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Abstract

E-commerce is rapidly growing and is expected to encompass a quarter of all global sales by 2025.
This growth pressures e-commerce warehouses to enhance efficiency. A promising innovation is the
Robotic Mobile Fulfiiment System (RMFS), which optimises warehouse operations by using robots to
manage storage and retrieval tasks, thus significantly improving productivity, speed and accuracy. This
research focuses on how inventory allocation (slotting) decisions with RMFS can optimise operational
performance. In particular, how the slotting decision of Stock Keeping Unit (SKU) distribution across
movable storage racks (pods) based on SKU turnover can maximise order throughput rates and opti-
mise operational performance.

The research question guiding this study is: What is the optimal demand-based slotting decision
to maximise the order throughput rate in a Robotic Mobile Fulfiiment System? This question aims to
provide insights into how different slotting configurations impact the efficiency and performance of e-
commerce warehouses.

The research approach is twofold. A general analysis is conducted to understand the impact of
turnover-based slotting decisions using synthesised demand profiles derived from literature. This is
followed by a detailed case study for Gall&Gall using demand profiles derived from real-world data to
find specific optimal slotting configurations and validate the synthesised demand results.

The methodology involves three main steps: determining demand configurations, generating slot-
ting configurations with a mathematical model, and simulating these configurations to evaluate perfor-
mance. Each demand configuration results in multiple slotting configurations, which are evaluated with
the simulation to gain insights into the effect of slotting decisions on performance.

The different demand profiles consist of total SKU quantity, total item quantity, and SKU classification
into three classes (A, B and C) based on their item turnover.

The different slotting configurations consist of different distributions of the three classes over the pods.
These slotting configurations are obtained with a mathematical model that prioritises class distribution
based on given weights.

The simulation tool RawSim-O assesses the slotting configurations on key performance indicators such
as total order throughput rate and the number of items picked from a pod in one go (pile-on).

Key findings provide that pile-on and travel distance significantly affect the order throughput rate,
with performance variations of up to 40 orders handled in 30 minutes.
High performance often arises with configurations aiming for an equal number of items per pod across
classes and maximising the number of pods for SKUs in class A.
While synthetic demand profiles show high performance with class A distributed over the maximum
number of pods or equal items per pod for all classes, the Gall&Gall demand profiles perform better
with class B distributed over slightly more pods, indicating variability in optimal slotting approaches
based on specific demand characteristics.
Overall, turnover-based slotting decisions significantly impact order throughput rates in RMFS, and
tailoring slotting configurations to specific demand characteristics is crucial for optimal operational effi-
ciency.

In addition to general slotting insights, this research developed a method that allows warehouses
to input their specific demand characteristics and receive insights on optimal slotting approaches. Fur-
thermore, the method enables the readjustment of warehouse-specific details, such as a warehouse’s
unique layout, for extra applicability and realism, and allows the integration of additional decision prob-
lems, such as order batching and routing, to broaden the method’s scope. This supports warehouses
with the design of a tailored, robust and effective slotting strategy for operational performance improve-
ment.






Contents

Glossary 1
List of Tables 3
List of Figures 5
1 Introduction 9
1.1 ResearchContext . . . . . . . . . . . . . . e 9
1.1.1  Warehouse Processes and Terminology . . . . . . . . .. ... . ... ...... 9

1.1.2 Robotic Mobile Fulfilment System . . . . . . . .. .. .. ... ... ........ 11

1.2 Problem Definition . . . . . . . . .. 13
1.3 ResearchQuestions . . . . . . . . . . . . L 14
1.4 Research Approach . . . . . . . . . . . . . . e 14
1.5 Practical Value . . . . . . . . . e 15
1.6 Research Scope . . . . . . . . . . e 16

2 Literature Analysis 17
21 Inventory Classification. . . . . . . . . . .. 17
2.2 Order Demand ApplicationinResearch. . . . .. .. .. ... ... ... ......... 19
2.3 Decision Problems in a Robotic Mobile Fulfilment System. . . . . . ... ... ... ... 23
2.31 Order Demand Certainty . . . . . . . . . . . . .. .. 23

2.3.2 New Concepts with a Robotic Mobile Fulfilment System. . . . . . ... ... ... 24

2.3.3 Decision Problem Correlations. . . . . .. .. .. .. .. ... ... ... ... 25

2.4 Slotting Decision Problem in a Robotic Mobile Fulfiiment System . . . . . . ... ... .. 26
2.4.1 Distribution of Stock Keeping UnitsoverPods . . . . . ... ... .. ... .. .. 26

2.4.2 Item Quantity of a Stock Keeping UnitinaPod. . . . . ... ... ... ...... 26

2.4.3 Combinations of Stock Keeping UnitsinaPod . . . . . . ... ... ........ 27

244 General SlottingResearchGap . . . . . . ... .. ... ... . 0. 27

2.5 Performance Evaluation . . . . . . . ..o 28
2.6 Conclusionto Literature Review. . . . . . . . . . . . .. .. ... .. 28

3 Methodology 31
3.1 Research Approach . . . . . . . . . . . . . . . e 31
3.2 Demand Determination. . . . . . . . ... e 35
3.2.1 Demand Profile Description . . . . . . . . ... . ... 35

3.2.2 Demand Profile Configuration . . . . . .. .. ... ... ... ... .. .. .... 38

3.3 Slotting Model . . . . . . . . 41
3.3.1 Slotting Model Description . . . . . . . . . . . . ... ... 41

3.3.1.1 Sets, Parameters and Decision Variables. . . . . . ... ... ... ... 42

3.3.1.2 Objective Functions . . . . . . . . . ... 42

3.3.1.3 Constraints . . . . . . ... 43

3.3.1.4 ParameterBoundaries . . . . .. .. ... ... L . 44

3.3.2 Parameter Configuration. . . . . . .. .. .. 44

3.3.2.1 Weight Factor Configuration. . . . . . ... ... ... .......... 45

3.3.2.2 Weight Configuration Refinement . . . . . . . ... ... .. ....... 46

3.3.3 Model Execution . . . . . . .. 49

3.3.3.1 Solver Algorithm . . . . . . . ... 49

3.3.32 RandomSeeds. . . . . . . . . . . ... 49



viii Contents
3.4 SimulationModel. . . . . . . . . e 50
3.4.1 Simulation Model Description . . . . . . . . .. . ... .. o 50

3.4.2 Simulation Model Configuration . . . . . . .. ... ... ... ........... 51

3.4.21 Layout Configuration. . . . . . . .. .. .. ... .. .. ... 51

3.4.2.2 Setting Configuration. . . . . .. ... ... .. oo 53

3.4.2.3 Controller Configuration . . . . . . . ... ... ... ... ... . ... 54

3.4.24 PerformanceMetrics. . . . . . . . . . .. ... o 54

3.4.3 Simulation Model Extension . . . . . . . . ... ... o 55

3.5 Methodology Conclusion. . . . . . . . . . . ... .. 55

4 Analysis 57
4.1 Scenario Slotting Analysis . . . . . . . . . .. 57
4.1.1 Data Statistics from the Mathematical Slotting Model . . . . . . .. ... ... .. 59

4.1.2 Algorithmic Results of the Slotting Configurations . . . . . . .. ... ... .... 63

4.1.3 Conclusion to Slotting Configurations . . . . . . . .. ... ... ... ....... 64

4.2 Scenario Simulation Analysis . . . . . . . . .. L 65
4.2.1 Performance of SimulationResults . . . . . ... ... ... . ... ... .. ... 65

4.2.2 Simulation Results per Demand Profile . . . . . . . ... ... ... ........ 66

4.2.2.1 Simulation Results with Demand ProfileDP, . . . . . . . . .. ... ... 67

4.2.2.2 Simulation Results with Demand Profile DP; . . . . . . . . ... .. ... 69

4.2.2.3 Simulation Results with Demand Profile DP. . . . . . . . ... ... ... 71

4.2.2.4 Simulation Results with Demand Profile DP, . . . . . . .. .. ... ... 73

4.2.2.5 Simulation Results with Demand Profile DP; . . . . . . .. .. .. .. .. 75

4.2.2.6 Simulation Results with Demand Profile DP, . . . . . . . . .. .. .. .. 76

4.2.3 Conclusion to Scenario Simulation . . . . . ... ... ... ... ... ... ... 78

5 Case Study 81
5.1 Introduction to Case Study of Gall&Gall. . . . . . ... ... ... ... ... ....... 81
5.2 Order Demand Profilesof Gall&Gall. . . . . . .. ... .. ... ... ... ........ 82
5.3 Slotting Configuration . . . . . . . . . . ... 83
5.3.1 Slotting Analysis . . . . . . . .. 83

5.4 Simulation Analysis. . . . . . . . . e 86
5.5 Conclusion to Gall&Gall Case Study . . . . . .. .. .. .. .. ... ... ... ... 88
5.6 Limitations Specific to Gall&Gall Case Study . . . . . . . .. ... ... ... ... ..., 90

6 Conclusions and Recommendations 91
6.1 Conclusion . . . . . . . . . e e 91
6.1.1 Practical Value and Implementation. . . . . . .. .. ... .. ... 0. 92

6.2 Considerations, Limitations and Assumptions . . . . . . . . ... ... ... ... .... 92
6.2.1 Demand Profile Considerations . . . . . . . .. . .. . . ... ... ... ..... 93

6.2.2 Slotting Considerations. . . . . . . . . .. ... .. ... 93

6.2.3 Simulation Considerations . . . . . . . . . . . . .. ... ... 93

6.3 Recommendations for FurtherResearch . . . . . . .. .. .. ... ... ......... 94
6.3.1 Recommendations for Result Specification. . . . . . ... ... ... ....... 94

6.3.2 Recommendations for Scope Extension . . . . . ... ... ... ... .. ... 94
Appendices 95
A Slotting Results per Demand Profile 97
A.1 Slotting Results DP, . . . . . . . . . e e e 97
A2 SlottingResults DP; . . . . . . . . . e 99
A.3 Slotting Results DP . . . . . . . . e 101
A4 Slotting Results DPp . . . . . . . . L 103
A5 SlottingResults DP; . . . . . . . . . e 105
A6 SlottingResults DPx . . . . . . . . . e 106
A.7 Slotting Results Regular Gall&Gall Demand Profile . . . . . . ... ... ... ...... 107
A.8 Slotting Results Peak Gall&Gall Demand Profile . . . . . . . ... .. .. ... ...... 108



Contents iX
B Performance Metric Plots 109
C Simulation Results per Demand Profile 113
C.1 Simulation Results DP,. . . . . . . . . . e e e 113
C.2 Simulation Results DPg . . . . . . . . . . . e e 116
C.3 Simulation Results DP.. . . . . . . . . e 119
C.4 Simulation Results DPp . . . . . . . . o e 122
C.5 SimulationResults DPy . . . . . . . . . . . e 125
C.6 Simulation Results DPr . . . . . . . . . . . e e e 126
C.7 Simulation Results Regular Gall&Gall Demand Profile. . . . . . . ... ... ... .... 127
C.8 Simulation Results Peak Gall&Gall Demand Profile . . . . . ... ... .. ... ..... 128
Bibliography 129






Acronyms

EOQ

RMFS Robotic Mobile Fulfiiment System

SKU

Terms

Assortment
Class

Demand
Demand profile

Inventory

Item
Order-batching
Order-picking

Order throughput rate
Order turnover time
Pile-on

Pod

Replenishment

Robot

Scenario
Single-line orders
SKU turnover
Slotting
Split-orders
Workstation

Economic Order Quantity

Stock Keeping Unit

Glossary

An optimal ratio of inventory quantity according to the
associated costs.

Order-picking system for warehouses where orders
are picked by robots with movable storage racks.
Unique specific product with its own individual identi-
fier such as a barcode.

The complete set of unique SKUs in the warehouse.

Inventory classifications where the SKUs are categorised into classes, in
this research three classes (A, B and C) based on turnover.

The orders and order contents over a specific time period.

A specific demand configuration regarding the number of SKUs and SKU
turnover per class.

The complete set of SKUs and items per SKU in the warehouse.

An entity regardless of its respective SKU.

The combination of orders assigned to a picking station.

A warehouse activity involving the picking of items necessary for the or-
ders.

The number of orders fulfilled in a certain time interval.

The time it takes for an order to be fulfilled in a warehouse.

The number of items picked from a pod when it visits a workstation.
Movable storage rack in the Robotic Mobile Fulfiiment System.

A warehouse activity involving the restocking of storage racks.

Entity that moves the pods between storage and workstations in the
Robotic Mobile Fulfilment System.

The specific slotting configuration of a specific demand profile.

Orders that consist of an item quantity of a single SKU.

The frequency with which a SKU is ordered.

The inventory allocation of items in storage racks in the warehouse.
Fulfilling an order with more than one pod.

Replenishment- or picking station in the Robotic Mobile Fulfilment Sys-
tem.






List of Tables

2.1 Coordinates of the Four Demand Curves and their Intersections with the Separation of

Classes. . . . . . . e 21
3.1 Demand Profile Definitions. The Variables and Parameters from the Demand Curve

Function are Changed from G(i) =iStoD(m)=mS. . . . .. ... ... ... ...... 36
3.2 Classification of ltem Demand D (i), per SKU i, for Different Demand Curves (m®) with

100 Itemsand 10 SKUs. . . . . . . . . . o 38
3.3 Demand Profile Configurations . . . . . . .. .. ... . ... .. ... . 39
3.4 Demand Configuration with Item Count and SKU CountperClass . ... ... ... .. 40
3.5 Sets, Parameters and Decision Variables . . . . . . .. . . ... ... ... . ..... 42
3.6 Slotting Approach Configurations . . . . . . . .. .. .. ... ... .. ... ... 45
3.7 Weight Parameter Configuration . . . . . . ... ... ... ... ... . 46
3.8 Weight Parameter Reconfiguration with Weight Range and Number of Steps for each

Demand Profile. . . . . . . .. 48
3.9 Simulation Layout Configuration. . . . . . . ... .. .. . 52
3.10 Simulation Setting Configuration. . . . . . . . .. ... .. 53
3.11 Demand and Weight Configurations Overview. . . . . .. .. ... ... ......... 56
4.1 The Distribution Results from the Mathematical Slotting Model per Demand per Class t. 58
4.2 Statistics of Data Range of Pods per Item for each Class for all Demand Profiles. . . . . 60
4.3 Statistics of Data Range of Items per Pod for each Class for all Demand Profiles. . . . . 61
4.4 Statistics of Data Range of Pods per SKU for each Class for all Demand Profiles. . . . . 62
4.5 The Performance Measures for all Weight Configurations of Demand Profile DP,. . . . . 67
4.6 The Performance Measures for all Weight Configurations of Demand Profile DP;.. . . . 70
4.7 The Performance Measures for all Weight Configurations of Demand Profile DP... . . . 72
4.8 The Performance Measures for all Weight Configurations of Demand Profile DP,. ... 74
4.9 The Performance Measures for all Weight Configurations of Demand Profile DP;.. . . . 75
4.10 The Performance Measures for all Weight Configurations of Demand Profile DP¢. . . . . 77
5.1 Demand Configuration for Gall&Gall with Item Count and SKU Count per Class . . . . . 82
5.2 Weight Range Configuration for Gall&Gall Scenarios. . . . . .. ... ... ... .... 83
5.3 Statistics of Data Range of Distribution Indicators for each Class for Gall&Gall Demand

Profiles. . . . . . . e 84
5.4 The Performance Measures for all Weight Configurations for the Gall&Gall Demand Pro-

files. . . . . e 87
A.1 Slotting Results with Demand Profile DP, . . . . . . . . . . . . 97
A.2 Slotting Results with Demand Profile DPg . . . . . . . .. ... ... ... ........ 99
A.3 Slotting Results with Demand Profile DP. . . . . . . ... ... ... ... .. ...... 101
A.4 Slotting Results with Demand Profile DPp . . . . . . . . . . ... oo 103
A.5 Slotting Results with Demand Profile DP; . . . . . . . . ... .. ... ... ....... 105
A.6 Slotting Results with Demand Profile DPx . . . . . . . . . ... ... .. .. ... .... 106
A.7 Slotting Results with Regular Gall&Gall Demand Profile. . . . . . . ... ... ... ... 107
A.8 Slotting Results with Peak Gall&Gall Demand Profile. . . . . . ... ... ... ..... 108
C.1 Simulation Results with Demand Profile DP,. . . . . . . . .. .. ... ... ... ... 113
C.2 Simulation Results with Demand Profile DPg. . . . . . . . . . ... ... ... ...... 116
C.3 Simulation Results with Demand Profile DP;. . . . . . ... ... ... ... ....... 119
C.4 Simulation Results with Demand Profile DP,. . . . . . . . . . . .. ... ... ...... 122

3



List of Tables

C.5 Simulation Results with Demand Profile DP;. . . . . . ... ... ... ... ... .... 125
C.6 Simulation Results with Demand Profile DP,. . . . . . . . .. .. ... ... ... .... 126
C.7 Simulation Results with Regular Gall&Gall Demand Profile. . . . . . ... ... ... .. 127

C.8 Simulation Results with Peak Gall&Gall Demand Profile



List of Figures

1.1 Goods Flow and Operations (Figures used from Warehouse-design (2020)) . . . . . . .
1.2 Terminology Visualisation (Figures used from Merschformann et al. (2017)). . . . . . ..
1.3 The Three Components of an RMFS (Figure from Scallog (2023)). . . . .. ... .. ..
1.4 Order-Picking Approachesand Routes . . . . . . .. ... ... ... ...........
1.5 The three main slotting decisionsinanRMFS . . . . . . ... ... ... .........
1.6 Flowchart of Research Structure. . . . . . . . . .. ... ... L oo
1.7 Flowchart of the Three Main Steps in Research Approach. . . . . . . . ... ... ... ..

2.1 Three Storage Classification Policies . . . . . . . ... .. .. ... ... ........
2.2 Assortment and Turnover Ratio According to the Pareto Principle. . . . . . ... .. ..
2.3 Different Demand Proportions within the ABC Classification. . . . . ... ... ... ...
2.4 Demand Curves used by Hausmanetal. (1976). . . . .. .. ... ... ... ......
2.5 Four Demand Curves used by Hausman et al. (1976), Classified into Two and Three
Classes. . . . . . .
2.6 Demand Curvesused by Guo etal. (2016). . . . . . ... ... . ... ... ...,
2.7 Demand Curve Derived from an Exponential Distribution, used by Lamballais (2019).
2.8 Comparison of Demand Curves used in Literature, where the Curves Referring to the
Function G (i) = i, are from Hausman et al. (1976) and Guo et al. (2016). . . . . . . ..

3.1 Flowchart of the Research Methodology. . . . . . . . ... ... ... ... ........
3.2 Demand Determination Process. . . . . . . . . . . . ... ... ...
3.3 Explanationofa TernaryPlot. . . . . . . . . ... .. .. . ... ..
3.4 Slotting Process. . . . . . . . e
3.5 Simulation Process. . . . . . . . .. e e
3.6 Figure Replication of the Demand Determination Process. . . . . . ... ... ... ...
3.7 Three Cumulative Demand Curves (m®) for the Demand Profiles, where Parameter s

Defines the Slope ofthe Curve. . . . . . . . . . . . . . .. .. . . .. .
3.8 Classification with Demand Proportion D (m), of Assortment Proportion m , from the De-

mand Curves (m%) with 100 ltemsand 10SKUs. . . . . .. .. .. .. ... ... ....
3.9 Classification with ltem Demand D (i), per SKU i, from the Demand Curves (m®) with

100 Itemsand 10 SKUs. . . . . . . . . . . .
3.10 The Six Demand Profiles. . . . . . . . . . . . .
3.11 Figure Replication of the Slotting Process. . . . . . . . . . .. ... ... ... ......
3.12 Example Demand with D; =9, D, = 6 and D; = 3, and Numberof Pods J =6. . . . ..
3.13 The Distribution of SKUs over Pods with Weights wg =1andwg =1. . . ... ... ..
3.14 The Distribution of SKUs over Pods with Weights wy = 24/27 and we =4/3. . . . . ..
3.15 Plot of the Weight Ranges per Class [w,, wg, w(] for all Demand Profiles. . . . . . . ..
3.16 Figure Replication of the Simulation Process. . . . . . . . .. .. ... ... .......
3.17 Visualisation of Simulation with the RawSim-O Application. . . . . ... ... ... ...
3.18 Top View of the Layout Configuration in RawSim-O. . . . . ... ... ... ... ....
3.19 Example of Generated Orders in RawSim-O. . . . . . .. .. ... ... ... ......

4.1 The Value Range for Pods per Item for each Class for all Demand Profiles. . . . . . ..
4.2 The Value Range for Items per Pod for each Class for all Demand Profiles. . . . .. ..
4.3 The Value Range for Pods per SKU for each Class for all Demand Profiles. . . . . . ..
4.4 The Data Distribution of Pods per Item Represented with a Box Plot for each Class for

allDemand Profiles. . . . . . . . . .
4.5 The Data Distribution of Pods per Item Represented with a Violin Plot for each Class for

allDemand Profiles. . . . . . . . .



List of Figures

4.6 The Data Distribution of Items per Pod Represented with a Box Plot for each Class for

allDemand Profiles. . . . . . . . . 61
4.7 The Data Distribution of Items per Pod Represented with a Violin Plot for each Class for

allDemand Profiles. . . . . . . . . . 61
4.8 The Data Distribution of Pods per SKU Represented with a Box Plot for each Class for

allDemand Profiles. . . . . . . . . 63
4.9 The Data Distribution of Pods per SKU Represented with a Violin Plot for each Class for

allDemand Profiles. . . . . . . . . . . e 63
4.10 Plot the Number of Orders Handled for Travel Distance and Pile-on from all Slotting

Configurations for all Demand Profiles. . . . . . . . ... .. ... ... ... ....... 65
4.11 Explanation of the interpretation of a ternaryplot. . . . . . . . ... ... ... .. .... 66
4.12 The Total Number of Orders Handled for all Weight Configurations of Demand Profile

DP,, Plotted over the Pile-on and Travel Distance. . . ... ... ... .......... 68
4.13 The Total Number of Orders Handled for all Weight Configurations of Demand Profile

DP,, Plotted over the Weights. . . . . . . .. .. .. ... ... . ... 68
4.14 The Average Pile-on for all Weight Configurations of Demand Profile DP,. . . . . . . .. 68
4.15 The Total Distance Travelled by the Robots for all Weight Configurations of Demand

Profile DPy. . . . . . o e e 68
4.16 Ternary Plot of the Number of Orders Handled for all Slotting Configurations of Demand

Profile DP,, with the Configurations as Pods per SKU Distribution per Class. . . . . .. 69
4.17 The Total Number of Orders Handled for all Weight Configurations of Demand Profile

DPg, Plotted over the Pile-on and Travel Distance. . . . . . ... ... .......... 70
4.18 The Total Number of Orders Handled for all Weight Configurations of Demand Profile

DPg, Plotted overthe Weights. . . . . . . . . . ... ... .. ... ... 70
4.19 Ternary Plot of the Number of Orders Handled for all Slotting Configurations of Demand

Profile DPg, with the Configurations as Pods per SKU Distribution per Class. . . . . .. 71
4.20 The Total Number of Orders Handled for all Weight Configurations of Demand Profile

DP., Plotted over the Pile-on and Travel Distance. . . . ... ... ... ... ...... 72
4.21 The Total Number of Orders Handled for all Weight Configurations of Demand Profile

DP., Plotted over the Weights. . . . . . . . . .. .. ... ... . 72
4.22 Ternary Plot of the Number of Orders Handled for all Slotting Configurations of Demand

Profile DP, with the Configurations as Pods per SKU Distribution per Class. . . . . .. 73
4.23 The Total Number of Orders Handled for all Weight Configurations of Demand Profile

DPp, Plotted over the Pile-on and Travel Distance. . . . ... ... ... ......... 74
4.24 The Total Number of Orders Handled for all Weight Configurations of Demand Profile

DPp, Plotted over the Weights. . . . . . . .. . ... ... 74
4.25 Ternary Plot of the Number of Orders Handled for all Slotting Configurations of Demand

Profile DPy,, with the Configurations as Pods per SKU Distribution per Class. . . . . .. 75
4.26 The Total Number of Orders Handled for all Weight Configurations of Demand Profile

DPg, Plotted over the Pile-on and Travel Distance. . . . . ... ... ... ........ 76
4.27 The Total Number of Orders Handled for all Weight Configurations of Demand Profile

DPg, Plotted over the Weights. . . . . . . . . .. . ... 76
4.28 Ternary Plot of the Number of Orders Handled for all Slotting Configurations of Demand

Profile D Py, with the Configurations as Pods per SKU Distribution per Class. . . . . .. 76
4.29 The Total Number of Orders Handled for all Weight Configurations of Demand Profile

DPg, Plotted over the Pile-on and Travel Distance. . . . . ... ... .. ... ...... 77
4.30 The Total Number of Orders Handled for all Weight Configurations of Demand Profile

DPg, Plotted overthe Weights. . . . . . . . . ... . ... ... .. ... .. 77
4.31 Ternary Plot of the Number of Orders Handled for all Slotting Configurations of Demand

Profile D Pg, with the Configurations as Pods per SKU Distribution per Class. . . . . .. 78
5.1 Regular Demand from Gall&Gall in ABC Classification. . . . . . ... ... ........ 82
5.2 Peak Demand from Gall&Gall in ABC Classification. . . . . ... ... ... ....... 82

5.3 The Data Distribution of Pods per Item Represented with a Violin Plot for each Class for
the Demand Profiles. . . . . . . . . . . 84



List of Figures 7

54

5.5

5.6

5.7

5.8

5.9

The Data Distribution of ltems per Pod Represented with a Violin Plot for each Class for

the Demand Profiles. . . . . . . . . . . 84
The Data Distribution of Pods per SKU Represented with a Violin Plot for each Class for

the Demand Profiles. . . . . . . . . ... 85
The Total Number of Orders Handled for all Weight Configurations of the Regular Gall&Gall
Demand Profile, Plotted over the Pile-on and Travel Distance. . . . . . . ... ... ... 86
The Total Number of Orders Handled for all Weight Configurations of the Peak Gall&Gall
Demand Profile, Plotted over the Pile-on and Travel distance. . . . . . . . ... ... .. 86
The Total Number of Orders Handled for all Weight Configurations of the Regular Gall&Gall
Demand Profile, Plotted over the Weights. . . . . . . . .. ... ... ... ........ 87
The Total Number of Orders Handled for all Weight Configurations of the Peak Gall&Gall
Demand Profile, Plotted over the Weights. . . . . . . ... ... ... ... .. ...... 87

5.10 Ternary Plot of the Number of Orders Handled for all Slotting Configurations of the Reg-

5.11

B.1

B.2

B.3

B.4

ular Gall&Gall Demand Profile, with the Configurations as Pods per SKU Distribution per
Class. . . . . 88
Ternary Plot of the Number of Orders Handled for all Slotting Configurations of the Peak
Gall&Gall Demand Profile, with the Configurations as Pods per SKU Distribution per Class. 88

Plot of Performance Metric 'orders handled’ for Travel Distance and Pile-on from all Slot-
ting Configurations for all Demand Profiles. . . . . . ... ... ... ... ... ..... 109
Plot of Performance Metric ’item throughput rate’ for Travel Distance and Pile-on from
all Slotting Configurations for all Demand Profiles. . . . . ... ... ... ... ..... 110
Plot of Performance Metric 'order throughput rate’ for Travel Distance and Pile-on from
all Slotting Configurations for all Demand Profiles. . . . ... .. ... ... ....... 110
Plot of Performance Metric 'order turnover time [seconds]’ for Travel Distance and Pile-
on from all Slotting Configurations for all Demand Profiles. . . . . . . .. ... ... ... 111






Introduction

The introductory chapter of this research provides an overview of the research topic, describes the
research purpose, outlines the objectives, and explains the approach used for the execution.

1.1. Research Context

E-commerce is the online commerce of goods and services, which has steadily been growing in the last
years and is expected to keep growing, with a quarter of all global sales expected to be online by 2025
(McKinsey & Company, 2023). With this expected growth and simultaneously an increasing labour
shortage (The Conference Board, 2022), there is pressure on e-commerce warehouse operations to
increase efficiency and decrease manual labour requirements. The implementation of a Robotic Mobile
Fulfilment System and optimisation of warehouse operations through inventory allocation (slotting) de-
cisions address these challenges. This research focuses on the additional performance improvement
gained from integrating warehouse-specific order demand in the inventory allocation decisions.

1.1.1. Warehouse Processes and Terminology

In e-commerce, warehouse operation involves the processing of customer orders and maintaining in-
ventory control (Vazquez and Lago, 2022). The typical goods flow in a warehouse consists of multiple
sub-processes: goods are received, stored, picked, packed and shipped to customers (da Costa Bar-
ros and Nascimento, 2021). One of the main performance indicators for an e-commerce warehouse is
order turnover time (Lamballais et al., 2020). This is the time an order spends in the system from start
to finish. Another general performance metric is order throughput rate, which is the number of orders
processed in a certain time interval.

A simplification of the goods flow is visualised in Figure 1.1, where the storage area is divided into a
reserve storage area and a picking storage area.

@—» Reserve storage area Replenishment»{  Picking storage area »|  Packing —{ Shipping ]
e —

00

1T 1
anan

0 0
mimisinin

Figure 1.1: Goods Flow and Operations (Figures used from Warehouse-design (2020))

A reserve storage area is used as buffer storage where all the items are located after being re-
ceived on pallets and in bulk. Replenishment is the reallocation of items from the reserve storage area
to the picking storage area, where they are placed in storage racks to be picked. The replenishment
decision of when and how many items are reallocated is part of the production strategy (Poon et al.,

9
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2011). Possible approaches are daily replenishment based on expected order demand when this can
be accurately estimated or real-time replenishment when a product is ordered.

Order-picking is the activity of accumulating the ordered items from the picking storage area, which
accounts for 60% of the time spent on all labour activities in a warehouse (Drury, 1988). An order-pick
assignment is a collection of orders picked in one task. When an order-picker is finished with the order-
pick assignment, the orders are delivered to a packing station to be packed and shipped.

The terminology of items, orders and assignments is essential in understanding warehouse operations
and is depicted in Figure 1.2. This also introduces the Stock Keeping Unit (SKU): A unique identifier
for each specific product type that shows product details such as the size, price, brand and style, often
represented with a barcode specific to that SKU to label and track inventory items.

A practical example of SKUs in liquor retail is the 25¢/ Heineken bottle and the 30c/ Heineken bottle.
Each unique product variation, such as different volumes in this example, is represented by a distinct
SKU. The collective set of all SKUs in inventory constitutes the complete assortment of that warehouse.

In this study, the term item refers to an entity regardless of its associated SKU. For instance, when
the emphasis is on quantity, such as the average number of items per order or the maximum number
of items in a storage rack, where the specific SKUs, whether single or multiple, are irrelevant.

mx2

mx]

mx]

X3 X3
= EEN mx1

SKUs Order Order-pick Storage rack
assignment

Figure 1.2: Terminology Visualisation (Figures used from Merschformann et al. (2017)).

The decisions on item placement in a storage area are referred to as slotting or slotting decisions.
Examples of such decisions are the variety of SKUs present in one storage rack or the quantity of a cer-
tain SKU on a storage rack. Where the purpose of these decisions is to maximise operational efficiency.

Most traditional slotting approaches are based on order demand characteristics, such as SKU pop-
ularity, turnover and similarity (Petersen et al., 2005). SKU popularity refers to how often a given SKU
is present in an order, turnover is the rate at which inventory is sold over a certain time interval, and
SKU similarity indicates the relation between SKUs based on their likelihood of being ordered together.
In this research, the focus is on the demand characteristic of SKU turnover to evaluate slotting ap-
proaches.
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1.1.2. Robotic Mobile Fulfilment System

Automation options are an attractive solution for improving warehouse efficiency due to the low error
rate, precision, speed and a reduction of manual labour demand. One of the developments in ware-
house automation is a Robotic Mobile Fulfiiment System (RMFS) (D’Andrea and Wurman, 2008). This
system has many improvements over manual operations, such as increased productivity, speed, ac-
curacy and flexibility (Wurman et al., 2008).

According to Azadeh et al. (2019), an RMF system consists of three major components (shown in
Figure 1.3):

Inventory pods, are movable storage racks where the products are stored.
Workstations, used as either replenishment or picking stations.

Robots, that move the pods between storage and workstations.

Pod

Movable storage rack

Workstation

Picking- or replenishment station

]

Figure 1.3: The Three Components of an RMFS (Figure from Scallog (2023)).

The robots lift the pods and drive them from the picking storage area to picking stations, where people
manually pick items from the pods.

In the manual order-picking approach, depicted in Figure 1.4a, a human order-picker picks the prod-

ucts by walking past storage locations and collecting items from the necessary locations on a picking
cart. In this activity, travel time accounts for 50% of the total order-pick time (Tompkins et al., 1996).
When the order-picker is finished with the order-pick assignment, they place the orders at packing sta-
tions where they are packed and shipped.
With a Robotic Mobile Fulfilment System, the order-picking approach changes from a manual picker-
to-parts approach to a robotic parts-to-picker approach by using robots that move the storage racks
containing the necessary items to stations where the items are picked by a human order-picker (Fig-
ure 1.4b). Figure 1.4 visualises the different routes taken with an order-picking assignment for either
picking approach.
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(a) Picker-to-Parts Approach, with Human (b) Parts-to-Picker Approach, with Robots Retrieving the Storage
Order-Pickers Picking the Iltems Sequentially from Racks for Human Order-Pickers to Pick at Picking Stations.(Figure
the Storage Racks. (Figure used from Lucas used from Scallog (2023)).

Systems (2023)).

Figure 1.4: Order-Picking Approaches and Routes

The picking activity with the manual picker-to-parts approach occurs in the picking storage area
while walking past all storage racks. In contrast, the picking activity with the robotic approach is split
into two activities: retrieving the necessary storage racks, or pods, from the storage area and bringing
them to the picking station, which is executed by one or multiple robots. Secondly, human order-pickers
at the picking stations collect the necessary items from the pods. The retrieving and picking are not
executed by the same entity, meaning they don’t have to be executed consecutively, as with the picker-
to-parts approach, but can occur simultaneously in parallel. This diminishes the time between picks by
removing the travel time. This approach increases the order-pick speed up to three times and removes
the walking tasks for the human order-pickers according to Guizzo (2008).

The replenishment activity occurs at replenishment stations, where items from the reserve storage
area are placed in pods brought by robots to be allocated in the picking storage area.
The space necessary for the robots to drive through with a pod is significantly smaller than for human
order-pickers, and up to 30% of space can be saved in the storage area (Scallog, 2020). This space
can be replaced with additional pods to increase storage capacity.

With RMFS, the slotting dynamics are significantly altered compared to the traditional slotting ap-
proaches used with manual order-picking due to the continuous reallocation of storage racks. The study
by Chou et al. (2019) identified that item slotting in an RMFS involves three main decisions, which are
illustrated in Figure 1.5:

1. The number of pods over which a SKU is distributed (Figure 1.5a),
Items of a SKU can be stored in a single pod, multiple pods, or spread across as many pods as
possible.

2. The quantity of each SKU within a single pod (Figure 1.5b),
This refers to setting a minimum and maximum quantity for items of a SKU within a pod and
determining whether the quantities should vary across different pods or remain consistent.

3. The combination of SKU types in one pod (Figure 1.5c).
Certain combinations of SKUs may be best stored together on a pod for optimal efficiency.
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(a) An example of different options for the decision of the number of pods over
which a SKU is distributed. On the left, all items of a SKU are stored in the same
pod, whereas on the right, the items of a SKU are distributed over three different

pods.

(b) An example of different options for the decision of the quantity of each SKU

within a single pod. On the left, the quantities have a minimum of 4 items of that

SKU and a maximum of 16 and the quantity is varied over all pods, whereas on
the right, the quantity is similar on all pods.

| PP | | e | B B | | R

(c) An example of different options for the decision of the combination
of SKU types in one pod. On the left, two combinations of certain
SKUs are made, whereas on the right, the SKUs are combined
differently.

Figure 1.5: The three main slotting decisions in an RMFS

1.2. Problem Definition

The optimisation of the warehouse slotting approach is crucial for addressing the increased demand
and labour shortages in e-commerce. A well-tailored slotting method can decrease the picking travel
distance and improve the overall picking efficiency (Cai et al., 2021). This research mainly focuses
on one of the three slotting decision problems: optimising SKU distribution over pods. The research
gap this study focuses on is the limitations of current slotting decision models for optimal distribution of
SKUs over pods. Existing research by Lamballais et al. (2020), has shown performance improvements
when SKUs are distributed over multiple pods but all SKUs are treated uniformly without accounting for
variation in turnover and demand. This research addresses the gap by exploring optimal decisions for
SKU distribution over pods, focusing on how different slotting configurations of high and low-turnover
SKUs affect performance for varying demand configurations.

Improving the slotting approach aims to increase order-picking efficiency, directly influencing the oper-
ational performance of e-commerce warehouses.
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1.3. Research Questions

This research integrates the traditional focus on order demand by including item turnover. The impact
of slotting decisions based on turnover is explored to improve the research regarding slotting and de-
mand with an RMFS. This results in the following research question:

What is the optimal demand-based slotting decision to maximise the order throughput rate in a
Robotic Mobile Fulfilment System?

The information used to address the main research question about slotting decisions and SKU dis-
tribution over pods is divided into two sub-questions. The first sub-question seeks to understand the
general behaviour of slotting decisions for different order demand configurations. The second sub-
question aims to validate these findings by evaluating the impact of demand-based slotting decisions
in a specific use case.

1. What is the impact of demand-based slotting decisions on the order throughput rate for different
demand configurations with a Robotic Mobile Fulfiiment System?

2. What is the impact of demand-based slotting decisions on the order throughput rate with a Robotic
Mobile Fulfilment System for a Gall&Gall case study?

1.4. Research Approach

This research is initially a general analysis of the impact of demand-based slotting decisions on the
order throughput rate with synthesised order demand. The rationale behind synthesised and general
demand profiles is to build insights beyond specific instances. This allows application of the drawn
results and conclusions to various scenarios rather than being confined to a specific demand profile.
Subsequently, a detailed case study is incorporated for the distribution center of Gall&Gall to validate
and demonstrate the practical application.

An overview of the structure of this research and this report is depicted in Figure 1.6 below.

Research question Approach Methodology Report chapter
RECIIDEEDE |- ! Literature review 2
the-art knowledge H |
3.2
Mathematical 33
model

E Simulation tool E 3.4

1 Analyse general 4
: results .

A
Case study
& Gall&Gall &

Figure 1.6: Flowchart of Research Structure.

First the existing literature is studied and reviewed in Chapter 2, on the general topic of slotting and
RMFS. Traditional approaches for slotting are explained, and the new concepts introduced by RMFS
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are described. Demand characteristics are reviewed and the necessary information is gathered on how
to include demand in slotting research. In Chapter 3 the methodology for the research is explained in
detail. The core approach consists of three main components: demand determination, developing a
slotting model for the demand and developing a simulation model for the demand. Each of these steps
is built upon the previous step’s output, generating input for the following one. A brief summary of these
three main steps of the approach is explained below and illustrated in the flowchart in Figure 1.7.

Determine Demand Configurations

The demand profiles used in this study are a simplifica-

tion of authentic order demand over a certain time inter-

val. The demand configurations are derived from the lit- Approach Methodology
erature review with varying SKU turnover, to evaluate the

impact of demand-based slotting with different turnover e )
configurations. An example is shown in Figure 1.7 as - ' Literature review
the output from the demand configuration and input of ' :

the slotting configuration: In a time interval, 124 itemsof | 777777

10 different SKUs are ordered; 2 of the SKUs are both

ordered 40 times, 4 of the SKUs are ordered 9 times, and

4 of the SKUs are ordered 2 times.

Determine Slotting Configurations
A mathematical slotting model is developed that gener- v
ates multiple different slotting configurations for each of T .
the demand profiles. A slotting configuration specifies - i Mathematical model
the exact contents of each pod. The fixed inventory of N '
all pods is the output of the slotting model and input for
the subsequent simulation step.

Simulate Scenarios

The RawSim-O simulation tool, developed by M. Mer-
schformann et al. (2018), evaluates the modelled slotting
configuration. This tool is designed to analyse various A 2
decisions and strategies, assessing their cumulative im- - Simulation tool
pact on performance indicators. Utilising this simulation ] :
model, the slotting process is tested, and key outcomes

such as order throughput rate are measured and anal-  Figure 1.7: Flowchart of the Three Main Steps in

ysed for the set of all slotting configurations of all demand Research Approach.
configurations.

The demand-based slotting performance of the synthetic demand is analysed in Chapter 4 to find
and evaluate general results on the performance metrics to address Research Question 1. Subse-
quently, the case study for Gall&Gall is executed in Chapter 5, by going through the same three main
components from Figure 1.7. The demand is configured with order data from Gall&Gall, this demand
is used to determine configurations, which are simulated and evaluated to answer Research Question 2.

1.5. Practical Value

The answers to the outlined research questions provide insights and practical guidance for optimising
slotting decisions in warehouse operations concerning demand-based decisions within a Robotic Mo-
bile Fulfilment System.

Efficient slotting decisions impact the operational efficiency of a warehouse. By determining the optimal
demand-based slotting decisions, businesses can increase the order throughput rate, thereby stream-
lining the process, which reduces operational costs. By exploring the optimal distribution over pods for
different demand scenarios, a balance can be struck between inventory spread and pod occupancy.
This approach enables warehouses to utilise available storage space more effectively, mitigating the
risk of under-utilisation or overcrowding.

Moreover, the research facilitates adaptive decision-making in response to dynamic market conditions.
By understanding the relationship between item turnover and slotting priorities, businesses gain the
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flexibility to adjust their decisions based on demand patterns.

Beyond the general insights into slotting optimisation with RMFS, the case study on Gall&Gall provides
specific insights tailored to their order demand data. This research offers an understanding of the
significance of this decision problem and provides insights into expected performance improvement.

1.6. Research Scope

The research scope only contains the storage allocation decisions relevant to a Robotic Mobile Fulfil-
ment System. Other automation options may change processes and goods flows which changes the
impact on the performance metrics due to different reasons than the ones studied in this research.

The research focuses on slotting. The strategic decision problems of warehouse layout, such as
the amount and size of pods, and the number of order-picking stations, and tactical decision problems
such as the replenishment approach, path planning, congestion prevention and pod zoning, are outside
of the scope and are used as input parameters and variables.

This research assumes that demand is deterministic, which is particularly relevant in e-commerce
environments with high-accuracy forecasts. The primary focus here is not on refining the accuracy of
these demand forecasts. Given that the demand is assumed to be deterministic, the main objective is
to optimise tactical-level slotting decisions.

Stochastic updates that occur throughout the day might derive some benefit from the findings of this
research, however, they are not the central concern of this study.



Literature Analysis

The research question concerns the impact of demand-based slotting decisions on the order throughput
rate in a Robotic Mobile Fulfiiment System. This literature review provides further elaboration and
explanation on the components of demand, decision problems with RMFS, slotting and the performance
evaluation with the order throughput rate.

This chapter begins with literature on inventory classification in Section 2.1. Then the order demand
traditionally used in research is reviewed in Section 2.2. After which follows a general review of the
decision problems regarding a Robotic Mobile Fulfiiment System and the relation of slotting to other
decision problems in Section 2.3. Then slotting-specific literature is reviewed, where the research on
SKU distribution over pods is covered in Section 2.4.1, and the research gap is clarified in Section
2.4.4. Finally, the performance evaluation of decision problems with an RMFS is discussed in Section
2.5, and the literature review is concluded in Section 2.6.

2.1. Inventory Classification

The inventory of a warehouse or distribution center refers to all the items from the complete set of
Stock Keeping Units (SKUs) that are processed. The classification of the items in inventory provides
information on possible integration of demand into this study.

When certain information on the items is available, SKUs can be organised into product classes
based on distinct product characteristics, such as the height, weight and volume of a SKU, or on order
demand characteristics, such as the turnover speed of a SKU. Inventory classification refers to the
categorisation of the warehouse inventory. The slotting assignment then consists of allocating the
classes to specific locations. The different classification policies are the following according to Gu et al.
(2007), visualised in Figure 2.1:

Dedicated storage (Figure 2.1a):
The number of classes is equal to the number of SKUs. With dedicated storage, each SKU is
assigned its class and, therefore, storage location.

Class-based storage (Figure 2.1b):
The number of classes is smaller than the total number of SKUs and larger than one.

Random storage (Figure 2.1c):
The number of classes is equal to one. When all SKUs are treated as the same class, the storage
is randomly assigned.

17
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SKU1 [ SKU?2 SKU 3 SKU4 | SKUS SKU 6 SKU1  SKU2 SKU3 | SKU4  SKU5  SKU6 SKU1  SKU2 SKU3  SKU4  SKUS SKU 6

ClassA ClassB ClassC ClassD ClassE ClassF Class A Class B Class A

(a) Dedicated storage classification. (b) Class-based storage (c) Random storage classification.
Each disjoint class contains exactly classification. SKUs are categorised Exactly one class exists to which all
one SKU, and each SKU is assigned into disjoint classes, each assigned to SKUs are assigned.

to exactly one class. exactly one class. However, classes

may contain multiple SKUs.

Figure 2.1: Three Storage Classification Policies

The results from the study of Hausman et al. (1976) state that increased storage performance is
achieved with storage policies when inventory is classified into more classes. Random storage yields
the poorest performance, followed by two-class storage, surpassed by three-class storage, and ulti-
mately outperformed by dedicated storage. The research of Petersen et al. (2004) and Yuan, Graves,
and Cezik (2019) confirm this result and conclude that storage policies with inventory separated into 4
and 3 classes, respectively, perform better than when separating inventory into 2 classes.

The study of Hausman et al. (1976), concluded that class-based turnover assignment policies generally
outperform the closest-open-location policy, where they state that the closest-open-location policy is
similar to the random policy. These findings are predicated on the availability of detailed product and
order demand information. The research conducted by Petersen et al. (2005) on slotting in traditional
warehouse systems employing human order-pickers demonstrates that SKU popularity, SKU turnover
and an integrated metric of demand and volume lead to optimal slotting performance. Similarly, the
study by Mirzaei et al. (2021) confirms the prevalence of a turnover-based storage policy in warehouse
operations. Furthermore, Gu et al. (2007) finds that SKU popularity, SKU turnover and the integrated
metric of demand and volume are commonly used bases for classifications in literature. Therefore, the
frequently employed classification themes include the following:

Popularity
Defined as the number of orders containing a specific SKU within a given time interval.

Turnover speed
This is the rate at which inventory is sold over a certain time interval.

Maximum inventory
Refers to the total warehouse space allocated for a specific SKU, accounting for the combination
of turnover and the geometrical characteristics of a SKU.

Cube-per-order-index
This metric combines two criteria, representing a ratio of the maximum inventory to the SKU
popularity.

Research on slotting optimisation with RMFS is not as extensive as that of traditional storage lo-
cation assignment. However, the existing research is often derived from traditional research where
slotting primarily focuses on order demand characteristics (Cai et al., 2021). This is supported by the
research of Mirzaei et al. (2021) and Yuan, Graves, and Cezik (2019), which conclude better perfor-
mance with demand-based policies versus the random policy. Evaluating approaches by comparing
performance with the random policy is common in reviewed studies. Research applying this evaluation
practice include: Hausman et al. (1976), Yuan, Wang, and Li (2019), Mirzaei et al. (2021), Roy et al.
(2019) and Weidinger and Boysen (2018).

When a class-based storage policy derives its classification from turnover speed into three classes,
it is referred to as the ABC storage policy. The ABC method categorises inventory into three classes:
A, B and C, with class A containing the inventory with the highest turnover and class C the lowest. This
method is often complemented with the Pareto principle, which states that 80% of outcomes are caused
by 20% of inputs (Pareto et al., 1906/2014). SKU turnover often approaches this principle (de Koster
et al., 2007 and Weidinger et al., 2019), which translates to the guideline that approximately 20% of the
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set of all SKUs generate 80% of the sales or order demand, where the set of all SKUs in inventory is
also referred to as assortment. A visualisation of normalised SKU turnover following a Pareto principle
is shown in Figure 2.2. Where the normalised total sales consist of 100 items from 10 SKUs. 20% of
the assortment (SKU 1 and SKU 2) is responsible for 80% of item turnover.

SKU legend SKU sales

SKU 1
SKU 2
SKU 3
SKU 4
SKU 5
SKU 6
SKU 7
SKU 8
SKU 9
SKU 10

Figure 2.2: Assortment and Turnover Ratio According to the Pareto Principle.

Inventory According to Order Demand

The complete inventory kept in storage by a warehouse typically reflects the order demand since hav-
ing an abundance of items for a SKU takes up unnecessary space and increases costs, whereas
insufficient items mean customer dissatisfaction and missed sales opportunities. Additionally, studies
regarding storage policies and order-picking are often conducted with deterministic order demand (de
Koster et al., 2007), which implies that the storage area can contain exactly the inventory to satisfy the
order demand, guaranteeing that the proportion of storage dedicated per SKU reflects or equals the
demand. When applied to the inventory in storage, the Pareto principle implies that 80% of the storage
space is occupied by items from 20% of the assortment (Thieuleux, 2024). This extends the visualisa-
tion in Figure 2.2 to represent not only the assortment and turnover ratio, but also the assortment and
storage area ratio. 20% of the assortment (SKU 1 and SKU 2) is responsible for 80% of item turnover
and, therefore, 80% of the storage locations.

2.2. Order Demand Application in Research

The previous section states typical classification of order demand in research. The application of this
order demand in existing research is elaborated on in this section, to provide insights into the possible
integration of order demand in this study.

The study of Weidinger et al. (2019) performs their research with the ABC classification method

where the demand strictly follows the Pareto principle. Class A consists of 20% of the SKUs with 80%
of the total demand, B is 30% of SKUs and 15% of demand and C is 50% of SKUs and 5% of the total
demand. This demand classification, including the corresponding demand curve, is plotted in Figure
2.3a. The demand curve is the cumulative percentage of demand (turnover) per unit of time versus
the cumulative percentage of assortment, representing the ratio between the demand and assortment
(Guo et al., 2016). A steep slope indicates that a relatively small assortment section is responsible for
relatively high demand. The same distribution is used in the study of Winkelhaus et al. (2022).
The research from Chou et al. (2019) uses the ABC classification on demand with a slightly adjusted
distribution. The class with the most significant portion of the turnover is A, with 10% of the total
assortment, responsible for 60% of the demand. Class B is 30% of the SKUs and 25% of the demand,
C is 60% of the assortment and 15% of the turnover, shown in Figure 2.3b. For this demand curve,
20% of total assortment corresponds to 68% of demand, which demonstrates the demand does not
follow the Pareto principle.
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Distribution of Classes (Weidinger, 2019) Distribution of Classes (Chou, 2019)

Demand Curve —e— Demand Curve
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(a) ABC Classification on Demand used in Weidinger  (b) ABC Classification on Demand used in Chou et al.
et al. (2019). (2019).

Figure 2.3: Different Demand Proportions within the ABC Classification.

The study of Hausman et al. (1976) evaluates various storage policies by combining four classifi-
cation policies with four order demand variations to find where improvements and optimisations have
the largest effect. The classification policies are random storage, two-class-based, three-class-based
and dedicated. The order demand variations are configured according to the ideal order quantity to
minimise inventory cost, which is also referred to as the Economic Order Quantity (EOQ). The EOQ is
an optimal ratio of inventory quantity according to the associated costs. This function was developed
by Ford (1913) and later updated and reevaluated by many researchers as reviewed by Aro-Gordon
(2016).

Based on the EOQ, Hausman et al. (1976) defined a function for a demand curve that represents
the optimal ratio of order demand and assortment.

G(@i) =i’ 2.1)

Where function G (i) represents the demand per (component of) assortment (i), with 0 < i < 1, and
s determines the slope of the curve. Hausman et al. (1976) determines four values for s, describing
the curves where 20% of the assortment corresponds to 60%, 70%, 80% and 90% of the demand,

visualised in Figure 2.4.

Demand Curves (Hausman et al., 1976)
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Figure 2.4: Demand Curves used by Hausman et al. (1976).
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When using the demand from a demand curve for the evaluation of a dedicated storage policy, the
demand strictly follows the curve. With the policies where the demand is classified into either two or
three classes, the demand from the curve is divided.

The study of Hausman et al. (1976) separates the demand into two and three classes, depicted in
Figure 2.5, where the optimal partitioning points between the classes are determined with an equation
based on the assumed expected travel times. In Table 2.1, the resulting coordinates that belong to the
class separations for each demand curve are reported.

Demand Curves with two classes (Hausman et al., 1976) Detailed Demand Curves with three classes (Hausman et al., 1976)

% w0
A % R
M 0
' ® * * © otasmorment * ° * . ’ * ® * © gotasortment * ° * w
(a) Four Demand Curves used by Hausman et al. (1976), (b) Four Demand Curves used by Hausman et al. (1976),
Classified into Two Classes. Classified into Three Classes.

Figure 2.5: Four Demand Curves used by Hausman et al. (1976), Classified into Two and Three Classes.

The demand curve for which 20% of the assortment is responsible for 90% of the demand (the red
curve) in Figure 2.5a and Table 2.1 illustrates that the separation between class A and B in the two-
class classification is where the demand curve where 3% of the assortment is responsible for 80% of
demand. This means that the other 97% of the assortment is accountable for 20% of the demand.

Table 2.1: Coordinates of the Four Demand Curves and their Intersections with the Separation of Classes.

Demand curve Two-class separation Three-class separation

(% assortment, % demand) (% assortment, % demand) (% assortment, % demand)
(20, 60) (17, 57) (1, 23) (33, 70)
(20, 70) (13, 64) (1, 36) (28, 75)
(20, 90) (3, 80) (0.25, 74) (16, 89)

The function for the demand curve is adopted by Guo et al. (2016) and Yu et al. (2015), with addi-
tional values for s. The corresponding demand curves are plotted in Figure 2.6.
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Demand Curves (Guo, 2016)
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Figure 2.6: Demand Curves used by Guo et al. (2016).

The study of Mirzaei et al. (2021) uses the demand curves with a slope that indicate 20% of assort-
ment corresponds to 40%, 60% and 80% of demand, which overlaps the demand in the research of
Hausman et al. (1976), Guo et al. (2016) and Yu et al. (2015).

The order demand drawn from an exponential distribution emulates a typical ABC curve in e-
commerce according to Lamballais (2019). This demand curve is constructed with the derivation of
statistical distributions used for Lorenz curves, which is possibly due to their relation to demand curves
according to Ultsch and Loétsch (2015) and Gastwirth (1971). The corresponding demand curve is
plotted in Figure 2.7.

Demand curve for exponential distribution (Lamballais, 2019)
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Figure 2.7: Demand Curve Derived from an Exponential Distribution, used by Lamballais (2019).
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The combination of all demand curves used in the studies of Weidinger et al. (2019), Chou et al.
(2019), Hausman et al. (1976), Guo et al. (2016) and Lamballais (2019) are visualised in a combined
plot in Figure 2.8.

Combined Demand Curves from literature

G(i) =i"0.318
G(i) =i"0.222
G(i) =i"0.139
— Gli) =i"~0.065
G(
G(
G(

(20, 90)

i) =i"1.000

i) =1i"0.748

i) =i"0.569
G(i) =170.431
Chou, 2019
—&— \Weidinger, 2019
—— Exponential function

% of Demand

0 T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100

% of Assortment

Figure 2.8: Comparison of Demand Curves used in Literature, where the Curves Referring to the Function G (i) = i°, are from
Hausman et al. (1976) and Guo et al. (2016).

2.3. Decision Problems in a Robotic Mobile Fulfilment
System

Lamballais et al. (2020), structures the decision problems regarding RMFS into three supply chain
management levels: strategic, tactical and operational. Strategic-level decisions are long-term and
high-level and are associated with, for instance, layout and process design. Tactical-level decisions
are medium-term and usually involve production planning and inventory management. Tactical-level
decisions considered in M. Merschformann et al. (2019) are, amongst others, SKU over pod distribu-
tion and the replenishment level of a pod. Operational-level decisions are short-term and real-time,
consisting of resource- and order-assignment (Misni and Lee, 2017).

2.3.1. Order Demand Certainty

The decision problem of slotting is divided over the tactical level and the operational level, where the
distinction lies in the type of demand being stochastic or deterministic:

Tactical level, item allocation with deterministic demand.
Orders are known in advance and remain constant, allowing for a single, optimal decision-making
process without considering computational time constraints.

Operational level, item allocation with stochastic demand.

Typical in e-commerce environments driven by human consumer purchases, demand is uncertain
until orders occur. Slotting at this level must address multiple decisions for intervals over time as
orders are received.
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Deterministic demand allows for straightforward slotting as the specifics of orders are predeter-
mined. This suits operations where orders are forecasted with high accuracy or are placed well in
advance, e.g., monthly orders in specific warehouses. Here, the demand is treated as fixed and can
be planned for with certainty. Contrarily, stochastic demand introduces variability, as order specifics
are unknown until the point of transaction. This requires a dynamic slotting approach to accommodate
the unpredictability of orders typical in e-commerce settings. Slotting must be flexible and capable of
adapting to real-time data.

A practical approach for the integration of deterministic demand and stochastic demand involves
using forecasts to estimate deterministic demand while treating any deviations from these forecasts as
stochastic, as is done in the research by Antic et al. (2022). This method allows for both predictive
planning and adaptive responsiveness. Additionally, according to Azadeh et al. (2017), forecasting the
item composition within orders is highly accurate. The research by Chou et al. (2019) and Dai et al.
(2022) further complement this approach by exploring demand forecasting accuracy and its impact on
inventory and replenishment strategies.

2.3.2. New Concepts with a Robotic Mobile Fulfiiment System

Implementing RMFS reintroduces and enhances several interesting concepts that are related to slotting
decisions or directly impact them, identified by Lamballais (2019):

Pile-on
Refers to the number of items that can be picked from one pod when it visits a picking station. A
high pile-on means more orders are handled with fewer pods, reducing travel and waiting times.

Zoning with pod reallocation

Zoning is the decision problem that separates the available warehouse space into separate zones
dedicated to specific criteria. The class-based storage approach in traditional warehouses is sim-
ilar to the decision problem of zoning. The difference between class-based storage and zoning
lies in the focus; with a class-based approach, the focus is on the classified products, whereas
with zoning, the focus is on the physical warehouse layout. In traditional warehouses, the zoning
decisions are integrated with the inventory allocation decision since the storage racks are sta-
tionary.

RMFS introduces moving storage racks that enable continuous reallocation of pods in the storage
area. This innovation decouples zoning choices from the slotting decisions, leading to separate
decision problems regarding zoning strategies in RMFS:

Well-sortedness

Each pod is assigned a popularity score, defined as a weighted total of all SKUs on a pod,
based on a SKU’s turnover multiplied by the quantity on that pod. The pods are positioned
according to the scores, with those achieving the highest score nearest to the stations.

Priority zoning
Pods are assigned to zones based on the urgency of orders demanding SKUs present on
that pod.

Dynamic resource assignment

Robots and workstations can be classified as either dedicated, which means they are assigned
to exclusively picking or replenishment tasks, or pooled, indicating that they can process both
tasks (Roy et al., 2019). The dynamic resource assignment refers to the reassignment option
of robots and workstations between the picking and replenishment tasks throughout operations.
Workstations can transition between designated picking or replenishment roles after each task.
In addition to reassignment, robots may be relocated after each task to different areas.

The decision problem concerning zoning was studied by Roy et al. (2019) with a multi-class stor-
age assignment and pooled robot assignment that reduced total order-turnover time. While the optimal
slotting decision results could provide useful insights for zoning decisions, they are not an objective of
this study and remain outside of the scope of this research.
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The concept of pile-on, however, is directly impacted by tactical-level slotting decisions. Pile-on
increases when multiple SKUs required for a single order-pick assignment are conveniently located
on the same pod. This efficiency is directly affected by slotting decisions, such as the combination of
SKUs in a pod and the distribution of SKUs over pods.

2.3.3. Decision Problem Correlations

The decision problem of slotting is correlated with several other decision problems on the strategic-,
tactical- and operational levels. Understanding these correlations is crucial, as optimising one decision
problem can often impact the efficiency of others due to inherent trade-offs. For effective warehouse
management, it is essential to consider these interdependencies.

Decision problems correlated with slotting include (Lamballais, 2019):

Replenishment
This involves refilling (movable) storage racks with items. Decision problems include workstation
and pod selection for the replenishment order.

Routing
The path planning decisions for the robots. This includes decisions on collision prevention and
priority rules.

Order-batching

The assignment of orders to be picked at one station. This approach can, for instance, be based
on SKU similarity by combining orders with similar SKUs or on pod-to-workstation distance by
assigning orders requiring SKUs in nearby pods.

Pod-to-station assignment The selection of pods to fulfil the orders at a picking station. This
approach can, for instance, be based on pod-to-workstation distance by assigning pods closest
to the station or on quantity by assigning pods containing the most necessary SKUs.

Effective replenishment timing is critical to maintaining operational efficiency in warehouses. In-
ventory levels decrease as items are picked from storage pods, necessitating timely replenishment to
prevent stock shortages of specific SKUs. Conversely, overly frequent replenishment can lead to in-
efficiencies, including increased robot travel and queuing at workstations due to limited storage space
for incoming items.

The research of Lamballais (2019) studies the trade-off in determining the optimal inventory level for
initiating replenishment activity. This study tests replenishment thresholds set at 0%, 50%, and 100%
inventory levels, finding that a 50% threshold provides the best balance between maintaining stock
availability and minimising replenishment frequency.

Additionally, Weidinger et al. (2019) compares replenishment strategies for different slotting ap-
proaches. Their findings suggest that the random slotting approach requires lower replenishment levels
due to fewer location-specific requirements, enhancing flexibility. In contrast, with dedicated storage,
a higher replenishment threshold of 85% is optimal.

This illustrates the interdependence of replenishment and slotting decisions and their impact on
warehouse efficiency. The optimal slotting decision is a trade-off between order-picking efficiency and
replenishment time. Therefore, the replenishment strategy and slotting strategy should complement
each other. A slotting approach that integrates both replenishment and picking efficiency might involve
replenishing only once a day if the demand is deterministic enough to allow that or replenishing based
on expected daily demand to simulate deterministic demand while setting initial slotting decisions and
relaxing them for subsequent replenishment tasks.

Additionally, an example of how slotting and routing decisions affect each other is separating SKUs
that are rarely ordered together in different pods, which might ease the routing decisions and decrease
the robot travel time due to less path-crossing occurrence. Pods could then have dedicated stations
assigned that only have orders with those SKUs, including pod-to-station assignment decisions into
the interdependent decisions.
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2.4. Slotting Decision Problem in a Robotic Mobile Ful-
filment System

The decision problem of slotting is divided into three main decisions regarding RMFS slotting, identified
by Chou et al. (2019), introduced in Section 1.1.2 and visualised in Figure 1.5. The three decisions are:

1. The number of pods over which a SKU is distributed.
2. The item quantity of each SKU within a single pod.
3. The combination of SKU types in one pod.

The research questions in this study focus on the number of pods over which a SKU is distributed.
Additionally, the literature on the two other slotting decisions is reviewed, providing insights that might
be useful for potential future elaboration. The three slotting decisions are individually reviewed in the
sections below.

2.4.1. Distribution of Stock Keeping Units over Pods

The research by Lamballais et al. (2020) shows that increasing the number of pods over which the items
of a SKU are spread positively affects the total order throughput rate. Spreading the SKU over multiple
pods increases the flexibility in pod choice, constituting an increased probability that an available pod is
close to the designated picking station and, additionally, the likelihood that a pod contains more of the
necessary items that can be picked at the picking station, increasing the pile-on. This is confirmed with
the research from Guan and Li (2018), which shows a decrease in pod movement when the number of
SKUs in a pod increases.

The research from Lamballais (2019) presents a strong relation between pile-on, robot travel distance
and throughput rate. Where a high pile-on and shorter travel distance have a positive impact on the
throughput rate. However, less items per SKU in a pod increases the number of replenishment actions
and therefore decreases the total order throughput rate.

The number of pods to spread the SKU over is determined with a simulation (Lamballais et al.,
2020), with different configurations for the number of pods a SKU is distributed over. The configura-
tions range from 1 pod per SKU to 6 pods per SKU, where the best result was found with the maximum
number of scenarios, 6 pods per SKU. The effect of spreading a SKU over more pods than 6, however,
is not studied. The optimal result might be a distribution over even more pods.

By simulating multiple replenishment strategies, the research of Tsai et al. (2019) indicates that
distributing SKUs with a high turnover rate over multiple pods positively affects the number of pod
movements. This indicates that spreading SKUs over many pods might optimise results for both the
order-picking efficiency and the replenishment efficiency.

The research of Tsai et al. (2019) is exclusively studied with the top 10% high turnover SKUs,
yielding a positive result. The question of dependence on turnover remains, therefore, unanswered.

2.4.2. ltem Quantity of a Stock Keeping Unit in a Pod

The research of Lamballais et al. (2020) suggests a large spread of SKUs across pods. However, the
maximum distribution of SKUs leads to pods containing a small number of items per SKU. While factors
like travel distance and pod availability contribute to the positive outcome of a maximum distribution
(Lamballais et al., 2020), it is notable that these same factors might be the reason for the negative
performance with low item quantities per SKU in a pod. Spreading the items of a SKU too thin de-
creases flexibility since orders might need more than the available item quantity of a SKU in that pod
(Lamballais, 2019). This indicates a minimum item quantity per SKU within a pod. This minimum item
quantity is likely influenced by order demand characteristics. Additionally, the demand characteristics
of a SKU presumably impact the consequences of storing too few items on a pod, as demand indicates
whether a SKU is frequently ordered as a single item or in multiples.

Additionally, this slotting decision correlates with the distribution of SKUs over pods. A constraint
on the number of pods to spread a SKU over might depend on the minimum or optimal number of
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SKUs on one pod, which has not been researched yet and might differ for SKUs with different demand
characteristics, such as turnover, average number per order and SKU similarities to other SKUs.

2.4.3. Combinations of Stock Keeping Units in a Pod

When analysing order contents it is found that some SKUs are often ordered together and some SKUs
are rarely ordered together. This is called SKU similarity or SKU correlation. In traditional order-picking
systems, order-batching involves the decision of which orders to combine in the order-picking assign-
ments. This is typically based on order similarity or SKU similarity, where orders are grouped based
contained SKUs with the objective to minimise order-picking travel distance, for instance with the stud-
ies of Heskett (1963), Hwang et al. (1988), Chiang et al. (2011), Yang et al. (2015) and Zhang (2016).

With an RMFS, the concept of SKU similarity can be extended to consider not only the similarity of
SKUs within orders, but also the similarity of SKUs in pods (Chou et al., 2023), since this significantly
impacts pile-on.

The combination of SKUs on a pod is studied by Xiang et al. (2018), Yuan, Wang, and Li (2019) and
Kim et al. (2020). Where Kim et al. (2020) advises to study the effects of assigning a SKU to more than
one pod to increase potential SKU combinations. This correlates to the decision problem of distributing
a SKU over pods, since both find increased performance due to pile-on. Moreover, the objectives in
these studies regarding SKU similarity align with the SKU over pod distribution decision problem, with
objectives of minimal pod travel distance and maximum pile-on.

The implementation of slotting approaches considering SKU combinations significantly impacts the
number of pod movements necessary for replenishment according to the research of Tsai et al. (2019),
where various pod replenishment strategies are compared with a simulation. This highlights the trade-
off between the slotting and replenishment decision problem.

Notably, the concept of SKU similarity introduces a new aspect of order demand besides SKU
turnover. While SKU similarity remains outside of the scope of this research, it is important to realise
that incorporating SKU similarity in slotting decisions can further reduce travel time and increase pile-
on, thereby amplifying the impact of the slotting decision.

2.4.4. General Slotting Research Gap

The SKU distribution researched by Lamballais et al. (2020) can be extended on several aspects
concerning slotting. The slotting approach optimisation including demand, or more specifically, SKU
turnover, is a research gap for all three components of the slotting decision problem: The SKU over
pod distribution, the item quantity per SKU in a pod, and the SKU combinations in a pod.

The research gaps related to the scope of SKU distribution over pods are primarily concerned with
pile-on and turnover. The main gaps include:

The study by Lamballais et al. (2020) is conducted under the assumption of uniform demand,
where all SKUs have the same turnover rate. The result is to distribute SKUs over as many pods
as possible. However, warehouses operate within a defined inventory capacity limit, placing a
constraint on how wide the SKUs can be distributed. Furthermore, the wider distribution of one
SKU might limit the distribution of another. Therefore, it is essential to gain insights into the
benefits of distributing a SKU with a certain turnover rate in order to determine the priority of
distributing a certain SKU over more pods than another. For instance, a low-turnover SKU that is
ordered only rarely might have a lower priority of maximum distribution than a high-turnover SKU
that is ordered frequently.

Distributing inventory across more pods reduces picking time through increased pod availabil-
ity, decreased robot travel distance and increased pile-on. However, the impact of pile-on on
performance is not fully captured in the simulation by Lamballais et al. (2020) due to three main
simplifications:

The pods contain one SKU exclusively.
This limits the development of pile-on when an assigned pod circumstantially contains SKUs
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that are also required by orders assigned to that station. Additionally, it prohibits the effect
of assigning specific SKU combinations to a pod with the goal to increase pile-on.

Handling of split-orders is prohibited.
Split-orders is the use of more than one pod for one order. This decreases the set of pods
to choose from, which decreases the pod availability.

The orders are single-line.

Single-line orders consist of one SKU exclusively. The quantity of that SKU is not restricted,
so orders can still require multiple items; they will, however, all be the same SKU.

This limits the development of pile-on similar to the single SKU to pod assignment.

These simplifications limit the development of pile-on and reduce the impact of slotting specific
SKU combinations in one pod, since the pile-on is only measured for orders requiring the same
SKU.

Incorporating SKU turnover into slotting considerations, along with addressing the three simplifi-
cations, enhances applicability and realism of the slotting approach and its results.

2.5. Performance Evaluation

As introduced in Section 1.6, the RMFS decision problems can be structured in three management
levels: Strategic, tactical and operational. Common objectives for strategic-level decisions are or-
der throughput rate maximisation and storage capacity maximisation. The objectives for tactical- and
operational-level decisions are often the minimisation of travel time, waiting time, or response time
(Azadeh et al., 2019). Evidently, strategic objectives are generic and all-inclusive, whereas tactical-
level objectives are scaled and more task-specific.

Additionally, the computational time for strategical and tactical level problems is of less importance,
whereas for operational problems, this is relevant since they solve real-time problems (Xiang et al.,
2018).

Azadeh et al. (2017) explains that there are two possible approaches for the performance evalu-
ation of the slotting decision problem: Analytical models and simulation models. The benefit of using
simulation is that it can accurately represent realistic scenarios with low error in the results. In contrast,
the benefit of using an analytical model is that it is less time-intensive to design.

Both for tactical and strategical level decision problems, and therefore, both for throughput maximisa-
tion and travel time minimisation objectives, the modelling approach in the literature review by Azadeh
et al. (2017) includes simulation and analytical models.

The study by Azadeh et al. (2017) concludes that research with integrated models where multiple
decision problems are considered together remains a largely unexplored topic. That gap is addressed
by M. Merschformann et al. (2018), who designed a detailed simulation framework to integrate the
dynamic effects of decision problems (Lamballais et al., 2020). This framework is used by M. Mer-
schformann et al. (2019) to evaluate multiple operational decision problems, among which the pick-
order assignment and replenishment-order assignment, on the performance of measures such as unit
throughput rate, order throughput rate, robot travel distance and pile-on.

The performance metric of order turnover time measures when an order is received to when it
is completed. The order throughput rate refers to the number of orders processed within a certain
time interval, reflecting overall system performance and particularly vital in e-commerce settings (Reid,
2024). Changes in performance regarding the order throughput rate are expected to be influenced by
pod travel distance and item pile-on (M. Merschformann et al., 2019), as demonstrated by the findings
of Xie et al. (2019) and Lamballais (2019).

2.6. Conclusion to Literature Review

The purpose of this literature review is to provide the essential information on the various components
of the research question and to describe the research gap that this study addresses.
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The research gap in slotting decisions with a Robotic Mobile Fulfilment System specifically lies in
the consideration of demand, particularly SKU turnover.

While traditional slotting approaches often incorporate demand and consider turnover highly rel-

evant, this has not been fully studied with slotting decisions in an RMFS. By incorporating demand
through turnover-based classifications, such as the ABC classification, slotting decisions can be better
aligned with the demand characteristics.
Furthermore, slotting decisions are rarely made in isolation and are often interconnected with other
decisions within the system. While replenishment and other decision problems are crucial to overall
warehouse efficiency and can not be neglected in real-world applications when deciding the slotting
strategy, they remain outside the scope of this research. This study focuses solely on the impact of
slotting decisions. However, by picking the approach of extending the existing simulation model of M.
Merschformann et al. (2018) with slotting decisions, this study narrows the gap of integrating slotting
and other decision problems.

The performance of slotting decisions is found in the order picking efficiency with metrics such as
travel distance and pile-on, with order throughput rate as the overall performance metric.

This review provides the necessary information to address the research question regarding the
impact of demand-based slotting decisions on the order throughput rate with a Robotic Mobile Fulfilment
System. The elaborated methodology for answering this research question is further detailed in Section
3.1.






Methodology

With the relevant information for the research provided in the literature review in Chapter 2, this chapter
of the report explains how the research is executed. Section 3.1, elaborates on the approach of the
research itself, presenting a methodology flowchart and explaining all of the components. After this, the
main processes of the research are explained: the different demand profiles are determined in Section
3.2, the slotting model is explained in section 3.3 and the simulation model in Section 3.4.

3.1. Research Approach

The methodology for finding the impact of demand-based slotting consists of processes, where the
output of one process is the input for the next process. The process flowchart of the research method-
ology is depicted in Figure 3.1. Each of the processes is briefly summarised below, and elaborately
explained in the corresponding section of this chapter.
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Figure 3.1: Flowchart of the Research Methodology.

Demand Determination Process
Firstly, the demand is determined in Section 3.2. This process is a preparation process where the de-
mand is simplified into classes based on the frequency with which the SKUs are ordered (turnover): A,
B and C, where all SKUs within a class share the same item turnover.
The process inputs and outputs for the demand determination are depicted in Figure 3.2. The two
inputs for this process are the total demand and the demand parameters. Total demand refers to the
total number of SKUs and the total number of items that are ordered. Where the demand parameters
define the configurations regarding the SKU quantity and the item quantity in the classes for the differ-
ent demand profiles. The output of the demand determination process is a variation of demand profiles.
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Initially, the steps in the flowchart are executed and explained in this chapter using synthetic de-
mand parameters. Subsequently, the same methodology and process flowchart is applied to demand
parameters from Gall&Gall, creating specific demand profiles for the Gall&Gall case study, detailed in
Chapter 5.

Slotting Process

Secondly, a mathematical slotting model is developed and explained in Section 3.3. The process inputs
and outputs for the slotting process are depicted in Figure 3.4. Each demand profile is used with multiple
weight factors to generate multiple scenarios describing different distributions.

The distributions of the scenarios in Figure 3.4
are visualised with a ternary plot. To under-
stand the figurative presentation of the slotting
process, the basics of the ternary plot are ex-
plained with a supportive Figure 3.3. This tri-
angular plot allows the plotting of three vari-
ables, in this plot the distribution of number of
pods per SKU for the three classes. Each sce-
nario is marked with an x, and the axes in three
directions present the distribution of the rela-
tive class.

Data representation with a ternary plot is fur-
ther explained with the simulation analysis in
Section 4.2. Pods per SKU for class A

Figure 3.3: Explanation of a Ternary Plot.

The weight factors are used to vary the importance of the distribution of a class. The slotting model
generates multiple different slotting configurations for each demand profile based on their specific
weight factors. A slotting configuration is defined as a scenario, and specifies the exact distribution
of SKUs over pods for the three classes.
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Figure 3.4: Slotting Process.
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Simulation Process

Finally, the scenarios are evaluated with a simulation model in Section 3.4 and the process inputs and
outputs for the simulation process are depicted in Figure 3.5. The RawSim-O simulation tool, developed
by M. Merschformann et al. (2018), is extended to include slotting. This provides the performance for
all scenarios per demand profile.

Performance

@)
§
(3
IS
9
S

= &

3
J 5
é
Q

| -

Simulation model

T T T 7

T T T <7 T T 7 e e

Distributionclass A Distributionclass A

Scenarios Performance of scenarios

Figure 3.5: Simulation Process.
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3.2. Demand Determination

As described in the research methodology in the previous section, the demand is configured into de-
mand profiles based on demand parameters. The figure to depict this process is replicated in this
section in Figure 3.6.
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Figure 3.6: Figure Replication of the Demand Determination Process.

The demand profiles allow for evaluating the impact of demand-based slotting decisions under vary-
ing demand conditions. The significance of the demand profiles lies in the relative turnover rates of each
class, which reflect differences in demand. Since the focus is on these relative differences rather than
the specific time frame, whether daily or annually, the turnover period is often not specified.

First, the demand profiles are described, and the process of demand determination is explained in
Section 3.2.1, after which the demand profiles for this study are configured in Section 3.2.2.

3.2.1. Demand Profile Description

The total demand with the same number of SKUs and the same number of items is configured into
multiple demand profiles by categorising the SKUs into three classes based on demand parameters.
The demand parameters consist of both the number of SKUs in each class and the turnover for the
SKUs in each class. The demand parameters for the determination of the demand profiles are selected
based on the demand curves drawn from previous research, as elaborated in Section 2.2. The demand
curves are cumulative curves that describe the relation between the assortment and the demand, rep-
resenting which portion of SKUs is responsible for specific portions of item turnover. The demand curve
function, variables and parameters used in this section to describe and define the demand profiles are
defined in Table 3.1.

It is important to clarify that the parameters and variables used in Equation 2.1, G(i) = i®, for the
demand curve in Section 2.2, are named according to the respective literature. From this chapter on,
they are referred to as D(m) = m® for clarity and to avoid confusion with other newly introduced vari-
ables in the rest of this research. The parameters and variables are defined in Table 3.1.

Parameter s (lowercase) determines the slope of the demand curve, and is distinct from S (upper-
case), used to define the total number of SKUs. The two parameters are unrelated.
The proportion of SKUs is denoted by m, which ranges from 0 < m to 1, where m * 100 indicates
percentage of the SKUs. The item demand proportion corresponding to this SKU proportion is repre-
sented by D(m), following the function D(m) = m®. Additionally, i represents the SKU index, and D (i)
denotes the demand for specific SKU i.
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Table 3.1: Demand Profile Definitions. The Variables and Parameters from the Demand Curve Function are Changed from
G(i) =i to D(mM) = mS.

Definitions

D(m) =m*® Function of the demand curves

m Proportion of SKUs 0<m<1

D(m) Item demand proportion for SKU proportion 0<D(m)<1

s Parameter determining the slope of the demand curve s € {0.222,0.139,0.065}
i SKU index

D(i) Item demand for SKU i

S Total number of SKUs

The four demand curves from Hausman et al. (1976) are based on the optimal inventory manage-
ment for a warehouse regarding the distribution of storage capacity over the total number of SKUs,
as elaborated on in the literature review in Section 2.2. Therefore, it is assumed that these demand
curves resemble realistic demand profiles. Additionally, the curve following the Pareto principle with a
distribution where 80% of the demand is caused by 20% is widely used in research (de Koster et al.,
2007 and Weidinger et al., 2019). This curve, along with its two adjacent curves where 20% of the
SKUs is responsible for 70% and 90% of the demand, are used in this research for the demand pa-
rameters. The three curves are presented in Figure 3.7, and referred to in the legend of the plots with
the parameter value of the respective curve used for s. The curve with the Pareto distribution is the
yellow curve with s = 0.139, the red curve with s = 0.065, has a distribution where 20% of the SKUs are
responsible for 90% of order demand, and 20% of SKUs are 70% of the demand for the green curve
with s = 0.222.

Plot of cumulative curve and derivative with different values of s

Plot of cumulative D(m)with Riemann sum with different values of s
pass—— ="
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0.0 0.2 0.4 0.6 0.8 10
m

(a) Three Cumulative Demand Curves with Riemann-sums. (b) Three Cumulative Demand Curves and the Derivatives.

Figure 3.7: Three Cumulative Demand Curves (m?) for the Demand Profiles, where Parameter s Defines the Slope of the
Curve.
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The demand curves are cumulative functions. Therefore, they are used to determine the demand of
an interval with the right Riemann-sums of the top-right vertex of each bin within the interval to guaran-
tee the final bin one has a demand proportion value of 1. The height of the bins reflects the cumulative

proportion of demand in items, D(m), and the bins’ width indicates the assortment proportion, m, see
Figure 3.7a.

The item demand per interval is determined by taking the demand value of the function increments
and subtracting the value of the previous increment. However, with an increasing steepness for m

approaches 0, the limit of the function’s derivative goes to infinity, as depicted in Figure 3.7b. Conse-
quently, the domain of function D(m) = m® is {0 < m < 1}, which excludes 0. This function behaviour
explains that the first increment always contains the extremity of an infinite value when separating the
curves into increments. This extremity becomes more pronounced when the number of increments
increases. Therefore, the demand curve is only employed to divide the demand into classes rather

than serve as a dedicated SKU demand curve for individual SKUs. With the item demand separated
into classes, the width of each increment corresponds to that class’s assortment proportion.

An example of demand profiles with a class distribution according to a demand curve with 10 SKUs
in total and a total demand of 100 items is depicted in Figure 3.8. The classes are separated at 20%
and 60% of the assortment, creating intervals of 20%, 40% and 40%. Distributing the item demand
proportions amongst these SKU proportions yields the quantities per SKU shown in Figure 3.9 and
detailed with the associated demand per SKU in Table 3.2.
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Figure 3.8: Classification with Demand Proportion D(m), of Assortment Proportion m , from the Demand Curves (m®) with 100
Items and 10 SKUs.
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Table 3.2: Classification of Item Demand D (i), per SKU i, for
Different Demand Curves (m®) with 100 Items and 10 SKUs.

Demand SKU Item Cumulative
curve (m®) [s] index[{] demand[D(i)] Demand (D(m)) [%]
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Figure 3.9: Classification with Item Demand D (i), per SKU i,
from the Demand Curves (m®) with 100 Items and 10 SKUs. 0,065

O©CoONOOUAWN-=2O
A aaNNDNNN

In this example of distributed demand into demand profiles, the demand curve with s = 0.139 (yel-
low) follows the Pareto principle: the item demand of the first two SKUs together are 80% of the total
demand. In the plot for s = 0.222 (green), the demand of the first class is lower than for the other
curves, and the demand of the SKUs in the other classes is slightly higher than for the other curves
due to the low skewness of the curve. A high skewness implies a bigger difference between classes.
The demand of the first two SKUs for the curve with s = 0.065 (red), add up to 90% of the total item
demand, while the last four SKUs contribute only 1% to the total demand.

3.2.2. Demand Profile Configuration

The demand profiles are classified according to an ABC classification since the simplification of de-
mand into three classes focuses the result insights towards turnover impact. Additionally, this is what
demand curves are typically used for, and they are less suitable for dedicated demand, resulting in
extreme demand values.

The demand is separated into classes according to two classifications: one with separation at 20%
and 60% of the assortment and another at 10% and 20%. The class intervals are determined to ensure
the difference in quantity between classes A and B does not render class B insignificant. In contrast,
the difference between classes B and C remains substantial. Additionally, the research by Weidinger
et al. (2019) and Chou et al. (2019) used 10% and 20% separations for class A.

In the simulation conducted by Lamballais (2019), 1000 SKUs with over 8000 items are used. This
configuration assumes roughly an average demand of 8 items per SKU. This demand is scaled to 10
items per SKU for simplification. Because adjusting the total number of items per SKU affects the
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overall volume without changing the proportion of SKUSs, it is assumed that scaling will not significantly
impact the results. The demand configuration used in this research operates with an assortment of 100
SKUs with a demand of 1000 items.

Table 3.3: Demand Profile Configurations

Configuration

s Parameter determining the slope of the demand curve 0.222 v 0.139 Vv 0.065
Class separations [20%, 60%] v [10%, 20%)]

S Total number of SKUs 100

2. D;  Sum of demand for all SKUs i 1000

The two options for class separation are combined with the three options for the demand curve to
create six demand profiles. The demand profiles are referred to as DP, through DPg, representing
demand profiles A to E. The three demand profiles with class separation [10%, 20%] are plotted in
Figure 3.10a, and the three with [20%, 60%] are plotted in Figure 3.10b.

Plot of SKUs in classes with different values of s Plot of SKUs in classes with different values of s
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(a) Three Demand Profiles, DP,, DP¢ and D Pg, with (b) Three Demand Profiles, DPg, DPp and D P, with
Class Separation on (10%, 20%) from the Three Class Separation on (20%, 60%) from the Three
Demand Curves. Demand Curves.

Figure 3.10: The Six Demand Profiles.

The demand from these plots results in decimal values for the items in some of the classes. Since
the item count can not be decimal values but are integers, the demand is manually rearranged to create
integer values where the sum of all demand satisfies the total demand of 1000. The resultis the demand
profiles presented in Table 3.4.
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Table 3.4: Demand Configuration with Iltem Count and SKU Count per Class

Demand Item count

profile Class D] SKU count
DP, A 58 10
B 10 10
C 4 80
DPg A 34 20
B 5 40
Cc 3 40
DP, A 69 10
B 7 10
C 3 80
DP;, A 40 20
B 3 40
C 2 40
DPg A 86 10
B 6 10
C 1 80
DPy A 44 20
B 2 40
C 1 40

For the demand in Table 3.4, it is important to note that both demand profile DP; and DPr have a
demand of 1 item for the SKUs in class C. This will simplify the distribution of these demand profiles
since there is one less category to consider, as one item can only be distributed over exactly one pod.
For DPg, the SKUs in class B are also very limited, with only two items, which makes this the most
simple demand profile to consider. Class C for profile D Pz, while only consisting of 1 item, consists of
80 SKUs. The difference in the number of SKUs between classes A and C is most significant for this
demand profile. The difference between class A and C is the smallest for demand profile DPg, which
is also the profile with the lowest item count for class A and a SKU count of 20 as opposed to 10. This
demand profile is most balanced for the three classes, both regarding SKU count and item count.
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3.3. Slotting Model

To determine the impact of slotting SKUs into varying numbers of pods based on turnover, each demand
profile from Section 3.2, is slotted with various slotting configurations and referred to as a scenario. The
figure to depict the slotting process is replicated from the methodology approach in Section 3.1, in this
section in Figure 3.11.

Demand
profile @ —
factors ||$ I\ .

Ia— T <7 T T 7

Distribution™class A

Scenarios

Figure 3.11: Figure Replication of the Slotting Process.

The input for the slotting model consists of the demand profile and the weight factors, which are
defined from the demand profile as seen in the flowchart in Figure 3.1. The weight configurations are
the origin of the different slotting configurations. The mathematical slotting model is described and
explained in Section 3.3.1, and the parameters are configured in Section 3.3.2. The weight factors are
configured in Section 3.3.2.1.

3.3.1. Slotting Model Description

The mathematical model is a slotting algorithm that generates exact inventory allocations according
to the slotting approach and the demand. The model is based on a three-dimensional bin packing
problem formulated by Paquay et al. (2016). This model is translated to a two-dimensional model,
and the geometrical constraints are neglected. The model is extended by configuring slotting-specific
variables and parameters, including turnover classes and adjusting the objective function to generate
a configuration that approaches the distribution determined by weighted importance for each class.

Brief Model Overview

The following is a summary of the model intended to convey its purpose and components. A detailed
description follows in subsequent sections.

The demand profile separates the SKU demand (D;) into three classes (t). A distribution indicator
(z;) represents the distribution per class as the average number of pods per item for all SKUs in a class
(I:). Weight factors (w;) indicate the relative importance of each class’s distribution. The distribution
indicators (z;) and weight factors (w;) for all classes are used in an equilibrium equation, referred to as
the distribution equation.

The model consists of two objective functions. One objective is to maximise distribution (x;;), max-
imising different SKUs on each pod. The second objective is to distribute the classes to best match the
distribution equation.
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3.3.1.1. Sets, Parameters and Decision Variables
The mathematical model’s set, parameters and decision variables are defined in table 3.5.

Table 3.5: Sets, Parameters and Decision Variables

Sets
I Set of all SKUs iel
J  Setofall pods j€]
T Set of turnover categories, consisting of unique values in D; teT

I  Subset of |, for which each SKU i in I, has turnover category t

Parameters

S Total number of SKUs

P Total number of pods

B Maximum number of items that can be stored in a pod

%4 Maximum number of different SKUs in a pod

D;  Demand number of items per SKU to be assigned Viel
Q Number of SKUs per turnover category VteT
w;  The weight reflecting the importance per turnover category VteT

-

o~

Decision variables

1, if SKU iis on pod j,

o= 0, otherwise.
yij = Integer variable. Number of items of SKU i that occupy pod j.
z, = Continuous variable. Average number of pods per item for SKUs in turnover category t.

3.3.1.2. Objective Functions

Distributing a SKU over more pods increases the order throughput rate according to Lamballais et al.
(2020), since it improves the availability of pods containing the necessary items, which decreases the
travel time and increases the potential that multiple items can be picked from the same pod, which is
called pile-on. This distribution is formulated in the model with two objectives. The first objective re-
gards the general distribution of SKUs over pods, whereas the second objective specifies the relative
importance of the different turnover classes with weight factors.

First Objective
The first objective is to maximise the presence of SKUs on different pods.

Max G = szij 3.1)
i J

General objective function 3.1: Maximise the number of different SKUs per pod. This entails the distri-
bution of all SKUs in the inventory across as many pods as feasible within the constraints.

Due to parameters concerning the maximum number of SKUs and items per pod, this objective is
bounded, and there are multiple solutions. This objective could similarly have been formulated as con-
straint: x;; = P * V, which is the upper bound of the objective.

Second Objective
The second objective function determines the relative importance of the distribution of a class by in-
tegrating the distribution of a class with decision variable z, with a weight factor for each class (w;).



3.3. Slotting Model 43

The demand is separated into turnover-based classes (t), described in Section 3.2. The distribution of
SKUs in class t is described with z,.
The objective is to approach the equality for all turnover classes (t) with the following equilibrium
equation:
Zy % Wy = Zgr ¥ Wy Vt,t' €T and t' #t (3.2)

In this equation, the weight serves as compensation in the equation for that class. A large weight indi-
cates a low distribution of that class relative to the other classes.

This very strict equation causes infeasability in many cases as a constraint to the model. Therefore,
this equality is approached with an objective function that minimises the difference between the sides
of the equation.

The weighted objective function is formulated as follows:
Min dif f; = (z; * W) — (2¢1 * Wyr) Vt,t' €T and t' #t (3.3)

Weighted objective function 3.3: The difference between the weighted distribution for class t and t’ is
minimised, forall t € T.

3.3.1.3. Constraints
The objective functions are subject to multiple constraints that define the solution space. An explanation
for all constraints is provided underneath that constraint.

DY w<B  vie) (3.4)
i

Constraint 3.4: Guarantees that the maximum number of items per pod is not exceeded.
inj <V, VvjeJ (3.5)
i

Constraint 3.5: The number of different SKUs on one pod is smaller than or equal to the maximum
allowed number of different SKUs on a pod.

Zyi,. -D, viel (3.6)
Jj

Constraint 3.6: All the demand per SKU must be distributed amongst the pods.

Yij 2 Xij viel,je] (3.7)

Constraint 3.7: One or more items from SKU i can only be assigned to pod j if selected to contain that
SKU.

Yij < B *x, Viel,je] (3.8)

Constraint 3.8: A pod is selected to contain a SKU when items are assigned to the pod.

Distribution Constraints
The following mathematical constraints distinguish the SKUs in different turnover categories t and
define that all SKUs are assigned to exactly one category.

- Yier, Xj %ij
T QuxDy

Constraint 3.9: The decision variable of z; is the average number of pods per item for all SKUs i in I,
where D; is equal for all i € I,.

VteT (3.9)
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U’f y (3.10)
t

Constraint 3.10: The union of all I; covers the entire set I. All SKUs i € I are assigned to subset I; with
turnover category t.

I.nly =0, Vt,t' €T and t' #t (3.11)

Constraint 3.11: The subsets I, are disjoint. All SKUs i are assigned to exactly one subset I,.

Domain Constraints
These are domain constraints to ensure that the decision variables exclusively assume the intended
values.

x;; € {0,1}, Viel,je] (3.12)

yij =0, Viel,je] (3.13)

Constraints 3.12 and 3.13: Variable x;; is a binary variable that is either 0 or 1. Variable y;; can not be
negative.

3.3.1.4. Parameter Boundaries

The parameters used as input for the model are subjected to boundaries to guarantee the feasibility of
the model.

ZDiSP*B, Viel (3.14)
i

Boundary 3.14: The total number of items should fit the total number of storage locations on all pods.

S<V*P (3.15)

Boundary 3.15: The SKU diversity is not larger than the number of locations for different SKUs.

> (1D, ~{[1(D; mod B #0)] © o
PZZ & | +min v ,Z(Di mod B) ||,  Vi€lj€] (3.16)
i=1 i=1

Boundary 3.16: There is at least the number of pods to satisfy the SKU diversity when a SKU occupies
more than one pod without violating the maximum number of different SKUs per pod. Each SKU’s
demand is divided by the pod capacity; the integer quotient signifies the required pods for full SKU
quantities. Additional pods are needed to accommodate remainders. This is the minimum of either the
number of different SKUs with a remainder over the maximum limit v, or the total sum of remainders.

3.3.2. Parameter Configuration

The parameters for the slotting configuration are configured in such a way that they resemble realistic
situations. Since realistic situations are often on a larger scale, the parameters are downscaled while
keeping the mutual relationships similar.

The number of pods from the research of Lamballais (2019) follows the scale of around 60 items per
pod (parameter B) for 170 pods (parameter P), which is a ratio of around B = 0.3 = P. Satisfying the
parameter boundary 3.14, this translates to P = 60 pods, with a pod capacity of B = 20 items.

The maximum number of different SKUs in one pod, parameter V, impacts the pile-on possibilities,
which has a large expected effect on the order throughput rate. With a small V, fewer SKUs can be
combined onto a single pod, which decreases pile-on chances, however parameter VV also acts as
constraint for maximum distribution of SKUs that allow trade-off with the weight factors. Since with V
too large, all SKUs can be distributed maximally according to their respective demand. Additionally,
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parameter v is determined to satisfy the parameter boundaries 3.15 and 3.16.
Table 3.6 states the parameter configurations for the slotting approaches.

Table 3.6: Slotting Approach Configurations

Parameter configuration

P Total number of pods 60
B Maximum number of items that can be stored in a pod 20
V  Maximum number of different SKUs in a pod 4

3.3.2.1. Weight Factor Configuration

The weight factors in Objective function 3.3, are used to determine the importance of the distribution of
a class relative to the other classes by approaching Equilibrium equation 3.2. In this section, the weight
factors (w;) for the classes (t), used in Objective function 3.3, are further specified by determining the

range of their potential values in the slotting configurations.

In Section 3.2, it was determined that there are three different demand classes for t (A, B and
C). This means that there are three weight factors (w4, wy and w¢). Since the weights convey the
importance of the distribution of a class relative to the other classes, the weight of one class is setto 1,
and the others relative to that. With w, = 1, the following equation is derived from Equilibrium equation

3.2.

Zy = Zgp *Wp = Z¢c * W¢

With this equation, the values for the weights are the following:

Zy
WB—g
Zy
WC—Z

The range for the weights follows from the ranges of z,, zz and z:

min(z,) max(zA)>

range(wg) = <maX(ZB)’ min(zg)

min(z,) max(zA))

range(we) = (max(Zc)’ min(z¢)

The minimum and maximum of z,Vt is determined with the following equation:

maxiey, (x;j) minge, (x;;)
D; ’ D;

range(z;) = < ), Vt where D; =Dy Vi€l

Where D; is equal for all i in I,.

The values for min(x;;) and max(x;;) are determined with the following equations:

. D;
minge;, (x;;) = maxe, (1, E)' vt

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)
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maxiey, (x;j) = mine;, (D;, P), vt (3.24)

The minimum distribution of pods per SKU for each t is the maximum of 1 or the demand for SKU i
divided by B.

The maximum distribution of pods per SKU for each t, is the minimum of either the demand for SKU i,
or the total number of pods P.

Combining Equations 3.20, 3.21 and 3.22 gives the following range for the weight factors:

range(wy) = (maxiEIA (xij)/Dier, minie;,(xij)/Diei, > (3.25)
5 minger, (%;;)/Dier,  Maxier, (%ij)/Diery .

range(we) = <maxie1A(xij)/DielA miniEIA(xij)/DiEIA> (3.26)
¢ minie;.(xij)/Dier, ' maxie . (%ij)/Diei, .

With the demand configuration from Section 3.2 and the slotting configuration from Table 3.6, the initial
ranges for the weight factors for each demand configuration are stated in Table 3.7.

Table 3.7: Weight Parameter Configuration

Demand profile Range wg Range w,
DPy (0.052, 10) (0.052, 4)
DPy (0.059, 5) (0.059, 3)
DP, (0.058, 6.087) (0.058, 2.609)
DP, (0.05, 3) (0.05, 2)
DPg (0.058,4.186) (0.058, 0.0698)
DPg (0.068, 2) (0.068, 1)

To find the optimal distribution of the classes, variations of weight factor configurations are used
as slotting approaches. The weight values are varied in n increments of the range. The number of
increments in a weight range is determined per class (ng and n.). The values for wz and w, are
composed of:

Wp = Wp 1, WB 2, WB,nB (327)

WC = WC,l' WC,Z’ vy WC,TLC (328)

All resulting weight values for class B are combined with all resulting weight values for class C, to
comprise all slotting configurations.

3.3.2.2. Weight Configuration Refinement

The goal of the weights is to determine the importance of the distribution of the three different classes,
and with that, generate different slotting configurations. However, some weight configurations result
in the same slotting configuration. Because variable x;; is binary, its sum always results in an integer
variable. Some different values for the continuous variables of the weights (w;) and the pods per item
distribution (z;), will not be enough to cause an integer change in x;;.

Consider the following example:
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Example Class Distribution
The Distribution equation 3.9 used with the weight configurations in Objective 3.3 is was the

following:
ZiEIA Z] x’:j _ " Zl'EIB Z] Xij

. Dierp 2j Xij
. Zielc 44j *ij

3.29
DiEIC ( )

DiEIA DiEIB

The order demand of the example has the following configuration:

The set of SKUs in class A (1) consists of 1 SKU (i = 1) with 9 items (D; = 9), class B
(Ig) is 1 SKU (i = 2) with 6 items (D, = 6) and class C (I;) has 1 SKU (i = 3) with 3 items
(D3 = 3), and with pods J = 6. This is depicted in Figure 3.12.
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Figure 3.12: Example Demand with D; =9, D, = 6 and D; = 3, and Number of Pods J = 6.

With weight factors: wy = 1 and w, = 1, all classes should approach equal distribution. The
equations are given in 3.30, and a visualisation in Figure 3.13.

ij1j _ ijzj' _ ij3j
9 =~ 6 3

11 EE

Figure 3.13: The Distribution of SKUs over Pods with Weights wg = 1 and wg = 1.

3 _Z_ 3.30
5=¢" (3.30)

Now, with weights wg = 24/27 and w, = 4/3, the equation is shown in 3.31 and the distri-
bution is visualised in Figure 3.14.

ij3j
3

JIFEL

Figure 3.14: The Distribution of SKUs over Pods with Weights wg = 24/27 and w¢ = 4/3.
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With the weights from equation 3.31 (wg = 24/27 and w; = 4/3) both SKU i = 1 and SKU
i = 2 are distributed over 1 more pod than with the weights from equation 3.30 (wz = 1 and
we = 1). There are more possible configurations for weight values between 24/27 and 1
for wg, between 4/3 and 1 for w, and possible combinations of the two. However, for all
these weight factor combinations, the result in the distribution will remain either one of these
distributions since there is no possible distribution in between; the distribution of SKU i = 1
is the integer value of either 3 or 4, and nothing in between, and similarly, the distribution for
SKU i = 2 is either 2 or 3, and nothing in between.

In addition to the example, the information is gathered from observations that the resulting distri-
bution from the mathematical slotting model with the analytically configured weights from Table 3.7 is
similar or equal for some weight configurations. The reason why the analytically determined ranges
are still too broad is likely due to them being calculated based on the maximum and minimum distribu-
tion of one SKU, which is bounded by the number of items for that SKU, the number of pods and their
storage capacity, as opposed to the maximum and minimum distribution of that SKU when there are
more SKUs, since then the bounds are also determined by the number of items of the other SKUs.
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For example, there are 6 pods with a capacity of 3 items per pod and a SKU with 10 items. That SKU
can be distributed over a minimum of 4 pods and a maximum of 6 pods. However, with more SKUs
that are to be distributed over the same pods and a parameter that states the maximum of different
SKUs in one pod, the range between the minimum and maximum decreases.

The research aims to analyse the impact of different slotting configurations, and the weights are
a tool to gain these different configurations. Therefore, the weights are empirically evaluated on the
slotting they impose and filtered on whether they result in unique slotting configurations.

The refined weight ranges and number of steps are presented in Table 3.8 and visualised with a
plot in Figure 3.15. Since the weight range for most classes is between 0 and 1, the scale of the y-axis,
representing the weight, is transformed with a rooted function. This creates larger intervals in the plot
for a low weight and smaller intervals for a high weight.

Table 3.8: Weight Parameter Reconfiguration with Weight Range and Number of Steps for each Demand Profile.

Demand profile Range wg Range w, Steps wy  Steps w,
DP, (0.052, 10) (0.052,1.039) 6 4
DPg (0.059, 1.295) (0.059,0.794) 6 4
DP, (0.058,6.087) (0.058,0.7) 6 4
DP, (0.05, 0.79) (0.05,054) 6 4
DPg (0.058, 1) (0.058) 5 1
DPg (0.1, 0.38) (0.068) 7 1
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Figure 3.15: Plot of the Weight Ranges per Class [w,, wg, wc] for all Demand Profiles.

The weight of class A is 1 for all demand profiles. In the figure, this is represented by a bar of
insignificant height. The range of w. for demand profile DP; and DPr only contains one value, and
correspondingly, the number of steps for w. is 1 since the item demand (D;) for that class is 1. With
only 1 item to distribute, the class’s weight will not influence that class’s distribution. Varying a class’s
weight without possibly impacting the distribution of that class could only have undesirable side effects
for the distribution of other classes due to the distribution being decided by minimising the difference
between the distribution equation and the weights. By varying the weight without possibly varying the
distribution equation for that class, that side of the equilibrium equation will change, affecting the opti-
mal distribution of the other classes. Completely isolating the impact of class B and C on each other is
difficult since they are related through class A, however this is approximated by for instance removing
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the weight of class C when no variation is possible.

Noteworthy is the maximum value for the ranges of wg and w, closely resembles the item count (D;)
of the related class. This is due to the weight being configured based on the maximum distributions of
that relative class and class A. However, with reconfiguration, the range is slightly adjusted and does
not match perfectly.

Additionally, the minimum value in the range for both wg and w, is nearly equal. This value is the
minimum distribution for class A, divided by the maximum distribution value for class B and C, respec-
tively. This maximum distribution is often equal to 1, which indicates the maximum distribution of 1 item
per pod. With a denominator equal to 1, the minimum value in the weight range is the same as the
maximum distribution of class A.

3.3.3. Model Execution

For reproduction purposes, the slotting model and additional files for the generation of plots and figures
are shared in this GitHub repository: https://github.com/EvaZandhuis/Slotting_public.git.

3.3.3.1. Solver Algorithm

The mathematical model is solved with Gurobi Optimizer (Gurobi Optimization, LLC, 2024), as python
optimisation package Gurobipy and uses a branch-and-bound based algorithm for multi-integer pro-
gramming problems (Gurobi-Optimizer, 2024).

The solver offers an integrated approach for both a blended and hierarchical configuration of mul-

tilevel objective problems. This approach implies that objectives are solved hierarchically in order of
priority, with objectives of the same priority being blended and optimised based on weight.
The priority and weight of both objectives are defined, with the hierarchical configuration prioritising the
optimisation of Objective 3.1 before optimising Objective 3.3. The blended approach involves setting
weights for the objective functions, which is not utilised. Instead, to account for the classes, weights
are used within the formulation of Objective 3.3.

3.3.3.2. Random Seeds

The mathematical slotting model can yield multiple solutions that satisfy the constraints and the ob-
jective functions. This is particularly true since the order demand only varies between three classes,
rather than being unique for each SKU. Consequently, the optimal solutions allow interchanging SKUs
in the same class. Furthermore, the algorithm used to find the solution may influence the results when
optimal alternatives exist. For example, suppose the algorithm distributes items based on the order
in which SKU demand is supplied to establish an initial state. In that case, this input order will be
reflected in the results. Multiple random seeds are generated for each scenario to negate the uninten-
tional presence of biases and trends in the slotting solutions that might affect the simulation outcomes.
The demand configuration used as input for the slotting configuration is shuffled before each optimisa-
tion run. This process produces slightly different slotting results while satisfying the same demand and
slotting configurations.
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3.4. Simulation Model

The scenarios for all demand profiles configured in Section 3.3, are evaluated with a simulation model.
The simulation process is depicted in Figure 3.16 with a replicated figure from the methodology ap-
proach in Section 3.1.

Performance

T T T <7 7 7T T T T 7

Distribution™class A Distribution™class A
Scenarios Performance of scenarios

Figure 3.16: Figure Replication of the Simulation Process.

The performance evaluation is achieved by integrating the scenarios into the RawSim-O simulation
tool, developed by M. Merschformann et al. (2018). The simulation model is described in Section 3.4.1
and configured in Section 3.4.2. The integration of the scenarios into the model is described in Section
3.4.3.

3.4.1. Simulation Model Description

The simulation tool RawSim-O is an agent-based and discrete-event-driven simulation system de-
signed to analyse and evaluate the impact of different decision problems within a robotic mobile fulfil-
ment system (M. Merschformann et al., 2018).

Agent-based simulations revolve around a collection of autonomous entities, which in the case of
RawSim-O are the stations, the robots driving the pods towards and from the stations, and the con-
trollers that manage the order processes. These agents interact with each other according to the
programmed behaviour of the system, where that behaviour is tracked and analysed to learn about the
system.

Event-driven simulation indicates that the system’s behaviour is determined by the occurrence of
events, which trigger the controller agents to act. Examples of events are items picked from a pod
or a task assigned to a robot. These events are generated and queued to be processed sequentially
according to a specified order. Discrete events indicate that the events occur instantaneously, as a
response to a sequence of events, and not only continuously over time. These events update the state
of system components, such as the availability of an item, the location of a pod, or the status of an order.
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Figure 3.17: Visualisation of Simulation with the RawSim-O Application.

Multiple decision problems can be configured and evaluated together, as described in Section 2.5,
allowing analysis of the combined impact on many performance metrics. The settings to configure are
distributed into three input levels (M. Merschformann et al., 2018):

Layout configuration, where the dimensions and characteristics of the system are specified.
Setting configuration, where the order generation and simulation characteristics are chosen.

Controller configuration, where the controlling mechanisms and methods are specified.

The tool has various built-in evaluation options for the behaviour of the system. Heat-mapping the
results to analyse robot and pod movements, plots generated on time-logged information to analyse
the behaviour of the system for the whole simulation duration, and finally, the performance metrics of
the simulation execution to compare multiple runs with each other, such as travel distance, queueing
time and the order throughput rate. Where the last option enables the comparison of the execution
runs of the different scenarios developed with the mathematical model.

3.4.2. Simulation Model Configuration

The simulation tool contains options for configuring many decision problems on strategic, tactical and
operational levels. The configuration of these controllers and parameters is explained per input level.

3.4.2.1. Layout Configuration

The layout configurations consist of the warehouse design and dimensions. A visualisation of the layout
configuration used in the simulations is presented in Figure 3.18.

The number of pods can not be directly configured, but it results from the number of aisles and the
pod amount, which is the number of pods generated relative to the number of available spaces.
The number of robots is determined so that it is less than optimal to increase the impact of slotting
configurations. All layout configurations are presented in Table 3.9.
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Figure 3.18: Top View of the Layout Configuration in RawSim-O.

Table 3.9: Simulation Layout Configuration.

Simulation layout configuration

P Total number of pods 60

B Maximum number of items that can be stored in a pod 20

V  Maximum number of different SKUs in a pod 4
Total number of robots 6
Pod amount 0.5%
Number of horizontal isles 2
Number of vertical isles 6
Horizontal block length 4
Width hall (in pod widths) 6
Pick stations west 1
Pick stations east 2
Pick stations capacity 12
Replenishment stations west 1

The replenishment station is deactivated since this will diminish the fixed slotting configurations by
replenishing random items into pods. However, the system does not allow a configuration without a
replenishment station. Therefore, it is placed but deactivated.

The width of the warehouse area is 6 pod widths, which is slightly larger than the minimum in order to
increase the impact of travel distance.

The pick-station capacity is the maximum number of orders to be assigned to one station. Increasing
this number will allow for more efficient pod to station assignment, however, to simulate a situation
where order input is stochastic, the number is set to 12.
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3.4.2.2. Setting Configuration

Simulation Duration

To accurately assess the effects of slotting decisions on warehouse operations, it is essential to es-
tablish an appropriate duration for the simulation. The effects of replenishment on the fixed slotting
are neglected by deactivating the replenishment station, limiting the simulation to run until pod deple-
tion. Without replenishment, the inventory of the pods in the storage area will decrease throughout the
simulation until a stock-out situation occurs. The main objective of the research is the distribution of
SKUs over pods; however, with continuously declining inventory levels, this distribution will be affected
shortly after starting the simulation. Weidinger and Boysen (2018) studied the optimal inventory level
for initiating replenishment with the dedicated storage approach, finding the most efficient point to start
replenishment is when pod inventory reaches 85%. This suggests that under normal operations, the
process should continue without replenishing until the inventory level drops to 85%. Therefore, apply-
ing this threshold to the current research is reasonable, reflected in the simulation duration.

Order Generation

For this research, the item turnover is fixed. This is represented by the assumption that the total stored
items are equivalent to a full day of demand. By fixing the item demand quantities in the mathematical
slotting model, the order generation can be set to a demand-based generation. This method creates
orders according to the available stock. A similar approach is used in the research of Boysen et al.,
2017 to guard against stock-out situations and ensure the feasibility of the problem instances.
Additional configurations for order generation consist of the probability distribution of specific quantities
occurring, which is set to a uniform distribution for the item probability of the items in storage. The
setting configurations are presented in Table 3.10.

Table 3.10: Simulation Setting Configuration.

Simulation setting configuration

Simulation duration (in seconds) 1800
Item count minimum 1
Iltem count maximum 2
SKU count minimum 1
SKU count maximum 3
SKU count mean 1

1

SKU count standard deviation

socorn)

The item count refers to the number of items of 42(0/1)

one SKU in one order, and the SKU count refers to 14(1/2)

the number of different SKUs in one order. An ex- 39(0/1)

ample of orders resulting from these order genera- m
tion configurations is depicted in Figure 3.19. Each 15(0/1)

coloured block represents a SKU, the index inside
represents the specific SKU index, and the num-
bers between brackets indicate how many items are
in that order and how many have already been ful-
filled. 85(0/1)

Figure 3.19: Example of Generated Orders in RawSim-O.
Seeds

The random seeds for the simulation vary in order of generation. The sequence and specific configu-
ration of orders are different for each simulation, which is how the random seeds differ.
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As explained in Section 3.3.3.2, three random seeds are generated of each slotting configuration to
decrease the influence of randomness on the results. Furthermore, each of these configurations is
simulated with three additional random seeds. This means that for each weight configuration, there
are a total of nine seed runs.

3.4.2.3. Controller Configuration
All controller configurations remain set to their default settings. This precaution ensures compatibility
among configurations, thereby ensuring proper functionality as intended.

Routing

The storage assignment and performance are highly correlated with the routing decision problem. How-
ever, the focus is on the storage assignment. For the simulation, the Far path planning configuration
is used. Which is a fast and memory-efficient pathfinding algorithm developed by Wang and Botea
(2008).

The tunnelling option for robots is activated, meaning that the robots can drive underneath the pods
when not carrying a pod. This simplifies routing and increases total system efficiency.

The evading strategy used in the controller is called evade by rerouting, where the alternative is evade
to next node.

Robot Assignment

Robots can be configured as either dedicated or pooled, which indicates whether they are assigned
to exclusively picking or replenishment tasks, or they can process both tasks (Roy et al., 2019). Ded-
icating robots to specific tasks involves several decisions related to the specifics of the warehouse
processes, including the number of robots allocated to each task at any given time. An implementation
of zoning introduces even additional layers of decision-making for robot assignment. However, as the
impact of robot assignment and zoning is beyond the scope of this research, the robots in this study
are configured as pooled.

Order Batching

Order batching combines orders in one station assignment or pod assignment for optimal efficiency.
For instance, assigning a pod with SKUs that can be used for many orders at a certain workstation
increases efficiency. The configuration used is the Pod matching order batching configuration. This
is an approach that selects an order for a station, depending on which station has the best match for
items for an incoming pod.

3.4.2.4. Performance Metrics

A simulation approach, as opposed to an analytical approach, is used to evaluate performance and
consider the impact of multiple decision problems.

This is due to the dependency of order pick time on various decision problems such as replenishment,
collision avoidance, routing algorithms, and order batching, as is explained in Section 2.3.3. It is chal-
lenging to exclude the other decision problems from the slotting decision problem completely, so they
are present in the model with assumptions.

Additionally, as explained in Section 2.5, the performance of slotting can be measured with multiple
metrics, such as the combination of pile-on and travel distance, making it complex to assess purely
through a mathematical model. Therefore, the simulation model is used for evaluation. The generic
objective for overall performance is indicated by the total number of orders handled in the simulation
duration, which is similar to the order throughput rate, as both metrics count the number of orders
completed within a certain time interval. The goal of the study is to evaluate performance in terms
of order-picking efficiency. As elaborated in Section 2.3.2, slotting impacts the efficiency of both the
order-picking and replenishment activity. However, with slotting as the only variation in the simulations



3.5. Methodology Conclusion 55

and the replenishment activity excluded, order-picking is the sole warehouse activity impacting perfor-
mance. Therefore, the number of orders handled reflects the order-picking efficiency.

Although simulation is often avoided due to the extensive computational time required to build such
models, this issue is mitigated since the model foundation already exists and is extended. Further-
more, using a simulation is advantageous as the case study is included, allowing for a more accurate
representation of a realistic situation. Incorporating a simulation model ensures that results are consis-
tent and comparable with those of preceding studies. Additionally, choices for decision problems like
routing and batching can be aligned with the configurations used in the case study.

The potential downside of longer run times is not particularly relevant, as the simulation’s run time
does not directly affect operational processes. The insights yielded by the research inform tactical
decision-making. The goal of this research is to assess the impact of specific decisions, not to develop
a real-time decision-making model.

3.4.3. Simulation Model Extension

For reproduction purposes, the repository with the simulation model is shared in this GitHub repository:
https://github.com/EvaZandhuis/Simulation_ RAWSImO-thesis.git.

Slotting is not currently included in the various options and configurations of decision problems in
RawSim-O. The model is adjusted to incorporate slotting so that outputs from the mathematical slotting
model can serve as inputs in the simulation.

The initial pod content generator is modified to enable the integration of fixed slotting. Originally, the

system employs a random pod content generator, which randomly generates and places items within
the pods during the simulation setup. Instead of this random approach, a new method is developed
where the initial pod content is predetermined to match the fixed slotting configurations.
This method represents a limited integration of slotting since the slotting decisions can not be main-
tained during the replenishment task, as the replenishment method remains unchanged. As explained
in Section 2.3.3, replenishment remains outside the scope of this research. Hence, the current slotting
integration method is sufficient for this research objective.

3.5. Methodology Conclusion

The previous sections in this chapter explain and describe the approach for the demand profile con-
figurations, the slotting model and the simulation model, as visualised in the methodology flowchart in
Figure 3.1.

The input for the demand determination is the total demand of 100 SKUs and 1000 items. The input
for the demand parameters for the synthetic demand profiles are the demand curves of {9222, {0139
and i°°95 and the class separations on 10% and 20% of the SKUs and on 20% and 60% of the SKUs.

The resulting synthetic demand profiles are presented in Table 3.11.

The demand profile and respective weight factors are inputs in the slotting model. The weight factors
are expressed as the range of potential values and number of steps within the range used to determine
the weight factors for the scenarios, where the steps indicate how many evenly spaced values from the
weight range are used as weight factors. The weight range and steps are presented for all demand
profiles in Table 3.11.
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Table 3.11: Demand and Weight Configurations Overview.

Demand Class Item count SKU count Weight range Steps
profile [D;] [Qc] [Wel [ne]
DP, A 58 10 (1) 1

B 10 10 (0.052, 10) 6
C 4 80 (0.052, 1.039) 4
DPg A 34 20 (1) 1
B 5 40 (0.059, 1.295) 6
C 3 40 (0.059, 0.794) 4
DP, A 69 10 @) 1
B 7 10 (0.058, 6.087) 6
C 3 80 (0.058, 0.7) 4
DP, A 40 20 (1 1
B 3 40 (0.05, 0.79) 6
C 2 40 (0.05, 0.54) 4
DPg A 86 10 (1) 1
B 6 10 (0.058, 1) 5
C 1 80 (0.058) 1
DPg A 44 20 @) 1
B 2 40 (0.1, 0.38) 7
C 1 40 (0.068) 1

The configurations in this table are used in the slotting model to create the scenarios which are
evaluated with the simulation model. The slotting and simulation model are shared for reproduction
purposes in the following GitHub repositories: https://github.com/EvaZandhuis/Slotting_public.git and
https://github.com/EvaZandhuis/Simulation_ RAWSIimO-thesis.git.

The analysis of the resulting scenarios and the performance is detailed in Chapter 4.
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Analysis

This chapter presents and analyses the demand-based slotting configurations and the simulations us-
ing the synthetic demand profiles to provide general insights into the impact of demand-based slotting.
Specific case study demands and results are addressed in subsequent Chapter 5.

The analysis of the variation in slotting distributions for the different demand profiles is presented in
Section 4.1. This is relevant for explaining and interpreting results from the simulation analysis, dis-
cussed in Section 4.2 since performance behaviour observed from the simulation might be attributed
to both slotting and demand characteristics. Consequently, the conditions under which optimal perfor-
mance is achieved may vary depending on the demand profile.

The demand profiles are referred to as DP, as in the previous chapters and the classes or turnover
categories are referred to either as classes A, B and C, or as w,, wg and w.. Where class A has the
highest turnover and class C has the lowest turnover, as in Section 2.2, and where w, refers to the
class with the highest turnover and w, to the class with the lowest turnover, as in Section 3.3.

4.1. Scenario Slotting Analysis

For each demand profile, the slotting is determined using the mathematical slotting model. This results
in a slotting configuration described with three distribution indicators: pods per item, items per pod and
pods per SKU. Pods per item (z) and items per pod (y;;) represent the same distribution: The num-
ber of items of SKUs i, distributed over the number of pods j. For pods per item, 1 is the maximum
obtainable since then, each item from a SKU is placed on a different pod. The value for the pods per
item is the reciprocal of items per pod, where the results for all classes obtain a value between 0 and
1. The reason for two indicators to represent the same distribution is that with the distribution indicator
for pods per item (z), the equal range of the three classes is convenient for the weighted equilibrium
equations, Equation 3.9. Whereas the distribution indicator of items per pod (y;;) is a more intuitive
and understandable distribution for interpretation.

The distribution indicator of pods per SKU (X x;;) indicates how many pods a SKU is distributed on
average for that class.

The numerous results for these three distribution indicators obtained from the slotting model are pre-
sented as a range in Table 4.1. The detailed information for each slotting can be found in Appendix
A.

57
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Table 4.1: The Distribution Results from the Mathematical Slotting Model per Demand per Class t.

Distribution ranges

Demand profile Class [t] = Pods/item [z,]  Items/pod [y;;] Pods/SKU [Zj xij]
DP, A [0.086, 0.259] [3.867, 11.6] [5, 15]
B [0.1, 1] [1,10] [1,10]
Cc [0.25, 0.553] [1.808, 4] [1,2.213]
DPg A [0.0897, 0.2353] [4.25, 11.1475] [3.05, 8.0]
B [0.2, 0.625] [1.6, 5.0] [1.0, 3.125]
C [0.3333, 1.0] [1.0, 3.0] [1.0, 3.0]
DP. A [0.0739, 0.2174] [4.6, 13.5294] [6.1, 15.0]
B [0.1429, 1.0] [1.0,7.0] [1.0,7.0]
Cc [0.3333, 0.7375]  [1.35509, 3.0] [1.0, 2.2125]
DP, A [0.1,0.2] [5.0, 10.0] [4.0, 8.0]
B [0.3333, 1.0] [1.0, 3.0] [1.0, 3.0]
Cc [0.5,1.0] [1.0,2.0] [1.0,2.0]
DPg A [0.1163, 0.1744]  [5.7333, 8.6] [10.0, 15.0]
B [0.1667, 1.0] [1.0, 6.0] [1.0, 6.0]
C [1.0, 1.0] [1.0, 1.0] [1.0, 1.0]
DPg A [0.1364, 0.1818]  [5.5, 7.3333] [6.0, 8.0]
B [0.5,1.0] [1.0,2.0] [1.0,2.0]
C [1.0, 1.0] [1.0, 1.0] [1.0,1.0]

The range of the result values from Table 4.1 for pods/item, items/pod and pods/SKU is visualised

for each class for all demand profiles in Figures 4.1, 4.2 and 4.3 respectively.
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Figure 4.1: The Value Range for Pods per Item for each Class Figure 4.2: The Value Range for Items per Pod for each Class
for all Demand Profiles.

for all Demand Profiles.

The range for the values in Figure 4.1 is larger than 0 and maximally 1. The figure shows that
a maximum distribution of z = 1 is not possible for all classes from all demand profiles; however, it
is possible for at least one class of each demand profile. A distribution of 1 pod/item translates to 1
item/pod in Figure 4.2, which means that y;; < 1, since the pod then either contains an item, or it does
not. Indeed, only the classes of the demand where the range of pods/item (Figure 4.1) include 1, also
include 1 in the range of items/pod (Figure 4.2).
The minimum results for items/pod of class A are higher than the minimum results of class B for all
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demands. Where class A never reaches the minimum distribution of 1 pod/item. For demand DP. and
DPg, this is evident from D; of class A (Figure 3.11), which is larger than the total number of pods.
However, for the other demand profiles, this would be possible within the constraints.

The maximum value for items/pods decreases from class A to class C, which is explained by the de-
creasing value for D; (Figure 4.1). The maximum number of items/pod for class A does not approach
the total number of items D; for SKUs in that class, however the range of class B does include the value
for D;, as does the range for class C. This shows that there are slotting results where class B and C
are distributed with all the items of a SKU in one pod, which is never the result for class A.

Figure 4.3 shows the range of results for the pods/SKU distribution. This distribution indicator shows
how many pods one SKU i occupies, Zj Yij-

Range of pods/SKU classes per demand profile

Pods/SKU
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Figure 4.3: The Value Range for Pods per SKU for each Class for all Demand Profiles.

The number of pods/SKU for the C classes of all demand profiles except for DP, ranges from 1 to

the number of items of a SKU in that class D; (Figure 4.1). Class C of demand profile DP, ranges from
1 to 2, where D; = 4, which means that the class of this demand profile is never distributed with only 1
item on a pod.
The difference between the range of the result for the pods/SKU distribution indicator for classes A and
B is larger for demand DP;,, DP; and D P, with a gap between the minimum value in the range of class
A and the maximum value in the range of class B. These SKUs are never distributed over the same
number of pods.

4.1.1. Data Statistics from the Mathematical Slotting Model

The results from the mathematical slotting model are presented in Tables 4.2, 4.3 and 4.4. Visualised
with box plots and violin plots to indicate the data distribution. The mean statistic in the tables is
calculated with all data points, including the ones considered outliers in the box plots. The median,
quartiles and whiskers statistics are computed using the data excluding the outliers from the box plots.
With box plots, data points are considered outliers when not within 1.5 * inter-quartile range. From the
box plots showing the range of the pods/item results in Figure 4.4 and pods/SKU distribution in Figure
4.8, it can be seen that for class B from demand profile DP, there are many outliers, where the thicker
circles at point pods/item= 1 indicate more than 1 data point. Therefore, the data is also shown with a
violin plot introducing a density trace for the data range.

Data Statistics of the Pods per Item Range

The statistical information of the pods per item results are presented in Table 4.2, where Figures 4.4
and 4.5 visualise the data with a box plot and a violin plot respectively.
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Table 4.2: Statistics of Data Range of Pods per Item for each Class for all Demand Profiles.

Lower Upper Lower Upper

Demand Class Mean Median quartile quartile whisker whisker

DP, A 0.175 0.162 0.103 0.224 0.086 0.259
B 0.266 0.1 0.1 0.17 0.1 0.23
C 0.35 0.312 0.25 0.425 0.25 0.553
DPy A 0.168 0.181 0.118 0.212 0.09 0.235
B 0.294 0.24 0.2 0.345 0.2 0.535
C 0.555 0.408 0.333 0.667 0.333 1.0
DP, A 0.156  0.146 0.11 0.194 0.074 0.217
B 0.272  0.143 0.143 0.186 0.143 0.229
Cc 0.472 0.4 0.333 0.538 0.333 0.738
DPp A 0.16 0.169 0.142 0.191 0.1 0.2
B 0.496 0.383 0.333 0.575 0.333 0.717
C 0.659 0.525 0.5 0.8 0.5 1.0
DPg A 0.158 0.167 0.15 0.174 0.116 0.174
B 0.397 0.267 0.167 0.517 0.167 1.0
Cc 1.0 1.0 1.0 1.0 1.0 1.0
DPg A 0.164  0.169 0.151 0.179 0.136 0.182
B 0.698 0.644 0.528 0.841 0.5 1.0
C 1.0 1.0 1.0 1.0 1.0 1.0
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With the box plot of the results from the pods/item distribution class B of demand profile DP4, 21%

of the result data points are considered outliers and 56% of the outliers, equal to 12% of all data points,
constituted from point pods/item= 1. A data point is considered an outlier when it is above the upper
quartile with 1.5 * the inter-quartile range or below the lower quartile with 1.5 * the inter-quartile range.
These data points considered as outliers is why the mean for class B from DP, is lower than, for in-
stance class B from DPg, even though the range presented in Figure 4.1 shows that the results for
DP, include higher values than for DPg. Notably, the mean for class B of demand DP, is 0.266, which
is higher than the value for the upper quantile, 0.17. Additionally, the violin plot in Figure 4.5 shows
that the outliers, even with being 12% of total results, are nearly unnoticeable in the density trace. The
skewness of this data is due to multiple weight configurations resulting in similar or equal distributions
for class B, where the distributions of class A and C are still varying.
The same argumentation causes the skewness of classes B from demand profile DP; and DP,. For
demand profile DPp, an additional explanation for the weight configuration often resulting in the same
distribution is the item count D; = 3. With limited distribution possibilities, the impact of unequal weight
distribution is focused only on those options.
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The result for the C classes of all demand profiles is skewed, with the median closer to the lower quar-
tile, a large whisker showing the distance between the upper quartile and the maximum value, and an
equal value for the lower quartile and the minimum value.

All B and C classes for all demand profiles show an equal value for the lower quartile and the minimum
value, except for class B of demand profile DP,. Additionally, the boxes of these classes are asymmet-
rical, with a larger upper quartile and smaller lower quartile, which means that the median gravitates
downward. This behaviour is the opposite for class A of all demand profiles, where the upper quartile
range is smaller, and the median is higher. This indicates that for many results the distribution for
class A is more towards the maximum of the range, wherass the distribution for class B and C is more
towards the minimum of the range.

Data Statistics of the Items per Pod Range
The statistical information of the items per pod results is presented in Table 4.3, where Figures 4.6 and
4.7 visualise the data with a box plot and a violin plot respectively.

Table 4.3: Statistics of Data Range of Items per Pod for each Class for all Demand Profiles.

Lower Upper Lower Upper

Demand Class Mean Median quartile quartile whisker whisker

DP, A 6.677 6.17 4.462 9.667 3.867 11.6
B 7.618 10.0 6.087 10.0 1.0 10.0
Cc 3.078 3.2 2.353 4.0 1.808 4.0
DPg A 6.445 5.528 4.706 8.5 4.25 11.148
B 3.815 4167 2.899 5.0 1.6 5.0
C 2142 2449 1.5 3.0 1.0 3.0
DP, A 7.203 6.832 5.149 9.085 4.6 13.529
B 5.662 7.0 5.385 7.0 4.375 7.0
Cc 2.292 2.5 1.86 3.0 1.356 3.0
DPp A 6.566  5.926 5.229 7.018 5.0 8.791
B 2333 2.609 1.739 3.0 1.0 3.0
C 1.641 1.905 1.25 2.0 1.0 20
DPg A 6.447 5.975 5.733 6.667 5.733 6.667
B 3.785  3.887 1.936 6.0 1.0 6.0
C 1.0 1.0 1.0 1.0 1.0 1.0
DPg A 6.178  5.929 5.579 6.642 5.5 7.333
B 1.534  1.561 1.197 1.895 1.0 20
C 1.0 1.0 1.0 1.0 1.0 1.0

1‘Illange of Items per Pod for classes per demand profile

1L
l
ey, |

I 1. 1.

YRUTRQUYTRUTQRILUYRLUTROU

1§ange of ltems per Pod for classes per demand profile

iy
N

Da
Db
Dc
Dd
De
Df

iy
o

Da
Db
Dc
Dd
De
Df

©

Items per Pod
Items per Pod
(o)}

N b

TYRoOUTQQUTRULYTRILUTQRIULYRCO

) o Figure 4.7: The Data Distribution of Items per Pod
Figure 4.6: The Data Distribution of Items per Pod Represented R resented with a Violin Plot for each Class for all Demand
with a Box Plot for each Class for all Demand Profiles. Profiles.



62 4. Analysis

The data statistics of pods per item are reflected in the results for the statistics of the items per pod
data since these distribution indicators are reciprocal. Consequently, the trend in the data from items
per pod is mirrored in the results from items per pod. The A classes for all demand profiles have a
smaller lower quartile than the upper quartile, with a downwards skewed median, whereas classes B
and C have a larger lower quartile and an upwards skewed median.

Where 21% of the data points for class B of demand profile DP, is considered an outlier in the box
plots with the pods per item distribution (Figure 4.4), in the items per pod box plot none of the data
points is considered as an outlier. The same applies to class B of DP;. This means that expressing
the distribution of class B of DP, and DPg as pods per item results in a larger deviation from the upper
quartile than when expressing it as items per pod.

The view of this distribution as items per pods reveals new outliers in class A of demand profile DPg.
These outliers result from a relatively small number of configurations for D Pz, which results from vary-
ing only one weight factor while keeping the other two consistent throughout the configurations. With
the addition of a configuration where all the weights are equal (w,, w,/,w;r) = (1,1, 1), the distribution
of the data points is minimally disrupted, resulting in the exclusion of data points as outliers. For refer-
ence, an overview of this data is presented in Appendix Table A.5.

Classes A and B from the demand profiles varying the configurations for all three classes, DP,, DPg,
DP; and DP;, show a density trace in the violin plot that varies from either widening towards the top
or towards the bottom, where class A is more dense towards the bottom and class B towards the top.
However, class C shows a relatively symmetrical density trace for these demand profiles. In addition to
symmetry, to density trace of class C from demand profile DP,, DP; and DP,, and class B for demand
DPg and DPg, the density is also relatively constant. These are all the lowest classes that still allow a
varying configuration, except for DP,. This indicates that the different distribution results of items per
pod for the lowest class with varying configurations are evenly represented in the configurations. The
results for the largest class (A) are more often present with distributions towards the minimum, and for
class B, distributions towards the maximum are present.

Data Statistics of the Pods per SKU Range

The statistical information of the pods per SKU results is presented in Table 4.4, where Figures 4.8 and
4.9 visualise the data with a box plot and a violin plot respectively.

Table 4.4: Statistics of Data Range of Pods per SKU for each Class for all Demand Profiles.

Lower Upper Lower Upper

Demand Class Mean Median quartile quartile whisker whisker

DP, A 10133 94 6.0 13.0 5.0 15.0
B 2657 1.0 1.0 1.7 1.0 2.3
C 1401 125 1.0 1.7 1.0 2.212
DPg A 5729 6.15 4.0 7.225 3.05 8.0
B 1.47 1.2 1.0 1.725 1.0 2.675
C 1666 1225 1.0 2.0 1.0 3.0
DP. A 10773  10.1 7.6 13.4 5.1 15.0
B 1.901 1.0 1.0 1.3 1.0 16
C 1416 12 1.0 1.612 1.0 2.212
DP, A 639  6.75 5.7 7.65 4.0 8.0
B 1487 1.15 1.0 1.725 1.0 2.15
C 1318 105 1.0 1.6 1.0 2.0
DP; A 13617 144 12.9 15.0 10.0 15.0
B 2383 16 1.0 3.1 1.0 6.0
c 1.0 1.0 1.0 1.0 1.0 1.0
DP; A 7206 7425 6638  7.887 6.0 8.0
B 1397 1288 1056  1.681 1.0 2.0
c 1.0 1.0 1.0 1.0 1.0 1.0
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In the box plot for the range of the pods per SKU results in Figure 4.8, classes B and C for the
demand profiles varying all three class configurations, and class B for the demand profiles varying only
two configurations have a small range and a median approaching the minimum value. However, This
small range is due to the many data points considered outliers for all B classes. When comparing
the data with the violin plot in Figure 4.9, the density of the outliers is visualised. This confirms that
the results are predominantly a low value for pods per SKU, even with the outliers included. This
demonstrates that class B exclusively results with many pods per SKU when both the weights for class
B and C are their most extreme, with the maximum weight for B and the minimum weight for class C.
The density trace in the violin plot for the pods per SKU distribution in Figure 4.9 indicates a solid
distribution of results throughout the whole range for class A of demand profile DP, and DP.. Class A
for demand D Py is less constant but remains symmetrical. All other classes of all other demands show
an apparent skewness towards either the maximum or the minimum value. When comparing this with
the violin plot for items per pod in Figure 4.7, the density trace is neither constant nor symmetrical for
class A of demand profile DP, and DP.. While the results of these classes dominate the lower values
for the number of items per pod, the number of pods per SKU is relatively constant. However, the
values for these two distributions are directly related since, for instance, 6 pods per SKU with demand
profile DP, with D; = 58 can only be distributed as 10 items per pod, this apparent difference in density
trace means that the range for pods per SKU larger, which stretches the density trace and decreases
the visibility of the density trace inconsistency.

4.1.2. Algorithmic Results of the Slotting Configurations

The model’s runtime varies depending on the demand profile and the weight configurations. The short-
est runtime observed across all scenarios was 14 seconds, while the longest reached the cutoff time
of 120 seconds.

The collection of all scenarios consists of the different weight configurations for class B multiplied
by the different weight configurations for class C, and an additional equal-weight configuration. This
results in 25 scenarios for demand profiles DP,, DPg, DP. and DPp, 6 for demand profile DP;, and 8
for demand profile DPg, with each scenario being run with 3 different seeds. Consequently, the model
was run 342 times in total. A cutoff time of 2 minutes was set to limit the runtime, amounting to a total
maximum runtime of 11 hours and 24 minutes.

Out of all slotting configurations, 15% reaches the 2-minute cutoff, while 85% has a runtime between
14 and 40 seconds. When the model finishes before the cutoff, both objectives are solved with a 0%
optimality gap, meaning the obtained values match the best possible values.

The first objective of the model consistently achieves a 0% optimality gap with an average runtime
of 3 seconds. The longer runtimes are attributed to the second objective, which involves weight factors.
In the 85% of cases where the runtime is below 40 seconds, the second objective also reaches a 0%
optimality gap. However, for the remaining 15% that hits the cutoff, the optimality gap varies between
0% and 80%.
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The impact of a large optimality gap with the second objective is that the slotting result is not always
aligned with the weight factors as expected. The objective function with the weight factors aims to
achieve a distribution that satisfies the equilibrium equation, so any optimality gap indicates a deviation
from this equilibrium distribution.

The goal of the slotting model is to generate various distributions. The weight factor objective is a
means to this end, but achieving distributions that strictly conform to the weights is not the objective
outside of the slotting model. Evaluation of the slotting configurations is performed through simulation
rather than within the mathematical model. Thus, a gap between the model result and the optimal result
is acceptable, as it still produces a specific distribution for evaluation.

However, it is important to note that larger gaps, where the results do not fully meet the objective
function, diminish the relevance and significance of the weight factors in the outcome and performance
of the scenarios.

4.1.3. Conclusion to Slotting Configurations

The results reveal significant variability in slotting configurations across different classes (A, B, C) within
each demand profile (DP,, DPg, DP;, DPy, DPg, DPg). Class A consistently exhibits higher pods per
SKU and items per pod than classes B and C across all demand profiles, reflecting its higher item
demand per SKU. The exception is demand profile DP,, where class B occupies more pods per SKU
than class A.

Classes B and C show varying levels of pods per SKU and items per pod depending on the demand
profile.

The demand profiles DPg, DP;, and DPy have class separation on 20% and 60%, resulting in SKU
quantities of 20, 40 and 40 for class A, B and C, respectively, which results in slight difference in item
demand between class A and B. For these demand profiles, class B exhibits lower pods per SKU and
items per pod compared to demand profiles, where this difference is more significant, even though the
total item demand for class B is higher than for the demand profiles with class separation on 10% and
20%. The range for these class distributions remains closer to the distributions of class C.

The impact of weight configurations on the slotting outcomes varies among the demand profiles.
Demand profiles DP, and DP. have a wide weight range for class B, producing unique distributions at
the minimum and maximum values while resulting in similar distributions for many intermediate weight
configurations. Consequently, these profiles exhibit low sensitivity to weight variations.

Class C generally shows high sensitivity to the weight factors due to its higher SKU count, with the
apparent exception for demand profiles DP; and DPg, where there is only one possible configuration
for class C.

Demand profiles DPg, DP;,, and D Py, where the difference between classes B and C is minimal in
both SKU and item quantity, show similar sensitivity to weight configurations. The small weight ranges
and similar item quantities for classes B and C result in comparable sensitivity, where no single class
weight disproportionately impacts the resulting distribution.

In demand profiles showing low sensitivity to weights (DP, and DP.), distributions remain confined
to a small range across different slotting configurations, indicating that observed performance differ-
ences are due to minor distribution changes. With high sensitivity to weights (DPg, DP, and DPy),
exhibit more significant distribution variations with different weight configurations, leading to observed
performance differences from the simulation likely being due to bigger distribution differences.

This highlights the significant impact of demand profiles on slotting configurations. Including these
insights is crucial for interpreting the simulation results and the performance of demand-based slotting
decisions across different demand profiles.
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4.2. Scenario Simulation Analysis

The scenarios resulting from the mathematical slotting model are evaluated with a simulation to deter-
mine the impact of slotting decisions on the performance measures for different demand profiles.
First, the performance is evaluated independent of the demand profile in Section 4.2.1, after which the
results are evaluated specifically for each demand profile in Section 4.2.2.

4.2.1. Performance of Simulation Results

Item pile-on is one of the performance measures for the simulation. It measures the number of items
taken from a pod when it visits a picking-station. The measure reported in the tables and figures is the
average pile-on for all pod-to-station visits within the simulation duration. Travel distance is the total
distance travelled by all robots throughout the simulation duration. Orders handled are the total number
of orders finished before the simulation ends.

Multiple generic performance metrics evaluate the system, including the number of orders processed,
order turnover time, item throughput rate, and order throughput rate.

All metrics show similar results except order turnover time. This disparity arises from how orders are
handled in the simulation: incoming orders generate a backlog that can be processed. Initially, picking
orders based on their arrival time might seem logical, but it often leads to sub-optimal outcomes by
preventing order batching. Therefore, orders are picked in a sequence unrelated to their arrival time,
affecting the turnover time metric differently than the others.

The plots with the metrics’ results are presented in Appendix B for reference. The generic performance
metric used in the continuation of this chapter is the numbers of orders handled, since this metric is
self-explanatory and effectively illustrated the meaning.

The intermediate performance metrics of pile-on and travel distance are expected to affect the number
of orders handled as detailed in Section 2.4.1. This is validated with the plotin Figure 4.10, which shows
the impact of travel distance and pile-on on the total number of orders handled for the simulation of all
slotting configurations for all demand profiles.
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Figure 4.10: Plot the Number of Orders Handled for Travel Distance and Pile-on from all Slotting Configurations for all Demand
Profiles.

The first conclusion from the plot is that travel distance and pile-on indeed positively affect the total
number of orders handled. The second is that the results in these plots are all with the same layout
and controller configuration, and only the demand profiles and the slotting in the setting configurations
are varied. This shows that, depending on the demand profile, the slotting configuration can impact the
total number of orders handled with a difference of 200 orders for the simulation duration, which was
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30 minutes.

An explanation for the diagonal shape of the plot is that pile-on and travel distance are related,
whereas a decreasing pile-on correlates to an increasing travel distance, which makes sense since a
lower pile-on means that less items are picked from one pod on one visit, so a new pod must travel
there to provide the necessary items.

4.2.2. Simulation Results per Demand Profile

The simulation results of the distribution configurations are evaluated per demand profile to provide
insights on the impact of slotting decisions. The results of all simulation runs are printed in Appendix
C for reference, summaries of the results are presented in tables per demand profile in the relative
sections.

As described in Section 3.3.2.1, the weight for class A is fixed as 1 for all configurations and the weights
for class B (referred to as wy in text or W2 in figures) and C (referred to as w, in text or W3 in figures)
are configured according to the range presented in Table 3.8.

Ternary Plot Interpretation
The distribution of the classes of a scenario is visualised with a ternary plot, as introduced in Section
3.1. The interpretation of a ternary plot is supported with Figure 4.11.

Orders handled

Pods per SKU for class A

Figure 4.11: Explanation of the interpretation of a ternary plot.

Each scenario is marked with an x, and the axes in three directions present the distribution of the
relative class. This triangular plot allows the plotting of three variables under the condition that the sum
of the three variables remains constant. This applies to the distribution of pods per SKU (per class),
since there is a constraint on the total number of pods (P = 60) and on the number of SKUs allowed
in a pod (V = 4). The sum of pods across all classes is always 240, since that is the product of the
maximum number of SKUs per pod and the number of pods (X; X; x;; = P * V). The three variables
maintain an equilibrium, where increasing the distribution of one requires reducing another. The label
on the axis is divided by the number of SKUs in a class to create the label of the average number of
pods per SKU for a class.

The performance of a scenario is represented with the colour of the x marking. A colour scale,
displayed on the right-hand side of the ternary plot, represents the number of orders handled during
the simulation time. Blue indicates a relatively poor performance with a low number of orders handled,
and yellow indicates a relatively high performance.
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4.2.2.1. Simulation Results with Demand Profile DP,

The results for all the slotting configurations with demand profile DP, are presented in Table 4.5. The
mean value and standard deviation for all simulation seeds with the same weight configurations wgz and
wc are shown, in addition to the mean and standard deviation of all simulation seeds for this demand

profile.

Table 4.5: The Performance Measures for all Weight Configurations of Demand Profile DP,.

Travel

Orders

W We Plle-on distance handled Count
Mean SD Mean SD Mean SD
Total 7.2 042 5149.29 106.37 469.48 16.38 225

0.052 0.052 711 0.36 5127.59 1295 46144 12.2 9
0.052 0.381 6.96 0.41 5143.05 68.03 463.0 15.25 9
0.052 0.71 6.94 043 5173.16 80.66 467.0 17.23 9
0.052 1.039 7.07 0.41 5198.47 13597 466.78 16.35 9
1.0 1.0 767 0.37 5058.17 51.75 483.22 15.75 9
10.0 0.052 7.05 0.37 5150.43 125.72 47156 11.25 9
10.0 0.381 7.05 0.35 514445 80.25 467.33 15.8 9
10.0 0.71 6.93 0.24 5243.67 88.67 458.89 8.72 9
10.0 1.039 7.35 0.17 5124.29 73.1 470.22 10.65 9
2.042 0.052 7.43 04 5089.2 7797 479.33 13.47 9
2.042 0.381 7.19 0.31 5146.63 105.07 471.44 14.68 9
2.042 0.71 711 034 5200.72 65.52 466.0 16.95 9
2.042 1.039 76 053 5088.64 5246 48244 17.41 9
4,031 0.052 7.16 0.61 5159.56 145.72 468.11 26.49 9
4,031 0.381 7.21 029 5146.22 60.11 470.67 17.41 9
4.031 0.7 70 043 520154 108.11 461.89 16.71 9
4,031 1.039 7.27 0.26 514106 91.04 464.89 12.8 9
6.021 0.052 7.15 0.34 5139.67 111.0 469.0 15.8 9
6.021 0.381 7.27 04 5125.66 121.29 470.56 19.03 9
6.021 0.71 7.08 0.37 5195.15 85.79 470.56 16.89 9
6.021 1.039 7.53 0.24 5077.23 8552 475.89 10.66 9
8.01 0.052 7.33 0.56 5098.36 131.18 476.89 21.72 9
8.01 0.381 6.92 0.39 521245 164.43 460.22 12.55 9
8.01 0.71 7.06 0.29 5217.18 97.28 46289 12.0 9
801 1039 745 0.36 5129.75 86.42 476.78 17.9 9

The mean results from the table have a range in number of orders handled from 459 to 483, this
range is slightly more significant when looking at the plot in Figure 4.12, which has a range from 419
to 510. This complies with the standard deviation shown in the table, with values ranging between 10
and 20 orders. This corresponds to the lower performing half of the results from the number of orders

handled overall demand profiles in Figure 4.10.
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Figure 4.13: The Total Number of Orders Handled for all
Weight Configurations of Demand Profile DP4, Plotted over
the Weights.

Figure 4.12: The Total Number of Orders Handled for all Weight
Configurations of Demand Profile DP4, Plotted over the Pile-on
and Travel Distance.

Figure 4.13 depicts the number of orders handled plotted for the different weight configurations.
There is one node where the weight configuration varies from the step sizes used for the other weight
configurations, which is where all the weights are configured equal to 1 (w,,wg,w¢) = (1,1,1). The
result for this configuration is the maximum obtained mean performance for all the means from the
different weight configurations (Table 4.5), closely followed by the result with weights (2.042,1.039).
However, the maximum obtained number of orders handled for a single seed, as opposed to the mean
value of all seeds from the same weight configuration, is found in a seed from the simulation results of
weight (2.042,0.052).
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Figure 4.14: The Average Pile-on for all Weight Configurations Figure 4.15: The Total Distance Travelled by the Robots for all
of Demand Profile DP,. Weight Configurations of Demand Profile DP4.

Figure 4.14 and 4.15, present the result with the performance indicators of item pile-on and total
distance travelled, respectively. It can be seen that the results are very similar to the number of or-
ders handled. Travel distance shows an opposite result since this measure is minimised for optimal
performance. Therefore, only the number of orders handled is plotted for the remainder of the demand
profiles.
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The weights in the slotting configuration are mainly used as a tool to gain different distributions for
the three classes. These distributions are shown with the average number of pods/SKU (Zj x;;) for
each class in a ternary plot in Figure 4.16. Similar to the weight configurations plots, the average of the
performance metric is shown for all simulations with the same values for the axis.
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Figure 4.16: Ternary Plot of the Number of Orders Handled for all Slotting Configurations of Demand Profile DP,4, with the
Configurations as Pods per SKU Distribution per Class.

The ternary plot for demand profile DP, shows that the configurations are varied mostly with the

same distribution of minimum pods for SKUs in class A, and a varying number of pods for B and C, and
minimum pods for class B while varying pods for class A and C. The variations with the distribution of
minimum pods for C are few, whereas the simulations with maximum pods for C are the most frequent.
This creates a triangle of simulations within the triangular plot axis, where the boundaries are narrower
than the plot boundaries; this is due to the axis being based on a percentage of distribution, whereas
a distribution of 100% is not possible for one class since the other classes have minimum distributions
larger than 0%.
The configurations where the distribution of class C is minimal show relatively high performance for
the number of orders handled. With a minimal class C distribution, the maximum class B distribution
shows the lowest performance. The best performance is found with a high distribution of class A and
a low distribution of classes B and C.

In the plot of the performance for different weight configurations (Figure 4.13), the configuration
with equal weights (1, 1, 1) performed best. This configuration is plotted in the ternary plot with node
X, more significant than the other nodes. It now is not the best performing configurations because
a specific weight configuration is not the same as a specific slotting configuration. Multiple weight
configurations might result in the same slotting, and one weight configuration may result in different
slotting configurations.

4.2.2.2. Simulation Results with Demand Profile DP,

The results for all the slotting configurations with demand profile DPg are presented in Table 4.6. The
mean value and standard deviation for all simulations with the same weight configurations wz and w,
are shown, in addition to the mean and standard deviation of all simulations for this demand profile.
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Table 4.6: The Performance Measures for all Weight Configurations of Demand Profile DPg.

. Travel Orders
W We Pile-on distance handled Count
Mean SD Mean SD Mean SD
Total 6.84 0.46 5223.9 113.57 45845 1847 225

0.059 0.059 6.84 0.36 5193.37 89.96 45411 16.33 9
0.059 0.304 7.01 0.41 5196.12 99.93 464.11 12.92 9
0.059 0549 6.85 0.34 5189.81 1074 462.11 18.16 9
0.059 0.794 7.02 0.44 52049 11544 466.44 20.36 9
0.306 0.059 6.18 0.22 5368.94 6047 433.78 13.8 9
0.306 0.304 6.76 0.33 5220.82 110.28 453.89 11.62 9
0.306 0549 6.95 043 5165.39 86.25 46522 17.31 9
0.306 0.794 6.76 0.31 521573 100.9 459.33 15.65 9
0.553 0.059 6.33 0.34 53057 79.36 44222 16.44 9
0.553 0.304 6.69 0.5 5260.65 123.09 452.67 25.93 9
0.553 0549 6.82 0.24 523249 69.33 456.33 12.32 9
0.553 0.794 6.83 0.23 5211.17 100.23 456.67 10.51 9
0.801 0.059 6.55 0.36 5311.87 110.14 453.11 15.91 9
0.801 0.304 6.64 023 52885 71.33 44889 13.05 9
0.801 0549 6.87 0.39 519552 66.54 459.11 16.77 9
0.801 0.794 7.02 0.41 5153.75 9173 468.11 16.02 9

1.0 1.0 757 0.32 50635 104.69 483.33 9.99 9
1.048 0.059 6.64 049 524732 89.86 447.67 17.3 9
1.048 0.304 6.91 045 5226.84 100.43 461.44 18.22 9
1.048 0549 6.82 0.3 528165 71.67 459.67 13.65 9
1.048 0.794 7.43 0.39 5111.18 150.74 47856 17.44 9
1.295 0.059 6.67 0.52 5253.3 109.72 458.44 1495 9
1.295 0.304 6.65 0.23 525593 89.6 449.89 16.5 9
1295 0549 6.8 0.2 531024 67.8 452.89 12.69 9
1.295 0.794 7.33 0.39 513292 9462 473.33 17.63 9

The mean value for number of orders handled is 458 for demand profile DP;. The range for the
number of orders handled for this demand is similar to DP,, with the range in the plot in Figure 4.17
from 410 to 510 orders. However, the maximum pile-on for this demand is 8 items, as opposed to
the 8,5 from DP,. This maximum value for pile-on is found with weights (1.0478, 0.794), with a mean
orders handled of 479. Only the weigh configuration with (1, 1) has a higher mean of 483.
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In the plot in Figure 4.18, the number of orders handled seems to increase where the value for w,
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increases. This indicates that a lower distribution for this class (C) increases the performance.

The translation of weight configurations to distribution configurations is plotted in a ternary plot in
Figure 4.19.
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Figure 4.19: Ternary Plot of the Number of Orders Handled for all Slotting Configurations of Demand Profile D Pg, with the
Configurations as Pods per SKU Distribution per Class.

It can be seen that the range of the results is triangular inside the triangular plot, as it was with

demand profile DP,, but the triangle is shifted upward and to the right. This is due to the demand con-
figuration of the profile. The number of SKUs in classes A and B is higher, reflected in the increased
minimum and maximum distribution range of these classes. The number of SKUs in class C is lower,
so the distribution range is also lower.
The worst-performing distribution configurations are found where A and B are distributed minimally,
and class C is distributed maximally. The best-performing distributions are where class A is distributed
maximally and B and C minimally. This is also the slotting result from weight configuration (1,1, 1).
Along the line where class C is distributed minimally, the different configurations for A and B are per-
forming better than with a larger C.

4.2.2.3. Simulation Results with Demand Profile DP,

The results for all the slotting configurations with demand profile DP; are presented in Table 4.7. The
mean value and standard deviation for all simulations with the same weight configurations wz and w,
are shown, in addition to the mean and standard deviation of all simulations for this demand profile.
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Table 4.7: The Performance Measures for all Weight Configurations of Demand Profile DPc.

. Travel Orders
W We Pile-on distance handled Count
Mean SD Mean SD Mean SD
Total 8.11 0.52 4927.64 11245 498.79 16.17 225

0.058 0.058 7.72 0.32 5002.28 101.01 49467 6.28 9
0.058 0.272 7.96 0.42 4989.32 81.0 499.67 129 9
0.058 0486 7.85 0.39 4999.82 90.98 49344 18.32 9
0.058 0.7 8.05 0.42 492215 5484 49744 1484 9

1.0 1.0 8.7 0.31 4804.26 94.44 51156 10.68 9
1.264 0.058 8.09 0.6 492438 111.15 501.89 20.84 9
1.264 0.272 766 04 5007.41 63.0 483.56 13.15 9
1.264 0.486 8.04 047 4902.78 9453 497.89 15.01 9
1.264 0.7 884 04 479745 113.95 517.56 17.11 9
247 0.058 8.11 0.26 4952.61 70.21 502.22 8.38 9
247 0272 7.64 04 4968.65 1147 487.89 18.76 9
247 0486 837 041 489066 93.23 507.0 11.52 9
2.47 0.7 8.26 0.27 4936.74 77.97 498.33 7.26 9
3.675 0.058 7.9 042 4995.1 88.34 490.22 12.81 9
3.675 0272 795 0.6 5019.24 142.04 487.89 18.2 9
3.675 0486 847 0.44 48659 138.68 510.78 14.53 9
3.675 0.7 8.52 0.31 4851.6 88.8 508.89 14.39 9
4881 0.058 7.89 048 4894.14 79.36 490.33 15.86 9
4881 0.272 7.69 0.26 4996.57 100.25 487.11 10.97 9
4881 0.486 8.58 048 4838.09 127.98 50544 19.03 9
4.881 0.7 8.29 0.42 4907.04 74.82 502.89 14.53 9
6.087 0.058 7.96 044 4953.23 7274 49567 9.77 9
6.087 0.272 7.57 018 4997.39 92.27 488.67 8.99 9
6.087 0486 8.13 049 4919.86 111.83 500.33 17.54 9
6.087 0.7 8.55 0.34 4854.33 87.96 508.44 14.61 9

With a mean value of 499 orders handled for demand profile DP. and a range in the plot in Figure
4.20 from 450 to 550, the performance is better than for DP, and DPg. Confirming the results from
Figure 4.10, the mean pile-on is higher, and the mean travel distance is lower for the demand profile of

DP, and DPg.
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Figure 4.21: The Total Number of Orders Handled for all
Weight Configurations of Demand Profile D P, Plotted over
the Weights.

Figure 4.20: The Total Number of Orders Handled for all Weight
Configurations of Demand Profile D P, Plotted over the Pile-on
and Travel Distance.

In Figure 4.21, it can be seen that the weight configuration with w, = 0.272 performs worse for
almost all configurations of wg except for wgy = 0.058. Weight configuration (0.058,0.272) has distri-
bution zz = 1 for all simulations, which might cause the increased performance (see Appendix A.3 for
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reference). The performance increases for w, = 0.486 and is optimal for (1.2638,0.7).

The distribution of pods per SKU for demand profile DP, is shown in a ternary plot in Figure 4.22.
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Figure 4.22: Ternary Plot of the Number of Orders Handled for all Slotting Configurations of Demand Profile D P¢, with the
Configurations as Pods per SKU Distribution per Class.

Similar to the performance from demand profile DP, and DPg, the best results are where the distri-
bution of class A is maximum, and the distributions of class B and C are minimum. The configuration
with equal weights in this configuration has the distribution where the SKUs in class A are distributed
over 14,5 pods, class B over 1.5 pods and class C over 1 pod.

4.2.2.4. Simulation Results with Demand Profile DP,,

The results for all the slotting configurations with demand profile DP,, are presented in Table 4.8. The
mean value and standard deviation for all simulations with the same weight configurations wz and w,
are shown, in addition to the mean and standard deviation of all simulations for this demand profile.
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Table 4.8: The Performance Measures for all Weight Configurations of Demand Profile DPp,.

. Travel Orders
W We Pile-on distance handled Count
Mean SD Mean SD Mean SD
Total 7.71 056 5011.12 123.88 487.15 17.98 225

0.05 0.05 827 0.26 4950.58 87.62 502.67 17.89 9
0.05 0213 7.3 046 5080.81 86.58 479.11 14.89 9
0.05 0.377 7.54 0.27 499993 107.54 48556 10.3 9
0.05 054 729 0.24 505749 159.19 47522 10.69 9
0.198 0.05 7.15 0.19 5107.06 60.54 473.0 10.98 9
0.198 0.213 7.27 0.43 5070.58 128.95 473.67 17.86 9
0.198 0.377 7.43 0.37 5025.76 80.94 478.11 14.44 9
0.198 054 762 0.42 5020.38 112.79 482.33 12.88 9
0.346 0.05 7.38 0.32 5066.42 88.3 477.67 10.89 9
0.346 0.213 7.43 0.28 5046.68 66.98 476.44 125 9
0.346 0.377 7.6 032 5058.69 79.71 484.78 12.54 9
0.346 054 769 0.39 5056.05 70.0 488.56 16.69 9
0.494 0.05 7.65 0.19 5014.07 97.9 484.22 8.21 9
0494 0.213 7.54 0.38 5054.28 133.88 484.0 12.29 9
0494 0377 7.75 043 504159 109.2 490.78 17.89 9
0494 054 7.89 0.62 4980.14 119.21 492.67 17.43 9
0642 005 754 041 5068.11 87.28 479.33 17.03 9
0.642 0.213 7.42 0.29 5036.01 814 47478 8.48 9
0.642 0.377 8.12 0.39 4923.8 84.69 498.78 12.74 9
0642 054 829 0.54 4866.77 110.69 506.89 15.85 9
079 005 7.33 0.34 5090.87 88.75 475.78 10.95 9
0.79 0.213 7.58 0.27 510243 9151 48756 9.95 9
0.79 0.377 8.48 0.37 490568 88.69 508.0 14.47 9
079 054 822 051 4873.3 77.05 500.22 17.39 9
1.0 1.0 888 0.5 4780.56 99.01 518.67 16.72 9

The mean number of orders handled for demand profile DP, is 487 orders, which is lower than D P,
but better than DP, and DP;. The maximum mean number of orders handled is 518 orders for the
configuration with weights (1,1). The maximum number of orders handled for all simulations is 538
orders and is also with this weight configuration.
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Weight Configurations of Demand Profile DPp, Plotted over

The best performance is simulated with wgz and w, increasing, which indicates the distribution class
B and C decreasing. One weight configuration where wgz and w, are the minimum values shows
an improved performance from the surrounding configurations. This might be due to the similarity of
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the weights resulting in a distribution similar to the distributions with maximum wg and w.. From the
weight plot it seems that the distribution with wgy = 1 and w, = 1 performs best, however, this weight
configuration has the same distribution as with (0.642,0.54) and (0.79,0.54). These distributions are
where class A is distributed maximally, in the ternary plot in Figure 4.25, this configuration has the
distribution of 8 pods for SKUs in class A, and 1 pod for SKUs in classes B and C. The best-performing
configurations are found in a diagonal line perpendicular to the axis of class A with a sharp cutoff for
A < 6.8 where the configurations near this line show better performance on the side where A and C
decrease and B increase.
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Figure 4.25: Ternary Plot of the Number of Orders Handled for all Slotting Configurations of Demand Profile D Pp, with the
Configurations as Pods per SKU Distribution per Class.

4.2.2.5. Simulation Results with Demand Profile DP,

The results for all the slotting configurations with demand profile DP; are presented in Table 4.9. The
mean value and standard deviation for all simulations with the same weight configurations wyz and
w¢ are shown, in addition to the mean and standard deviation of all simulations for this demand pro-
file. For this demand profile, the distribution of class C is limited since all SKUs in class C only consist
of 1 item. Therefore, only one weight configuration for this class is included, except configuration (1, 1).

Table 4.9: The Performance Measures for all Weight Configurations of Demand Profile DPg.

Pil Travel Orders Count
Wp W¢ fle-on distance handled oun

Mean SD Mean SD Mean SD

Total 9.97 0.82 4544.39 146.44 541.31 19.34 54

0.058 0.058 9.35 0.54 4609.38 155.49 531.33 19.44
0.293 0.058 9.85 0.5 4609.95 4878 537.0 17.04
0.529 0.058 9.63 0.65 454133 131.76 529.78 21.29
0.764 0.058 9.6 0.39 4626.59 9041 53956 111
1.0 1.0 1029 0.64 4511.31 102.43 547.78 15.48
1.0 0.058 11.11 0.77 4367.78 161.15 562.44 12.53

O O O O oOoo

The results of the configurations for demand profile D P; show significantly better performance with
a mean number of orders handled of 541 orders, which is 42 orders more than the performance of
demand profile DP..
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The plot in Figure 4.27 shows the best result with wz = 1. However, the second best performing

configuration is the configuration with the weight configuration (1,1). The performance for number of
orders handled is not gradually decreasing together with wgz. The configuration with weight wg in the
middle of the range, wy = 0.529, is the worst-performing configuration for this demand.
There is only one possible configuration for class C, which makes the results easier to read. The best
performance is reached where the distributions for class A and B are similar, which is most often with
weight configurations (1, 0.058) and (1, 1), the configurations where the weight for class B decreases
perform better than with a larger weights for class B. This is mainly confirmed by the ternary plot in
Figure 4.28.
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Figure 4.28: Ternary Plot of the Number of Orders Handled for all Slotting Configurations of Demand Profile D Pg, with the
Configurations as Pods per SKU Distribution per Class.

Interestingly, the plot for the weight configurations shows 6 weight configurations, but the ternary plot
shows 5 distribution configurations, which means that two of the weight configurations resultin the same
distribution. These are the weight configurations for (1,1) and (1,0.058). Since both configurations
showed far better performance than the other configurations in the weight configuration plot in Figure
4.27, it is unsurprising that this is similar to the performance shown in the ternary distribution plot.

4.2.2.6. Simulation Results with Demand Profile DP,

The results for all the slotting configurations with demand profile DPy are presented in Table 4.10. The
mean value and standard deviation for all simulations with the same weight configurations are shown,
in addition to the mean and standard deviation of all simulations for this demand profile.
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Table 4.10: The Performance Measures for all Weight Configurations of Demand Profile D Pg.

Travel Orders

W We Pile-on distance handled Count
Mean SD Mean SD Mean SD

Total 836 0.39 4863.82 110.7 504.03 12.64 72
0.1 0.068 8.29 0.46 4888.32 175.99 500.67 14.84 9
0.147 0.068 8.07 0.28 4953.41 79.57 497.67 17.04 9
0.193 0.068 8.51 0.17 4853.38 78.31 505.0 7.68 9
0.24 0.068 845 0.41 478272 83.57 508.78 11.21 9
0.287 0.068 8.43 0.45 4839.83 8194 50567 13.8 9
0.333 0.068 8.47 0.36 4805.19 61.51 506.33 10.97 9
0.38 0.068 856 0.36 4833.36 103.3 506.67 11.79 9
1.0 1.0 8.07 0.32 495433 71.89 50144 1278 9

The performance of the number of orders handled for this demand profile is 504 orders, which is bet-
ter than for all demand profiles except for DP;. The standard deviation is also the smallest compared to
all other demand profiles. The minimum number of orders handled is 461 and results from a simulation
with weight configuration (0.147,0.068), which is also where the mean for number of orders handled
is lowest. However, the standard deviation for this weight configuration is more significant than most
others in this demand profile. The maximum mean for number of orders handled is 525 orders, which
surfaces in two configurations. Among which the configuration with the highest mean, (0.24,0.068).
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Figure 4.29: The Total Number of Orders Handled for all Weight  Figure 4.30: The Total Number of Orders Handled for all
Configurations of Demand Profile DP, Plotted over the Pile-on  Weight Configurations of Demand Profile D P, Plotted over
and Travel Distance. the Weights.

From the plot in Figure 4.30 and Figure 4.29, it can be seen that a larger portion of all simulations
performs towards the maximum value when comparing to the other demand profiles.
Similar to demand profile DPg, class C has only one possible configuration. The distributions for this
demand profile, however, are less clear. A slight correlation exists where configurations with larger
values for z, have lower performance. This would indicate that the performance increases with class
B less distributed and class A more distributed.

The distribution configurations associated with these weight configurations are plotted in a ternary
plot in Figure 4.31.
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Figure 4.31: Ternary Plot of the Number of Orders Handled for all Slotting Configurations of Demand Profile D Pg, with the
Configurations as Pods per SKU Distribution per Class.

Since there is only one possibility for the distribution of SKUs in class C, the configurations result in
one line for C = 1. The worst performance is where B is distributed maximally and A minimally. The best
result, however, is not found with A distributed maximally and B minimally, but the performance seems
to increase towards the configuration in the middle. The configuration where class A is distributed
maximally performs better than where A is distributed minimally, but the optimal performance seems
more towards the middle.

4.2.3. Conclusion to Scenario Simulation

The simulation results highlight the significant impact of pile-on and travel distance on the order through-
put rate, independent of the demand profile. Across the 30-minute simulation period, the slotting con-
figuration decisions lead to variations of up to 200 orders handled.

The vast weight range for demand profiles DP, and DP. results in slotting configurations concen-
trated in one area due to similar distributions resulting from multiple weight configurations. The distri-
bution with classes A and B is frequently distributed minimally and C maximally since the configuration
concentrations are in the lower left corner. However, the wide range has not decreased because a
few configurations lead to new distributions. These concentrations are not a problem. However, they
impose less diversity in the distributions for these demand profiles.

In contrast, demand profiles DPg, DPp, and D P exhibited more evenly scattered slotting configura-
tions due to similar weight ranges and similar item demand in classes B and C. This spread provides
better insight into performance for different slotting configurations.

The objective of this section is to answer Sub-Question 1: What is the impact of demand-based
slotting decisions on the order throughput rate for different demand configurations in an RMFS?

Among the various demand profiles, DP; and DPr emerge as top performers regarding the total
number of orders handled during the simulation. These two demand profiles share that class C con-
sists of only 1 item. Demand profile D P particularly excels. This might be due to having only 1 item in
class C, DPg has the largest number of SKUs in that class with Q, = 80 as opposed to Q; = 40 of DPg.
The demand in profile DP; and DP follow the same demand curve, where 20% of SKUs are 90% of
the item demand, where the difference between both demand profiles is the classification. For demand
profile DPg, the classes are separated on 10% and 20% of SKUs, resulting in class A and B consisting
of 10 SKUs and class C of 80 SKUs, while demand profile DPr has class separation on 20% and 60%,
which is 20 SKUs in class A and 40 in B and C.

This indicates that the classification of the demand profiles, in addition to the turnover, impacts the per-
formance. Supporting this, both other demand profiles with class separation of 10% and 20% (DP, and
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DP.) show better performance than the demand profile with the same curve but different classification
(DPg and DPp).

Demand profiles with a classification containing fewer SKUs in class A and more SKUs in class C show
better performance.

The ternary plots reveal that high performance is typically achieved in the lower right corner, asso-
ciated with configurations with more pods for SKUs in class A and fewer for classes B and C. However,
deviations from this pattern are observed with, for instance, demand profile D P, showing optimal per-
formance when class B is distributed around the middle of its range. Similarly, demand profile D Pz has
one high-performing configuration towards the middle of the plot. Demand profile DP, demonstrates
high performance in configurations where class A distribution is not the maximum. In contrast, demand
profile DP, presents inconclusive results except for low performance with minimal pods for class A and
C and maximum pods for class B.

The number of pods over which class C can be distributed affects the readability of the results in the
ternary plots and the clarity of the trends. For demand profiles DP; and D P, class C can be distributed
over a maximum of one pod, resulting in a single line of results. For demand profile DPp, class C can
be distributed over two pods, showing an evident trend where the lower right performs best and the
other areas perform poorly. Demand profiles DP; and D P, where class C can be distributed over three
pods, are somewhat unclear. The lower left performs poorly, and the lower right performs well, while
the top performs less distinctly.

It is evident that with fewer pods over which class C might be distributed, it becomes clearer that
maximising pods for class C and minimising pods for class A is not desirable. This is because as the
possible number of pods for class C decreases, the closer a distribution gets towards maximising class
C, thereby highlighting negative performance.

The lowest performance across all profiles is found in the lower left corner, which is the slotting with
minimal pods for class A and B, and maximal pods for class C. Additionally, low performance is also
seen at the top of the ternary plot for most profiles, which is the distribution with minimal pods for class
A and C, and maximal pods for class B. These two corners are the extreme configurations with minimal
pods for class A.

This suggests that the distribution of class A is critical for the order throughput performance, with large
distributions generally showing the best performance. However, configurations with slightly fewer pods
for class A and more pods for class B also perform well.

The equal weights configuration of wg = 1 and w, = 1 consistently achieves high performance

across all demand profiles. This suggests that maintaining a similar number of items per pod for the
three classes is beneficial. This equal items per pod configuration often aligns with the high-performing
lower right corner of the ternary plots, corresponding to maximum pods for class A and minimum pods
for classes B and C distributions. For demand profiles DP,, DPg, and DPg, this configuration is the
same. For demand profile DP,, and DPg, it is not possible to distribute classes A and B with the same
number of items per pod (Table 4.1), making the lower right corner the closest to an equal distribution.
The other high-performing configurations for demand profile D P, are further from the equal distribution,
and the best-performing configuration for demand profile D P, involves more pods for class B and fewer
for A, suggesting that both equal items per pod and maximising pods for class A are not always the
optimal slotting decision.
For demand profiles DP,, DPg and DP., the equal configuration is located in the lower right corner of
the ternary plot but is not the most extreme configuration in regards to pods for class A. However, it
shows better performance than the most extreme configuration in these cases, which could indicate
that maximum A is not always the best.

In conclusion, while it is challenging to determine whether maximising pods for class A or achieving
equal items per pod distribution for all classes is the best single strategy, both approaches generally
result in a good performance.






Case Study

The model from Chapter 3 and the results from Chapter 4 are validated with a case study for the
Gall&Gall distribution center.

This chapter begins with an introduction to the distribution center of Gall&Gall, after which the method-
ology described in Section 3.1 is repeated to create demand profiles based on real-life order demand
from Gall&Gall. This demand is slotted with the mathematical model with multiple slotting approaches
through weight configurations. Finally, the slotting configurations are simulated to evaluate the impact
of different slotting approaches on the performance of total number of orders handled.

5.1. Introduction to Case Study of Gall&Gall

This research is executed in collaboration with the distribution center of Gall&Gall, which is the largest
liquor retailer in the Netherlands. Gall&Gall offers an extensive assortment of approximately 4000 Stock
Keeping Units (SKUs) through 600 physical stores (Gall&Gall, 2024) and a webshop, supplied from one
distribution center. The e-commerce channel was launched in 2014, and has undergone constant im-
provement since then, including a physical expansion to increase capacity and the implementation of
a Warehouse Management System for improved inventory management. The next steps for Gall&Gall
involve the exploration of process automation.

The primary benefit of this research for Gall&Gall is to investigate the potential advantages of slotting
optimisation in combination with automation. Gall&Gall currently does not operate with a Robotic Mo-
bile Fulfilment System (RMFS), and implementing such a system is beyond the scope of this research.
This exploration provides insights into the significance of this decision problem and the level of effort
required to address it. Additionally, these insights help Gall&Gall anticipate key considerations for
development proposals or implementation designs for such a system. Specifically, understanding the
potential of the benefits of slotting optimisation is crucial for deciding the design, configuration, and fea-
tures to include. For example, when defining system requirements, it is important to recognise which
RMFS systems or algorithms include slotting optimisation, as some may not offer this feature.

Demand Type

The orders from Gall&Gall are next-day delivery until 22:00 every day. This indicates that customers
can place orders until 22:00 and receive them the next day. For the process, this means that demand
is uncertain and continuously received throughout the day, and only after 22:00 is the demand certain.
So, the operational demand type is mostly stochastic, with the last two hours being deterministic.

The forecasting occurs on two levels: quantitative order forecasting, which happens on the total num-
ber of orders and the total number of items produced daily to accommodate the necessary resources
like labour hours and transport capacity towards the delivery centers. The other is item-specific fore-
casting, which happens on a daily to weekly basis. This facilitates the execution of replenishment tasks
from the reserve storage area to the picking storage area (Figure 1.1) at the beginning of a production
day for the estimated items as if the demand is deterministic. This replenishment task of the items from
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the forecasted demand can be slotted according to slotting approaches where deterministic demand is
necessary.

5.2. Order Demand Profiles of Gall&Gall

The order demand from Gall&Gall recognises two different recurring order profiles: The order demand
from a relatively regular month and the demand for December. This is the year’s peak for Gall&Gall,
where demand is higher, and the demand profile differs from the rest of the year.

The original demand data spans a month, however, as with the demand profiles in Chapter 3.2, the
significance of the demand profiles lies in their relative turnover rates. This makes the specific temporal
unit irrelevant. The impact of turnover-based slotting is assessed, regardless of whether the turnover
is measured daily or monthly.

The data is classified into A, B and C classes. The classes are configured with class separation of
20%, 30% and 50%, which shows the closest resemblance to the order demand of Gall&Gall.

The regular order demand with respective class configuration is visualised in Figure 5.1, and the peak
order demand with classifications is shown in Figure 5.2.

ABC class configuration for Gall&Gall regular demand ABC class configuration for Gall&Gall peak demand

Demand [items]

500 1000 1500 2000 2500 3000 3500 2000 3000 4000
SKUs [i] SKUs [i]

Figure 5.1: Regular Demand from Gall&Gall in ABC Figure 5.2: Peak Demand from Gall&Gall in ABC
Classification. Classification.

The tail of the histograms in both figures that comprises class C is determined at 5% of the total
demand and accounts for 50% of the total number of SKUs. The difference between the regular and
peak demand profile is a 5% demand shift from class B to A. This indicates that with peak demand, the
popularity of popular SKUs increases.

The classification of the regular and peak demand data is used to scale the data to 100 SKUs and
1000 items in total, according to the configurations in Chapter 4. This results in the demand profiles
presented in Table 5.1.

Table 5.1: Demand Configuration for Gall&Gall with Item Count and SKU Count per Class

Demand Class Item count SKU count
profile [Di] [Q:]
Regular A 37 20
B 7 30
C 1 50
Peak A 40 20
B 5 30
C 1 50
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The long tail of SKUs with low demand in class C is configured with a demand of 1 item for both
demand profiles. The popularity shift between regular demand and peak demand is configured with a
demand difference of 3 items for class A and 2 items for class B.

5.3. Slotting Configuration

A slotting configuration is generated with the slotting model described in Section 3.3. The configura-
tions and constraints regarding the number of pods, pod capacity and number of SKUs allowed in a
pod are identical to the configurations used for the synthetic demand profiles, to enable comparison.

Each demand profile is slotted in multiple configurations according to different weight combinations
used to determine the relative importance of the distribution of the demand classes A, B and C. The
weight ranges for the Gall&Gall scenarios are initially configured with Equations 3.20 and 3.21 and
adjusted empirically based on the results found with those weights. The weights are used as com-
pensation in the distribution equation with the distribution indicator of pods per item. This means that
a low weight indicates a high distribution and vice versa. The weight for class A is fixed as 1 for all
configurations so that the weights of class B and C indicate their relative magnitude to class A. The
weight for class C, w., knows only one configuration for both demand profiles since the SKUs in this
class consist of 1 item and can, therefore, only be distributed in a single configuration. Therefore, class
A and C weights are fixed at 1.

The resulting weight ranges are presented in Table 5.2.

Table 5.2: Weight Range Configuration for Gall&Gall Scenarios.

Demand profile Range w; Range w. Stepsw; Steps w,

Regular (0.01, 1.6) (1) 12 1
Peak (0.01, 1) (1) 12 1

The weights are varied from the minimum to the maximum in 12 steps, with an additional config-
uration where all the weights are equal to 1 when that is not one of the existing configurations. Each
configuration is slotted with 3 random seeds, resulting in 36 or 39 slotting configurations.

5.3.1. Slotting Analysis

The demand is distributed into different slotting configurations based on the specific weight parameters.
Each configuration results in a distribution described by three key indicators: pods per item, items per
pod and pods per SKU. The results of all slotting configurations is printed in Appendix A, for reference.
Figures 5.3, 5.4 and 5.5 respectively, illustrate the data distribution of the indicators in all slotting con-
figurations, showing how often each distribution configuration occurs with a density trace. The data
from the figures is presented in Table 5.3.
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Table 5.3: Statistics of Data Range of Distribution Indicators for each Class for Gall&Gall Demand Profiles.

Lower Upper Lower Upper

Demand Label Mean Median quartile quartile whisker whisker

Pods per item
Regular A 0.176 0.19 0.154 0.208 0.09 0.216
B 0.284 0.236 0.173 0.363 0.143 0.586
C 1.0 1.0 1.0 1.0 1.0 1.0
Peak A 0.16 0.173 0.137 0.19 0.082 0.2
B 0.412 0.343 0.253 0.537 0.2 0.827
C 1.0 1.0 1.0 1.0 1.0 1.0
Items per pod
Regular A 6.069 5.27 4.813 6.513 4.625 8.506
B 4313 4.264 2.761 5.801 1.707 7.0
C 1.0 1.0 1.0 1.0 1.0 1.0
Peak A 6.685 5.78 5.264 7.346 5.0 10.256
B 2.98 2.926 1.879 3.956 1.21 5.0
C 1.0 1.0 1.0 1.0 1.0 1.0
Pods per SKU
Regular A 6.515 7.025 5.688 7.688 3.35 8.0
B 1.99 1.65 1.208 2.542 1.0 4.1
C 1.0 1.0 1.0 1.0 1.0 1.0
Peak A 6.412  6.925 5.475 7.6 3.3 8.0
B 2058 1.7117 1.267 2.683 1.0 4.133
C 1.0 1.0 1.0 1.0 1.0 1.0
Pods per Item for classes per Gall&Gall demand profile Items per Pod for classes per Gall&Gall demand profile
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Figure 5.3: The Data Distribution of Pods per ltem Figure 5.4: The Data Distribution of Items per Pod
Represented with a Violin Plot for each Class for the Demand  Represented with a Violin Plot for each Class for the Demand
Profiles. Profiles.
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Pods per SKU for classes per Gall&Gall demand profile
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Figure 5.5: The Data Distribution of Pods per SKU Represented with a Violin Plot for each Class for the Demand Profiles.

The pods per item (Figure 5.3) and items per pod (Figure 5.4) distributions for both demand profiles

have overlapping values for class A and B. This indicates configurations where the items are distributed
equally in both classes. Where equal means that items are distributed with the same quantity per pod,
independent of the total number of items for that SKU. Whereas Figure 5.5 visualises the distribution
of pods per SKU. For the regular demand, this can not be distributed equally due to the difference in
class A and B demand. The overlap in Figure 5.3 for the general demand profile explains why the
configurations for this weight range below and above 1 (Table 5.2), whereas the weight for the peak
demand can maximally be 1 since the items in class B can not be distributed with more pods per items
than class A.
With the peak demand, the distribution of pods per item (Figure 5.4) of class B shifts upwards with a
higher minimum and maximum number of pods per item than for the regular demand. The maximum of
class B for the peak demand reaches further towards 0, where approaching 0 means that all the items
are slotted on one pod (which is not possible for both classes A, see Figure 5.5), and the maximum
pods per item for class B of the peak demand is higher than for the regular demand, where reaching 1
means that each item for a SKU in that class is slotted with one item per pod.
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5.4. Simulation Analysis

The simulation configuration remains similar to the configurations used in Section 3.4 to compare the
results of the different configurations. The number of seeds used with these configurations is 6. The
scatter plots in Figures 5.6 and 5.7 show the impact of slotting decisions on travel distance and pile-on,
and with that, the impact of slotting on the total number of orders handled, for the simulations of all
slotting configurations for the regular demand profile and the peak demand profile for Gall&Gall re-
spectively.

OrdersHandled OrdersHandled
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Figure 5.6: The Total Number of Orders Handled for all Figure 5.7: The Total Number of Orders Handled for all
Weight Configurations of the Regular Gall&Gall Demand Weight Configurations of the Peak Gall&Gall Demand Profile,
Profile, Plotted over the Pile-on and Travel Distance. Plotted over the Pile-on and Travel distance.

From the plot in Figures 5.6 and 5.7, it can be seen that the range of obtained performances is

similar for both demand profiles, with a difference of 30 orders handled. For both demand profiles,
a minority of all the simulations perform near the maximum and minimum number of orders handled,
this indicates that many configurations lead to moderate performance, but only a few configurations
perform significantly better or worse. However, even within the group of most simulations’ results, the
performance difference can still be 100 orders handled.
The majority of the results for the regular demand profile seem to be performing around the average.
In contrast, the peak demand has more simulations performing towards the minimum of the range.
Notably, the minimum of the range for the peak demand is similar to the middle of the range for the
regular demand.

When comparing the performance of the demand profiles from Gall&Gall with the performance of
other demand profiles in Figure 4.10, it can be seen that the performance of the Gall&Gall demand
profiles is similar to the lesser performing half of the synthetic demand profiles in Chapter 4. The
performance of the synthetic demand profiles varies between 400 orders handled in 30 minutes of sim-
ulation and 600 orders handled (Figure 4.10), whereas the performance of the demand profiles from
Gall&Gall varies between 420 orders handled and 540 orders handled.

The performance of the different weight configurations is shown in the plot in Figure 5.8 for the
regular demand profile of Gall&Gall, and in Figure 5.9 for the peak demand profile. The performance
measures per weight configuration are presented in Table 5.4. The results of all simulation runs are
printed in Appendix C, for reference.
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Table 5.4: The Performance Measures for all Weight Configurations for the Gall&Gall Demand Profiles.

. Travel Orders
w2 Wws Pile-on distance handled
Mean SD Mean SD Mean SD

Regular demand profile

0.01 1.0 792 0.35 4970.01 9121 49233 1524
0.155 1.0 7.22 033 5084.44 86.17 47411 12.74
0299 1.0 7.67 029 5003.34 100.25 485.67 12.71
0444 1.0 757 03 4991.71 106.43 48289 13.27
0.588 1.0 7.72 031 498098 7924 483.0 10.26
0.733 1.0 763 05 5040.16 125.86 481.11 13.07
0.877 1.0 759 05 5009.0 103.52 477.83 17.66
1.022 1.0 737 032 5099.57 7118 473.67 12.31
1166 1.0 7.46 0.38 5084.38 99.02 479.44 1517
1311 1.0 725 041 50747 92.03 467.89 15.63
1455 1.0 746 0.31 5058.91 9291 476.78 14.1
16 1.0 742 029 5064.16 104.68 476.72 14.93

Total 7.52 0.41 5038.45 104.02 479.29 14.98

Peak demand profile

001 10 794 036 4969.16 69.68 493.67 10.71
0.1 1.0 7.55 0.24 5026.01 7253 483.56 14.86
0.19 1.0 7.83 0.35 4970.98 98.78 490.28 14.05
028 10 771 036 5017.23 73.09 483.22 10.88
037 10 7.84 038 4976.0 92.3 49161 15.55
046 1.0 815 0.39 4906.51 113.25 497.28 15.95
055 1.0 7.78 0.29 499264 9256 487.22 10.11
064 1.0 8.11 0.38 494791 8557 496.22 14.68
073 1.0 7.79 0.25 502097 7448 489.11 1219
082 10 769 035 5036.83 116.8 484.33 1548
091 1.0 79 032 495712 629 490.67 11.83
1.0 1.0 8.04 052 4911.32 79.79 49161 1648
Total 7.86 0.39 4977.72 94.76 489.9 14.11
Figure 5.8: The Total Number of Orders Handled for all Figure 5.9: The Total Number of Orders Handled for all
Weight Configurations of the Regular Gall&Gall Demand Weight Configurations of the Peak Gall&Gall Demand Profile,
Profile, Plotted over the Weights. Plotted over the Weights.

The weight configuration where all weights are 1 showed good performance for many demand pro-
files in Chapter 4. However, for both demand profiles from Gall&Gall, the performance is not among
the highest-performing configurations.

With the regular demand profile, the best performing configuration is where W2 is minimal. The perfor-
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mance decreases significantly for W2 > 1, which indicates that class A is distributed over more pods
per item than class B. This might explain why such a clear trend is difficult to find with the peak demand
since the weight for class B can not be larger than 1.

The distribution configurations associated with these weight configurations are plotted in ternary
plots in Figure 5.10 for the regular demand profile of Gall&Gall and in Figure 5.11 for the peak demand.

Pods/SKU per class for regular Gall&Gall demand Pods/SKU per class fof peak Gall&Gall demand
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Figure 5.10: Ternary Plot of the Number of Orders Handled
for all Slotting Configurations of the Regular Gall&Gall
Demand Profile, with the Configurations as Pods per SKU

Figure 5.11: Ternary Plot of the Number of Orders Handled
for all Slotting Configurations of the Peak Gall&Gall
Demand Profile, with the Configurations as Pods per SKU

Distribution per Class. Distribution per Class.

The distributions for the regular demand profile, where the SKUs in class B are distributed either
towards their minimum or their maximum, perform relatively low. On the other hand, the configurations
where classes A and B are distributed somewhere in the middle of their range perform best.

The configuration with equal weights performs relatively low when compared to the other configura-
tions.

The configurations where class B is distributed maximally show low performance for the peak demand
profile. The same range as for the regular demand also seems to perform well for this demand. How-
ever, the distributions where class A is distributed more and class B less also show better performance
or the peak demand.

5.5. Conclusion to Gall&Gall Case Study

The objective of this conclusion is to answer Sub-Question 2: What is the impact of demand-based
slotting decisions on the order throughput rate with a Robotic Mobile Fulfilment System for a Gall&Gall
case study?

The demand for both Gall&Gall demand profiles is very similar, with a limited number of items shifted
from class B to class A during peak demand. Overall, the peak demand performs better, with a mean
difference of 10 orders handled in the simulation duration of 30 minutes. The difference for the lowest
performing configurations from both demand profiles is 16 orders handled and for the best performing
configuration 5 orders handled.

The case study results indicate the highest performance when class A is not maximally distributed
for both demand profiles. Optimal performance is also not achieved with the configuration where items
per pod are equal across all classes. This is notable, as most demand profiles analysed in Chapter 4
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show high performance for both maximising pods for class A and distributing items per pod equally.

The top in the ternary plot has configurations where class A and C are distributed over the minimum
number of pods and class B maximally. This configuration shows low performance, aligning with the
results from Chapter 4.

The Gall&Gall demand profiles show performance similar to the demand profiles from Chapter 4,
with better performance compared to demand profile DP, and DPg, but lower performance than for
demand profile DP; and DPr. The performance difference between demand profiles DP;, DP, and
the Gall&Gall demand profiles might be attributed to the differences in the classification of classes A,
B, and C. For demand profile DPg, class A and B consist of 10 SKUs and class C of 80 SKUs, while
demand profile DP has 20 SKUs in class A and 40 in B and C, which is more similar to the classification
for Gall&Gall of 20 SKUs in class A, 30 in class B and 50 in class C.

The significantly higher performance with demand profile DP; compared to DPr and the demand from
Gall&Gall supports that the classification impacts the performance. Where demand profiles with fewer
SKUs in class A and more SKUs in class C perform better.

The class separation on 30% and 50% of SKUs for the Gall&Gall demand is new compared to the
10%, 20% and 20%, 60% classification from Chapter 4. This might also be the underlying reason why
optimal performance is not in the lower right corner where class A is maximally distributed but more
towards the maximum distribution of class B.

In conclusion, while the maximum distribution of class B shows low performance for both Gall&Gall
demand profiles, the slotting configuration with the best performance depends on the specific demand
profile.

The optimal order-picking efficiency is demand profile specific, and can be read from the ternary
plots in Figures 5.10 for the regular order demand and in Figure 5.11 for the peak order demand.

When the order demand shifts towards more SKUs in class A and fewer in class B with the peak
demand, slotting configurations where class A is distributed over more pods and class B over fewer
pods (towards the lower right of the plot) perform better compared to the regular demand. Therefore,
as the order demand increases for SKUs in class A, slotting configurations that allocate more pods to
class A show improved performance.

The results of the ternary plots are interpreted as slotting advice for Gall&Gall. The optimal pick-
ing efficiency for the regular order demand is reached with a slotting configuration where the SKUs in
class A are distributed over 5.4 pods on average, the SKUs in class B are distributed over 2.8 pods on
average, and the SKUs in class C are distributed over 1 pod.

When the regular order demand transforms to peak order demand, the optimal slotting changes ac-
cordingly. The scenario with the best performance is where class A shifts towards a distribution over
4.6 pods on average and a distribution of 3.3 pods on average for class B.

However, the performance of the scenarios where class A is distributed over more pods also in-
creases. Two interesting slotting approaches emerge when the demand shifts to peak demand.

The first approach focuses on achieving the best possible performance, but only a relatively small
number of scenarios meet this optimal performance. This approach is beneficial when slottings are
configured with high accuracy.

The second approach aims for a wider range of scenarios where performance is not as high as
the optimal slotting scenario but still improved compared to regular demand. Distributing class A over
more than 6 pods on average yields a broad range of scenarios, all of which show increased perfor-
mance when compared to the regular demand profile and relatively good performance when compared
to the other scenarios for the peak demand profile. When achieving a single specific optimal scenario is
challenging, this broader approach might be more practical, as it provides more flexibility and a higher
likelihood of improved performance.

Additionally, the results show that the scenarios where class A is distributed over approximately 4.8
pods and class B over 3.2 pods result in a relatively high performance for both demand profiles. This
information is valuable when evaluating the benefits and the costs of adjusting the slotting approach.
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When adjusting the slotting approach proves costly, it might be beneficial to maintain the same slotting
approach for both demand profiles. The results for both demand profiles present this as a viable option
and provide necessary and valuable insights to make this trade-off.

The results indicate that slotting configurations can lead to a performance increase of approximately
5% for the regular Gall&Gall demand, increasing from 470 to 495 orders handled in 30 minutes. If the
number of robots, pods, and workstations are scaled up appropriately and do not become limiting fac-
tors, for instance, handling 470 orders with 1,000 items could potentially scale to approximately 11,750
orders with 25,000 items, provided the system scales linearly, and other operational constraints are
managed. The projected 5% performance increase is a performance difference of 590 orders per 30
minutes. This underscores the potential impact of optimising slotting configurations.

5.6. Limitations Specific to Gall&Gall Case Study

This case study is executed with models, which, by definition, are a simplification of reality and rely
on assumptions regarding the data input. Recognising these limitations on realism and applicability is
important for proper result interpretation.

The total item demand and total number of SKUs are configured similarly to the configurations in
Chapter 4. This means the demand per SKU ratio for Gall&Gall is adjusted. The original ratio for
Gall&Gall is 55 items per SKU, averaged over a day or over a month. For the regular demand, this
means that 100 SKUs, as used in Section 3.2, are associated with a demand of 5500 items. This ratio
was adjusted for configurations with equal demand to fit the configuration of the ratio of 10 items per
SKU. The percentage of SKUs accounting for the percentage of demand is according to the order de-
mand of Gall&Gall.

For the Gall&Gall demand, popularity changes are considered using demand data over a single
month for both peak and regular demand. However, demand characteristics may vary on different
days or months, simplifying the regular demand profile of a specific month. The peak demand data is
generalised for the entire month, while specific days exhibit even more extreme peaks. Consequently,
specific daily demand profiles could reveal different optimal slotting decisions.

The performance difference between regular-demand slotting configurations is 24 orders handled,
with an average standard deviation of 15 orders handled for all weight configurations. The difference
for peak demand is 14 orders handled, with an average standard deviation of 14. The observed trends
might be less reliable and conclusive because the standard deviation is relatively high and of similar
size to the difference between maximum and minimum results.



Conclusions and Recommendations

This chapter explains the results of the previous chapter regarding the main research question. Ad-
ditionally, the assumptions and limitations of these conclusions and results are discussed, after which
possible and interesting topics for further research are discussed, both to decrease the limitations and
broaden the research scope.

6.1. Conclusion

The analysis of various demand profiles and slotting configurations shows the impact of demand-based
slotting decisions on the order throughput rate in a Robotic Mobile Fulfiiment System (RMFS). The key
findings from both the synthetic demand profiles and the demand profiles from Gall&Gall converge to
answer the main research question: What is the impact of demand-based slotting decisions on the
order throughput rate for different demand configurations in an RMFS?

The results from the synthetic demand and Gall&Gall demand consistently show that both pile-on
and travel distance significantly affect the order throughput rate, independent of the specific demand
profile. Where the specific slotting configuration leads to substantial variations in the number of orders
handled, with differences of up to 200 orders observed over 30 minutes.

The performance from the synthetic demand and the Gall&Gall demand consistently show that class
A, B and C demand classification affects the order throughput. Classifications with less SKUs in class
A and more SKUs in class C, such as demand profiles De and Df, consistently perform better than the
same demand with different classifications.

The analysis reveals that configurations aiming for an equal number of items per pod across classes
perform well. This balance often aligns closely with high-performing configurations, which typically clus-
ter around the lower right corner of ternary plots for the synthetic demand profiles, which represents
slotting with maximum pods for class A and minimal pods for classes B and C. This makes it challenging
to determine whether the origin of the high performance is due to maximum pods for class A or equal
items per pod for all classes.

In the lower-left corner of ternary plots, poor performance is observed when class C is maximally dis-
tributed, and class A is minimally distributed. Generally, low performance is also seen at the top of the
ternary plot, where class B is configured with maximum pods and class A and C minimum. However,
this is not true for all demand profiles.

These observations indicate that the distribution of class A is crucial for the performance.

The Gall&Gall demand profiles did not achieve optimal performance with maximum pods for class
A or equal items per pod, differing from the synthetic demand profiles. Instead, configurations with
slightly increased pods for class B performed better, suggesting that optimal slotting decisions vary
depending on the specific demand characteristics.

91
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Both the synthetic demand profiles and the Gall&Gall demand profiles highlight that demand-based
slotting decisions significantly impact order throughput rates in RMFS. Demand profiles with less high-
turnover SKUs (class A) and more lower-turnover SKUs (class C) tend to perform best. However, the
optimal slotting strategy varies depending on the specific demand characteristics.

Achieving a balance in items per pod for the three classes and maximising the pods per SKU for
class A often leads to high performance. However, these strategies do not hold for all demand profiles,
as they did not for the demand of Gall&Gall.

This study underscores the importance of tailored slotting configurations to optimise throughput based
on specific demand characteristics, ultimately enhancing operational efficiency.

6.1.1. Practical Value and Implementation

Based on the results of the demand profiles evaluated in this research, working with the right slotting
configuration can facilitate an efficiency difference of up to 40 orders handled in 30 minutes, represent-
ing a 10% efficiency increase compared to the worst-performing slotting configuration for that demand
profile.

This efficiency improvement is implemented by adjusting the number of pods per SKU per class
according to the performance results of a specific demand profile.

In addition to providing Gall&Gall with specific demand-based slotting insights, this research pro-
vides a method that can be used by warehouses in general, to gain specific insights into the impact of
various demand-based slotting configurations by using demand profiles specific to their order demand.
These insights are crucial for making informed decisions about slotting approaches.

Warehouses can use these findings to determine an appropriate slotting strategy, whether dealing
with a consistent demand profile throughout the year or varying demand profiles. The results of differ-
ent demand profiles enable evaluation of the correlation of the results. This can be used to determine
an approach to best accommodate all demand profiles, whether that is switching between slotting ap-
proaches based on circumstances or designing a single approach based on the gained insights that
best accommodates the different demand profiles. It provides insights valuable for weighing the bene-
fits against the costs of an approach, weighing multiple approaches against each other, or designing a
combination of certain approaches.

The developed method easily extends beyond the focus on a tailored slotting approach based on
demand specifics. Modification of the simulation configurations allows elaboration on the specificity
and scope of this research.

By enabling the integration of warehouse-specific details in addition to order demand specifics,
such as a warehouse’s unique layout, the method enhances applicability and realism, ensuring that
the slotting strategy is finely tuned to the specific warehouse conditions. Moreover, ability to integrate
additional decision problems, such as order-batching and routing, expands the scope of the method,
offering more comprehensive and complete decision-making insights. By considering slotting decisions
in combination with various decision problem approaches, warehouses can develop more robust and
effective strategies. Increasing the system’s adaptability, the ability to accurately estimate performance
under different conditions, and increase overall operations coordination and strategy.

This dual enhancement, increasing specificity and broadening the scope, enables the slotting ap-
proach to be more accurate and more versatile in addressing more complex operational scenarios.

6.2. Considerations, Limitations and Assumptions

This research operates under several assumptions and simplifications may affect the realism and appli-
cability of the results. Recognising these limitations is essential to interpret and implement the findings
correctly. This section describes the study’s limits and necessary considerations and explains their
effect on the results.
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6.2.1. Demand Profile Considerations

The demand configurations used in this study significantly simplify real-world demand by categorising
it into three classes. This reduction in demand variability might affect the performance since the results
indicate that differences between demand classes impact the optimal slotting decisions and overall de-
mand performance. Classification deviations from the configurations used in this research will influence
performance outcomes.

Additionally, the study uses a fixed demand profile with 100 SKUs and 1000 items, which is not rep-
resentative of all real-world situations, as demand is highly dependent on the retail sector and specific
warehouse characteristics. Adjusting the number of items per SKU alters optimal slotting results.

The synthetic demand is modelled using three typical demand curves from the literature, represent-
ing specific demand configurations. These may not be relevant for warehouses where the demand
highly deviates from these demand profiles and these demand parameters.

6.2.2. Slotting Considerations

The parameters for slotting items in pods are simplified in terms of variety and size. A maximum of four
different SKUs per pod is set to analyse the impact of slotting decisions on pile-on. Additionally, a fixed
pod capacity of 60 items is used, while realistic pod capacity varies depending on item and pod sizes.
These parameter configurations may affect performance and alter conclusions. For example, allowing
only two different SKUs per pod might affect optimal prioritisation decisions and their impact.

The slotting configuration model utilises weight factors to drive specific configurations. However, in
some cases, these weight factor configurations do not result in the desired slotting configuration and
may produce identical slotting configurations for different weight configurations. Additionally, the step
size of the weights may not align with the steps in resulting slotting configurations, limiting the distribu-
tion consistency and variety of slotting configurations. Restricting the variety in slotting configurations
limits the range of simulated and observed configurations and their performance.

6.2.3. Simulation Considerations

Simulation approaches can accurately mimic reality and minimise errors, while analytical approaches
are less time-consuming and useful in the early design phases when exploring solution and configura-
tion spaces (Azadeh et al., 2017). Using a simulation tool for performance evaluation requires many
decisions about configurations beyond the study’s scope, potentially affecting the generality of the re-
sults.

One significant limitation is the exclusion of replenishment in the simulation. Slotting decisions are

closely related to replenishment since the benefits of slotting are often measured in terms of picking
efficiency and replenishment costs. For example, placing one SKU on multiple pods might improve
order-picking time but worsen replenishment time. The slotting decision impacts both aspects, often
requiring a trade-off. Replenishment considerations are not included in the scope of this research.
Including replenishment would provide a more accurate assessment of whether the overall costs and
benefits of slotting decisions result in a positive outcome or if adjustments are needed.
However, the impact of neglecting replenishment depends on the demand type. With stochastic de-
mand, replenishment tasks are executed multiple times a day. In contrast, with deterministic demand,
replenishment might be reduced to a daily task. Since this study assumes deterministic demand, the
impact of neglecting replenishment decreases.

Assuming deterministic demand implies frequent replenishment is unnecessary, making continuous
simulation towards stock-out situations realistic. The current simulation duration is 30 minutes to avoid
stock-out situations, as frequent replenishment in a stochastic order demand scenario prevents stock-
out.

As the simulation progresses towards stock-out, the pods will contain less different SKUs, and the
number of available pods for assignment to orders diminishes, decreasing pile-on and increasing travel
distance. When assuming deterministic demand, the simulation shows only the best-performing inter-
val, where realistic performance is expected to decrease towards the low-performing configurations.
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Simulation configurations, such as warehouse layout, number of robots, distances, item picking

times, and order generation, are set uniformly. Orders are generated with a uniform distribution of 1
to 3 SKUs per order, each containing 1 or 2 items. The primary performance metric is the number
of orders handled, though order content varies. Differences in the number of orders handled could
be due to variations in order content. However, using multiple random simulation seeds where order
generation differs for each reduces the likelihood of this variation affecting the results.
Additionally, the generation of orders with 1 to 3 SKUs might influence performance, as order charac-
teristics impact pile-on quantity. For example, orders containing more items benefit more from pile-on
enhancing slotting methods. Therefore, results depend on the assumed order generation. Since or-
ders with more items are expected to increase pile-on, the results found in this study will likely have
increased performance on orders with more than 1 to 3 SKUs.

The difference in performance between the best and worst-performing slotting configurations for
certain demand profiles is similar to the standard deviation found in simulations for those distributions.
For example, in demand profile Df, the performance difference between the best and worst configura-
tions is 10 orders. In comparison, the mean standard deviation across all configurations is 12.6 orders,
exceeding the maximum performance difference. This suggests that some results and trends may not
be conclusive.

6.3. Recommendations for Further Research

This section’s recommendations for further research pursue two objectives: refining result specification
and extending the research scope.

6.3.1. Recommendations for Result Specification

To refine result specificity, it is crucial to delve deeper into several aspects. Firstly, evaluating demand
profiles with minimal differences will help isolate the factors responsible for performance changes. The
specific impacts of altering individual variables can be discerned by analysing turnover and classifica-
tion variations separately across three classes.

Additionally, studying the isolated impact of classification methods presents an interesting opportu-
nity. Comparing results between dedicated storage for each SKU and simplified classification into three
classes will provide insights into optimising storage strategies. Exploration of intermediary strategies,
such as the effect of deciding the slotting configuration of the demand with class-based simplification
and simulating the original demand without classification, will further provide insights into the practical
implications of classification methods.

Another critical area for exploration is assessing the performance implications of selecting the wrong
slotting configuration. Understanding how inaccuracies between the demand used to find the optimal
slotting configuration and the actual demand affect performance is essential when working with demand
forecasts. By comparing outcomes between dedicated storage and class-based storage policies under
varying levels of forecast certainty, robust approaches can minimise performance disruptions due to
forecasting errors. For instance, dedicated storage may perform better with highly accurate forecasts
but could under-perform compared to class-based storage with even slight deviations in forecast ac-
curacy.

6.3.2. Recommendations for Scope Extension

A possible expansion of the research scope involves transitioning from deterministic to stochastic de-
mand environments. This shift moves the research focus towards operational levels where demand is
stochastic, aligning with the supply chain challenge of limited research regarding stochastic demand
(de Koster et al., 2007).

Furthermore, researching the slotting decision problem on an operational level allows the integra-
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tion of replenishment, which represents a significant extension of the research. Exploring the trade-off
between replenishment and picking time in the slotting decision problem provides valuable insights.

In Chapter 1 and 2, it was stated that the slotting decision problem consists of three main decisions:

How to distribute SKUs over pods, what the quantity of a SKU on a pod should be, and which SKUs to
combine on a pod.
Completing the slotting decision problem by extending this research towards insights on optimal SKU
quantities per pod and optimising SKU combinations on pods provides a comprehensive understanding
of the slotting decision problem with RMFS. Analysing the impact of individual decision components
and exploring synergies between them will support maximising overall operational performance.

Enhancing the RawSim-O simulation tool with an integrated slotting module rather than the se-
quential use of a separate slotting model and a simulation model is pivotal for both result specification
and scope extension. This allows comprehensible integration of slotting and other decision problems
regarding layout, settings, and controller configuration variations.
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A.1. Slotting Results DP,

Table A.1: Slotting Results with Demand Profile DP,4

Weights
[WAs Wpg, WC]

Distribution

(podslitem) [z,, zg, z.]

Distribution

(items/pod) [A, B, C]

Distribution
(pods/SKU) [A, B, C]

Seed

[1.0, 0.052, 0.052]
[1.0, 0.052, 0.052]
[1.0, 0.052, 0.052]
[1.0, 0.052, 0.052]
[1.0, 0.052, 0.381]
[1.0, 0.052, 0.381]
[1.0, 0.052, 0.381]
[1.0, 0.052, 0.71]
[1.0, 0.052, 0.71]
[1.0, 0.052, 0.71]
[1.0, 0.052, 1.039]
[1.0, 0.052, 1.039]
[1.0, 0.052, 1.039]
[1.0, 1.0, 1.0]

[1.0, 1.0, 1.0]

[1.0, 1.0, 1.0]

[1.0, 10.0, 0.052]
[1.0, 10.0, 0.052]
[1.0, 10.0, 0.052]
[1.0, 10.0, 0.381]
[1.0, 10.0, 0.381]
[1.0, 10.0, 0.381]
[1.0, 10.0, 0.71]
[1.0, 10.0, 0.71]
[1.0, 10.0, 0.71]
[1.0, 10.0, 1.039]
[1.0, 10.0, 1.039]
[1.0, 10.0, 1.039]
[1.0, 2.0416, 0.052]
[1.0, 2.0416, 0.052]
[1.0, 2.0416, 0.052]
[1.0, 2.0416, 0.381]
[1.0, 2.0416, 0.381]

[0.0983, 0.7, 0.3531]
[0.1,0.13, 0.5281]
[0.0862, 0.15, 0.5469]
[0.0966, 0.12, 0.5375]
[0.0983, 1.0, 0.2594]
[0.0983, 1.0, 0.2594]
[0.0983, 1.0, 0.2594]
[0.1034, 1.0, 0.25]
[0.1034, 1.0, 0.25]
[0.1034, 1.0, 0.25]
[0.1034, 1.0, 0.25]
[0.1034, 1.0, 0.25]
[0.1034, 1.0, 0.25]
[0.2362, 0.23, 0.25]
[0.2362, 0.23, 0.25]
[0.2362, 0.23, 0.25]
[0.0862, 0.13, 0.5531]
[0.0948, 0.12, 0.5406]
[0.0983, 0.1, 0.5406]
[0.1621, 0.1, 0.425]
[0.1621, 0.1, 0.425]
[0.1621, 0.1, 0.425]
[0.2241, 0.1, 0.3125]
[0.2241, 0.1, 0.3125]
[0.2241, 0.1, 0.3125]
[0.2586, 0.1, 0.25]
[0.2586, 0.1, 0.25]
[0.2586, 0.1, 0.25]
[0.1, 0.43, 0.4344]
[0.1345, 0.66, 0.3]
[0.0948, 0.56, 0.4031]
[0.1621, 0.1, 0.425]
[0.1621, 0.1, 0.425]

[10.1754, 1.4286, 2.8319]

[10.0, 7.6923, 1.8935]
[11.6, 6.6667, 1.8286]

[10.3571, 8.3333, 1.8605]

[10.1754, 1.0, 3.8554]
[10.1754, 1.0, 3.8554]
[10.1754, 1.0, 3.8554]
[9.6667, 1.0, 4.0]
[9.6667, 1.0, 4.0]
[9.6667, 1.0, 4.0]
[9.6667, 1.0, 4.0]
[9.6667, 1.0, 4.0]
[9.6667, 1.0, 4.0]
[4.2336, 4.3478, 4.0]
[4.2336, 4.3478, 4.0]
[4.2336, 4.3478, 4.0]
[11.6, 7.6923, 1.8079]

[10.5455, 8.3333, 1.8497]
[10.1754, 10.0, 1.8497]

[6.1702, 10.0, 2.3529]
[6.1702, 10.0, 2.3529]
[6.1702, 10.0, 2.3529]
[4.4615, 10.0, 3.2]
[4.4615, 10.0, 3.2]
[4.4615, 10.0, 3.2]
[3.8667, 10.0, 4.0]
[3.8667, 10.0, 4.0]
[3.8667, 10.0, 4.0]
[10.0, 2.3256, 2.3022]

[7.4359, 1.5152, 3.3333]
[10.5455, 1.7857, 2.4806]

[6.1702, 10.0, 2.3529]
[6.1702, 10.0, 2.3529]
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[5.7, 7.0, 1.4125]
[5.8, 1.3, 2.1125]
[5.0, 1.5, 2.1875]
[5.6, 1.2, 2.15]
[5.7, 10.0, 1.0375]
[5.7, 10.0, 1.0375]
[5.7, 10.0, 1.0375]
[6.0, 10.0, 1.0]
[6.0, 10.0, 1.0]
[6.0, 10.0, 1.0]
[6.0, 10.0, 1.0]
[6.0, 10.0, 1.0]
[6.0, 10.0, 1.0]
[13.7,2.3,1.0]
[13.7,2.3,1.0]
[13.7, 2.3, 1.0]
[5.0, 1.3, 2.2125]
[5.5, 1.2, 2.1625]
[5.7, 1.0, 2.1625]
[9.4,1.0, 1.7]
[9.4,1.0,1.7]
[9.4,1.0,1.7]
[13.0, 1.0
[13.0, 1.0
[13.0, 1.0
1.0,
1.0
1.0

[5.8, 4.3, 1.7375]
[7.8, 6.6, 1.2]
[5.5, 5.6, 1.6125]
[9.4,1.0,1.7]
[9.4,1.0,1.7]

N=20BWN-_2ON_L2ON_2WON_2ON_2OON_,P,ON_L2WON_2ON_2OON_ -
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Table A.1 continued from previous page

Weights Distribution Distribution Distribution

[Wa, wgs el (podsfitem) [z, zs, zc]  (itemslpod) [A, B, C]  (pods/SKU) [A, B,c] Seed

[1.0, 2.0416, 0.381]
[1.0, 2.0416, 0.71]
[1.0, 2.0416, 0.71]
[1.0, 2.0416, 0.71]

[0.1621, 0.1, 0.425]
[0.2224, 0.1, 0.3125]
[0.2224, 0.1, 0.3125]
[0.2224, 0.1, 0.3125]

[6.1702, 10.0, 2.3529]
[4.4961, 9.0909, 3.2]
[4.4961, 9.0909, 3.2]
[4.4961, 9.0909, 3.2]

[9.4,1.0,1.7]
[12.9, 1.1, 1.25]
[12.9, 1.1, 1.25]
[12.9, 1.1, 1.25]

[1.0,2.0416, 1.039] [0.2552, 0.12, 0.25] [3.9189, 8.3333, 4.0] [14.8, 1.2, 1.0]
[1.0,2.0416, 1.039] [0.2552, 0.12, 0.25] [3.9189, 8.3333, 4.0] [14.8, 1.2, 1.0]
[1.0,2.0416, 1.039] [0.2552, 0.12, 0.25] [3.9189, 8.3333, 4.0] [14.8, 1.2, 1.0]

[1.0, 4.0312, 0.052]
[1.0, 4.0312, 0.052]
[1.0, 4.0312, 0.052]

[0.0983, 0.74, 0.3406]
[0.0931, 0.88, 0.3063]
[0.1052, 0.52, 0.3969]

[10.1754, 1.3514, 2.9358]
[10.7407, 1.1364, 3.2653]
[9.5082, 1.9231, 2.5197]

[5.7, 7.4, 1.3625]
[5.4, 8.8, 1.225]
[6.1, 5.2, 1.5875]

[1.0,4.0312, 0.381] [0.1621, 0.1, 0.425] [6.1702, 10.0, 2.3529] [9.4,1.0,1.7]
[1.0,4.0312, 0.381] [0.1621, 0.1, 0.425] [6.1702, 10.0, 2.3529] [9.4,1.0, 1.7]
[1.0,4.0312, 0.381] [0.1621, 0.1, 0.425] [6.1702, 10.0, 2.3529] [9.4,1.0, 1.7]
[1.0,4.0312,0.71]  [0.2241,0.1,0.3125]  [4.4615, 10.0, 3.2] [13.0, 1.0, 1.25]
[1.0,4.0312,0.71]  [0.2241,0.1,0.3125]  [4.4615, 10.0, 3.2] [13.0, 1.0, 1.25]
[1.0,4.0312,0.71]  [0.2241,0.1,0.3125]  [4.4615, 10.0, 3.2] [13.0, 1.0, 1.25]
[1.0,4.0312, 1.039] [0.2586, 0.1, 0.25] [3.8667, 10.0, 4.0] [15.0, 1.0, 1.0]
[1.0,4.0312, 1.039] [0.2586, 0.1, 0.25] [3.8667, 10.0, 4.0] [15.0, 1.0, 1.0]
[1.0,4.0312, 1.039] [0.2586, 0.1, 0.25] [3.8667, 10.0, 4.0] [15.0, 1.0, 1.0]

[1.0, 6.0208, 0.052]
[1.0, 6.0208, 0.052]
[1.0, 6.0208, 0.052]

[0.1017, 0.1, 0.5344]
[0.0862, 0.13, 0.5531]
[0.0914, 0.13, 0.5437]

[9.8305, 10.0, 1.8713]
[11.6, 7.6923, 1.8079]
[10.9434, 7.6923, 1.8391]

[5.9, 1.0, 2.1375]
[5.0, 1.3, 2.2125]
[5.3, 1.3, 2.175]

[1.0, 6.0208, 0.381] [0.1621, 0.1, 0.425] [6.1702, 10.0, 2.3529] [9.4,1.0, 1.7]
[1.0, 6.0208, 0.381] [0.1621, 0.1, 0.425] [6.1702, 10.0, 2.3529] [9.4,1.0,1.7]
[1.0, 6.0208, 0.381] [0.1621, 0.1, 0.425] [6.1702, 10.0, 2.3529] [9.4,1.0, 1.7]
[1.0,6.0208, 0.71]  [0.2241,0.1,0.3125]  [4.4615, 10.0, 3.2] [13.0, 1.0, 1.25]
[1.0, 6.0208, 0.71]  [0.2241,0.1,0.3125]  [4.4615, 10.0, 3.2] [13.0, 1.0, 1.25]
[1.0, 6.0208, 0.71]  [0.2241,0.1,0.3125]  [4.4615, 10.0, 3.2] [13.0, 1.0, 1.25]
[1.0, 6.0208, 1.039] [0.2586, 0.1, 0.25] [3.8667, 10.0, 4.0] [15.0, 1.0, 1.0]
[1.0, 6.0208, 1.039] [0.2586, 0.1, 0.25] [3.8667, 10.0, 4.0] [15.0, 1.0, 1.0]
[1.0, 6.0208, 1.039] [0.2586, 0.1, 0.25] [3.8667, 10.0, 4.0] [15.0, 1.0, 1.0]
[1.0, 8.0104, 0.052] [0.2086, 0.1, 0.3406]  [4.7934, 10.0, 2.9358] [12.1, 1.0, 1.3625]
[1.0, 8.0104, 0.052] [0.0931, 0.11,0.5469]  [10.7407, 9.0909, 1.8286] [5.4, 1.1, 2.1875]
[1.0, 8.0104, 0.052] [0.1293, 0.1, 0.4844]  [7.7333, 10.0, 2.0645] [7.5, 1.0, 1.9375]
[1.0,8.0104, 0.381] [0.1621, 0.1, 0.425] [6.1702, 10.0, 2.3529] [9.4,1.0, 1.7]
[1.0,8.0104, 0.381] [0.1621, 0.1, 0.425] [6.1702, 10.0, 2.3529] [9.4,1.0, 1.7]
[1.0,8.0104, 0.381] [0.1621, 0.1, 0.425] [6.1702, 10.0, 2.3529] [9.4,1.0, 1.7]
[1.0,8.0104,0.71]  [0.2241,0.1,0.3125]  [4.4615, 10.0, 3.2] [13.0, 1.0, 1.25]
[1.0,8.0104,0.71]  [0.2241,0.1,0.3125]  [4.4615, 10.0, 3.2] [13.0, 1.0, 1.25]
[1.0,8.0104,0.71]  [0.2241,0.1,0.3125]  [4.4615, 10.0, 3.2] [13.0, 1.0, 1.25]
[1.0, 8.0104, 1.039] [0.2586, 0.1, 0.25] [3.8667, 10.0, 4.0] [15.0, 1.0, 1.0]
[1.0, 8.0104, 1.039] [0.2586, 0.1, 0.25] [3.8667, 10.0, 4.0] [15.0, 1.0, 1.0]
[1.0, 8.0104, 1.039] [0.2586, 0.1, 0.25] [3.8667, 10.0, 4.0] [15.0, 1.0, 1.0]

WN-_2WON_2ON_L2WON_2ON_2ON_L,PON_L2PWON_2ON_2PON_,P,ON_L,2AWON_2ON_2PON_,A®
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Table A.2: Slotting Results with Demand Profile DPg

Weights
wa, wg, wcl

Distribution
(podslitem) [z,, zg, z.]

Distribution
(items/pod) [A, B, C]

Distribution

(pods/SKU) [A, B, C]

[72)
[1]
1]
Qo

[1.0, 0.059, 0.059]
[1.0, 0.059, 0.059]
[1.0, 0.059, 0.059]
[1.0, 0.059, 0.304]
[1.0, 0.059, 0.304]
[1.0, 0.059, 0.304]
[1.0, 0.059, 0.549]
[1.0, 0.059, 0.549]
[1.0, 0.059, 0.549]
[1.0, 0.059, 0.794]
[1.0, 0.059, 0.794]
[1.0, 0.059, 0.794]
[1.0, 0.3062, 0.059]
[1.0, 0.3062, 0.059]
[1.0, 0.3062, 0.059]
[1.0, 0.3062, 0.304]
[1.0, 0.3062, 0.304]
[1.0, 0.3062, 0.304]
[1.0, 0.3062, 0.549]
[1.0, 0.3062, 0.549]
[1.0, 0.3062, 0.549]
[1.0, 0.3062, 0.794]
[1.0, 0.3062, 0.794]
[1.0, 0.3062, 0.794]
[1.0, 0.5534, 0.059]
[1.0, 0.5534, 0.059]
[1.0, 0.5534, 0.059]
[1.0, 0.5534, 0.304]
[1.0, 0.5534, 0.304]
[1.0, 0.5534, 0.304]
[1.0, 0.5534, 0.549]
[1.0, 0.5534, 0.549]
[1.0, 0.5534, 0.549]
[1.0, 0.5534, 0.794]
[1.0, 0.5534, 0.794]
[1.0, 0.5534, 0.794]
[1.0, 0.8006, 0.059]
[1.0, 0.8006, 0.059]
[1.0, 0.8006, 0.059]
[1.0, 0.8006, 0.304]
[1.0, 0.8006, 0.304]
[1.0, 0.8006, 0.304]
[1.0, 0.8006, 0.549]
[1.0, 0.8006, 0.549]
[1.0, 0.8006, 0.549]
[1.0, 0.8006, 0.794]
[1.0, 0.8006, 0.794]
[1.0, 0.8006, 0.794]
[1.0, 1.0, 1.0]

[1.0, 1.0, 1.0]

[0.1044, 0.27, 0.9583]
[0.1044, 0.61, 0.3917]
[0.1206, 0.39, 0.6667]
[0.1074, 0.625, 0.35]
[0.1176, 0.465, 0.5583]
[0.2103, 0.22, 0.4417]
[0.1088, 0.385, 0.7417]
[0.1132, 0.415, 0.6667]
[0.1956, 0.305, 0.3833]
[0.2176, 0.24, 0.3667]
[0.1338, 0.535, 0.35]
[0.1265, 0.37, 0.6667]
[0.0897, 0.295, 1.0]
[0.0897, 0.295, 1.0]
[0.0897, 0.295, 1.0]
[0.1382, 0.455, 0.4583]
[0.1382, 0.455, 0.4583]
[0.1382, 0.455, 0.4583]
[0.15, 0.49, 0.3333]
[0.15, 0.49, 0.3333]
[0.15, 0.49, 0.3333]
[0.15, 0.49, 0.3333]
[0.15, 0.49, 0.3333]
[0.15, 0.49, 0.3333]
[0.1147, 0.21, 1.0]
[0.1147, 0.21, 1.0]
[0.1147, 0.21, 1.0]
[0.1676, 0.3, 0.55]
[0.1676, 0.3, 0.55]
[0.1676, 0.3, 0.55]
[0.1897, 0.345, 0.35]
[0.1897, 0.345, 0.35]
[0.1897, 0.345, 0.35]
[0.1926, 0.345, 0.3333]
[0.1926, 0.345, 0.3333]
[0.1926, 0.345, 0.3333]
[0.1176, 0.2, 1.0]
[0.1176, 0.2, 1.0]
[0.1176, 0.2, 1.0]
[0.1809, 0.225, 0.6]
[0.1809, 0.225, 0.6]
[0.1809, 0.225, 0.6]
[0.2088, 0.26, 0.3833]
[0.2088, 0.26, 0.3833]
[0.2088, 0.26, 0.3833]
[0.2147, 0.27, 0.3333]
[0.2147, 0.27, 0.3333]
[0.2147, 0.27, 0.3333]
[0.2279, 0.225, 0.3333]
[0.2279, 0.225, 0.3333]

[9.5775, 3.7037, 1.0435]
[9.5775, 1.6393, 2.5532]
[8.2927, 2.5641, 1.5]
[9.3151, 1.6, 2.8571]
[8.5, 2.1505, 1.791]
[4.7552, 4.5455, 2.2642]
[9.1892, 2.5974, 1.3483]
[8.8312, 2.4096, 1.5]
[5.1128, 3.2787, 2.6087]
[4.5946, 4.1667, 2.7273]
[7.4725, 1.8692, 2.8571]
[7.907, 2.7027, 1.5]
[11.1475, 3.3898, 1.0]
[11.1475, 3.3898, 1.0]
[11.1475, 3.3898, 1.0]
[7.234, 2.1978, 2.1818]
[7.234, 2.1978, 2.1818]
[7.234, 2.1978, 2.1818]
[6.6667, 2.0408, 3.0]
[6.6667, 2.0408, 3.0]
[6.6667, 2.0408, 3.0]
[6.6667, 2.0408, 3.0]
[6.6667, 2.0408, 3.0]
[6.6667, 2.0408, 3.0]
[8.7179, 4.7619, 1.0]
[8.7179, 4.7619, 1.0]
[8.7179, 4.7619, 1.0]
[5.9649, 3.3333, 1.8182]
[5.9649, 3.3333, 1.8182]
[5.9649, 3.3333, 1.8182]
[5.2713, 2.8986, 2.8571]
[5.2713, 2.8986, 2.8571]
[5.2713, 2.8986, 2.8571]
[5.1908, 2.8986, 3.0]
[5.1908, 2.8986, 3.0]
[5.1908, 2.8986, 3.0]
[8.5, 5.0, 1.0]

[8.5, 5.0, 1.0]

[8.5, 5.0, 1.0]

[5.5285, 4.4444, 1.6667]
[5.5285, 4.4444, 1.6667]
[5.5285, 4.4444, 1.6667]
[4.7887, 3.8462, 2.6087]
[4.7887, 3.8462, 2.6087]
[4.7887, 3.8462, 2.6087]
[4.6575, 3.7037, 3.0]
[4.6575, 3.7037, 3.0]
[4.6575, 3.7037, 3.0]
[4.3871, 4.4444, 3.0]
[4.3871, 4.4444, 3.0]

[3.55, 1.35, 2.875]
[3.55, 3.05, 1.175]
[4.1,1.95, 2.0]
[3.65, 3.125, 1.05]
[4.0, 2.325, 1.675]
[7.15, 1.1, 1.325]
[3.7, 1.925, 2.225]
[3.85, 2.075, 2.0]
[6.65, 1.525, 1.15]
[7.4,1.2,1.1]
[4.55, 2.675, 1.05]
[4.3,1.85, 2.0]
[3.05, 1.475, 3.0]
[3.05, 1.475, 3.0]
[3.05, 1.475, 3.0]
[4.7,2.275, 1.375]
[4.7,2.275, 1.375]
[4.7,2.275, 1.375]
[5.1, 2.45, 1.0]
[5.1, 2.45, 1.0]
[5.1, 2.45, 1.0]
[5.1, 2.45, 1.0]
[5.1, 2.45, 1.0]
[5.1, 2.45, 1.0]
[3.9, 1.05, 3.0]
[3.9, 1.05, 3.0]
[3.9, 1.05, 3.0]
[5.7, 1.5, 1.65]
[5.7, 1.5, 1.65]
[5.7, 1.5, 1.65]
[6.45, 1.725, 1.05]
[6.45, 1.725, 1.05]
[6.45, 1.725, 1.05]
[6.55, 1.725, 1.0]
[6.55, 1.725, 1.0]
[6.55, 1.725, 1.0]
[4.0, 1.0, 3.0]

[4.0, 1.0, 3.0]

[4.0, 1.0, 3.0]
[6.15, 1.125, 1.8]
[6.15, 1.125, 1.8]
[6.15, 1.125, 1.8]
[7.1,1.3, 1.15]
[7.1,1.3, 1.15]
[7.1,1.3, 1.15]
[7.3, 1.35, 1.0]
[7.3,1.35, 1.0]
[7.3,1.35, 1.0]
[7.75, 1.125, 1.0]
[7.75, 1.125, 1.0]

N=20WN-_20ON_L2ON_L2WON_2ON_2PON_L,P,ON_L2ON_2ON_L,P,ON_L,P,ON_L,2ON_2ON_L2PON_,PON_2WON-
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Table A.2 continued from previous page

Weights Distribution Distribution Distribution Seed
[wWa, wg, wel (podslitem) [z4, zg, z(] (items/pod) [A, B, C] (pods/SKU) [A, B, C]
[1.0,1.0,1.0] [0.2279, 0.225, 0.3333] [4.3871, 4.4444, 3.0] [7.75,1.125,1.0] 3
[1.0,1.0478, 0.059] [0.1176, 0.2, 1.0] [8.5, 5.0, 1.0] [4.0,1.0, 3.0] 1
[1.0, 1.0478, 0.059] [0.1176, 0.2, 1.0] [8.5,5.0,1.0] [4.0, 1.0, 3.0] 2
[1.0,1.0478, 0.059] [0.1176, 0.2, 1.0] [8.5,5.0,1.0] [4.0, 1.0, 3.0] 3
[1.0,1.0478,0.304] [0.1868, 0.2, 0.6083] [6.3543, 5.0, 1.6438] [6.35, 1.0, 1.825] 1
[1.0,1.0478, 0.304] [0.1868, 0.2, 0.6083] [6.3543, 5.0, 1.6438] [6.35, 1.0, 1.825] 2
[1.0,1.0478, 0.304] [0.1868, 0.2, 0.6083] [6.3543, 5.0, 1.6438] [6.35, 1.0, 1.825] 3
[1.0, 1.0478, 0.549] [0.2206, 0.21, 0.4] [4.5333, 4.7619, 2.5] [7.5,1.05,1.2] 1
[1.0, 1.0478, 0.549] [0.2206, 0.21, 0.4] [4.5333, 4.7619, 2.5] [7.5,1.05,1.2] 2
[1.0,1.0478, 0.549] [0.2206, 0.21, 0.4] [4.5333, 4.7619, 2.5] [7.5,1.05,1.2] 3
[1.0,1.0478, 0.794] [0.2294, 0.22, 0.3333] [4.359, 4.5455, 3.0] [7.8,1.1,1.0] 1
[1.0,1.0478, 0.794] [0.2294, 0.22, 0.3333] [4.359, 4.5455, 3.0] [7.8,1.1,1.0] 2
[1.0,1.0478, 0.794] [0.2294, 0.22, 0.3333] [4.359, 4.5455, 3.0] [7.8,1.1,1.0] 3
[1.0,1.295,0.059] [0.1176, 0.2, 1.0] [8.5,5.0,1.0] [4.0, 1.0, 3.0] 1
[1.0,1.295,0.059] [0.1176, 0.2, 1.0] [8.5,5.0,1.0] [4.0, 1.0, 3.0] 2
[1.0,1.295,0.059] [0.1176, 0.2, 1.0] [8.5,5.0,1.0] [4.0, 1.0, 3.0] 3
[1.0,1.295,0.304] [0.1868, 0.2, 0.6083] [6.3543, 5.0, 1.6438] [6.35, 1.0, 1.825] 1
[1.0,1.295,0.304] [0.1868, 0.2, 0.6083] [6.3543, 5.0, 1.6438] [6.35, 1.0, 1.825] 2
[1.0, 1.295, 0.304] [0.1868, 0.2, 0.6083] [6.3543, 5.0, 1.6438] [6.35, 1.0, 1.825] 3
[1.0,1.295, 0.549] [0.2221, 0.2, 0.4083] [4.5033, 5.0, 2.449] [7.55, 1.0, 1.225] 1
[1.0,1.295, 0.549] [0.2221, 0.2, 0.4083] [4.5033, 5.0, 2.449] [7.55, 1.0, 1.225] 2
[1.0,1.295,0.549] [0.2221, 0.2, 0.4083] [4.5033, 5.0, 2.449] [7.55, 1.0, 1.225] 3
[1.0,1.295,0.794] [0.2353, 0.2, 0.3333] [4.25, 5.0, 3.0] [8.0, 1.0, 1.0] 1
[1.0,1.295,0.794] [0.2353, 0.2, 0.3333] [4.25, 5.0, 3.0] [8.0, 1.0, 1.0] 2
[1.0,1.295,0.794]  [0.2353, 0.2, 0.3333] [4.25, 5.0, 3.0] [8.0, 1.0, 1.0] 3



[1.0, 0.058, 0.058]
[1.0, 0.058, 0.058]
[1.0, 0.058, 0.272]
[1.0, 0.058, 0.272]
[1.0, 0.058, 0.272]
[1.0, 0.058, 0.486]
[1.0, 0.058, 0.486]
[1.0, 0.058, 0.486]
[1.0, 0.058, 0.7]
[1.0, 0.058, 0.7]
[1.0, 0.058, 0.7]
[1.0, 1.0, 1.0]

[1.0, 1.0, 1.0]

[1.0, 1.0, 1.0]

[1.0, 1.2638, 0.058]
[1.0, 1.2638, 0.058]
[1.0, 1.2638, 0.058]
[1.0, 1.2638, 0.272]
[1.0, 1.2638, 0.272]
[1.0, 1.2638, 0.272]
[1.0, 1.2638, 0.486]
[1.0, 1.2638, 0.486]
[1.0, 1.2638, 0.486]
[1.0, 1.2638, 0.7]
[1.0, 1.2638, 0.7]
[1.0, 1.2638, 0.7]
[1.0, 2.4696, 0.058]
[1.0, 2.4696, 0.058]
[1.0, 2.4696, 0.058]
[1.0, 2.4696, 0.272]
[1.0, 2.4696, 0.272]
[1.0, 2.4696, 0.272]
[1.0, 2.4696, 0.486]
[1.0, 2.4696, 0.486]
[1.0, 2.4696, 0.486]
[1.0, 2.4696, 0.7]
[1.0, 2.4696, 0.7]
[1.0, 2.4696, 0.7]
[1.0, 3.6754, 0.058]
[1.0, 3.6754, 0.058]
[1.0, 3.6754, 0.058]
[1.0, 3.6754, 0.272]
[1.0, 3.6754, 0.272]
[1.0, 3.6754, 0.272]
[1.0, 3.6754, 0.486]
[1.0, 3.6754, 0.486]
[1.0, 3.6754, 0.486]
[1.0, 3.6754, 0.7]
[1.0, 3.6754, 0.7]

[0.0957, 0.1857, 0.6708]
[0.0841, 0.2286, 0.6917]
[0.1072, 1.0, 0.4]
[0.1072, 1.0, 0.4]
[0.1072, 1.0, 0.4]
[0.1304, 1.0, 0.3333]
[0.1304, 1.0, 0.3333]
[0.1304, 1.0, 0.3333]
[0.1304, 1.0, 0.3333]
[0.1304, 1.0, 0.3333]
[0.1304, 1.0, 0.3333]
[0.2101, 0.2143, 0.3333]
[0.2101, 0.2143, 0.3333]
[0.2101, 0.2143, 0.3333]
[0.0841, 0.1857, 0.7042]
[0.113, 0.4143, 0.5542]
[0.0841, 0.1714, 0.7083]
[0.1464, 0.1429, 0.5375]
[0.1464, 0.1429, 0.5375]
[0.1464, 0.1429, 0.5375]
[0.1942, 0.1571, 0.3958]
[0.1942, 0.1571, 0.3958]
[0.1942, 0.1571, 0.3958]
[0.2145, 0.1714, 0.3333]
[0.2145, 0.1714, 0.3333]
[0.2145, 0.1714, 0.3333]
[0.0913, 0.1571, 0.6917]
[0.0928, 0.1429, 0.6917]
[0.0783, 0.1714, 0.725]
[0.1464, 0.1429, 0.5375]
[0.1464, 0.1429, 0.5375]
[0.1464, 0.1429, 0.5375]
[0.1942, 0.1429, 0.4]
[0.1942, 0.1429, 0.4]
[0.1942, 0.1429, 0.4]
[0.2174, 0.1429, 0.3333]
[0.2174, 0.1429, 0.3333]
[0.2174, 0.1429, 0.3333]
[0.0855, 0.1714, 0.7042]
[0.0928, 0.1714, 0.6833]
[0.0855, 0.1857, 0.7]
[0.1464, 0.1429, 0.5375]
[0.1464, 0.1429, 0.5375]
[0.1464, 0.1429, 0.5375]
[0.1942, 0.1429, 0.4]
[0.1942, 0.1429, 0.4]
[0.1942, 0.1429, 0.4]
[0.2174, 0.1429, 0.3333]
[0.2174, 0.1429, 0.3333]

[10.4545, 5.3846, 1.4907]
[11.8966, 4.375, 1.4458]
[9.3243, 1.0, 2.5]
[9.3243, 1.0, 2.5]
[9.3243, 1.0, 2.5]
[7.6667, 1.0, 3.0]
[7.6667, 1.0, 3.0]
[7.6667, 1.0, 3.0]
[7.6667, 1.0, 3.0]
[7.6667, 1.0, 3.0]
[7.6667, 1.0, 3.0]
[4.7586, 4.6667, 3.0]
[4.7586, 4.6667, 3.0]
[4.7586, 4.6667, 3.0]
[11.8966, 5.3846, 1.4201]
[8.8462, 2.4138, 1.8045]
[11.8966, 5.8333, 1.4118]
[6.8317, 7.0, 1.8605]
[6.8317, 7.0, 1.8605]
[6.8317, 7.0, 1.8605]
[5.1493, 6.3636, 2.5263]
[5.1493, 6.3636, 2.5263]
[5.1493, 6.3636, 2.5263]
[4.6622, 5.8333, 3.0]
[4.6622, 5.8333, 3.0]
[4.6622, 5.8333, 3.0]
[10.9524, 6.3636, 1.4458]
[10.7812, 7.0, 1.4458]
[12.7778, 5.8333, 1.3793]
[6.8317, 7.0, 1.8605]
[6.8317, 7.0, 1.8605]
[6.8317, 7.0, 1.8605]
[5.1493, 7.0, 2.5]
[5.1493, 7.0, 2.5]
[5.1493, 7.0, 2.5]

[4.6, 7.0, 3.0]

[4.6, 7.0, 3.0]

[4.6,7.0, 3.0]

[11.6949, 5.8333, 1.4201]
[10.7812, 5.8333, 1.4634]
[11.6949, 5.3846, 1.4286]
[6.8317, 7.0, 1.8605]
[6.8317, 7.0, 1.8605]
[6.8317, 7.0, 1.8605]
[5.1493, 7.0, 2.5]
[5.1493, 7.0, 2.5]
[5.1493, 7.0, 2.5]

[4.6, 7.0, 3.0]

[4.6,7.0, 3.0]

[6.6, 1.3, 2.0125]
[5.8, 1.6, 2.075]
[7.4,7.0,1.2]
[7.4,7.0,1.2]
[7.4,7.0,1.2]
[9.0, 7.0, 1.0]
[9.0, 7.0, 1.0]
[9.0, 7.0, 1.0]
[9.0, 7.0, 1.0]
[9.0, 7.0, 1.0]
[9.0, 7.0, 1.0]
[14.5, 1.5, 1.0]
[14.5, 1.5, 1.0]
[14.5, 1.5, 1.0]
[5.8, 1.3, 2.1125]
[7.8, 2.9, 1.6625]
(5.8, 1.2, 2.125]
[10.1, 1.0, 1.6125]
[10.1, 1.0, 1.6125]
[10.1, 1.0, 1.6125]
[13.4, 1.1, 1.1875]
[13.4, 1.1, 1.1875]
[13.4, 1.1, 1.1875]
[14.8, 1.2, 1.0]
[14.8, 1.2, 1.0]
[14.8, 1.2, 1.0]
[6.3, 1.1, 2.075]
[6.4, 1.0, 2.075]
[5.4, 1.2, 2.175]
[10.1, 1.0, 1.6125]
[10.1, 1.0, 1.6125]
[10.1, 1.0, 1.6125]
[13.4,1.0,1.2]
[13.4, 1.0, 1.2]
[13.4,1.0,1.2]
[15.0, 1.0, 1.0]
[15.0, 1.0, 1.0]
[15.0, 1.0, 1.0]
[5.9, 1.2, 2.1125]
[6.4, 1.2, 2.05]
5.9, 1.3, 2.1]
[10.1, 1.0, 1.6125]
[10.1, 1.0, 1.6125]
[10.1, 1.0, 1.6125]
[13.4,1.0,1.2]
[13.4,1.0,1.2]
[13.4, 1.0, 1.2]
[15.0, 1.0, 1.0]
[15.0, 1.0, 1.0]

A.3. Slotting Results DP, 101
A.3. Slotting Results DP,
Table A.3: Slotting Results with Demand Profile DP¢
Weights Distribution Distribution Distribution Seed
[Wa, wgs el (podsfitem) [z,, z5, zc]  (items/pod) [A, B,C]  (pods/SKU) [A, B, C] ¢
[1.0, 0.058, 0.058] [0.0913, 0.1857, 0.6833] [10.9524, 5.3846, 1.4634] [6.3, 1.3, 2.05]

N=2OWON-_220LCON_L,OON_L2ON_L2ON_L2ON_L2,ON_2ON_,2,OWON_L,2PON_L2ODN_L,2,OON_L2ON_L2ODN_L2,ON_2WON-
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Table A.3 continued from previous page

Weights Distribution Distribution Distribution Seed
[wWa, wg, wel (podslitem) [z4, z5, z.] (items/pod) [A, B, C] (pods/SKU) [A, B, C]
[1.0, 3.6754, 0.7] [0.2174, 0.1429, 0.3333] [4.6, 7.0, 3.0] [15.0, 1.0, 1.0]
[1.0,4.8812, 0.058] [0.1145, 0.4714, 0.5333] [8.7342,2.1212, 1.875] [7.9, 3.3, 1.6]

[1.0, 4.8812, 0.058]
[1.0, 4.8812, 0.058]
[1.0, 4.8812, 0.272]
[1.0, 4.8812, 0.272]
[1.0, 4.8812, 0.272]
[1.0, 4.8812, 0.486]
[1.0, 4.8812, 0.486]
[1.0, 4.8812, 0.486]
[1.0, 4.8812, 0.7]
[1.0, 4.8812, 0.7]
[1.0, 4.8812, 0.7]
[1.0, 6.087, 0.058]
[1.0, 6.087, 0.058]
[1.0, 6.087, 0.058]
[1.0, 6.087, 0.272]
[1.0, 6.087, 0.272]
[1.0, 6.087, 0.272]
[1.0, 6.087, 0.486]
[1.0, 6.087, 0.486]
[1.0, 6.087, 0.486]
[1.0, 6.087, 0.7]
[1.0, 6.087, 0.7]
[1.0, 6.087, 0.7]

[0.0841, 0.1714, 0.7083]
[0.0826, 0.1714, 0.7125]
[0.1464, 0.1429, 0.5375]
[0.1464, 0.1429, 0.5375]
[0.1464, 0.1429, 0.5375]
[0.1942, 0.1429, 0.4]

[0.1942, 0.1429, 0.4]

[0.1942, 0.1429, 0.4]

[0.2174, 0.1429, 0.3333]
[0.2174, 0.1429, 0.3333]
[0.2174, 0.1429, 0.3333]
[0.0957, 0.6429, 0.5375]
[0.0739, 0.1714, 0.7375]
[0.0855, 0.1714, 0.7042]
[0.1464, 0.1429, 0.5375]
[0.1464, 0.1429, 0.5375]
[0.1464, 0.1429, 0.5375]
[0.1942, 0.1429, 0.4]

[0.1942, 0.1429, 0.4]

[0.1942, 0.1429, 0.4]

[0.2174, 0.1429, 0.3333]
[0.2174, 0.1429, 0.3333]
[0.2174, 0.1429, 0.3333]

[11.8966, 5.8333, 1.4118]
[12.1053, 5.8333, 1.4035]
[6.8317, 7.0, 1.8605]
[6.8317, 7.0, 1.8605]
[6.8317, 7.0, 1.8605]
[5.1493, 7.0, 2.5]

[5.1493, 7.0, 2.5]

[5.1493, 7.0, 2.5]
[4.6,7.0, 3.0]

[4.6,7.0, 3.0]

[4.6,7.0, 3.0]

[10.4545, 1.5556, 1.8605]
[13.5294, 5.8333, 1.3559]
[11.6949, 5.8333, 1.4201]
[6.8317, 7.0, 1.8605]
[6.8317, 7.0, 1.8605]
[6.8317, 7.0, 1.8605]
[5.1493, 7.0, 2.5]

[5.1493, 7.0, 2.5]

[5.1493, 7.0, 2.5]
[4.6,7.0, 3.0]

[4.6,7.0, 3.0]

[4.6, 7.0, 3.0]

[5.8, 1.2, 2.125]
[5.7, 1.2, 2.1375]
[10.1, 1.0, 1.6125]
[10.1, 1.0, 1.6125]
[10.1, 1.0, 1.6125]
[13.4,1.0,1.2]
[13.4,1.0,1.2]
[13.4,1.0,1.2]
[15.0, 1.0, 1.0]
[15.0, 1.0, 1.0]
[15.0, 1.0, 1.0]
[6.6, 4.5, 1.6125]
[5.1, 1.2, 2.2125]
[5.9, 1.2, 2.1125]
[10.1, 1.0, 1.6125]
[10.1, 1.0, 1.6125]
[10.1, 1.0, 1.6125]
[13.4, 1.0, 1.2]
[13.4,1.0,1.2]
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A.4. Slotting Results DP,

Table A.4: Slotting Results with Demand Profile DPp

Distribution
(pods/SKU) [A, B, C]

Distribution
(items/pod) [A, B, C]

Distribution
(podslitem) [z,, zg, z,]

Weights
wa, wg, wcl

[72)
1]
o
Q.

[1.0, 0.05, 0.05]
[1.0, 0.05, 0.05]

[0.1638, 0.425, 0.725]
[0.185, 0.3583, 0.6125]

[6.1069, 2.3529, 1.3793]
[6.4054, 2.7907, 1.6327]

[6.55, 1.275, 1.45]
[7.4,1.075, 1.225]

[1.0, 0.05, 0.05] [0.18, 0.4, 0.6] [5.5556, 2.5, 1.6667] [7.2,1.2,1.2]
[1.0,0.05,0.2133]  [0.1, 1.0, 0.5] [10.0, 1.0, 2.0] [4.0, 3.0, 1.0]
[1.0,0.05,0.2133]  [0.1, 1.0, 0.5] [10.0, 1.0, 2.0] [4.0, 3.0, 1.0]
[1.0,0.05,0.2133]  [0.1, 1.0, 0.5] [10.0, 1.0, 2.0] [4.0, 3.0, 1.0]
[1.0,0.05,0.3767]  [0.1, 1.0, 0.5] [10.0, 1.0, 2.0] [4.0, 3.0, 1.0]
[1.0,0.05,0.3767]  [0.1, 1.0, 0.5] [10.0, 1.0, 2.0] [4.0, 3.0, 1.0]
[1.0,0.05,0.3767]  [0.1, 1.0, 0.5] [10.0, 1.0, 2.0] [4.0, 3.0, 1.0]
[1.0, 0.05, 0.54] [0.1,1.0, 0.5] [10.0, 1.0, 2.0] [4.0, 3.0, 1.0]
[1.0, 0.05, 0.54] [0.1, 1.0, 0.5] [10.0, 1.0, 2.0] [4.0, 3.0, 1.0]
[1.0, 0.05, 0.54] [0.1, 1.0, 0.5] [10.0, 1.0, 2.0] [4.0, 3.0, 1.0]

[1.0, 0.198, 0.05]
[1.0, 0.198, 0.05]
[1.0, 0.198, 0.05]

[0.1137, 0.575, 1.0]
[0.1137, 0.575, 1.0]
[0.1137, 0.575, 1.0]

[8.7912, 1.7391, 1.0]
[8.7912, 1.7391, 1.0]
[8.7912, 1.7391, 1.0]

[4.55, 1.725, 2.0]
[4.55, 1.725, 2.0]
[4.55, 1.725, 2.0]

[1.0, 0.198, 0.2133]
[1.0, 0.198, 0.2133]
[1.0, 0.198, 0.2133]

[0.135, 0.6833, 0.625]
[0.135, 0.6833, 0.625]
[0.135, 0.6833, 0.625]

[7.4074, 1.4634, 1.6]
[7.4074, 1.4634, 1.6]
[7.4074, 1.4634, 1.6]

[5.4, 2.05, 1.25]
[5.4, 2.05, 1.25]
[5.4, 2.05, 1.25]

[1.0,0.198, 0.3767] [0.1425, 0.7167, 0.5] [7.0175, 1.3953, 2.0] [5.7, 2.15, 1.0]
[1.0,0.198, 0.3767] [0.1425, 0.7167, 0.5] [7.0175, 1.3953, 2.0] [5.7, 2.15, 1.0]
[1.0,0.198, 0.3767] [0.1425, 0.7167, 0.5] [7.0175, 1.3953, 2.0] [5.7, 2.15, 1.0]
[1.0,0.198,0.54]  [0.1425, 0.7167, 0.5] [7.0175, 1.3953, 2.0] [5.7, 2.15, 1.0]
[1.0,0.198,0.54]  [0.1425, 0.7167, 0.5] [7.0175, 1.3953, 2.0] [5.7, 2.15, 1.0]
[1.0,0.198,0.54]  [0.1425,0.7167, 0.5] [7.0175, 1.3953, 2.0] [5.7, 2.15, 1.0]

[1.0, 0.346, 0.05]
[1.0, 0.346, 0.05]
[1.0, 0.346, 0.05]

[0.1387, 0.4083, 1.0]
[0.1387, 0.4083, 1.0]
[0.1387, 0.4083, 1.0]

[7.2072, 2.449, 1.0]
[7.2072, 2.449, 1.0]
[7.2072, 2.449, 1.0]

[5.55, 1.225, 2.0]
[5.55, 1.225, 2.0]
[5.55, 1.225, 2.0]

[1.0, 0.346, 0.2133]
[1.0, 0.346, 0.2133]
[1.0, 0.346, 0.2133]

[0.1575, 0.4583, 0.7375]
[0.1575, 0.4583, 0.7375]
[0.1575, 0.4583, 0.7375]

[6.3492, 2.1818, 1.3559]
[6.3492, 2.1818, 1.3559]
[6.3492, 2.1818, 1.3559]

[6.3, 1.375, 1.475]
[6.3, 1.375, 1.475]
[6.3, 1.375, 1.475]

[1.0, 0.346, 0.3767] [0.175, 0.5, 0.5] [5.7143, 2.0, 2.0] [7.0, 1.5, 1.0]
[1.0, 0.346, 0.3767] [0.175, 0.5, 0.5] [5.7143, 2.0, 2.0] [7.0, 1.5, 1.0]
[1.0, 0.346, 0.3767] [0.175, 0.5, 0.5] [5.7143, 2.0, 2.0] [7.0, 1.5, 1.0]
[1.0,0.346,0.54]  [0.175, 0.5, 0.5] [5.7143, 2.0, 2.0] [7.0, 1.5, 1.0]
[1.0,0.346,0.54]  [0.175, 0.5, 0.5] [5.7143, 2.0, 2.0] [7.0, 1.5, 1.0]
[1.0,0.346,0.54]  [0.175, 0.5, 0.5] [5.7143, 2.0, 2.0] [7.0, 1.5, 1.0]
[1.0,0.494,0.05]  [0.15,0.3333, 1.0] [6.6667, 3.0, 1.0] [6.0, 1.0, 2.0]
[1.0,0.494,0.05]  [0.15,0.3333, 1.0] [6.6667, 3.0, 1.0] [6.0, 1.0, 2.0]
[1.0,0.494,0.05]  [0.15, 0.3333, 1.0] [6.6667, 3.0, 1.0] [6.0, 1.0, 2.0]
[1.0,0.494, 0.2133] [0.1688, 0.3417, 0.8] [5.9259, 2.9268, 1.25]  [6.75, 1.025, 1.6]
[1.0,0.494, 0.2133] [0.1688, 0.3417, 0.8] [5.9259, 2.9268, 1.25]  [6.75, 1.025, 1.6]
[1.0, 0.494, 0.2133] [0.1688, 0.3417, 0.8] [5.9259, 2.9268, 1.25]  [6.75, 1.025, 1.6]
[1.0, 0.494, 0.3767] [0.1913, 0.3833, 0.5125] [5.2288, 2.6087, 1.9512] [7.65, 1.15, 1.025]
[1.0, 0.494, 0.3767] [0.1913, 0.3833, 0.5125] [5.2288, 2.6087, 1.9512] [7.65, 1.15, 1.025]
[1.0, 0.494, 0.3767] [0.1913, 0.3833, 0.5125] [5.2288, 2.6087, 1.9512] [7.65, 1.15, 1.025]
[1.0,0.494,0.54]  [0.1925, 0.3833, 0.5] [5.1948, 2.6087, 2.0] [7.7,1.15,1.0]
[1.0,0.494,0.54]  [0.1925, 0.3833, 0.5] [5.1948, 2.6087, 2.0] [7.7,1.15,1.0]
[1.0,0.494,0.54]  [0.1925, 0.3833, 0.5] [5.1948, 2.6087, 2.0] [7.7,1.15,1.0]
[1.0,0.642,0.05]  [0.15, 0.3333, 1.0] [6.6667, 3.0, 1.0] [6.0, 1.0, 2.0]
[1.0,0.642,0.05]  [0.15, 0.3333, 1.0] [6.6667, 3.0, 1.0] [6.0, 1.0, 2.0]

N=2OWN_2OON_2ON_2WON_2WON_,2PON_L,P,ON_L,2WON_2ON_,P,ON_,P,WON_L,2ON_2ON_,P,ON_,P,ON_2ON-



104 A. Slotting Results per Demand Profile

Table A.4 continued from previous page

Weights
[WAs Wpg, WC]

Distribution
(podslitem) [z4, z5, z.]

Distribution

(items/pod) [A, B, C]

Distribution
(pods/SKU) [A, B, C]

Seed

[1.0, 0.642, 0.05]
[1.0, 0.642, 0.2133]
[1.0, 0.642, 0.2133]
[1.0, 0.642, 0.2133]
[1.0, 0.642, 0.3767]
[1.0, 0.642, 0.3767]
[1.0, 0.642, 0.3767]
[1.0, 0.642, 0.54]
[1.0, 0.642, 0.54]
[1.0, 0.642, 0.54]
[1.0, 0.79, 0.05]
[1.0, 0.79, 0.05]
[1.0, 0.79, 0.05]
[1.0,0.79, 0.2133]
[1.0,0.79, 0.2133]
[1.0,0.79, 0.2133]
[1.0, 0.79, 0.3767]
[1.0, 0.79, 0.3767]
[1.0, 0.79, 0.3767]
[1.0, 0.79, 0.54]
[1.0, 0.79, 0.54]
[1.0, 0.79, 0.54]
[1.0, 1.0, 1.0]
[1.0, 1.0, 1.0]
[1.0, 1.0, 1.0]

[0.15, 0.3333, 1.0]
[0.17, 0.3333, 0.8]
[0.17, 0.3333, 0.8]
[0.17, 0.3333, 0.8]
[0.1975, 0.3333, 0.525]
[0.1975, 0.3333, 0.525]
[0.1975, 0.3333, 0.525]
[0.2, 0.3333, 0.5]

[0.2, 0.3333, 0.5]

[0.2, 0.3333, 0.5]

[0.15, 0.3333, 1.0]
[0.15, 0.3333, 1.0]
[0.15, 0.3333, 1.0]
[0.17, 0.3333, 0.8]
[0.17, 0.3333, 0.8]
[0.17, 0.3333, 0.8]
[0.1975, 0.3333, 0.525]
[0.1975, 0.3333, 0.525]
[0.1975, 0.3333, 0.525]
[0.2, 0.3333, 0.5]

[0.2, 0.3333, 0.5]

[0.2, 0.3333, 0.5]

[0.2, 0.3333, 0.5]

[0.2, 0.3333, 0.5]

[0.2, 0.3333, 0.5]

[6.6667, 3.0, 1.0]
[5.8824, 3.0, 1.25]
[5.8824, 3.0, 1.25]
[5.8824, 3.0, 1.25]
[5.0633, 3.0, 1.9048]
[5.0633, 3.0, 1.9048]
[5.0633, 3.0, 1.9048]
[5.0, 3.0, 2.0]

[5.0, 3.0, 2.0]

[5.0, 3.0, 2.0]
[6.6667, 3.0, 1.0]
[6.6667, 3.0, 1.0]
[6.6667, 3.0, 1.0]
[5.8824, 3.0, 1.25]
[5.8824, 3.0, 1.25]
[5.8824, 3.0, 1.25]
[5.0633, 3.0, 1.9048]
[5.0633, 3.0, 1.9048]
[5.0633, 3.0, 1.9048]
[5.0, 3.0, 2.0]

[5.0, 3.0, 2.0]

[5.0, 3.0, 2.0]

[5.0, 3.0, 2.0]

[5.0, 3.0, 2.0]

[5.0, 3.0, 2.0]

[6.0, 1.0, 2.0]
[6.8, 1.0, 1.6]
6.8, 1.0, 1.6]
[6.8, 1.0, 1.6]
[7.9, 1.0, 1.05
[7.9, 1.0, 1.05
[7.9, 1.0, 1.05
8.0, 1.
8.0,
8.0,
6.0,
6.0,
6.0,
6.8,
6.8,
6.8,

1
1.0, 1
1.0, 1
1.0, 2
1.0, 2
1.0, 2
1.0, 1
1.0, 1.
1.0, 1
[791 1
,1.0, 1
,1.0, 1
,1.0, 1
,1.0, 1
1.0, 1
1.0, 1
1.0, 1
,1.0, 1

=Rk k=R=R=R=R=Ro ke o X=R=R=R=R=K=!
LLelLlLsgeslasssscces

0
0
0
0
0
0
0
0
0,
0,
0
0
0
0
0
0
0
0

]
]
]
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A.5. Slotting Results DP;
Table A.5: Slotting Results with Demand Profile DPg
Weights Distribution Distribution Distribution Seed
[wa, wg, wel (podslitem) [z, zg, zc] (items/pod) [A, B, C] (pods/SKU) [A, B, C]
[1.0,0.058, 0.058] [0.1163, 1.0, 1.0] [8.6, 1.0, 1.0] [10.0, 6.0, 1.0] 1
[1.0,0.058, 0.058] [0.1163, 1.0, 1.0] [8.6, 1.0, 1.0] [10.0, 6.0, 1.0] 2
[1.0,0.058,0.058] [0.1163, 1.0, 1.0] [8.6, 1.0, 1.0] [10.0, 6.0, 1.0] 3
[1.0,0.2935, 0.058] [0.15, 0.5167, 1.0] [6.6667, 1.9355,1.0] [12.9, 3.1, 1.0] 1
[1.0,0.2935, 0.058] [0.15, 0.5167, 1.0] [6.6667, 1.9355, 1.0] [12.9, 3.1, 1.0] 2
[1.0, 0.2935, 0.058] [0.15, 0.5167, 1.0] [6.6667, 1.9355, 1.0] [12.9, 3.1, 1.0] 3
[1.0,0.529,0.058] [0.164, 0.3167, 1.0] [6.0993, 3.1579, 1.0] [14.1,1.9,1.0] 1
[1.0,0.529, 0.058] [0.164, 0.3167, 1.0] [6.0993, 3.1579, 1.0] [14.1,1.9,1.0] 2
[1.0,0.529, 0.058] [0.164, 0.3167, 1.0] [6.0993, 3.1579, 1.0] [14.1,1.9,1.0] 3
[1.0,0.7645, 0.058] [0.1709, 0.2167, 1.0] [6.8503,4.6154,1.0] [14.7,1.3,1.0] 1
[1.0,0.7645, 0.058] [0.1709, 0.2167, 1.0] [6.8503,4.6154,1.0] [14.7,1.3,1.0] 2
[1.0,0.7645, 0.058] [0.1709, 0.2167, 1.0] [6.8503,4.6154, 1.0] [14.7,1.3,1.0] 3
[1.0, 1.0, 1.0] [0.1744, 0.1667, 1.0] [6.7333, 6.0, 1.0] [15.0, 1.0, 1.0] 1
[1.0, 1.0, 1.0] [0.1744, 0.1667, 1.0] [6.7333, 6.0, 1.0] [15.0, 1.0, 1.0] 2
[1.0,1.0,1.0] [0.1744, 0.1667, 1.0] [6.7333, 6.0, 1.0] [15.0, 1.0, 1.0] 3
[1.0, 1.0, 0.058] [0.1744, 0.1667, 1.0] [6.7333, 6.0, 1.0] [15.0, 1.0, 1.0] 1
[1.0, 1.0, 0.058] [0.1744, 0.1667, 1.0] [6.7333, 6.0, 1.0] [15.0, 1.0, 1.0] 2
[1.0, 1.0, 0.058] [0.1744, 0.1667, 1.0] [6.7333, 6.0, 1.0] [15.0, 1.0, 1.0] 3
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A.6. Slotting Results DP;

Table A.6: Slotting Results with Demand Profile DPg

Weights Distribution Distribution Distribution

[wy, wg, we]l  (podsfitem) [z, 25, zc] (items/pod) [A, B, C] (pods/SKU) [A, B, C] >°¢d
[1.0,0.1,0.068]  [0.1364, 1.0, 1.0] [7.3333, 1.0, 1.0] [6.0,2.0,1.0]
[1.0.0.1,0068]  [0.1364,1.0.1.0] [7.3333, 1.0, 1.0] [6.0. 2.0, 1.0]
[1.0,0.1,0068]  [0.1364,1.0.1.0] [7.3333. 1.0, 1.0] 6.0, 2.0, 1.0]

[1.0, 0.1467, 0.068]
[1.0, 0.1467, 0.068]
[1.0, 0.1467, 0.068]
[1.0, 0.1933, 0.068]
[1.0, 0.1933, 0.068]
[1.0, 0.1933, 0.068]
[1.0, 0.24, 0.068]
[1.0, 0.24, 0.068]
[1.0, 0.24, 0.068]
[1.0, 0.2867, 0.068]
[1.0, 0.2867, 0.068]
[1.0, 0.2867, 0.068]
[1.0, 0.3333, 0.068]
[1.0, 0.3333, 0.068]
[1.0, 0.3333, 0.068]
[1.0, 0.38, 0.068]
[1.0, 0.38, 0.068]
[1.0, 0.38, 0.068]
[1.0, 1.0, 1.0]

[1.0, 1.0, 1.0]

[1.0, 1.0, 1.0]

[0.1398, 0.9625, 1.0]
[0.1398, 0.9625, 1.0]
[0.1398, 0.9625, 1.0]
[0.1545, 0.8, 1.0]
[0.1545, 0.8, 1.0]
[0.1545, 0.8, 1.0]
[0.1648, 0.6875, 1.0]
[0.1648, 0.6875, 1.0]
[0.1648, 0.6875, 1.0]
[0.1727, 0.6, 1.0]
[0.1727, 0.6, 1.0]
[0.1727, 0.6, 1.0]
[0.1784, 0.5375, 1.0]
[0.1784, 0.5375, 1.0]
[0.1784, 0.5375, 1.0]
[0.1818, 0.5, 1.0]
[0.1818, 0.5, 1.0]
[0.1818, 0.5, 1.0]
[0.1818, 0.5, 1.0]
[0.1818, 0.5, 1.0]
[0.1818, 0.5, 1.0]

[7.1545, 1.039, 1.0]
[7.1545, 1.039, 1.0]
[7.1545, 1.039, 1.0]
[6.4706, 1.25, 1.0]
[6.4706, 1.25, 1.0]
[6.4706, 1.25, 1.0]
[6.069, 1.4545, 1.0]
[6.069, 1.4545, 1.0]
[6.069, 1.4545, 1.0]
[5.7895, 1.6667, 1.0]
[5.7895, 1.6667, 1.0]
[5.7895, 1.6667, 1.0]
[5.6051, 1.8605, 1.0]
[5.6051, 1.8605, 1.0]
[5.6051, 1.8605, 1.0]
[5.5, 2.0, 1.0]

[5.5, 2.0, 1.0]

[5.5, 2.0, 1.0]

[5.5, 2.0, 1.0]

[5.5, 2.0, 1.0]

[5.5, 2.0, 1.0]

[6.15, 1.925, 1.0]
[6.15, 1.925, 1.0]
[6.15, 1.925, 1.0]
[6.8, 1.6, 1.0]
[6.8, 1.6, 1.0]
[6.8, 1.6, 1.0]
[7.25, 1.375, 1.0]
[7.25, 1.375, 1.0]
[7.25, 1.375, 1.0]
[7.6,1.2, 1.0]
[7.6,1.2, 1.0]
[7.6,1.2, 1.0]
[7.85, 1.075, 1.0]
[7.85, 1.075, 1.0]
[7.85, 1.075, 1.0]
[8.0, 1.0, 1.0]
[8.0, 1.0, 1.0]
[8.0, 1.0, 1.0]
[8.0, 1.0, 1.0]
[8.0, 1.0, 1.0]
[8.0, 1.0, 1.0]
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A.7. Slotting Results Regular Gall&Gall Demand Profile

Table A.7: Slotting Results with Regular Gall&Gall Demand Profile.

Weights
[WA! Wpg, WC]

Distribution

(podslitem) [z,, zg, 2]

Distribution
(items/pod) [A, B, C]

Distribution
(pods/SKU) [A, B, C]

[72)
1]
o
Q

[1.0, 0.01, 1.0]
[1.0,0.01, 1.0]

[1.0,0.01, 1.0]

[1.0, 0.1545, 1.0]
[1.0, 0.1545, 1.0]
[1.0, 0.1545, 1.0]
[1.0, 0.2991, 1.0]
[1.0, 0.2991, 1.0]
[1.0, 0.2991, 1.0]
[1.0, 0.4436, 1.0]
[1.0, 0.4436, 1.0]
[1.0, 0.4436, 1.0]
[1.0, 0.5882, 1.0]
[1.0, 0.5882, 1.0]
[1.0, 0.5882, 1.0]
[1.0, 0.7327, 1.0]
[1.0, 0.7327, 1.0]
[1.0, 0.7327, 1.0]
[1.0, 0.8773, 1.0]
[1.0, 0.8773, 1.0]
[1.0, 0.8773, 1.0]
[1.0, 1.0218, 1.0]
[1.0, 1.0218, 1.0]
[1.0, 1.0218, 1.0]
,1.1664, 1.0]
,1.1664, 1.0]
, 1.1664, 1.0]
1.3109, 1.0]
1.3109, 1.0]
1.3109, 1.0]
1.4555, 1.0]
1
1
1
1
1

, 1.4555, 1.0]
, 1.4555, 1.0]
6, 1.0]
6, 1.0]
6, 1.0]

1
[1.0
[1.0
[1.0
[1.0
[1.0
[1.0,
[1.0
[1.0
[1.0
[1.0
[1.0
[1.0

[0.1446, 0.3952, 1.0]
[0.1297, 0.4476, 1.0]
[0.1176, 0.4905, 1.0]
[0.0905, 0.5857, 1.0]
[0.0905, 0.5857, 1.0]
[0.0905, 0.5857, 1.0]
[0.1324, 0.4381, 1.0]
[0.1324, 0.4381, 1.0]
[0.1324, 0.4381, 1.0]
[0.1568, 0.3524, 1.0]
[0.1568, 0.3524, 1.0]
[0.1568, 0.3524, 1.0]
[0.173, 0.2952, 1.0]

[0.173, 0.2952, 1.0]

[0.173, 0.2952, 1.0]

[0.1851, 0.2524, 1.0]
[0.1851, 0.2524, 1.0]
[0.1851, 0.2524, 1.0]
[0.1946, 0.219, 1.0]

[0.1946, 0.219, 1.0]

[0.1946, 0.219, 1.0]

[0.2014, 0.1952, 1.0]
[0.2014, 0.1952, 1.0]
[0.2014, 0.1952, 1.0]
[0.2068, 0.1762, 1.0]
[0.2068, 0.1762, 1.0]
[0.2068, 0.1762, 1.0]
[0.2108, 0.1619, 1.0]
[0.2108, 0.1619, 1.0]
[0.2108, 0.1619, 1.0]
[0.2149, 0.1476, 1.0]
[0.2149, 0.1476, 1.0]
[0.2149, 0.1476, 1.0]
[0.2162, 0.1429, 1.0]
[0.2162, 0.1429, 1.0]
[0.2162, 0.1429, 1.0]

[6.9159, 2.5301, 1.0]
[7.7083, 2.234, 1.0]
[8.5057, 2.0388, 1.0]
[11.0448, 1.7073, 1.0]
[11.0448, 1.7073, 1.0]
[11.0448, 1.7073, 1.0]
[7.551, 2.2826, 1.0]
[7.551, 2.2826, 1.0]
[7.551, 2.2826, 1.0]
[6.3793, 2.8378, 1.0]
[6.3793, 2.8378, 1.0]
[6.3793, 2.8378, 1.0]
[5.7812, 3.3871, 1.0]
[5.7812, 3.3871, 1.0]
[5.7812, 3.3871, 1.0]
[5.4015, 3.9623, 1.0]
[5.4015, 3.9623, 1.0]
[5.4015, 3.9623, 1.0]
[5.1389, 4.5652, 1.0]
[5.1389, 4.5652, 1.0]
[5.1389, 4.5652, 1.0]
[4.9664, 5.122, 1.0]
[4.9664, 5.122, 1.0]
[4.9664, 5.122, 1.0]
[4.8366, 5.6757, 1.0]
[4.8366, 5.6757, 1.0]
[4.8366, 5.6757, 1.0]
[4.7436, 6.1765, 1.0]
[4.7436, 6.1765, 1.0]
[4.7436, 6.1765, 1.0]
[4.6541, 6.7742, 1.0]
[4.6541, 6.7742, 1.0]
[4.6541, 6.7742, 1.0]
[4.625, 7.0, 1.0]
[4.625, 7.0, 1.0]
[4.625, 7.0, 1.0]

[5.35, 2.7667, 1.0]
[4.8, 3.1333, 1.0]
[4.35, 3.4333, 1.0]
[3.35, 4.1, 1.0]
[3.35, 4.1, 1.0]
[3.35, 4.1, 1.0]
[4.9, 3.0667, 1.0]
[4.9, 3.0667, 1.0]
[4.9, 3.0667, 1.0]
[5.8, 2.4667, 1.0]
[5.8, 2.4667, 1.0]
[5.8, 2.4667, 1.0]
[6.4, 2.0667, 1.0]
[6.4, 2.0667, 1.0]
[6.4, 2.0667, 1.0]
[6.85, 1.7667, 1.0]
[6.85, 1.7667, 1.0]
[6.85, 1.7667, 1.0]
[7.2, 1.5333, 1.0]
[7.2, 1.5333, 1.0]
[7.2,1.5333, 1.0]
[7.45, 1.3667, 1.0]
[7.45, 1.3667, 1.0]
[7.45, 1.3667, 1.0]
[7.65, 1.2333, 1.0]
[7.65, 1.2333, 1.0]
[7.65, 1.2333, 1.0]
[7.8,1.1333, 1.0]
[7.8, 1.1333, 1.0]
[7.8, 1.1333, 1.0]
[7.95, 1.0333, 1.0]
[7.95, 1.0333, 1.0]
[7.95, 1.0333, 1.0]
8.0, 1.0, 1.0]
8.0, 1.0, 1.0]
8.0, 1.0, 1.0]
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A.8. Slotting Results Peak Gall&Gall Demand Profile

Table A.8: Slotting Results with Peak Gall&Gall Demand Profile.

Weights
[wa, wg, wel

Distribution

(podslitem) [z,, zg, z]

Distribution
(items/pod) [A, B, C]

Distribution
(pods/SKU) [A, B, C]

[72)
(1]
o
Q.

[1.0, 0.01, 1.0]
[1.0, 0.01, 1.0]
[1.0, 0.01, 1.0]

[0.0975, 0.7467, 1.0]
[0.1125, 0.6667, 1.0]
[0.1137, 0.66, 1.0]

[10.2564, 1.3393, 1.0]
[8.8889, 1.5, 1.0]
[8.7912, 1.5152, 1.0]

[3.9, 3.7333, 1.0]
[4.5, 3.3333, 1.0]
[4.55, 3.3, 1.0]

[1.0,0.1,1.0] [0.0925,0.7733,1.0]  [10.8108,1.2931,1.0] [3.7, 3.8667, 1.0]
[1.0,0.1,1.0] [0.0825,0.8267,1.0]  [12.1212,1.2097,1.0] [3.3, 4.1333, 1.0]
[1.0,0.1,1.0] [0.0825,0.8267,1.0]  [12.1212,1.2097,1.0] [3.3, 4.1333, 1.0]

[1.0, 0.19, 1.0]
[1.0, 0.19, 1.0]
[1.0, 0.19, 1.0]
[1.0, 0.28, 1.0]
[1.0, 0.28, 1.0]
[1.0, 0.28, 1.0]
[1.0, 0.37, 1.0]
[1.0, 0.37, 1.0]
[1.0, 0.37, 1.0]
[1.0, 0.46, 1.0]
[1.0, 0.46, 1.0]
[1.0, 0.46, 1.0]

[0.12, 0.6267, 1.0]
[0.12, 0.6267, 1.0]

[0.12, 0.6267, 1.0]

[0.1425, 0.5067, 1.0]
[0.1425, 0.5067, 1.0]
[0.1425, 0.5067, 1.0]
[0.1575, 0.4267, 1.0]
[0.1575, 0.4267, 1.0]
[0.1575, 0.4267, 1.0]
[0.1688, 0.3667, 1.0]
[0.1688, 0.3667, 1.0]
[0.1688, 0.3667, 1.0]

[8.3333, 1.5957, 1.0]
[8.3333, 1.5957, 1.0]
[8.3333, 1.5957, 1.0]
[7.0175, 1.9737, 1.0]
[7.0175, 1.9737, 1.0]
[7.0175, 1.9737, 1.0]
[6.3492, 2.3438, 1.0]
[6.3492, 2.3438, 1.0]
[6.3492, 2.3438, 1.0]
[5.9259, 2.7273, 1.0]
[5.9259, 2.7273, 1.0]
[5.9259, 2.7273, 1.0]

[4.8, 3.1333, 1.0]
[4.8, 3.1333, 1.0]
[4.8, 3.1333, 1.0]
[5.7, 2.5333, 1.0]
[5.7, 2.5333, 1.0]
[5.7, 2.5333, 1.0]
[6.3, 2.1333, 1.0]
6.3, 2.1333, 1.0]
[6.3, 2.1333, 1.0]
[6.75, 1.8333, 1.0]
[6.75, 1.8333, 1.0]
[6.75, 1.8333, 1.0]

[1.0,0.55,1.0] [0.1775,0.32, 1.0] [5.6338,3.125,1.0]  [7.1,1.6, 1.0]
[1.0,0.55,1.0] [0.1775,0.32, 1.0] [5.6338,3.125,1.0]  [7.1, 1.6, 1.0]
[1.0,0.55,1.0] [0.1775,0.32, 1.0] [5.6338,3.125,1.0]  [7.1, 1.6, 1.0]

[1.0, 0.64, 1.0]
[1.0, 0.64, 1.0]
[1.0, 0.64, 1.0]

[0.1837, 0.2867, 1.0]
[0.1837, 0.2867, 1.0]
[0.1837, 0.2867, 1.0]

[6.4422, 3.4884, 1.0]
[5.4422, 3.4884, 1.0]
[6.4422, 3.4884, 1.0]

[7.35, 1.4333, 1.0]
[7.35, 1.4333, 1.0]
[7.35, 1.4333, 1.0]

[1.0,0.73,1.0] [0.1888, 0.26, 1.0] [5.298, 3.8462,1.0]  [7.55, 1.3, 1.0]
[1.0,0.73,1.0] [0.1888, 0.26, 1.0] [5.298, 3.8462,1.0]  [7.55, 1.3, 1.0]
[1.0,0.73,1.0] [0.1888, 0.26, 1.0] [5.298, 3.8462,1.0]  [7.55, 1.3, 1.0]

[1.0, 0.82, 1.0]
[1.0, 0.82, 1.0]
[1.0, 0.82, 1.0]
[1.0, 0.91, 1.0]

[0.1938, 0.2333, 1.0]
[0.1938, 0.2333, 1.0]
[0.1938, 0.2333, 1.0]
[0.1975, 0.2133, 1.0]

[5.1613, 4.2857, 1.0]
[5.1613, 4.2857, 1.0]
[5.1613, 4.2857, 1.0]
[5.0633, 4.6875, 1.0]

[7.75, 1.1667, 1.0]
[7.75, 1.1667, 1.0]
[7.75, 1.1667, 1.0]
[7.9, 1.0667, 1.0]

[1.0,0.91,1.0] [0.1975,0.2133,1.0]  [5.0633, 4.6875, 1.0]  [7.9, 1.0667, 1.0]
[1.0,0.91,1.0] [0.1975,0.2133,1.0]  [5.0633, 4.6875, 1.0]  [7.9, 1.0667, 1.0]
[1.0,1.0,1.0] [0.2,0.2,1.0] [5.0, 5.0, 1.0] 8.0, 1.0, 1.0]
[1.0,1.0,1.0] [0.2,0.2, 1.0] [5.0, 5.0, 1.0] 8.0, 1.0, 1.0]
[1.0,1.0,1.0] [0.2,0.2, 1.0] [5.0, 5.0, 1.0] 8.0, 1.0, 1.0]
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Performance Metric Plots
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Figure B.1: Plot of Performance Metric ‘orders handled’ for Travel Distance and Pile-on from all Slotting Configurations for all
Demand Profiles.
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110 B. Performance Metric Plots
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Figure B.2: Plot of Performance Metric ’item throughput rate’ for Travel Distance and Pile-on from all Slotting Configurations for
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Figure B.4: Plot of Performance Metric ‘order turnover time [seconds]’ for Travel Distance and Pile-on from all Slotting

Configurations for all Demand Profiles.






Simulation Results per Demand Profile

C.1. Simulation Results DP,

Table C.1: Simulation Results with Demand Profile DP,.

" Travel Orders
VB wc ZA ’B zc Pile-on distance handled
0.050 0.050 0.10 0.13 0.53 7.62 4937.87 472
0.050 0.050 0.10 0.13 0.53 71 5043.22 475
0.050 0.050 0.10 0.13 0.53 7.56 5143.09 463
0.050 0.050 0.09 0.15 0.55 7.01 5269.59 455
0.050 0.050 0.09 0.15 0.55 7.28 5128.75 474
0.050 0.050 0.09 0.15 0.55 7.14 4981.24 450
0.050 0.050 0.10 0.12 0.54 6.43 5276.27 443
0.050 0.050 0.10 0.12 0.54 6.89 5082.38 471
0.050 0.050 0.10 0.12 0.54 6.94 5285.92 450
0.050 0.380 0.10 1.00 0.26 6.57 5165.91 441
0.050 0.380 0.10 1.00 0.26 6.60 5193.42 463
0.050 0.380 0.10 1.00 0.26 6.88 5196.20 449
0.050 0.380 0.10 1.00 0.26 714 5058.97 461
0.050 0.380 0.10 1.00 0.26 6.39 5225.40 449
0.050 0.380 0.10 1.00 0.26 7.14 5183.05 462
0.050 0.380 0.10 1.00 0.26 7.69 5024.92 478
0.050 0.380 0.10 1.00 0.26 6.94 5101.65 486
0.050 0.380 0.10 1.00 0.26 7.30 5137.92 478
0.050 0.710 0.10 1.00 0.25 7.23 5084.84 475
0.050 0.710 0.10 1.00 0.25 7.46 5072.75 489
0.050 0.710 0.10 1.00 0.25 7.10 5114.59 461
0.050 0.710 0.10 1.00 0.25 6.94 5192.21 473
0.050 0.710 0.10 1.00 0.25 7.49 5098.86 489
0.050 0.710 0.10 1.00 0.25 6.76 5283.58 443
0.050 0.710 0.10 1.00 0.25 6.72 5252.61 469
0.050 0.710 0.10 1.00 0.25 6.11 5231.05 441
0.050 0.710 0.10 1.00 0.25 6.68 5227.90 463
0.050 1.040 0.10 1.00 0.25 6.10 5442.06 429
0.050 1.040 0.10 1.00 0.25 7.25 5142.69 476
0.050 1.040 0.10 1.00 0.25 7.28 5162.24 472
0.050 1.040 0.10 1.00 0.25 6.88 5249.05 471
0.050 1.040 0.10 1.00 0.25 7.10 5159.99 480
0.050 1.040 0.10 1.00 0.25 7.23 5308.12 470
0.050 1.040 0.10 1.00 0.25 6.96 5264.60 454
0.050 1.040 0.10 1.00 0.25 7.53 4973.56 482
0.050 1.040 0.10 1.00 0.25 7.30 5083.92 467
1.000 1.000 0.24 0.23 0.25 7.39 5084.97 474
1.000 1.000 0.24 0.23 0.25 7.84 5086.03 496
1.000 1.000 0.24 0.23 0.25 8.04 5074.04 482
1.000 1.000 0.24 0.23 0.25 7.27 5125.41 470
1.000 1.000 0.24 0.23 0.25 8.17 4996.14 505
1.000 1.000 0.24 0.23 0.25 7.38 5046.55 484
1.000 1.000 0.24 0.23 0.25 7.95 4977.44 492
1.000 1.000 0.24 0.23 0.25 7.82 5018.93 493
1.000 1.000 0.24 0.23 0.25 719 5114.04 453
10.000 0.050 0.09 0.13 0.55 7.81 5065.12 486
10.000 0.050 0.09 0.13 0.55 6.97 5119.94 481
10.000 0.050 0.09 0.13 0.55 6.94 5105.20 465
10.000 0.050 0.10 0.12 0.54 7.10 492717 479
10.000 0.050 0.10 0.12 0.54 6.74 5259.48 461
10.000 0.050 0.10 0.12 0.54 6.57 5375.26 451
10.000 0.050 0.10 0.10 0.54 7.39 5208.72 476
10.000 0.050 0.10 0.10 0.54 6.88 5162.01 467
10.000 0.050 0.10 0.10 0.54 7.09 5131.00 478
10.000 0.380 0.16 0.10 0.43 6.86 5118.73 454
10.000 0.380 0.16 0.10 0.43 7.20 5146.04 488
10.000 0.380 0.16 0.10 0.43 7.19 5120.48 470
10.000 0.380 0.16 0.10 0.43 7.44 5018.29 473
10.000 0.380 0.16 0.10 0.43 7.18 5129.88 487
10.000 0.380 0.16 0.10 0.43 6.98 5168.87 463
10.000 0.380 0.16 0.10 0.43 7.33 5099.95 460
10.000 0.380 0.16 0.10 0.43 7.04 5179.13 473
10.000 0.380 0.16 0.10 043 6.25 5318.72 438
10.000 0.710 0.22 0.10 0.31 6.89 5200.21 465
10.000 0.710 0.22 0.10 0.31 6.91 5162.69 448
10.000 0.710 0.22 0.10 0.31 7.24 5200.55 466
10.000 0.710 0.22 0.10 0.31 6.98 5296.17 459
10.000 0.710 0.22 0.10 0.31 6.56 5373.30 456
10.000 0.710 0.22 0.10 0.31 6.77 5241.19 454
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Table C.1 continued from previous page

. Travel Orders
VB wc ZA ’B “c Pile-on  yistance handled
10.000 0.710 0.22 0.10 0.31 6.83 5286.24 451
10.000 0.710 0.22 0.10 0.31 7.36 5094.46 476
10.000 0.710 0.22 0.10 0.31 6.81 5338.25 455
10.000 1.040 0.26 0.10 0.25 7.52 5060.92 479
10.000 1.040 0.26 0.10 0.25 71 5119.84 463
10.000 1.040 0.26 0.10 0.25 7.18 5194.47 456
10.000 1.040 0.26 0.10 0.25 7.28 5245.86 458
10.000 1.040 0.26 0.10 0.25 7.46 5078.75 490
10.000 1.040 0.26 0.10 0.25 7.30 5186.64 467
10.000 1.040 0.26 0.10 0.25 7.49 5012.31 472
10.000 1.040 0.26 0.10 0.25 7.59 5103.07 473
10.000 1.040 0.26 0.10 0.25 7.18 5116.77 474
2.040 0.050 0.10 0.43 0.43 7.35 5122.10 465
2.040 0.050 0.10 0.43 0.43 7.55 5127.34 488
2.040 0.050 0.10 0.43 0.43 7.47 5073.02 476
2.040 0.050 0.13 0.66 0.30 7.55 5121.86 479
2.040 0.050 0.13 0.66 0.30 8.26 4904.19 510
2.040 0.050 0.13 0.66 0.30 71 5106.53 473
2.040 0.050 0.10 0.56 0.40 7.46 5100.61 479
2.040 0.050 0.10 0.56 0.40 6.79 5185.80 478
2.040 0.050 0.10 0.56 0.40 7.32 5061.36 466
2.040 0.380 0.16 0.10 0.43 6.78 5232.65 458
2.040 0.380 0.16 0.10 043 7.15 5191.24 472
2.040 0.380 0.16 0.10 0.43 7.40 5062.72 473
2.040 0.380 0.16 0.10 0.43 7.15 5048.00 474
2.040 0.380 0.16 0.10 043 7.64 4969.62 502
2.040 0.380 0.16 0.10 043 7.65 5089.99 477
2.040 0.380 0.16 0.10 043 6.89 5241.80 451
2.040 0.380 0.16 0.10 043 7.07 5256.52 476
2.040 0.380 0.16 0.10 0.43 7.00 5227.15 460
2.040 0.710 0.22 0.11 0.31 6.91 5175.27 457
2.040 0.710 0.22 0.11 0.31 6.68 5264.13 445
2.040 0.710 0.22 0.11 0.31 721 5230.55 466
2.040 0.710 0.22 0.11 0.31 7.44 5318.46 482
2.040 0.710 0.22 0.11 0.31 7.72 5116.41 500
2.040 0.710 0.22 0.11 0.31 7.04 5180.83 449
2.040 0.710 0.22 0.11 0.31 6.98 5160.70 465
2.040 0.710 0.22 0.11 0.31 6.71 5229.87 459
2.040 0.710 0.22 0.11 0.31 7.25 5130.23 471
2.040 1.040 0.26 0.12 0.25 713 5150.02 471
2.040 1.040 0.26 0.12 0.25 7.46 5133.21 492
2.040 1.040 0.26 0.12 0.25 7.34 5124.82 471
2.040 1.040 0.26 0.12 0.25 7.07 5049.07 451
2.040 1.040 0.26 0.12 0.25 7.39 5124.88 479
2.040 1.040 0.26 0.12 0.25 8.04 5056.85 496
2.040 1.040 0.26 0.12 0.25 717 5120.00 476
2.040 1.040 0.26 0.12 0.25 8.27 5003.50 504
2.040 1.040 0.26 0.12 0.25 8.51 5035.42 502
4.030 0.050 0.10 0.74 0.34 8.05 5039.89 484
4.030 0.050 0.10 0.74 0.34 6.23 5470.66 435
4.030 0.050 0.10 0.74 0.34 7.10 5211.31 468
4.030 0.050 0.09 0.88 0.31 7.27 5088.18 469
4.030 0.050 0.09 0.88 0.31 7.45 5207.01 501
4.030 0.050 0.09 0.88 0.31 7.27 5092.64 463
4.030 0.050 0.11 0.52 0.40 6.14 5255.12 419
4.030 0.050 0.11 0.52 0.40 7.52 4988.57 491
4.030 0.050 0.11 0.52 0.40 7.43 5082.70 483
4.030 0.380 0.16 0.10 0.43 7.08 5096.66 472
4.030 0.380 0.16 0.10 043 7.15 5219.87 485
4.030 0.380 0.16 0.10 043 6.98 5127.76 445
4.030 0.380 0.16 0.10 043 7.51 5120.77 478
4.030 0.380 0.16 0.10 0.43 7.24 5192.57 485
4.030 0.380 0.16 0.10 0.43 7.52 5062.47 471
4.030 0.380 0.16 0.10 0.43 7.06 5178.74 466
4.030 0.380 0.16 0.10 0.43 7.61 5089.59 492
4.030 0.380 0.16 0.10 0.43 6.74 5227.51 442
4.030 0.710 0.22 0.10 0.31 7.84 5044.09 478
4.030 0.710 0.22 0.10 0.31 6.81 5163.82 472
4.030 0.710 0.22 0.10 0.31 6.49 5313.33 433
4.030 0.710 0.22 0.10 0.31 6.63 5306.61 453
4.030 0.710 0.22 0.10 0.31 7.01 5234.21 474
4.030 0.710 0.22 0.10 0.31 7.09 5020.30 458
4.030 0.710 0.22 0.10 0.31 7.29 5195.11 475
4.030 0.710 0.22 0.10 0.31 7.29 5246.83 474
4.030 0.710 0.22 0.10 0.31 6.57 5289.54 440
4.030 1.040 0.26 0.10 0.25 7.08 5133.92 453
4.030 1.040 0.26 0.10 0.25 7.43 4980.34 469
4.030 1.040 0.26 0.10 0.25 6.91 5207.30 456
4.030 1.040 0.26 0.10 0.25 7.74 5087.64 481
4.030 1.040 0.26 0.10 0.25 7.32 5223.65 474
4.030 1.040 0.26 0.10 0.25 7.21 5200.07 470
4.030 1.040 0.26 0.10 0.25 7.07 5190.09 451
4.030 1.040 0.26 0.10 0.25 7.50 5023.67 481
4.030 1.040 0.26 0.10 0.25 7.18 5222.89 449
6.020 0.050 0.10 0.10 0.53 7.72 5143.31 484
6.020 0.050 0.10 0.10 0.53 6.79 5295.91 457
6.020 0.050 0.10 0.10 0.53 7.33 5004.00 461
6.020 0.050 0.09 0.13 0.55 6.73 5228.91 455
6.020 0.050 0.09 0.13 0.55 7.32 5014.70 487
6.020 0.050 0.09 0.13 0.55 6.91 5169.62 444
6.020 0.050 0.09 0.13 0.54 6.88 5203.20 471
6.020 0.050 0.09 0.13 0.54 7.47 4989.43 489
6.020 0.050 0.09 0.13 0.54 717 5207.91 473
6.020 0.380 0.16 0.10 0.43 7.45 5126.02 487
6.020 0.380 0.16 0.10 0.43 7.84 4960.15 493
6.020 0.380 0.16 0.10 0.43 727 4927.02 460
6.020 0.380 0.16 0.10 0.43 7.76 5105.54 485
6.020 0.380 0.16 0.10 0.43 7.42 5074.42 486
6.020 0.380 0.16 0.10 0.43 6.94 5247.85 455
6.020 0.380 0.16 0.10 0.43 7.19 5241.97 463
6.020 0.380 0.16 0.10 0.43 6.94 5222.60 471
6.020 0.380 0.16 0.10 043 6.59 5225.37 435
6.020 0.710 0.22 0.10 0.31 7.29 5164.91 479
6.020 0.710 0.22 0.10 0.31 7.74 5050.94 498
6.020 0.710 0.22 0.10 0.31 6.89 5205.91 453
6.020 0.710 0.22 0.10 0.31 7.37 5078.10 479
6.020 0.710 0.22 0.10 0.31 7.05 5179.20 473
6.020 0.710 0.22 0.10 0.31 6.66 5288.01 443

6.020 0.710 0.22 0.10 0.31 6.69 5246.02 460
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Table C.1 continued from previous page

! Travel Orders
VB wc ZA ’B “c Pile-on distance handled
6.020 0.710 0.22 0.10 0.31 6.73 5262.09 466
6.020 0.710 0.22 0.10 0.31 7.32 5281.18 484
6.020 1.040 0.26 0.10 0.25 7.45 5036.04 478
6.020 1.040 0.26 0.10 0.25 712 5179.32 477
6.020 1.040 0.26 0.10 0.25 7.36 5138.30 455
6.020 1.040 0.26 0.10 0.25 7.68 5098.25 483
6.020 1.040 0.26 0.10 0.25 7.89 5053.15 488
6.020 1.040 0.26 0.10 0.25 7.45 5200.17 467
6.020 1.040 0.26 0.10 0.25 7.85 5046.08 489
6.020 1.040 0.26 0.10 0.25 7.50 4930.95 472
6.020 1.040 0.26 0.10 0.25 7.50 5012.79 474
8.010 0.050 0.21 0.10 0.34 8.47 4791.57 501
8.010 0.050 0.21 0.10 0.34 7.49 5192.17 495
8.010 0.050 0.21 0.10 0.34 7.00 5150.35 457
8.010 0.050 0.09 0.11 0.55 751 5050.59 482
8.010 0.050 0.09 0.11 0.55 6.65 5190.88 444
8.010 0.050 0.09 0.11 0.55 7.26 5073.76 479
8.010 0.050 0.13 0.10 0.48 7.08 5169.98 478
8.010 0.050 0.13 0.10 0.48 7.74 5052.17 504
8.010 0.050 0.13 0.10 0.48 6.76 5213.79 452
8.010 0.380 0.16 0.10 0.43 7.60 5060.25 469
8.010 0.380 0.16 0.10 0.43 7.27 5108.06 470
8.010 0.380 0.16 0.10 0.43 6.43 5413.10 437
8.010 0.380 0.16 0.10 0.43 6.69 5411.21 459
8.010 0.380 0.16 0.10 0.43 7.22 4920.28 472
8.010 0.380 0.16 0.10 043 7.00 5284.81 464
8.010 0.380 0.16 0.10 043 6.81 5157.13 453
8.010 0.380 0.16 0.10 043 6.81 5273.64 472
8.010 0.380 0.16 0.10 043 6.44 5283.54 446
8.010 0.710 0.22 0.10 0.31 6.91 5277.04 460
8.010 0.710 0.22 0.10 0.31 6.44 5298.00 438
8.010 0.710 0.22 0.10 0.31 7.36 5106.89 474
8.010 0.710 0.22 0.10 0.31 6.97 5332.02 467
8.010 0.710 0.22 0.10 0.31 7.19 5232.61 471
8.010 0.710 0.22 0.10 0.31 7.40 5126.91 461
8.010 0.710 0.22 0.10 0.31 6.96 5326.14 460
8.010 0.710 0.22 0.10 0.31 7.24 5083.41 479
8.010 0.710 0.22 0.10 0.31 7.07 5171.58 456
8.010 1.040 0.26 0.10 0.25 7.74 5043.97 487
8.010 1.040 0.26 0.10 0.25 777 5046.78 505
8.010 1.040 0.26 0.10 0.25 7.99 5018.71 492
8.010 1.040 0.26 0.10 0.25 7.39 5096.21 475
8.010 1.040 0.26 0.10 0.25 7.63 5153.51 484
8.010 1.040 0.26 0.10 0.25 6.96 5261.67 451
8.010 1.040 0.26 0.10 0.25 7.05 5210.00 470
8.010 1.040 0.26 0.10 0.25 7.43 5120.23 476
8.010 1.040 0.26 0.10 0.25 7.08 5216.69 451
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C.2. Simulation Results DP;

Table C.2: Simulation Results with Demand Profile DPg.

. Travel Orders
WB wec ZA “B “c Pile-on distance handled
0.060 0.060 0.10 0.27 0.96 7.65 5109.86 480
0.060 0.060 0.10 0.27 0.96 6.87 5151.51 450
0.060 0.060 0.10 0.27 0.96 6.70 5252.88 435
0.060 0.060 0.10 0.61 0.39 6.32 5341.34 435
0.060 0.060 0.10 0.61 0.39 6.97 5104.79 478
0.060 0.060 0.10 0.61 0.39 6.57 5227.91 449
0.060 0.060 0.12 0.39 0.67 6.79 522717 460
0.060 0.060 0.12 0.39 0.67 6.91 5066.29 455
0.060 0.060 0.12 0.39 0.67 6.76 5258.56 445
0.060 0.300 0.1 0.63 0.35 6.37 5323.54 448
0.060 0.300 0.1 0.63 0.35 6.67 5254.98 464
0.060 0.300 0.1 0.63 0.35 6.69 5359.05 454
0.060 0.300 0.12 0.47 0.56 7.16 5094.51 470
0.060 0.300 0.12 0.47 0.56 7.30 5148.25 482
0.060 0.300 0.12 0.47 0.56 7.47 5123.32 483
0.060 0.300 0.21 0.22 0.44 7.62 5092.71 465
0.060 0.300 0.21 0.22 0.44 6.77 5233.15 463
0.060 0.300 0.21 0.22 0.44 7.02 5135.59 448
0.060 0.550 0.1 0.39 0.74 6.91 5312.00 464
0.060 0.550 0.1 0.39 0.74 7.1 5146.42 486
0.060 0.550 0.1 0.39 0.74 6.31 5231.68 434
0.060 0.550 0.1 0.42 0.67 6.45 5212.13 443
0.060 0.550 0.1 0.42 0.67 6.98 5039.61 476
0.060 0.550 0.1 0.42 0.67 6.69 5222.53 454
0.060 0.550 0.20 0.31 0.38 6.73 5311.04 448
0.060 0.550 0.20 0.31 0.38 7.1 5226.22 479
0.060 0.550 0.20 0.31 0.38 7.39 5006.63 475
0.060 0.790 0.22 0.24 0.37 7.52 5068.52 485
0.060 0.790 0.22 0.24 0.37 7.82 5004.30 497
0.060 0.790 0.22 0.24 0.37 6.96 5235.59 472
0.060 0.790 0.13 0.54 0.35 7.04 5135.84 471
0.060 0.790 0.13 0.54 0.35 6.98 527717 476
0.060 0.790 0.13 0.54 0.35 6.57 5298.40 443
0.060 0.790 0.13 0.37 0.67 7.12 5198.34 466
0.060 0.790 0.13 0.37 0.67 6.74 5264.52 457
0.060 0.790 0.13 0.37 0.67 6.39 5361.42 431
0.310 0.060 0.09 0.30 1.00 6.54 5294.15 443
0.310 0.060 0.09 0.30 1.00 6.10 5402.48 434
0.310 0.060 0.09 0.30 1.00 6.17 5371.92 431
0.310 0.060 0.09 0.30 1.00 6.03 5364.22 431
0.310 0.060 0.09 0.30 1.00 6.17 5250.35 438
0.310 0.060 0.09 0.30 1.00 5.94 5405.56 412
0.310 0.060 0.09 0.30 1.00 6.57 5411.80 461
0.310 0.060 0.09 0.30 1.00 6.08 5379.20 434
0.310 0.060 0.09 0.30 1.00 6.03 5440.75 420
0.310 0.300 0.14 0.46 0.46 6.32 5315.01 437
0.310 0.300 0.14 0.46 0.46 6.92 5079.57 465
0.310 0.300 0.14 0.46 0.46 7.14 5125.78 457
0.310 0.300 0.14 0.46 0.46 6.76 5171.76 462
0.310 0.300 0.14 0.46 0.46 6.33 5431.88 450
0.310 0.300 0.14 0.46 0.46 6.88 5258.96 458
0.310 0.300 0.14 0.46 0.46 6.40 5257.25 433
0.310 0.300 0.14 0.46 0.46 6.94 5122.42 464
0.310 0.300 0.14 0.46 0.46 7.15 5224.78 459
0.310 0.550 0.15 0.49 0.33 7.08 5080.80 469
0.310 0.550 0.15 0.49 0.33 7.01 5143.23 461
0.310 0.550 0.15 0.49 0.33 6.55 5243.55 447
0.310 0.550 0.15 0.49 0.33 6.94 5117.01 471
0.310 0.550 0.15 0.49 0.33 6.90 5091.75 474
0.310 0.550 0.15 0.49 0.33 6.54 5269.70 451
0.310 0.550 0.15 0.49 0.33 6.53 5259.06 453
0.310 0.550 0.15 0.49 0.33 7.93 5048.92 504
0.310 0.550 0.15 0.49 0.33 7.1 5234.45 457
0.310 0.790 0.15 0.49 0.33 6.81 5207.51 457
0.310 0.790 0.15 0.49 0.33 6.95 5256.43 475
0.310 0.790 0.15 0.49 0.33 7.06 5064.93 470
0.310 0.790 0.15 0.49 0.33 6.92 5136.64 458
0.310 0.790 0.15 0.49 0.33 7.05 5224.89 484
0.310 0.790 0.15 0.49 0.33 6.53 5326.41 447
0.310 0.790 0.15 0.49 0.33 6.68 5332.47 458
0.310 0.790 0.15 0.49 0.33 6.81 5086.64 454
0.310 0.790 0.15 0.49 0.33 6.07 5305.69 431
0.550 0.060 0.12 0.21 1.00 6.08 5402.39 430
0.550 0.060 0.12 0.21 1.00 6.86 5156.54 468
0.550 0.060 0.12 0.21 1.00 6.60 5236.53 456
0.550 0.060 0.12 0.21 1.00 6.17 5334.84 434
0.550 0.060 0.12 0.21 1.00 5.90 5365.23 430
0.550 0.060 0.12 0.21 1.00 6.76 5285.47 454
0.550 0.060 0.12 0.21 1.00 6.21 5366.83 435
0.550 0.060 0.12 0.21 1.00 6.40 5353.88 455
0.550 0.060 0.12 0.21 1.00 6.00 5249.61 418
0.550 0.300 0.17 0.30 0.55 5.94 5461.52 413
0.550 0.300 0.17 0.30 0.55 7.02 5165.77 461
0.550 0.300 0.17 0.30 0.55 6.95 5199.70 465
0.550 0.300 0.17 0.30 0.55 6.71 5259.90 457
0.550 0.300 0.17 0.30 0.55 7.61 5104.91 505
0.550 0.300 0.17 0.30 0.55 6.79 5124.60 456
0.550 0.300 0.17 0.30 0.55 6.05 5399.02 426
0.550 0.300 0.17 0.30 0.55 6.58 5303.48 445
0.550 0.300 0.17 0.30 0.55 6.60 5326.91 446
0.550 0.550 0.19 0.35 0.35 6.59 5300.18 440
0.550 0.550 0.19 0.35 0.35 6.93 5199.40 474
0.550 0.550 0.19 0.35 0.35 7.25 5128.76 467
0.550 0.550 0.19 0.35 0.35 6.99 5216.10 460
0.550 0.550 0.19 0.35 0.35 6.56 5269.55 456
0.550 0.550 0.19 0.35 0.35 6.51 5297.83 440
0.550 0.550 0.19 0.35 0.35 6.76 5329.88 444
0.550 0.550 0.19 0.35 0.35 6.94 5168.56 463
0.550 0.550 0.19 0.35 0.35 6.85 5182.17 463
0.550 0.790 0.19 0.35 0.33 6.67 5318.75 450
0.550 0.790 0.19 0.35 0.33 6.98 5181.87 461

0.550 0.790 0.19 0.35 0.33 7.1 5150.53 470
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Table C.2 continued from previous page

. Travel Orders
VB we ZA ’B “c Pile-on distance handled
0.550 0.790 0.19 0.35 0.33 6.87 5051.26 457
0.550 0.790 0.19 0.35 0.33 6.83 5303.18 457
0.550 0.790 0.19 0.35 0.33 7.18 5131.55 456
0.550 0.790 0.19 0.35 0.33 6.55 5314.74 442
0.550 0.790 0.19 0.35 0.33 6.71 5144.29 473
0.550 0.790 0.19 0.35 0.33 6.56 5304.38 444
0.800 0.060 0.12 0.20 1.00 6.99 5333.47 461
0.800 0.060 0.12 0.20 1.00 7.06 5114.50 477
0.800 0.060 0.12 0.20 1.00 6.36 5353.37 442
0.800 0.060 0.12 0.20 1.00 6.21 5512.00 455
0.800 0.060 0.12 0.20 1.00 6.09 5311.26 441
0.800 0.060 0.12 0.20 1.00 6.45 5311.53 436
0.800 0.060 0.12 0.20 1.00 6.24 5313.81 434
0.800 0.060 0.12 0.20 1.00 6.65 5360.94 474
0.800 0.060 0.12 0.20 1.00 6.89 5195.94 458
0.800 0.300 0.18 0.23 0.60 6.39 5434.54 438
0.800 0.300 0.18 0.23 0.60 6.74 5350.72 462
0.800 0.300 0.18 0.23 0.60 6.60 5269.01 442
0.800 0.300 0.18 0.23 0.60 6.95 5277.57 458
0.800 0.300 0.18 0.23 0.60 6.69 5231.09 450
0.800 0.300 0.18 0.23 0.60 6.17 5280.22 425
0.800 0.300 0.18 0.23 0.60 6.78 5321.10 450
0.800 0.300 0.18 0.23 0.60 6.71 5223.51 468
0.800 0.300 0.18 0.23 0.60 6.67 5208.75 447
0.800 0.550 0.21 0.26 0.38 6.58 5235.36 439
0.800 0.550 0.21 0.26 0.38 7.32 5096.66 480
0.800 0.550 0.21 0.26 0.38 7.00 5206.06 458
0.800 0.550 0.21 0.26 0.38 7.35 5254.03 467
0.800 0.550 0.21 0.26 0.38 6.92 5167.00 474
0.800 0.550 0.21 0.26 0.38 6.50 5178.68 441
0.800 0.550 0.21 0.26 0.38 6.18 5275.15 442
0.800 0.550 0.21 0.26 0.38 713 5095.60 480
0.800 0.550 0.21 0.26 0.38 6.81 5251.16 451
0.800 0.790 0.22 0.27 0.33 6.53 5258.82 451
0.800 0.790 0.22 0.27 0.33 6.83 5123.72 465
0.800 0.790 0.22 0.27 0.33 6.86 5154.76 456
0.800 0.790 0.22 0.27 0.33 6.57 5141.18 449
0.800 0.790 0.22 0.27 0.33 7.66 4960.02 490
0.800 0.790 0.22 0.27 0.33 7.40 5114.39 481
0.800 0.790 0.22 0.27 0.33 7.52 5146.00 470
0.800 0.790 0.22 0.27 0.33 7.07 5255.59 491
0.800 0.790 0.22 0.27 0.33 6.78 5229.24 460
1.000 1.000 0.23 0.23 0.33 717 5215.02 475
1.000 1.000 0.23 0.23 0.33 7.56 4952.92 491
1.000 1.000 0.23 0.23 0.33 7.34 5090.90 476
1.000 1.000 0.23 0.23 0.33 7.87 5050.11 493
1.000 1.000 0.23 0.23 0.33 7.15 5031.93 464
1.000 1.000 0.23 0.23 0.33 777 5073.92 483
1.000 1.000 0.23 0.23 0.33 7.93 4960.38 494
1.000 1.000 0.23 0.23 0.33 7.39 5234.96 485
1.000 1.000 0.23 0.23 0.33 7.92 4961.38 489
1.050 0.060 0.12 0.20 1.00 777 5109.68 488
1.050 0.060 0.12 0.20 1.00 6.63 5248.77 443
1.050 0.060 0.12 0.20 1.00 6.52 5182.70 428
1.050 0.060 0.12 0.20 1.00 6.51 5226.71 440
1.050 0.060 0.12 0.20 1.00 6.49 5288.40 444
1.050 0.060 0.12 0.20 1.00 6.98 5294.19 454
1.050 0.060 0.12 0.20 1.00 6.17 5429.84 446
1.050 0.060 0.12 0.20 1.00 6.57 5186.38 453
1.050 0.060 0.12 0.20 1.00 6.13 5259.18 433
1.050 0.300 0.19 0.20 0.61 6.01 5402.91 424
1.050 0.300 0.19 0.20 0.61 6.92 5292.84 462
1.050 0.300 0.19 0.20 0.61 6.51 5301.08 445
1.050 0.300 0.19 0.20 0.61 761 5135.29 480
1.050 0.300 0.19 0.20 0.61 7.04 5199.86 483
1.050 0.300 0.19 0.20 0.61 6.94 5230.05 468
1.050 0.300 0.19 0.20 0.61 6.81 5264.41 457
1.050 0.300 0.19 0.20 0.61 7.16 5087.06 462
1.050 0.300 0.19 0.20 0.61 7.18 5128.11 472
1.050 0.550 0.22 0.21 0.40 7.06 5165.59 470
1.050 0.550 0.22 0.21 0.40 6.71 5240.13 472
1.050 0.550 0.22 0.21 0.40 6.82 5258.13 462
1.050 0.550 0.22 0.21 0.40 6.65 5404.93 448
1.050 0.550 0.22 0.21 0.40 6.22 5314.39 429
1.050 0.550 0.22 0.21 0.40 7.24 5224.72 470
1.050 0.550 0.22 0.21 0.40 6.68 5282.16 461
1.050 0.550 0.22 0.21 0.40 6.90 5287.01 459
1.050 0.550 0.22 0.21 0.40 71 5357.82 466
1.050 0.790 0.23 0.22 0.33 6.64 5347.02 445
1.050 0.790 0.23 0.22 0.33 7.58 5078.00 492
1.050 0.790 0.23 0.22 0.33 7.53 5161.57 485
1.050 0.790 0.23 0.22 0.33 7.60 5137.41 479
1.050 0.790 0.23 0.22 0.33 7.99 4915.50 508
1.050 0.790 0.23 0.22 0.33 7.68 4848.56 473
1.050 0.790 0.23 0.22 0.33 7.43 5123.63 470
1.050 0.790 0.23 0.22 0.33 7.26 5210.69 485
1.050 0.790 0.23 0.22 0.33 71 5178.27 470
1.300 0.060 0.12 0.20 1.00 777 5114.44 489
1.300 0.060 0.12 0.20 1.00 6.66 5082.68 465
1.300 0.060 0.12 0.20 1.00 6.71 5206.81 448
1.300 0.060 0.12 0.20 1.00 6.75 5343.09 462
1.300 0.060 0.12 0.20 1.00 6.05 5398.39 438
1.300 0.060 0.12 0.20 1.00 6.39 5343.56 458
1.300 0.060 0.12 0.20 1.00 7.04 5191.15 468
1.300 0.060 0.12 0.20 1.00 6.14 5312.40 450
1.300 0.060 0.12 0.20 1.00 6.53 5287.16 448
1.300 0.300 0.19 0.20 0.61 6.29 5318.76 430
1.300 0.300 0.19 0.20 0.61 6.57 5246.47 449
1.300 0.300 0.19 0.20 0.61 6.80 5127.92 448
1.300 0.300 0.19 0.20 0.61 6.58 5206.28 446
1.300 0.300 0.19 0.20 0.61 6.72 5249.42 469
1.300 0.300 0.19 0.20 0.61 6.47 5232.82 429
1.300 0.300 0.19 0.20 0.61 6.50 5408.64 442
1.300 0.300 0.19 0.20 0.61 7.02 5163.15 479
1.300 0.300 0.19 0.20 0.61 6.90 5349.93 457
1.300 0.550 0.22 0.20 0.41 6.67 5313.68 460
1.300 0.550 0.22 0.20 0.41 6.50 5326.26 446
1.300 0.550 0.22 0.20 0.41 6.92 5185.85 444
1.300 0.550 0.22 0.20 0.41 6.65 5359.79 442
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Table C.2 continued from previous page

. Travel Orders
VB wc ZA ’B “c Pile-on distance handled
1.300 0.550 0.22 0.20 0.41 7.13 5268.30 479
1.300 0.550 0.22 0.20 0.41 6.95 5395.62 441
1.300 0.550 0.22 0.20 0.41 6.97 5364.27 465
1.300 0.550 0.22 0.20 041 6.65 5342.70 449
1.300 0.550 0.22 0.20 041 6.80 5235.72 450
1.300 0.790 0.24 0.20 0.33 7.20 5141.26 473
1.300 0.790 0.24 0.20 0.33 7.32 5203.95 484
1.300 0.790 0.24 0.20 0.33 7.65 5029.89 486
1.300 0.790 0.24 0.20 0.33 7.51 5013.02 481
1.300 0.790 0.24 0.20 0.33 7.04 5202.67 465
1.300 0.790 0.24 0.20 0.33 6.77 5202.50 455
1.300 0.790 0.24 0.20 0.33 6.89 5279.94 443
1.300 0.790 0.24 0.20 0.33 7.90 5060.65 502

1.300 0.790 0.24 0.20 0.33 7.69 5062.45 471
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C.3. Simulation Results DP,

Table C.3: Simulation Results with Demand Profile DP..

. Travel Orders
VB wec ZA “B “c Pile-on distance handled
0.060 0.060 0.09 0.19 0.68 7.38 5143.28 486
0.060 0.060 0.09 0.19 0.68 7.61 5064.55 499
0.060 0.060 0.09 0.19 0.68 8.07 4898.80 498
0.060 0.060 0.10 0.19 0.67 8.08 4916.79 503
0.060 0.060 0.10 0.19 0.67 7.68 5098.72 494
0.060 0.060 0.10 0.19 0.67 7.89 4969.17 501
0.060 0.060 0.08 0.23 0.69 7.21 5111.62 494
0.060 0.060 0.08 0.23 0.69 7.49 491217 485
0.060 0.060 0.08 0.23 0.69 8.05 4905.41 492
0.060 0.270 0.1 1.00 0.40 7.75 5024.00 491
0.060 0.270 0.1 1.00 0.40 8.24 4902.79 505
0.060 0.270 0.1 1.00 0.40 7.58 4958.16 484
0.060 0.270 0.1 1.00 0.40 7.92 4983.01 493
0.060 0.270 0.1 1.00 0.40 7.43 5016.00 504
0.060 0.270 0.1 1.00 0.40 7.72 5080.61 496
0.060 0.270 0.11 1.00 0.40 7.80 5067.74 491
0.060 0.270 0.11 1.00 0.40 8.54 5040.34 528
0.060 0.270 0.11 1.00 0.40 8.63 4831.23 505
0.060 0.490 0.13 1.00 0.33 8.53 4885.30 513
0.060 0.490 0.13 1.00 0.33 7.77 5062.79 495
0.060 0.490 0.13 1.00 0.33 8.32 4932.15 512
0.060 0.490 0.13 1.00 0.33 7.74 4990.16 479
0.060 0.490 0.13 1.00 0.33 7.53 5063.37 475
0.060 0.490 0.13 1.00 0.33 7.19 5183.62 463
0.060 0.490 0.13 1.00 0.33 7.90 4933.88 497
0.060 0.490 0.13 1.00 0.33 7.85 4952.08 515
0.060 0.490 0.13 1.00 0.33 7.84 4995.05 492
0.060 0.700 0.13 1.00 0.33 7.09 4954.66 465
0.060 0.700 0.13 1.00 0.33 8.14 4833.93 515
0.060 0.700 0.13 1.00 0.33 8.35 4981.24 508
0.060 0.700 0.13 1.00 0.33 8.18 4947.64 503
0.060 0.700 0.13 1.00 0.33 8.44 4885.20 510
0.060 0.700 0.13 1.00 0.33 8.04 4839.77 493
0.060 0.700 0.13 1.00 0.33 7.90 4959.72 493
0.060 0.700 0.13 1.00 0.33 7.88 4941.14 500
0.060 0.700 0.13 1.00 0.33 8.42 4956.06 490
1.000 1.000 0.21 0.21 0.33 8.21 4873.26 501
1.000 1.000 0.21 0.21 0.33 8.81 4785.37 513
1.000 1.000 0.21 0.21 0.33 8.57 4802.62 497
1.000 1.000 0.21 0.21 0.33 8.52 4762.08 506
1.000 1.000 0.21 0.21 0.33 8.62 4964.56 521
1.000 1.000 0.21 0.21 0.33 8.65 4812.38 509
1.000 1.000 0.21 0.21 0.33 8.56 4883.39 508
1.000 1.000 0.21 0.21 0.33 9.04 4687.91 532
1.000 1.000 0.21 0.21 0.33 9.28 4666.80 517
1.260 0.060 0.08 0.19 0.70 9.23 4707.07 522
1.260 0.060 0.08 0.19 0.70 8.1 4977 .44 509
1.260 0.060 0.08 0.19 0.70 7.39 4952.85 474
1.260 0.060 0.11 0.41 0.55 7.25 5078.16 472
1.260 0.060 0.11 0.41 0.55 8.41 4901.67 530
1.260 0.060 0.1 0.41 0.55 8.14 5009.23 496
1.260 0.060 0.08 0.17 0.71 8.24 4953.87 501
1.260 0.060 0.08 0.17 0.71 8.37 4799.75 522
1.260 0.060 0.08 0.17 0.71 7.64 4939.37 491
1.260 0.270 0.15 0.14 0.54 7.59 4939.92 491
1.260 0.270 0.15 0.14 0.54 8.01 4972.42 496
1.260 0.270 0.15 0.14 0.54 7.90 4992.33 491
1.260 0.270 0.15 0.14 0.54 7.80 5041.62 479
1.260 0.270 0.15 0.14 0.54 8.07 4938.63 499
1.260 0.270 0.15 0.14 0.54 7.87 4991.60 478
1.260 0.270 0.15 0.14 0.54 7.60 4983.69 480
1.260 0.270 0.15 0.14 0.54 7.23 5121.49 483
1.260 0.270 0.15 0.14 0.54 6.83 5084.97 455
1.260 0.490 0.19 0.16 0.40 7.1 5039.62 469
1.260 0.490 0.19 0.16 0.40 8.14 4902.33 509
1.260 0.490 0.19 0.16 0.40 8.43 4812.27 510
1.260 0.490 0.19 0.16 0.40 8.24 4892.74 504
1.260 0.490 0.19 0.16 0.40 7.66 4920.89 498
1.260 0.490 0.19 0.16 0.40 7.80 4967.25 483
1.260 0.490 0.19 0.16 0.40 7.96 5014.97 498
1.260 0.490 0.19 0.16 0.40 8.55 4767.28 518
1.260 0.490 0.19 0.16 0.40 8.49 4807.70 492
1.260 0.700 0.21 0.17 0.33 8.49 4767.35 504
1.260 0.700 0.21 0.17 0.33 9.46 4622.56 535
1.260 0.700 0.21 0.17 0.33 9.26 4786.86 534
1.260 0.700 0.21 0.17 0.33 8.92 4738.48 512
1.260 0.700 0.21 0.17 0.33 9.05 4758.18 533
1.260 0.700 0.21 0.17 0.33 8.68 4850.95 512
1.260 0.700 0.21 0.17 0.33 8.90 4729.01 527
1.260 0.700 0.21 0.17 0.33 8.64 4908.53 518
1.260 0.700 0.21 0.17 0.33 8.13 5015.08 483
2470 0.060 0.09 0.16 0.69 8.14 4951.35 494
2.470 0.060 0.09 0.16 0.69 8.38 4955.23 521
2.470 0.060 0.09 0.16 0.69 8.40 4985.89 499
2.470 0.060 0.09 0.14 0.69 7.75 5003.63 501
2.470 0.060 0.09 0.14 0.69 8.27 4832.66 494
2.470 0.060 0.09 0.14 0.69 8.02 4974.81 499
2.470 0.060 0.08 0.17 0.73 8.33 4843.58 508
2.470 0.060 0.08 0.17 0.73 7.92 5041.56 505
2470 0.060 0.08 0.17 0.73 7.75 4984.82 499
2470 0.270 0.15 0.14 0.54 7.33 5060.69 494
2470 0.270 0.15 0.14 0.54 7.58 4988.38 495
2470 0.270 0.15 0.14 0.54 7.38 5014.36 463
2.470 0.270 0.15 0.14 0.54 7.18 4969.58 470
2.470 0.270 0.15 0.14 0.54 8.00 4912.99 504
2.470 0.270 0.15 0.14 0.54 7.44 5080.35 473
2.470 0.270 0.15 0.14 0.54 7.69 5082.34 493
2.470 0.270 0.15 0.14 0.54 8.50 4727.25 522
2.470 0.270 0.15 0.14 0.54 7.63 4881.90 477
2.470 0.490 0.19 0.14 0.40 7.73 4780.70 492
2470 0.490 0.19 0.14 0.40 8.45 4927.69 518
2470 0.490 0.19 0.14 0.40 8.22 5031.35 493
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Table C.3 continued from previous page

. Travel Orders
VB wc ZA ’B “c Pile-on distance handled
2.470 0.490 0.19 0.14 0.40 8.29 4827.34 507
2470 0.490 0.19 0.14 0.40 8.61 4884.95 510
2470 0.490 0.19 0.14 0.40 8.72 4862.31 512
2470 0.490 0.19 0.14 0.40 777 5017.33 496
2.470 0.490 0.19 0.14 0.40 8.87 4769.07 526
2.470 0.490 0.19 0.14 0.40 8.67 4915.19 509
2.470 0.700 0.22 0.14 0.33 8.10 5033.06 507
2.470 0.700 0.22 0.14 0.33 8.55 4986.99 501
2470 0.700 0.22 0.14 0.33 8.22 4907.70 502
2.470 0.700 0.22 0.14 0.33 8.62 4936.06 502
2470 0.700 0.22 0.14 0.33 8.53 4788.39 506
2470 0.700 0.22 0.14 0.33 8.25 4936.91 488
2470 0.700 0.22 0.14 0.33 7.84 4928.19 487
2.470 0.700 0.22 0.14 0.33 7.99 5037.66 498
2.470 0.700 0.22 0.14 0.33 8.29 4875.71 494
3.680 0.060 0.09 0.17 0.70 8.36 4944.91 500
3.680 0.060 0.09 0.17 0.70 7.67 5031.71 498
3.680 0.060 0.09 0.17 0.70 7.66 5027.61 472
3.680 0.060 0.09 0.17 0.68 7.90 4978.49 488
3.680 0.060 0.09 0.17 0.68 7.7 5038.24 494
3.680 0.060 0.09 0.17 0.68 7.67 5170.72 484
3.680 0.060 0.09 0.19 0.70 8.81 4861.88 514
3.680 0.060 0.09 0.19 0.70 7.88 4989.43 485
3.680 0.060 0.09 0.19 0.70 7.44 4912.93 477
3.680 0.270 0.15 0.14 0.54 8.23 4983.13 491
3.680 0.270 0.15 0.14 0.54 7.25 5112.52 471
3.680 0.270 0.15 0.14 0.54 8.06 5003.06 484
3.680 0.270 0.15 0.14 0.54 7.01 5279.87 464
3.680 0.270 0.15 0.14 0.54 8.13 4799.31 497
3.680 0.270 0.15 0.14 0.54 8.03 5103.74 490
3.680 0.270 0.15 0.14 0.54 7.45 5067.70 469
3.680 0.270 0.15 0.14 0.54 8.63 4945.86 520
3.680 0.270 0.15 0.14 0.54 8.77 4877.93 505
3.680 0.490 0.19 0.14 0.40 8.07 4972.24 496
3.680 0.490 0.19 0.14 0.40 8.36 4929.07 528
3.680 0.490 0.19 0.14 0.40 8.14 4948.45 494
3.680 0.490 0.19 0.14 0.40 8.49 4830.99 502
3.680 0.490 0.19 0.14 0.40 8.49 4942.83 516
3.680 0.490 0.19 0.14 0.40 8.34 4882.73 506
3.680 0.490 0.19 0.14 0.40 8.09 4948.94 503
3.680 0.490 0.19 0.14 0.40 9.48 4527.82 537
3.680 0.490 0.19 0.14 0.40 8.75 4809.99 515
3.680 0.700 0.22 0.14 0.33 8.89 4752.11 521
3.680 0.700 0.22 0.14 0.33 8.57 4942.28 525
3.680 0.700 0.22 0.14 0.33 8.73 4892.25 499
3.680 0.700 0.22 0.14 0.33 8.58 4891.62 508
3.680 0.700 0.22 0.14 0.33 8.71 4814.68 526
3.680 0.700 0.22 0.14 0.33 8.50 4790.51 510
3.680 0.700 0.22 0.14 0.33 7.83 5015.59 488
3.680 0.700 0.22 0.14 0.33 8.34 4793.14 514
3.680 0.700 0.22 0.14 0.33 8.49 4772.25 489
4.880 0.060 0.11 0.47 0.53 8.74 4883.14 515
4.880 0.060 0.1 0.47 0.53 7.79 4865.44 492
4.880 0.060 0.11 0.47 0.53 7.52 4957.35 470
4.880 0.060 0.08 0.17 0.71 7.97 4918.15 496
4.880 0.060 0.08 0.17 0.71 7.24 4891.82 486
4.880 0.060 0.08 0.17 0.71 7.49 5051.70 469
4.880 0.060 0.08 0.17 0.71 772 4831.13 491
4.880 0.060 0.08 0.17 0.71 8.11 4880.39 511
4.880 0.060 0.08 0.17 0.71 8.46 4768.13 483
4.880 0.270 0.15 0.14 0.54 7.80 5148.36 494
4.880 0.270 0.15 0.14 0.54 727 5083.05 485
4.880 0.270 0.15 0.14 0.54 7.49 4910.14 474
4.880 0.270 0.15 0.14 0.54 7.80 4844.65 478
4.880 0.270 0.15 0.14 0.54 7.60 5073.85 498
4.880 0.270 0.15 0.14 0.54 7.82 4963.33 483
4.880 0.270 0.15 0.14 0.54 772 4982.83 486
4.880 0.270 0.15 0.14 0.54 8.21 4905.27 508
4.880 0.270 0.15 0.14 0.54 7.54 5057.64 478
4.880 0.490 0.19 0.14 0.40 8.07 4924.36 489
4.880 0.490 0.19 0.14 0.40 8.52 4853.30 519
4.880 0.490 0.19 0.14 0.40 8.12 5001.52 494
4.880 0.490 0.19 0.14 0.40 8.21 4907.96 489
4.880 0.490 0.19 0.14 0.40 8.74 4723.91 519
4.880 0.490 0.19 0.14 0.40 8.72 4761.61 498
4.880 0.490 0.19 0.14 0.40 8.41 4996.55 490
4.880 0.490 0.19 0.14 0.40 9.63 4655.33 545
4.880 0.490 0.19 0.14 0.40 8.82 4718.25 506
4.880 0.700 0.22 0.14 0.33 9.20 4742.39 520
4.880 0.700 0.22 0.14 0.33 8.09 4909.23 508
4.880 0.700 0.22 0.14 0.33 8.50 4933.08 511
4.880 0.700 0.22 0.14 0.33 8.15 4961.96 490
4.880 0.700 0.22 0.14 0.33 8.32 4903.53 513
4.880 0.700 0.22 0.14 0.33 8.00 4890.00 483
4.880 0.700 0.22 0.14 0.33 7.92 4994.91 495
4.880 0.700 0.22 0.14 0.33 8.57 4860.05 520
4.880 0.700 0.22 0.14 0.33 7.85 4968.21 486
6.090 0.060 0.10 0.64 0.54 8.54 4951.00 509
6.090 0.060 0.10 0.64 0.54 8.34 4898.89 509
6.090 0.060 0.10 0.64 0.54 7.96 4915.55 488
6.090 0.060 0.07 0.17 0.74 8.09 5015.90 490
6.090 0.060 0.07 0.17 0.74 7.22 4930.38 490
6.090 0.060 0.07 0.17 0.74 8.34 4829.94 499
6.090 0.060 0.09 0.17 0.70 7.39 5078.12 483
6.090 0.060 0.09 0.17 0.70 7.93 4954.09 504
6.090 0.060 0.09 0.17 0.70 7.87 5005.24 489
6.090 0.270 0.15 0.14 0.54 7.49 5112.13 475
6.090 0.270 0.15 0.14 0.54 7.33 4809.58 485
6.090 0.270 0.15 0.14 0.54 7.54 4967.57 487
6.090 0.270 0.15 0.14 0.54 7.34 5011.66 482
6.090 0.270 0.15 0.14 0.54 7.75 4995.83 505
6.090 0.270 0.15 0.14 0.54 7.85 4943.92 488
6.090 0.270 0.15 0.14 0.54 7.55 5056.64 485
6.090 0.270 0.15 0.14 0.54 7.50 4973.88 499
6.090 0.270 0.15 0.14 0.54 7.76 5105.32 492
6.090 0.490 0.19 0.14 0.40 7.87 5055.53 486
6.090 0.490 0.19 0.14 0.40 8.30 4839.93 515
6.090 0.490 0.19 0.14 0.40 8.63 4738.52 506

6.090 0.490 0.19 0.14 0.40 8.26 4888.15 51
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Table C.3 continued from previous page

. Travel Orders

VB we ZA ’B “c Pile-on distance handled
6.090 0.490 0.19 0.14 0.40 7.32 5050.08 477
6.090 0.490 0.19 0.14 0.40 7.65 4980.23 484
6.090 0.490 0.19 0.14 0.40 7.95 4965.04 485
6.090 0.490 0.19 0.14 0.40 8.89 4792.19 527
6.090 0.490 0.19 0.14 0.40 8.33 4969.04 512
6.090 0.700 0.22 0.14 0.33 8.60 4723.53 515
6.090 0.700 0.22 0.14 0.33 8.57 4950.77 506
6.090 0.700 0.22 0.14 0.33 8.31 4857.76 502
6.090 0.700 0.22 0.14 0.33 8.21 4880.87 492
6.090 0.700 0.22 0.14 0.33 9.36 4707.12 540
6.090 0.700 0.22 0.14 0.33 8.48 4881.32 498
6.090 0.700 0.22 0.14 0.33 8.28 4932.91 499
6.090 0.700 0.22 0.14 0.33 8.65 4826.73 520
6.090 0.700 0.22 0.14 0.33 8.53 4928.00 504
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C.4. Simulation Results DP,

Table C.4: Simulation Results with Demand Profile DPp.

. Travel Orders
WB wec ZA “B “c Pile-on distance handled
0.050 0.050 0.16 0.43 0.73 8.48 4921.74 495
0.050 0.050 0.16 0.43 0.73 8.43 4886.05 526
0.050 0.050 0.16 0.43 0.73 8.22 4864.70 503
0.050 0.050 0.19 0.36 0.61 8.00 4965.60 496
0.050 0.050 0.19 0.36 0.61 8.33 4881.01 525
0.050 0.050 0.19 0.36 0.61 8.53 5035.83 499
0.050 0.050 0.18 0.40 0.60 7.80 5091.72 486
0.050 0.050 0.18 0.40 0.60 8.55 4862.74 520
0.050 0.050 0.18 0.40 0.60 8.05 5045.83 474
0.050 0.210 0.10 1.00 0.50 7.72 4979.95 480
0.050 0.210 0.10 1.00 0.50 7.79 4942.59 500
0.050 0.210 0.10 1.00 0.50 6.67 5223.48 457
0.050 0.210 0.10 1.00 0.50 6.98 5059.96 473
0.050 0.210 0.10 1.00 0.50 6.75 5152.62 465
0.050 0.210 0.10 1.00 0.50 7.33 5109.89 480
0.050 0.210 0.10 1.00 0.50 7.08 5036.63 470
0.050 0.210 0.10 1.00 0.50 7.50 5118.65 486
0.050 0.210 0.10 1.00 0.50 7.91 5103.56 501
0.050 0.380 0.10 1.00 0.50 7.62 4933.01 479
0.050 0.380 0.10 1.00 0.50 7.75 4978.87 493
0.050 0.380 0.10 1.00 0.50 7.35 5029.07 483
0.050 0.380 0.10 1.00 0.50 7.07 5203.22 468
0.050 0.380 0.10 1.00 0.50 7.58 4975.18 499
0.050 0.380 0.10 1.00 0.50 7.91 4891.54 498
0.050 0.380 0.10 1.00 0.50 7.30 5135.13 477
0.050 0.380 0.10 1.00 0.50 7.45 4971.67 490
0.050 0.380 0.10 1.00 0.50 7.84 4881.65 483
0.050 0.540 0.10 1.00 0.50 7.25 5224.23 467
0.050 0.540 0.10 1.00 0.50 7.64 4837.26 490
0.050 0.540 0.10 1.00 0.50 6.81 5300.80 463
0.050 0.540 0.10 1.00 0.50 7.20 5174.03 477
0.050 0.540 0.10 1.00 0.50 7.43 4886.95 488
0.050 0.540 0.10 1.00 0.50 7.22 5114.63 468
0.050 0.540 0.10 1.00 0.50 7.46 5051.54 478
0.050 0.540 0.10 1.00 0.50 7.41 4920.57 484
0.050 0.540 0.10 1.00 0.50 7.16 5007.38 462
0.200 0.050 0.11 0.58 1.00 7.23 5016.36 474
0.200 0.050 0.11 0.58 1.00 6.97 5021.15 469
0.200 0.050 0.11 0.58 1.00 6.84 5171.95 463
0.200 0.050 0.11 0.58 1.00 7.10 5129.75 470
0.200 0.050 0.1 0.58 1.00 7.04 5119.14 485
0.200 0.050 0.1 0.58 1.00 7.16 5151.06 463
0.200 0.050 0.1 0.58 1.00 7.25 5065.21 465
0.200 0.050 0.1 0.58 1.00 7.47 5110.15 496
0.200 0.050 0.1 0.58 1.00 7.33 5178.78 472
0.200 0.210 0.14 0.68 0.63 7.60 5025.01 476
0.200 0.210 0.14 0.68 0.63 7.87 4892.83 495
0.200 0.210 0.14 0.68 0.63 7.04 5228.65 472
0.200 0.210 0.14 0.68 0.63 6.98 5118.79 467
0.200 0.210 0.14 0.68 0.63 7.54 4913.13 492
0.200 0.210 0.14 0.68 0.63 6.74 5187.44 451
0.200 0.210 0.14 0.68 0.63 7.45 4985.70 478
0.200 0.210 0.14 0.68 0.63 7.59 5051.73 489
0.200 0.210 0.14 0.68 0.63 6.64 5231.95 443
0.200 0.380 0.14 0.72 0.50 7.43 5144.59 480
0.200 0.380 0.14 0.72 0.50 7.30 5024.92 489
0.200 0.380 0.14 0.72 0.50 7.80 4886.02 488
0.200 0.380 0.14 0.72 0.50 7.98 4913.95 491
0.200 0.380 0.14 0.72 0.50 7.66 5070.99 480
0.200 0.380 0.14 0.72 0.50 7.01 5081.49 461
0.200 0.380 0.14 0.72 0.50 7.40 5025.89 479
0.200 0.380 0.14 0.72 0.50 7.51 5059.00 487
0.200 0.380 0.14 0.72 0.50 6.80 5024.99 448
0.200 0.540 0.14 0.72 0.50 7.65 5016.20 481
0.200 0.540 0.14 0.72 0.50 8.15 4839.96 497
0.200 0.540 0.14 0.72 0.50 7.94 4977.35 478
0.200 0.540 0.14 0.72 0.50 8.16 4895.93 503
0.200 0.540 0.14 0.72 0.50 7.76 4995.09 492
0.200 0.540 0.14 0.72 0.50 7.39 5068.31 483
0.200 0.540 0.14 0.72 0.50 7.19 5093.62 466
0.200 0.540 0.14 0.72 0.50 7.04 5221.78 474
0.200 0.540 0.14 0.72 0.50 7.25 5075.14 467
0.350 0.050 0.14 0.41 1.00 7.58 5001.31 482
0.350 0.050 0.14 0.41 1.00 7.38 5065.25 490
0.350 0.050 0.14 0.41 1.00 7.31 5222.23 482
0.350 0.050 0.14 0.41 1.00 7.66 4978.89 482
0.350 0.050 0.14 0.41 1.00 7.67 5009.15 488
0.350 0.050 0.14 0.41 1.00 7.07 5203.61 464
0.350 0.050 0.14 0.41 1.00 6.89 5074.18 462
0.350 0.050 0.14 0.41 1.00 7.78 5024.78 484
0.350 0.050 0.14 0.41 1.00 7.09 5018.39 465
0.350 0.210 0.16 0.46 0.74 7.60 4981.28 480
0.350 0.210 0.16 0.46 0.74 7.55 4974.69 487
0.350 0.210 0.16 0.46 0.74 7.46 5058.71 462
0.350 0.210 0.16 0.46 0.74 7.78 5061.44 478
0.350 0.210 0.16 0.46 0.74 7.35 5038.34 495
0.350 0.210 0.16 0.46 0.74 7.81 4946.70 479
0.350 0.210 0.16 0.46 0.74 7.03 5117.16 471
0.350 0.210 0.16 0.46 0.74 7.16 5123.15 482
0.350 0.210 0.16 0.46 0.74 712 5118.70 454
0.350 0.380 0.18 0.50 0.50 6.96 5197.67 465
0.350 0.380 0.18 0.50 0.50 8.03 5035.69 498
0.350 0.380 0.18 0.50 0.50 7.7 5053.43 479
0.350 0.380 0.18 0.50 0.50 7.67 5004.29 488
0.350 0.380 0.18 0.50 0.50 7.90 4970.97 501
0.350 0.380 0.18 0.50 0.50 7.31 5181.24 484
0.350 0.380 0.18 0.50 0.50 7.63 5053.42 472
0.350 0.380 0.18 0.50 0.50 7.68 4987.77 498
0.350 0.380 0.18 0.50 0.50 7.49 5043.77 478
0.350 0.540 0.18 0.50 0.50 7.65 5076.11 493
0.350 0.540 0.18 0.50 0.50 7.77 4941.07 493

0.350 0.540 0.18 0.50 0.50 7.44 5017.25 474
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Table C.4 continued from previous page

. Travel Orders
VB we ZA ’B “c Pile-on distance handled
0.350 0.540 0.18 0.50 0.50 7.29 5149.56 467
0.350 0.540 0.18 0.50 0.50 8.44 4982.06 519
0.350 0.540 0.18 0.50 0.50 7.38 5130.05 483
0.350 0.540 0.18 0.50 0.50 7.33 5117.20 474
0.350 0.540 0.18 0.50 0.50 8.14 5031.20 507
0.350 0.540 0.18 0.50 0.50 7.80 5059.98 487
0.490 0.050 0.15 0.33 1.00 7.53 5063.81 487
0.490 0.050 0.15 0.33 1.00 7.7 4923.29 489
0.490 0.050 0.15 0.33 1.00 7.65 4857.80 478
0.490 0.050 0.15 0.33 1.00 7.76 5114.06 486
0.490 0.050 0.15 0.33 1.00 7.97 4992.80 499
0.490 0.050 0.15 0.33 1.00 7.66 4991.63 478
0.490 0.050 0.15 0.33 1.00 7.33 5167.02 472
0.490 0.050 0.15 0.33 1.00 7.74 4948.46 490
0.490 0.050 0.15 0.33 1.00 7.48 5067.73 479
0.490 0.210 0.17 0.34 0.80 717 5155.69 466
0.490 0.210 0.17 0.34 0.80 8.15 4780.15 495
0.490 0.210 0.17 0.34 0.80 7.32 5152.24 473
0.490 0.210 0.17 0.34 0.80 7.28 5118.16 478
0.490 0.210 0.17 0.34 0.80 8.08 4980.68 508
0.490 0.210 0.17 0.34 0.80 7.57 5134.48 488
0.490 0.210 0.17 0.34 0.80 7.15 5129.02 481
0.490 0.210 0.17 0.34 0.80 7.32 5129.46 482
0.490 0.210 0.17 0.34 0.80 777 4908.69 485
0.490 0.380 0.19 0.38 0.51 772 5056.97 480
0.490 0.380 0.19 0.38 0.51 8.55 4836.29 531
0.490 0.380 0.19 0.38 0.51 7.48 5065.90 481
0.490 0.380 0.19 0.38 0.51 7.95 4976.10 506
0.490 0.380 0.19 0.38 0.51 7.74 5135.37 477
0.490 0.380 0.19 0.38 0.51 8.23 4934.22 497
0.490 0.380 0.19 0.38 0.51 7.40 5128.19 478
0.490 0.380 0.19 0.38 0.51 7.24 5183.13 484
0.490 0.380 0.19 0.38 0.51 7.46 5058.11 483
0.490 0.540 0.19 0.38 0.50 7.63 4955.89 479
0.490 0.540 0.19 0.38 0.50 8.63 4912.79 520
0.490 0.540 0.19 0.38 0.50 8.39 4795.05 498
0.490 0.540 0.19 0.38 0.50 8.98 4811.19 519
0.490 0.540 0.19 0.38 0.50 7.31 5071.02 490
0.490 0.540 0.19 0.38 0.50 7.78 5020.57 486
0.490 0.540 0.19 0.38 0.50 7.52 5040.95 468
0.490 0.540 0.19 0.38 0.50 7.45 5102.95 492
0.490 0.540 0.19 0.38 0.50 7.31 5110.89 482
0.640 0.050 0.15 0.33 1.00 7.78 5009.90 484
0.640 0.050 0.15 0.33 1.00 7.48 5022.66 497
0.640 0.050 0.15 0.33 1.00 8.01 5022.43 496
0.640 0.050 0.15 0.33 1.00 8.01 4960.17 489
0.640 0.050 0.15 0.33 1.00 7.79 5122.83 492
0.640 0.050 0.15 0.33 1.00 7.45 5104.16 462
0.640 0.050 0.15 0.33 1.00 6.84 5241.23 454
0.640 0.050 0.15 0.33 1.00 7.45 5003.71 483
0.640 0.050 0.15 0.33 1.00 7.01 5125.92 457
0.640 0.210 0.17 0.33 0.80 7.31 5153.66 473
0.640 0.210 0.17 0.33 0.80 7.16 5101.46 486
0.640 0.210 0.17 0.33 0.80 7.39 4938.44 464
0.640 0.210 0.17 0.33 0.80 7.59 4962.63 475
0.640 0.210 0.17 0.33 0.80 7.26 5019.44 469
0.640 0.210 0.17 0.33 0.80 7.79 4947.68 482
0.640 0.210 0.17 0.33 0.80 7.05 5143.06 463
0.640 0.210 0.17 0.33 0.80 7.31 5015.83 476
0.640 0.210 0.17 0.33 0.80 7.93 5041.84 485
0.640 0.380 0.20 0.33 0.53 7.56 4963.65 479
0.640 0.380 0.20 0.33 0.53 8.74 4745.39 515
0.640 0.380 0.20 0.33 0.53 8.37 4960.34 502
0.640 0.380 0.20 0.33 0.53 7.64 5025.54 490
0.640 0.380 0.20 0.33 0.53 8.12 4905.53 514
0.640 0.380 0.20 0.33 0.53 8.41 4890.16 501
0.640 0.380 0.20 0.33 0.53 8.12 4959.04 502
0.640 0.380 0.20 0.33 0.53 8.31 4863.63 504
0.640 0.380 0.20 0.33 0.53 7.79 5000.90 482
0.640 0.540 0.20 0.33 0.50 8.39 4842.49 497
0.640 0.540 0.20 0.33 0.50 8.59 4783.65 523
0.640 0.540 0.20 0.33 0.50 8.69 4782.70 505
0.640 0.540 0.20 0.33 0.50 7.55 5099.69 491
0.640 0.540 0.20 0.33 0.50 8.80 4777.61 529
0.640 0.540 0.20 0.33 0.50 8.91 4807.03 521
0.640 0.540 0.20 0.33 0.50 7.69 4949.22 489
0.640 0.540 0.20 0.33 0.50 8.40 4806.58 517
0.640 0.540 0.20 0.33 0.50 7.60 4952.00 490
0.790 0.050 0.15 0.33 1.00 7.63 4964.62 492
0.790 0.050 0.15 0.33 1.00 6.77 5199.09 467
0.790 0.050 0.15 0.33 1.00 7.04 5162.57 458
0.790 0.050 0.15 0.33 1.00 7.03 5134.14 468
0.790 0.050 0.15 0.33 1.00 7.58 5125.27 485
0.790 0.050 0.15 0.33 1.00 7.65 4955.04 480
0.790 0.050 0.15 0.33 1.00 7.53 5061.79 483
0.790 0.050 0.15 0.33 1.00 7.61 5168.12 481
0.790 0.050 0.15 0.33 1.00 7.10 5047.17 468
0.790 0.210 0.17 0.33 0.80 7.48 5078.78 474
0.790 0.210 0.17 0.33 0.80 7.88 5043.16 498
0.790 0.210 0.17 0.33 0.80 7.22 5113.18 475
0.790 0.210 0.17 0.33 0.80 7.22 5215.40 489
0.790 0.210 0.17 0.33 0.80 7.60 5129.98 496
0.790 0.210 0.17 0.33 0.80 7.59 5266.38 486
0.790 0.210 0.17 0.33 0.80 7.47 5065.32 478
0.790 0.210 0.17 0.33 0.80 7.96 5036.27 500
0.790 0.210 0.17 0.33 0.80 7.81 4973.37 492
0.790 0.380 0.20 0.33 0.53 8.08 4970.74 486
0.790 0.380 0.20 0.33 0.53 8.09 4912.00 505
0.790 0.380 0.20 0.33 0.53 8.56 4949.14 510
0.790 0.380 0.20 0.33 0.53 8.14 5005.53 491
0.790 0.380 0.20 0.33 0.53 8.79 4814.84 515
0.790 0.380 0.20 0.33 0.53 8.30 4931.59 501
0.790 0.380 0.20 0.33 0.53 8.36 4980.39 512
0.790 0.380 0.20 0.33 0.53 9.00 4853.05 534
0.790 0.380 0.20 0.33 0.53 8.97 4733.85 518
0.790 0.540 0.20 0.33 0.50 8.19 4860.31 493
0.790 0.540 0.20 0.33 0.50 8.78 4747.41 519
0.790 0.540 0.20 0.33 0.50 8.53 4818.54 492
0.790 0.540 0.20 0.33 0.50 8.73 4863.88 517
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Table C.4 continued from previous page

. Travel Orders
VB wc ZA ’B “c Pile-on distance handled
0.790 0.540 0.20 0.33 0.50 8.39 4839.00 506
0.790 0.540 0.20 0.33 0.50 7.57 4940.50 490
0.790 0.540 0.20 0.33 0.50 7.24 5016.85 464
0.790 0.540 0.20 0.33 0.50 8.18 4857.18 509
0.790 0.540 0.20 0.33 0.50 8.39 4916.04 512
1.000 1.000 0.20 0.33 0.50 8.06 4944.02 499
1.000 1.000 0.20 0.33 0.50 9.16 4693.50 532
1.000 1.000 0.20 0.33 0.50 9.23 4689.21 523
1.000 1.000 0.20 0.33 0.50 8.48 4722.50 505
1.000 1.000 0.20 0.33 0.50 8.57 4756.82 526
1.000 1.000 0.20 0.33 0.50 8.49 4908.43 490
1.000 1.000 0.20 0.33 0.50 8.97 4850.96 522
1.000 1.000 0.20 0.33 0.50 9.35 4677.92 538

1.000 1.000 0.20 0.33 0.50 9.58 4781.70 533
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C.5. Simulation Results DP;

Table C.5: Simulation Results with Demand Profile DPg.

. Travel Orders
VB wec ZA “B “c Pile-on distance handled
0.060 0.060 0.12 1.00 1.00 8.52 4898.88 508
0.060 0.060 0.12 1.00 1.00 9.78 4573.95 558
0.060 0.060 0.12 1.00 1.00 9.20 4701.61 528
0.060 0.060 0.12 1.00 1.00 9.63 4500.26 544
0.060 0.060 0.12 1.00 1.00 10.40 4360.42 561
0.060 0.060 0.12 1.00 1.00 9.18 4484.59 525
0.060 0.060 0.12 1.00 1.00 9.21 4643.04 518
0.060 0.060 0.12 1.00 1.00 9.34 4616.30 531
0.060 0.060 0.12 1.00 1.00 8.91 4705.34 509
0.290 0.060 0.15 0.52 1.00 8.99 4629.29 531
0.290 0.060 0.15 0.52 1.00 10.32 4675.81 564
0.290 0.060 0.15 0.52 1.00 10.00 4589.77 537
0.290 0.060 0.15 0.52 1.00 10.59 454317 553
0.290 0.060 0.15 0.52 1.00 9.85 4624.19 546
0.290 0.060 0.15 0.52 1.00 9.69 4617.50 511
0.290 0.060 0.15 0.52 1.00 10.19 4572.29 541
0.290 0.060 0.15 0.52 1.00 9.73 4557.06 536
0.290 0.060 0.15 0.52 1.00 9.31 4680.52 514
0.530 0.060 0.16 0.32 1.00 9.76 4461.36 543
0.530 0.060 0.16 0.32 1.00 9.45 4633.80 532
0.530 0.060 0.16 0.32 1.00 8.24 4796.31 484
0.530 0.060 0.16 0.32 1.00 9.20 4597.73 515
0.530 0.060 0.16 0.32 1.00 9.63 4465.00 548
0.530 0.060 0.16 0.32 1.00 10.57 4343.78 550
0.530 0.060 0.16 0.32 1.00 9.82 4520.37 544
0.530 0.060 0.16 0.32 1.00 10.17 4455.95 535
0.530 0.060 0.16 0.32 1.00 9.87 4597.64 517
0.760 0.060 0.17 0.22 1.00 9.61 4718.51 542
0.760 0.060 0.17 0.22 1.00 8.90 4719.94 522
0.760 0.060 0.17 0.22 1.00 9.45 4646.37 530
0.760 0.060 0.17 0.22 1.00 9.12 4758.22 535
0.760 0.060 0.17 0.22 1.00 10.14 4584.67 556
0.760 0.060 0.17 0.22 1.00 9.69 4568.23 533
0.760 0.060 0.17 0.22 1.00 9.82 4607.58 541
0.760 0.060 0.17 0.22 1.00 9.88 4544.00 555
0.760 0.060 0.17 0.22 1.00 9.80 4491.81 542
1.000 1.000 0.17 0.17 1.00 9.76 4578.51 535
1.000 1.000 0.17 0.17 1.00 9.79 4591.73 543
1.000 1.000 0.17 0.17 1.00 9.57 4554.42 533
1.000 1.000 0.17 0.17 1.00 10.08 4599.43 543
1.000 1.000 0.17 0.17 1.00 11.30 4305.63 580
1.000 1.000 0.17 0.17 1.00 11.10 4392.88 561
1.000 1.000 0.17 0.17 1.00 10.72 4465.53 558
1.000 1.000 0.17 0.17 1.00 9.79 4537.26 538
1.000 1.000 0.17 0.17 1.00 10.52 4576.39 539
1.000 0.060 0.17 0.17 1.00 10.19 4535.81 546
1.000 0.060 0.17 0.17 1.00 11.04 4411.31 578
1.000 0.060 0.17 0.17 1.00 11.03 4397.48 553
1.000 0.060 0.17 0.17 1.00 10.86 4310.50 558
1.000 0.060 0.17 0.17 1.00 12.33 4068.81 584
1.000 0.060 0.17 0.17 1.00 11.57 4290.12 568
1.000 0.060 0.17 0.17 1.00 12.08 422313 564
1.000 0.060 0.17 0.17 1.00 10.07 4547.11 551
1.000 0.060 0.17 0.17 1.00 10.82 4525.79 560
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C.6. Simulation Results DP;

Table C.6: Simulation Results with Demand Profile DP.

. Travel Orders
WB wec ZA “B “c Pile-on distance handled
0.100 0.070 0.14 1.00 1.00 9.29 4509.04 523
0.100 0.070 0.14 1.00 1.00 8.52 4845.07 515
0.100 0.070 0.14 1.00 1.00 8.17 5012.06 503
0.100 0.070 0.14 1.00 1.00 8.29 4900.74 497
0.100 0.070 0.14 1.00 1.00 8.19 4955.37 507
0.100 0.070 0.14 1.00 1.00 7.97 5001.44 482
0.100 0.070 0.14 1.00 1.00 7.88 5049.86 489
0.100 0.070 0.14 1.00 1.00 8.55 4716.34 510
0.100 0.070 0.14 1.00 1.00 7.74 5005.01 480
0.150 0.070 0.14 0.96 1.00 7.50 5066.41 461
0.150 0.070 0.14 0.96 1.00 8.16 4858.72 519
0.150 0.070 0.14 0.96 1.00 8.43 4879.36 500
0.150 0.070 0.14 0.96 1.00 7.98 4979.27 497
0.150 0.070 0.14 0.96 1.00 8.07 5020.41 507
0.150 0.070 0.14 0.96 1.00 7.87 4848.00 487
0.150 0.070 0.14 0.96 1.00 8.35 4971.56 509
0.150 0.070 0.14 0.96 1.00 8.24 4925.67 509
0.150 0.070 0.14 0.96 1.00 8.08 5031.28 490
0.190 0.070 0.16 0.80 1.00 8.60 4955.54 506
0.190 0.070 0.16 0.80 1.00 8.41 4870.59 514
0.190 0.070 0.16 0.80 1.00 8.76 4898.53 504
0.190 0.070 0.16 0.80 1.00 8.31 4858.97 503
0.190 0.070 0.16 0.80 1.00 8.75 4729.18 509
0.190 0.070 0.16 0.80 1.00 8.39 4867.15 494
0.190 0.070 0.16 0.80 1.00 8.56 4946.27 517
0.190 0.070 0.16 0.80 1.00 8.50 4790.87 503
0.190 0.070 0.16 0.80 1.00 8.28 4763.34 495
0.240 0.070 0.17 0.69 1.00 8.04 4853.26 493
0.240 0.070 0.17 0.69 1.00 8.18 4765.87 504
0.240 0.070 0.17 0.69 1.00 8.30 4701.68 500
0.240 0.070 0.17 0.69 1.00 8.10 4907.28 498
0.240 0.070 0.17 0.69 1.00 7.98 4877.13 510
0.240 0.070 0.17 0.69 1.00 8.95 4791.99 520
0.240 0.070 0.17 0.69 1.00 8.79 4687.03 508
0.240 0.070 0.17 0.69 1.00 8.71 4680.96 525
0.240 0.070 0.17 0.69 1.00 9.02 4779.32 521
0.290 0.070 0.17 0.60 1.00 8.19 4906.00 506
0.290 0.070 0.17 0.60 1.00 8.34 4896.11 509
0.290 0.070 0.17 0.60 1.00 8.62 4706.67 509
0.290 0.070 0.17 0.60 1.00 9.02 4815.06 525
0.290 0.070 0.17 0.60 1.00 8.53 4753.42 499
0.290 0.070 0.17 0.60 1.00 8.89 4795.00 514
0.290 0.070 0.17 0.60 1.00 8.56 4822.22 506
0.290 0.070 0.17 0.60 1.00 8.25 4909.07 509
0.290 0.070 0.17 0.60 1.00 7.47 4954.90 474
0.330 0.070 0.18 0.54 1.00 7.88 4881.74 489
0.330 0.070 0.18 0.54 1.00 8.23 4912.58 510
0.330 0.070 0.18 0.54 1.00 8.36 4815.95 500
0.330 0.070 0.18 0.54 1.00 8.61 4746.97 512
0.330 0.070 0.18 0.54 1.00 8.97 4755.47 521
0.330 0.070 0.18 0.54 1.00 8.67 4826.06 506
0.330 0.070 0.18 0.54 1.00 8.95 4786.22 516
0.330 0.070 0.18 0.54 1.00 8.42 4727.86 512
0.330 0.070 0.18 0.54 1.00 8.17 4793.86 491
0.380 0.070 0.18 0.50 1.00 7.84 5018.11 483
0.380 0.070 0.18 0.50 1.00 9.10 4817.36 522
0.380 0.070 0.18 0.50 1.00 8.69 4881.32 506
0.380 0.070 0.18 0.50 1.00 8.43 4834.58 501
0.380 0.070 0.18 0.50 1.00 8.36 4955.37 510
0.380 0.070 0.18 0.50 1.00 8.82 4740.67 521
0.380 0.070 0.18 0.50 1.00 8.41 4797.71 501
0.380 0.070 0.18 0.50 1.00 8.76 4699.78 504
0.380 0.070 0.18 0.50 1.00 8.64 4755.35 512
1.000 1.000 0.18 0.50 1.00 8.05 4970.77 499
1.000 1.000 0.18 0.50 1.00 7.67 4932.96 515
1.000 1.000 0.18 0.50 1.00 7.92 4989.23 484
1.000 1.000 0.18 0.50 1.00 7.54 5068.97 482
1.000 1.000 0.18 0.50 1.00 8.03 4988.47 517
1.000 1.000 0.18 0.50 1.00 8.31 4960.43 503
1.000 1.000 0.18 0.50 1.00 8.35 4838.54 514
1.000 1.000 0.18 0.50 1.00 8.33 4987.88 503

1.000 1.000 0.18 0.50 1.00 8.46 4851.77 496
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C.7. Simulation Results Regular Gall&Gall Demand Pro-
file

Table C.7: Simulation Results with Regular Gall&Gall Demand Profile.

. Travel Orders
VB wc ZA ’B “c Pile-on distance handled
0.010 1.000 0.12 0.50 1.00 7.19 5074.53 474
0.010 1.000 0.12 0.50 1.00 7.79 5005.83 507
0.010 1.000 0.12 0.50 1.00 7.40 5050.00 467
0.010 1.000 0.15 0.40 1.00 7.32 5145.08 478
0.010 1.000 0.15 0.40 1.00 8.41 5004.56 517
0.010 1.000 0.15 0.40 1.00 8.06 5023.32 492
0.010 1.000 0.12 0.49 1.00 7.47 5098.84 484
0.010 1.000 0.12 0.49 1.00 7.50 5126.95 491
0.010 1.000 0.12 0.49 1.00 7.02 5159.03 474
0.240 1.000 0.12 0.49 1.00 7.36 5036.81 476
0.240 1.000 0.12 0.49 1.00 7.40 4982.70 479
0.240 1.000 0.12 0.49 1.00 7.14 5189.72 467
0.240 1.000 0.12 0.49 1.00 777 5006.00 496
0.240 1.000 0.12 0.49 1.00 7.76 5096.96 491
0.240 1.000 0.12 0.49 1.00 7.56 5120.89 482
0.240 1.000 0.12 0.49 1.00 7.56 4962.30 483
0.240 1.000 0.12 0.49 1.00 8.04 4983.30 513
0.240 1.000 0.12 0.49 1.00 7.60 4975.06 474
0.460 1.000 0.16 0.34 1.00 741 4990.29 480
0.460 1.000 0.16 0.34 1.00 777 4982.58 490
0.460 1.000 0.16 0.34 1.00 761 4973.08 480
0.460 1.000 0.16 0.34 1.00 7.44 4940.79 483
0.460 1.000 0.16 0.34 1.00 7.02 5203.53 457
0.460 1.000 0.16 0.34 1.00 6.83 5186.77 453
0.460 1.000 0.16 0.34 1.00 6.72 5271.46 455
0.460 1.000 0.16 0.34 1.00 8.30 5036.74 508
0.460 1.000 0.16 0.34 1.00 779 4991.03 471
0.690 1.000 0.18 0.26 1.00 7.61 4947.94 473
0.690 1.000 0.18 0.26 1.00 7.68 5120.57 503
0.690 1.000 0.18 0.26 1.00 7.79 4987.08 495
0.690 1.000 0.18 0.26 1.00 7.66 5026.02 485
0.690 1.000 0.18 0.26 1.00 7.76 4978.32 488
0.690 1.000 0.18 0.26 1.00 7.52 5030.43 469
0.690 1.000 0.18 0.26 1.00 772 4910.47 481
0.690 1.000 0.18 0.26 1.00 7.37 5004.01 487
0.690 1.000 0.18 0.26 1.00 7.85 5167.35 487
0.920 1.000 0.20 0.21 1.00 7.23 5176.04 473
0.920 1.000 0.20 0.21 1.00 7.94 4950.34 495
0.920 1.000 0.20 0.21 1.00 6.58 5263.98 441
0.920 1.000 0.20 0.21 1.00 7.21 5232.67 477
0.920 1.000 0.20 0.21 1.00 7.32 5044.24 477
0.920 1.000 0.20 0.21 1.00 7.68 4958.04 481
0.920 1.000 0.20 0.21 1.00 7.87 4851.19 490
0.920 1.000 0.20 0.21 1.00 7.24 5113.40 483
0.920 1.000 0.20 0.21 1.00 7.74 5110.15 481
1.000 1.000 0.20 0.20 1.00 7.45 5050.91 477
1.000 1.000 0.20 0.20 1.00 6.78 5262.75 456
1.000 1.000 0.20 0.20 1.00 7.83 4909.88 483
1.000 1.000 0.20 0.20 1.00 751 5096.73 477
1.000 1.000 0.20 0.20 1.00 7.98 4991.55 507
1.000 1.000 0.20 0.20 1.00 7.97 5017.08 484
1.000 1.000 0.20 0.20 1.00 7.86 5103.46 493
1.000 1.000 0.20 0.20 1.00 7.20 5133.44 472
1.000 1.000 0.20 0.20 1.00 6.88 5219.71 448
1.150 1.000 0.21 0.18 1.00 6.48 5334.32 442
1.150 1.000 0.21 0.18 1.00 7.34 5212.37 479
1.150 1.000 0.21 0.18 1.00 712 5185.58 453
1.150 1.000 0.21 0.18 1.00 7.31 5222.99 463
1.150 1.000 0.21 0.18 1.00 7.52 5060.57 483
1.150 1.000 0.21 0.18 1.00 7.07 5049.46 450
1.150 1.000 0.21 0.18 1.00 7.03 5206.91 460
1.150 1.000 0.21 0.18 1.00 713 5134.90 459
1.150 1.000 0.21 0.18 1.00 7.58 5236.87 472
1.370 1.000 0.21 0.15 1.00 7.27 5169.82 467
1.370 1.000 0.21 0.15 1.00 7.65 4954.73 490
1.370 1.000 0.21 0.15 1.00 7.27 5231.51 469
1.370 1.000 0.21 0.15 1.00 7.54 5012.12 476
1.370 1.000 0.21 0.15 1.00 8.32 4825.80 513
1.370 1.000 0.21 0.15 1.00 7.83 5032.47 490
1.370 1.000 0.21 0.15 1.00 772 4886.54 473
1.370 1.000 0.21 0.15 1.00 7.56 5021.93 480
1.370 1.000 0.21 0.15 1.00 7.86 5152.33 480
1.600 1.000 0.22 0.14 1.00 7.72 5002.12 489
1.600 1.000 0.22 0.14 1.00 7.60 4945.28 474
1.600 1.000 0.22 0.14 1.00 7.32 5036.98 461
1.600 1.000 0.22 0.14 1.00 7.68 5017.24 478
1.600 1.000 0.22 0.14 1.00 7.61 4912.31 488
1.600 1.000 0.22 0.14 1.00 6.98 5138.85 465
1.600 1.000 0.22 0.14 1.00 8.10 5032.53 492
1.600 1.000 0.22 0.14 1.00 791 4990.44 506

1.600 1.000 0.22 0.14 1.00 7.54 5009.30 489
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C.8. Simulation Results Peak Gall&Gall Demand Profile

Table C.8: Simulation Results with Peak Gall&Gall Demand Profile.

. Travel Orders
WB wec ZA “B “c Pile-on distance handled
0.010 1.000 0.08 0.85 1.00 7.52 5079.60 485
0.010 1.000 0.08 0.85 1.00 7.62 4970.13 504
0.010 1.000 0.08 0.85 1.00 7.84 5144.18 486
0.010 1.000 0.10 0.72 1.00 7.52 5079.60 485
0.010 1.000 0.10 0.72 1.00 7.60 5063.97 503
0.010 1.000 0.10 0.72 1.00 8.13 4895.72 491
0.010 1.000 0.08 0.85 1.00 8.24 4891.15 512
0.010 1.000 0.08 0.85 1.00 7.79 4899.53 491
0.010 1.000 0.08 0.85 1.00 7.52 5087.67 465
0.150 1.000 0.1 0.70 1.00 7.93 5009.26 496
0.150 1.000 0.1 0.70 1.00 8.09 491417 495
0.150 1.000 0.1 0.70 1.00 7.77 5059.50 481
0.150 1.000 0.1 0.70 1.00 7.77 4956.17 498
0.150 1.000 0.1 0.70 1.00 6.86 5180.32 475
0.150 1.000 0.1 0.70 1.00 7.04 5150.30 456
0.150 1.000 0.11 0.70 1.00 7.74 4928.27 484
0.150 1.000 0.11 0.70 1.00 7.83 4945.20 501
0.150 1.000 0.11 0.70 1.00 7.25 5128.72 465
0.290 1.000 0.15 0.49 1.00 7.54 5011.69 489
0.290 1.000 0.15 0.49 1.00 7.90 4937.35 495
0.290 1.000 0.15 0.49 1.00 7.36 5138.10 476
0.290 1.000 0.15 0.49 1.00 7.63 4960.80 476
0.290 1.000 0.15 0.49 1.00 8.18 4916.36 509
0.290 1.000 0.15 0.49 1.00 8.65 4834.12 504
0.290 1.000 0.15 0.49 1.00 7.59 5008.21 485
0.290 1.000 0.15 0.49 1.00 8.22 4887.30 505
0.290 1.000 0.15 0.49 1.00 8.01 4956.80 497
0.430 1.000 0.17 0.38 1.00 7.69 5041.48 489
0.430 1.000 0.17 0.38 1.00 8.35 4927.51 510
0.430 1.000 0.17 0.38 1.00 7.95 4963.14 490
0.430 1.000 0.17 0.38 1.00 7.95 5040.54 493
0.430 1.000 0.17 0.38 1.00 7.74 4911.12 502
0.430 1.000 0.17 0.38 1.00 7.78 4966.40 478
0.430 1.000 0.17 0.38 1.00 7.97 4828.31 502
0.430 1.000 0.17 0.38 1.00 7.89 4865.27 494
0.430 1.000 0.17 0.38 1.00 7.53 5057.87 480
0.580 1.000 0.18 0.31 1.00 7.79 4988.57 476
0.580 1.000 0.18 0.31 1.00 7.42 4906.04 494
0.580 1.000 0.18 0.31 1.00 7.65 4937.33 487
0.580 1.000 0.18 0.31 1.00 8.03 5036.11 503
0.580 1.000 0.18 0.31 1.00 7.43 5015.00 473
0.580 1.000 0.18 0.31 1.00 7.53 4911.00 474
0.580 1.000 0.18 0.31 1.00 7.66 5060.00 484
0.580 1.000 0.18 0.31 1.00 8.23 4856.99 523
0.580 1.000 0.18 0.31 1.00 7.90 5051.52 492
0.720 1.000 0.19 0.26 1.00 7.49 4989.75 486
0.720 1.000 0.19 0.26 1.00 7.94 4986.46 499
0.720 1.000 0.19 0.26 1.00 8.30 4808.98 499
0.720 1.000 0.19 0.26 1.00 7.89 4986.27 493
0.720 1.000 0.19 0.26 1.00 8.57 4881.70 511
0.720 1.000 0.19 0.26 1.00 7.18 5081.20 463
0.720 1.000 0.19 0.26 1.00 8.51 4916.33 512
0.720 1.000 0.19 0.26 1.00 7.81 4996.00 472
0.720 1.000 0.19 0.26 1.00 7.48 5086.92 470
0.860 1.000 0.20 0.23 1.00 7.80 5084.09 489
0.860 1.000 0.20 0.23 1.00 8.44 4789.04 500
0.860 1.000 0.20 0.23 1.00 7.96 4907.05 500
0.860 1.000 0.20 0.23 1.00 7.94 4887.25 495
0.860 1.000 0.20 0.23 1.00 7.81 4885.00 494
0.860 1.000 0.20 0.23 1.00 7.93 4826.81 486
0.860 1.000 0.20 0.23 1.00 7.83 4988.41 500
0.860 1.000 0.20 0.23 1.00 8.60 4786.39 517
0.860 1.000 0.20 0.23 1.00 8.19 4996.99 502
1.000 1.000 0.20 0.20 1.00 7.92 4886.25 496
1.000 1.000 0.20 0.20 1.00 7.97 4807.41 500
1.000 1.000 0.20 0.20 1.00 8.24 4897.13 497
1.000 1.000 0.20 0.20 1.00 7.21 5105.74 472
1.000 1.000 0.20 0.20 1.00 7.99 4935.84 514
1.000 1.000 0.20 0.20 1.00 7.86 4946.52 488
1.000 1.000 0.20 0.20 1.00 7.02 5116.15 463
1.000 1.000 0.20 0.20 1.00 7.47 5031.64 491

1.000 1.000 0.20 0.20 1.00 7.36 4929.55 467
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