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~ LIST OF SYMBOLS

Al ' - cross—-sectional area of.stfinger.

io - axisymmetric coefficient of the Fourier representatlon
used see Eg. (2)

Aol’ Bol

ckl’ Dkl - coeff1c1ents of the Fourler representatlon used, see
Eq. (2) *

d1 - stringer spacing ' |

e - distance between centroid of stringer cross-section and

: © middle surface of skin

E .7 - Young's modulus

F.S. ‘ - factor of safety’ _

i, k i - number of'halffwaves.in the axial direction

Iil : —d momeht of inertia of stringer cross-section about its

. centroidal axis

-Itl_ '  _7 tofsional modulus of the strlnger Ccross- sectlon

L. - number of full waves in the circumferential dlrectlon

L - shell length

M -  moment reeultant

NX - stress fesuitant

R - shell radius

t - shell wall-thickness

P - - axial load

Pcz - <classical buckllng load ' .

u, v - displacement compeonents in the axial and c1rcumferentlal

" directions, respectlvely

\& - - radial dlsplacement positive outward

w - - radial imperfection from perfect circular cylinder,
positive outward , ‘

x,‘y | - axial and circumferential coordinates on the middle
surface of the shell, respectively

zZ - Batdorf's parameter (= LZ/Rt_JT:GEB

¥ - "knockdown factor" in Eq. (1)

8 - nondimensional circumferential coordinate = Y/R

p » - nondimensional loading parameter

v - Poisson's ratio '



COLLAPSE LOAD CALCULATIONS FOR AXIALLY COMPRESSED

i

IMPERFECT STRINGER STIFFENED SHELLS

by

J. Arbocz

~ABSTRACT "~ '~

This paper discusses ways to predict accurately the collapse loads of
stringer stiffened shells under axial compression by using the best available
nonlinear analysis capability combined with detailed initial imperfection sur-
veys. The numerical analysis is done with a modified version of the STAGS-A
computer code. It appears that the buckling load predictions using the measured
initial imperfections as input will be within less than 10% of the experimental
buckling load if the experimental boundary conditions are modeled correctly.



1. INTRODUCTION

The use of large general purpose computer programs for the analysis of
different types of aerospace structures is by now well accepted. These codes
have been used successfully to calculate the stress distributions for very
complicated structural configurations with the accuracy demanded in engineering
analysis. However, when the structure is buckling sensitive, then even today,
in 1984, one will often encounter great difficulties in making a reliable
prediction for the critical buckling load.

The axially compressed cylindrical shell represents one of the best known
examples of the very complicated stability behaviour which can occur with thin-
walled constructions. The whole problem is well illustrated in Figure 1
(Weller and Singer ), .where -some. of the available experimental results for
stringer stiffened shells are plotted as a function of Batdorf's Z (= L /Rt
Vi-v) parameter.

Trying to find the explanation of the w1de experlmental scatter and for the
poor correlation between the predlctlons based on a linearized small deflection
theory with 8S-3 (Ny = v = w = My, = 0) boundary conditions and -the experimental
values has occupied some of the most eminent scientists of this century. For
thin shells that buckle elastically lnltlalgeometrlc1mperfectlons (Koiter 2
Budiansky and Hutchinson 3) and the effect of dlfferent boundary conditions
(Hoff 4, Ohira 5, Singer and Rosen 6) have been ‘accepted as the main cause
for the wide scatter of experimental results. However, this knowledge has not
been, as yet, incorporated 1n the current shell design manuals.

These codes (Anonymous 7) all adhere to the so-called "Lower Bound Design
Philosophy" and. as such . recommend the use of the following buckling formula

- Pq = F57 Femrr : o _ o , ()

where P, is the allowable applied load, PcriT is the lowest buckling load of
the perfect structure, y is a "knockdown factor" andF.S. is a factor of safety.
The empirical knockdown factor y is so chosen that when it is multiplied with
PcrriT @ "lower bound" to all available experimental data is obtained.

It has been hoped that with the large scale introduction of advanced com- -
puter codes, which incorporate the latest theoretical findings, an alternative
design procedure could be developed which would no longer penalize innovative
shell design because of the poor experimental results obtained elsewhere.

As a step towards this goal the results of an extensive numerical study with
the well characterized stringer stiffened shell AS-2 tested at CALTECH in 1970 8
are reported. The analysis is done with an early finite difference version of
the well-known nonlinear shell code STAGS 9. Discrete models of increasing
size and complexity are employed in an attempt to reproduce numerically the
experimentally observed shell behaviour.



2. COLLAPSE LOAD CALCULATIONS WITH STAGS

As stated in the introduction, with the 2-dimensional finite difference
code STAGS one can calculate the effect of a given initial imperfection on the
collapse load and at . the same time enforce rigorously the experimental boundary
conditions. However, the economical use of such programs requires not only some
information about realistic imperfections that are present in the structure,
but also considerable knowledge as to the physical behaviour of imperfect shell
structures by the user. This knowledge can be acquired by first using the series
of imperfection sensitivity analysis of increasing complexity which have been
published in the open litterature in the past two decades.

The measured initial imperfection shape of the stringer stiffened shell AS-2
(see Fig. 2) is shown in Fig. 3 and its geometric and material properties are
summarized in Table 1. Arbocz and Babcock published in 1980 a paper 10 wherein
the results of the various imperfection sensitivity analysis applied to this
particular shell were presented and compared to each other and to the test re-
sults. As can be seen from Table 2, with successive refinements in the model
used the calculated buckling loads approach the experimental buckling load ever
more. The STAGS (30-modes model) prediction of 243.8 N/cm is only about 7% off
from the experimental'value of 226.3 N/cm, a margin that is well within the
accuracy that can be expected for imperfection sensitive buckling load calcula-

tions.
However, as has been pointed out in Reference 10 the recalculated initial

‘imperfection shape using the 30 Fourier coefficients included in the analysis
does not physically resemble the measured initial imperfection shape shown in
Fig. 3. But since it describes so well the collapse behaviour of the shell AS-2
one could argue that the 30-modes model is equivalent (in some sense) to the
actual initial shape. In the following it will be investigated what are the
consequences of the different simplifying assumptions. Special attention will
"be devoted to the choice of the critical subsections of the complete shell
structure, to the details of the imperfection models employed and to the
satisfaction of the approprlate boundary conditions at the edges of the dis-
crete models chosen.

2.1. Closed Model-Half the Shell Length

The shell segment used for the collapse analysis of the 30-modes imperfec-
tion model is showh in Fig. 4. The choice of the 40 x 40 mesh-size is dictated

“bythe 1imits of computational facilities available in 1975 (a UNIVAC 1108).

-‘Because of: the symmetry requirements at the boundaries 2 and 4 the 30-modes
1mperfectlon model 10 can only include cos n8 terms with n an even integer.
This restriction means that the imperfection representation used is symmetric with
respect to 6 = 0. An assumption that does not agree with the measured initial imperfec-
ticn shown in Fig. 3.
In crder to remove this restriction 1n1t1ally the shell segment shown inFig. 51is
used. The chosen meshsize of 19 x 221 represents the limit of the computational
facilities available in Delft (an AMDAHL 470-V7B ). To represent the measured imper-

fections initially the following double Fourier series is used:

ﬁ(x,y) =t Z AiO cos i%¥-+ t Z Aoz’cos %% + t X B02 sin %%
kv Ly A :
+ II sin I (C xe OS5 | Dkl sin R)_ ‘ (2)



By the selection of the initial imperfection harmonics to be included in the
analysis first all those harmonics are taken the amplitudes of which,are greater-
than 0.040 (4% of the wall thickness t) and which satisfy the symmetry condition
with respect to x = L/2. Next the required "breathing-like" modes, which satis-

~ fy the condition i = 2k are added. Finally one selects the coupling modes that
must be included in order to satisfy the coupling conditions k1 + ko+ k3 = odd
integer and ]%1 + 22| = 23. For the present case these conditions resulted in
the -74-modes imperfection model summarized  in Table 3. Notlce that the’ ampll—
tudes of the higher oxder buckllng modes are set equal to O. 005 0,5% of the
wall thickness t).

The recomputed initial shape of the 74-modes 1n1tlal 1mperfectlon model is
shown in Fig. 6. It includes both cos nf and sin n® terms and satisfies the
symmetry conditions at x = L/2 (boundary 3) as required by the shell segment
shown in Fig. 5. Figure 7 displays the determination of the limit point,
where close to the collapse load pg = 0.8026 very small load increments had’
to be used. The normalized collapse load is defined as follows: pg = Ny/ :
(-320.8) where ~320. 8 N/cm is the buckling load of the- perfect shell AS-2 using
membrane prebuckling and C4- W=v=w= W,x = 0) boundary conditions. Figure

'8 shows the calculated prebuckling deformation and Fig. 9 the collapse mode

at the limit loads pg .= 0:8026. As indicated in Fig. 9 the collapse mode
Yepresents the difference of the last two prebuckling solutions and it consists-
of a single buckle in the central region of the shell. This -agrees ‘with the
‘published high speed - mov1es_ of the buckling process obtained by Almroth 11
and Esslinger 12. : : ' - N

Next as an alternate-representation the lower-half of the measured initial
data is fitted by a bivariate cubic spline fit which, as can be seen from Fig.
- 10, smoothens rather nicely the original experimental data recorded at a

" rather coarse 21 x 49 mesh. The bivariate cubic spline fitted model is then
used to compute the first derivatives with respect to x and 8 of the measured
initial imperfection at all nodal points of the 19 x 221 mesh. This data is
then read in directly by STAGS via a user written Subroutine. Unfortunately
‘this imperfection model does not satisfy rigorously the symmetry conditions
at x = L/2 which are imposed by the shell segment used for this analysis
(see Fig. 5). Thus the collapse load is pg = 0.8451 (once again normalized by
—-320.8 N/cm), a higher value then the one found for the 74-modes imperfection
medel. However, the calculated prebuckling deformation shown in Fig. 11" and the -
collapse mode displayed in Fig. 12 are nearly identical to the ones obtained
previously (compare with Figures 8 and 9, respectively).

Spline fitting, in turn, the upper-half of the measured initial imperfec-
tion data results in the pattern shown in Fig. 13. This bivariate cubic spline
fitted model is then used to compute the first derivatives with respect to x
and 8 of the measured initial imperfection data at all nodal p01nts of the
upper 19 x 221 mesh, which then are read in directly by STAGS via a user
written subroutine. One again the fitted imperfection model does not satisfy
the symmetry conditions at x = L/2. Thus the collapse load is pg = 0.84101
(normalized by -320.8 N/cm), somewhat lower than the value obtained using the
spline fitted lower-half model but still higher than the value found for the
74-modes imperfection model. The calculated prebuckling deformation pattern .
shown in Fig. 14 and the collapse model displayed in Fig. 15 are very similar
to the corresponding figures obtained using the spline fitted lower-half model
(compare with Figures 11 and 12, respectively).

2.2, Open Model-Half the Shell Perimeterb

It is known that the lowest buckling mode of the perfect stringer stiffened




shell AS-2 is asymmetric in the axial direction 13, Thus by choosing the discrete
model shown in Fig. 16, where the full shell length is modeled, these asymmetric
modes can develop unimpeded. Further by using half the shell perimeter (46 = 180°)
it is hoped that the effect of the boundary conditions at & = 0 and 6 = 180° can
be minimized.

Inltlally the measured initial imperfections are represented by the double
Fourler series (see Eq. (2)) used previously. When selecting the initial imper-
fection harmonics to be included in the analysis first all those harmonics are
taken the amplitudes of which are greater than 0.040. Notice that the symmetry
restriction with respect to x = L/2 is no longer applicable., Next the "breathing-
like" modes, which satisfy the condition i = 2k are added. Finally the coupling
modes (deflned as those modes which are needed in order to satisfy the coupling
conditions ki + k2 + k3 = odd integer and lﬂl 221 = 23 .) are included. These
conditions resulted in the 132-modes imperfection model summarized in Table 4,
Notice that the amplitudes of the higher order coupling modes are once . again
equal to 0.005 (0.5% of the wall thickness t). The recomputed initial shape of
the 132-modes initial imperfection model shown in Fig. 17 resembles rather well

.. to the measured initial imperfection shown in Fig. 3. However, since both sin né

. and.cos. nb components are included, it only partially satisfies the symmetry
.conditions at .= 0 and 6 = 180° (at boundaries 2 and 4) imposed by the discrete

U‘model used. The chosen mesh of 61 x 161 has been based on the results of conver-

gence studies reported in Reference 13. The collapse load is pg = 0.78619 (nox-
malized by -320.8 N/cm). Thus not satisfying rigorously the symmetry conditions
in the circumferential direction (at 6 = 0 and 6 = 180°) seems to have less
stiffening effect then the not satisfying of the symmetry conditions at x = L/2.
The calculated prebuckling deformation shown in Fig. 18 and the collapse mode at
the limit point pg = 0.78619 displayed in Fig. 19 are very similar to the corres-
ponding deformation patterns obtained previously (compare with Figures 8, 9 and
11 and 12 respectively).

Switching to the bivariate cubic pline Ilt, initially the left-half of the
shell perimeter is fitted, whereby first a switch of the circumferential origin
® = 0 is executed so that the region of the expected maximum response is placed
at the central part of the shell segment. Figure 20 shows the spline fitted ini-
tial imperfection surface used for the collapse load calculations. It can be
seen clearly that at the edges & = 0 and § = 180° the symmetry conditions are not
satisfied. Thus it comes as no suprise that the limit load is pg = 0.8727 (norma-
lized by -320.8 N/cm), a rather high value. On the other hand the calculated -
prebuckling deformation and the collapse mode at pg = 0.8727 shown in Figures 21
and 22 do not differ much from the corresponding plots obtained previously.

The next case is an excellent example of what can happen if one just "blind-
1y" chooses a shell segment around the location where the maximum initial radial
.imperfection is located, without performing the necessary preliminary analysis
so as to acquire sufficient information about the expected behaviour of the
sample shell. Figure 23 shows the spline fitted initial imperfection of the
"shifted" right-half of the shell AS-2. Notice that the origin 8 = 0 is shifted
so that the maximum initial radial imperfection is placed at about the central
part of the shell segment used. The normalized collapse load is here pg=0.9513
(with the same normalization factor of -320.8 N/cm). Locking at the calculated
prebuckling deformation at pg=0.9513 shown in Fig. 24 it is immediately evident
that it is completely different from the other prebuckling shapes obtained sofar.
Comparing it to the bifurcation buckllng mode of the perfect stringer stiffened
shell AS-2 with the same C-4 (u = =w = w,y = 0) boundary conditions shown in
Fig. 25, it is clear that in this case the form of the initial imperfection used
has a stabilizing effect and that the shell segment collapses only when about
the perfect shell buckling load is reached. This statement is reinforced further
by the collapse mode at pg = 0.9513 displayed in Fig. 26, which resembles very
closely the bifurcation buckling mode of the perfect shell shown in Fig. 25.



-2.3. Closed Model—Comélete Shell

From the results obtained sofar it is clear that the value of the collapse
load pg is strongly influenced by the well or not satisfaction of the symmetry
condltlons at the edges of the shell sub-sections used in the collapse analysis.
One way of avoiding these problems is by modeling .the complete shell. However,
as can be seen from Fig. 27, the use of a closed shell model requires displace-
.ment continuity at the boundaries 2 and 4, which results in rather large band-
width thus increasing the execution times considerably. Notice that the spline
fitted initial imperfection surface shown -in Fig. 28 agrees quite well with»the
measured initial imperfection of Fig. 3. The mesh of 41 x 161 used for the.
collapse load calculation with the closed shell model represents just .about the
limit of what can be computed on the currently available amdahl 470-V7B in Delft.
The calculated prebuckling deformation at the limit point pg = 0.8563 is dis-
played in Fig. 29, the corresponding collapse mode is shown in Fig. 30. The =
agreement with the previously calculated deformation patterns is reasonably good,
however, the collapse load of pg.= 0.8563 (normalized by -320. 8 N/cm) is unex-
pectedly: high.

In locking for an explanation, a comparison of the calculated prebuckllng
pattern of Fig. 29 with the experimentally measured prebuckling deformation of
Fig. 31 is helpful. It is obvious that the two deformation patterns are striking-
ly different. Since the measured initial imperfections are modelled quite accu-
rately by the bivariate cubic spline fit used, therefore the answer must be
sought in a possible difference between the C-4 (u = v = w =W,y = 0) boundary
conditions used with the numerical calculations and the actual boundary condi-
tions present at the experimental set-up. :

" . In Reference 13 the effect of boundary conditions on the bifurcation buckling
load of the perfect stringer stiffened shell AS-2 has been extensively investi-
gated. The conclusion was that the two end-pieces used in the experimental set-up
"appeared stiff enough to simulate the C-4 (u=v=w=w,x =0) boundary condi-
tions. It seems, however, that this conclusion arrlved at in Reference 13 by
using perfect shell analysis does not hold for shells with initial imperfections.
This statement is reinforced by the result of rerunning the current model using
the same spline fitted inital 1mperfectlons as input but changing the boundary -
conditions successively toC-3 (Nxy = v =w = w,x = 0) and to SS-3 (Ny = v = w =

= 0). The calculated prebuckling deformations are.shown in Figures 32 and
33, respectively. It must be mentioned here that for the C-3 boundary conditions
the limit load pg = 0.8153 is normalized by -256.9 N/cm; whereas for the SS-3
" boundary conditions the limit load pg = 0.8095 is normalized by -229.8 N/cm.
The normalizing factors are the bifurcation buckling loads of the perfect
stringer stiffened shell AS~2 using membrane prebuckllng and the 1nd1cated boun-
dary conditions. :

From a comparisom of Figures 29, 32 and 33 (displaying the calculatedvpre—'
buckling deformations using the different‘boundary conditions as indicated) .with
the measured prebuckling growth shown in Fig. 31 it is clear that the best agree- .
ment occurs for the SS-33 boundary conditions. Thus it appears that in order to
model the buckling behaviour of the imperfect stringer stiffened shell AS-2
accurately one must not only include the measured initial imperfections but also
model the experimental boundary conditions more realistically. This means that
one must use the appropriate elastic boundary condltlons in place of the standard,
mathematically so convenient C-4, SS-3 etc.,boundary condltlons.




3. DISCUSSION OF THE NUMERICAL RESULTS

As has been reported in Reference 8, because of clearence problems with the
head of the capacitance pick-up the circumferential scans had to be started and
stopped at about 0,9 cm from the shell ends. Thus two narrow regions next to the
shell edges remained unscanned. In Figures 3 and 31, which display the measured.
initial imperfections and the measured prebuckling deformation at p = 0.629,
these regions are represented by the parallel lines next to the lower (x = 0) and
the upper (x = 139.7 mm) shell edges. The harmonic analysis is done based on this
reduced lenqgth. For the buckling load calculations, however, the real physical
length of the shell is used, whereby one assumes that the contribution of the
imperfections within the (neglected) narrow edge regions to the harmonic content
of the surface scans is negligible. For the cubic spline fitted imperfections
extrapclation is employed to obtain the needed lmperfectlon data in the narrxow
unscanned boundary regions.

The determination of limit points, as is done in Fig. 7, by loocking for that

“load level beyond which the nonlinear iterative solution fails to converge is

_ somewhat unsatisfactory. Close to the limit point it requires the use of very

" small incdremental quantities-and solutions beyond the limit point are very diffi-
:.cult to obtain. Recently Riks' solution procedure 14 nas been incorporated in

- the STAGS-A. program used in Delft. Check runs with this 'new version of the code,
which can obtain converged solutions beyond the limit point routinely, have
confirmed the axial load levels at the limit points found earlier.

A detailed convergence study with the STAGS-A code 10, based on bifurcation
buckling of the perfect AS-2 shell, indicates the need for a 41 x 241 mesh if a
complete shell is employed for the collapse analysis. Such a model is as yet
~ beyond the available computational facilities. The results of a limited conver-
gence study with the imperfect AS-2 shell, using 41 rows and 141, 161 and 181
columns respectively, are shown in Fig. 34. Here along the vertical axis the
percent change in axial load as referred to the preceding model is plotted. As
can be seen the 3 points obtained seem to confirm the predictions of the earlier
convergence study from Reference 10. .

General information about the computer runs described in thlS paper are pre-
sented in Table 5. With the exception of the 30 modes imperfection model which
was run on an UNIVAC 1108, all other runs were executed on the AMDAHL 470-V7B
in Delft. Initially one refactoring of the stiffness matrix per restart is
sufficient. Close to the limit point refactoring at every load step may be
required. Due to extensive use of secondary storage the ELAPSED times-needed
exceed the CPU times used by about a factor of 3. Thus most runs are executed
during the weekends in the "UNATTENDED" mode. S '



4. ~CONCLUSIONS

TheAresulte of this study shpw‘that by combining the existing nonlinear ana-
lysis capabilities with detailed knowledge of the expected shell behaviour, one
indeed can find relatively small discrete models consieting of subsections of the
complete shell which will adequately predict the actual collapse load.

Thus the 30~modes imperfection model does a good prediction of the experimen-- '

tal collapse load because it models the rather localized collapse mechanism of
the stringer stiffened shell AS-2 satisfactorily. On the other hand, the use of
the cubic spline fitted imperfection model to that part of the shell where the
maximum radial imperfection is located triggered only the overall collapse mecha-
nism of the perfect shell. The predicted collapse load was thus much higher than
the experimental value. ’

In general the proper double Fourier series representatlon of the initial
imperfections will lead to a close prediction of the experimental collapse load,
if the appropriate symmetry conditions at the edges of the shell subsection
used for the analysis are satified. Since the cubic spline fitted imperfection
description in general does not satlsfy the required symmetry condltlons its use
w1th shell subsections is not recommended. g '

Finally, the runs with identical imperfections but different boundary con-
ditions clearly indicate that the form of the resulting prebuckling deformation
is strongly influenced by the interaction between initial imperfections and the
different types of boundary constraints present. Thus. the results of thie paper
support the contention of Singer and Rosen ©, that for the stringer stiffened
shells a better correlation between theoretical predictions and experimental
results. requires the inclusion of both the initial imperfections and the appro-
prlate elastic boundary condltlons in the analysis.
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Table 1. Geometric and material properties of shell AS-2

='1.96596 x 107 om
1 - L. =13.97 . em (
R = 10.16 em  (
| a4, =8.03402 x 10T cm  (
| . ey = 3.36804 x 1072 cm B
{ S A = 7.98708 x 1O:Z_cm4 (
; I11 = 1.50384 x 10 ~ ecm (
‘ I., = 4.94483 x 10° en® (=
T E- = 6.89472 x 106 N/cm2 (=
i'. RN - =10.3

.00774 CIN)
5 IN)
.0 IN)
.3163 IN)
.01326 IN).
.1238 x 1072 1n%)
3613 x 10/ 1N%)
L1188 x 107° v
0.10° PSI)

Table 2. Sﬁmmary of buckling load calculations

Conditions

. Loads (N/cm)

Perfect shell analysis

Experimental set-up 316.6
Fully clamped - o ' 316.8
Nonlinear bending prebuckling -
Fully clamped - ' 320.8
Membrane prebuckling ‘
Simply supported 229.8
Membrane prebuckling
Imperfect shell analysis
Koiter type (b-factor) 295.1
. Multi mode analysis 264.7
(7-modes model)
STAGS 243.8
(30-modes model) '
Experimentélvbuckling load 226.3
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Table 3. The 74-modes imperfection model (w is positive outward)

Harmonics with amplitudes greater than 0.040

Modg no. k L | Ak% Mode no. k , 2 Bk2
1 0 2 0.246 5 0 .,21_ '0.094
2 0 3  0.165 6 0 6 -0.070
3 0o 4  0.179
4 o 9  0.058

Peg » Py
7 1 2. 0.315 19 1 2 0.118
8 1 3 0.208 20 1 5 0.046
9 1 4 0.231 21. 1 6 -0.093
10 17 o.041 22 1 10  0.041
11 4. 8 -0.066 23 1 11  -0.055
12 t 9  0.081 24 3 2 0.040
13 3 2 0.100
14 3 3 0.072
15 3 4 0.071
16 5 2 0.058
17 5 3 0.041
18 5 4 0.040

"Breathing-like" modes

Mode(no. k‘- 2 Akl

22 .2 0 0.0046

26, ... .4 .0  0.003

27 6 0 -0.0003

28 8 0 -0.0020

29 10 0 -0.0014

Coupling modes with measured amplitudes

Mode no. k L Ckl Mode no.. . k L Dksl
30 1 5 ~0.020 42 1 3 -0.029
31 1 6  -0.037 , 43 1 4 -0.006
32 1 10 -0.037 44 1 7 -0.038
33 111 0.003 45 1 8 -0.001
34 1 12 0.038 46 1 9 -0.037
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Coupling modes with measured amplitudes

- Mode no.

35
36
37
38
39
a0
41

k

1

Coupiing modes

1,21

1,33
1,21

1,33 7

1,23

1,35

1
1
1
1 .
1
1

L

13
14
15-
16
17

18

19

C

k&

.031
.033

.002

.007
.016
.018
.008

Mode no. ko
47 1
48 1
9 1
50 1
51 1
52 1

53 1
54 1

with amplitudes of 0.005

7

7

14

C

1,37

1,24 " C1,25 !

C1,27 © 1,20 © 1,31

C

D

P1,24 * Pr,25 * P1,27 * P1,29 + Py 3

Dy, 37

12

13
14
15
16
17
18
19

k4
0.027
0.002
-0.014
10.029
-0.020

-0.002
-0.003

-0.008
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Table 4. The 132-modes imperfection modes (w is positive outward)

Harmonics with amplitudes greater than 0.040

Mode no.

1

oW N

10°

e
12
13
14
15
16
17
18
19
20

k-

[y

o O O O

B W N R WRN N WY DS W N

S IR, BT, IR PR VORI N R T S S o

L

2
3
4
9

Akl

0.246
0.165
0.179
0.058

k&
0.315
0.208
0.231
0.041

. -0.066

0.081
0.198
10.057
0.100
0.072
0.071
0.058
0.041
0.040

"Breathing-like" modes -

- 29

30
31
32
33

w O &

10 -

)

o O O O O

Ao

0.0046

0.0036
-0.0003
~0.0020
~0.0014

Mode no.

5
6

21
22
23
24
25
26
27
28

—_

[ Y O Y

w N N

o N

N

k2
0.094
-0.070

k2
0.118
0.046

. =0.093

0.041
-0.055
-0.072

-0.073

0.040



Céupling modes with measured amplitudes

.Mode no.

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

k

—_ = s

DN NN NN NDNN NN NN NN N R O R e e s e e

9

5

6

10
11
12
13
14‘
15

16

O w9 0 L W

17
18
19

10

12
13
14
15
16
17
18
19

20

Ckl

-0.020

.=-0.037 -

-0.037
0.003
0.038

-0.031
0.033

-0.002

-0.007

. 0.016

-0.018

0.008
20.012
-0.015
-0.010
-0.018

-.=-0.012

0.001
-0.018

-0.001

-0.006
-0.002
0.002
-0.004
-0.001"
0.002
-0.0003
0.002
-0.0001

Coupling modes with amplitudes of 0.005

1,21 °
2,22 '
1,21 7
2,22 '

U U A a

1,23
2,24
1,23

U o a0 0

2,24

t4

7

14

o o 0 o

1,24
2,26

1,24

2,26

1,25
2,28
1,25

U o o 0

' T2,28

O ou 0o 0

1,27
2,é0
1,27
2,30

4

’

I

r
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Mode no.

63
64 :
65
66
67
68
69
70
71
72
73
74
.75
76 -
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

1,29 '
~2,32 ¢
1,29 '
2,32 "

a0

o o

—_

B e s e

[y

1,31

g 0O 0

1,31
2,34

o

NSRRI NN NN NN NN NN N

2,34

1,33
2,36
1,33
2,36

o o 0. -nN

k2

-0.029

-0.006

-0.038
"-0.001

-0.037
0.027
0.002

-0.014

0.029
-0.020
-0.002

=0.003
- =0.008
0.005 -
- -0.013

-0.004

' -0.012.
~0.002

0.0002

0.009
-0.006
0.002

0.001
-0.001"

0.0002
10.001
0.003

.0.003

-0.001
0.0001

1,35
2,38
1,35
2,38

o o 0O 0

g o a0 0

1,37
2,40
1,37
~2,40
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Fig. 1 Comporlson of theory and experiment for strmger
stlffened shells under axial compressnonm
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Fig. 2 Geometry of the stringer stiffened shell AS-2!®!
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‘Circumferential angle (rad)

~ Fig.3 Measured initial shape of the stringer stiffened
shell AS-2 (21 x49=1029 data points) _

‘//\ | TN Boundary._conditions
- ;/‘\R\i \| O) uz0, v=w=w, =0
‘-—__—]\ ' | /' . ' AL G
l\\'/ l @® symmetry
|
| Z'W/:/ y, , ® u=v=w=w,, =0
L I . (5 l , .
| 2) | AH6=90°
O [ '
| |
r ]
\ /

Fig 4 Shell segment used for collapse analysis of

imperfect shells (Discrete model A')
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N Boundary conditions-

@@ displacement' ‘compotibilit‘y -

o YV ® | symmetry

AB=360°

0 P
— e —— e

- Fig. 5 Shell segment - used for" collapse  analysis - of |
~ imperfect shells (Discrete model B) .
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 Fig.6 Recomputed initial shape of the stringer stiffened
| shell AS-2 using 74 Fourier coefficients
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©

= o 19x221 mesh

o 10F -

= ' L 0.8026

x

O
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Q-

2 05F

O o

e

o

Z .

VO.V“A-.I.L..l.-..l....l (/t)MAX

0 1.0 20

Maximum radial displacement

Fig.7 Determination of the limit point by STAGS analysis
(Shell AS-2, Boundary conditions: uzv=w=w,,=0)

Circumferential angle (rad)

Fig.8 Calculated prebuckling growth of the stringer stiffened
shell AS-2 at p;=0.8026 (19 x221= 4199 mesh points)
(Boundary conditions: u=v=w=w,,=0) |
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Circumferential angle (rad)

Fig9 Calculated collapse mode of the Astringer stiffened
| shell AS-2 at ps= 0.8026 (19 x221= 4199 mesh points)

(Boundary conditions: u=v=w=w, =0)

“Circumferential angle (rad.)

an'_."IO Cubc splineAﬁt.ted initial  shape of the Stringer stiff_éned
| ~ shell AS-2 (19x221=4199 mesh points) |

=




€
£ 1397 '
N :
O ]
c |
= !
2 !
© !
XS '
<"
10+
- ~~ I 9=Y/R
] 2 oand
0 | : 2T |
Circumferential angle (rad) -

Fig.11 Calculated prebuckling growth of the stringer stiffened
shell AS-2 at p,=0.8451 (19x221 mesh points) |

(Boundary conditions: u= v=w=w,x=0)

Xf aw_w _w]
_ t tip=0.84510 t1p=0.84506
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Circumferential angle (rad)

Fig.12 Calculated collapse mode of the stringer stiffened
shell AS-2 at p=0.8451 (19x221 mesh points)

(Boundary conditions: u=v=w =w,X=O)
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Fig.13 Cubic spline fitted initial shape of the upper half
of the stringer stiffened shell AS-2 ! .
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Fig.14 Caiculated prebuckling deformation at the
lhmit point Ps=0.84101 _ .
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Fig.16 Shell segment used for collapsé analysis  of
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F?g.18'Colc’ulatéd prebuckling growth of the stringer stitfened
shell AS-2 at p=078619(61x 161= 9821 mesh points) _

(Boundary conditions: u=v=w =w,=0)




« :
N o
| " Bt
[ ” ;
NS e ,
] U b
O o C 4
| <6 T
23 ST T T B £
™= = — - ““ _ IL )
’’’’’’’ o E T N e
6_ ‘2 ..& % _ : ¢
Q) | - | $
g, > _ 5
NI | c N . 5
5| | 3 T 0O ~ o O
Q o 2 o O ! - :
— | : = 2o :X _ . %. m
W_t | L v m © 3 ! g :
. — +~ = 0 | S - mﬂ
_9_ nnuu 5% W nnu i
Q! S 5 0% 3 : i
N o = o > g € -
. C
. , o EQ . : f3
S I M) S ¢O § P o
¢ ! 7 f A o N’ -4 m >— S
- A E a'y,o
2| 1 o 2 awv u :
n , : m ..NUU. = m m E .
R | i O ©50 -
, lm o 2 H o
I T 3% 3 -
~— ] g._.E%bi._._bf.gc%(gr.r% ﬁ 1 , 5 d 3
T , LU HH OCm 3
..O«.W - N o O v <o g
i B = m.
(Wwuw) Sdubysip B._x<A rm.




‘ 25

- X
£
E 1397 paia it
o [
& |
<3 \ i ,
: Y .
U ™~ l
o |
G
':E |
» 'W/t II
10t |
| .
| .
] . : Ilie:Y/R
o= : :
' | _ T » - 2T

Cnrcumferentlcl cng!e (rad)

Fg 21 Calculated prebucklmg growth of the stringer stuffened ’
shell AS-2 at p,=0.8727 (61x 161 = 9821 mesh points)

(Boundary conditions: u=v=w=w, =0)
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Fg.22 Calculated collapse mode of the stringer stiffened
shell AS-2 at pg= 08727 (61x161=9821 mesh points)

- (Boundary conditions: u=v =W=Wx=0)
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Fig.23 Cubc spline'fitted initid shape of the stringer stiffene
shell AS-2 (61x161=9821 mesh points) -

Ix
1397
R el
|
£ |
£
-
o !
O
[y
S|
|
5| W |
=¥ 10 |
< I
|
| , ]
L e ——— 1 -—
—TI:» 0] T 6=)7R

Circumferential angle (rad)
Fig.24 Calculated prebuckling deformation at the
limit point pg=09513 -



27
| _ 1397 & -
- E : ‘ ]
; £ |
. o
| Q
| §
} o
| &
3 4
X
| < .
|
|
10 ] o

Circumfebentidl “angle.. (.rod.)
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(Boundary conditions: u=»v=w'=w,x=.0) .

AW Wl
VTt pez09513 7 Tt

(mm

tance

Axial djs

—

—

oo e e = I
v ' 0 T Ve:_y/R o

Circumferential angle (rad)
"Fig.26 Calculated "collap‘se | kr"'node Cat pSéO.9513v. |

——




aoiundqry conditions

ut O, v=w=w,x=O

@ displacement compatibility

U=vzw=Ww,y =0

26 =360°

'Fig.27 Shell segment used for collapse analysis of
imperfect shells (Discrete model D)
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- Fig.28 Cubic spline fitted

stiffened shell AS-2 (41x161=6601 mesh poinvts)
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Fig. 29Calculated prebuckling growth of the stringer stiffened
shell AS-2 at p= =08563 (41 x 161-6601 mesh points)

(Bcundary conditions: u= Vaw=w,=0)
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* Fg.30 Calculated collcpsé mode” of the stringer stiffened
shell AS-2 at pg= 08563 (41x161=6601 mesh pomts)

(Boundary conditions: u= v W =W,y O)
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Fig 31 Measured prebuckling growth of the stringer stiffened
shell AS-2 at p=0629 (21x49=1029 data pointsl
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Fig.32 Calculated prebuckling growth of the stringer stiffened
shell AS-2 at p=08153 (41 x 161 =6601 mesh points)

(Boundary conditions: Ny =v=w=w,=0)
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F'ug.33.Cdlculated prebuckling growth of the strihger stiffened
shell AS-2 at p=08095 (41x161=6601 mesh points)
(Boundary conditions: N§v=w=MX=O) o
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Fig 34 Convergence behaviour of the col_lupse |
analysis of a complete shell
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