP-hard. It is therefore
not feasible to find a global solution in one pass. Using a
backtracking algorithm it is possible to find a feasible route
for each vessel. For such an approach to work, it is required
that the schedules of the restricting elements can be adapted
to every occurring event.

For a lockage schedule, this implies, that vessels can be
added to existing lockages and that the start time and duration
of lockages can be changed. Such changes require vessels in
the lockage to adapt their existing journey and might need
to be rescheduled at other restricting elements. Cascading
changes like these need to be handled by the backtracking
algorithm and are deemed out of scope for this work. However,
an idea to limit the number of times cascading changes could
potentially be required is explored.

Depending on the layout of the port, a vessel can traverse
multiple locks during its journey. However, the vessel might
encounter other restricting elements in between the locks. It
is up to the backtracking algorithm to align each of these
passages. Therefore, the lock scheduling problem examined in
this work consists of a single lock with multiple heterogeneous
chambers.

B. Formal problem formulation

In the posed online lock scheduling problem there is a single
lock with m heterogeneous chambers and a sequence of n
vessels that arrive online. Let C = {c1, ..., cm} be the set of
chambers. Then, let Lc be the length, Wc the width and Pc

the processing duration of chamber c ∈ C.
Let V = {v1, ..., vn} be the set of vessels. With lv the

length, wv the width and pv the entry and exit duration of
vessel v ∈ V . In addition, the arrival of vessel v is defined by
its direction dv and the arrival time av . There are two types
of directions, either up- or downstream.

Let Lc = {l1, ..., lk} be the set of lockages processed by
chamber c ∈ C and L =

⋃m
c=1 Lc be the set of all lockages.

Then, let dl be the direction of lockage l ∈ L and sl and el
its start and end times.

Each chamber, c, processes its set of lockages, Lc, in alter-
nating direction. Consecutive lockages l and l′ must adhere to

the following set of constraints where B is a constant buffer
between sequential lockages;

sl′ ≥ el +B (1)
dl 6= dl′ (2)

Let Vl = {v1, ..., vn} be the set of vessels processed by
lockage l. A vessel can only be processed by a lockage if
the lockage is in the same direction as the vessel arrives.
Equations (3) and (4) ensure that every vessel is processed
by a single lockage. Equation (5) enforces that the direction
of a vessel and the lockage it is placed in are in the same
direction.

Vl ∩ Vl′ = ∅ ∀l, l′ ∈ L (3)
v ∈ Vl ∃l ∈ L,∀v ∈ V (4)
dv = dl ∀v ∈ Vl, l ∈ L (5)

The duration of a lockage is dependent on its chamber and
the vessels it processed. In addition, when vessels arrive not
exactly after each other, the duration increases. Each vessel
retrieves a requested time of arrival (rav). Equation (6) ensures
that the requested time of arrival is after the first moment the
vessel actually can arrive. Equation (7) ensures enough time
between the sequential arrival of the vessels v and v′.

rav ≥ av ∀v ∈ V (6)
rav′ ≥ rav + pv (7)

The start and end time of a lockage are defined by Equa-
tions (8) and (9). Finally, Equation (10) is an helper variable
that is used in the objective function.

sl = min
v∈Vl

(rav) ∀l ∈ L (8)

el = max
v∈Vl

(rav + pv) + Pc +
∑
v∈Vl

pv ∀l ∈ Lc, c ∈ C (9)

ev = el ∀v ∈ Vl, l ∈ L (10)

A schedule requires to have a fixed position for each vessel
in a lockage. This position is defined by a xv and yv coordinate
relative to the bottom left of the chamber. Equations (11)
and (12) ensure that a vessel is placed within the dimensions
of the chamber. A vessel must be moored onto the left or the
right side of the chamber. The binary decision variable mlv
indicates if vessel v is moored onto the left side. Equation (13)
enforces the correct x coordinate of vessel v based on the side
it is moored on.

0 ≤ xv ≤Wc − wv ∀v ∈ Vl, l ∈ Lc, c ∈ C

(11)
0 ≤ yv ≤ Lc − lv ∀v ∈ Vl, l ∈ Lc, c ∈ C

(12)

xv =

{
0 if mlv = 1,

Wc − wv if mlv = 0
∀v ∈ Vl, l ∈ Lc, c ∈ C

(13)



When multiple vessels are positioned within a lockage, they
are not allowed to overlap. The functions same side(v, l)
returns the vessels in the same lockage l on the same side
of vessel v. Between vessels v, v′ ∈ Vl, it is required to have
a minimum vertical distance of vdistance(v, v′) when moored
onto the same side of the chamber. Equations (14) and (15)
ensure that two vessels on the same side do not overlap and
that the minimum distance is enforced.

|yv − yv′ − lv′ | ≥ vdistance(v, v′)

∀v′ ∈ same side(v, l), v ∈ Vl, l ∈ L (14)

yv ≤ yv′ + lv′ ∨ yv ≥ yv′ + lv′

∀v′ ∈ same side(v, l), v ∈ Vl, l ∈ L (15)

When vessels share the same vertical position on
opposite sides of the chamber, a minimum horizon-
tal distance between them is required. The function
opposite side overlapping(v, l) returns the set of vessels in
l that are moored on the opposite side of vessel v and share
some overlapping y position. The horizontal distance required
between these vessels are retrieved with hdistance(v, v′).
Equation (16) enforces the additional horizontal distance for
these vessels.

|xv + lv − xv′ | ≥ hdistance(v, v′)

∀v′ ∈ opposite side overlapping(v, l), v ∈ Vl, l ∈ L (16)

Equations (17) to (25) summarise the different decision
variables and list their domain. The requested arrival times
of a vessel at a lock is defined up to a minute. This can be
modelled as an integer since the first event in the problem.
It is therefore also required to provide the parameters as an
integer representing the minutes since the same moment.

dv, v ∈ V, dv ∈ {0, 1} (17)
xv, v ∈ V, xv ∈ Z, 0 ≤ xv ≤ maxc∈C(Wc) (18)
yv, v ∈ V, yv ∈ Z, 0 ≤ yv ≤ maxc∈C(Lc) (19)

rav, v ∈ V, rav ∈ Z, 0 ≤ rav (20)
ev, v ∈ V, ev ∈ Z, 0 ≤ ev (21)

Vl, l ∈ L, Vl ⊆ V (22)
dl, l ∈ L, dl ∈ {0, 1} (23)

sl, l ∈ L, sl ∈ Z, 0 ≤ sl (24)
el, l ∈ L, el ∈ Z, 0 ≤ el (25)

C. Objective function

The goal of a lock scheduling algorithm is to find a lock
schedule where both the delay for all the vessels and the
number of lockages used are minimised. In addition, outliers,
where vessels have extreme delays, are to be avoided. This
can be achieved by including the maximum delay or squaring
individual delays.

The delay of a vessel can be measured using either waiting
time or tardiness. This is defined as the difference between
the arrival time of a vessel and the start and end time of a

lockage respectively. In a detailed lock schedule, a lockage can
start before the arrival of any vessel it processes. Therefore,
tardiness is always used when detailed lock schedules are
compared. Each experiment will define the objective function
component weights (Ki).

1) Squared waiting time: K1

∑
v∈V (rav − av)

2 +
K2

∑
l∈L(1)

2) Squared tardiness: K1

∑
v∈V (ev−av)2+K2

∑
l∈L(1)

3) Summed waiting time: K1

∑
v∈V (rav − av) +

K2max
v∈V

(rav − av) +K3

∑
l∈L(1)

4) Summed tardiness: K1

∑
v∈V (ev−av)+K2max

v∈V
(ev−

av) +K3

∑
l∈L(1)

IV. ALGORITHMS

This section introduces three different online algorithms
for the posed lock scheduling problem. It does so, by first
explaining a framework in which the algorithms have to
operate. Then, the different algorithms are presented. All
three approaches are inexact methods as the online nature of
the decision does not find the global optimal schedule. The
motivation for the straightforward algorithms is the fact that
the problem is unexplored and a baseline is required.

A. Algorithmic framework

Information about a vessel comes available over time when
a vessel arrives close to the Port. It is therefore important to be
able to decide on a single vessel. Algorithm 1 presents pseudo-
code representing the framework in which all the algorithms
will operate. During the first step, the lock scheduling algo-
rithms return a set of proposals to accommodate the vessel.
Then, out of all the options, a single proposal is selected.
This is based on the objective function and the feasibility of
the proposal regarding other schedules at the port. Finally, the
selected proposal has to be executed onto the lock schedule
to finalise it.

Every proposal has to be evaluated before a selection can
be made. It is trivial to determine the objective difference
regarding the lock schedule. However, when the algorithms
are used in a simulation of the complete port, this becomes
more complex. It is therefore desirable to minimise the number
of interactions with vessels. This is achieved by assuming a
constant lockage duration during the scheduling phase. This
allows the algorithms to add vessels to a lockage without the
requirement of interacting with each vessel in that lockage
to ensure the new duration is fine by them. During the
experiments, a constant lockage duration of 60 minutes is
assumed. This allows at least one vessel to be added to the
lockage, have the lock move to the other direction and have
some additional time left. The number of vessels in the lockage
may require more time than the constant lockage duration.
During the conversion, care will be taken to make room for
such lockages.

B. Online lock scheduling algorithms

Three online scheduling algorithms are created which differ
in their abilities to affect vessels and lockages different from



Algorithm 1 Framework for the online lock scheduling algorithms

Require: vessel, arrivalT ime, direction
allProposals← DetermineAllProposals(vessel, arrivalT ime, direction)
selectedProposal←SelectProposal(allProposals)
ExecuteProposal(selectedProposal)

the vessel currently scheduled. Algorithm 2 presents the logic
which all the algorithms share. When a vessel cannot be
allocated with the current arrival time, the algorithm will delay
the vessel and try again until at least a single solution is
found. For a lockage to accommodate a vessel, it must traverse
in the right direction, the vessel must arrive before the start
of a lockage and the vessel placement sub-problem must be
solved for the vessels already in the lockage together with the
currently scheduled vessel.

The difference between the online scheduling algorithms
are implemented in the feasibility checks and explained as
follows;

1) Default: This algorithm is not able to delay other
lockages. A new lockage is therefore only created if
there is enough time between the predecessor and the
successor. As the lockage duration is assumed to be
constant a vessel can always be added to a lockage if
the vessel placement sub-problem can be solved.

2) Non-Greedy: This algorithm extends the default algo-
rithm and is allowed to delay other lockages. Therefore
it will always propose solutions for creating a lockage
as it will push its successors onto later in time.

3) Improved: An extension of the Non-Greedy algorithm
where the proposals of the Non-Greedy algorithm are
examined and improved by local search.

C. Local search

The Improved lock scheduler is equipped with capabilities
to revisit made decisions to further improve the quality of
the resulting lock schedules. These capabilities are based on
the fact that sub-optimal decisions are made, especially when
vessels are planned in non-chronological ordering. Figure 1 is
an example where the ordering in which the vessels are added
by the algorithm affects the outcome significantly when all
the vessels could arrive at the same moment. The proposals
of the Improved lock scheduler found using the local search
operators are always in addition to the existing proposals.

Fig. 1: Example where the ordering in which vessels are added
affect the number of lockages required to allocate all vessels.

The first local search operator examines the first two lock-
ages in the same direction either before or after the moment a
new lockage is created. When different subsets of the current

lockages and the new vessel could fit in only two lockages,
it is proposed to omit the additional lockage and reassign the
vessels to their new lockage.

The second local search operator compares only two lock-
ages. The lockage with the currently added vessel and the
first predecessor in the same direction. When a vessel in the
predecessor is delayed less compared to the new vessel, it is
proposed to swap them. This is aimed to reduce the maximum
waiting time, as the total delay remains the same.

D. Converting abstract lock schedules

When scheduling with a constant lockage duration, the
algorithms often create lockages that will take more time in
reality. Therefore, an abstract schedule must be converted into
a detailed schedule. A simplistic approach, which does no
additional optimisation, is the following push-back method.

1) Create an empty detailed lock schedule.
2) Starting at the first lockage in the abstract schedule,

the actual lockage duration is determined based on the
vessels allocated.

3) Based on the predecessor in the detailed lock schedule
and the vessels inside the lockage, the earliest start-time
of the lockage is determined.

4) A new lockage is added to the detailed lock schedule
with the updated start time and duration.

5) The conversion continues with the next lockage in the
abstract schedule at step 3.

Note that using this method, lockage gets pushed back
towards a later start time if a lockage turns out to use more than
the time anticipated. However, the contrary is also true; when a
lockage takes less time than scheduled, the sequential lockage
could start earlier if the vessels can arrive at that moment.

V. EXPERIMENTAL SETUP

A. Datasets

The Port of Antwerp provided all the lock movements of
the year 2019. This dataset forms the basis for the experiments
in this work. The port utilises locks to separate two banks
from the tide of the river the Westerschelde. Each bank has
multiple entry points at different points along the river. As
the algorithms introduced in this work are made for a single
lock with multiple chambers, each bank is reduced to its main
entry point during experiments. By redirecting the traffic of the
other locks towards these main locks, the demand will become
larger than in reality. This is by no means a simplification of
the problem.

Provided with this set of vessels that need to be processed
by a lock, it is important to determine a realistic moment for



Algorithm 2 Basic algorithm for the online lock scheduling algorithms.

Require: lockSchedule, vessel, arrivalT ime, direction
if lockSchedule is empty then

Propose to create lockage at arrivalT ime
Return

end if

lockageBeforeV esselArrival ← DetermineLockageBeforeV esselArrival(arrivalTime)
lockageAfterV esselArrival ← DetermineLockageAfterV esselArrival(arrivalTime)

if DoesLockageAccomodateVessel(lockageBeforeV esselArrival, vessel) then
Propose to add vessel to lockageBeforeV esselArrival

end if

if DoesLockageAccomodateVessel(lockageAfterV esselArrival, vessel) then
Propose to add vessel to lockageAfterV esselArrival

end if

if CanCreateLockageAfter(lockageBeforeV esselArrival, vessel) then
Propose to create lockage after lockageBeforeV esselArrival

end if

if CanCreateLockageAfter(lockageAfterV esselArrival, vessel) then
Propose to create lockage after lockageAfterV esselArrival

end if

if no proposal is created then
Delay vessel until end of lockageAfterV esselArrival and reschedule it

end if

which the vessel requests to be scheduled in the lock. When
using the realised arrival times as input for the lock scheduling
algorithms it becomes trivial to generate a schedule. Therefore,
based on the hourly, daily and monthly arrival patterns in the
dataset and the number of vessels new arrivals are generated.
These arrivals are based on their arrival at the start of the
Westerschelde. This will spread out the vessels as they do not
travel the river at an equal speed and requires the algorithms
to create a schedule by themselves.

TABLE I: Characteristics of the main entrance locks at the
Port of Antwerp.

Lock Length (m) Width (m) Main entrance to

Zandvlietsluis 500 57 Right bank
Berendrechtsluis 500 68 Right bank
Kieldrechtsluis 500 66 Left bank

B. Run-time analysis

The run-time of the algorithms is dependent on two factors;
the inter-arrival time, which determines how close the vessels
arrive at each other, and the planning horizon. Control over
these parameters is gained by generating artificial problem
instances. Arrival times are sampled from a Poisson process
and the dimensions of each vessel are uniformly selected

from all the arrivals of the 2019 dataset. The values for the
parameters during the experiments are presented in Table II
and are based on the data analysis on historical lockages.
Arrivals are generated for both a single and double chamber
lock. The dimensions are similar to those of the main entry
points of the left and right bank respectively.

With these parameters, 25 instances will be generated for
each parameter combination. Because each instance is a reali-
sation of a random process the number of vessels per instance
is not fixed. Therefore the run-time divided by the number of
vessels is reported. The algorithms will solve every instance
in both a chronological ordering and with 10 random arrival
orders. All experiments are run on windows 10 with an Intel
i7 processor and 12GB of RAM and are implemented in C#.

The framework for the online lock scheduling algorithms
requires an objective function to select the best proposal.
During these experiments, this objective is based on the
summed waiting time objective function. Exact weights for
each of these components are irrelevant for the run-time.
No significant differences have been observed when the ex-
periment is repeated with different objective functions and
weights.



TABLE II: Parameters with their default value and range for the run-time analysis of the online lock scheduling algorithms.

Parameter Unit Default value Range

Inter arrival time hours 0.6 [0.3, 0,35, 0.4, 0.45, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
Horizon days 2 [1, 2, 4, 8, 16, 32, 64, 128, 256]

C. Comparison with exact algorithm

The lack of existing online lock scheduling algorithms re-
quires to use of another baseline. By comparing with an exact
offline algorithm, it is possible to determine the optimality
gap. However, the comparison is unfair as the offline algorithm
knows of every arrival from the beginning.

The mixed-integer linear program introduced by Verstichel
et al. [5] is used as this baseline. Adaptions to the formulation
regarding the representation of chambers as presented by Ji et
al. [14] are applied. In addition, some constraints are removed
as they do not apply to the lock scheduling problem of interest.
Finally, the constraints for the vessel placement sub-problem
are simplified as sea-going vessels cannot moor onto each
other. Appendix A lists the complete model.

The literature review showed that none of the objective
functions used for exact algorithms contains the number of
empty lockages. Balakrishnan et al [15] describes how the
formulation could be adapted to force an ordering in the
decision variables seqkl such that it helps to determine the
number of empty lockages. However, it would also require
significantly more variables and constraints to be added. To
prevent increasing the complexity of the model further, it
is opted to omit counting the empty lockages during this
experiment.

During the following experiments, only the summed waiting
time objective function is used. The squared waiting time
objective function cannot be used as it would destroy the linear
properties of the formulation. The different weights for the
objective function components are listed in Table III.

From the historical arrivals, a continuously increasing se-
quence of arrivals is randomly selected until solving the
problems becomes infeasible within a practical time limit of 12
hours. For each problem size, 10 instances are created for the
exact algorithm. From these instances, 10 additional instances
are created for the online lock scheduling algorithms by
shuffling the arrival order randomly. Experiments are executed
using Ubuntu 20.04.2 LTS, a dual-core processor and 32GB
of RAM. The model is implemented in C# with the state-of-
the-art CP-SAT hybrid solver from Google OR-Tools [16].

D. Relative comparison

Exact algorithms are not able to solve large problem in-
stances within a reasonable amount of time. The online lock
scheduling algorithms are therefore compared relative to each
other on generated problem instances with a length of a year.
The experiments are based on 15 sets of different arrivals and
departures based on the historical patterns for both the left
and right banks. Each set is solved ten times using a random
arrival ordering and once with a chronological ordering.

The summed waiting time and squared waiting time ob-
jective functions are used during these experiments. For the
squared objective function, the weight of the number of lock-
ages is increased. The summed waiting time objective function
has two experiments. First, the weight of the maximum waiting
time is increased while the weight of the total waiting time
and the number of lockages is set to 1 and 30 respectively.
Then the weight of the lockages is increased with the weight
of the total waiting time set at 1 and the maximum waiting
time at 2. Both these objectives are similar to the realistic
objective function as introduced during the experiment with
the exact algorithm. However, this time the empty lockages
are also included.

E. Benefit of constant lockage duration

The trade-off between interactions with vessels and the
lock schedule quality is made by comparing lock schedules
created using a constant lockage duration which are converted
using the push-back method and lock schedule created with
a realistic constant duration. During each step of the process,
the number of times a vessel is asked to arrive at a certain
moment is counted. The detailed lock schedule is created with
the same logic of the Improved lock scheduling algorithm.
However, this time the lockage duration is not fixed but based
on the number of vessels in the lockage. Each of the locks
has a processing duration of at least 30 minutes. In addition,
20 minutes are added for every vessel entering and exiting the
lock.

Problem instances with a length of three months are gener-
ated 25 times based on the historical patterns for both the left
and right banks. The problems are solved in both a random
and chronological ordering. The abstract lock scheduling al-
gorithms use a varying constant lockage duration to determine
its effect.

For the summed tardiness waiting time objective, the
weights of the realistic and waiting time only objective
function are used as introduced in the experiment where the
algorithms are compared to the exact algorithm. In addition,
the squared tardiness waiting time is used with a fixed weight
for the number of lockages of 900. Depending on the number
of vessels, this is roughly similar to 30 minutes additional
delay.

VI. RESULTS

A. Run-time analysis

Figures 2 and 3 show the run-time of the algorithms on the
generated instances on the instances with both a single and a
double chamber lock. The trends in the results are similar for
both graphs. As the arrivals are based on a random process, the



TABLE III: Overview of the different objective weights used in the exact lock scheduling experiments.

Identifier Total waiting time Maximum waiting time Number of lockages

Equal objective 1 1 1
Waiting time only 1 1 0
Realistic objective 1 2 30
Lockage only 0 0 1

Fig. 2: Run-time of the online lock scheduling algorithms on
artificial instances with a single chamber. Default values for
the inter-arrival time and the horizon are 0.6 hours and 2 days
respectively.

Fig. 3: Run-time of the online lock scheduling algorithm on
artificial instances with two chambers. Default values for the
inter-arrival time and the horizon are 0.6 hours and 2 days
respectively.

number of vessels per instance differ. Therefore, the run-time
is reported per vessel.

Decreasing the inter-arrival time increases the run-time of
the algorithms. This is especially noticeable for the improved
algorithm. Increasing the horizon of the experiment increases
the run-time linearly for all algorithms. In addition, it is clear
that chronological arrivals are beneficial in terms of run-time
in comparison with random arrival orderings.

The linear increase in the run-time per vessel with a growing
planning horizon is expected due to the data structures used
to store the lock schedule. Decreasing the inter-arrival time
increases the number of vessels per time interval. This allows
more vessels to be allocated together in a lockage. Therefore,
the Improved algorithm has more subsets of vessels to analyse.
This difference is also present when the arrivals are not
chronological ordered.

B. Comparison with exact algorithm

The relative performance of the online lock scheduling
algorithm compared to the exact algorithm on problems of
the left bank are depicted in Figures 4 and 5. As the online
algorithms did not find different solutions for the equal,
realistic and waiting time only objective functions, only the
former is included. The same applies for the experiments with
the right bank as presented by Figures 6 and 7.

The Non-Greedy and Improved online lock scheduling algo-
rithms are competitive and outperform the Default algorithm
consistently. However, there are only a few cases where the
Improved algorithm is better than the Non-Greedy algorithm.
Both often result in a lock schedule with fewer lockages while
the waiting time is higher. Comparing the algorithms on the
problem with a lockage only objective shows that the non-
greedy and improved algorithms are good at minimising the
number of lockages.

Fig. 4: Comparison of the online algorithms with the optimal
solution on small realistic problem instances on the left bank.
The objective function is to minimise the total waiting time,
the maximum waiting time and the number of lockages with
equal waits.

C. Relative comparison

The results of the experiments with the realistic objective
function are depicted in Figures 8 to 11. Increasing the weight
of the maximum waiting time causes a small increase in the
number of lockages. However, it creates a lock schedule where
the maximum waiting time is drastically reduced while the
average waiting time remains relatively constant. This trend
applies to both banks and the Non-Greedy and Improved
algorithms. The Default algorithm results in schedules with
extreme maximum waiting times and is not shown in the
graph.

Increasing the weight of the number of lockages with the
same objective function causes both the average and maximum



Fig. 5: Comparison of the online algorithms with the optimal
solution on small realistic problem instances on the left bank.
The objective function is to minimise the number of lockages.

Fig. 6: Comparison of the online algorithms with the optimal
solution on small realistic problem instances on the right bank.
The objective function is to minimise the total waiting time,
the maximum waiting time and the number of lockages with
equal waits.

waiting time to increase. When the number of lockages is
drastically reduced compared to the schedule with a low
weight, the average waiting time starts to rise quickly. Again,
the Default algorithm is not competitive with the other two
algorithms in terms of average and maximum waiting time.

Figures 12 and 13 shows the results of the squared objective
function where the weight of the number of lockages is
increased. The same trends as with the realistic objective
function are present. However, this time the average waiting
time increases harder and the maximum waiting time remains
less compared to the other objective function. In addition, the
weight of the number of lockages must be relatively high to
reach a similar number of lockages as the realistic objective
function.

For every objective function, it holds that the Non-Greedy
and Improved algorithm have a lower average waiting time
and user number of lockages when the ordering of vessels
is random. However, the maximum waiting time is larger
compared to the chronological ordering. These two algorithms
always perform better than the Default algorithm. The Im-
proved algorithm also outperforms the Non-Greedy algorithm.
It is especially good at reducing the number of lockages.

Fig. 7: Comparison of the online algorithms with the optimal
solution on small realistic problem instances on the right bank.
The objective function is to minimise the number of lockages.

D. Benefit of constant lockage duration

Figures 14 and 15 show the relative objective, its compo-
nents and the number of interactions of the abstract algorithms
compared to the detailed algorithm when using the realistic
objective function. The improved abstract algorithm performs
best and therefore its results are listed. The optimal relative
objective is achieved with a constant lockage duration between
50 and 55 minutes. It reduces the interactions between 32
and 40% while increasing the average waiting time by 11 and
15%. Figures 16 and 17 and Figures 18 and 19 show the same
results when using the squared and waiting time only objective
functions respectively. Table IV summarises the results and
shows the relative differences for the optimal constant lockage
duration.

The trends are similar for every objective function. When
the constant lockage duration increases the relative total and
maximum tardiness increases. However, the number of lock-
ages decreases. This is because when scheduling lockages with
a long duration, more vessels can be added to it. Interestingly,
even in the case that the number of lockages was not included,
the abstract algorithms tend to use fewer lockages compared
to the detailed algorithm.

E. Summary

The online lock scheduling algorithms can be compared rel-
ative to each other as following; The Default and Non-Greedy
algorithms have the lowest run-time while the Improved algo-
rithm produces the lock schedules of the highest quality. The
latter is also confirmed when the algorithms are compared with
the exact algorithm. On small problem instances, the Non-
Greedy and Improved algorithms are competitive with each
other.

Summarising the results presented related to the trade-off
of using a constant lockage duration, Table IV shows the
main result. The Improved lock scheduling algorithm reduces
the number of interactions by more than 30% by using this
abstraction. In addition, the number of lockages is less and
the tardiness is slightly increased compared to a lock schedule
created with a realistic lockage duration from the beginning.



TABLE IV: Overview of the optimal constant lockage duration, the relative number of interactions and the different objective
components for different objective functions with the improved abstract algorithm.

Objective
function

Optimal constant
lockage duration (min)

Relative
objective
function

Relative number
of interactions

Relative average
tardiness

Relative
maximum
tardiness

Relative number
of lockages

Realistic 50-56 1.03-1.05 0.60-0.68 1.10-1.15 1.13-1.30 0.89-0.92
Squared 54-58 1.12-1.17 0.61-0.68 1.08-1.13 1.08-1.21 0.94-0.97
Waiting time only 44-48 1.05-1.07 0.58-0.65 0.98-1.02 1.00-1.15 0.93-0.97

VII. CONCLUSION AND FUTURE WORK

This work introduced the online variant of the single lock
scheduling problem called SLSP-ONLINE and argued its ap-
plicability for simulation purposes. We proposed three online
algorithms which have a small run-time and can adapt existing
lock schedules while taking into account a realistic objective
function. By using a constant lockage duration we reduced the
number of interactions between the lock scheduling algorithms
and vessels significantly while the quality of the lock schedules
is only slightly reduced.

Based on the current work, there are different directions to
take. First, additional local search operators could be added to
the Improved lock scheduler and analysing the improvement
of each operator allows making a better trade-off between
additional run-time and lock schedule quality. Second, the
concept of scheduling with a constant lockage duration and
converting the schedule into a detailed lock schedule could
be applied to the offline lock scheduling problem. Finally,
when information about barges is available it is interesting
to determine the performance of the algorithms again.



(a) Chronological ordering (b) Random ordering

Fig. 8: Relative comparison of the online lock scheduling algorithms on realistic instances with the realistic objective function
for the left bank where the weight of the maximum waiting time is increased.

(a) Chronological ordering (b) Random ordering

Fig. 9: Relative comparison of the online lock scheduling algorithms on realistic instances with the realistic objective function
for the right bank where the weight of the maximum waiting time is increased.

(a) Chronological ordering (b) Random ordering

Fig. 10: Relative comparison of the online lock scheduling algorithms on realistic instances with the realistic objective function
for the left bank where the weight of the number of lockages is increased.

(a) Chronological ordering (b) Random ordering

Fig. 11: Relative comparison of the online lock scheduling algorithms on realistic instances with the realistic objective function
for the right bank where the weight of the number of lockages is increased.



(a) Chronological ordering (b) Random ordering

Fig. 12: Relative comparison of the online lock scheduling algorithms on realistic instances with an objective function where
individual waiting times are squared for the left bank.

(a) Chronological ordering (b) Random ordering

Fig. 13: Relative comparison of the online lock scheduling algorithms on realistic instances with an objective function where
individual waiting times are squared for the right bank.



Fig. 14: Relative objective and fraction of interactions required for the abstract algorithms compared to the detailed online
lock scheduling algorithm using the realistic objective function.

Fig. 15: Relative objective components of the resulting schedules of the abstract algorithms compared to the detailed online
lock scheduling algorithm using the realistic objective function.



Fig. 16: Relative objective and fraction of interactions required for the abstract algorithms compared to the detailed online
lock scheduling algorithm using the squared objective function.

Fig. 17: Relative objective components of the resulting schedules of the abstract algorithms compared to the detailed online
lock scheduling algorithm using the squared objective function.



Fig. 18: Relative objective and fraction of interactions required for the abstract algorithms compared to the detailed online
lock scheduling algorithm using the squared waiting time only function.

Fig. 19: Relative objective components of the resulting schedules of the abstract algorithms compared to the detailed online
lock scheduling algorithm using the waiting time only objective function.



APPENDIX A
MIXED INTEGER LINEAR PROGRAM FORMULATION

A. Parameters

N , N ′: Set of upstream, downstream vessels, indexed by i, j.
M , M ′: Set of the upstream, downstream lockages, indexed by k, l.
wi, li: Width and length of upstream vessel i.
w′

i, l
′
i: Width and length of downstream vessel i.

dFi, dBi: Minimal distance between upstream vessel i and the front, back of the chamber.
dF ′

i , dB
′
i: Minimal distance between downstream vessel i and the front, back of the chamber.

sLij : Minimal safety distance between upstream vessels i and j when they are lying behind each other.
sL′

ij : Minimal safety distance between downstream vessels i and j when they are lying next to each other.
sWij : Minimal safety distance between upstream vessels i and j when they are lying behind each other.
sW ′

ij : Minimal safety distance between downstream vessels i and j when they are lying next to each other.
ri, r

′
i: Arrival time of upstream, downstream vessel i at the coordination point.

U : Set of physical chambers indexed by u.
Wu, Lu: Width and length of the chamber u.
W,L: Maximal width and length over all chambers
Mu,M

′
u: Subset of M, reserved for upstream, downstream lockages performed on chamber u.

p: Constant lockage duration.
setupkl: Minimal setup time between lockages k and l when they are processed by the same chamber. Depends

on the direction of lockages k and l.
Cmax: Big M constant used as an upper bound for the completion time.

B. Variables
xi, yi: Integer variables that define the x and y position of vessel i (front left corner).
bij: Binary variable indicating whether vessel iis to the left of vessel j or not.
leftij: Binary variable indicating whether vessel i is behind vessel j or not.
mli: Binary variable indicating whether vessel i is moored onto the left side of the chamber or not.
zk: Binary variable that indicates whether lockage k is used or not.
fik: Binary variable that indicates whether vessel i is processed in lockage k or not.
vij: Binary variable that indicates whether vessels i and j are processed in the same lockage or not.
ci: Departure time of vessel i.
Ck: Completion time of lockage k.
seqkl: Binary variable that indicated whether lockage k precedes lockage l or not.
Tmax: Maximum waiting time of all vessels.

C. Objective function
The values of K1, K2 and K3 are variable and are defined for each experiment performed with the algorithm.

K1

∑
k∈N∪N′

(ci − p− ri) +K2Tmax +K3

∑
k∈M∪M′

Zk (26)

D. Constraints
The following blocks of constraints models the scheduling part of the lock scheduling problem.

ci ≥ Cmax(fik − 1) + Ck, ∀i ∈ N, k ∈M (27)
ci ≤ Cmax(1− fik) + Ck, ∀i ∈ N, k ∈M (28)

c′i ≥ Cmax(fik − 1) + C′
k, ∀i ∈ N ′, k ∈M ′ (29)

c′i ≤ Cmax(1− fik) + C′
k, ∀i ∈ N ′, k ∈M ′ (30)

pk ≥ pzk, ∀k ∈M (31)

pk ≥ pzk, ∀k ∈M ′ (32)

Cl − Ck ≥ pl + setupkl − 2Cmax(1− seqkl), ∀k < l ∈Mu ∪M ′
u, u ∈ U (33)

Ck − Cl ≥ pk + setupkl − 2Cmax(1− seqkl), ∀k < l ∈Mu ∪M ′
u, u ∈ U (34)

Ck − Pk ≥ fikri, ∀i ∈ N, k ∈M (35)

Ck − Pk ≥ fikri, ∀i ∈ N ′, k ∈M ′ (36)



Zk ≤
∑
i∈N

fik, ∀k ∈M (37)

Zk ≤
∑
i∈N′

fik, ∀k ∈M ′ (38)

The following block of constraints are transitive constraints and are used to break symmetry.

Zk+1 ≤ Zk, ∀k ∈Mu ∪M ′
u, u ∈ U (39)

Ck ≤ Ck+1, ∀k ∈Mu ∪M ′
u, u ∈ U (40)

The following constraint is used for the objective function.

Tmax ≥ ci − ri − p, ∀i ∈ N ∪N ′ (41)

The following blocks of constraints models the ship placement part of the lock scheduling problem for the upstream vessels.

leftij + leftji + bij + bji + (1− fik) + (1− fjk) ≥ 1, ∀i < j, i, j ∈ N, k ∈M (42)
xi − xj +Wleftij ≤W − wi, ∀i, j ∈ N (43)

yi − yj + Lbij ≤ L− li, ∀i, j ∈ N (44)
xj − xi + (W + sWij)(1− leftij + bij) ≥ wi + sWij , ∀i, j ∈ N (45)
yj − yi + (L+ sLij)(1− bij − leftij) ≥ li + sLij , ∀i, j ∈ N (46)

xi + wi ≤Wu + (1− fik)W, ∀i ∈ N, k ∈Mu, u ∈ U (47)
yi + li ≤ Lu + (1− fik)L, ∀i ∈ N, k ∈Mu, u ∈ U (48)

yi ≥ dFi, ∀i ∈ N (49)
yi + li ≤ Lu− dBi + (1− fik), ∀i ∈ N, k ∈Mu, u ∈ U (50)∑

k∈M

fik = 1, ∀i ∈ N (51)

fik ≤ Zk, ∀i ∈ n, k ∈M (52)
xi ≤ (1−mli)W, ∀i ∈ N (53)

xi + wi ≥ (
∑

k∈Mu

fik −mli)Wu, ∀i ∈ N,u ∈ U (54)

The following blocks of constraints models the ship placement part of the lock scheduling problem for the downstream vessels.

leftij + leftji + bij + bji + (1− fik) + (1− fjk) ≥ 1, ∀i < j, i, j ∈ N ′, k ∈M ′ (55)

xi − xj +Wleftij ≤W − wi, ∀i, j ∈ N ′ (56)

yi − yj + Lbij ≤ L− li, ∀i, j ∈ N ′ (57)

xj − xi + (W + sWij)(1− leftij + bij) ≥ wi + sWij , ∀i, j ∈ N ′ (58)

yj − yi + (L+ sLij)(1− bij − leftij) ≥ li + sLij , ∀i, j ∈ N ′ (59)

xi + wi ≤Wu + (1− fik)W, ∀i ∈ N ′, k ∈M ′
u, u ∈ U (60)

yi + li ≤ Lu + (1− fik)L, ∀i ∈ N ′, k ∈M ′
u, u ∈ U (61)

yi ≥ dFi, ∀i ∈ N (62)

yi + li ≤ Lu− dBi + (1− fik), ∀i ∈ N ′, k ∈M ′
u, u ∈ U (63)∑

k∈M′

fik = 1, ∀i ∈ N ′ (64)

fik ≤ Zk, ∀i ∈ n, k ∈M ′ (65)

xi ≤ (1−mli)W, ∀i ∈ N ′ (66)

xi + wi ≥ (
∑

k∈M′
u

fik −mli)Wu, ∀i ∈ N ′, u ∈ U (67)



The following block of constraints formulate bounds and integrality constraints on the variables.

leftij , bij ,mlij ∈ {0, 1}, ∀i, j ∈ N ∪N ′ (68)

vij ∈ {0, 1}, ∀i < j, i, j ∈ N ∪N ′ (69)

0 ≤ xi ≤W, ∀i ∈ N ∪N ′ (70)

0 ≤ yi ≤ L, ∀i ∈ N ∪N ′ (71)

0 ≤ ci ≤ Cmax, ∀i ∈ N ∪N ′ (72)

0 ≤ Ck ≤ Cmax, ∀k ∈M ∪M ′ (73)
fik ∈ {0, 1}, ∀i ∈ N, k ∈M (74)

fik ∈ {0, 1}, ∀i ∈ N ′, k ∈M ′ (75)

zk ∈ {0, 1}, ∀k ∈M ∪M ′ (76)

seqk ∈ {0, 1}, ∀k ∈M ∪M ′ (77)
Tmax ≥ 0 (78)
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