
One Step Ahead
A weakly-supervised approach to training

robust machine learning models for
transaction monitoring

by

D.J. van der Werf
to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on 26 November 2021 at 09:00 AM.

Student number: 4369556
Project duration: November 1, 2020 – November 26, 2021
Thesis committee: Dr. ir. J. Yang, Tu Delft, Assistant Professor and Thesis Supervisor

Prof. dr. ir. G.J.P.M Houben, Tu Delft, Full Professor
Dr. ir. L. Cavalcante Sieb, Tu Delft, Assistant Professor
Ir. A.M.A Balayn, Tu Delft, PhD Student
Dr. ir. A. El Hassouni, bunq, Data Lead

An electronic version of this thesis is available publicly at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface
Dear reader, in front of you lies my thesis on the creation of robust weakly-supervised machine learning
models for transaction monitoring. In this work a weakly-supervised machine learning pipeline is intro-
duced with the goal of adapting to the challenges posed by the ever-changing field of financial fraud
detection. In other words: to be one step ahead of fraudsters. We show that by generating and carefully
selecting synthetic data representing fraudulent transactions we are able to train weakly-supervised
models that outperform their supervised counterparts on nearly all performance metrics used in the
field. The most striking result is a significant increase in terms of the robustness to never-seen-before
fraudulent behavior. Our pipeline is shown to correctly classify roughly 7%more fraudulent transactions
than baseline supervised models. These instances of fraud would previously go undetected.

This thesis was conducted at the Web Information Systems group at the Delft University of Tech-
nology. This work is the final step to obtain my masters degree in Computer Science. For roughly
9 months, I have worked on this thesis at a Dutch bank called bunq, on the front lines of transaction
monitoring. During this time, I performed work on both the transaction monitoring system at bunq to
familiarize myself with the field, as well as research data science and machine learning methods to
substantiate my thesis. One of the hardest challenges to overcome was juggling between the needs
of both bunq and the TU Delft to create a thesis project that is both viable to a company like bunq and
academically interesting to the university. Along with the Covid-19 pandemic being at its height during
the majority of my thesis time, balancing between the two for 45 hours a week was not always an easy
task. Because of this, I am very proud with what this thesis has become and the accomplishments that
I made.

This work would not have the same without the help of some people. First and foremost, I am
thankful to my parents, brothers and housemates who were always there for me during these often
stressful and sometimes rough times of the Covid-19 pandemic. I would also like to thank the kind
people at bunq who were always more than happy to have a nice chat, help out or provide insights on
my work. Finally, I would like to specifically thank Ali El Hassouni for his indispensable feedback and
discussions on the topic of (un)supervised learning, Jesper Romers for his patience and supervision at
bunq, Fabian van Altena for all of his insights on the topic of financial fraud analysis and Jie Yang and
Agathe Balayn for their continuous support on the academic side.

This thesis work is the culmination of all my years at the TU Delft and I am proud to present it to
any interested reader. For this reason, this work includes an extensive background research into all
aspects of the introduced pipeline to accommodate readers of varying backgrounds. I sincerely hope
you will enjoy reading it as much as I enjoyed working on it.

D.J. van der Werf
Delft, November 2021

iii

Contents

1 Abstract 3

2 Introduction 5

3 Literature Research: Financial Fraud 9
3.1 Financial fraud . 9
3.2 Dutch financial institutions and the DNB . 11
3.3 Transaction monitoring . 12

4 Literature Research: Machine Learning 13
4.1 Decision tree classification . 13
4.2 Interpreting and explaining classification results . 19
4.3 Unsupervised learning for synthetic data generation . 26

5 Literature Research: Privacy and Ethics in Automated Fraud Detection 31
5.1 Mistakes in fraud detection. 32
5.2 Web data mining and privacy . 33
5.3 Privacy and synthetic data . 35

6 Case-study: Automated Fraud Detection 37
6.1 Unknown unknowns in fraud detection . 37

7 Method: Feature Value Attribution Model 41
7.1 Training dataset . 41
7.2 Implications of Shapley values. 42

8 Method: Unsupervised Learning 45
8.1 Dataset pre-processing . 45
8.2 Feature selection . 46
8.3 CTGAN . 46
8.4 Dataset reconstruction . 48

9 Method: Adversarial Filtering 51
9.1 Uniqueness scores . 51
9.2 Shapley scores . 52
9.3 Perceptibility scores . 52
9.4 Adversarial success scores . 53

10 Method: False Positive Mitigation 55

11 Method: Evaluation Metrics 57
11.1 Data quality metrics . 57
11.2 Machine learning utility metrics . 58
11.3 Privacy evaluation metrics . 59

12 Experiments and Results 63
12.1 Comparing different methods of generating synthetic samples 64
12.2 Evaluating the privacy guarantees of the synthetic data 67
12.3 Defeating an existing FDM with adversarially filtered synthetic fraud cases. 70
12.4 Training a supervised model on synthetically augmented datasets 73
12.5 Reducing false positives . 80

v

vi Contents

13 Discussion 83
13.1 The quality of synthetic samples. 83
13.2 Adversarial prowess of synthetic samples . 87
13.3 Training models on augmented datasets . 89
13.4 Real world implications of the found results . 90

14 Conclusion 91

Bibliography 93

Nomenclature
𝐴𝑊𝑆 Amazon Web Services

𝐶𝐴𝑃 Causative Attack Protection (algorithm)

𝐶𝑇𝐺𝐴𝑁 Conditional Tabular Generative Adversarial Network

𝐷𝑁𝐵 The Dutch National Bank

𝐸𝑆 ElasticSearch

𝐹𝐷𝑀 Fraud Detection Model

𝐹𝐼𝑈 Financial Intelligence Unit

𝐹𝑉𝐴𝑀 Feature value attribution model

𝐺𝐴𝑁 Generative Adversarial Network

𝐺𝐵𝑀 Gradient Boosting Machine

𝐺𝐷𝑃𝑅 General Data Protection Regulation

𝑀𝐿 Machine Learning

𝑀𝑉𝐶 Model-View-Controller

𝑃𝐴𝐶 Probably Approximately Correct

𝑃𝑀𝐹 Probability Mass Function

𝑃𝑃𝐷𝑃 Privacy Preserving Data Publishing

𝑆𝐷𝑉 Synthetic Data Vault

𝑆𝐼𝑅𝐴 Systematic Analysis of Integrity Risks

𝑇𝑀𝑀 Transaction Monitoring Metadata

𝑈𝑈 Unknown Unknown

𝑉𝐺𝑀 Variational Gaussian Mixture model

𝑊𝑤𝑓𝑡 Anti-Money Laundering and Anti-Terrorist Financing Act

𝑋𝐺𝐵 eXtreme Gradient Boosting

1

1
Abstract

In recent years financial fraud has seen substantial growth due to the advent of electronic financial
services opening many doors for fraudsters. Consequently, the industry of fraud detection has seen a
significant growth in scale, but moves slowly in comparison to the ever-changing nature of fraudulent
behavior. As the monetary losses associated with financial fraud continue to grow, so does the need
for efficient automated decision making systems. Simple decision making rules are often still the indus-
try standard and only show decent results in the short-term, as reverse-engineering such rules is an
easy task for smart fraudsters. Supervised learning systems as automated fraud detectors have shown
promising results across the field, but are plagued by challenges uniquely prevalent in the field. Dis-
proportional class imbalance in fraudulent transactions, as well as fraudsters continually adopting new
schemes make training robust and generally applicable machine learning models an arduous task.
This work introduces a novel machine learning pipeline, which makes use of carefully selected syn-
thetic samples of this minority class to augment the training dataset of the supervised model. Synthetic
samples representing fraudulent transactions are filtered based on a novel technique to quantify their
expected performance as an adversarial example, using both data-driven and human-expert-driven
techniques. By providing the supervised model with high-quality synthetic adversarial examples, we
aim to improve its generalizability to never-seen-before fraudulent behavior and, in turn, improve its
robustness to the volatile nature of financial fraud. Our results show that weakly-supervised models
trained on our augmented datasets are able to detect 7% more fraudulent transactions compared to
a baseline model trained on the standard dataset, at the cost of a 1% increase in false positives. Our
calculations further show that applying this system could lead to a decrease of 1/6 in monetary losses
incurred by financial fraud.

3

2
Introduction

Over the past decade financial fraud has become an increasingly serious and complex problem. Fraud-
ulent schemes have a far-reaching negative impact ranging from funding illicit activities like organised
crime or terrorism to widespread loss of reputation of financial institutions. In the Netherlands, a surge
in fraudulent schemes such as credit card fraud, corporate fraud and money laundering has caused
€49,1 million in damages in 2020 alone [8]. This is an enormous increase of 195% over 2019, where the
total amount in damages was €16,6 million. Not only do existing fraudulent methods continue to grow
in scale, the advancement in modern technologies in the financial sector opens the door to many new
methods of duping an unsuspecting victim out of their money [104]. Furthermore, fraudsters continue
to refine their methods, leading to a cat-and-mouse game where anti-fraud measures are always one
step behind. As an example, in 2020 a new type of fraud called numberspoofing, where the fraudster
calls the victim while realistically posing as a renowned financial institution, was responsible for more
than 60% of all fraud-related damages caused in the Netherlands [8]. As a result, there is the need for
generally applicable fraud detection and prevention measures that are capable of evolving along with
fraudulent techniques.

The Dutch National Bank (DNB) requires financial institutions in the Netherlands take measures to
prevent such fraudulent activities [23]. They must monitor and analyse unusual patterns in transactions
and pay particular attention to customers that carry a higher risk. Failure to do so, even unintention-
ally, is regarded by the DNB as an economic offense. As a result, large financial institutions spend a
significant amount of time and resources in the form of teams of experts to combat fraud. One such
financial institution is bunq: the Bank of The Free. bunq is a dutch bank that obtained her banking
licence in 2015 and continues to grow rapidly. As bunq grows, so does the number of transactions
that are processed. The original and most obvious approach to combat fraud is to use human expert
auditors to check every transaction for fraudulent behavior. Consequently, as the number of fraudulent
transactions grows, so does the number of man-hours needed to check every single transaction. At a
certain point the strategy of manually checking transactions becomes far from feasible. This creates
the need for large financial institutions to build efficient automated fraud detection systems.

Many data mining approaches have seen widespread application and success in related fields such
as share market analysis, credit card approval and bankruptcy detection [100]. Most often these ap-
proaches are used to find hidden patterns in vast amounts of transaction-related data. In practice
however, many (large) financial institutions and banks still rely on more primitive methods to monitor
their transactions. Data analysts try to find patterns in historic fraudulent transactions and in turn cre-
ate simple monitoring rules to automatically detect such patterns. The implementation of these rules
often constitutes of no more than a few if-statements and thresholds, which are continuously adapted
based on the present-day fraud environment. While these rules provide financial institutions with a
fairly strong short-term automated decision making tool and thus a reduction in manual labour to a
certain degree, they suffer from 2 major flaws: the rules tend to produce a sizeable number of false
positives and also adapt very poorly to new situations. Evidently, the field of automated detection and
classification of suspicious transactions poses a wide range of challenges and thus we look into the
direction of supervised machine learning. Over the past decade, various machine learning techniques
to assist decision makers with classifying suspicious transactions have been researched [18] [30] [57].

5

6 2. Introduction

While these approaches have seen increased application in the field of automated fraud detection, the
field has proven to pose various challenges that in many cases significantly hinder the performance of
these methods.

The first major challenge is the fact that tabular data representing transactions generally consists
of both continuous and discrete columns. On top of this, categorical fields in such a dataset often have
a high cardinality and multi-modal, non-gaussian range of discrete values [102]. This heterogeneous
nature of tabular data makes it challenging and in some cases impossible to apply certain machine
learning frameworks, for instance frameworks relying on linear regression or Bayesian methods [22]
[9]. Secondly, fraud classification problems deal with a significant class imbalance. The number of
fraudulent transactions is very small compared to the total number of transactions. On top of requiring
an immense number of man-hours of human annotators to create a labeled dataset, one of the funda-
mental problems of supervised learning approaches is that they are known to greatly suffer from class
imbalance [71] [42] [42]. Thirdly, as mentioned earlier, the nature of financial fraud is ever-changing.
Therefore, the generalizability of machine learning models is of utmost importance. One of the root
causes of loss of generalizability and another fundamental problem of supervised machine learning
models is the model overfitting to the training dataset. Although a wide variety of measures exist to
reduce overfitting, the context of fraud detection requires us to take extra domain-specific measures.
Another, less obvious, cause of the loss of generalizability is the existence of unknown unknowns
(UUs): high confidence mistakes made by the model. Often, UUs result from a mismatch between the
data used for training and the data found after deployment of the model. Causes of this mismatch are
underrepresentation or complete absence of certain instances in the training dataset or due to a shift
in population, for example when fraudsters adapt their strategy to make the samples in the training
dataset no longer accurate [60].

In the context of financial fraud, making classification errors is very costly. To more accurately
grasp the impact of these errors we focus on two different types of mistakes: false positives and false
negatives. A false positive in this context means a user wrongly gets classified as a fraudster. This
has 2 major consequences: first and foremost, depending on the financial institution, the user might
(temporarily) lose access to his or her monetary account and in turn is likely to lose trust in the insti-
tution. Furthermore, false positives are costly in terms of the man-hours needed to manually review
the flagged transaction. A false negative essentially means that a criminal gets away unnoticed with
committing fraud. The consequences of false negatives are, unfortunately, colourful in nature, ranging
from providing means for terrorist funding to allowing users to be duped out of large amounts of funds.
An ideal machine learning model or pipeline is able to detect a wide variety of fraudulent behavior,
while keeping the number of false positives to a minimum. While both types of errors pose egregious
risks to both the users and the financial institution itself, relevant literature estimates the costs of false
negatives to be significantly higher than that of false positives, mentioning monetary cost ratios ranging
from 143:1 to 82:1 [25].

The last concern we consider when working on automated fraud detection is the fact that the training
datasets used for fraud classification generally contain a great deal of personal and sensitive informa-
tion. Even after filtering out identifying information such as user IDs, addresses or names, an adversary
with some degree of prior knowledge might still be able to learn identifying information about a user
based on a combination of seemingly non-identifying fields [34]. For this reason and more, a financial
institution has to take the responsibility of protecting the privacy of her users very seriously. Records
containing sensitive data of individuals, such as financial or medical data, needs to be sanitized in order
to be securely stored or published. Ideally this sanitized dataset allows for learning valuable information
about a population, while allowing nothing to be learned about the individual. Furthermore, data mining
algorithms that are trained on data produced by users of a web service are prone to bias resulting from
the dataset, which, in the end, is still a product of social behavior. This may lead to automated decision
makers overestimating the degree in which certain, often sensitive, attributes impact the decision being
made. Offenses such as fraud or intrusion should be inferred from objective misbehavior, rather than
being biased towards uncontrollable attributes such as race, gender or religion [47].

In this work we tackle these problems in the field of supervised machine learning for automated
fraud detection by introducing a novel pipeline. The first step of this pipeline is the creation of synthetic
samples based on the fraudulent samples at our disposal. Being able to produce high-quality synthetic
samples is expected to help mitigate the loss in performance due to underrepresentation of the minor-
ity class, as well as provide insights into existing ”blind spots” of the supervised model. Techniques

7

ranging from an intricate pre-processing process to custom sampling methods are introduced to con-
struct synthetic fraudulent transactions that are able to accurately capture patterns found in their real
counterparts. Then, a filtering method is used to select only those samples from the synthetic dataset
that are expected to be a proper adversarial example. In this context an adversarial example is a syn-
thetic sample that represents an instance from a category of fraud that the machine learning model is
currently blind to and, in turn, would not be classified as being fraudulent. In other words, it detects
those transactions that are UUs to the model. This filtering method creates a score per transaction
which aims to quantify how well a sample is expected to perform as an adversarial example. We call
this the adversarial success score of the sample.

The adversarial success score is calculated in 3 steps: first, each value of a single transaction based
on how unique this value is compared to the average value of a transaction. For numerical features this
”uniqueness” value is based on the average value and standard deviation. For categorical and boolean
features this score is based on how unique the feature value is compared to it’s occurrence across the
full dataset. Then, a data-driven method that aims to find out which features push the model towards
making certain mistakes is applied. We try to quantify the degree in which each feature pushes the
model towards making mistakes of the false negative category. In other words: instances where the
model miss-classifies fraudulent transactions as being legitimate with a high confidence. To this end, a
feature value attribution model is created based on known false negatives made by the model. Shapley
values, state-of-the-art values used for explaining model predictions, are employed to find out which
features push the model towards making such errors. Lastly, we calculate one more score based on
the input of 8 human experts in the field of fraud classification. Based on how important these experts
deem certain features to be, we adjust the score per feature. The more important these experts deem a
feature to be for their decisions towards a transaction being fraud, the more we penalize feature values
differing from the norm. We call this the perceptibility score. We then calculate the total success score
of a sample as the sum of all the aforementioned success scores per feature value.

As the last step of our pipeline, we take the top adversarial synthetic fraudulent samples and use
these to augment our training dataset. In practice, this means that we add a number of synthetic
samples to our existing training dataset. A supervised model trained on such a dataset is called weakly-
supervised. The results show that this approach not only serves to improve the privacy preservation
across the training dataset, but also significantly improves the degree in which the trained model is able
to generalize to never-seen-before fraudulent transactions. The obtained results show that models
trained on existing training dataset along with the top adversarial examples outperform their synthetic-
sample-free counterparts by correctly classifying 7% more fraudulent transactions. This means that
our approach shows a false negative rate of roughly 14% as compared to the default situation with
a false negative rate of roughly 21%. This improvement does come at the cost of a 1% increase of
false positives. To remedy this, we introduce 2 separate systems with the goal of reducing this number
through external means. Finally, this work shows that in a real-world scenario, applying this pipeline
leads to a 1/6 decrease in monetary loss incurred due to financial fraud.

This work aims to employ these methods and remedy the unique challenges in the field of financial
fraud detection by answering the following research question and sub-questions:

1. How can we leverage data-driven methods and human expert knowledge to improve the
robustness of a supervisedmachine learningmodel to never-seen-before fraudulent trans-
actions?

(a) How does one generate high-quality synthetic fraudulent transactions with a high machine
learning utility and privacy guarantee?

(b) How does one leverage both domain-knowledge and data-driven methods to obtain ad-
versarial examples representing never-seen-before fraudulent behavior from such synthetic
samples?

(c) How do we use such adversarial examples to improve the generalizability and overall per-
formance of an existing fraud detection model?

(d) How does one leverage insights provided by an existing rule-based system for fraud detec-
tion to reduce the cost in terms of false positives incurred by the proposed method?

(e) How does one integrate this method into an existing fraud detection architecture to test and
evaluate it’s performance?

8 2. Introduction

To answer these questions, this work will first provide the reader with an extensive background and
related literature research divided into three chapters. The first chapter provides a detailed description
of financial fraud and the fraud prevention measures Dutch financial institutions are required to take by
the DNB. The second literature chapter gives an in-depth introduction to all machine learning techniques
that this work relies on, consisting of both supervised and unsupervised machine learning approaches.
The last literature chapter goes into detail on the implications on mistakes made by automated decision
makers for financial fraud and dives deeper into the ethical side of the problem. The literature chapters
are followed by an introduction to the high-level concepts associated with automated fraud detection in
our case-study chapter. Afterwards, each part of the proposed pipeline is introduced in a logical order in
multiple method chapters. Lastly, we conclude this thesis by showing the relevant performance metrics
of each step of the pipeline in the experimental results chapter and discuss the implications of these
results in the discussion chapter.

3
Literature Research: Financial Fraud

3.1. Financial fraud
The Oxford dictionary describes fraud as being ”the crime of cheating someone in order to get money
or goods illegally”, which in itself is a very broad broad range of activities. The Section 326 of the Dutch
Criminal Code (Wetboek van Strafrecht) defines fraud in the following way: “Any person who, with the
intention of benefitting himself or another person unlawfully, either by assuming a false name or a false
capacity, or by cunning manoeuvres, or by a tissue of lies, induces a person to hand over any property,
to render a service, to make available data, to incur a debt or relinquish a claim, shall be guilty of
fraud” [74]. Because fraud is not bound to single activity or statutory offence, it is difficult to devote an
academic discipline to addressing the subject [29]. In this work we consider financial fraud: an instance
of fraud where the list of possible violations is extensive and its consequences have a major impact
on people from many corners of society. As certain types of fraud become more prevalent, tools are
developed with the goal of addressing said fraud, which in turn leads to fraudsters developing new and
harder to detect fraudulent methods. This enters us in an endless cat-and-mouse game where we, the
cat, are often one step behind.

Much like the general term fraud, financial fraud is a broad term that envelops a multitude of criminal
activities that all share the same goal: obtaining financial gain under a false pretense. The Dutch public
prosecutor’s office categorizes financial fraud into two main categories [68]:

• Horizontal fraud: fraud that victimizes citizens and companies; and

• Vertical fraud: fraud that is committed using government money.

This is an important distinction to make, since the latter logically receives significantly more attention
from the government. Even just in the year 2018 the Fiscale Inlichtingen- en Opsporingsdienst, the
dutch Tax information and investigation service, spent roughly 1.060.000 hours combating fraud [68].
The majority of the fraud cases found by this organisation was associated with tax evasion. In our
context however, we are considering financial fraud and transactions made by users of a financial
service. Consequently, this work will only consider horizontal fraud.

Since 2015 horizontal fraud received increased priority by the dutch policy and because of that has
seen a sharp increase in the number of suspects found [68]. Furthermore, the dutch public prosecutors
office is investing more resources into fraud prevention as fraud becomes increasingly more organised,
digitized, internationalized and complex. This trend is also shown in 3.1, where we can see a sharp
increase over the past 10 years in 3 commonly occurring instances of financial fraud:

1. Phishing: Obtaining someone’s private information through lies and deception to, in turn, use
this information for financial gain;

2. Stolen bank cards: Withdrawal of funds through stolen or lost bank cards; and

3. Credit card fraud: Fraud committed by using a credit or debit card, usually to transfer funds to
accounts owned by criminals.

9

10 3. Literature Research: Financial Fraud

Figure 3.1: Damage caused by 3 types of fraudulent schemes over the past decade [7].

Financial fraud is of course not limited to these 3 examples. In the literature amore refined distinction
between the existing types of financial fraud is given. These fraud types are defined as [83]:

• False financial disclosures: a variety of behaviors where the perpetrators make false state-
ments about the financial health or performance of their financial institution or fund. The person
or company involved does not necessarily have to be illegal, in fact many of the fraud committed
of this type is perpetrated by otherwise legitimate parties;

• Financial scams: a scheme set up by a fraudster where a person is tricked into voluntarily
handing over private sensitive information related to their personal finances or funds; and

• Financial mis-selling: practices that are intentionally misrepresenting or manipulating while sell-
ing or advertising a service or product to a customer with full knowledge that said product does
not satisfy the end-users needs.

False financial disclosures and scams are similar in the fact that both methods are based on plain
lies, but differ in the fact that scams are are hiding behind an enterprise that only seems legitimate,
but is in fact illegitimate. In contrast, mis-selling use clever wording and other deceptive techniques to
bend the facts in order to mislead people unfortunate enough to believe these mis-statements.

With the advent of electronic banking becoming increasingly popular, along with the rise of e-
commerce, a multitude of new channels have opened for fraud of the financial scam type [93]. One
such scam is financial identity scam, where victims are coaxed into handing over personal data, which
is then used to make fraudulent money transfers [83]. This financially identifying data is often obtained
through techniques such as spoofed e-mails directing a user to a counterfeit website with a prompt
to enter their information or a person acting under the false pretense of being an employee of a bank
that the user is a customer of. In some cases fraudulent schemes even make use of so-called money
mules: people being payed or duped into receiving and forwarding fraudulent funds, most often through
irrevocable payment services. Money mules are especially difficult to detect, since they are, aside from
the current activity, by all means a legitimate user.

3.1.1. Impact of financial fraud
As the scale and prevalence of multiple types of fraud continues to increase, so does the impact on
those duped by it. To more accurately be able to sketch a picture of this impact, we will divide the
impact of fraud into two categories. First there is the impact on the person or user that is being duped.
Second is the impact of fraud on the institution involved in the fraudulent transactions. For the former
group to be victimized by fraud is especially heinous, as types of fraud such as scams can have serious

3.2. Dutch financial institutions and the DNB 11

implications for a persons financial well-being. In this context, financial well-being is defined by Drew
et al. as ”a state of being financially healthy, happy, and free from worry” [31]. In the Netherlands, in
the year 2020 alone close to 50 million euros of fraud traffic have been reported [68]. Compared to
2019 this is an enormous increase of 195%. The majority of the committed fraud (roughly 60%) was of
the second type, a financial scam in the form of phishing or so-called phone number spoofing, a fraud
technique based on social engineering. A commonality between the vast majority of the aforementioned
fraud instances is the fact that up to a certain degree, the responsibility lies with the financial institution
to ensure that no fraud can be committed through their platform. A common view in the literature on
financial scandals involving fraud is that they are symptomatic of deficiencies in corporate governance
[37]. As a consequence, a widespread change in regulations and governance requirements across
many countries has been set into motion over the past decade. In the Netherlands, the most recent of
these changes is the Guideline on the Anti-Money Laundering and Anti-Terrorist Financing Act and the
Sanctions Act. The next section will dive into more detail on this act.

3.2. Dutch financial institutions and the DNB
De Nederlandsche Bank (DNB), the Dutch national bank, supervises a wide range of financial institu-
tions in the Netherlands. Through supervision based on a wide variety of acts, such as the Financial
Supervision Act (Wft) and the Anti-Money Laundering and Anti-Terrorist Financing Act (Wwft), the DNB
aims to uphold integrity in the services provided by these institutions. In this context integrity means,
among other things, that the service is not used for money laundering, terrorist financing or other viola-
tions of sanction regulations. The DNB holds the responsibility of implementing and enforcing the Wwft
[23]. Not only is integrity one of the pillars of trust for the proper functioning of financial institutions,
integrity is also an essential part of running an ethical operation. The ethical implications of fraud and
automated fraud detection systems will be discussed in more detail in chapter 5.

In order to uphold these standards of integrity, the financial institution first and foremost has to set
up proper processes, procedures and measures in order to mitigate the risks of the aforementioned
integrity-harming practices. Such measures include integrity policies, strategic reviews, mission state-
ments and business principles. More concretely, in terms of fraud-prevention, the DNB expects a
financial institution in the Netherlands to create codes of conduct for the customers and procedures
to effectively control the various integrity risks. The regulatory framework that is deemed appropriate
by the DNB for controlling money laundering and terrorist financing is risk-based [23]. As such, the
precautionary means that financial institutions are expected to take are associated with the risk posed
by the various customers. In turn, this risk is based on customer characteristics such as the country of
residence, past transactions or sectors of profession. These characteristics are known as risk factors.
The full extent of risk factors and how they relate to automated fraud detection will be discussed in
great detail in multiple method chapters of this work.

To prevent the involvement in money laundering or terrorism funding, a financial institution is ex-
pected to identify any inherent identity risks resulting from the susceptibility of its services to be used
for these means. To this end, institutions are obligated to draw up a systematic analysis of the integrity
risks (SIRA). This assessment is comprised of four steps [23]:

1. Risk identification: identifying the risk factors associated with a specific customer, along with
the areas of the provided service that are most susceptible to integrity risk;

2. Risk analysis: analyze the identified integrity risks to assess the associated impact and likeli-
hood. Based on these, weights should be determined for the respective risk factor;

3. Risk control: designing a control procedure to deal with high risk cases or scenarios; and

4. Risk monitoring and review: monitoring and reviewing the identification and control procedure
to improve the process or obtain further insights on fraudulent behavior.

The concrete content and interpretation of SIRA differs per specific financial institution. Larger insti-
tutions with a more complex set of services that are being offered that is also operating on international
markets has to deal with more intricate risk factors than a small institution only operating in the Nether-
lands. The fourth step of SIRA, which comprises the main focus of this work, will now be discussed in
more detail.

12 3. Literature Research: Financial Fraud

3.3. Transaction monitoring
Whereas the first 3 steps of SIRA are associated with customer compliance and the legal side of the
fraud prevention spectrum, the fourth step envelops the literature and context we study the field of
automated fraud detection. Financial institutions are required to take measures to prevent the flow of
illegal activities through their platform. To this end, they must pay particular attention to unusual and
suspicious transactions or patterns in transactions. If there are sufficient grounds for assuming that a
certain transaction or string of transactions are associated with illicit activities, these transactions must
be reported to the FIU. To effectively carry out such a monitoring process, larger financial institutions
are required to make use of a transaction monitoring system and software. Such a system will generate
alerts, which in turn will be investigated by human auditors trained in the field of fraud detection [23]. In
other words, this system will flag transactions it deems suspicious and let ordinary transactions pass.

The Wwft states that such a system must include, at the very least, a set of predefined business
rules. These rules must be in the form of scenarios with threshold values [23]. In more understandable
terms, a business rule has to be intended to combat a certain instance of fraudulent behavior by check-
ing a specific set of characteristics per transaction, based on which a score is calculated. If such a score
exceeds a pre-defined threshold value, the transaction is flagged as potentially fraudulent. Chapter 6
will go into more detail on rule based systems, provide the reader with plenty of real-world examples
to get acquainted with such a system and discuss the main shortcomings of a rule-based system.

Lastly, the Wwft states that financial institutions deem it necessary, they may make use of highly
advanced systems on top of the rule based system. Usually such an advanced system becomes
necessary as the financial institution grows and the nature of the average transaction becomes more
intricate. When making use of such a system, the DNB requires the financial institution to possess
sufficient knowledge to create, maintain and use the system. On top of this, the institution must be
able to demonstrate its quality and effectiveness and is responsible for its performance. As such,
this system may not be created by external suppliers [23]. This responsibility for the performance of
the system, especially the classification mistakes made, creates the need for understanding the ethical
implications of the usage of such an intricate automated fraud detection system. Chapter 5 is dedicated
to discussing the ethical implications of fraud detection both in terms of classification mistakes and user
privacy.

4
Literature Research: Machine Learning

The goal of this chapter is to provide the reader with a logically structured overview and introduction
to the background literature that this work is based on. This chapter will first introduce the reader to
supervised learning with decision trees, which are especially useful when working with tabular datasets
and are a common occurrence when dealing with transaction-related data. Then, it will dive deeper into
the interpretation and explanation of the results produced by suchmodels and in particular one category
of mistakes made by such models: unknown unknowns. Lastly, unsupervised learning techniques and
their application for the generation of synthetic data are discussed. The chapter concludes with a link to
the next chapter, where the privacy implications of data-mining using supervised methods, along with
the effect of using synthetic data to augment the training dataset are discussed.

4.1. Decision tree classification

4.1.1. Decision trees

Decision trees have been around for many decades. From its inception, the decision tree has had
tremendous potential both in terms of assisting decision-makers as well as explaining these decisions
to parties less up-to-date with the specifics, for instancemanagement [65]. Decision trees employ a top-
down, divide-and-conquer strategy that partition each step of a decision making process into smaller
subsets. In its most basic form, the decision tree is a rooted, directed tree consisting of two types of
nodes: internal (or test) nodes and leaf (or decision) nodes [84]. In such a tree, the input is split along
each internal node into two or more subsections of the tree based on some discrete function. Important
to note is that each test node only considers one attribute of the decision making process in its test.
Such decision trees are able to incorporate both categorical and numerical data. In case of categorical
attributes the instance space is partitioned according to each of the attributes value. For numerical
attributes the conditions are often based on a range. These partition methods will be discussed in
more detail later in this section. Consider the following very simple example as an illustration: one has
to host a cocktail party. The host needs to make the decision whether the party will be held inside or
outside. Furthermore, the possibility of the weather being rainy exists. Each possible course along
with its outcome and expected payoff is shown in figure 4.1. By modeling each distinct attribute of a
decision making process, whether it is a decision or a chance event, such a tree is able to show a clear
path towards an outcome while detailing choices, risks, information needs or monetary gains on the
way.

13

14 4. Literature Research: Machine Learning

Figure 4.1: Decision tree for the cocktail party [65]

While decision trees were designed with the intent of helping decision makers with their work, they
do not explicitly give the answer. Rather, decision trees provide the means to compare the conse-
quences of different courses of action. J. Quinlan, who introduced decision trees to assist with decision
making problems, describes the following advantages [81]:

• Clarity and conciseness: The entire classification process is easy to understand and scrutinize
by a human decision maker;

• Context sensitivity: On their own, some attributes used by the decision tree may not be helpful
in many contexts. Decision trees on the other hand allow for these attributes to obtain relevance
many different contexts; and

• Flexibility: This method is able to adapt to multiple input data types, such as categorical or
numerical data.

The first distinct advantage of decision trees will be explained in more detail in section 4.2 of this
chapter. The second advantage comes as a result of the structural design of decision trees. A classifi-
cation done by a decision tree can be traced back along one of the paths. Each testing node along this
path is dependent on the outcomes of the tests before it. As a result, each testing node exists in its own
context within the decision tree. These contexts provide different spaces in which many attributes can
become relevant. As an illustration, we go back to our previous example. Imagine another decision
point, where the organizer of the cocktail party has a certain budget to rent a venue and has to make
a decision based on this number. This decision only becomes relevant when the decision is made to
hold the party inside. If not for the way the decision tree is structured, this attribute would hold no value
to the decision making process.

Many statistical classification methods often make use of either numerical or categorical attributes,
which are continuous and discrete respectively. For instance Bayesian methods require all attributes to
have a discrete value, meaning that numerical attributes need to be divided into sub-ranges or otherwise
encoded [65]. Decision trees do not suffer from this type of inflexibility, as both discrete and continuous
attributes can be handled gracefully. If there is the need to cope with 𝑛 different discrete values, we
can simply introduce 𝑛 decision edges in our test node. For continuous numerical values the decision-
maker can introduce different thresholds or ranges to determine the decision path in the test node.

4.1. Decision tree classification 15

Furthermore, Quinlan describes restricted formalism, the fact that each test node is limited to just
one attribute, to be the main downside of decision trees [81]. The decision making quality of a decision
tree heavily depends on a appropriate collection of attributes being provided. For instance, assume
we have 2 continuous attributes 𝑋 and 𝑌. Assume in the decision making process a decision needs to
be made based on whether 𝑋 is greater than 𝑌. Since test nodes are restricted to a single attribute,
this forces us to include an, otherwise redundant, attribute relevant for this type of classification, in this
example the attribute 𝑋 − 𝑌.

Induction of decision trees
The advantages described above show that decision trees provide powerful, comprehensible and flex-
ible means for decision making and by extension automated classification. Continuing on the notion
that the importance of providing an appropriate collection of attributes is crucial for constructing an
accurate decision making process, we shift our focus from basic decision making to knowledge-based
expert systems. In such a system, there exists a universe of objects that can be described in terms of
attributes. Each attribute represents a discrete, mutually exclusive important feature of an object [79].
Looking back at our earlier example, this means the attributes outdoors and no rain are the values for
the attributes location and weather, which describe the object distinct comfort. Furthermore, we can
group each of these objects into mutually exclusive classes. In our example we could for instance intro-
duce the classes: party is a success and party is a failure. Then, the objects distinct comfort and happy,
proper feeling of being sensible are grouped in the former, while unhappiness and regrets about what
could have been belong to the latter class. Such classes are often referred to as positive instances
and negative instances.

With the definition of the universe as one ingredient, the second major ingredient is a proper train-
ing set consisting of objects of which the corresponding class is known [79]. Provided with these, we
are now presented with an induction task: to construct a classification rule that is able to accurately
determine the class of an object expressed as attribute values. For such a training set to be deemed
adequate, it needs to satisfy one major constraint: if two objects share identical values for their at-
tributes, they must belong to the same class as well. If this is not the case, it becomes impossible
for the classifier to differentiate between these objects based on their attributes and as a result, the
induction task becomes impossible as well.

As the size of the training set and thus the number of rules necessary for the decision tree to
represent grows, the complexity of the of the decision tree grows with it [84]. We can express the size
and complexity of a decision tree in terms of:

• The total number of nodes

• The total number of leaves

• The depth of the tree: the number of edges one needs to traverse to reach the leaf node from the
root node

• The total number of attributes used

The problem of constructing a minimal decision tree that is able to represent the training set has
been shown by Hancock et al. to be an NP-hard problem [48]. The authors further show that the
theoretically best learning algorithm [35], is able to achieve a Probably Approximately Correct (PAC)
decision tree of size 𝑛 in 𝑂(𝑛𝑙𝑜𝑔(𝑛)) time and training set samples, 𝑛 being the amount of attributes.
The authors state their belief that smaller, less complex decision trees are a good representation of
human comprehensibility. Furthermore, Breiman et al. show that the complexity of a decision tree has
a crucial effect on it’s classification accuracy [14]. One has to impose a limit on the complexity of a
decision tree, to avoid overfitting on the objects in the training set [56] and in turn losing predictive
accuracy on never-seen-before objects. These observations suggest that accurate, comprehensible
approaches for constructing decision trees only seem feasible on smaller problems.

To construct a decision tree and, in turn, evaluate the quality of the found tree, numerous heuristics
have been developed. These heuristic criteria cover a wide range of points-of-view from which to
assess the quality of the decision tree. These viewpoints can be categorized into roughly 3 major
groups [81]:

16 4. Literature Research: Machine Learning

• Information provided: this group envelops heuristics most often based on the metrics informa-
tion gain and entropy. Both of these metrics provide insight in how well a test node conveys
information in terms of determining class membership of objects [82];

• The degree of error. Heuristics belonging to this group allow comparison in the errors made
in terms of matching the input objects to the right class between test nodes. A common metric
used is theGini Diversity Index [89], which measures the expected error while taking relationships
between the different classes into account; and

• The statistical significance of a decision. This type of heuristic compares test nodes in terms
of its significance for determining the confidence with which a certain class can be excluded. Test
nodes with a lower significance are deemed less desirable.

Choosing suitable heuristics for growing decision tree is of utmost importance in the construction
of a decision tree, as subtle changes in these methods can significantly affect the trees produced [81].
Many characteristics of the training set play an important role in this process, such as the number of
samples or the number of possible outcomes of a test node.

Reducing the complexity of decision trees
Attributes found ”in the wild” are often far from perfectly suitable for the construction of decision trees.
The seemingly random nature of real-world samples lead to inadequacies in training sets, such as
objects with unknown values for some attributes or the some values for attributes are erroneous or
noisy [56]. In order to still efficiently leverage the advantages of decision tree classification methods
on real-world tabular (containing both discrete and continuous attributes) data, methods to mitigate the
growing complexity resulting from these inadequacies are needed. To this end, various methods, such
as introducing stopping criteria and pruning have been developed. Stopping criteria prevent the tree
from growing further based on a set of rules [67]. These rules can be based on features of the tree, for
instance the depth of the tree or the amount of leaves, or statistical measures, such as not allowing an
attribute to be tested further if the confidence of the attribute being independent of the object’s class is
sufficiently low [81].

As opposed to stopping early, the act of pruning decision trees, as described by J. Quinlan, is ”to
allow the tree to grow without constraint, then to remove unimportant or unsubstantiated portions [of the
tree]” [81]. When pruning a sub-section of the tree, a quantitativemethod is applied tomake the decision
whether to replace the sub-tree with a leaf. Similar to the heuristics for growing the tree, various metrics
exist as a base for pruning. Also similar to growing heuristics, these methods are based on the loss of
accuracy (cost complexity pruning), error rates (pessimistic pruning) and loss of information associated
with pruning a certain section of the tree. Pruning methods result in smaller trees, lower complexity
and less overfitting resulting in better performance on unseen objects [80]. More techniques exist to
make a tree more widely applicable and robust to never-seen-before objects. One such technique is
cross-validation, which, when carefully integrated in the construction of the tree, reduces bias (and in
turn overfitting) in exchange for a relatively low computational overhead [10].

This section has introduced the notion of decision trees, along with an overview of the advantages
and challenges in this field. The next section will discuss a concrete application of decision trees for
machine learning purposes, on which the contributions of this thesis heavily rely.

4.1.2. Tree ensembles
In order to efficiently leverage the advantages of decision tree classification methods on large, real-
world tabular (containing both discrete and continuous attributes) datasets, a suitable application which
leverages the aforementioned advantages and mitigates the shortcomings is needed. While single
decision trees can be a very powerful tool for decision making and classification, even better accuracy
can be obtained by using multiple decision trees in conjunction. In fact, ensembles of decision trees
are among the highest performing types of classifiers [17]. Two widely applied techniques that make
use of ensembles of decision trees are random forests and boosting. This section will briefly discuss
the advantages and shortcomings both methods, while diving into more detail on the latter in support
of the upcoming chapters of this work.

4.1. Decision tree classification 17

Random forests
As the name forest suggests, random forest classifiers use a collection of of multiple decision tree
predictors, where each decision tree is fed a different set of attributes sampled independently and from
the same distribution. More formally: a random forest consists of 𝑘 tree-structured classifiers, where
for each tree a random vector𝜔𝑘 is generated. Based on this vector and the training set a tree is grown.
For each classification, the trees cast a vote and the most popular class is chosen [13]. As a result,
the effects of single trees overfitting to the training dataset are mitigated. By increasing the number 𝑘
of trees used to construct the forest the generalization error, which describes how well the model can
predict unseen data, converges to a limit.

One of the main advantages of random forests is how this method can handle categorical values
with a high cardinality. Where, at the time, existing methods could find an optimal split for these values
in 𝑂(2𝑁−1) time, 𝑁 being the number of possible values, random forests simply handle this by selecting
a random subset for this attribute for each tree [13]. Furthermore, because the trees are grown in a
randomized fashion, there is no need for pruning, which can be a cumbersome task [52]. However,
random forests are limited in the context of regression. For regression problems, the classification of
a random forest is the result of the mean of the classifications of the 𝑘 trees. Because of this, random
forests tend to underestimate higher values, while overestimating lower values resulting in bias in its
classifications [52].

Boosting
In the context of machine learning, boosting is a technique that aims to combine multiple weak classi-
fiers into single strong classifiers. The notions of weak classifiers, strong classifiers and PAC learning
form the basis for the concept of boosting [98]. In this framework, Valiant introduces a class to be
weakly-learnable by a classifier if, given it has access to a source of examples (or training set), it is
able to generate predictions that consistently slightly outperform random guessing. A class is said to
be strongly-learnable by the classifier if it can output a prediction that is correct on all but an arbitrarily
low number of samples with a high probability. In his work, Shapire proved the hypothesis boosting
problem, where he showed that these two notions of learnability are in fact equivalent, by creating a
method that boosts the accuracy of a weak learner to that of a strong learner [86]. In contrast to the
approach used by random forests, the natural approach of boosting the accuracy of weak learners by
running the procedure multiple times and taking the majority vote or mean, was proven inadequate [55].
This reasoning set into motion the creation of the first provable, polynomial time boosting algorithms.

One of these algorithms is of particular interest, as it solved many of the practical difficulties that
the early boosting algorithms suffered from, is called Adaboost [39]. The Adaboost algorithm takes a
training set (𝑥1, 𝑦1), ..., (𝑥𝑚 , 𝑦𝑚) as an input where 𝑥𝑖 represent attributes from the domain 𝑋 and 𝑦𝑖 a
label from the set of classes 𝑌. As this work focuses on binary classification, this section of the literature
research will also only focus on that. As such, we assume that 𝑌 = {−1,+1}. To train on the given
training set, Adaboost calls multiple rounds 𝑡 = 1, ..., 𝑇 of a weak-learning algorithm, an example of such
an algorithm consisting of tree growing and pruning steps discussed in the previous section. Between
each round 𝑡, Adaboost maintains a weight 𝐷𝑡(𝑖) for each sample 𝑖 of the training set. The weights
are initiated equally. After each round, Adaboost increases the weights of miss-classified samples,
while decreasing the weight of correctly classified samples. As a result, the weak-learning algorithm in
future rounds is forced to focus more on these samples. For each of the weight distributions used per
round, the weak-learning algorithm finds a weak-hypothesis ℎ𝑡 ∶ 𝑋 ⟶ {−1,+1}, the quality of which is
measured by its error, which is defined as:

𝜖𝑡 = 𝑃𝑟𝑖 𝐷𝑡[ℎ𝑡(𝑥𝑖) ≠ 𝑦𝑖] = ∑
𝑖∶ℎ𝑡(𝑥𝑖)≠𝑦𝑖

𝐷𝑡(𝑖)

As this error gets smaller, Adaboost assigns an importance measure 𝛼𝑡 to each weak hypothesis,
where 𝛼 ≥ 0 if 𝜖𝑡 ≤ 1/2 and 𝛼𝑡 increases as 𝜖𝑡 decreases. Finally, Adaboost finds a final hypothesis 𝐻
as the weighted majority vote of every round 𝑇, with 𝛼𝑡 functioning as the weights.

Using this method of boosting has many advantages: it is simple to understand, has little param-
eters to tune and requires very little to no prior knowledge about the weak-learner that is used [39].
Furthermore, given it is provided with a weak-learner that can reliably create weak-hypotheses and a
training set of sufficient size, this method is guaranteed to improve accuracy and reduce overfitting.
On the other hand, as a result of the necessity of a proper training set and reliable weak-learner, the

18 4. Literature Research: Machine Learning

performance of the boosting method is heavily reliant on these factors. On top of that, boosting is espe-
cially vulnerable to noise [27]. The first of these caveats is of special interest, as this work introduces a
novel method that aims increase the quality of training sets that are supplied to a boosting approach for
classification. The rest of this section will go into more detail on a state-of-the-art approach to boosting
for classification.

4.1.3. Gradient Boosting
While posing multiple advantages over single decision trees and other ensemble methods, one main
caveat of the Adaboost approach to boosting is that it is purely algorithm-driven and as a result, making
a detailed analysis of the performance and its properties an arduous task [87]. To be able to further
analyze and increase the performance of suchmodels, a connection to statistical frameworks is needed.
To achieve this, a gradient-descent formulation of such models was created which were called gradient
boosting machines (GBMs) [40]. As opposed to previous methods of boosting, in a gradient boosting
approach, each round 𝑡 aims to construct a new weak-learner that is maximally correlated with the
negative gradient of the loss function 𝜖𝑡 [70]. This loss function can be arbitrarily chosen, providing
the system designer with the freedom of modeling the learner for his specific domain or problem. This
freedom and flexibility that GBMs provide make them highly customizable for a myriad of data-driven
tasks. As a result, over the last decade GBMs have shown considerable success both in the field of
data-mining and practical applications of machine learning [78] [63] [97].

Lastly, as this section has slowly entered the state-of-the-art field of decision tree applications for
machine learning, one more boosting technique will be discussed. As applications of gradient boosting
machines move into the open world, many new challenges arise such as incomplete or noisy data,
unmanageably large datasets and the every changing, seemingly almost random, nature of prediction
classes. In order to construct a predictor that can perform in these ”in the wild” scenarios, one requires
a scaleable construction method that produces generally applicable models. One such method is Reg-
ularized Gradient Boosting or eXtreme Gradient Boosting (XGB) [19]. The authors describe the main
advantage of their approach as ”its scalability in all scenarios”, as the system runs more than 10 times
faster than existing similar solutions. On top of this, they describe their approach as being optimzed for
sparse datasets. By combining these advantages, XGB is can be applied to solve real-world problems,
while using a minimal amount of resources. Chapters 7 and ?? will go into detail on how XGB models
are used and implemented in this work. The next section of this literature chapter will take a deep dive
into how we interpret predictions and errors made by such classifiers in this work from a high level point
of view.

4.2. Interpreting and explaining classification results 19

4.2. Interpreting and explaining classification results
In the year leading up to the US invasion of Iraq the US Secretary of Defense, Donald Rumsfeld, made
a statement that caused quite some commotion. When asked about the evidence surrounding the US
involvement in the supply of weapons to terrorist groups, he stated:

”Reports that say that something hasn’t happened are always interesting to me, because as we
know, there are known knowns; there are things we know we know. We also know there are known
unknowns; that is to say we know there are some things we do not know. But there are also unknown
unknowns—the ones we don’t know we don’t know. And if one looks throughout the history of our
country and other free countries, it is the latter category that tend to be the difficult ones.” [73]

The vagueness of this statement led to widespread ridicule at the time. Even though in the context
of the question asked this might have been justified, from a more general point of view his statement
does make sense. There are things we don’t know we don’t know and as a result, are very difficult to
identify. While the former secretary had introduced unknown unknowns (UUs) to a considerable new
audience, the notion of unknown unknowns was nothing new.

The concept of known knowns, unknown unknowns and every other combination originates from
the Johari Window, a graphic model created by Joseph Luft and Harry Ingham in an attempt to visualize
the difficulties in thinking about one’s own behavior in relation to others [64]. This window, consisting of
4 quadrants, provides us with a framework to critically think about the awareness of knowledge at one’s
disposal. The top left quadrant, the area of free activity (known knowns), refers to the information known
by oneself and others. The top right quadrant, the blind area (unknown knowns), is the information
known to others but not to ourselves. To the opposite end of the window is the hidden area (known
unknowns), the things we know but is unknown to others. Lastly, and most interestingly, there is the
Area of unknown activity (unknown unknowns). The information described by this quadrant is not
known to anyone, yet we can assume this information exists, as over time the information from this
quadrant becomes known. As this information gradually comes to light, it is key to recognize that this
newly acquired information and its influence had been there all along.

As predictive models based on machine learning are in essence a computerized version of the
human way of learning, we find that these definitions are an effective way of categorizing the knowl-
edge that a model holds. When presented with a certain string of inputs, a trained model will output
a prediction with a corresponding confidence score. Based on this information we are able to trans-
late these outputs to any of the 4 quadrants described earlier. Using the confidence score attached
to a prediction, usually a number between 0 and 1, along with predetermined thresholds to indicate
the confidence level, we can decide whether the model is confident in its prediction or not. A human
expert can then determine if the classification is correct. One of the root causes for the existence of
UUs in supervised machine learning is the mismatch between the data used for training the model and
the data found after during deployment of the model [60]. More specifically, the existence of UUs can
be a result of systemic bias in the training data. One such cause is underrepresentation or complete
absence of certain instances in the training data. As an example of this, imagine an image-based clas-
sifier to predict whether a picture depicts a dog or a cat. The training data consists of a collection of
black dogs and white cats. After training on this dataset, if the model is presented with an image of a
white dog, it will likely incorrectly label it as a cat with a high confidence score [60]. Even though there
are many distinctive features between dogs and cats, such as shape of the nose or ears, as a result
of this bias the model might learn to make predictions exclusively based on fur color. As a result of
under-representation in the training data, pictures of white dogs are UUs to the model. Not only under-
representation can be a cause of this bias, but also a shift in population can lead to old training data
no longer being representative for data found today [20]. To illustrate, again consider the model used
to classify transactions. As fraudsters think of new techniques to stay ahead of the curve all the time,
the data used to train this model needs to be representative of this. Knowledge of fraudulent payments
from 10 years ago is not likely to help detect fraud based on current day strategies.

This section aims to provide the reader with a detailed overview of the current state-of-the-art sur-
rounding the detection of UUs in the context of machine learning, provide insights on how the newfound
knowledge about these UUs can help improve the quality of machine learning applications and create
an high-level comparison between existing state-of-the-art techniques. Lastly, it links the notion of UUs
in the context of fraud detection to the contributions made in this work.

20 4. Literature Research: Machine Learning

4.2.1. Unknown unknowns and model robustness
Nowadays, a significant amount of predictions, decisions and estimations for business and government
organisations are made by machine learning models. These models are employed in a wide variety
of fields ranging from banks automatically checking if a payment that is made is fraudulent to making
medical predictions to self-driving cars. On top of this, popular web service providers such as Amazon
or Microsoft, have steadily been introducing pre-trained machine learning models over the past years.
With the advent of such a significant amount of machine learning applications, it is of key importance to
understand what is happening when such models make mistakes. No model, no matter how advanced,
is perfect and is bound to make mistakes

The errors produced by a predictive ML model can be divided into two categories: known unknowns
and unknown unknowns [1]. The former category has been studied thoroughly and a plethora of heuris-
tics exist to address these types of errors. The common strategy for this is largely based on the same
concept: select the predictions with the lowest confidence scores and use human annotators to confi-
dently assign a ground truth label, also known as active learning. Examples of such methods are:

• Uncertainty sampling: Find instances for which the model has high uncertainty and and use
human feedback to greatly reduce the amount of low confidence instances [62].

• query-by-committee: A group of people is trained on the same dataset. Then, the instance that
results in the highest disagreement in the group, for instance a case where half the group answers
”yes” and the other half ”no”, is chosen. In turn, this instance can be labeled by an expert [90].

• Near-separating hyperplane sampling: Use a support vector machine (SVM) to divide the label
space into two areas separated by a hyperplane functioning as the decision boundary. The points
closest to this boundary correspond to the points with the highest uncertainty and are selected
for training [88].

Even though these examples are helpful in increasing our understanding of the model and its weak-
nesses, they are of no use in finding the latter type of errors. In fact, by applying these methods we
increase the amount of cases that the model is certain about, but in turn decrease the chance of finding
UUs [1]. While known unknowns result from shortcomings of the model, UUs are a result of what T.
Dietterich describes as ”unmodeled aspects of the world” [28]. He further goes on to explain that for a
machine learning model to be truly robust, it has to conform to 5 standards of robustness:

1. Robustness to errors committed by human operators. For instance the scenario where a human
and a ML model work together in a self-driving car.

2. Robustness to miss-specified goals, another type of human-caused error where a command to a
ML model is misinterpreted for instance due to being vague.

3. Robustness to cyberattacks. As ML models become integrated into all kinds of services, such as
financial markets or power grids, they must be resistant to various attacks on these systems.

4. Robustness to errors in the model itself. This standard comes down to becoming robust to known
unknowns.

5. Robustness to the unmodeled aspects of the world.

This last form of robustness is of particular interest, as even if all other forms of robustness are
addressed, the model will still continuously be confronted with this last type of problem, even more so
in the field of financial fraud. Even though there is little information known beforehand about UUs in the
wild, it has been found that high-confidence mistakes often follow a systematic pattern. In other words,
many UUs have been found to be part of corresponding regions in the feature space of the classifier,
as if they are the ”blind spots” of the model [3]. These superficial patterns are also referred to as bias.
Models that suffer from a high bias seem to perform well on in-domain data, but struggle to perform
when deployed in real situations and are easy to fool [21]. An example of this are models that find
relations in text. These models often base their answers solely on the existence of certain keywords
irrespective of the context as a result of bias [11]. Over the past years, progress has beenmade towards
using knowledge about UUs to improve the overall quality and understanding of ML systems. The next
sections, acting as almost a roadmap of this progress, provide an overview of the research done from
identification of UUs to using this knowledge to filter bias from widely used ML datasets.

4.2. Interpreting and explaining classification results 21

4.2.2. Identification of unknown unknowns
Human centered
One of the first and most prominent research done towards identifying UUs is the work done by At-
tenberg et al. [1]. The authors describe a technique for identifying these errors by making use of a
game-like setting to leverage the natural skill of humans in detecting these kinds of errors. In their
system, crowdworkers were asked to identify cases where they thought the model would make a clas-
sification error in exchange for a monetary reward for every correctly identified error. The authors found
that even untrained humans were able to discover a large amount of cases where the model is con-
fident about its prediction, but is incorrect. They conclude by mentioning that a logical next step is to
use this knowledge of the vulnerabilities of the model to improve automatic decision making.

Human-in-the-loop
When talking about a human-in-the-loop system, it means that at some point in the ML pipeline there
is human intervention to provide valuable information to the otherwise automatic process. One such
system used to understand ML system behavior and identify failures is called Pandora [72]. In this
system, content features and relationships between these features are clustered, either automatically
or using human annotators. Then, based on these features and the model output, Pandora produces
multiple views to characterize the circumstances that are most likely to lead to system failures. By doing
so, this system aims to improve the accountability of ML systems. This is a problem that is becoming
increasingly important as more and more ML applications are rolled out in the open world.

Lakkaraju et al. [60] take identifying ML failures one step further and propose the (to their knowl-
edge) first algorithmic approach to the discovery of UUs. They remark that these types of errors often
result from bias in the training data. As a solution, the authors propose a two-phase framework where
the data is first partitioned based on model confidence and feature similarity, after which an explore-
exploit approach is used to discover the UUs in these groups. When a potential UU is found, a human
oracle is queried to find out the true label of the target. This approach focuses purely on the in- and
output of the model and training dataset, meaning the ML model itself is treated as a black box.

As an extension to this research, Bansal & Weld argue that the above research yields an effective
algorithm for discovery of UUs, but fails to provide a complete understanding of the limitations of the
classifier in question [3]. The authors aim to improve on 3 weaknesses that they have found in the
aforementioned research. First, their approach assigns more utility to UUs that are discovered and are
distinguishable from previously discovered UUs. Secondly, regions of discovered UUs that represent
a larger extent of blind spots are assigned a higher utility score. Lastly, the approach of Lakkarju
et al. assigns the same utility to a very rare UU as it does to a UU from a very dense region of the
feature space. As this dense region indicates a significant systemic collection of errors in the classifiers
predictions, this extension prefers finding UUs in these areas. All things combined, their algorithm
provides a better coverage of the regions in which UUs are found, thus providing a more broad overview
of the blind spots of the model.

Algorithmic
While humans are naturally strong at recognizing and identifying UUs, relying on human input is costly.
As a consequence, the utility functions of the approaches mentioned above all try to minimize the
amount of queries to the oracle. The research done by Chung et al. assumes no existence of such an
oracle [20]. In fact, it does not even assume the existence of labeled testing data at all. Their approach
takes identification to the next step and introduces an approach to not only detect these errors, but aims
to remedy them by leveraging the knowledge that these errors often result from discrepancy between
the training and testing data (or, a more general term used by the authors: covariate shift). The authors
describe a system where species-estimation techniques in conjunction with data-driven methods are
used to estimate the feature values for the UUs of the model. Their results show that their proposed
technique, in the presence of covariate shift, dramatically helps to improve model performance. Like
the other approaches mentioned, the machine learning model is treated as a black box. The authors
mention that an interesting direction for future work in this area would be towards how the properties
of different ML models relate to the existence of UUs.

22 4. Literature Research: Machine Learning

4.2.3. Addressing unknown unknowns
While identifying system failures and more specifically UUs help us understand the vulnerabilities of a
system, the end-goal is to use this information to improve the existing ML models. As stated before, the
existence of UUs originates from the discrepancies between the data used to train and to test, which
we call bias. This phenomenon significantly inflates the performance of a model on training data, which
leads to an overestimation of the actual capabilities of the model [61]. We want to try to find a way to
leverage our knowledge about the UUs present in a system to reduce this bias as much as possible.
As a result, we end up with a model that is more robust, generalized and ready for deployment ”in the
wild”.

To this end, Clark et al. show that such knowledge about biases can be used to increase the
robustness of a MLmodel in the case of such a domain shift [21]. Their approach consists of two stages:
first, the authors train a model that makes predictions purely based on biases in a dataset. Second,
another model is trained in ensemble with the first model, which encourages the second model to learn
a different strategy. Then, only the second model is used on the test set. As can be expected, the first
model performs very well on test data, but struggles on new, unseen instances. The authors results
show that their approach outperforms a baseline model trained without any modifications in multiple test
scenarios, ranging from synthetic data to the VQA dataset (a dataset containing open-ended questions
about images).

A similar research done by Kaushik et al. focuses its efforts on so called spurious patterns [54].
These are underlying patterns and correlations in datasets that result in unintended relations between
the input and output of a model. An example in the field of computer vision is the work done by Jo
& Bengio where it is shown that deep neural networks unintentionally learn to use background clues
or surface-level textures to recognize the subject of the picture [53]. To put this more concretely, the
authors remark: ”the beach is not what makes a seagull a seagull”. To address this, the authors propose
a human-in-the-loop solution to manipulate the datasets with information that they call counterfactual
revision. In practice, crowdworkers are asked to not to label instances, but instead to edit them to
enrich the dataset with a counterfactual instance. To clarify, the authors apply this on a NLP model for
sentiment analysis. The worker is directed to for instance revise a negative movie review and change
it to a positive one, while changing as little information as possible. In doing so, the authors manage
create enriched datasets to train more robust classifiers which are less reliant on spurious signals.

Lastly, a very recent and promising approach called AFLite (a lightweight framework for adversarial
filtering) has been shown to effectively reduce bias in both synthetic and real datasets [61]. In their
work, the authors recognize that most previous studies follow a top-down structure: the algorithms
that reduce bias are mostly guided by domain-specific knowledge and intuition of the researchers. As
a result, these algorithms are bound to the biases that are manually enumerated. To contrast these
approaches, AFLite introduces a bottom-up approach: a model-based approach where the goal is to
go beyond the human intuition and remove the spurious artifacts that a model, unbeknownst to the
operators, uses. While the authors prove that this approach effectively reduces bias, improves model
generalization and better ”in the wild” performance of models trained on the filtered data, AFLite does
bring some new challenges to the table. Using AFLite makes applying widely used performancemetrics
and benchmarks considerably more challenging. For example: the training accuracy observed on one
of the test datasets dropped from 93% to 63%, indicating that the original accuracy might have been
inflated as compared to the ”in the wild” performance as a result of dataset bias.

When considering dataset filtering, the trade-off considerations shift from complexity versus gen-
eralization to the changes in performance due to the increased absence of bias. As briefly discussed
earlier, filtering bias from a dataset prior to training leads to an increase in performance in the out-of-
domain setting but comes at the cost of losing in-domain performance [21]. This is not surprising, as
bias in datasets by definition increases the in-domain performance (which is the root cause of the prob-
lem in the first place). As a result of this, it becomes a laborious task to effectively compare performance
to existing benchmarks. Training a model on a dataset filtered by adversarial filtering will very likely
result in lower scores for common metrics, such as accuracy, compared to the same model trained
on an unfiltered dataset. This means that for an equal comparison, all widely used AI benchmarks
would need to be adjusted to include results based on filtered datasets. Many of the state-of-the-art
research papers therefore suggest future works that cater to this need, such as: constructing suitable
development datasets [21], releasing filtered dataset variants to further progress on benchmarks [61] or
creating entirely new complex benchmarks [32]. One such approach is developed in this work, where

4.2. Interpreting and explaining classification results 23

the aim is to create a method to ”reveal” such blind spots with synthetic samples representing the UUs
of the model to in turn improve generalizability.

4.2.4. Explaining model predictions
As the field of AI and automated decision making progresses, the need for justification of these deci-
sions increases with it. No longer is it sufficient to just reach a correct decision based on an inscrutable
black box system and human-decision makers needed to both be able to understand and explain how
such a decision is reached [36]. As an example, for a medical application, a practitioner would prefer
a decision-making tool that is correct 85% of the time, but being able to relate back to his own medical
knowledge over a black box type tool that is correct 90% of the time [81]. For decision trees, this comes
as a natural property of the decision making process. Rather than for instance statistical classification
methods, where a classification is represented by a collection of numbers, decision trees represent
classifications as a conjunction of decisions. It is not far-fetched that the latter is better explainable.
This section will dive deeper into the explainability of the decisions made by tree-based methods, de-
scribing not only how to explain how a certain decision is reached, but also why.

The field of financial fraud detection is no exception from this increased need for explainability. As
mentioned in the previous chapter, decisions made by an automated decision making system poten-
tially have a huge impact on the financial well-being of a user. If someone is flagged as a fraudster, the
financial institution is expected to be able to explain to the FIU how this decision was made [23]. For
simple rule based systems this is fairly straightforward. As an example, consider the following simpli-
fied, fictitious transaction monitoring rule:

Flag a transaction made by a user as fraud if:

• The transaction was made from a high risk country and;

• The amount of the transaction is over 5000 euro and;

• The transaction was made to an organisation considered to be of high risk.

If a user gets flagged by this rule, whether he is a fraudster or not, the explanation of why the user
has gotten flagged is trivial. Apparently this user has made a highly suspicious transaction and thus
the decision can be justified. For machine learning models on the other hand, this decision is much
more difficult to justify. A feature array based on the transaction goes in and a decision comes out. One
cannot justify this decision by simply stating ”because the model said so”. For this reason, the need
exists to be able to explain any decision made by the model in a human-understandable manner. This
section will consider 2 state-of-the-art methods to formulate such explanations, which the contributions
made by this work also build upon.

Shapley values
The Shapley value was first introduced by Lloyd S. Shapley as a way of calculating and describing the
extent of the contributions of every player in an n-person cooperative game with regards to the final
outcome of the game [91]. In a non-cooperative game, the game is defined as a sequence of moves
each player can take leading to an unique possible play with its own associated payoff. As opposed to
these games, cooperative games reduce this entire collection of data to a coalitional form [101]. The
payoff values are no longer defined as on an individual plays, single actions or solitary moves, but
rather on a single value that described the outcome of the game. Shapley introduced a single-point
solution to associate a single payoff vector to a coalitional game which, at the time, were considered
to be a black box due to the high complexity of such games.

More formally, a coalitional game played by a finite set of players 𝑁 = 1, 2, ..., 𝑛 is a function 𝑣 that
maps the set 𝑆 of all 2𝑁 possible coalitions to a real number representing the total payoff. For a coalition
consisting of no players, so 𝑣(∅), this value is 0. Furthermore, there exists an operator 𝜙 that assigns
a vector of payoffs to each game defined as 𝜙(𝑣) = (𝜙1, 𝜙2, ..., 𝜙𝑛). Each payoff 𝜙𝑖(𝑣) represents the
payoff for player 𝑖 in the game, which can alternatively be interpreted as the measure of player 𝑖’s power
(or influence) in the game. Shapley has defined the Shapley value as the average marginal contribution
of player 𝑖 to the game 𝑣 as [101]:

24 4. Literature Research: Machine Learning

𝜙𝑖(𝑣) =
1
𝑛! ∑

𝜋∈π
𝑣(𝑝𝑖𝜋 ∪ 𝑖) − 𝑣(𝑝𝑖𝜋)

In this equation, 𝑝𝑖𝜋 ∪ 𝑖 represents the set of players from 𝑁 that precede player 𝑖 in the game.
Here, 𝜋 represents a permutation on the set of players. This permutation can be interpreted as the
order in which the players precede player 𝑖 and is a one-to-one function on the set 𝑁. The set of all
possible permutations is denoted by π. Lastly, assuming that permutations are randomly and uniformly
drawn from this set, then we have to include 1

𝑛! in the function, since the set π consists of 𝑛! possible
permutations. The most interesting part about the Shapley value is that this definition of the Shapley
value represents an unique value that satisfies four axioms:

• Efficiency: ∑𝑖∈𝑁 𝜙𝑖(𝑣) = 𝑣(𝑁), the sum of all individual player 𝑖’s payoffs is the total payoff of
the game. In other words, each player in the coalition properly distributes itself among the total
resources available in the game;

• Symmetry: in the game, if players 𝑖 and 𝑗 are symmetric, then 𝜙𝑖(𝑣) = 𝜙𝑗(𝑣). Players 𝑖 and 𝑗
are symmetric if for any coalition 𝑆 they make the same marginal contribution;

• Dummy: If a player 𝑖’s marginal contribution to any coalition 𝑆 is null, then player 𝑖 is considered
a dummy player and in turn 𝜙𝑖(𝑣) = 0; and

• Additivity: For games 𝑣 and𝑤, the following additive relationship holds: 𝜙(𝑣+𝑤) = 𝜙(𝑣)+𝜙(𝑤).
Here, 𝜙(𝑣 + 𝑤) is defined by (𝑣 + 𝑤)(𝑆) = 𝑣(𝑆) + 𝑤(𝑆) for any coalition 𝑆.

This strong definition, the game-theoretic context and desirable properties of the Shapley value have
lead to the Shapley value being adopted in the field of machine learning explainability. To conclude this
section, an overview is given of how Shapley values can be interpreted as a stepping stone to one of
the main contributions of this work.

Interpreting Shapley values

To interpret the Shapley values associated with a single prediction, we can formulate the following
definition: The contribution 𝜙𝑖 of feature 𝑖 to the prediction of a single sample compared to the average
prediction of the complete dataset is expressed as the Shapley value [69]. Consider the following
example as an illustration: we are training a random forest regression model to predict the number of
bicycles rented on a specific day [69]. The tabular dataset contains both numerical and categorical
features such as: the season, the weather situation and temperature. The count of the rented bicycles
is the target class for this regression task. For a particular day, the explanations expressed in Shapley
values could look like 4.2:

4.2. Interpreting and explaining classification results 25

Figure 4.2: Shapley values for a particular day [69]

As we can see from figure 4.2, the average prediction for the number of bikes rented is 4518 and
the actual prediction for this specific day is 2409. This difference of -2108 is expressed as feature value
contributions in the bar chart. If we consider the most impactful feature contributions, the humidity and
the temperature, it stands out that a high humidity has a negative impact on the amount of rented bikes,
while a moderate temperature has a high positive impact on the amount of rented bikes. As it stands,
Shapley values in essence show the model designer the degree in which certain feature values push
the model towards making a certain decision. In terms of explainability, this is the main takeaway for
this work and this way of thinking will be exploited in method chapter 9 to create adversarial examples
in the context of fraudulent transactions.

Global Shapley values
So far, Shapley values in the context of a single prediction have been discussed. In this work, we are
mostly interested in the effect of feature values over a large number of predictions. Where Shapley
values are able to provide local explainability for one data point 𝑥, Global Shapley values are able
to provide insights on the behavior of the model over the entire dataset [41]. Global Shapley values
are calculated by taking the sum of the Shapley value for each individual data point in the dataset.
Global Shapley values provide the model designer with insights on which features generally contribute
to the decisions made by the model and in what way they influence the average model prediction. In
method chapter 9 of this work, it is explained how global Shapley values are used and interpreted to
gain interesting insights in the behavior of a fraud detection model.

26 4. Literature Research: Machine Learning

4.3. Unsupervised learning for synthetic data generation
As was shown in section 4.2 of this chapter, supervised learning has a great range of applications in
a wide variety of fields. As also mentioned in that section, one of the main challenges of supervised
learning is the dependence on a properly labeled training dataset. Constructing a labeled dataset is of-
ten an arduous task, requiring both domain-specific knowledge and a high number of man-hours in the
form of manual labeling. Even in the possession of such a labeled training dataset, one problem that
still remains is the problem of class imbalance. Supervised machine learning approaches are known
to suffer from this class imbalance, as many frameworks tend to favour the majority class. Automated
classification systems in the field of financial fraud detection are no different and, as fraudulent trans-
actions are significantly more rare than their legitimate counterparts, the challenge of working with a
heavily imbalanced training dataset is even more prevalent. Unsupervised learning, as opposed to
supervised learning, does not make use of such labels. Unlike other techniques that do not make use
of class labels, such as reinforcement learning where one uses a reward function to point the learning
process in the right direction, unsupervised learning only receives raw feature arrays as inputs [43].
While the idea of machine learning without target class labels might seem counter-intuitive, there are
plenty of practical applications of unsupervised learning. In essence, one can think of unsupervised
learning as a means of finding patterns in unstructured or seemingly noisy datasets. Examples of such
applications are clustering and dimensionality reduction [4].

The majority of the work done in the field of unsupervised learning focuses on constructing a prob-
abilistic model of the given dataset. More formally, consider a training dataset consisting of 𝑛 − 1
observations 𝑥1, ..., 𝑥𝑛−1. In many cases, it is useful to be able to estimate the probability distribution of
a new entry 𝑥𝑛 given the training dataset. The model learns 𝑃(𝑥𝑛|𝑥1, ..., 𝑥𝑛−1), assuming that 𝑥1, ..., 𝑥𝑛−1
are drawn from some joint distribution 𝑃𝑟(𝑥) in an identical and independent fashion. In turn, such
a model can be used for outlier detection, classification or data compression, among many other pur-
poses [4]. Another application of these probabilistic models that has been receiving a significant amount
of attention in the recent years is the generation of synthetic data that has similar properties to the data
found in the training dataset. In their work, Frasch et al. [38] describe a method for constructing a
generator for training data used by supervised and unsupervised learning methods. They argue that
using synthetic data for training purposes has two distinct advantages:

1. Collecting and/or labeling real-world data is in some cases very difficult or even impossible; and

2. Real-world variables found in real-world data are very hard to control, both in the problem-domain
and in the feature-domain.

Even though their approach has many advantages, the main caveat is the fact that one needs full
knowledge of the statistical characteristics of the problem at hand. Another similar approach, this time
in the context of grammatical error detection, was proposed by Grundkiewicz et al. [46]. In their work,
the authors enlarge the training dataset by generating additional synthetic sentences and generating
synthetic sentences containing noise. First, their supervised model was pre-trained on the synthetic
dataset, after which it was fine-tuned on an authentic, real-world dataset. This method has shown con-
siderable success over similar methods, obtaining high rankings on multiple shared tasks in the field
of grammatical error correction. Lastly, in a more recent research, Devaranjan et al. [26] propose a
supervised method that leverages both synthetic and real-world target images to train an object detec-
tor. Furthermore, they use an unsupervised approach to generate the synthetic images and show that,
without any supervision, their generator is able to produce data that captures key statistic structures
much akin to real-world images. Their experiments on both real and toy datasets show a significant
improvement of their model trained on the combined dataset compared to baseline datasets.

In this work, a state-of-the-art framework for creating synthetic data that has gained a lot of traction
recently will be discussed and explained in detail. Then, an adaptation of this framework which allows
us to generate realistic synthetic samples on tabular data, which poses additional challenges, will be
described.

4.3.1. Generative Adversarial Networks
For a long time, the most promising work in the field of unsupervised learning has generally involved
deep-discriminative learning models, where a high-dimensional input is mapped to a class label [59].

4.3. Unsupervised learning for synthetic data generation 27

On the other hand, deep-generative models did not see the same striking successes, as there are two
main difficulties that hinder efficient computations [45]:

• For strategies such as maximum likelihood estimation, the method of estimating the parameters
of a probability distribution by maximizing a certain likelihood function, it is often very difficult to
approximate the many intractable probabilistic computations.

• As opposed to the discriminative context, in the generative context it is difficult to utilize the ad-
vantages of piecewise linear units that are often seen in backpropagation or dropout algorithms.

To bypass these difficulties, Goodfellow et al. [45] have proposed a procedure for generative model
estimation where a generative model is pitted against an adversary. Generative Adversarial Networks
(GANs) employ both a discriminative and a generative model, where the goal of the generative model
is to ”beat” the discriminative model. More specifically, the discriminative model aims to learn whether
a certain sample is generated by the generator, the model distribution, or part of the data distribution.
One can regard the generative model as a band of counterfeiters, whose aim it is to produce as realistic
counterfeit money as possible. In the same context, one can regard the discriminative model as the
police, whose aim it is to distinguish between real and fake money. This cat-and-mouse game is driven
by competition, as both teams will continue to increase their performance based to keep up with the
other team. This section aims to give a detailed overview of how GANs work and assumes the reader
has some basic prior knowledge of neural networks.

Formal description
In the most straightforward application the adversarial network consists of a discriminator and a gen-
erator, which are both multilayer perceptrons. The network takes a dataset 𝑥 as input. The generator
𝐺 is defined as a multilayer perceptron, which represents a differentiable function with parameters 𝜔𝐺.
This function is defined as the mapping 𝐺(𝑧;𝜔𝐺) to the dataset space, where 𝑝𝑧(𝑧) are defined as the
prior on input noise variables. This function allows for 𝐺 to learn a distribution 𝑝𝐺 over dataset 𝑥 [45].

The discriminator is defined in comparable fashion, as amultilayer perceptron𝐷(𝑥;𝜔𝐷). As opposed
to 𝐺, 𝐷 only outputs a single scalar: the probability that a sample comes from the dataset 𝑥 rather than
𝑝𝐺. 𝐷 is trained to maximize the probability of assigning the correct label to samples fed to it from either
𝑥 or 𝑝𝐺. 𝐺 is trained simultaneously to 𝐷, but as opposed to 𝐷, 𝐺 is trained to minimize 𝑙𝑜𝑔(1−𝐷(𝐺(𝑧))),
which in essence represents how well samples from 𝑝𝐺 are able to deceive the discriminator. In total,
the complete network can be described by a two-player minimax game by the following value function
[45]:

min
𝐺

max
𝐷
𝑉(𝐷, 𝐺) = 𝔼𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔𝐷(𝑥)] + 𝔼𝑧∼𝑝𝑧(𝑧)[𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)))]

Goodfellow et al. further describe that, in practice, this game should be implemented using an
numeric and iterative approach. To avoid overfitting of 𝐷, one must alternate between 𝑘 optimization
steps of 𝐷 and one optimization step of 𝐺. Then, under the condition that 𝐺 changes sufficiently slow,
the results of 𝐷 can be maintained near the optimal solution. Figure 4.3 visualizes the process of the
generator and discriminator training ”against” each other.

This figure shows the discriminator 𝐷 (blue dashed line) training simultaneously with the generator
𝐺 (green line). The dotted black line represents the distribution 𝑝𝑥 of the dataset 𝑥. The green line
associated with the generator shows the distribution 𝑝𝑔 of the generative dataset. The blue line asso-
ciated with the discriminator shows its distribution so that it discriminates between the black and green
distributions. Lastly, the black line at the bottom represents the domain where samples of 𝑧 are taken
from and the line above is the domain of dataset 𝑥. The arrows show the mapping 𝑥 = 𝐺(𝑧) of the
function represented by the generator.

In step (a) the network is nearing convergence. 𝑝𝐺 already shows a lot of similarity to 𝑝𝑑𝑎𝑡𝑎 and 𝐷
is able to mostly accurately classify whether a sample belong to 𝑝𝑑𝑎𝑡𝑎 or 𝑝𝐺. Thereafter, in step (b), 𝐷
has performed 𝑘 training steps since (a) and is slowly converging towards D(x) = 𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑝𝑑𝑎𝑡𝑎(𝑥)+𝑝𝐺(𝑥)
. Then,

in step (c) the training step of 𝐺 is done where the gradient of 𝐷 has pushed 𝐺(𝑧) to an area of the
domain where it is less likely to be classified as 𝑝𝐺 and more likely to be classified as 𝑝𝑑𝑎𝑡𝑎. Finally, in
step (d), 𝑝𝐺 has become (nearly) identical to 𝑝𝑑𝑎𝑡𝑎 and as a result, 𝐷 is no longer able to discriminate

28 4. Literature Research: Machine Learning

Figure 4.3: Convergence of the training process of an adversarial network [45]

between the two distributions, meaning that 𝐷 is no longer being able to obtain a higher confidence for
a sample 𝑥 belonging to 𝑝𝑑𝑎𝑡𝑎 than 1/2.

Even though GANs pose a great deal of advantages over many other techniques of synthesizing
a good representation of a dataset, there are still some big challenges to be addressed in the field.
One of the most serious of these problems is called mode-dropping or mode collapse. Mode collapse
is the phenomenon of multiple portions of the target probabilistic distribution being omitted from the
probabilistic model produced by the GAN. In their work, Bau et al. [5] analyze this problem in the
context of synthetic image generation with GANs. The authors find that the object classes seemingly
”forgotten” by the produced model are not simply distorted or noisy, but rather dropped entirely. As
an example, they observe that when synthesizing images, large human figures and parallel lines in
fences appear to be ”too hard” of a class for the GAN to learn and as a result are omitted entirely from
the produced images. Despite this, the average produced image is still of high quality. Furthermore,
it is a non-trivial problem to translate the generation of synthetic data from a continuous domain, for
instance the image domain described above, to a domain consisting of a mix of continuous and discrete
data [102]. In many domains, including the domain of financial fraud, the discrete columns in a tabular
dataset are often unbalanced and of high cardinality. On top of this, continuous columns may have
multiple varying modes. These factors combined cause existing approach to fail to properly model
datasets in this domain. For this reason, the next section will explore and describe an approach to
synthesize tabular data, which is built upon later in this work.

4.3.2. CTGAN
CTGAN or Conditional Tabular GAN is a framework that addresses the aforementioned challenges
posed by GANs. In their work, Xu et al. [102] compare existing state-of-the-art techniques techniques
such as Bayesian networks and deep neural networks using both real and synthetic datasets. Their
results show that on tabular data, the synthetic data generated by these techniques fall short on various
metrics likemachine learning efficacy and likelihood fitness. The approach proposed by these authors,
CTGAN, is shown to outperform these state-of-the-art methods on a good number of real and simulated
datasets. Because this approach is applied in the contributions made by this work, this section will give
a detailed overview of how CTGAN works, how it performs compared to other methods of generating
synthetic tabular data and why it is applicable in the field of financial fraud detection.

The process that CTGAN follows to learn the distribution of a target dataset consists of 2 steps:
mode-specific normalization and a conditional training process. Furthermore, the conditional training
process consists of three key elements: the conditional vector, the generator loss and the training-by-
sampling method.

Mode-specific Normalization
The first way in which CTGAN distinguishes itself from a normal GAN is how the data from the target
dataset is represented. As described earlier, a regular GAN uses a minimax game to normalize contin-
uous values. To account for (unbalanced) discrete columns and columns with an intricate distribution.
The authors divide this step into 3 sub-steps:

4.3. Unsupervised learning for synthetic data generation 29

1. Each column in the tabular dataset is considered separately and independently. For every con-
tinuous column 𝐶𝑖, a variational Gaussian Mixture model (VGM) is used to estimate the number
of modes in the distribution of the values in the column. On top of that, a Gaussian mixture, a
function comprising of multiple Gaussian distributions, is fitted onto the data.

2. Compute the probability of coming from each mode found in the previous step for each value 𝑐𝑖,𝑗
in 𝐶𝑖.

3. Sample one mode given the joint probability density of the Gaussian mixture and use this mode
to normalize 𝑐𝑖,𝑗. If, for instance, 3 modes were found and the second mode is sampled, 𝑐𝑖,𝑗
is now represented as the one-hot vector 𝛽𝑖,𝑗 = [0, 1, 0]. This normalized value then becomes
𝛼𝑖,𝑗 =

𝑐𝑖,𝑗−𝜂2
4𝜙2

. To clarify, 𝜂2 and 𝜙2 are the mode and the standard deviation of the second mode
respectively.

As an example, assume we have a tabular dataset consisting of a continuous value, followed by a
discrete value, followed by one last continuous value. The dataset is now represented in the following
mode-specific normalized way:

𝑟𝑗 = 𝑎1,𝑗⊕𝛽1,𝑗⊕𝑑1,𝑗⊕𝑎2,𝑗⊕𝛽2,𝑗
Here, 𝑑𝑖,𝑗 represents a one-hot encoded discrete value. For discrete values, making a one-hot

encoded vector is relatively simple: if there exist 𝑛 unique values in the column, the one-hot vector is a
sparse vector of length 𝑛 with value 1 in the location of the vector associated with the specific discrete
value.

In the standard GAN described earlier, in each generator step the generator 𝐺 is fed a sample from
some multivariate distribution. One problem with taking random samples, is that if a certain discrete
column is sufficiently unbalanced, this specific category or class is not adequately represented during
the training process. The problem of class imbalancewas discussed earlier in the context of supervised
learning, but has even more impact in this context, since multiple imbalanced columns can exist in a
tabular dataset. Furthermore, one is not able to tamper with the data in the dataset, since the row-
domain distribution needs to be kept intact. The CTGAN approach circumvent these problems by
using the three key elements mentioned earlier.

Conditional vectors
Conditional vectors are used to represent the collection pf discrete columns per row. The goal is to
efficiently and evenly sample values from columns during the training process. To this end, consider
the value 𝑘∗ from the discrete column 𝐷𝑖∗ As briefly discussed earlier, every categorical column 𝐷1, ..., 𝐷𝑛
is transformed into a one-hot encoded vector 𝑑1, ..., 𝑑𝑛. The authors now transform each of these one-
hot vectors into a so-called mask vector. Based on what condition we want to represent, described by
the condition 𝐷𝑖 = 𝑘∗, and the 𝑖th one-hot vector 𝑑𝑖, which is equivalent to [𝑑(𝑘)𝑖] for 𝑘 = 1, ..., |𝐷𝑖|, the
authors construct a mask vector in the following way [102]:

𝑚𝑖(𝑥) = {
1 if 𝑖 = 𝑖∗ and 𝑘 = 𝑘∗
0, otherwise

Then, the conditional vector is the concatenation of𝑚𝑖 ∗(𝑘) for 𝑘 = 1, ..., |𝐷𝑖|. For example, consider
a tabular dataset with two discrete columns: 𝐷1 = {1, 2, 3}, 𝐷2 = {1, 2}. If one now wants to represent
the condition 𝐷2 = 2, the following mask vectors are constructed from the columns: 𝑚1 = [0, 0, 0] and
𝑚2 = [0, 1]. The conditional vector then becomes [0, 0, 0, 0, 1]. Using these conditional vectors, the
generator is able to interpret the conditional distribution in the row-domain based on particular values
from discrete columns.

Generator loss
Based on the various conditions in the form of 𝐷𝑖∗ = 𝑘∗, the generator is able to produce a wide
range of one-hot vectors for discrete columns. To push the conditional generator in the direction of
generating discrete vectors that resemble the mask vectors obtained from the original dataset as much
as possible, the authors introduce generator loss in the form of cross-entropy between mask vector𝑚𝑖∗
and the generated discrete vector �̂�𝑖∗ .

30 4. Literature Research: Machine Learning

Training-by-sampling
With conditional vectors and generator loss under their belt, the authors define the training process
as a set of steps. Over time the generator learns to fit its generated values in the form of the condi-
tional distribution 𝑃𝐺(𝑟𝑜𝑤|𝑐𝑜𝑛𝑑), cond being the conditional vector, to the target conditional distribution
𝑃𝐺(𝑟𝑜𝑤|𝑐𝑜𝑛𝑑). The discriminator in turn assesses these generated vectors making use of the 𝑐𝑜𝑛𝑑
vector and the generator loss to estimate the distance. Gradually this allows for the network to explore
all possible values in the discrete columns. The steps used for training the network are roughly:

1. Construct 𝑁𝑑 zero-vectors as mask vectors, corresponding to each discrete column in the table;

2. Select a random column from the 𝑁𝑑 vectors;

3. For this column, create a probability mass function (PMF) across the range of all its values;

4. Select a value 𝑘∗ based on this PMF;

5. Set the value in the corresponding mask vector to 1; and

6. Calculate the 𝑐𝑜𝑛𝑑 vector as described earlier.

Using this method to construct evenly (not uniformly) distributed row samples, the generator is
pushed in the direction of reconstructing the distribution of the original dataset: 𝑃𝑔(𝑟𝑜𝑤|𝐷𝑖∗ = 𝑘∗) =
𝑃(𝑟𝑜𝑤|𝐷𝑖∗ = 𝑘∗). In turn, this allows one to reconstruct a row from the original distribution, using Bayes’
theorem:

𝑃(𝑟𝑜𝑤) = ∑
𝑘∈𝐷𝑖∗

𝑃𝐺(𝑟𝑜𝑤|𝐷𝑖∗ = 𝑘∗)𝑃(𝐷𝑖∗ = 𝑘)

5
Literature Research: Privacy and Ethics

in Automated Fraud Detection

Ever since the Facebook-Cambridge Analytica scandal, where sensitive personal information of about
50 million Facebook users was leaked in a major data breach [15], the public awareness of data privacy
has increased significantly. E-mails, invoices, contracts and bank transfers, among many other types
sensitive personal information, were used to exploit people for financial and political gain. Of course,
Facebook is not the only culprit. The explosive growth of social media and various online service
platforms has lead to a significant amount of personal, and often sensitive, data being stored of billions
of users. As the Facebook scandal has proven, many of these technologies are of a pervasive nature
and as a result pose a multitude of threats to the privacy of the individual. Examples of such threats are
unwanted surveillance, neglectful disclosure of private data or the unauthorised use of personal data
by third party companies [24].

Nowadays, the field of finance has significant overlap with many of the aforementioned companies.
As the efficiency and scale of the field increases due to the application of state-of-the-art technologies,
so do the challenges in the field of ethics and privacy. If we consider the sub-field of transaction moni-
toring, which this work focuses on, we find that the amount of sensitive data kept on users has soared.
As the advent of modern technologies in finance has opened many new doors for fraudsters, increased
regulations have been imposed by the DNB in terms of record-keeping and data retention [23]. Vast
amounts of different types of user-related, and often sensitive, data have to be retained in order to
comply to these restrictions. Examples are identity documents, conversations with the customer and
transactions made by the customer. On top of this, many state-of-the-art techniques for fraud detection,
for instance supervised learning techniques, require a tremendous amount of training data in order to
learn how to make meaningful predictions. As the quality and application of such intricate automated
fraud detection systems grow, the need for model designers to factor in the ethical side of their models
becomes more apparent. While these systems may show an overall strong performance, no system
is perfect. Mistakes made by these systems potentially have a huge impact on an individuals finan-
cial security or the reputation of a financial institution. Especially for ”black box” systems like machine
learning models trained on enormous datasets there is the need to both explain and substantiate the
choices made by the system.

This section will provide an overview of how privacy and ethics relate to data mining and machine
learning in the field of financial fraud detection. First, we explore the types of mistakes made by au-
tomated fraud detection systems along with their respective implications. Then, a clear definition of
privacy in the context of web data mining is given, along with a description of the unique relationship
between the two. Afterwards, various techniques to achieve a level of guaranteed privacy in data min-
ing are discussed briefly, after which the method that is partially employed in this work is described in
detail. Lastly, an argument is made for why this specific method is suited for the field of financial fraud
detection.

31

32 5. Literature Research: Privacy and Ethics in Automated Fraud Detection

5.1. Mistakes in fraud detection
While automated fraud detection systems have seen a drastic improvement over the past years, the
fraud detection industry is still plagued by a significant margin of error. Where the goal of an auto-
mated fraud system is to detect as many fraudulent transactions as possible, the trade-off between
reducing the number of fraudulent transactions flying under the radar, false negatives, and the number
of transactions incorrectly classified as fraudulent, false positives, is very delicate. Beneish & Vorst
have investigated this trade-off and define 4 challenges that system designers and decision makers
generally face when working with this trade-off [6]:

• Costs and benefits analysis: thus far, the estimates of the trade-off between the costs and
benefits of both false positives and false negatives has remained in the realm of assumptions;

• Unrealistic assumptions: the most commonly used metrics to compare the performance of a
fraud detection system generally make unrealistic assumptions about the relative costs of erro-
neous predictions;

• Costs incurred: increasing the performance of the model at the detection of fraudulent trans-
actions, in other words decreasing the false negatives, comes at the cost of an increase in the
number of false positives; and

• Misrepresented insights: because one needs human expert investigation to judge the perfor-
mance of a fraud detection system, extreme examples often steer the insights found to be mis-
representative of the costs and benefits of the full picture. On top of this, different stakeholders
involved usually have different concepts of the costs and benefits associated with the system,
further increasing the degree of misrepresentation of the found insights.

In essence, these challenges create the need for a system designer to use his or her knowledge
about the domain and the specific use case to determine not only a fitting set of metrics able to ac-
curately represent the aforementioned trade-off, but also aim to find such a trade-off that satisfies the
costs and benefits of the entire group of stakeholders. Examples of such stakeholders, as defined by
Beneish & Vorst, are auditiors, investors and regulators, officials from instantions responsible for fraud
regulations . Here, auditors are the persons in possession of all knowledge related to the fraud detec-
tion system and responsible for its implementation. Investors are the people putting their funds on the
line wit the expectation of the return of profit after due time. Lastly, regulators are the people respon-
sible for defining the rules of operating such a system, as well as regulating the respective market(s).
The differences in goals regarding the performance of the automated fraud detection system, ranging
from turning maximum profit to running a sufficiently ethical operation, makes accurately assessing its
quality an arduous task. To motivate many of the design choices made in this work, this section will go
into more detail about the implications of both false positives and false negatives, from the perspective
of the aforementioned challenges and stakeholders.

5.1.1. False negatives
A false negative essentially means that a fraudster gets away unnoticed after committing fraud. The
consequences of false negatives are, unfortunately, colourful in nature, ranging from providing means
for terrorist funding to allowing users to be duped out of significant amounts of money. In the field of
financial fraud, false negatives are often significantly more costly than false positives.

To auditors, the main goal of the system is the prevention of false negatives. From their point of
view, the costs associated with false negatives include, but are not limited to: litigation, reputation costs
and the foregone profits accompanying the loss of the odd client as the result of the public revelations
of the auditors’ shortcomings. To auditors, these costs often significantly outweigh the costs associated
with false positives. To investors, the costs of false negatives are expressed as the loss of value after
the reveal of the fraud. As an extension, costs of false negatives directly translate to financial losses
for the users of the financial institution. Lastly, regulators are concerned about the value loss incurred
by fraud to the market as a whole, as well as it’s threat to the financial well-being of the users of the
financial institution [6].

5.2. Web data mining and privacy 33

5.1.2. False positives
A false positive in this context means a user wrongly gets classified as a fraudster. This has 2 major
consequences: first and foremost, depending on the direct consequences, the user might (temporarily)
lose access to his or her monetary account(s), suffer from reputational loss and in turn is likely to lose
trust in the institution. Secondly, false positives are costly in terms of extra, otherwise unnecessary
man-hours needed tomanually review a flagged transaction. To auditors, false positivesmean investing
more resources into audits (for which a client ethically should not be billed) and potential loss in income
resulting from a client resigning. To investors, the costs of false positives stem from the profit foregone
by not investing in clients marked as false positive, as well as the possible increment in audit fees paid
by users. Then, to regulators, costs incurred by false positives lead to average loss of value of the
market as a whole when users or companies are publicly mis-labeled as fraudsters [6].

To conclude: we find that in the literature various models exist that define a cost ratio between false
positives and false negatives. The most significant common denominator between these models is that
the costs of false negatives often significantly outweigh those of false positives. As an example, in a
prominent research done by Dechow et al. [25] a model to score the costs incurred by financial fraud
is developed, based on three alternative, but similar models. These models assume a 143:1, 86:1 and
82:1 cost ratio between false negatives and false positives respectively.

5.2. Web data mining and privacy
Defining privacy
To understand the relationship between the mining of web data and privacy, we first need a clear
definition of privacy in this context. The general notion of privacy has been defined in various ways
over the past centuries. For instance, in 1890 Warren and Brandeis defined privacy as ”the right to be
let alone” [12], whereas, in 2017, Parent defines privacy as ”the condition of not having undocumented
personal knowledge about one possessed by others” [75]. As can be seen from these examples,
the definition of privacy has progressed towards a setting where (sensitive) personal information is
regarded as a commodity to which an individual has a right of secrecy. In line with this remark, in the
context of the (social) web we consider privacy in the form of informational privacy. From the point
of view of the user of a web service, Tavani characterizes informational privacy by stating two main
concerns [96]:

1. The awareness and knowledge of the user about whom information is collected; and

2. How the information about the user is used.

Defining web data mining
With the advent of data mining, especially various machine learning techniques, seeing increased
application across many online services, the need for proper implementations guaranteeing privacy,
fairness, accountability and transparency has become of increased concern. In their work, Kosala and
Blockeel divide data mining of web data into three areas of interest, based on the part of the web that
the data miner chooses to mine [58]:

1. Web content mining: the identification of useful information though mining of documents, data
or other content found on the web. Examples of such data types are pictures, hyperlinks and
audio;

2. Web structure mining: the process of constructing a model of the linked underlying structures
of the web. Often used to discover similarities and relationships between web pages; and

3. Web usage mining: the process of making sense and discovering patterns in the data produced
by people using the web or a specific web service.

Considering these definitions, we shift our focus towards the last of these areas, as our source of
data is entirely dependant on the behavior of the users of a certain web system. As opposed to web
content mining, web usage mining focuses on mining so-called secondary data, which is produced by
users interacting with a web service.

34 5. Literature Research: Privacy and Ethics in Automated Fraud Detection

5.2.1. Web data and threats to privacy
Firstly, the most direct and obvious threat to ones informational privacy is when a users personal data
collected through web services becomes public. There are many ways in which such data could reach
public accessibility, such as data leakages and unauthorized access or data sharing for open-sourced
data mining purposes. When records kept on individual users contain sensitive data, for instance
medical records, financial information or residential data, such data publications are a major breach of
ones informational privacy. To counter this, organisations will often encrypt or remove such sensitive
data before the data is made public with the assumption that privacy is now preserved. In most cases
though, the remaining data is still sufficient to re-identify individuals in the dataset [95].

Secondly, considering the two concerns about informational privacy defined by Tavani, it becomes
evident that a large majority of data mining applications fall short. While the first concern usually holds
true and the user is aware that his or her information is being collected, the user still in most cases
has little to no means to find out how the information is being used. This discrepancy is a direct result
of the complexity of the data mining application to a regular user, both in terms of understanding how
the data mining algorithm works and how the algorithm uses the users data. Furthermore, the data
mined from large datasets will produce new results such as user profiles or patterns. The normative
protections that are in place to ensure the protection of personal and sensitive data often fall short in
also protecting this ’secondary’ type of personal data [96]. As a result, many data mining activities do
not directly violate the informational privacy of an individual, while still causing a threat to it. Examples
and implications of such indirect threats will be discussed in the next subsection.

5.2.2. Sensitive data and societal responsibilities
As many societies gradually become more digitized, personal information, including sensitive informa-
tion, is becoming an increasingly important resource to a plethora of web applications and services.
Sensitive characteristics, such as the nationality or the gender of a user, have become an increasingly
delicate subject over the past years. Bias, exclusion or scrutiny towards a person based on factors
he or she cannot control have become a major factor of criticism in many online activities nowadays.
Consequently, the GDPR has begun qualifying certain user-related attributes to be sensitive. This in-
cludes political preferences, ethnic background, religious views, trade union memberships health data,
sexual data and genetic or biometric data [99]. Data mining algorithms that are trained on data pro-
duced by users of a web service are prone to bias resulting from the dataset, which, in the end, is still
a result of social behavior. This may lead to automated decision makers overestimating the matter in
which certain, often sensitive, attributes impact the decision being made. Considering Tavani’s second
concern for informational privacy, no reasonable user would condone decisions being biased towards
such sensitive attributes. Offenses such as fraud or intrusion should be inferred from objective misbe-
havior, rather than being biased towards uncontrollable attributes such as race, gender or religion [47].
No longer should model designers only pay attention to what results their decision making algorithms
produce, but also how these results are obtained.

5.2.3. Attacks on privacy
Furthermore, not only do organisations owe their users the responsibility of their automated decision
makers making unbiased choices, they have to ensure safekeeping of the (sensitive) data that is col-
lected of their users and their behavior. As mentioned, oftentimes even sanitized or encrypted datasets
contain enough information for a potential adversary to still identify individuals and their sensitive infor-
mation. An example of one such case is the user dataset that was made publicly available by Netflix for
their movie recommender-system contest. Even though this dataset contained only anonymized user
data, it was shown that it was still possible to re-identify sensitive information of their users like their
sexual orientation, leading to a slew of lawsuits [92]. As a result, Privacy Preserving Data Publishing
(PPDP) has become an emerging research topic in the field of data mining. The general idea behind
PPDP is to be able to safely publish and store large datasets for data mining purposes, while minimiz-
ing the loss in data mining utility. This is often achieved by anonymizing the dataset to the point where
individual records to be indistinguishable from one another, thus providing a privacy guarantee for an
individual and his or her sensitive personal data.

PPDP techniques cover a wide range of approaches. including but not limited to heuristic-based
techniques, differential privacy and reconstruction-based privacy. The problem of optimally sanitizing a
dataset has been classified as an NP-hard problem and as such Heuristics can be applied to approach

5.3. Privacy and synthetic data 35

such an optimal solution [96]. An example of such an approach is 𝑘-anonymity, where we take a set of
anonymization steps in order for each record to be indistinguishable from 𝑘 − 1 other records. Here,
again, we trade data mining utility for privacy preservation. Even though 𝑘-anonymity has been proven
to provide a fairly good privacy guarantee, it is still vulnerable to attacks such as a homogeneity attack
and background knowledge attack, where adversaries predict sensitive attributes of each 𝑘 records by
using statistical methods and external background knowledge respectively [106]. Differential privacy
is a method that aims to achieve a high degree of privacy, at a minimal loss of data mining utility. It
ensures that adding or removing a single item from a dataset does not significantly affect the data
mining utility. To achieve this, a non-deterministic function 𝐹 takes the original data set 𝐷1 as input and
adds statistically sampled noise to produce a differentially private dataset 𝐷2, which differs on at most
one element [33]. This method allows the data miner or model designer to still gain useful insights
about the group as a whole, while disallowing an adversary to learn meaningful information about an
individual. Lastly, reconstruction based methods make use of randomization or cryptography to alter
sensitive data fields, which are reassembled upon use.

5.3. Privacy and synthetic data
The sections above have discussed collecting, storing and publishing sensitive data collected of users
using a web application. While these subjects have proven to be an interesting challenge in terms of
guaranteeing a certain degree of privacy, using this data to train a machine learning model imposes
further challenges in the field of privacy. Large-capacity machine learning models that are trained on a
dataset that contain sensitive fields have shown to remember large amounts of information about the
users present in the training dataset. As a direct result, these models are at risk of leaking personal
information about users [103]. To combat this and the aforementioned privacy threats, one can employ
synthetic data as (a part of) the training dataset. This section will go into more detail about the privacy
implications of using synthetic data for data mining and, more specifically, machine learning purposes.

5.3.1. Advantages
When considering synthetic data from a high level point of view, one could conclude that synthetic data
fully protects the privacy of the individuals in the original dataset. After all, none of the records in the
synthetic dataset represent an actual person, so how would an adversary ever learn anything about a
real person from this dataset? Unfortunately, in reality it is not that simple. Many factors related to the
quality of the synthetic data play a role in its preservation of privacy, as well as the machine learning
utility that the synthetic data provides. When considering privacy preservation at the level of storage,
publication and usage of training data, synthetic data has the following advantageous properties:

• Data storage: according to theGeneral Data Protection Regulation (GDPR), parties holding user
data containing personal information have to handle this data in a strictly confidential way. Over
the past years there have been numerous cases of data leakage of large institutions. Whether this
was through hackers breaking into and publishing datasets or accidental disclosures, the result
is the same: user data with personal information is now publicly available. To mitigate this risk,
one could opt to replace the training data with synthetic data. This has two distinct advantages
in terms of storage:

– Synthetic data does not contain any direct personal information about individuals. As a
result, no individual can be directly harmed by the publication of the dataset. A clever ad-
versary might still be able to determine some sensitive information from the synthetic data
though, which will be discussed later in this section.

– In many cases, there is no need to even store the synthetic records. Only the trained model
to generate the synthetic records has to be stored. As a result, significantly less storage
for training data is need as an infinite number of synthetic records can be generated ad-hoc
[103]. On top of this, in case of a data leak, an adversary would need a sufficient skill set to
obtain information from the model, further increasing the privacy preservation of the system.

• Data publication: as mentioned before, direct publication of dataset containing (sensitive) user
data is very likely to violate the privacy of an individual. As a solution, one could opt to only publish
the statistical properties of the fields in the dataset, thus protecting the individual, although this

36 5. Literature Research: Privacy and Ethics in Automated Fraud Detection

comes at a great cost in terms of loss of data value. By publishing a high-quality synthetic dataset
that sufficiently represents the real dataset, we allow for a high preservation of privacy while still
allowing researchers and data miners to create high-quality models.

• Data usage:

– Companies holding large amounts of user data containing personal data used for datamining
purposes not only need to comply to the confidentiality rules imposed by the GDPR when
considering data storage, but for data usage as well. Many software developers at such a
company will at some point have to access this data for model training or bug fixing. In most
cases, companies do not want their employees to have direct access to real user data, as
this would count as a violation of an individuals privacy. Providing employees with synthetic
data that preserves relationships found in the original data, while removing all direct sensitive
data removes this barrier [103]. As an example, at Uber allowed employees to gain access
to real customer data, resulting in a settlement with the US Federal Trade Commission [49].
Uber now employs a system for accessing perturbed customer data.

– No real data is used to train the model and thus to generate predictions. This fact removes
the need to be cautious about the machine learning model leaking potentially sensitive per-
sonal data, for instance in a scenario where requests can bemade to a trainedmodel through
a publicly available API.

Of course, such advantages in privacy preservation do not come for free. Much like many of the
aforementioned privacy preserving techniques, employing synthetic data comes at the potential loss
of machine learning utility. This trade-off is explored in detail in experiment section 12.2. Lastly, to
gain a concrete understanding of how privacy relates to synthetically generated data, Hittmeir et al.
[50] introduce a method to measure the degree of privacy that a synthetic dataset guarantees. Their
method entails calculating the nearest neighbour distance, in this case the Euclidian distance, between
the training dataset and the generated dataset. This way, similarities or even rows containing literal
data from the training set can be detected and quantified. In an ideal scenario, the distance between
the generated dataset is sufficiently large, while the machine learning utility of the dataset remains high,
in the best case equal to that of the original training data. This method and more privacy preservation
metrics that are used in this work are introduced and explained in method section 11.3.

5.3.2. Attacks on synthetic data
As the previous section has shown, synthetic data provides various advantages to preserve privacy in
a training dataset. Even though synthetic data might seem a completely separate entity compared to
the real dataset, a shrewd adversary still poses a threat to the privacy of the individuals in the original
dataset. Because the synthetic records are samples from a joint distribution modeled after the real
dataset, statistical techniques exist to determine sensitive information in the real dataset, based on
the relationships found in the synthetic dataset. Such an attack is an example of the aforementioned
background knowledge attack. Method section 11.3.2 describes one such attack strategy and performs
this attack on a synthetic dataset created from a real-life dataset with the goal of providing another angle
of the degree of privacy preserved by this synthetic dataset.

6
Case-study: Automated Fraud Detection
As a stepping stone for this work to take shape, a clear conception of real-world automated fraud
detection has to be build up from the ground. To achieve this, over the thesis project duration, various
work was done on the front line of automated fraud detection: a rule based system. Implementing and
adapting transaction monitoring rules requires one to understand fraudulent behavior through fraud
analysis, transaction monitoring rule design, back-end development and end-to-end testing. In other
words, the entire process provides all the necessary background knowledge to in turn take automated
fraud detection to the next level.

This section will provide the reader with a ground-up overview of the traditional way of detecting
fraudulent transactions in tandem with the contributions made to this system at bunq. First, an abstract
definition of machine learning predictions with respect to fraudulent transactions is given in the form
of the relationship between human expert knowledge, automated systems and the notion of unknown
unknowns as described in section 4.2. Afterwards, this relationship is linked to existing approaches
to combat fraudulent behavior. Then, the contributions made to the rule-based system are used as
examples of such approaches. Lastly, we discuss the shortcomings such a relatively simple system
for fraud detection. The goal of this chapter is to introduce the reader to automated fraud detection, as
well as motivate the use of a weakly-supervised machine learning approach as introduced in this work.

6.1. Unknown unknowns in fraud detection
As thoroughly discussed in section 4.2, unknown unknowns represent cases where an automated
decision maker makes a mistake with a high confidence. In other words, it does not know that it has
made a mistake. Because the knowledge held by the automated decision maker is fully dependant on
the training data that it is supplied with, which in turn is dependant on human experts providing labeled
data, it becomes clear that UUs are a blind spots to both the automated decision maker and the human
expert team behind it. It is as the Johari window explains: this knowledge is part of the area of unknown
activity, in other words, this information is not known to anyone. Yet, we can assume that information
does exist. Through extensive analysis of transactions, one aims to somehow eventually discover this
information and as a result, fraudsters will always be at least one step ahead.

When considering binary classifiers, be it a simple transactionmonitoring rule or an intricatemachine
learning model, we are able to categorise the relationship between the potential fraudulent nature of
a transaction and the classification results of the automated decision maker with respect to the Johari
window. In such a setting, we consider the knowledge held by the model from the perspective of
ourselves: the fraud analysts, annotators and model designers. We then define the Johari window as
follows:

• A highly confident correct prediction corresponds to a known known: the right information is
known to us and as a result has been correctly represented in the training data leading to the
information being known to the model, as indicated by the high confidence score.

• Known unknowns occur in scenarios where certain patterns and categories of fraud are known
to us, but (for the time being) unknown to the model. Such situations occur whenever certain

37

38 6. Case-study: Automated Fraud Detection

types of fraud become known to us, for instance through extensive analysis or external infor-
mation. Known unknowns also result from known shortcomings of the model, for which many
approaches usually exist to remedy them as explained in section 4.2. One can turn known un-
knowns into known knowns by applying said methods or collecting ample training data on the
newly discovered fraud type. This training data can be collected for instance through new trans-
action monitoring rules or retroactive labeling of the training dataset.

• Following the same logic, unknown knowns are instances where certain information is known
to the model, that is unknown to us. An example of a known unknown is a pattern recognized
by the model to be a strong indicator of fraud, that we have yet to recognize due to its underlying
nature. Through sufficient examples and effective explainability methods one is able to extract
this knowledge from the model and turn unknown knowns into known knowns.

• Lastly, unknown unknowns are instances where the model makes a high confidence, incorrect
prediction. At the time of the prediction, its incorrectness is not known to us. As discussed in
section 4.2, UUs are the result of a mismatch between the training data and the data found after
the model is deployed. Often, this mismatch is the result of a class being underrepresented in
the training dataset. Furthermore, a shift in population can also lead to this mismatch. Such a
shift is not hard to imagine in the field of fraud prevention, as fraudsters are always changing
their methods to fool both automated systems and human experts. On top of this, as we learned
from section 5.1, false negatives are significantly more costly to financial institutions than false
positives. For these three reasons we define the following theorem:

Theorem 1 If transaction 𝑡 is considered to be an unknown unknown to model 𝑀, 𝑡 is an error of
the category false negative made by model 𝑀.

This theorem does not exclude the possibility of UUs in the form of a false positive to exist, but
due to the fact that such instances are considered to significantly more rare and significantly more
cost-incurring compared to their false positive counterparts, we assume the theorem above.

In essence, the goal of this work is to transform unknown unknowns into known knowns. In order to
achieve this, we aim to first transform unknown unknowns into known unknowns by teaching the model
to be more robust against previously unknown fraudulent instances, with little to no human intervention.
This method will be described great detail in the upcoming method chapters and explored thoroughly
in experiment 12.4.

6.1.1. Shortcomings of a rule-based system
Now that we have a better idea of how transaction monitoring rules generally work and perform, we will
discuss the main shortcomings of using this method for automated fraud detection.

Labour intensive
The process of creating and maintaining monitoring rules is excessively labour intensive. The creation
process of a rule is arduous, consisting of fraud analysis, design, implementation, end-to-end testing
and performance analysis. On top of this, many different stakeholders are present during this process,
ranging from risk officers analysing the trade-offs implied by the rule, to data scientists evaluating the
costs and benefits of implementing a rule. Furthermore, as rules are static by nature, the upkeep
of rules is also a noteworthy aspect in terms of labour required. The strategies and approaches of
fraudsters are ever changing. For this reason, keeping an eye on the performance of a rule, making
adjustments or improvements and going through the entire legal process again for each change makes
keeping rules up to date with the current fraud environment a tremendously arduous task.

Large number of false positives
Monitoring rules tend to be aimed at one specific category or instance of fraud. The ultimate goal of any
transaction monitoring rule is to catch any fraudulent scheme corresponding to its respective category.
This creates a trade-off for each rule: does one create a fairly broad rule which catches the majority
of a type of fraudulent behavior at the cost of a high number of false positives or does one create a
very strict rule which has a high true positive rate, at the cost of many missed fraudulent cases (false

6.1. Unknown unknowns in fraud detection 39

negatives)? The former creates many man-hours of needlessly investigating innocent transactions,
whereas the latter results in a high demand for extra similar rules to also catch niche cases of the same
fraud category, thus also requiring many development hours.

Limited applicability
While rules provide a fairly strong short-term solution to certain fraudulent behaviors, this specificity is
also a disadvantage. As explained in chapter 3, the field of financial fraud is unfortunately very broad
of nature. Especially nowadays with the advent of online banking, the ways in which a fraudster is able
to commit fraud are plentiful. Monitoring rules that combat a certain type of fraud usually have little to
no applicability on other types of fraud, even if they are slightly unrelated.

Rapid obsolescence
When fraudsters inevitably adapt their scheme, the static nature of rules disallows them to adapt with-
out human intervention. Such intervention requires another iteration of the lengthy process described
above. Due to the high amount of money usually involved in fraudulent schemes, fraudsters tend to be
on top of their game. In some cases a monitoring rule can even become obsolete the same day that it
was deployed, due to clever fraudsters reverse-engineering the simple rule simply by trial and error.

7
Method: Feature Value Attribution Model
Moving on from transaction monitoring rules, we consider what lies at the core of the research done in
this work: the supervised machine learning model used to distinguish fraudulent transactions from legit
ones, which we will call the Fraud Detection Model or FDM from now on. The end goal of this work is
to improve an existing FDM in terms of generalizability and robustness against fraudulent transactions
that would otherwise go unnoticed. In other words: to decrease the number of false positives created
by the FDM. Since the majority of the contributions made by this work are in the form of augmentations
to the training dataset, the existing FDM itself remains mostly unchanged.

The FDM takes a tabular dataset as its training data. Each row in this dataset corresponds to a
single transaction made by a user. This dataset consists of numerical, categorical and boolean feature
types. Examples of numerical features are the amount of the transaction, the age of the user or the time
since the user signed up to the service. Examples of categorical features are the nationality of the user,
the type of the transaction or the country of the receiving end. Lastly, examples of boolean features are
whether the amount of the transaction is a multiple of 10, whether the transaction is international or if
the transaction is related to a certain market (for instance gambling). Based on such a row of features,
the FDM outputs a probability for a new transaction to be fraudulent or legit. A threshold for such a
transaction to be considered fraudulent or legit is often obtained based on a specific performancemetric
such as F1 score or the area-under-the-curve (AUC). Section ?? goes into detail of how we implement
such a FDM.

One of the main contributions that this work makes is the intuitive way in which a supervised learning
model in the form of a decision tree ensemble, along with global Shapley values are used to deduce
meaningful insights on the effects of certain feature values. We will call this model the feature value
attribution model or FVAM. By training a supervised model on a dataset that uses target labels to
indicate whether a certain type of fraud is an UU to the fraud detection model, we are able to construct
an explanation model that helps us understand which (combinations of) feature values push the model
towards miss-classifying certain categories of fraudulent transactions. In the field of fraud detection,
this knowledge is alluring as fraudsters are constantly trying to find new ways of manipulating the
characteristics of their transactions in order to trick automated fraud detection systems. Hence, the
goal of this section is to create a technique to quantify the degree in which features can be manipulated
to commit fraudulent transactions without being detected by the fraud detection model.

7.1. Training dataset
The training dataset that we use to train the FVAM is very similar to the FDM. To train the FVAM we
use the exact same set of features as for the FDM. The only, but very significant, difference is the
target label. Instead of the binary classification scenario of the FDM where we use the label 0 for legit
transactions and 1 for fraudulent transactions, we flip the label based on whether the transaction is a
false negative of the FDM. As mentioned in the previous section, after a transaction has been classified
by either the FDM, through the rule-based system or external means, we are able to obtain our ground
truth label. Obtaining the target label of a transaction does however not mean that this category of
transactions is now a known unknown. Let it be clear that obtaining the target label of a single or

41

42 7. Method: Feature Value Attribution Model

multiple transactions does not imply that the model or us as the model designers are able to grasp
the full picture of a certain category of fraud. This label, together with the predicted label by the FDM,
allows us to group every existing transaction into two categories:

1. False negatives: the class that we are most interested in. A false negative is found when the
ground truth label of a transaction is, through any means, found out to be fraudulent (target label
1) and the FDM has predicted the transaction to be legit (class label 0).

2. Other: every other relationship between the ground truth and model labels. This includes cor-
rectly classified transactions, both fraudulent and non-fraudulent cases. This also includes false
positives, where the model has predicted 1, but the actual ground truth label was 0. While this
type of mistake is also not desirable, we remember theorem 1 and label our training dataset
accordingly.

More formally, the dataset labels result from the mapping 𝑚:

𝑚∶ {0, 1} → {0, 1} such that

{𝑚(𝑙𝑎𝑏𝑒𝑙𝑖) = 1 if 𝑙𝑎𝑏𝑒𝑙𝑖 = 1 and 𝑝𝑚𝑜𝑑𝑒𝑙 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
𝑚(𝑙𝑎𝑏𝑒𝑙𝑖) = 0 else

Here, 𝑙𝑎𝑏𝑒𝑙𝑖 is the target label of row 𝑖 in the training dataset, which always corresponds to the
ground truth label of the FDM training dataset. 𝑝𝑚𝑜𝑑𝑒𝑙 is the predicted probability by the FDM whether
this specific transaction is fraud. If this probability is higher than the threshold, we consider a transaction
to be classified as fraud and vice-versa. While the actual predictions of this model are of little interest to
us, the global Shapley values representing the feature value attributions provide us with very valuable
insights, which will be discussed in detail in the next section.

7.2. Implications of Shapley values
As explained in detail in section 7.2, global Shapley values describe how certain feature values push
the model towards making particular decisions. In other words, these values allow us to find out the
marginal contributions for all feature value combinations found in the training dataset (corresponding to
the coalitions in the game theoretic context). For the FDM this is fairly straightforward: feature values
with a high Shapley value push the model towards deciding whether a transaction has a high probability
of being fraud, towards a value of 1. Vice-versa, feature values with a low Shapley value push themodel
towards deciding a certain transaction has a low probability of being fraudulent, towards a value of 0.
For the FVAM however, interpreting the Shapley values requires an a more intricate thought process.
We distinguish between 3 categories of features, based on their global Shapley values found across
the training dataset:

1. Feature values with large positive Shapley values imply that the feature value in general pushes
the FDM towards towards making false negative predictions. In other words, towards missing
fraudulent cases. From here on out, we categorise these features as prone to being exploited
by an adversary.

2. Feature values with large negative Shapley values mean that the feature value in general
pushes the FDM towards catching fraudulent cases or making a false positive prediction.
These features push the FVAM towards predicting 0, which as described above represents either
a correctly predicted fraudulent transaction or a false positive, meaning these feature values on
average push the model away from missing fraudulent cases. This does not imply that these
features are ”better” than the features with large positive Shapley values, as these features may
cause a significant amount of false positives.

3. Feature values with zero-value Shapley valuesmean that mean that the feature value in general
has very little to no impact on the decisions made by the model. In short, this indicates that the
feature is not able to convey enough relevant information to the model to base its predictions on.

We state the following theorem:

7.2. Implications of Shapley values 43

Theorem 2 If feature 𝑓 of the FVAM has a large positive global Shapley value, then large values of
feature 𝑓 push the model towards missing fraudulent transactions.

This theorem provides an interesting insight, as this, combined with domain knowledge, helps anti-
fraud measure designers understand how fraudsters are potentially adapting their strategies to beat
automated anti-fraud measures. Of course, such patterns could also be learned by the FDM given
enough time. However, this would require for many more fraudulent transactions of this category to be
detected by through another system or external means, being annotated by a human expert, added to
the new training dataset and the re-training of the FDM. The largest distinction between this approach
and the FVAM approach, is that through the FVAM approach we are able to detect such patterns earlier
and in a data-driven way, without the need for direct external input. The implications of theorem 2 are
used in chapter 9 to create adversarial examples.

8
Method: Unsupervised Learning

As explained in section 6, the field of automated fraud detection with supervised learning suffers from
the existence of UUs as a result from a heavy class inbalance, as well as shifts in population. In
an effort to address these problems, we aim to construct high quality synthetic samples. The usage of
meaningful and high quality synthetic samples is expected to help address the class imbalance problem
and, as we will discuss in chapter 9, the usage of synthetic samples with certain characteristics are
expected to help to solve the shift in population problem. When constructing these samples to address
UUs, we again refer back to theorem 1, which means that we only construct synthetic samples that
represent fraudulent transactions. After all, this is the minority class associated with the most costly
category of errors: false negatives. The first step towards generating synthetic fraud cases is the
training process of the CTGAN. As explained in section 4.3, CTGANs have various desirable properties
for the generation of synthetic data, especially in the context of fraud detection. The second step
involves efficiently and effectively reconstructing the feature arrays of the synthetic samples, following
the same set of rules as the ones we would find for any real transaction. This chapter will give a
detailed overview of the proposed approach to efficiently train a CTGAN, generate synthetic fraudulent
samples with the trained CTGAN and propose two methods to reconstruct a valid feature array from
the generated samples.

8.1. Dataset pre-processing
The first step towards generating synthetic fraudulent samples is the creation of a suitable training
dataset. Since we are working under the assumption that there is an existing trained FDM, the starting
point of this dataset is the tabular dataset used to train this FDM. The focus of this section is to explain
how we pre-process this training dataset into a suitable dataset to train a CTGAN.

The first step of the pre-processing process is to filter out all of the legit transactions in the dataset.
The goal of the CTGAN is to be able to learn a joint distribution representing fraudulent transactions, so
to this end we only use fraudulent samples in our training dataset. Furthermore, the CTGAN framework
requires the model designer to make a distinction between continuous and discrete values, which we
discuss below.

8.1.1. Numerical features
Numerical features require very little pre-processing steps. Any integer or floating point values are
suitable as attribute values for the CTGAN. Missing values are handled depending on the nature of
the feature. For instance, a missing value for a key feature, such as the amount of a transaction,
would imply that the entire feature array is erroneous or corrupt. As a result, we drop the full feature.
Furthermore, a missing value in a null-able field, for instance a feature dependant on the type of a
transaction in a sample not belonging to that specific type, is set to 0.

8.1.2. Categorical features
The pre-processing of categorical features is a bit more complicated. As explained in section 4.3.2,
CTGANs have the desirable property of handling unbalanced discrete columns, even when the distri-

45

46 8. Method: Unsupervised Learning

bution of the values in such a column is significantly intricate or unbalanced, through mode-specific
normalization. As a result, the model designer is only left with the task of handling missing values.
Again, similar to the numerical features, we will drop any row that has missing values for an indispens-
able feature, for instance the type of the transaction. It is clear to see that every transaction should
have a type and is otherwise not valid and thus unwanted in our training dataset. Furthermore, missing
values of null-able features are handled based on domain knowledge about what that specific feature
represents. Some examples to illustrate are:

• A feature to describe the users gender could in some cases be missing, when the user has
decided not to disclose this information. In such cases one would replace a missing value by a
string which implicates this information such as 𝑢𝑛𝑘𝑛𝑜𝑤𝑛.

• A feature which describes the sector of industry a certain user company belongs to. Whenworking
with multiple types of users, it is possible for certain users to not correspond to a certain type.
Features that are specific to these types would in such cases contain missing values. In these
cases we introduce a new feature value, for instance 𝑢𝑠𝑒𝑟_𝑛𝑜𝑡_𝑎_𝑐𝑜𝑚𝑝𝑎𝑛𝑦, to indicate this.

8.1.3. Boolean features
Boolean features are very simple, as this these features can simply be regarded as a categorical feature
with only two possible values. Missing values are handled again based on the nature of the feature,
provided that the feature is null-able. In most cases this means missing values are set to 𝑓𝑎𝑙𝑠𝑒. An
example of this is the feature𝑚𝑎𝑠𝑡𝑒𝑟𝑐𝑎𝑟𝑑𝑃𝑎𝑦𝑚𝑒𝑛𝑡𝑊𝑖𝑡ℎ𝑑𝑟𝑎𝑤𝑎𝑙, which indicates whether the transac-
tion is a Mastercard withdrawal. For every transaction that is not a Mastercard transaction, this value
of this feature is missing. We can safely set this feature to 𝑓𝑎𝑙𝑠𝑒, as this value accurately represents
the knowledge the feature represents.

8.2. Feature selection
Selecting a suitable set of features to train the CTGAN on is an essential step of the process. In our
context, we want to consider the data generated by the CTGAN to be representative of possible attacks
(fraudulent transactions) made by a fraudster. The selected feature set for the CTGAN to train on is
chosen accordingly.

8.2.1. Independent features
There is a limited set of feature values per transaction that are within the control of the fraudster.
Furthermore, these features often shape the majority of the feature array of the transaction, as many
other feature values depend on these values. We will call these features independent features from
now on. Examples of independent features where the fraudster is able to control the values are the
amount of the transaction or the country from which the transaction was made. Not all independent
features are in direct control of the fraudster. Aggregated features are counted as independent features
as well, but have to adhere to a different set of constraints, which will be discussed shortly. For our
CTGAN model, it is only necessary to learn the joint distribution of these independent features.

8.2.2. Dependent features
We now consider dependent features. These features are out of the control of the adversary, as these
features are either dependent on the transaction made or consist of historical data about the specific
user. These features are filtered from the training dataset of the CTGAN, as it serves no purpose to
generate these features. Reducing the number of features before the training process serves reduce
the complexity of the model, simplify the training process and in turn the computational power and time
needed for the process [85].

8.3. CTGAN
This work builds upon the use of a CTGAN to construct synthetic fraudulent samples. Quite some
work has been done in the field of synthetic data generation, which has been explored in literature
section 4.3.2. This section will provide the reader with our motivation for using a CTGAN, describe the

8.3. CTGAN 47

hyperparameters used to train a CTGAN and motivate a hyperparameter tuning approach used later
in this work to explore the generation process of high quality synthetic samples.

8.3.1. Motivation
To motivate our choice for this method of unsupervised synthetic data generation, we consider the ad-
vantages introduced by CTGAN in the context of supervised learning for transaction fraud detection.
Firstly, as mentioned before, we are dealing with tabular data rather than just continuous data. Such
datasets often suffer from the problems where the continuous columns may have multiple modes and
categorical columns suffer from a significantly imbalanced class distribution. CTGAN has been shown
to effectively be able to model this kind of data, producing high-quality synthetic tabular data with mixed
types and complicated distributions. On two novel benchmarks, which will also be evaluated in section
12.1, CTGAN is the first deep learning method to outperform Bayesian methods [103]. Secondly, CT-
GAN has been shown to achieve the same F1 score and accuracy as similar methods, while having
a significantly larger nearest neighbour distance to the training dataset. As discussed in section 5.3.2,
obtaining an advantageous trade-off between privacy guarantee in the form of a sufficiently high eu-
clidean distance to the original training data, while retaining machine learning utility is a very desirable
property of synthetic data. Thirdly, Xu shows in his work that CTGANs are able to capture complex in-
teractions among variables, much more so than preceding GAN implementations [103]. In the context
of fraud detection, this is a very desirable characteristic. Fraudulent behavior generally follows patterns
that are a complex combination of various feature values. Compared to other fields, for instance image
generation, such patterns are significantly more difficult to detect by human experts and in turn harder
to model. Lastly, during the design phase of this work some other generation methods were explored,
among which Triplet Variational Auto-Encoders (TVAE) and TableGAN [102]. During this phase CT-
GAN showed by far the most potential in terms of quality of the generated samples and practicality, as
it allows for control of many aspects of the training process, as well as provide the model designer with
a straightforward method to obtain synthetic samples.

8.3.2. Training
After taking the pre-processing steps described in section 8.1 we obtain a suitable training dataset for
the CTGAN, but there are still some considerations to be made. The CTGAN framework requires the
model designer to determine a set of hyperparameter values to guide the training process. The CTGAN
framework defines the following list of hyperparameters [102]:

• Embedding dimension: an integer value describing the embedded size of the sample passed
to the generator. The default value is 128;

• Generator dimension: an integer value depicting the size of the output samples for each residual
layer used in the generator. A residual layer is created for each sample. The default value is (256,
256);

• Discriminator dimension: an integer value depicting the size of the output samples for each
linear layer used in the discriminator. A linear layer is created for each sample. A residual layer
is created for each sample.

• Generator learning rate: a floating point value representing the learning rate of the generator;

• Generator decay: a floating point value representing the weight of the decay for the Adam Op-
timizer [105] of the generator;

• Discriminator learning rate: a floating point value representing the learning rate of the discrim-
inator;

• Discriminator decay: a floating point value representing the weight of the decay for the Adam
Optimizer of the discriminator;

• Batch size: an integer value expressing the amount of training data samples to process each
step;

48 8. Method: Unsupervised Learning

• Discriminator steps: an integer value representing the number of discriminator steps to take for
each generator step. The default value for the CTGAN implementation is 1, which we follow;

• Log frequency: a boolean value determining whether to use log frequency sampling for cate-
gorical features; and

• Epochs: an integer value describing the number of training epochs.

8.3.3. Parameter tuning
As mentioned in chapter 3.1, many relationships and patterns may exist in the set of fraudulent trans-
actions. Since real-world data, especially tabular data, can become very complex, we want our model
to be able to accurately represent this. Creating a suitable set of features in our training set helps
to capture such complex behavior, but also comes at the risk of our trained model becoming overly
complex and overfitted to the training dataset. Ideally, we want to properly model the complexity found
in this data, while still creating a model that generalizes well to new samples and is widely applicable
across the field. For this reason, it is interesting to explore different configurations of our generator
and evaluate their impact on the quality of the generated data. We will only consider hyperparameters
associated with the generator and not with the discriminator. The reason for this is that tuning the
parameters of the generator impacts the quality of the generated samples, while the parameters of the
discriminator mostly impact the rate at which the network converges.

Generator dimension
The generator dimension hyperparameter represents the number of residual layers in the generator.
Increasing the number of these layers allows the generator to capture more complex relationships, but
comes at the risk of overfitting [44]. In our use-case, it is interesting to explore this hyperparameter to
find a configuration that is able to capture most relevant relationships and patterns found in the training
data, whilst remaining generally applicable and not overly specific to the samples found in the training
dataset.

Generator learning rate
The generator learning rate controls the rate at which the generator updates its weights as a response
to the loss associated with the current configuration. A low learning rate means the generator will take
smaller and more conservative steps towards creating increasingly realistic synthetic samples. Tuning
the learning rate introduces the trade-off between training speed and generator loss, as well as the
trade-off between exploration and exploitation. Higher learning rates will favour exploration in terms of
how differently constructed samples are able to fool the discriminator, whereas lower learning rates will
favour fine-turning samples to fit the training set distribution.

Generator weight decay
The generator weight decay helps control the degree in which the generator is able to generalize. We
do not want our generator to become overly complex, in other words to overfit to the training data. The
weight decay parameter allows us to use a wide range of features to capture the complexity found in
the training data by limiting the growth of the generator weights to prevent the model overfitting to the
training data. A well-tuned value for the weight decay allows for the model to capture complex behavior,
while preventing the model from getting too complex.

Both the relationships captured by the generator as well as the degree of overfitting can be mea-
sured by the machine learning utility and is done so in experiment 12.1. Tuning these three hyperpa-
rameters, along with the two different sampling methods are the main focus of experiment 12.1, where
the aim is to find a CTGAN configuration optimizing the similarity to the real dataset, machine learning
utility and degree of privacy preservation.

8.4. Dataset reconstruction
After the training process, we obtain a model that is able to generate samples from a joint distribution
that closely resembles the joint distribution of previously encountered fraud cases. However, since the
CTGAN is only trained on independent features, post-processing of these samples is still needed to

8.4. Dataset reconstruction 49

obtain samples that resemble the feature arrays of real-world fraud cases. Even then, after construct-
ing the dataset, there is the need to filter out samples that are not suitable for training. To this end,
two reconstruction methods called rejection sampling and transformation sampling are introduced that
follow a logical elimination process. Experiment 12.1 will compare these methods against each other
on existing benchmarks, as well as analyse the quality of the generated data.

8.4.1. Sample reconstruction
As mentioned previously, the CTGAN will only learn the joint distribution of the aforementioned inde-
pendent features. As a result, the generated samples logically also consist of this same subset of the
total feature set. Fortunately, we possess all tools necessary for reconstructing the original feature set
per transaction, as we can simply re-use the logic that was used to determine the features in the first
place.

For every feature in the full feature set, simple logic like the above is enough for reconstruction.
Even though the CTGAN is able to generate samples that are of high quality and that capture the
relationships and patterns similar to the training dataset, it is not free of small mishaps. For this reason,
two sampling methods are integrated in the reconstruction process that both aim to select only the
samples that most realistically represent feature sets of real transactions.

8.4.2. Rejection Sampling
Rejection sampling is a straightforward way of selecting realistic samples. Even though the samples
produced by the CTGAN are sampled from the joint distribution of all previously seen fraud cases, there
are instances in which the set of features does not follow the natural rules imposed on the feature set.
The general idea of rejection sampling is that samples containing an ’impossible’ set of feature values
are dropped from the total set of generated samples. This way, only samples that represent fraudulent
transactions that could be encountered in the real world are selected. The reasoning behind this is that
a fraudster can directly influence the values of these features.

Using such relationships between all features, the complete feature set is reconstructed, while all
illegal samples are dropped during the reconstruction process. As a result, we end up with samples
that still accurately represent a sample drawn from the joint fraud distribution and follow the natural
set of rules that also holds for all real-world fraud cases. One caveat of using this method, is that it
becomes difficult to accurately model the aggregated features used by the model. As a result, in order
to maintain the distribution of the sample, constraints based on aggregated features are exempt from
being rejected.

8.4.3. Transformation Sampling
Another fairly straightforward way of reconstructing samples that follow the natural rules of transactions
is transformation sampling. Instead of rejecting a sample outright, we transform the feature values
based on related feature values.

This way, we enforce the aforementioned relationship between the monetary amounts and times-
pans. Transformation sampling produces samples that are as realistic as rejection sampling, while not
suffering from the samples lost due to increased complexity. On the other hand, transformation sam-
pling has two main downsides: the main downside is that the sample, after having its values changes,
no longer follows the exact joint distribution that it was sampled from. As a result, some subtle pat-
terns learned from the real dataset might be lost. Secondly, the transformation changes are more
computationally demanding than simply dropping the sample. This presents the model designer with
the trade-off between dropping certain realism constraints in favour of optimizing the time complexity.
Experiment 12.1 compares both methods in terms of the quality of the generated data, to see how real-
world realism compares to adherence to the joint fraud distribution of the samples in terms of quality
of the machine learning model trained on this data. On top of this, Experiment 12.1 also compares the
degree of privacy that both methods are able to achieve.

9
Method: Adversarial Filtering

As described in section 8, even though the synthetic fraud samples generated with the CTGAN are
sampled from a joint distribution similar to real fraud cases that we have seen before, some samples
are expected to be more beneficial to the improvement of the generalizability of the supervised model
than others. Carlini and Wagner define adversarial examples as samples that are very similar to one
of the target classes of the machine learning model, but that are classified incorrectly [16]. Existing
research in the field of adversarial machine learning has shown that many machine learning models
are sensitive to slight alterations in their input, which often results in miss-classifications and errors
[2]. Following the logic introduced in chapter 6, we equate such cases to UUs and consequently false
negatives. After all, the goal of a fraudster is to create a fraudulent transaction in such a way that it
belongs to one of the blind spots of the FDM and is in turn classified as being a legit transaction with
high confidence.

An adversary with the goal of making as many fraudulent transactions as possible while going unde-
tected is to find such alterations to in turn fool the machine learning model into thinking his transactions
are legit. This section aims to create a method to construct such adversarial examples to in turn feed
these to the FDM to improve its robustness against these adversarial strategies. To this end, a method
used to quantify the adversarial prowess of a single transaction is introduced. It aims to adopt the
mindset of a fraudster and exploit any available knowledge in order to ”defeat” the existing machine
learning model. To this end, both data-driven and human-expert-driven techniques are employed.

9.1. Uniqueness scores
As a starting point, we want to create a score to measure the degree in which transactions are different
from the average transaction that we have seen before. The idea behind this is that fraud cases that
are very similar to the cases already found in the training set are of little added value to improve the
robustness of the model against never-seen-before cases. Cases that are sampled from the joint
distribution that represent fraud that is sufficiently unique on the other hand aremore interesting towards
achieving this goal. Because we are working with tabular data, we will introduce methods to determine
a uniqueness score for both numerical and categorical features. The two scoring methods together
map a list of feature values of length 𝑛 of a single transaction to a list of size 𝑛 with values representing
the uniqueness of each feature value.

9.1.1. Z-scores for numeric features
To determine how unique a certain value for a numerical feature is compared to the average value
found in the training data, we will use the Z-score. The Z-score for each numerical feature 𝑓𝑖 with value
𝑥𝑓𝑖 , average feature value 𝜇𝑓 and feature standard deviation 𝜎𝑓 is calculated as follows:

𝑆𝑍𝑓𝑖 = 𝑎𝑏𝑠(
𝑥𝑓𝑖 − 𝜇𝑓
𝜎𝑓

)

In more understandable terms: this score indicates how many standard deviations a certain feature
value differs from the average value of this feature. Hence, the higher this score, the more unique this

51

52 9. Method: Adversarial Filtering

value is as compared to the average score. While this score is applicable to the majority of the features,
for some features this value only becomes interesting if it is either higher or lower than the average.
As an example, for a feature representing the time since the user has signed up to the time of the
transaction, both a value that is lower and higher than the average value of this feature is interesting.

Lastly, no normalization step is needed between features after calculating the Z_scores. Because
we calculate the uniqueness expressed as the number of standard deviations from the mean per fea-
ture, the resulting score is already normalized.

9.1.2. Inversed relative frequency for categorical features
Unfortunately we cannot calculate a Z-score for a categorical feature. Instead, for each categorical
feature we find the inverse relative frequency to be a good indicator of uniqueness. Using this method,
feature values that are found less often across the training data get a higher score. More formally, for
each categorical feature value 𝑥𝑓𝑖 in each sample 𝑖 with frequency 𝐹𝑥 across the whole dataset with a
total of 𝑚 samples we calculate:

𝑆𝑍𝑓𝑖 =
1
𝐹𝑥
𝑚

One caveat of using this method is when categorical features have a very high cardinality. An
example of this is a feature for the users country, which has a cardinality of roughly 195. As a result, a
country that is very rare in the training data will have a significantly higher score than more frequently
occurring countries, which leads to a disproportional difference in scores compared to similar features
between transactions. To remedy this, we introduce a clipping factor to add a bound to each relative
frequency. More formally:

𝑆𝑍𝑓𝑖 = [
𝐹𝑥
𝑚 , 𝑘]

This way, by playing around wit the value 𝑘 we are able to limit the impact of extreme outliers, while
still rewarding transactions for having an unique value for high cardinality features.

9.2. Shapley scores
Using the Shapley values obtained from our FVAM, we determine a score per feature based on how
well this feature performs in adversarial examples. As explained in section 4.2, the Shapley value as-
sociated with a certain feature value indicates how much a this feature generally pushes the model
in the direction of a certain decision. To re-iterate: in the binary classification scenario of the FDM, a
large positive Shapley value means the feature pushes the model towards predicting 1 (a fraudulent
transaction), while a large negative Shapley value pushes the model towards predicting 0 (a legit trans-
action). For global Shapley values found from the FVAM on the training set however, as described in
7.2, we find that features with a positive Shapley value can be exploited to make the FDM not detect
fraudulent transactions. In the same sense, features with a negative Shapley value help the model to
detect fraudulent transactions. In other words, we follow theorem 2.

To construct our adversarial samples, first we min-max normalize the global Shapley values that we
find for the training data. Then, we transform the normalized Shapley values 𝑣𝑠ℎ𝑎𝑝𝑓𝑖 for each feature
𝑓𝑖, which are now numbers in [0, 1], into scores 𝑆𝑠ℎ𝑎𝑝𝑓𝑖 in the following way: 𝑆𝑠ℎ𝑎𝑝𝑓𝑖 = 1+𝑣𝑠ℎ𝑎𝑝𝑓𝑖 . This
way, we ensure that features with a positive Shapley value, which we want to reward, get a score higher
than 1. Meanwhile, features with a negative Shapley value, which we want to penalize, get a score
below 1. These scores indicate per feature the degree in which a specific value is able to ”beat” the
model. In other words, these values now represent a weight conforming to the expected adversarial
prowess of each feature value in a data-driven way. We call this score the Shapley score. Because
the Shapley score favors samples that share characteristics with false negatives we expect this score
to help us discover UUs.

9.3. Perceptibility scores
On top of using the data-driven method based on Shapley values, we want make use of the vast
amount of human expert knowledge found at financial institutions, in our specific case at bunq, as the
result of decades of fraud prevention. As the damages caused by financial fraud increase, so does

9.4. Adversarial success scores 53

the number of experts working in the field of compliance, with the goal of detecting, analyzing and
countering fraudulent or otherwise suspicious payments. As an adversary, one wants to find a way to
make transactions that go undetected by these experts. Becausemost of the transactions in the training
dataset of the FDM are labeled by these experts, their approach and mindset has a direct influence
on the classifications made by the FDM. On top of this, as we learned from section 4.2, humans are
intuitively good at recognizing UUs. For these reasons, we create another score to quantify the degree
of likeliness of a transaction is to go undetected per feature based on human expert intuition. We call
this score the perceptibility score.

The approach towards finding these scores follows the same way of thinking as work done by Ballet
et al. [2]. Their approach applies to tabular data and is focused on creating imperceptible adversarial
examples. Perceptibility in the context of tabular data requires an extra thinking step compared to
image data, which is the field where the majority of the research towards adversarial examples has
been done. As opposed to images, tabular feature values are not as interchangeable a pixel values.
A natural way to see if an image is an adversarial example is for a human to check the image and its
target class. For tabular data, this ”perception check” is more complicated, as tabular data is much less
readable and in most cases expert knowledge is required. When comparing two tabular instances, for
instance transactions, the expert is most likely to focus on only a subset of the features. These features
are the ones that the expert deems important for the distinction between target classes, in our case
fraudulent or legit. As a result, the expert is more likely to detect alterations made to this subset of
features as these values will be investigated more thoroughly.

From the standpoint of the adversary, one should avoid making modifications to this subset of fea-
tures. In contrast, the adversary wants to make more significant modifications to the subset of features
that are of less importance to the human expert. This mindset has the goal of creating adversarial ex-
amples that are altered enough to fool the machine learning model, as an extension of being able to fool
a human expert. To achieve this, we create scores that penalize heavy modifications to features with
a high human-expert-importance, while rewarding modifications to features with low human-expert-
importance. To reduce the bias of one single human expert, the rankings of all features were collected
from a total of 8 human experts.

9.3.1. Creating perceptibility scores
Firstly, the average of all human expert rankings is taken for each feature. As mentioned, each expert
has his or her own bias with regards to how important each feature is deemed. By taking the average
of multiple different experts importance ranking, this bias is mitigated. Before the average is taken, the
importance rankings are min-max normalized. The higher the normalized average importance ranking
is, the higher the perceptibility of changes to these features is. For this reason, the relationship between
expert importance rankings and the resulting scores is inverse linear. We find the feature perceptibility
scores 𝑆𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑓𝑖 in the following way: 𝑆𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑓𝑖 = 1/(2 ∗ �̃�𝑓), where �̃�𝑓 is the normalized mean of the
human expert importance rankings. To illustrate, any normalized average expert importance values
below 0.5 would get a perceptibility score above 1 and vice-versa for importance values above 0.5.
This way, the more important a feature is deemed by human experts to determine whether a transaction
is fraud or not, the more changes to values of such features get penalized. Since this score penalizes
samples that are known to the human experts, while promoting samples that are likely to be unknown,
we expect this method to promote the discovery of UUs and in turn false negatives.

9.4. Adversarial success scores
To summarize, we started off with an array of values for each transaction describing how unique the
feature values of this transaction are. Then, we determine a score for every value based on its corre-
sponding Shapley value describing on how well it is expected to be able to fool the machine learning
model. Lastly, we determine another score based on their perceptibility to human experts, which is
also aimed at fooling the FDM. Combining these scores, we then calculate what we call the adversarial
success scores for each feature 𝑓𝑖 in the following way:

𝑆𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑖 = 𝑆𝑍𝑓𝑖 ∗ 𝑆𝑠ℎ𝑎𝑝𝑓𝑖 ∗ 𝑆𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑓𝑖
For any transaction 𝑡 with features 𝑓0, ..., 𝑓𝑖 , ..., 𝑓𝑛 in the feature set with length 𝑛 we then obtain the

aggregated adversarial success score simply by taking the sum of all adversarial success scores in the

54 9. Method: Adversarial Filtering

array:

𝑆𝑡 =
𝑛

∑
𝑖=1
𝑆𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑖

The resulting value aims to give an indication of how well the transaction will serve as an adversarial
example to the current FDM. This chapter will conclude by introducing several ways of selecting the
top adversarial examples from a collection of samples, as well as present a way to explain why these
samples are a good adversarial example.

9.4.1. Other parameters
To allow for exploration in the way adversarial samples are selected, we use a weight per score to
determine its impact on the aggregated success score. Furthermore, when determining the uniqueness
scores, because the distinction is made between numerical and categorical values, for both calculation
methods a weight is introduced to configure the impact of numerical and categorical feature values
respectively. We also add a weight to both the Shapley score and the perceptibility scores. Lastly, as
mentioned before, the parameter 𝑘 is used to limit the impact that high cardinality categorical features
might have on the success score. Experiment 13.2.2 explores the effect of the scores through their
associated weights on the adversarial strength of the produced synthetic samples. In this experiment,
the top adversarial examples are ran through the existing FDM to evaluate the degree in which the
samples are able to go undetected by the FDM. In other words, how well these adversarial synthetic
fraudulent samples represent UUs of the FDM through the rate of false negative classifications.

9.4.2. From unknown unknowns to known knowns
As mentioned in chapter 6, one of the goals of this filtering method is to create a method that turns UUs
into unknown knowns. In other words, to teach the model to recognize previously unknown categories
fraudulent transactions. This approach has been thoroughly explained in the sections above. In an
attempt to turn unknown knows into known knows, which means translating this newly acquired knowl-
edge of the model to something that we as human experts can understand, an explanation method
was created using the adversarial success scores. Since we expect our adversarial success scores
to be a representation of how likely a sample is expected to be a UU to the FDM, we can leverage
the adversarial success scores of the individual feature values 𝑆𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑖 of the transactions with the
highest overall success scores 𝑆𝑡. By listing the names of the features with the highest success scores
per transaction, an expert with sufficient domain-specific knowledge might be able to extract patterns
in these transactions. To illustrate, we have selected the two highest scoring transactions out of a set
of real fraudulent samples. This means that we know for a fact that these transactions are fraudulent.
This explanation method shows that there is a clear pattern within features of the transactions. As we
can see, this method is able to provide meaningful insights for fraud analysts learn about categories of
fraudulent transactions that are, according to our scoring system, likely to be UUs.

10
Method: False Positive Mitigation

Using the approaches described in method chapter 8 and 9 we aim to create adversarial synthetic
fraudulent samples that help the FDM generalize better by allowing the FDM to learn more information
about UUs. However, for this method to be able to favor the discovery of false negatives, it has to
consider any other classification type to be of the same category. This consideration is made during
the re-labeling process of the FVAM and has been explained in more detail in section 7. For this reason,
we expect that the proposed method will come at the cost of an increased number of false positives.
Based on what the current goals of the financial institution are, one might seek to reduce either of
these. Generally, as mentioned in section 3.1, false negatives are more damaging to the institution
and being able to detect otherwise missed fraudulent transactions takes precedence over the losses
incurred by an increase in false positives. Nevertheless, false positives in transaction monitoring also
cause damages to the company and thus a remedy for the increase in false positives is explored in this
section. This approach comes in the form of two relatively simple systems: a system that automatically
filters repeated transaction monitoring hits generated by the machine learning model of which we know
are not actually fraudulent and another system that aims to help the machine learning model distinguish
between different types of fraud.

55

11
Method: Evaluation Metrics

Defining a proper and suitable set of metrics is essential for evaluating any system. Evenmore so for the
pipeline created in this work, considering the fact that there are various data types and characteristics
associated with the techniques that are introduced. Not only do we want to generate synthetic fraud
samples that are of sufficient quality, one also requires these samples to guarantee a certain degree of
privacy. Furthermore, as the goal of this work is to create robust and high-performing machine learning
models, various metrics need to be defined to test such trained models. This section will introduce,
motivate and explain the metrics used to evaluate each step of the proposed system.

11.1. Data quality metrics
A multitude of evaluation metrics for the quality of synthetic data exist. The synthetic data vault (SDV),
an organisation that focuses on the generation of high quality synthetic data, offer a variety of evaluation
methods to test the quality of the generated data. These metrics compare the generated samples to
the real samples and generally express the quality in terms of its statistical properties. We consider the
following metrics defined by the SDV to evaluate how well the generated synthetic data resembles the
training dataset [77]:

• LogisticRegression Detection: A logistic regression classifier is built to try and tell the real data
apart from the synthetic data. The value of this metric is 1 minus the average ROC AUC score of
the classifier. Ideally we want to maximize this value, as this means that the ROC AUC is close
to 0 and thus that classifier is not able to distinguish between the two datasets.

• SVC Detection: Similar to the previous metric, but using a support vector clustering (SVC) clas-
sifier.

• GaussianMixture Log Likelihood: A statistical metric that tries to fit multiple Gaussian Mixture
models to the real data and then computes the average log likelihood of the synthetic data on
these models. We aim to maximize this metric, as the higher the log likelihood of the synthetic
data to the Gaussian mixture models is, the more similar the distributions of the datasets are.

• Chi-Squared: This metric compares the distributions of all corresponding discrete columns of
both datasets. It computes the average value of the probability of each two columns having been
sampled from the same distribution. For this reason, we aim to maximize this metric.

• Inverted Kolmogorov-Smirnov D statistic: Similar to the chi-squared metric, this metric com-
pares the cumulative distribution functions (CDF) of the continuous columns. The value of this
metric is 1 minus the average normalized maximum distance of the CDFs of each continuous
columns of the real and synthetic data. For this reason, we aim to maximise this metric as well.

• Continuous Kullback–Leibler Divergence: This metric computes the entropy between each
corresponding continuous column of the real and synthetic datasets. Then, it is normalized in the
following way: 1

1+𝐾𝐿𝐷 . We again aim to maximize this metric, as a high 𝐾𝐿𝐷 indicates a higher
degree of seemingly random differences between the dataset.

57

58 11. Method: Evaluation Metrics

• Discrete Kullback–Leibler Divergence: This metric is the same as the metric above, but for the
discrete columns.

Any of these metrics implemented and used in this work make use of the python library provided by
the synthetic data vault [77].

11.2. Machine learning utility metrics
In the end, the goal of generating synthetic data is to improve the performance of our supervised model.
Consequently, there is the need to evaluate and compare different synthetic samples in terms of their
effect on the performance of a model trained on them. Testing the model on a never-seen-before test
dataset, the metrics that we are most interested in are the F1 score, ROC AUC, the number of false
positives and the number of false negatives. The F1 and ROC AUC scores give a general idea of the
performance of the model, while the false positives and false negatives give an indication of how well
the model generalizes with respect to the different kinds of errors made by the model. The following
metrics are considered in this work, when the aim is to determine the machine learning utility obtained
by differently trained models:

In the field of (supervised) machine learning, there exist a wide variety of metrics to evaluate the
performance of a machine learning model. This section will consider the most widely used ones and
relate their implications to the contributions presented in this work. Because we work in the context
of binary classification, only metrics related to binary classification are considered. We consider the
following metrics [94].

• Number of false positives (fp): the number of transactions that the model has classified as
fraudulent, but are in fact legit. Transactions correctly classified as fraud are called true positives
(tp);

• Number of false negatives (fn): the number of transactions that the model has classified as
legit, but are in fact fraudulent. Transactions correctly classified as legit are called true negatives
(tn);

• Confusion matrix: a (2, 2) matrix which that provides insight into the correctly classified trans-
actions, as well as the different types of aforementioned errors;

• Accuracy: describes the overall effectiveness of the model. In essence, accuracy is the rate at
which the model makes correct predictions out of the total set of predictions. While the accuracy
provides a good overall idea of the performance of the model, it does not tell the complete story.
The accuracy is calculated as follows: 𝑡𝑝+𝑡𝑛

𝑡𝑝+𝑓𝑛+𝑓𝑝+𝑡𝑛 ;

• Precision: the ratio at which the model predicts transactions to be fraudulent transactions that
turn out to be actually fraudulent. The precision metric helps us understand how trustworthy a
prediction of a transaction being fraudulent is, but fails to represent how many fraudulent trans-
actions were missed by the model. In other words, it does not provide any insights on false
negatives. The precision is calculated as follows: 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑡𝑝

(𝑡𝑝+𝑓𝑝) ;

• Recall: the ratio at which the model has made correct predictions, compared to the total number
of correct predictions that could have been made. As opposed to the precision, recall helps us
understand the degree in which fraudulent transaction have flown under the radar. In our context,
it indicates howwell themodel is able to detect multiple kinds of fraudulent transactions. The recall
is calculated as follows: 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑡𝑝

(𝑡𝑝+𝑓𝑛) ;

• F1 score: the f1 score is calculated as the harmonic mean of the precision and the recall of the
model and gives a good understanding of the general performance of the model. The F1 score
falls short due to the fact that it gives equal importance to the precision and recall while, as we
have seen earlier in this report, different mistakes incur different costs. This is not accurately
represented by the F1 score. It is calculated as follows: 𝐹1 = 𝑡𝑝

𝑡𝑝+ 12 (𝑓𝑝+𝑓𝑛)
;

11.3. Privacy evaluation metrics 59

• F2 score: similar to the F1 score, the F2 score is calculated using the precision and recall, but
gives a higher importance to the recall. This makes the F2 score more suitable in scenarios
where false negatives are very costly compared to false positives. In our context, classifying as
many fraudulent transactions is more important thanmaximizing the number of correctly classified
transactions. The F2 score is calculated as follows: 5𝑡𝑝

5𝑡𝑝+4𝑓𝑛+𝑓𝑝 ; and

• ROC AUC: ROC AUC stands for the Area Under the Curve of the Reception Operating Char-
acteristics curve. In essence, this metric helps us understand how well a model performs at
distinguishing between fraudulent and non-fraudulent transactions. The ROC AUC is calculated
as follows: 12(

𝑡𝑝
𝑡𝑝+𝑓𝑛 +

𝑡𝑛
𝑡𝑛+𝑓𝑝).

Many of these metrics are used in experiments 12.1 and 12.4 to compare the quality of multiple
models trained on different datasets.

11.3. Privacy evaluation metrics
As mentioned briefly in section 5.3.2, the degree of privacy that a synthetic dataset guarantees can
be measured in the distance to the original dataset. Unlike the aforementioned metrics, we do not
compare the statistical properties or the effects on the machine learning utility, but rather the absolute
distance to the original dataset. While this metric is widely applied in the field, it falls short at providing
insights on whether smart adversaries are still able to determine sensitive attributes about individuals
using the synthetic data. For this reason, we employ one more type of privacy metrics to evaluate a
different angle of privacy based on adversarial attacks.

11.3.1. Distance between records
The first and most intuitive metric is the distance to the closest record (DCR). This metric is based on
the euclidean distance between the records found in the real and synthetic datasets. It indicates the
minimum euclidean distance between the two records, one from each dataset. If we find a DCR of 0, it
means that the synthetic dataset leaks real information, as it contains a record from the original dataset
[76]. We aim to maximize this value, as a higher value indicates that, generally speaking, the values
found in the synthesized records bear very little resemblance to any real-world records. Distance-based
metrics are a commonly used tool in the field of data privacy protection.

While DCR gives us a decent indication of how close the synthetic data is to the original dataset,
it does however have one major shortcoming in our context: due to the random nature involved in the
generation of the samples, no matter the technique used, the possibility of a sample that happens to
be very similar to a real sample always exists. In this regard, DCR only indicates how well the currently
evaluated dataset retains single-record privacy and if the synthetic data is leaking real information, but
falls short on explaining the degree of privacy preservation of the evaluated generation method.

To this end, not only do we measure the distance to the closest record, but also the average eu-
clidean distance and the standard deviation between all pairwise distances. Here, we adapt the same
mindset as in the work of Park et al. [76]. These authors remark that in order for the synthetic data to
guarantee a satisfactory degree of privacy that the average distance is large, while the standard devi-
ation is small. A large average distance indicates that in general, the records in the synthetic dataset
provide a good degree of privacy, as these records are not similar to real records. A low standard
deviation indicates here that none of the synthetic records are close to the real data. A large standard
deviation would indicate that some or multiple pairs between the synthetic and real data exist that are
very close.

11.3.2. Adversarial attacks
The aforementioned distance metrics fail to capture the more intricate hidden relationships that might
be present between the real and synthetic data. As explained in section 5.3.2, the synthetic data might
not be close to any real record, but a smart adversary might still be able to extract sensitive information
based on relationships between attribute values. When the data is made public, either through data
sharing for research purposes or through a data leak, it is of great importance that no adversary is able
to learn such sensitive information and relationships.

60 11. Method: Evaluation Metrics

This poses the question: given an adversary with access to the synthetic data, can the adversary
use a selection of key attributes of the synthetic data to predict the sensitive attributes in the real data?
To put this issue to the test for the synthetic data generated in this work, we introduce one last metric:
the accuracy of an adversarial attacker model to find sensitive attributes of the real dataset. We train an
adversarial attacker on a set of key attributes of the synthetic dataset to in turn predict some sensitive
attribute of the real dataset. The resulting metric is the accuracy of the predictions of this model of the
sensitive attributes of the real dataset. This attack is an example of a background knowledge attack
and assumes the attacker has access to some external knowledge about the individual in question. In
essence, we are measuring the degree of privacy that the synthetic data ensures with respect to these
sensitive columns. The first step in calculating this metric is to make a selection of sensitive and key
attributes.

Attribute selection
To make a strong selection of the sensitive and key attributes used in the adversarial attack, we need to
adopt both the mindset of the victim and the adversary of such an attack. To define sensitive attributes,
we ask ourselves the following questions:

• What are characteristics of a person that he or she has no control over?

• What are characteristics of a person that are widely considered to be sensitive from a societal
point of view?

• What characteristics of a person would be considered, by the average person, to be unrelated
enough to being a fraudster, so that a decision made solely based on this feature would be con-
sidered an over-generalization?

Based on these requirements, out of our entire collection of use-case features two features stand
out as particularly sensitive:

• Nationality: the nationality of the person in question. Right of the bat, this feature clearly checks
all of the aforementioned boxes. For an adversary to be able to deduct the nationality of a user
would be a significant privacy breach. Furthermore, in the context of fraud, basing the decision of
the user being a fraudster solely on this feature would from a societal standpoint be considered
as racism. Consider the following fictional example: assume there exists a significant difference
in the fraud rate of the transactions made by people from Yemeni descent. Even though this rela-
tionship is valuable in the big picture, certain supervised models might assign too much weight to
this one relation. If this leads to an unfair classification process for anyone of Yemeni descent, this
distinction is definitely problematic. Furthermore, as discussed earlier, false positive fraudulent
classifications have various very serious consequences. Therefore, this feature is considered to
be highly sensitive.

• Gender: the gender of the person in question. Again, this feature ticks all boxes of what we
consider to be a sensitive feature. Especially in the current day and age, there exists a significant
societal sensitivity surrounding one’s gender. Similar the previously mentioned feature, assigning
an unfair amount of weight to this feature along with the slew of consequences would be consid-
ered to be sexist. For an adversary to deduce this feature and, in turn, make such assumptions
would be problematic. As such, this feature is considered to be highly sensitive as well.

Now that we have defined the sensitive attributes, it is important to select a sensible collection of
key attributes. From the point of view of an adversary, one would select as many features as possible
from the total feature set to base their decision on. Furthermore, one would select only the features
that are deemed to be related to the sensitive feature in question. Features unrelated to the sensitive
feature would only serve to throw off the classification process. For these reasons, we carefully select
the following features to be the key attributes for both sensitive attributes:

• Nationality: several features are associated with both the origin of the transaction, as well as the
user who has made the transaction. Most of these features are obvious choices, as they are in
some way associated with the country of origin of either the user or the transaction. Furthermore,
some features describe the nature of the transaction, which are relevant since some countries or
users tend to gravitate more towards specific forms of payment, especially international users.

11.3. Privacy evaluation metrics 61

• Gender: contrasting the previous feature, very few features are associated with the gender of
the user. Still, one could deduct a slew of information based on the social implications of certain
features. Many society-focused features have been selected, as there potentially exist many
(hidden) relationships between these features and the users gender. For example: in countries
where women have very little rights, the gender of the people making transactions will be heavily
skewed towards male. Furthermore, the activity associated with the transaction potentially also
holds discriminatory information.

Performing an adversarial attack
The adversarial attack is performed using a privacy attacker model based on the Causative Attack
Protection (CAP) algorithm. The idea behind this algorithm is that an adversary is able to freely inject
information into the training data of a supervised machine learning model, with the goal of forcing the
model to make wrong classifications [66]. With this knowledge about the poisonous data now present
in the training data, the adversary can then in turn make assumptions about the output of the model that
the model designer cannot. Adapting this mindset, the algorithm can be adapted to compare datasets
and provide the model designer with a means of evaluating the privacy guarantees of one dataset with
respect to the other.

In the context of the disclosure of sensitive attributes, the CAP attacker assumes the adversary has
knowledge of a set of key attributes, as described in more detail earlier. Using these key attributes,
the attacker aims to learn the value of a sensitive attribute. The CAP model allows the model designer
to measure the risk of disclosure of an individual’s real sensitive target attribute value, in the scenario
where the adversary has access to a synthetic dataset [51].

More formally, assume we have a training dataset with 𝑛 records. For any two records 𝑖 and 𝑗 (in
this context interchangeable) 𝑗 ∈ {1, ..., 𝑛} this training dataset, let 𝐾𝑜,𝑗 be the set of values for the key
attributes and 𝑇𝑜,𝑗 the value of the sensitive attribute of record 𝑗. In the same fashion, let 𝐾𝑠,𝑗 and 𝑇𝑠,𝑗
be the counterparts of the synthetic dataset. The CAP score for the synthetic dataset then becomes
[51]:

𝐶𝐴𝑃𝑠,𝑗 ∶= 𝑃𝑠(𝑇𝑜, 𝑗|𝐾0,𝑗) =
∑𝑛𝑖=1[𝑇𝑜,𝑖 = 𝑇𝑜,𝑗 ∧ 𝐾𝑜,𝑖 = 𝐾𝑜,𝑗]

∑𝑛𝑖=1[𝐾𝑠,𝑖 = 𝐾0,𝑗]
The idea behind this equation is that an adversary will search the synthetic dataset for matches of the

key attribute values known by them. This subset is referred to as the equivalence class of 𝐾𝑜,𝑗. Using
this subset, the adversary will then try to calculate the distribution of the sensitive target attribute with
respect to the known key attribute values. In essence, the equation 𝐶𝐴𝑃𝑠,𝑗 represents the proportion of
the target value of the real data 𝑇𝑜,𝑗 in the equivalence class of 𝐾𝑜,𝑗. This way, it provides a measure for
the risk of the disclosure of the real sensitive target value represented in record 𝑗 using the knowledge
found in its synthetic counterpart. The CAP score is closely related to the notions of 𝑘-anonymity and
𝑙-diversity described earlier in section 5.3.2.

We use the SDV implementation of the CAP attacker to perform the attacks on our synthetic datasets
[77]. As mentioned, this metric outputs the accuracy of a CAP attacker model to correctly classify the
sensitive target attribute. As a result, we aim to minimize this metric. The details of these attacks, as
well as the found results are described in section 12.2 of the experiments chapter.

12
Experiments and Results

To test the viability of the system proposed in this work we conduct a series of experiments. The
experiments are set up in a logical order, working from the ground up: first, different configurations of
the CTGAN are tested to find their impact on the overall quality of the synthetic samples produced.
This quality is expressed as the similarity to the real fraudulent samples, the machine learning utility
and the degree of privacy preservation. Secondly, the adversarial filtering method is put to the test by
comparing different configurations of the filtering system and evaluating the effects on the samples in
terms of adversarial strength. To test this, we run various generated synthetic datasets through the
existing FDM and compare the false negative rates found. Thirdly, we create a synthetic dataset using
the optimal configurations of the CTGAN and adversarial filtering systems to produce a set of synthetic
adversarial examples. We then train various FDMs on combinations of synthetic adversarial examples,
real fraudulent samples and real legit transaction samples to test the quality of these models against
baseline models. Lastly, we test two methods with the goal of reducing the increased number of false
positives introduced by the previous system.

General experimental setup
All datasets used in the experiments share the same parent dataset. We base our experiments on a
subset of this total set which consists of 1567 fraudulent transactions and 303424 legit transactions.
We will refer to this training set as 𝑆𝑡𝑟𝑎𝑖𝑛 from now on. This set was carefully chosen for the following
reasons:

1. It is a smaller version of the total transaction dataset. This allows us to conduct experiments on
a smaller scale in a shorter time. Especially when training the CTGAN or XGB model this saves
a significant amount of time; and

2. There is a serious class imbalance in this dataset. The number of legit transactions heavily
outweigh the number of fraudulent transactions. As this is one of the main challenges that this
work aims to solve, it is crucial for the experiments that this dataset satisfies this property;

Furthermore, sincemany different configurations of both the CTGAN and adversarial filtering system
are used, each experiment will indicate the specific configurations used and their implications. When
evaluating the FDMs trained on different trainging sets we make use of the same test dataset. This test
set consists of roughly 80000 real fraudulent transactions and roughly 200000 real legit transactions.
Wewill call this test set 𝑆𝑡𝑒𝑠𝑡. We use a large number of fraudulent transactions in our test set, as to have
a wide variety of different real fraudulent transactions. This allows us to accurately test the robustness
of the trainedmodels to never-seen-before fraudulent transactions. 𝑆𝑡𝑒𝑠𝑡 has been carefully constructed
to ensure no overlap between 𝑆𝑡𝑟𝑎𝑖𝑛 and 𝑆𝑡𝑒𝑠𝑡 exists so that 𝑆𝑡𝑒𝑠𝑡 is a completely never-seen-before
set of transactions to any of the evaluated FDMs. For this reason we can safely make assumptions
about the obtained robustness of the trained models.

63

64 12. Experiments and Results

12.1. Comparing different methods of generating synthetic sam-
ples

This experiment aims to find out whether the generated synthetic samples are able to properly convey
the relationships and patterns found in real fraudulent samples. To this end, we compare the effects
of multiple configurations of the generation process, as well as the two reconstruction and sampling
methods introduced in section 8.4 on the quality of the generated synthetic samples. In this section,
we consider the quality of the synthetic samples as expressed by the similarity of the samples to the
real fraudulent samples, as well as the machine learning utility provided by the synthetic samples. In
the next experiment section, we explore the quality in terms of the degree of privacy preservation.

12.1.1. Similarity to the real data
For the purpose of gaining an understanding how closely the generated fraud samples resemble the
real fraud cases, we calculate a subset of the metrics introduced in section 11.1. We choose the
following metrics:

1. LogisticRegression Detection to find out how well a logistic regression classifier can distinguish
between synthetic and real samples;

2. Chi-Squared to find how similar the distributions of the discrete columns of the synthetic data are
to their respective distributions found in the real data. In the same breath, one could say that this
value indicates the overall similarity found in the categorical columns;

3. Inverted Kolmogorov-Smirnov D statistic to find how similar the distributions of the continuous
columns of the synthetic data is to the distributions of their respective columns found in the real
data. In the same breath, one could say that this value indicates the overall similarity found in the
numerical columns;

Experiment setup
Each CTGAN is trained on the same set of 1567 fraudulent transactions from 𝑆𝑡𝑟𝑎𝑖𝑛. The experiment
is set up as follows:

1. Create a hyperparameter configuration and train a CTGAN on the real fraudulent transaction
samples. We limit our exploration to different values for the following hyperparameters: gener-
ator learning rate, generator weight decay and generator dimension. The definitions of these
hyperparameters, along with the motivation behind their selection is detailed in section 8.3.2.
When tuning any hyperparameter, the values of the other hyperparameters are left unchanged
as to isolate the effects of a single hyperparameter;

2. Using both rejection and transformation sampling construct two datasets of 1567 synthetic fraud-
ulent samples from the particular CTGAN; and

3. Find the similarity of these datasets to the real fraudulent samples found in 𝑆𝑡𝑟𝑎𝑖𝑛 by computing
the aforementioned metrics;

From step 2 and onwards, we perform multiple rounds and take the average value of the evaluated
metrics over all rounds as to mitigate the effect of the randomness of the samples taken from the
CTGAN as much as possible.

12.1. Comparing different methods of generating synthetic samples 65

The LogisticRegression Detection score

Figure 12.1: LogisticRegression Detection scores for samples obtained from different configurations of the CTGAN

The Chi-Squared score

Figure 12.2: Chi-squared scores for samples obtained from different configurations of the CTGAN

The Inverted Kolmogorov-Smirnov D statistic

Figure 12.3: Inverted Kolmogorov-Smirnov D scores for samples obtained from different configurations of the CTGAN

12.1.2. Machine learning utility
In order to gain an understanding of the machine learning utility provided by the synthetic samples,
we compare multiple samples generated by different configurations of the CTGAN to a baseline of
real fraud samples. The idea behind this, is that for real fraud samples the machine learning utility is
”as good as it gets”. By comparing differently configured CTGANs, we aim to find the configuration of
hyperparameters that produces synthetic samples that provide the highest machine learning utility.

Setup
Again each CTGAN is trained on the same set of 1567 fraudulent transactions from 𝑆𝑡𝑟𝑎𝑖𝑛. Each round
of this experiment is set up as follows:

1. Create a hyperparameter configuration and train a CTGAN in a similar fashion as the previous
round of experiments;

2. Using both rejection and transformation sampling construct two datasets of 1567 synthetic fraud-
ulent samples from the particular CTGAN;

66 12. Experiments and Results

3. Create a training set 𝑆𝑖 with this sample and the set of real legit transactions from 𝑆𝑡𝑟𝑎𝑖𝑛, as to
emulate the class imbalance of the real-life setting as much as possible;

4. Train a FDM on 𝑆𝑖;

5. Calculate the F1 score and ROC AUC of the model on 𝑆𝑡𝑒𝑠𝑡.

From step 2 and onwards, we perform multiple rounds and take the average value of the evaluated
metrics over all rounds as to mitigate the effect of the randomness of the samples taken from the
CTGAN as much as possible.

Generator learning rates

(a) The effect of different learning rates on the F1 score of
a supervised model trained on the synthetic samples

(b) The effect of different learning rates on the ROC AUC
score of a supervised model trained on the synthetic sam-
ples

Figure 12.4: The machine learning utility metrics for samples obtained from different learning rates of the CTGAN

Generator dimensions

(a) The effect of different generator dimensions on the F1
score of a supervised model trained on the synthetic sam-
ples

(b) The effect of different generator dimensions on the ROC
AUC score of a supervised model trained on the synthetic
samples

Figure 12.5: The machine learning utility metrics for samples obtained from different generator dimensions of the CTGAN

12.2. Evaluating the privacy guarantees of the synthetic data 67

Generator weight decay

(a) The effect of different generator decay weights on the
F1 score of a supervised model trained on the synthetic
samples

(b) The effect of different generator decay weights on the
ROC AUC score of a supervised model trained on the syn-
thetic samples

Figure 12.6: The machine learning utility metrics for samples obtained from different generator weight decay values of the
CTGAN

12.2. Evaluating the privacy guarantees of the synthetic data
As described in section 5.3.2, synthetic data provides various advantages in terms of data privacy in
case of data leaks or for publishing anonymized datasets for data mining purposes. In this section the
privacy guarantee of the synthetic data will be evaluated using multiple metrics to test different aspects
of privacy. We will test the quality in terms of privacy of the synthetic data by calculating the distance to
the closest record, performing an adversarial attack on two sensitive attributes found in our case study
dataset and finally analysing the trade-off between privacy-guarantee and machine learning utility.

12.2.1. Setup
Similar to experiment 12.1.2, multiple differently configured CTGANs are trained on the same set of
1567 fraudulent transactions from 𝑆𝑡𝑟𝑎𝑖𝑛. The experiment is set up as follows:

1. Create a hyperparameter configuration and train a CTGAN in a similar fashion as the previous
round of experiments;

2. Take two samples using both rejection and transformation to obtain a sample 𝑆𝑖 consisiting of
1567 synthetic fraud cases from the particular CTGAN; and

3. Calculate or determine the values of the aforementioned privacy metrics based on 𝑆𝑖 and the real
fraudulent transactions from 𝑆𝑡𝑟𝑎𝑖𝑛 as described in method section 11.3;

From step 2 and onwards, we perform multiple rounds and take the average value of the evaluated
metrics over all rounds as to mitigate the effect of the randomness of the samples taken from the
CTGAN as much as possible.

12.2.2. Distance to the closest record
To calculate the distance to the closest record, a custom nearest-neighbour based function for our use
case was implemented as specified in method section 11.3. The tables below show the distance to
the closest record, the average record distance and the standard deviation of the record distances for
each configuration. The most striking results are indicated in red and green. Red indicates that the
value or value combinations are among the least desirable over all the experiments. Green indicates
the opposite.

68 12. Experiments and Results

Table 12.1: The distance metrics obtained for multiple generator learning rate values of the CTGAN using rejection sampling

1-e4 1.5e-4 2e-4 2.5e-4 3e-4
To closest record 0.085 0.083 0.090 0.088 0.093
Standard deviation 0.116 0.115 0.120 0.120 0.122
Average 0.435 0.440 0.444 0.446 0.412

Table 12.2: The distancemetrics obtained for multiple generator learning rate values of the CTGANusing transformation sampling

1-e4 1.5e-4 2e-4 2.5e-4 3e-4
To closest record 0.130 0.125 0.129 0.115 0.129
Standard deviation 0.166 0.164 0.167 0.161 0.169
Average 0.393 0.414 0.403 0.434 0.394

Table 12.3: The distance metrics obtained for multiple generator dimensions of the CTGAN using rejection sampling

(128,128) (256,256) (512,512)
To closest record 0.081 0.090 0.097
Standard deviation 0.115 0.120 0.125
Average 0.459 0.444 0.396

Table 12.4: The distance metrics obtained for multiple generator dimensions of the CTGAN using transformation sampling

(128,128) (256,256) (512,512)
To closest record 0.128 0.129 0.124
Standard deviation 0.167 0.167 0.165
Average 0.398 0.403 0.430

Table 12.5: The distance metrics obtained for multiple generator decay values of the CTGAN using rejection sampling

5e-7 7.5e-7 1e-6 1.25e-6 1.5e-6
To closest record 0.0861 0.0862 0.0907 0.0885 0.0842
Standard deviation 0.116 0.117 0.121 0.119 0.118
Average 0.431 0.420 0.444 0.416 0.457

Table 12.6: The distance metrics obtained for multiple generator decay values of the CTGAN using transformation sampling

5e-7 7.5e-7 1e-6 1.25e-6 1.5e-6
To closest record 0.129 0.125 0.129 0.131 0.109
Standard deviation 0.166 0.165 0.167 0.167 0.160
Average 0.393 0.394 0.403 0.385 0.427

12.2.3. Adversarial attacks
In this experiment we evaluate the success rate of a CAP attacker to figure out the values of sensitive
attributes of the real dataset, based on the values found in the synthetic dataset, as detailed in method
section 11.3. On top of testing this metric on different configurations of the CTGAN, we test it on 2
different kinds of sensitive attributes: the nationality of the user and the gender of the user.

12.2. Evaluating the privacy guarantees of the synthetic data 69

Nationality

Figure 12.7: Accuracy of the CAP attacker finding the users nationality on samples generated by the three different configuration
types of the CTGAN

Gender

Figure 12.8: Accuracy of the CAP attacker finding the users nationality on samples generated by the three different configuration
types of the CTGAN

12.2.4. Privacy guarantee vs. machine learning utility
Lastly, we test the trade-off between privacy guarantee and machine learning utilty. This experiment is
set up in the following way:

1. We train a CTGAN with default hyperparameter configurations on the fraudulent transactions in
𝑆𝑡𝑟𝑎𝑖𝑛, similar to the previous experiments;

2. We generate 100 thousand synthetic samples using this CTGAN and rejection sampling;

3. We sort these samples by degree of privacy preservation based on the DCR of and take the top
1567 samples, which we call 𝑆𝑝;

4. We then take 1567 random samples from the same set of 100.000 samples, which we call 𝑆𝑟;

5. We calculate the average DCR of both of these synthetic datasets;

6. We create 10 different datasets of size 1567 consisting of different ratios between the 2 datasets
mentioned above, each time taking steps of 0.1;

7. We calculate the F1 score and the ROC AUC as measures of the machine learning utility.

70 12. Experiments and Results

(a) F1 score for different levels of privacy preservation
(b) ROC AUC score for different levels of privacy preser-
vation

Figure 12.9: The machine learning utility metrics for samples obtained from different configurations of the CTGAN

Dataset Average DCR
𝑆𝑝 0.086
𝑆𝑟 0.122

Table 12.7: Average distance to the closest record for the two synthetic datasets 𝑆𝑝 and 𝑆𝑟

In these figures the privacy guarantee is expressed in terms of the ratio of samples with a high
privacy guarantee (high distance to closest record). This means that a ratio of 1 has the highest privacy
guarantee, while a ratio of 0 has the lowest privacy guarantee.

12.3. Defeating an existing FDMwith adversarially filtered synthetic
fraud cases

Whereas the previous rounds of experiments were aimed at gaining a grasp of the quality of the gener-
ated synthetic samples, this experiment is aimed at finding the specific samples that the existing FDM
has trouble classifying. We operate under the assumption that, after determining that the quality of the
samples is sufficiently high, samples taken from a CTGAN trained on only fraudulent transactions count
as confirmed fraud cases. Then, using our method for filtering out only the best adversarial samples
as described in method section 9, we evaluate the adversarial prowess of these samples by running
them through the existing FDM trained on 𝑆𝑡𝑟𝑎𝑖𝑛, which we will refer to as 𝐹𝐷𝑀𝑑𝑒𝑓𝑎𝑢𝑙𝑡 from now on,
and comparing the classification results to several baselines.

12.3.1. Setup
The adversarial examples are compared against two baselines in the form of an equal number of real
fraud samples and random synthetic samples. The experiment is set up in the following way:

1. Take a CTGAN with the configuration that maximises the trade-off between machine learning
utility and degree of privacy preservation of the synthetic samples produced;

2. Generate 100 thousand synthetic samples. Important to note is the fact that we did not gener-
ate new samples for each filtering configuration. The random nature of this would influence the
results, which means we cannot isolate the effects of a single weight being changed;

3. For each configuration that is tested, select the top 1% best adversarial examples from the dataset
of the previous step as found by the adversarial filtering method;

4. Add the 1000 adversarial examples to a set of 195000 real legit transactions to create a test
dataset that suffers the same rate of class imbalance as the total set of transaction samples
does;

12.3. Defeating an existing FDM with adversarially filtered synthetic fraud cases 71

5. Use 𝐹𝐷𝑀𝑑𝑒𝑓𝑎𝑢𝑙𝑡 to classify this test set. There is no overlap between the test set and the training
set of this model, as the fraudulent samples are synthetic and the real legit samples are sampled
from a different set than 𝑆𝑡𝑟𝑎𝑖𝑛;

6. To test the adversarial prowess of such a set of adversarial examples we measure the percentage
of fraudulent samples that go undetected by the model on each test set. In other words, we
measure the false negative rate; and

7. We compare these results to two baselines: the first baseline is a set of real fraudulent samples.
These samples were randomly selected from the total set of fraudulent transactions, ensuring
no overlap between these samples and the fraudulent samples in 𝑆𝑡𝑟𝑎𝑖𝑛. This means that the
fraudulent samples in the baseline test set have never been seen by 𝐹𝐷𝑀𝑑𝑒𝑓𝑎𝑢𝑙𝑡. Our second
test set consists of random synthetic samples from the set of 100 thousand generated samples.

(a) False negative rates for different numerical uniqueness
values

(b) False negative rates different categorical uniqueness
values

Figure 12.10: The false negative rates of 𝐹𝐷𝑀𝑑𝑒𝑓𝑎𝑢𝑙𝑡 on the test dataset as filtered using different numerical and categorical
uniqueness weight values

(a) False negative rates for different Shapley weight values
(b) False negative rates different expert perceptibility
weight values

Figure 12.11: The false negative rates of 𝐹𝐷𝑀𝑑𝑒𝑓𝑎𝑢𝑙𝑡 on the test dataset as filtered using different Shapley and expert percep-
tibility weight values

72 12. Experiments and Results

(a) False negative rates for different categorical cardinality
bound values

Figure 12.12: The false negative rates of 𝐹𝐷𝑀𝑑𝑒𝑓𝑎𝑢𝑙𝑡 on the test dataset as filtered using different categorical cardinality bound
values

Lastly, to illustrate the adversarial prowess of the different samples we will take the configuration of
the adversarial filter that produces the highest number of false negatives and show the error ratios of
𝐹𝐷𝑀𝑑𝑒𝑓𝑎𝑢𝑙𝑡 in the format of a donut chart. This configuration is shown in table 12.8.

Adversarial filter parameter Value
Numeric uniqueness 1
Categorical uniqueness 1
Shapley weight 6
Perceptibility weight 1
Categorical cardinality bound 0.10

Table 12.8: Adversarial filtering configuration chosen based on the previous findings

Using the configuration for the adversarial filtering system as shown in table 12.8, we depict the
performance of 𝐹𝐷𝑀𝑑𝑒𝑓𝑎𝑢𝑙𝑡 on the filtered synthetic dataset and the two aforementioned baselines in
figures 12.13a to 12.13c. In this figure we find three donut charts, each depicting the total number of
fraudulent samples divided into false negatives and true positives as classified by 𝐹𝐷𝑀𝑑𝑒𝑓𝑎𝑢𝑙𝑡.

12.4. Training a supervised model on synthetically augmented datasets 73

(a) Real samples (b) Random synthetic samples

(c) Adversarially filtered synthetic samples

Figure 12.13: The false negative rates for three test datasets as classified by 𝐹𝐷𝑀𝑑𝑒𝑓𝑎𝑢𝑙𝑡

12.4. Training a supervisedmodel on synthetically augmented datasets
As the final step to our approach, we compare multiple FDMs trained on real fraud samples, synthetic
fraud samples and both. Using the top adversarial examples explored in the previous experiments, we
aim for these FDMs to obtain a higher robustness to never-seen-before real fraudulent samples and
consequently a higher performance than 𝐹𝐷𝑀𝑑𝑒𝑓𝑎𝑢𝑙𝑡.

12.4.1. Setup
We again use 𝑆𝑡𝑟𝑎𝑖𝑛 as in experiment 12.1, consisting of 1567 fraudulent and 303424 legit real trans-
actions. This experiment is set up as follows:

1. We use the same 100 thousand synthetic samples generated for the previous experiment;

2. Using the adversarial filtering system with the configurations shown in table 12.8 from experiment
13.2.2, we select the top 783, 1567 and 3134 synthetic fraudulent transactions;

3. We then train a supervised model on combinations of the synthetic datasets mentioned above
and all real fraudulent samples at our disposal, along with all real legit samples; and

4. Finally, we compare the results to one another and some important baselines: 𝐹𝐷𝑀𝑑𝑒𝑓𝑎𝑢𝑙𝑡 which
is trained on the real fraudulent samples from 𝑆𝑡𝑟𝑎𝑖𝑛, a model that trained on only random synthetic
samples in terms of fraudulent samples and amodel trained on only adversarial examples in terms

74 12. Experiments and Results

of fraudulent samples. All of these training datasets also include the full set of real legit transaction
samples.

To summarize, we create the following training datasets:

1. Dataset A: 1567 real fraudulent transactions and 303424 legit real transactions;

2. Dataset B: 1567 adversarial examples and 303424 legit real transactions;

3. Dataset C: 1567 random synthetic samples and 303424 legit real transactions;

4. Dataset D: 783 adversarial examples, 1567 real fraudulent transactions and 303424 real legit
transactions;

5. Dataset E: 783 random synthetic samples, 1567 real fraudulent transactions and 303424 legit
real transactions;

6. Dataset F: 1567 adversarial examples, 1567 real fraudulent transactions and 303424 real legit
transactions;

7. Dataset G: 1567 random synthetic samples, 1567 real fraudulent transactions and 303424 real
legit transactions;

8. Dataset H: 3134 adversarial examples, 1567 real fraudulent transactions and 303424 real legit
transactions;

9. Dataset I: 3134 random samples, 1567 real fraudulent transactions and 303424 real legit trans-
actions;

As the test set, we again use 𝑆𝑡𝑒𝑠𝑡 consisting of 80.000 fraudulent and 200.000 legit real transac-
tions. All of these transactions are never seen before by any of the models trained for this experiment.
In any of the rounds of experiments done in this section, we use the full amount of real fraudulent
transactions, as we want to use any and all information of the underrepresented class at our disposal.

12.4.2. Training models on different samples
Using the training datasets described above, we train 9 respective models:

• Model A: this model is the exact same as 𝐹𝐷𝑀𝑑𝑒𝑓𝑎𝑢𝑙𝑡. Hence, this model is considered as the
most important baseline for machine learning utility.

• Model B: to test the machine learning utility of the base samples produced by the CTGAN, we test
the performance of a random sample of 1567 synthetic samples. This allows us to not only com-
pare the machine learning utility of the general synthetic samples compared to the real samples,
but also compare the advantages of adversarially filtering the synthetic samples before adding
them to the training dataset;

• Model C: similar to the previous model, we aim to measure the machine learning utility of the
adversarial samples to compare it to the real and random samples; and

• Models E, G and I: In order to be able to evaluate the effects adversarially filtering the synthetic
samples before adding them to the training dataset, these models are trained on both real fraud
and random synthetic samples;

• Models D, F and H: To test the advantage of augmenting the training dataset with adversarial
samples, models are trained on both real fraud and adversarial examples. Here we are still using
all information at our disposal, but use the methods described in 9 to try to increase the model
performance.

The results of these training experiments are shown in table 12.9. On top of comparing the perfor-
mance between using adversarial samples against not using them, we also compare different amounts
of adversarial samples when augmenting the training dataset.

12.4. Training a supervised model on synthetically augmented datasets 75

Table 12.9: Multiple metrics indicating the performance of models A to I on 𝑆𝑡𝑒𝑠𝑡. Indicated in bold is the best performing model
for each metric.

Model #FP FP rate #FN FN rate F1 F2 ROC AUC
A 14194 0.0706 16869 0.2109 0.8026 0.8532 0.9283
B 34284 0.1705 37672 0.4709 0.5405 0.6655 0.6787
C 27475 0.1366 40035 0.5004 0.5421 0.6655 0.6912
D 15498 0.0771 12671 0.1584 0.8270 0.8760 0.9442
E 11670 0.058 15866 0.1983 0.8233 0.8732 0.9552
F 16254 0.0808 11777 0.1472 0.8296 0.8732 0.9606
G 15111 0.0752 14402 0.18 0.8164 0.8557 0.9536
H 14572 0.0725 15416 0.1927 0.8116 0.8513 0.9475
I 10396 0.0517 18216 0.2277 0.8120 0.8570 0.9467

To further visualize the differences in false positive and false negative ratios, we will show models
obtaining the most striking results along with the baselines in the form of donut charts. These charts aim
to provide an intuitive and clear perspective of how certain training datasets help the model generalize
to never-seen-before samples.

(a) False positive and true negative rates of the FDM (b) False negative and true positive rates of the FDM

Figure 12.14: The false positive and false negative rates found on the test set classified by model A
.

76 12. Experiments and Results

(a) False positive and true negative rates of the FDM (b) False negative and true positive rates of the FDM

Figure 12.15: The false positive and false negative rates found on the test set classified by model B
.

(a) False positive and true negative rates of the FDM (b) False negative and true positive rates of the FDM

Figure 12.16: The false positive and false negative rates found on the test set classified by model C
.

12.4. Training a supervised model on synthetically augmented datasets 77

(a) False positive and true negative rates of the FDM (b) False negative and true positive rates of the FDM

Figure 12.17: The false positive and false negative rates found on the test set classified by model F
.

(a) False positive and true negative rates of the FDM (b) False negative and true positive rates of the FDM

Figure 12.18: The false positive and false negative rates found on the test set classified by model G
.

78 12. Experiments and Results

(a) False positive and true negative rates of the FDM (b) False negative and true positive rates of the FDM

Figure 12.19: The false positive and false negative rates found on the test set classified by model I
.

12.4.3. Model performance for different thresholds

The experiments above have all used the optimal threshold as calculated by the H2O framework during
the training process, based on the F1 score. In many situations however, it is interesting to evaluate the
model performance for different thresholds. We will discuss this in more detail in discussion subsection
13.3.1. Figures 12.20 and 12.21 show the relationship between different threshold values and the
number of false negatives and false positives and the F1 score respectively. For this experiment,
we select the best performing model that makes use of the adversarially filtered synthetic samples
from the previous round of experiments, based on the F1 score. This means we select the model
trained on dataset F. As baselines, we take model A (𝐹𝐷𝑀𝑑𝑒𝑓𝑎𝑢𝑙𝑡) and model C. We use model A to
provide a comparison with the existing scenario to show the benefits of using our proposed method.
We use model C to show the advantages of using the adversarial filtering system over random synthetic
samples. For both baselinemodels, we only indicate the performancemetrics of when using the optimal
threshold, because this accurately represents the default situation.

12.4. Training a supervised model on synthetically augmented datasets 79

False positives and false negatives

Figure 12.20: The number of false positives and false negatives as found for various classifier thresholds for model F and optimal
thresholds for two baseline models.

12.4.4. F1 scores

Figure 12.21: The F1 score as found for various classifier thresholds for model F and optimal thresholds for two baseline models.

80 12. Experiments and Results

12.5. Reducing false positives
Since the generalization benefits of our most promising model, model F, come at the price of an in-
creased number of false positives, efforts were made to try control this number. This effort is two-fold:
using weights to our training dataset to more accurately represent samples that have shown to be dif-
ficult to label as either fraud or legit and implementing a system that filters out repeated false positive
hits of the FDM. In this experiment we evaluate both methods.

12.5.1. Using weights to represent edge-cases
In this section we evaluate the approach proposed in method section ??. The experiment is set up in
the following way:

1. We create two datasets X and Y:

• Dataset X consists of 1567 real transactions where the final conclusion whether the trans-
actions are fraudulent or not is undecided and all of the real legit transactions from 𝑆𝑡𝑟𝑎𝑖𝑛.

• Dataset Y is an exact copy of dataset X with the addition of a weight column to the training
dataset. The weights per row are obtained as described in method section ??.

Table 12.10 shows the performance metrics found for two identical models trained on a weighted
and unweighted dataset respectively.

Table 12.10: Differences in model performance with and without rule precision weights on undecided cases. Shown in bold is
the top performing model per metric.

Model #FP FP rate #FN FN rate F1 F2 ROC AUC
X 6987 0.0347 9361 0.117 0.896 0.909 0.978
Y 5791 0.0288 11022 0.138 0.891 0.903 0.977

(a) False positive and true negative rates of the FDM (b) False negative and true positive rates of the FDM

Figure 12.22: The false positive and false negative rates found on the test set of model X

12.5. Reducing false positives 81

(a) False positive and true negative rates of the FDM (b) False negative and true positive rates of the FDM

Figure 12.23: The false positive and false negative rates found on the test set of model Y

13
Discussion

The system created in this work consists of a pipeline of multiple sequential steps that are logically
connected with one another. The results found and shown in chapter 12 provide various insights on
the quality of generated synthetic fraudulent transactions, the adversarial prowess of certain specific
synthetic samples and the impact of these samples on the robustness of FDMs when added to a re-
spective training dataset. This section will provide the reader with an overview of the most striking
findings for each step of the process, along with their implications for our use case at bunq.

13.1. The quality of synthetic samples
The quality of the synthetic data generated by a CTGAN with a certain configuration can be interpreted
in various ways, depending on the goals of the model designer. When the goal is to create synthetic
data that is indistinguishable from the real data, data similarity metrics are a good indicator of quality.
When the goal is to create synthetic data that is able to convey as much as information as the real data
to a machine learning model, then machine learning utility metrics provide a good picture of the quality.
Lastly, when the goal is to improve the degree of privacy preservation in the training dataset, then
privacy preservation metrics are the go-to quality indicators. In this work, we consider all of the above
to be a factor in the definition of synthetic data quality. The quality of the synthetic data is not determined
as a stand-alone value, but rather its improvements or deterioration compared to the existing setting.

13.1.1. Similarity to the real data
Synthetic fraudulent samples that are near-indistinguishable from real fraudulent examples are desir-
able for a multitude of reasons. Not only does one expect synthetic data that resembles real data very
closely to provide good input data for machine learning purposes, but also represent the complex way
of human thinking found in terms of fraudulent behavior. On top of this, when human expert annotators
are no longer able to distinguish between real and synthetic samples, we expect these samples to be a
valuable addition to our existing knowledge base. After all, our supervised model knows no more than
the knowledge held in our training dataset, which in turn is a result of human annotation. As explained
in method chapter 11, the Logistic Regression Detection (LRD) metric gives us a good indication of the
overall similarity of the synthetic data to the real data. Moreover, the Chi-squared (CS) and Inverted
Kolmogorov-Smirnov D (IKS) statistic give us an idea of the similarity of the categorical and numerical
columns respectively.

Sampling and reconstruction methods
To reiterate: rejection sampling will remove samples with impossible feature value combinations from
the set of generated samples, based on a set of rules. Rejection sampling trades real-world realism and
retaining membership to the joint distribution learned by the CTGAN for performance in terms of time.
On top of this, as feature sets and their relationships get increasingly complex, one is at risk of having
nearly all samples be rejected. Instead of outright rejecting samples, transformation sampling will
instead make small changes to the feature values in order for them to follow the same set of predefined
rules. Transformation sampling sacrifices a small degree of adherence to the joint distribution found

83

84 13. Discussion

by the model for an increase in time performance, as well as real-world realism. A few quick tests
during the design phase of this project have shown that when generating samples using both methods
using the same set of realism rules, transformation sampling generally outperforms rejection sampling
in terms of run-time.

When considering figures 12.1, 12.2 and 12.3 one characteristic stands out immediately: the sam-
ples produced by rejection sampling show a significantly higher similarity to the real data than the ones
produced by transformation sampling, according to all three metrics. Since both methods follow the
same set of realism enforcing rules, one can only conclude that the difference similarity is the result of
the transformation-sampling-based samples sacrificing adherence to the joint distribution in favour of
not rejecting a sample outright. This difference is especially apparent in the IKS graphs, which can be
explained by the fact that the majority of the features of our use-case are numerical.

Furthermore, both rejection and transformation sampling show a poor performance in terms of the
LRD score, which implies that it is fairly easy for a logistic regression detection model to distinguish
between the real and synthetic data. This is an interesting insight, as both the CS and IKS scores are
fairly high, indicating that both the categorical and numerical columns, at least separately, represent
the real data quite well. This discrepancy would imply that while the individual columns are a good
representation of their real counterparts, the complete synthetic samples show a distinct difference
from the real samples. In turn, this would imply that either the synthetic data partly fails to capture
the relationships between features found in the real data or shows a specific distinction which is easily
recognized by the LRD model. One potential cause for this ismode collapse, a common problem in the
field of GANs. As explained in 4.3.2, mode collapse results in the generator only learning to generate
a small set of output types. If this is the case, then this small number of distinctive outputs of the
generator would be easy to recognize for the LRD model compared to a wide variety of output types.

Hyperparameter implications
Again considering figures 12.1, 12.2 and 12.3, we find some interesting relationships between different
values for the hyperparameters that we consider to be influential to the quality of the produced synthetic
samples. First of all, increasing the learning rate seems to have a detrimental effect on the similarity of
the synthetic data. We can see a downwards trend for each of the likeness metrics as the learning rate
increases. This relationship makes sense, since increasing the learning rate makes it harder for the
model to effectively learn the more fine-grained properties of the training data. Interestingly, increasing
the generator dimension also seems to have a detrimental effect on the similarity to the real data. For
nearly all metrics, we see a network with a generator that has 128 residual layers outperform their
256 and 512 layered counterparts in terms of similarity. As we learned from section 4.3.2, increasing
the generator dimension allows for the generator to learn more complex relationships, but comes at
the cost of overfitting. Since one would expect a model overfitted to the training dataset to produce
samples that have an over-exaggerated similarity to the real samples, these results are unexpected.
Lastly, different values for the weight decay do not appear to impact the similarity in terms of any metric
of the synthetic samples in a meaningful pattern.

While we consider the similarity to the real data to be an indicator of the quality of the synthetic
samples, one should not be too hasty to consider this property to be the be-all and end-all. As an
example: consider a synthetic dataset that is an exact copy of the real dataset. Trivially, this synthetic
dataset has perfect similarity scores across the board, while providing none of the advantages of syn-
thetic data such as providing meaningful samples of the minority class to improve class balance in a
training dataset or to improve privacy preserved in the samples. Such an example would also be the
result of extreme overfitting, which is far from desirable. For this reason, we will now consider the other
two indicators of quality.

13.1.2. Machine learning utility
Since improving the robustness and overall performance of existing FDMs is one of the main goals of
this work, analyzing and evaluating the machine learning utility of the synthetic samples is of utmost
importance. Samples in the training dataset that lead to a poor performance of the machine learning
model are not desirable in any scenario. For this reason, carefully crafted configurations to train CT-
GANs have been explored to find which synthetic samples are effectively able to convey (parts of) the
information held in fraudulent transactions.

13.1. The quality of synthetic samples 85

Sampling and reconstruction methods
When comparing both sampling methods in figures 12.4, 12.5 and 12.6, the results show a clear dif-
ference in machine learning utility. Much like for the similarity metrics, rejection sampling seems to
outperform transformation sampling in terms of machine learning utility as well, albeit by a lower mar-
gin. Comparing both methods to the baseline, the set of real fraudulent samples, we see a distinct
difference in performance. After all, the real dataset is always expected to more effectively convey the
information than their ”counterfeit” counterparts. Still, FDMs trained on our synthetic samples, for both
sampling methods, show fairly good results in terms of F1 score and ROC AUC. Rejection sampling,
which shows to be the superior method in terms of machine learning utility, is able to produce FDMs
with 𝐹1 ≈ 0.60 and 𝑅𝑂𝐶 𝐴𝑈𝐶 ≈ 0.80. Compared to a model trained on the real samples, with 𝐹1 ≈ 0.80
and 𝑅𝑂𝐶 𝐴𝑈𝐶 ≈ 0.95, this is of course a significant drop in performance. Still, considering the fact that
the models trained on synthetic fraud samples did not have access to any real fraud samples, we con-
sider such a performance to be quite good, especially considering the fact that the degree of privacy
preserved in synthetic samples is significantly higher than in real samples. Lastly, as we expected, the
likeness to the real data does seem to have an effect on the machine learning utility to some extent.
While the margins of difference between machine learning utility of the sampling methods are smaller
than the difference in likeness, both seem to follow a similar pattern.

Hyperparameter implications
One observation stands out immediately: none of the hyperparameters seem to have a significant
impact on any of the FDMs trained on transformation-sampled datasets. It seems apparent that the
changes made by transforming the samples are impactful in such a way that the smaller, more subtle
changes from tuning the hyperparameters are effectively nullified. As one could expect, making slight
alterations to the joint distribution learned by the CTGAN and then ”breaking” this distribution when
reconstructing the samples do not go hand in hand. For this reason, it makes sense that none of the
hyperparameters significantly impact the transformation samples, unless the values of the hyperpa-
rameters become sufficiently small or large, for instance shown in figures 12.4a and 12.4b.

Considering rejection sampling, we see that the learning rate has a fairly small impact. Increasing
the learning rate seems to slightly reduce the machine learning utility of the samples, albeit at a small,
mostly insignificant rate. As opposed to the similarity, the generator dimension impacts the machine
learning utility in an expected manner. Due to the fact that our fairly large feature set allows for a high
complexity to be captured in the real samples, it turns out 128 residual layers does not suffice for the
generator to learn most patterns and relationships found in the real data. On the other hand, when
using 512 residual layers the model becomes too complex and overfits to the training dataset, which
results in a lower machine learning utility of the produced synthetic samples. As it turns out, using 256
layers lies on the fine line between these two and achieves superior performance. Also contrasting
the previous experiment, the generator decay does significantly impact the machine learning utility
for rejection sampling. We can see that as the weight decay increases, the machine learning utility
improves quite drastically. From this observation we can conclude that for low weight decay values
the CTGAN tends to overfit to the training dataset, in turn producing training samples that hurt the
generalizability of the FDM. Higher values for the weight decay, in turn, produce synthetic samples that
more accurately convey fraudulent transactions in general.

13.1.3. Privacy preservation
As discussed in great detail in this work, privacy can be interpreted in a wide variety of ways. Consid-
ering our first metric, the distance to the closest record, we remember that it gives us an indication of
the degree in which the synthetic dataset leaks real information found in the training dataset. When we
find a DCR of 0 it means that the synthetic data directly leaks data from the real dataset. As Park et al.
state in their work, we strive for a high average distance along with a low standard deviation [76]. Such
a combination would indicate that the overall distance between the records of both datasets is high,
meaning that in general very little real information is leaked. Combined with a low standard deviation
this means that no records exist that leak real information. Tables 12.1 to 12.6 show that for nearly
all configurations and sampling methods the average distance is relatively high compared to the DCR
and standard deviation. This would indicate that the aforementioned relationship holds for the base
samples generated by the CTGAN.

86 13. Discussion

Sampling and reconstruction methods
The main distinction that we find in tables 12.1 to 12.6 is that while transformation sampling shows to
have significantly higher values for the DCR, it gets outperformed by rejection sampling in terms of the
average and standard deviation. What this means is that samples created using rejection sampling
on average preserve privacy significantly better than transformation sampling, while transformation
sampling has a better lower bound on the sample that is the closest to the real dataset. From this we
can conclude that both rejection sampling and transformation sampling provide unique advantages in
terms of privacy preservation:

• Rejection sampling provides a generally good degree of privacy by providing samples that are
significantly different from the real data, while having a low standard deviation which implies that
there exist no or very few samples that directly leak real data.

• Transformation sampling provides the same advantages as rejection sampling, albeit to a lower
degree. Furthermore, since transformation sampling shows a significantly higher DCR on aver-
age, it provides a better lower bound in terms of how close the sample closest to the real dataset
is. In other words, the sample with the highest chance of leaking real data is significantly less
useful to an adversary when using transformation sampling compared to rejection sampling.

Hyperparameter implications
The most striking relationship that we find between different values for the hyperparameters and pri-
vacy preservation is that none of the parameters have a significant effect on the samples generated
by transformation sampling. This can, again, be explained by the fact that transformation sampling
changes the samples in a more significant manner than the subtle changes brought about by changes
in the hyperparameters can. More interestingly, we find that changes in hyperparameters do effect the
samples generated by rejection sampling. Increasing the learning rate leads to a higher DCR and av-
erage distance, while the standard deviation goes up. This relationship is to be expected, as a higher
learning rate favours exploration and in turn the variety in the samples generated. A lower learning
rate produces samples that are generally more similar to the training data and thus lower values and
deviation in the produced samples are expected. Similar to the learning rate, the generator dimension
parameter mostly affects the samples produced by rejection sampling. Increasing the generator di-
mension, in other words allowing the generator to learn more complex patterns at the risk of overfitting,
leads to a slightly higher DCR, which means less real data is directly leaked through the closest record.
In contrast, the standard deviation increases slightly while the average distance decreases significantly.
We can explain these results by concluding that for the highest value of the generator dimension, the
generator overfits to the training data to the degree that the average distance decreases significantly.
Lastly, the generator decay does not seem to affect the degree of privacy in terms of distance for both
rejection sampling and transformation sampling. Only when the generator decay gets sufficiently high,
in this case 1.5𝑒 − 6 we find a significant improvement in terms of the average distance of the samples
generated by both methods. This leads us to assume that even at the moderate, default values for
the generator there exists overfitting to some degree. As higher values for generator decay aim to
prevent the model from overfitting, this could explain the significant increase in average distance for
these values. It is likely that this overfitting is the result of a fairly small training dataset. These findings
are corroborated by the findings of the previous experiment, where we can see the machine learning
utility provided by the samples increase significantly as the generator decay increases.

13.1.4. Adversarial attacks
While distance metrics provide us with easy to understand insights of the privacy preservation of syn-
thetic samples, they fall short in helping us understand how smarter adversaries are able to use the
synthetic data to achieve their goals. While distance measures help us understand to what degree
real data is leaked through the synthetic samples, we can use the data collected from performing ad-
versarial attacks on the synthetic data to learn to understand to what degree adversaries are able to
extract sensitive information from the synthetic samples. To this end, we have explored how likely an
adversary is to find the true values of two sensitive attributes: user gender and user nationality.

Considering figures 12.7 and 12.8, we find one striking difference between the two attributes: the
CAP attacker on average has almost double the accuracy of detecting the users nationality than it
has of the users gender. One explanation for this difference is the fact that the CAP attacker has

13.2. Adversarial prowess of synthetic samples 87

more meaningful features to use to determine the value for user nationality. One could argue that user
language, current country of residence and and the transaction being an international payment contain
valuable information for determining user nationality. Comparing these features to the features used to
determine user gender, the most relevant being the age of the user and the country of origin of the user
(in some niche cases), it is easy to see why the model has an easier time determining the nationality
of the user. On top of this, the results show that generally the CAP attacker has a higher accuracy
when attacking datasets generated by rejection sampling. This makes sense, as discussed above, the
rejection samples are on average more similar to the real samples. When considering the effect of the
hyperparameter configurations on the accuracy of the CAP attacker, we find that the learning rate and
generator dimension affect the user nationality to a more significant degree and pattern compared to
user gender. We can explain this by the fact that the features used to determine the user gender used
by the CAP attacker hold less relevant data. The implications of these shortcomings are significantly
more impactful than the subtle changes introduced by different hyperparameter configurations, which
in turn leads to a less significant relationship between the two.

From figure 12.7 we can see that as the learning rate increases, the CAP attackers accuracy de-
creases. This can be explained by the fact that increasing the learning rate promotes variety in the
samples produced, rather than the similarity of the average sample to the training data. As a result, the
CAP attacker has a more difficult time learning the patterns present in the real dataset from the syn-
thetic data when the learning rate increases, which in turn reduces its accuracy. Furthermore, we can
see a significant relationship between the generator dimension and the accuracy of the CAP attacker.
We can see that as the generator dimension increases, the accuracy of the CAP attacker increases
as well. Similar to the distance metrics, a significant degree of privacy preservation is lost as the re-
sult of using an inordinately high value for the generator dimension. Again, we blame overfitting as
a result of these high values, as overfitting to the training data results in synthetic samples that are
disproportionally similar to the real samples.

13.1.5. Privacy preservation vs. machine learning utility
In the last round of experiments on the quality of the generated samples, we consider the trade-off
introduced by privacy preservation and machine learning utility. Figures 12.9a and 12.9b show the
relationship between these two quality indicators. The results that we find are as expected: as the
degree of privacy in terms of DCR increases, we can see that the machine learning utility of the sam-
ples decreases. Even though we find that this relationship exists, we should not draw conclusions
too hastily. While both the F1 score decrease as a result of an increase in privacy preservation, the
absolute differences in terms of the scores is not very high. When considering table 12.7, we can see
quite a difference between the average DCR found in the set of privacy preserving samples compared
to the random samples. When comparing both edge cases, we find a percentage loss in F1 score of
(0.828− 0.803)/0.828 ∗ 100 = 3, 01% and in ROC AUC score of (0.957− 0.941)/0.957 ∗ 100 = 1.67%.
When compared to the percentage increase in real data leakage of (0.122−0.086)/0.122∗100 = 29.5%,
we find that this privacy trade-off is actually quite advantageous. Still, we remark that the drop in ma-
chine learning utility is a direct result of the loss in variety of the selected samples. While the top privacy
preserving samples might provide a decent privacy guarantee, the samples lack in variety of informa-
tion that is conveyed to the FDM and in turn hurts its generalizability.

Overall, we conclude that while the synthetic samples provide unique advantages in terms of privacy,
a higher degree of privacy than currently achieved is desirable before being able to be made public in
any way. Still, our results provide interesting insights with respect to the degree of control that a model
designer has with respect to the privacy implications of the generated synthetic samples.

13.2. Adversarial prowess of synthetic samples
While the previous experiments have focused on the relationship between sampling methods, CTGAN
hyperparameters and the quality of the produced synthetic samples, the adversarial prowess experi-
ments shift the focus towards how one filters the samples which are expected to be UUs to the model
and in turn hold the most valuable information for increasing the robustness of our FDM to false nega-
tives. To achieve this, we aim to figure out a quantification method which describes how well synthetic
samples are expected to beat 𝐹𝐷𝑀𝑑𝑒𝑓𝑎𝑢𝑙𝑡. After the previous rounds of experiments, we assume our

88 13. Discussion

synthetic samples qualify as bona fide fraudulent transactions. Operating under this assumption, we
expect a robust FDM to be able to properly classify these synthetic transactions as fraudulent. How-
ever, using the method explored in experiment 13.2.2, we find that filtering the synthetic samples is a
non-trivial task and that using this method we are able to find the samples with the highest adversarial
prowess. In other words, we are able to distinguish between samples that are highly likely to be a false
negative to 𝐹𝐷𝑀𝑑𝑒𝑓𝑎𝑢𝑙𝑡 and those that are not.

13.2.1. General findings

We consider the adversarial prowess as expressed by the percentage of false negatives found by
𝐹𝐷𝑀𝑑𝑒𝑓𝑎𝑢𝑙𝑡 out of all the (synthetic) fraudulent samples in any dataset. As a baseline, we compare the
results to real fraudulent transactions. Because the synthetic samples will never be a perfect repre-
sentation of real fraudulent samples, we always expect more false negatives to be found for synthetic
datasets than for real datasets. For this reason, to accurately grasp the advantages introduced by our
adversarial filtering method, we also include a baseline of random synthetic samples. If the adversarial
filtering method is not able to produce samples that are significantly more likely to be a false negative to
𝐹𝐷𝑀𝑑𝑒𝑓𝑎𝑢𝑙𝑡, then the filtering method would pose no advantages over using just any synthetic sample.

As can be seen from figures 12.13a to 12.13c, the adversarial filtering method does produce sam-
ples that are significantly more difficult for the model to classify as fraud. In other words, under the
assumption that the synthetic fraudulent transactions qualify as fraudulent samples, this method finds
not-yet-seen fraudulent transactions that would fly under the radar of 𝐹𝐷𝑀𝑑𝑒𝑓𝑎𝑢𝑙𝑡, in other words false
negatives. As expected, random synthetic samples also produce a significantly higher number of false
negatives compared to the baseline of real fraud, for the reason mentioned above. For most configu-
rations of weight parameters, which we will discuss soon, random synthetic samples are on average
∼ 25% more likely to a false negative compared to real fraudulent samples. Adversarially filtered syn-
thetic samples are shown to be ∼ 50% more likely to be falsely classified as legit than a real fraudulent
sample would.

13.2.2. Implications of weight parameters

As introduced in method section 9, the filtering method makes use of both data-driven and human-
expert-driven methods to calculate a score representing the adversarial prowess of each synthetic
sample. In experiment we compare the implications of different values of each of these parameters.
We find the relationships between the parameters used in in the adversarial filtering system in figures
12.10a to 12.12a. First off, it turns out that both weights for numeric uniqueness and boolean unique-
ness values have very little influence on the adversarial success of the synthetic samples. To a degree,
this makes sense. We use these uniqueness values as a base for our success score, but neither of
these base values are directly related to adversarial success. Any transaction, fraudulent or legit, can
possess unique feature values such as a country not often seen in other transactions or a very high
monetary amount, for instance when someone buys a house in a different country. Secondly, from
figure 12.12a we can see that a higher value of the Shapley weight has a positive influence in terms of
the adversarial strength of the filtered samples. As expected, selecting samples based on how ”bad”
the 𝐹𝐷𝑀𝑑𝑒𝑓𝑎𝑢𝑙𝑡 is expected to be at classifying them, the better they perform as adversarial examples.
Thirdly, and more unexpectedly, the expert perceptibility score has a negative relationship with the
adversarial strength of the filtered samples. We expected that since human experts manually label
each transaction which, in turn, influences the learning process of the FDM, selecting samples based
on their likeliness to be noticed by a human expert would positively affect the adversarial success of a
sample. As it turns out, this parameter has little effect on the adversarial success and even reduces it
at higher values. Lastly, we can see an inverse relationship between the categorical cardinality bound
value and the adversarial success score. To reiterate: the higher this value is, the higher the impact
of unique categorical values is on the success score calculation. Evidently, limiting the impact of such
unique values for categorical features turns out to positively impact the adversarial success of the fil-
tered samples. After all, an unique value for a categorical value might be an interesting indicator of a
fraudulent transaction, but should not have a disproportional impact on any classification.

13.3. Training models on augmented datasets 89

13.3. Training models on augmented datasets
Lastly, we consider the final and most important round of experiments. Whereas the previous rounds
of experiments have served to allow us to understand how to produce high-quality, privacy-preserving
and adversarially strong synthetic samples, this experiment aims to determine whether adding such
samples to the training dataset actually improves the robustness and overall performance of the FDM.
When considering figures 12.14a to 12.19b we can see that the different ways each training dataset is
set up significantly impacts the performance of the respective FDM. After all, the training dataset holds
all of the information that the FDM is able to learn. The most striking and main accomplishment of this
work can be found when comparing figures 12.14b and 12.17b. These figures represent the existing
scenario baseline (𝐹𝐷𝑀𝑑𝑒𝑓𝑎𝑢𝑙𝑡) and the scenario where we augment the training dataset with adver-
sarially filtered synthetic fraud samples in an equal amount to the number of real fraudulent samples.
We find that model F is able to correctly classify 7% more never-seen-before fraudulent transactions
than its un-augmented counterpart, model A. From figure 12.18b we find that even random synthetic
fraudulent samples help the model to generalize better. Comparing figure 12.18b to 12.17b, we learn
that the adversarial filtering method does in fact produce synthetic fraudulent samples that help the
model generalize to a higher degree.

As expected, this improvement does come at the cost of an increased number of false positives.
A probable cause of this increase, is the fact that adversarial examples are selected based on the
mindset of theorem 2. Since false positives are grouped with all other non-false-negative results of the
FDM when constructing the labels of the FVAM and such samples are penalized by our adversarial
filtering system, it is plain to see that the selected adversarial samples will be of little help to provide
useful information on false positives. At first glance, when considering figures 12.14a and 12.17a,
an increase of 1% does not seem significant. Here we must remember that the large majority of the
transactions we encounter in the wild belong to this majority class: the legit transactions. In the last
section of the discussion chapter, we consider this trade-off to find out whether an implementation of
this system would provide any benefits in the complete cost picture of financial fraud.

From figures 12.15a, 12.15b, 12.16b and 12.16b we find that only the synthetic fraudulent samples,
adversarially filtered or not, hold significantly less information than the real fraudulent samples. This
of course makes sense, as the real samples are considered to be as good as it gets. These findings,
combined with the findings described above, teach us that the (adversarially filtered) synthetic sam-
ples provide a strong addition to the existing fraudulent samples, rather than an effective stand-alone
representation of the knowledge found in fraudulent samples. Another interesting angle where such a
benefit shows can be found when considering figures 12.19a and 12.19b, we see a rather unexpected
jump in performance in terms of the number of false positives compared to the baseline model A. On
top of this, it comes at the relatively small price of a small increase in false negatives. To reiterate:
model I is trained on the real fraudulent samples, double the number of random synthetic samples and
all of the real legitimate samples. As it turns out, providing the model with a notable number of extra
synthetic samples from the minority class helps the model generalize as well.

13.3.1. Classifier thresholds
When the training process of a model is done, the H2O framework automatically calculates an optimal
threshold for the classifier based on the chosen performance metric. The metric that we use is the
F1 score and as found in the previous discussion section, the resulting models perform quite well.
However, the optimal threshold might not always fit the use case of the model designer. This means
that exploring different thresholds to, in turn, control the number of false positives or false negatives is
an interesting venue.

In figure 12.20 we find the performance of model F in terms of the number of classifier mistakes, both
false positives and false negatives, compared to our baseline models. Following the red and salmon
colored lines, representing the number of false positives and false negatives respectively, we find that
we are able to bring the number of false positives down to the level of the default situation (𝐹𝐷𝑀𝑑𝑒𝑓𝑎𝑢𝑙𝑡),
represented by the blue model A line, while still retaining a lower number of false negatives. This area
of interest starts at a threshold of roughly 0.22, where the red, blue and salmon lines meet and ends at
a threshold of roughly 0.26, where the salmon and light blue lines cross. Based on the current needs
of the transaction monitoring system, ranging from minimizing false positives to decrease compliance
workload to minimizing false negatives to reduce costs incurred by fraud committed, the model designer

90 13. Discussion

is able to select any threshold in the range [0.22; 0.26] without incurring any extra costs in either false
positives or false negatives when compared to model A.

To consider the overall performance of each model, represented by the F1 score, we turn to figure
12.21. As it turns out, model F outperforms model A in terms of the F1 score in an even larger threshold
range than [0.22; 0.26]. This implies that the model designer is able to make even more radical design
choices in terms of choosing the model threshold without dropping below the performance of model
A. This is a very interesting insight, as the environment of fraud prevention is ever changing. At any
point might the costs incurred by either false positives or false negatives shift drastically, requiring an
immediate answer. As this figure shows, adapting model F allows for such a drastic change without
dropping below the optimal performance threshold of the default model. In a normal situation however,
one would opt for the optimal F1 score, represented by the highest point of model F shown in figure
12.21 at a threshold value of roughly 0.2.

13.3.2. Reducing false positives
Since the false negative generalization benefits of our most promisingmodel, model F, come at the price
of an increased number of false positives, effort was made to try reduce this number through external
means. This effort is two-fold: using weights in our training dataset to more accurately represent
samples that have shown to be difficult to label as being either fraudulent or legit and implementing a
system that filters out repeated false positive hits of the FDM.

Weights on edge-cases
From figures 12.22b and 12.23b we find that while the addition of weights to these cases helps to reduce
false positives, it does considerable harm in terms of false negatives. In the previous experiment
we found that, when considering our top model F, we are able to trade 1% more false positives for
6.4% less false negatives. The numbers found when introducing weights are 0.6% less false positives
in exchange for 2.1% more false negatives. Depending on the needs of the transaction monitoring
system, this trade-off could be considered worth the effort. In a normal situation however, the drop in
model performance as expressed by both the F1 and F2 scores of the weighted model compared to its
unweighted counterpart make the addition of weights undesirable.

13.4. Real world implications of the found results
Lastly, to translate the obtained results into a more easily understandable format, we ask the question:
how much monetary loss could be mitigated by implementing this method in a real-world setting? We
find that, even though the proposed method leads to a significant increase in the raw number of false
positives compared to the decrease in the raw number of false negatives, due to the relatively enormous
impact of false negatives compared to false positives, there is still a significant improvement in terms
of mitigated financial loss. Our calculations find that just a bit more than 1/6th of these losses are
mitigated when employing the proposed method. In existing literature however, as we have seen in
section 5.1, the cost ratios between false negatives and false positives are less extreme than in our
concrete example, ranging from 143 ∶ 1 to 82 ∶ 1, whereas our ratio was found to be 238 ∶ 1. Based
on the ratios found in the literature, the estimated reduction in costs ranges from 1/6 to 1/11 to 1/16,
which are all a sizeable reduction in raw monetary losses.

14
Conclusion

In this thesis we have thoroughly explored the field of financial fraud along with the challenges imposed
on automated decision making. A particularly close look was taken at the relationship between these
challenges and the process of training an automated decision maker in the form of a supervised learn-
ing model. Based on our findings we have created a machine learning pipeline that uses a wide range
of available knowledge in the field to address these challenges. As the first step of this pipeline we have
created two methods to generate high-quality synthetic fraudulent samples and explored many ways in
which the CTGAN framework can be used further increase this quality. Secondly, we have introduced
a novel filtering method to find unknown unknowns in the synthetic samples based on data-driven and
human-expert-driven methods. Using this method to select the top samples from these generation
methods, we have found that augmenting training datasets with such samples provides considerable
advantages in terms of the robustness of the trained model to never-seen-before fraudulent behavior.
Because these advantages come at the cost of small degree of losses in terms of false positives, we
have created and tested two standalone methods to mitigate said losses. Finally, we show that ap-
plying this method in a real-world scenario could result in a mitigation of 1/6 of the monetary losses
incurred by financial fraud, and based on literature in the field, perhaps even higher.

Future improvements on this work can take shape in multiple different sections of the pipeline.
Firstly, a more in-depth look could be taken at comparing the synthetic samples generated by different
frameworks. During the design phase of this project CTGAN was selected for its promising aspects,
easy of implementation in Python and promising initial results. Still, especially since the field of GANs
and synthetic data generation is an active field of research, exploring different methods is an interesting
venue. Secondly, more research in the direction of the privacy guaranteed by the synthetic samples is
needed to create samples that are sufficiently safe to release to the public. While the synthetic samples
generated in this work pose interesting and unique advantages over using real samples, the degree
of privacy achieved currently is insufficient to be released to the public. Different venues, for instance
differential privacy, could be explored to further improve the degree of privacy.

Thirdly, during the evaluation of the performance of the FDMs on different datasets, a static set of
training datasets was explored. It would be an interesting direction of research to find if an optimal ratio
between random synthetic, adversarial synthetic and real samples exists. Our results show that both
random synthetic as well as adversarial synthetic samples provide unique examples to the general-
izability of the trained FDM, which implies that some global optimum exists with regards to the ratios
between the three sample types. Lastly, as mentioned many times in this work, the field of fraud detec-
tion is colourful in nature. For this reason, using a multi-label classification approach instead of a binary
classification approach could bring interesting insights to the table. The differences between different
types of fraud are significant in some cases, which implies that using a binary classification approach
is an oversimplification. It is possible that using multiple labels for different types of fraud is able to
capture unique relationships compared to a binary approach. For this reason, exploring a multi-label
approach in tandem with the contributions made by this work could be an interesting venture.

91

Bibliography
[1] Josh M Attenberg, Pagagiotis G Ipeirotis, and Foster Provost. Beat the machine: Challenging

workers to find the unknown unknowns. In Workshops at the Twenty-Fifth AAAI Conference on
Artificial Intelligence, 2011.

[2] Vincent Ballet, Xavier Renard, Jonathan Aigrain, Thibault Laugel, Pascal Frossard, and Marcin
Detyniecki. Imperceptible adversarial attacks on tabular data. arXiv preprint arXiv:1911.03274,
2019.

[3] Gagan Bansal and Daniel S Weld. A coverage-based utility model for identifying unknown un-
knowns. AAAI, 2018, 2018.

[4] Horace B Barlow. Unsupervised learning. Neural computation, 1(3):295–311, 1989.

[5] David Bau, Jun-Yan Zhu, Jonas Wulff, William Peebles, Hendrik Strobelt, Bolei Zhou, and Anto-
nio Torralba. Seeing what a gan cannot generate. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 4502–4511, 2019.

[6] Messod D Beneish and Patrick Vorst. The cost of fraud prediction errors. Kelley School of
Business Research Paper, (2020-55), 2020.

[7] Betaalvereniging NVB. Persbericht: Sterke stijging cybercriminaliteit leidt tot meer schade, 2021.

[8] Betaalvereniging Nederland. Factsheet betalingsverkeer 2020, 2020.

[9] Concha Bielza and Pedro Larranaga. Discrete bayesian network classifiers: A survey. ACM
Computing Surveys (CSUR), 47(1):1–43, 2014.

[10] Hendrik Blockeel and Jan Struyf. Efficient algorithms for decision tree cross-validation. Journal
of Machine Learning Research, 3(Dec):621–650, 2002.

[11] Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning. A large an-
notated corpus for learning natural language inference. arXiv preprint arXiv:1508.05326, 2015.

[12] Louis Brandeis and Samuel Warren. The right to privacy. Harvard law review, 4(5):193–220,
1890.

[13] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[14] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. Classification and
regression trees. CRC press, 1984.

[15] Carole Cadwalladr and Emma Graham-Harrison. Revealed: 50 million facebook profiles har-
vested for cambridge analytica in major data breach. The guardian, 17:22, 2018.

[16] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In
2017 ieee symposium on security and privacy (sp), pages 39–57. IEEE, 2017.

[17] Rich Caruana and Alexandru Niculescu-Mizil. An empirical comparison of supervised learning
algorithms. In Proceedings of the 23rd international conference on Machine learning, pages
161–168, 2006.

[18] Michael J Cerullo and Virginia Cerullo. Using neural networks to predict financial reporting fraud:
Part 1. Computer Fraud & Security, 1999(5):14–17, 1999.

[19] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of
the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages
785–794, 2016.

93

94 Bibliography

[20] Yeounoh Chung, Peter J Haas, Eli Upfal, and Tim Kraska. Unknown examples & machine learn-
ing model generalization. arXiv preprint arXiv:1808.08294, 2018.

[21] Christopher Clark, Mark Yatskar, and Luke Zettlemoyer. Don’t take the easy way out: Ensemble
based methods for avoiding known dataset biases. arXiv preprint arXiv:1909.03683, 2019.

[22] CM Cuadras and C Arenas. A distance based regression model for prediction with mixed data.
Communications in Statistics-Theory and Methods, 19(6):2261–2279, 1990.

[23] De Nederlandsche Bank. Guideline on the anti-money laundering and anti-terrorist financing act
and the sanctions act, 2011.

[24] Bernhard Debatin, Jennette P Lovejoy, Ann-Kathrin Horn, and Brittany N Hughes. Facebook
and online privacy: Attitudes, behaviors, and unintended consequences. Journal of computer-
mediated communication, 15(1):83–108, 2009.

[25] Patricia M Dechow, Weili Ge, Chad R Larson, and Richard G Sloan. Predicting material account-
ing misstatements. Contemporary accounting research, 28(1):17–82, 2011.

[26] Jeevan Devaranjan, Amlan Kar, and Sanja Fidler. Meta-sim2: Unsupervised learning of scene
structure for synthetic data generation. In European Conference on Computer Vision, pages
715–733. Springer, 2020.

[27] Thomas G Dietterich. An experimental comparison of three methods for constructing ensembles
of decision trees: Bagging, boosting, and randomization. Machine learning, 40(2):139–157,
2000.

[28] Thomas G Dietterich. Steps toward robust artificial intelligence. AI Magazine, 38(3):3–24, 2017.

[29] Alan Doig. Fraud. Crime and society series. Taylor and Francis, 2013. ISBN
9781843926115,1843926113,978-1-84392-173-8,1-84392-173-1,978-1-84392-172-
1,1-84392-172-3. URL http://gen.lib.rus.ec/book/index.php?md5=
680c79554bfa27532007de9af1a646f0.

[30] Jose R Dorronsoro, Francisco Ginel, C Sgnchez, and Carlos S Cruz. Neural fraud detection in
credit card operations. IEEE transactions on neural networks, 8(4):827–834, 1997.

[31] Jacqueline M Drew and Cassandra Cross. Fraud and its prey: Conceptualising social engineer-
ing tactics and its impact on financial literacy outcomes. In Financial Literacy and the Limits of
Financial Decision-Making, pages 325–340. Springer, 2016.

[32] Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gard-
ner. Drop: A reading comprehension benchmark requiring discrete reasoning over paragraphs.
arXiv preprint arXiv:1903.00161, 2019.

[33] Cynthia Dwork. Differential privacy. In International Colloquium on Automata, Languages, and
Programming, pages 1–12. Springer, 2006.

[34] Cynthia Dwork. Differential privacy: A survey of results. In International conference on theory
and applications of models of computation, pages 1–19. Springer, 2008.

[35] Andrzej Ehrenfeucht and David Haussler. Learning decision trees from random examples. In-
formation and Computation, 82(3):231–246, 1989.

[36] Edward A Feigenbaum. Expert systems in the 1980s. State of the art report on machine intelli-
gence. Maidenhead: Pergamon-Infotech, 1981.

[37] Eliezer M Fich and Anil Shivdasani. Financial fraud, director reputation, and shareholder wealth.
Journal of financial Economics, 86(2):306–336, 2007.

[38] Janick V Frasch, Aleksander Lodwich, Faisal Shafait, and Thomas M Breuel. A bayes-true data
generator for evaluation of supervised and unsupervised learning methods. Pattern Recognition
Letters, 32(11):1523–1531, 2011.

http://gen.lib.rus.ec/book/index.php?md5=680c79554bfa27532007de9af1a646f0
http://gen.lib.rus.ec/book/index.php?md5=680c79554bfa27532007de9af1a646f0

Bibliography 95

[39] Yoav Freund, Robert Schapire, and Naoki Abe. A short introduction to boosting. Journal-
Japanese Society For Artificial Intelligence, 14(771-780):1612, 1999.

[40] Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of
statistics, pages 1189–1232, 2001.

[41] Christopher Frye, Damien de Mijolla, Tom Begley, Laurence Cowton, Megan Stanley, and Ilya
Feige. Shapley explainability on the data manifold. arXiv preprint arXiv:2006.01272, 2020.

[42] Xiuju Fu, LipoWang, Kok Seng Chua, and Feng Chu. Training rbf neural networks on unbalanced
data. InProceedings of the 9th International Conference on Neural Information Processing, 2002.
ICONIP’02., volume 2, pages 1016–1020. IEEE, 2002.

[43] Zoubin Ghahramani. Unsupervised learning. In Summer School on Machine Learning, pages
72–112. Springer, 2003.

[44] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT press Cambridge, 2016.

[45] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. arXiv preprint
arXiv:1406.2661, 2014.

[46] Roman Grundkiewicz, Marcin Junczys-Dowmunt, and Kenneth Heafield. Neural grammatical
error correction systems with unsupervised pre-training on synthetic data. In Proceedings of the
Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages
252–263, 2019.

[47] Sara Hajian, Josep Domingo-Ferrer, and Antoni Martinez-Balleste. Discrimination prevention
in data mining for intrusion and crime detection. In 2011 IEEE Symposium on Computational
Intelligence in Cyber Security (CICS), pages 47–54. IEEE, 2011.

[48] Thomas Hancock, Tao Jiang, Ming Li, and John Tromp. Lower bounds on learning decision lists
and trees. Information and Computation, 126(2):114–122, 1996.

[49] Andrew J. Hawkins. Uber settles claims that it mishandled private information about users and
drivers. August 2017.

[50] Markus Hittmeir, Andreas Ekelhart, and Rudolf Mayer. On the utility of synthetic data: an empir-
ical evaluation on machine learning tasks. In Proceedings of the 14th International Conference
on Availability, Reliability and Security, pages 1–6, 2019.

[51] Markus Hittmeir, Rudolf Mayer, and Andreas Ekelhart. A baseline for attribute disclosure risk in
synthetic data. In Proceedings of the Tenth ACM Conference on Data and Application Security
and Privacy, pages 133–143, 2020.

[52] Ned Horning et al. Random forests: An algorithm for image classification and generation of
continuous fields data sets. In Proceedings of the International Conference on Geoinformatics
for Spatial Infrastructure Development in Earth and Allied Sciences, Osaka, Japan, volume 911,
2010.

[53] Jason Jo and Yoshua Bengio. Measuring the tendency of cnns to learn surface statistical regu-
larities. arXiv preprint arXiv:1711.11561, 2017.

[54] Divyansh Kaushik, Eduard Hovy, and Zachary C Lipton. Learning the difference that makes a
difference with counterfactually-augmented data. arXiv preprint arXiv:1909.12434, 2019.

[55] Michael Kearns. Learning boolean formulae or finite automata is as hard as factoring. Technical
Report TR-14-88 Harvard University Aikem Computation Laboratory, 1988.

[56] Carl Kingsford and Steven L Salzberg. What are decision trees? Nature biotechnology, 26(9):
1011–1013, 2008.

96 Bibliography

[57] Efstathios Kirkos, Charalambos Spathis, and Yannis Manolopoulos. Data mining techniques for
the detection of fraudulent financial statements. Expert systems with applications, 32(4):995–
1003, 2007.

[58] Raymond Kosala and Hendrik Blockeel. Web mining research: A survey. ACM Sigkdd Explo-
rations Newsletter, 2(1):1–15, 2000.

[59] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep con-
volutional neural networks. Advances in neural information processing systems, 25:1097–1105,
2012.

[60] Himabindu Lakkaraju, Ece Kamar, Rich Caruana, and Eric Horvitz. Identifying unknown un-
knowns in the open world: Representations and policies for guided exploration. arXiv preprint
arXiv:1610.09064, 2016.

[61] Ronan Le Bras, Swabha Swayamdipta, Chandra Bhagavatula, Rowan Zellers, Matthew Peters,
Ashish Sabharwal, and Yejin Choi. Adversarial filters of dataset biases. 2019.

[62] David D Lewis and Jason Catlett. Heterogeneous uncertainty sampling for supervised learning.
In Machine learning proceedings 1994, pages 148–156. Elsevier, 1994.

[63] Hongya Lu, Haifeng Wang, and Sang Won Yoon. A dynamic gradient boosting machine using
genetic optimizer for practical breast cancer prognosis. Expert Systems with Applications, 116:
340–350, 2019.

[64] Joseph Luft and H Ingham. The johari window: a graphic model of awareness in interpersonal
relations. Human relations training news, 5(9):6–7, 1961.

[65] John F Magee. Decision trees for decision making. Harvard Business Review, 1964.

[66] D Suja Mary and M Suriakala. Detection of causative attack and prevention using cap algorithm
on training datasets. In International Conference on Inventive Computation Technologies, pages
431–440. Springer, 2019.

[67] John Mingers. Expert systems—rule induction with statistical data. Journal of the operational
research society, 38(1):39–47, 1987.

[68] Openbaar Ministerie. Fraudemonitor 2017 en 2018, 2018. URL
https://www.rijksoverheid.nl/documenten/rapporten/2019/07/19/
tk-bijlage-fraudemonitor-2017-en-2018.

[69] Christoph Molnar. Interpretable machine learning. Lulu. com, 2020.

[70] Alexey Natekin and Alois Knoll. Gradient boosting machines, a tutorial. Frontiers in neuro-
robotics, 7:21, 2013.

[71] Giang H Nguyen, Abdesselam Bouzerdoum, and Son L Phung. A supervised learning approach
for imbalanced data sets. In 2008 19th international conference on pattern recognition, pages
1–4. IEEE, 2008.

[72] Besmira Nushi, Ece Kamar, and Eric Horvitz. Towards accountable ai: Hybrid human-machine
analyses for characterizing system failure. arXiv preprint arXiv:1809.07424, 2018.

[73] United States Department of Defense (defense.gov). Defense.gov news transcript: Dod news
briefing - secretary rumsfeld and gen. myers, 2002. URL https://archive.defense.gov/
Transcripts/Transcript.aspx?TranscriptID=2636.

[74] De Nederlandse Overheid. Wetboek van strafrecht, july 2021. URL https://wetten.
overheid.nl/BWBR0001854/2021-07-01.

[75] WA Parent. Privacy, morality, and the law. In Privacy, pages 105–124. Routledge, 2017.

https://www.rijksoverheid.nl/documenten/rapporten/2019/07/19/tk-bijlage-fraudemonitor-2017-en-2018
https://www.rijksoverheid.nl/documenten/rapporten/2019/07/19/tk-bijlage-fraudemonitor-2017-en-2018
https://archive.defense.gov/Transcripts/Transcript.aspx?TranscriptID=2636
https://archive.defense.gov/Transcripts/Transcript.aspx?TranscriptID=2636
https://wetten.overheid.nl/BWBR0001854/2021-07-01
https://wetten.overheid.nl/BWBR0001854/2021-07-01

Bibliography 97

[76] Noseong Park, Mahmoud Mohammadi, Kshitij Gorde, Sushil Jajodia, Hongkyu Park, and
Youngmin Kim. Data synthesis based on generative adversarial networks. arXiv preprint
arXiv:1806.03384, 2018.

[77] Neha Patki, Roy Wedge, and Kalyan Veeramachaneni. The synthetic data vault. In 2016 IEEE
International Conference on Data Science and Advanced Analytics (DSAA), pages 399–410.
IEEE, 2016.

[78] Simon J Pittman and Kerry A Brown. Multi-scale approach for predicting fish species distributions
across coral reef seascapes. PloS one, 6(5):e20583, 2011.

[79] J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

[80] J. Ross Quinlan. Simplifying decision trees. International journal of man-machine studies, 27(3):
221–234, 1987.

[81] J Ross Quinlan. Decision trees and decision-making. IEEE Transactions on Systems, Man, and
Cybernetics, 20(2):339–346, 1990.

[82] J Ross Quinlan and Ronald L Rivest. Inferring decision trees using the minimum description
lenght principle. Information and computation, 80(3):227–248, 1989.

[83] Arjan Reurink. Financial fraud: a literature review. Journal of Economic Surveys, 32(5):1292–
1325, 2018.

[84] Lior Rokach and Oded Maimon. Decision trees. In Data mining and knowledge discovery hand-
book, pages 165–192. Springer, 2005.

[85] Cicero Nogueira dos Santos, Youssef Mroueh, Inkit Padhi, and Pierre Dognin. Learning implicit
generative models by matching perceptual features. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 4461–4470, 2019.

[86] Robert E Schapire. The strength of weak learnability. Machine learning, 5(2):197–227, 1990.

[87] Robert E Schapire. The boosting approach to machine learning: An overview. Nonlinear esti-
mation and classification, pages 149–171, 2003.

[88] Greg Schohn and David Cohn. Less is more: Active learning with support vector machines. In
ICML, volume 2, page 6. Citeseer, 2000.

[89] Pranab K Sen et al. Gini diversity index, hamming distance, and curse of dimensionality. Metron-
International Journal of Statistics, 63(3):329–349, 2005.

[90] H Sebastian Seung, Manfred Opper, and Haim Sompolinsky. Query by committee. In Proceed-
ings of the fifth annual workshop on Computational learning theory, pages 287–294, 1992.

[91] Lloyd S Shapley. A value for n-person games. Contributions to the Theory of Games, 2(28):
307–317, 1953.

[92] Ryan Singel. Netflix spilled your brokeback mountain secret, lawsuit claims. Threat Level (blog),
Wired, 2009.

[93] James Charles Smith. The structural causes of mortgage fraud. Syracuse L. Rev., 60:473, 2009.

[94] Marina Sokolova and Guy Lapalme. A systematic analysis of performance measures for classi-
fication tasks. Information processing & management, 45(4):427–437, 2009.

[95] Latanya Sweeney. k-anonymity: A model for protecting privacy. International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems, 10(05):557–570, 2002.

[96] Herman T Tavani. Informational privacy, data mining, and the internet. Ethics and Information
Technology, 1(2):137–145, 1999.

98 Bibliography

[97] Samir Touzani, Jessica Granderson, and Samuel Fernandes. Gradient boosting machine for
modeling the energy consumption of commercial buildings. Energy and Buildings, 158:1533–
1543, 2018.

[98] Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,
1984.

[99] Paul Voigt and Axel Von dem Bussche. The eu general data protection regulation (gdpr). A
Practical Guide, 1st Ed., Cham: Springer International Publishing, 10:3152676, 2017.

[100] Jarrod West and Maumita Bhattacharya. Intelligent financial fraud detection: a comprehensive
review. Computers & security, 57:47–66, 2016.

[101] Eyal Winter. The shapley value. Handbook of game theory with economic applications, 3:2025–
2054, 2002.

[102] Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling tab-
ular data using conditional gan. arXiv preprint arXiv:1907.00503, 2019.

[103] Lei Xu et al. Synthesizing tabular data using conditional GAN. PhD thesis, Massachusetts
Institute of Technology, 2020.

[104] I-Cheng Yeh and Che-hui Lien. The comparisons of data mining techniques for the predictive
accuracy of probability of default of credit card clients. Expert Systems with Applications, 36(2):
2473–2480, 2009.

[105] Zijun Zhang. Improved adam optimizer for deep neural networks. In 2018 IEEE/ACM 26th
International Symposium on Quality of Service (IWQoS), pages 1–2. IEEE, 2018.

[106] Bin Zhou, Yi Han, Jian Pei, Bin Jiang, Yufei Tao, and Yan Jia. Continuous privacy preserving
publishing of data streams. In Proceedings of the 12th International Conference on Extending
Database Technology: Advances in Database Technology, pages 648–659, 2009.

	Abstract
	Introduction
	Literature Research: Financial Fraud
	Financial fraud
	Dutch financial institutions and the DNB
	Transaction monitoring

	Literature Research: Machine Learning
	Decision tree classification
	Interpreting and explaining classification results
	Unsupervised learning for synthetic data generation

	Literature Research: Privacy and Ethics in Automated Fraud Detection
	Mistakes in fraud detection
	Web data mining and privacy
	Privacy and synthetic data

	Case-study: Automated Fraud Detection
	Unknown unknowns in fraud detection

	Method: Feature Value Attribution Model
	Training dataset
	Implications of Shapley values

	Method: Unsupervised Learning
	Dataset pre-processing
	Feature selection
	CTGAN
	Dataset reconstruction

	Method: Adversarial Filtering
	Uniqueness scores
	Shapley scores
	Perceptibility scores
	Adversarial success scores

	Method: False Positive Mitigation
	Method: Evaluation Metrics
	Data quality metrics
	Machine learning utility metrics
	Privacy evaluation metrics

	Experiments and Results
	Comparing different methods of generating synthetic samples
	Evaluating the privacy guarantees of the synthetic data
	Defeating an existing FDM with adversarially filtered synthetic fraud cases
	Training a supervised model on synthetically augmented datasets
	Reducing false positives

	Discussion
	The quality of synthetic samples
	Adversarial prowess of synthetic samples
	Training models on augmented datasets
	Real world implications of the found results

	Conclusion
	Bibliography

