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Abstract

The spherical transform maps the orthogonal basis of symmetric Jacobi-type polynomials to an orthogo-
nal basis of (symmetric) Wilson polynomials. The spherical transform is closely related to the Cherednik-
Opdam transform, as it is essentially its symmetric version. The symmetric Jacobi-type polynomials can
be composed from the non-symmetric Jacobi-type polynomials. These relations, between the symmetric
and non-symmetric theory, give an incentive to consider the Cherednik-Opdam transform of non-symmetric
Jacobi-type polynomials. This work gives an overview of the symmetric theory about the spherical trans-
form of Jacobi-type polynomials and lays down the groundwork for the Cherednik-Opdam transform of the
non-symmetric Jacobi-type polynomials.
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1
Introduction

In the paper by Koornwinder [10] the Fourier-Jacobi transform of one variable Jacobi-type functions is dis-
cussed. These Jacobi-type functions and its transform arise naturally in the work of Koornwinder on rep-
resentation theory (see the article of Koornwinder [9]). The Jacobi-type functions are equal to a Gaussian
function times standard Jacobi polynomials and they are a set of functions that form an orthogonal basis on
some L2-space. For example, the standard Jacobi polynomials form an orthogonal basis on the L2 space of
[−1,1] with weight function (1− x)α(1+ x)β. Furthermore, the Fourier-Jacobi transforms of the Jacobi-type
polynomials form an orthogonal basis on a different L2-space and are equal to a known set of orthogonal
polynomials, called Wilson polynomials.

Zhang [16] considers the spherical transform, a multivariable version of the Fourier-Jacobi transform, of
multivariable Jacobi-type polynomials. This spherical transform is associated to the root system of type BC .
The multivariable Jacobi-type polynomials form an orthogonal base and they are sent to an orthogonal basis
of multivariable Wilson polynomials by the spherical transform. All the mentioned functions are invariant
under the Weyl group of type BC. Henceforth, we shall refer to these Jacobi-type functions as symmetric.
Moreover, the spherical transform is only defined for the Weyl group invariant functions.

There exists another transform which is the non-symmetric equivalent of the spherical transform. This
transform is called the Cherednik-Opdam transform, given in the paper by Opdam [12], and the paper by
Cherednik [2](both call it after the other person). The paper by Opdam [12] elaborately discusses the non-
symmetric (multivariable) Jacobi polynomials , E(λ,k), as well. The symmetric Jacobi polynomials can be
constructed from the non-symmetric Jacobi polynomials. This leads to the question if the Cherednik-Opdam
transform of non-symmetric Jacobi-type polynomials also maps to a set of orthogonal polynomials.

This thesis starts with a description of the paper of Koornwinder [10] in chapter 2, since it gives a nice
introduction to the subject in one variable. The next chapter consists of an overview of the theory about
the (non-symmetric) Jacobi and the Cherednik operator. The Cherednik-Opdam transform is also described
in this chapter. The method of Zhang for the spherical transform of symmetric Jacobi-type functions is dis-
cussed in chapter 4. The fifth chapter gives some context for the Cherednik-Opdam transform in one variable.
Furthermore, it provides the approaches to determine the Cherednik-Opdam transform of non-symmetric
Jacobi-type functions in one variable and some recommendations.
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2
Fourier-Jacobi transform and Jacobi

polynomials

This chapter describes the two methods of Koornwinder [10] to determine the Fourier-Jacobi transform of
symmetric Jacobi polynomials in one variable. The special case of the spherical transform that is treated
here, is used as an introduction in the topic. The first method explains how to calculate the Fourier-Jacobi
transform. The other method is less explicit and cleverly uses known properties of the standard Jacobi poly-
nomials, although it still requires some tedious computations. This approach also offers some perspective to
generalize to a method for multiple variables.

2.1. Introduction
To give some insight in mappings that send a set of orthogonal polynomial to a set of orthogonal polynomi-
als again (not necessarily the same polynomials), one can consider the example of the Fourier transform of
Hermite polynomials. The Hermite polynomials are defined by the formula

Hn(x) = (−1)nex2 d ne−x2

d xn .

These polynomials form an orthogonal basis of the L2 space on R with weight function e−x2
. Applying the

Fourier transform to e−
x2
2 Hn(x) gives i ne−

x2
2 Hn(x). Therefore, the Hermite polynomials are eigenfunctions

of the Fourier transform with eigenvalue i n .
The next sections show that also the Fourier-Jacobi transform maps a particular set of orthogonal poly-

nomials to in this case another set of orthogonal polynomials.

2.2. Definition of Fourier-Jacobi transform
First some important definitions and theorems are discussed, which can be found in [1] and [10].

Definition 2.1. The gamma function Γ(x) is defined by

Γ(x) =
∫ ∞

0
t x−1e−t d t ,

for Re x > 0.

A nice property of the gamma function is Γ(z+1) = zΓ(z). This follows from applying integration by part to
the definition. The definition of the gamma function can be easily used to express the analytic continuation
of Γ(x):

Γ(x) =
∫ 1

0
t x−1e−t d t +

∫ ∞

1
t x−1e−t d t

3



4 2. Fourier-Jacobi transform and Jacobi polynomials

=
∫ 1

0
t x−1

∞∑
n=0

(−1)n t n

n!
d t +

∫ ∞

1
t x−1e−t d t

=
∞∑

n=0

∫ 1

0

(−1)n t x−1+n

n!
d t +

∫ ∞

1
t x−1e−t d t

=
∞∑

n=0

(−1)n

(x +n)n!
+

∫ ∞

1
t x−1e−t d t . (2.1)

This last expression represents the poles of the function. The second function in (2.1) is an entire function
and the first one shows that the poles are at n = 0,1, . . .. The beta function is defined next.

Definition 2.2. The beta integral is defined for Re x > 0, Re y > 0 by

B(x, y) =
∫ 1

0
t x−1(1− t )y−1 d t .

The beta function B(x, y) is obtained from the integral by analytic continuation.

In the next definition the Pochhammer symbol is given.

Definition 2.3. We define the Pochhammer symbol by

(a)n = a(a +1) . . . (a +n −1), n = 1,2, . . .

with (a)0 = 1.

A useful relation between the Pochhammer symbol and gamma functions is the following formula:

(a)nΓ(x) = Γ(x +n). (2.2)

This formula is easily derived from the fact that Γ(z +1) = zΓ(z). Another use for the Pochhammer symbol is
to express the definition of the hypergeometric series.

Definition 2.4. The hypergeometric series is defined by

p Fq (a1, . . . , ap ;b1, . . . ,bq ; x) :=
∞∑

n=0

(a1)n · · · (ap )n

(b1)n · · · (bq )n

xn

n!
, b j ∉Z<0, for 1 ≤ j ≤ q. (2.3)

For computations with (2.3) it is important to know for which x the series converges. The next theorem
gives when the series converges for the different relations of p and q . Note that the ratio test can be applied
to the series to prove the theorem.

Theorem 2.5. The series p Fq (a1, . . . , ap ;b1, . . . ,bq ; x) converges absolutely for all x if p ≤ q and for |x| < 1 if
p = q +1, and it diverges for all x 6= 0 if p > q +1 and the series does not terminate.

A special case of the hypergeometric series is the hypergeometric function.

Definition 2.6. The hypergeometric function 2F1 is defined by

∞∑
n=0

(a)n(b)n

(c)n

xn

n!
, (2.4)

for |x| < 1, and elsewhere by continuation to the complex plane with branch points at 1 and ∞.

Note that if either a = −k or b = −k with k ∈ N in the hypergeometric function the power series will be
finite, since (−k)n = 0 for n > k. That is why the following hypergeometric function is indeed a polynomial.

Definition 2.7. The Jacobi polynomial of degree n is defined by

P (α,β)
n (x) := (α+1)n

n!
2F1

(
−n,n +α+β+1;α+1;

1−x

2

)
. (2.5)

The Jacobi polynomials form an orthogonal basis on L2([−1,1], (1−x)α(1+x)βd x).



2.3. Fourier-Jacobi transform of Jacobi polynomials 5

Theorem 2.8. The Jacobi polynomials P (α,β)
n are a complete set of orthogonal polynomials on the interval

[−1,1] with respect to the weight function (1−x)α(1+x)β.

Now we can give the definition of the Jacobi function:

Definition 2.9. The Jacobi function is defined as follows

φ
(α,β)
λ

(t ) := 2F1
( 1

2 (α+β+1+ iλ), 1
2 (α+β+1− iλ);α+1;−sinh2(t )

)
. (2.6)

To clarify this terminology we take λ= i (2n +α+β+1) in (2.6)

φ
(α,β)
i (2n+α+β+1)(iθ) = 2F1(−n,n +α+β+1;α+1;sin2(θ))

= n!

(α+1)n
P (α,β)

n (cos(2θ)) , (2.7)

which is a normalized Jacobi polynomial.
Let

∆α,β(t ) := (2sinh(t ))2α+1(2cosh(t ))2β+1, t > 0,

cα,β(λ) := 2α+β+1−iλΓ(α+1)Γ(iλ)

Γ( 1
2 (iλ+α+β+1))Γ( 1

2 (iλ+α−β+1))
.

The Fourier-Jacobi transform f 7→ g and its inverse are given by


g (λ) =

∫ ∞

0
f (t )φ(α,β)

λ
(t )∆α,β(t ) d t ,

f (t ) = (2π)−1
∫ ∞

0
g (λ)φ(α,β)

λ
(t )

∣∣cα,β(λ)
∣∣−2 dλ,

(2.8)

where α,β ∈ R, |β| ≤ α+1. (2.8) is valid for f ∈ C∞
c (R) and even, and the transform f 7→ g can be (uniquely)

extended to an isometry of L2(R+;∆α,β(t ) d t ) to L2(R+; |cα,β(λ)|−2 dλ):∫ ∞

0
| f (t )|2∆α,β(t ) d t = (2π)−1

∫ ∞

0
|g (λ)|2|cα,β|−2 dλ (Plancherel formula).

We write F f for the Fourier-Jacobi transform of f .

2.3. Fourier-Jacobi transform of Jacobi polynomials
Wilson polynomials are orthogonal polynomials of 4F3-type. They form the most general family of hyperge-
ometric orthogonal polynomials in the sense that other families of orthogonal polynomials can be obtained
as limits from the Wilson polynomials. For example, the limit of t →∞ of a Wilson polynomial with certain
variables gives a Jacobi polynomial (see [8]).

Definition 2.10. Wilson polynomials are given by

Wn(x2; a,b,c,d) := (a +b)n(a + c)n(a +d)n

· 4F3

(−n, n +a +b + c +d −1, a + i x, a − i x
a +b, a + c, a +d

;1

)
,

(2.9)

where n = 0,1,2, . . ..

The next theorem shows that the Jacobi polynomials (multiplied by some weight function) are mapped to
Wilson polynomials by the Fourier-Jacobi transform. The weight functions that are used in the theorem are
given by

f−2ν(t ) = (cosh(t ))−2ν

with

2ν=α+β+δ+µ+2,

where β,δ,λ ∈R, α,δ>−1, δ+Reµ>−1.
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Theorem 2.11. ∫ ∞

0
pn(t )φ(α,β)

λ
(t )∆α,β(t ) d t

=22α+2β+1Γ(α+1)(−1)nΓ( 1
2 (δ+µ+1+ iλ))Γ( 1

2 (δ+µ+1− iλ))

n!Γ( 1
2 (α+β+δ+µ+2)+n)Γ( 1

2 (α−β+δ+µ+2)+n)

·Wn( 1
4λ

2; 1
2 (δ+µ+1), 1

2 (δ−µ+1), 1
2 (α+β+1), 1

2 (α−β+1)),

where
pn(t ) = f−2ν(t )P (α,δ)

n

(
1−2tanh2(t )

)
.

In order to prove Theorem 2.11 a few lemmas are given. First the Jacobi polynomial in the theorem is
expressed as a finite sum in terms of cosh−2(t ).

Lemma 2.12.

P (α,δ)
n

(
1−2tanh2(t )

)= (−1)n(δ+1)n

n!
2F1

(−n, n +α+δ+1
δ+1

;cosh−2(t )

)
.

Proof. First the transformation of lemma A.7 is applied to the hypergeometric function of the Jacobi polyno-
mial:

P (α,δ)
n

(
1−2tanh2(t )

)= (α+1)n

n!
2F1

(−n, n +α+δ+1
α+1

;tanh2(t )

)
= (α+1)n

n!

(−n −δ)n

(α+1)n
2F1

(−n, n +α+δ+1
δ+1

;cosh−2(t )

)
.

Now the term (α+1)n can be eliminated in the numerator and denominator and we are only left with rewriting
(−n −δ)n :

(−n −δ)n = (−n −δ)(−n −δ+1) . . . (−δ−1)

= (−1)n(δ+1) . . . (n +δ−1)(n +δ) = (−1)n(δ+1)n ,

which concludes the proof.

Next, the formula of the Jacobi function is rewritten to a hypergeometric function with argument tanh2(t )
instead of −sinh2(t ). To make computations with the Jacobi function for t > 0 the hypergeometric series
needs to converge on the interval (0,∞). The series with argument tanh2(t ) converges absolutely, since
| tanh2(t )| < 1 for t > 0 and the absolute convergence then follows from theorem 2.5.

Lemma 2.13.

φ
(α,β)
λ

(t ) = (cosh(t ))−(α+β+1+iλ)
2F1

( 1
2 (α+β+1+ iλ), 1

2 (α−β+1+ iλ);α+1;tanh2(t )
)

. (2.10)

Proof. Pfaff’s transformation (theorem A.4) in combination with rewriting some expressions involving hyper-
bolic functions gives the desired equality for the Jacobi function:

φ
(α,β)
λ

(t ) = 2F1
( 1

2 (α+β+1+ iλ), 1
2 (α+β+1− iλ);α+1;−sinh2(t )

)
= (1+ sinh2(t ))−

1
2 (α+β+1+iλ)

· 2F1

(
1
2 (α+β+1+ iλ), 1

2 (α−β+1+ iλ);α+1;
−sinh2(t )

−sinh2(t )−1

)
= (cosh(t ))−(α+β+1+iλ)

2F1
( 1

2 (α+β+1+ iλ), 1
2 (α−β+1+ iλ);α+1;tanh2(t )

)
.

The last lemma needed for the proof of theorem 2.11 calculates the Fourier-Jacobi transform g (λ) in (2.8)
with f (t ) = (cosh(t ))−(α+β+δ+µ+2+2 j ).

Lemma 2.14. ∫ ∞

0
(cosh(t ))−(α+β+δ+µ+2+2 j )φ

(α,β)
λ

(t )∆α,β(t ) d t

= 22α+2β+1Γ(α+1)Γ( 1
2 (δ+µ+1+ iλ)+ j )Γ( 1

2 (δ+µ+1− iλ)+ j )

Γ( 1
2 (α+β+δ+µ+2)+ j )Γ( 1

2 (α−β+δ+µ+2)+ j )
.
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Proof. Apply lemma 2.13 and recall that the series in the Jacobi function in that lemma converges absolutely,
so according to Fubini’s theorem the sum and integral can be interchanged:∫ ∞

0
(cosh(t ))−(α+β+δ+µ+2+2 j )φ

(α,β)
λ

(t )∆α,β(t ) d t

=
∫ ∞

0
(cosh(t ))−(α+β+δ+µ+2+2 j )(cosh(t ))−(α+β+1+iλ)

·
∞∑

n=0

( 1
2 (α+β+1+ iλ))n( 1

2 (α−β+1+ iλ))n

(α+1)n n!

(
sinh2(t )

cosh2(t )

)n

(2sinh(t ))2α+1(2cosh(t ))2β+1 d t

= 22α+2β+2
∞∑

n=0

∫ ∞

0
(sinh2(t ))α+1+n(cosh2(t ))−(α+ 1

2 (δ+µ+2+iλ)+ j+n)

· ( 1
2 (α+β+1+ iλ))n( 1

2 (α−β+1+ iλ))n

(α+1)n n!
d t

The calculation continues by using the substitution u = sinh2(t ) and applying Theorem A.1 and A.2:

= 22α+2β+1
∞∑

n=0

∫ ∞

0
uα+n(u +1)−(α+ 1

2 (δ+µ+3+iλ)+ j+n)

· ( 1
2 (α+β+1+ iλ))n( 1

2 (α−β+1+ iλ))n

(α+1)n n!
du

= 22α+2β+1
∞∑

n=0
B(α+n +1, 1

2 (δ+µ+1+ iλ)+ j )
( 1

2 (α+β+1+ iλ))n( 1
2 (α−β+1+ iλ))n

(α+1)n n!

= 22α+2β+1
∞∑

n=0

Γ(α+n +1)Γ( 1
2 (δ+µ+1+ iλ)+ j )( 1

2 (α+β+1+ iλ))n( 1
2 (α−β+1+ iλ))n

Γ(α+ 1
2 (δ+µ+3+ iλ)+ j +n)(α+1)n n!

.

Lastly, the gamma functions with the variable n in them are rewritten according to (2.2) and then Theorem
A.5 gives the result:

= 22α+2β+1Γ(α+n +1)Γ( 1
2 (δ+µ+1+ iλ)+ j )

Γ(α+ 1
2 (δ+µ+3+ iλ)+ j )

·
∞∑

n=0

(α+1)n( 1
2 (α+β+1+ iλ))n( 1

2 (α−β+1+ iλ))n

(α+ 1
2 (δ+µ+3+ iλ)+ j )n(α+1)n n!

= 22α+2β+1Γ(α+n +1)Γ( 1
2 (δ+µ+1+ iλ)+ j )

Γ(α+ 1
2 (δ+µ+3+ iλ)+ j )

· Γ(α+ 1
2 (δ+µ+3+ iλ)+ j )Γ( 1

2 (δ+µ+1− iλ)+ j ))

Γ( 1
2 (α−β+δ+µ+2)+ j )Γ( 1

2 (α+β+δ+µ+2)+ j )

= 22α+2β+1Γ(α+1)Γ( 1
2 (δ+µ+1+ iλ)+ j )Γ( 1

2 (δ+µ+1− iλ)+ j )

Γ( 1
2 (α+β+δ+µ+2)+ j )Γ( 1

2 (α−β+δ+µ+2)+ j )
.

By combining the three lemmas, we can now give the proof of Theorem 2.11.

Proof (Theorem 2.11). Start with applying Lemma 2.12 and right after that Lemma 2.14. This is followed by
using formula 2.2 twice, once for the gamma functions with j and the next time in terms of n to get the Wilson
polynomial:∫ ∞

0
(cosh(t ))−(α+β+δ+µ+2)P (α,δ)

n

(
1−2tanh2(t )

)
φ

(α,β)
λ

(t )∆α,β(t ) d t

= (−1)n(δ+1)n

n!

∞∑
j=0

(−n) j (n +α+δ+1) j

(δ+1) j j !

∫ ∞

0
(cosh(t ))−(α+β+δ+µ+2+2 j )φ

(α,β)
λ

(t )∆α,β(t ) d t
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= (−1)n(δ+1)n

n!

∞∑
j=0

(−n) j (n +α+δ+1) j

(δ+1) j j !

· 22α+2β+1Γ(α+1)Γ( 1
2 (δ+µ+1+ iλ)+ j )Γ( 1

2 (δ+µ+1− iλ)+ j )

Γ( 1
2 (α+β+δ+µ+2)+ j )Γ( 1

2 (α−β+δ+µ+2)+ j )

= 22α+2β+1Γ(α+1)(−1)nΓ( 1
2 (δ+µ+1+ iλ))Γ( 1

2 (δ+µ+1− iλ))(δ+1)n

n!Γ( 1
2 (α+β+δ+µ+2))Γ( 1

2 (α−β+δ+µ+2))

·
∞∑

j=0

(−n) j (n +α+δ+1) j ( 1
2 (δ+µ+1+ iλ)) j ( 1

2 (δ+µ+1− iλ)) j

(δ+1) j ( 1
2 (α+β+δ+µ+2)) j ( 1

2 (α−β+δ+µ+2)) j j !

= 22α+2β+1Γ(α+1)(−1)nΓ( 1
2 (δ+µ+1+ iλ))Γ( 1

2 (δ+µ+1− iλ))

n!Γ( 1
2 (α+β+δ+µ+2)+n)Γ( 1

2 (α−β+δ+µ+2)+n)

· (δ+1)n(
1

2
(α+β+δ+µ+2))n(

1

2
(α−β+δ+µ+2))n

· 4F3

(−n, n +α+δ+1, 1
2 (δ+µ+1+ iλ), 1

2 (δ+µ+1− iλ)
δ+1, 1

2 (α+β+δ+µ+2), 1
2 (α−β+δ+µ+2)

;1

)

= 22α+2β+1Γ(α+1)(−1)nΓ( 1
2 (δ+µ+1+ iλ))Γ( 1

2 (δ+µ+1− iλ))

n!Γ( 1
2 (α+β+δ+µ+2)+n)Γ( 1

2 (α−β+δ+µ+2)+n)

·Wn(
1

4
λ2;

1

2
(δ+µ+1),

1

2
(δ−µ+1),

1

2
(α+β+1),

1

2
(α−β+1)).

From this theorem we derive the following useful corollary.

Corollary 2.15. The Wilson polynomials Wn with the parameters in Theorem 2.11 are orthogonal polynomials

in L2(R+;
∣∣cα,β(λ)

∣∣−2 dλ) and their norm is given by

‖Wn‖L2(c0
∣∣cα,β

∣∣−2)
= ‖pn‖L2(∆α,β),

where L2(w) stands for the space L2(R+, w(x)d x) and

c0 =
22α+2β+1Γ(α+1)(−1)nΓ( 1

2 (δ+µ+1+ iλ))Γ( 1
2 (δ+µ+1− iλ))

n!Γ( 1
2 (α+β+δ+µ+2)+n)Γ( 1

2 (α−β+δ+µ+2)+n)
.

Proof. The functions pn(t ) forµ ∈ iR, n = 0,1,2, . . . are a complete orthogonal system in L2(R+;∆α,β(t ) d t ) and
then by the Plancherel formula the orthogonality of the Wilson polynomials in Theorem 2.11 is shown. To see
that the functions pn(t ) actually form an orthogonal system, in the inner product of the Jacobi polynomials
P (α,δ)

n (x) and P (α,δ)
m (x) on L2([−1,1], (1−x)α(1+x)δ d x) x is replaced by 1−2tanh2(t ) :∫ 1

−1
P (α,δ)

n (x)P (α,δ)
m (x)(1−x)α(1+x)δ d x

=
∫ 0

∞
P (α,δ)

n

(
1−2tanh2(t )

)
P (α,δ)

m

(
1−2tanh2(t )

)
· (2tanh2(t ))α(2(1− tanh2(t )))δ ·−4tanh(t )cosh−2(t ) d t

=
∫ ∞

0
P (α,δ)

n

(
1−2tanh2(t )

)
P (α,δ)

m

(
1−2tanh2(t )

) ·2α+δ+2

· (sinh(t ))2α(cosh(t ))−2α(cosh(t ))−2δ sinh(t )cosh−1(t )cosh−2(t )(cosh(t ))2β+1(cosh(t ))−(2β+1) d t

= 2−β+δ
∫ ∞

0
P (α,δ)

n

(
1−2tanh2(t )

)
P (α,δ)

m

(
1−2tanh2(t )

) · (cosh(t ))−2(α+β+δ+2)∆α,β(t ) d t ,

which is equal to the inner product of the functions pn(t ) and pm(t ) except for some constant. Note that
(cosh(t ))µ(cosh(t ))µ = 1 because µ ∈ iR, thus it does not appear in the inner product. The Jacobi polynomials
P (α,δ)

n (x) n = 0,1,2, . . . form a complete orthogonal system in L2([−1,1], (1− x)α(1+ x)δ d x), therefore so do
the functions pn(t ) in L2(R+;∆α,β(t ) d t ).
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2.4. Representation of the Jacobi function differential operator as a tridi-
agonal matrix

A well-known fact of orthogonal polynomials is that they satisfy a three term recurrence relation and the con-
verse is also true. Therefore, another way to prove the orthogonality of the Wilson polynomials is by deriving
the three term recurrence relation for the polynomials. In order to obtain this recurrence a tridiagonalization
of the Jacobi function differential operator L(α,β) is given.

The Jacobi function differential operator L(α,β) is defined by

(
L(α,β) f

)
(t ) : = (∆α,β(t ))−1 d

d t

(
∆α,β(t )

d

d t

(
f (t )

))

= d 2

d t 2

(
f (t )

)+ ∆′
α,β(t )

∆α,β(t )

d

d t

(
f (t )

)
, t > 0. (2.11)

Lemma 2.16. The Jacobi functions φ(α,β)
λ

are eigenfunctions of L(α,β) with eigenvalue −(λ2 + (α+β+1)2).

Proof. The hypergeometric differential equation with solution y = 2F1(a,b;c; x) can be applied to prove this.
The hypergeometric differential equation is given by

x(1−x)y ′′+ (c − (a +b +1)x)y ′−aby = 0.

This equation can be written in terms of the Jacobi function, since this is a hypergeometric function with
a = 1

2 (α+β+1+ iλ), b = 1
2 (α+β+1− iλ), c = α+1 and x = −sinh2(t ). After some elementary calculations

the following expression is found:

−sinh2(t )cosh2(t ) · y ′′(−sinh2(t ))+ (α+1+ (α+β+2)sinh2(t )) · y ′(−sinh2(t ))

− 1

4
(λ2 + (α+β+1)2) · y(−sinh2(t )) = 0.

(2.12)

Note that f ′(g (t )) is the derivative of the function f in the “point" g (t ). The derivatives ( f (g (t )))′ and
d

d t ( f (g (t ))) will be used to denote (g (t ))′ · f ′(g (t )). Next the first and second derivative of the Jacobi function
are given:

d

d t
(φ(α,β)

λ
(t )) = (y(−sinh2(t )))′ =−2sinh(t )cosh(t ) · y ′(−sinh2(t )), (2.13)

d 2

d t 2 (φ(α,β)
λ

(t )) = (y(−sinh2(t )))′′

= 4sinh2(t )cosh2(t ) · y ′′(−sinh2(t ))−2(cosh2(t )+ sinh2(t )) · y ′(−sinh2(t )).
(2.14)

Before we apply the Jacobi function differential operator to the Jacobi function, the fractional
∆′
α,β(t )

∆α,β(t ) is calcu-

lated:

∆′
α,β(t )

∆α,β(t )
= (2α+1)(tanh(t ))−1 + (2β+1)tanh(t ).

Now we can apply the differential operator to the Jacobi function:

(
L(α,β)φ

(α,β)
λ

)
(t ) = d 2

d t 2

(
φ

(α,β)
λ

(t )
)
+ (

(2α+1)(tanh(t ))−1 + (2β+1)tanh(t )
) d

d t

(
φ

(α,β)
λ

(t )
)

= 4sinh2(t )cosh2(t ) · y ′′(−sinh2(t ))−2(cosh2(t )+ sinh2(t )) · y ′(−sinh2(t ))

−2(2α+1)cosh2(t ) · y ′(−sinh2(t ))−2(2β+1)sinh2(t ) · y ′(−sinh2(t ))

= 4sinh2(t )cosh2(t ) · y ′′(−sinh2(t ))−4(α+1)cosh2(t ) · y ′(−sinh2(t ))

−4(β+1)sinh2(t ) · y ′(−sinh2(t )).
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Substituting 2.12 in the equation gives:

4(α+1+ (α+β+2)sinh2(t )) · y ′(−sinh2(t ))− (λ2 + (α+β+1)2) · y(−sinh2(t ))

−4(α+1)cosh2(t ) · y ′(−sinh2(t ))−4(β+1)sinh2(t ) · y ′(−sinh2(t ))

= 4(α+1)(cosh2(t )− sinh2(t )) · y ′(−sinh2(t ))+ (α+β+2) · y ′(−sinh2(t ))

− (λ2 + (α+β+1)2) · y(−sinh2(t ))−4(α+1)cosh2(t ) · y ′(−sinh2(t ))

−4(β+1)sinh2(t ) · y ′(−sinh2(t ))

=−(λ2 + (α+β+1)2) · y(−sinh2(t )) =−(λ2 + (α+β+1)2) ·φ(α,β)
λ

(t ).

L(α,β) is a symmetric operator with respect to the inner product

( f , g ) =
∫ ∞

0
f (t )g (t )∆α,β(t )d t .

For f , g ∈C 2(R+)∩L2(R+;∆α,β(t ) d t ) with their first and second derivatives also in L2(R+;∆α,β(t ) d t ), we have

∫ ∞

0
L(α,β)

(
f (t )

)
g (t )∆α,β(t )d t =

∫ ∞

0

(
d 2

d t 2

(
f (t )

)+ ∆′
α,β(t )

∆α,β(t )

d

d t

(
f (t )

))
g (t )∆α,β(t )d t

=
∫ ∞

0

d 2

d t 2

(
f (t )

)
g (t )∆α,β(t )d t +

∫ ∞

0

d

d t

(
f (t )

)
g (t )∆′

α,β(t )d t

=−
∫ ∞

0

d

d t

(
f (t )

) d

d t

(
g (t )∆α,β(t )

)
d t +

∫ ∞

0

d

d t

(
f (t )

)
g (t )∆′

α,β(t )d t

=−
∫ ∞

0

d

d t

(
f (t )

) d

d t

(
g (t )

)
∆α,β(t )d t .

The third equality in the above equation is obtained by integration by parts. The boundary terms disappear,
since f ′(t ), g (t ) ∈ L2(R+;∆α,β(t ) d t ). Interchanging f and g gives the same results, so the operator L(α,β) is
symmetric. Recall

pn(t ) = f−2ν(t )Pn
(
1−2tanh2(t )

)
and set

qn(t ) :=F pn(t ).

Apply the Jacobi differential operator to pn :(
L(α,β)pn

)
(t ) =−2

(
µ+1

)
tanh(t )p ′

n(t )

+
((
α−β+δ−µ)(

α+β+δ+µ+2
)

tanh2(t )

−2(α+1)
(
α+β+δ+µ+2

)−4n (n +α+δ+1)
(
1− tanh2(t )

))
pn(t ).

(2.15)

The above expression is found by first using the product rule for the second derivative term.

(
L(α,β)pn

)
(t ) = d 2

d t 2

(
pn(t )

)+ ∆′
α,β(t )

∆α,β(t )

d

d t

(
pn(t )

)
=

(
(cosh(t ))−(α+β+δ+µ+2)

)′′
Pn

(
1−2tanh2(t )

)
(2.16)

+2
(
(cosh(t ))−(α+β+δ+µ+2)

)′ (
Pn

(
1−2tanh2(t )

))′
(2.17)

+ (cosh(t ))−(α+β+δ+µ+2) (Pn
(
1−2tanh2(t )

))′′
(2.18)

+ (
(2α+1)tanh−1(t )+ (2β+1)tanh(t )

)
p ′

n(t ). (2.19)

Then in order to show 2.15 the parts 2.16, 2.17 and 2.18 are rewritten to try to eliminate 2.19 and the remaining
terms result in the desired expression. The precise computations can be found in the appendix (B.1).
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Applying the differential operator to pn gives a tridiagonal expression, namely:

−L(α,β)pn = An pn+1 +Bn pn +Cn pn−1, (2.20)

with

An = (n +1)(n +α+δ+1)(2n +α+β+δ+µ+2)(2n +α−β+δ+µ+2)

(2n +α+δ+1)(2n +α+δ+2)
,

Cn = (n +α)(n +δ)(2n +α+β+δ−µ)(2n +α−β+δ−µ)

(2n +α+δ)(2n +α+δ+1)
,

Bn =− (2n +α−β+δ+µ+2)(n +1)

(2n +α+β+δ−µ+2)(n +α+1)
An − (2n +α−β+δ+µ)n

(2n +α+β+δ−µ)(n +α)
Cn .

This is easily verified using the computer, for example with Maple.

Theorem 2.17. qn is a Wilson polynomial of the form

qn(λ) := F (λ)
(−1)n(α+1)n( 1

2 (α+β+δ−µ+2))n

n!( 1
2 (α−β+δ+µ+2))n

· 4F3

(−n, α+δ+1, 1
2 (α+β+1+ iλ), 1

2 (α+β+1− iλ)
α+1, 1

2 (α+β+δ+µ+2), 1
2 (α+β+δ−µ+2)

;1

)
,

where F (λ) is equal to the righthandside of 2.14 with j = 0.

Proof. Note that we have

F (L(α,β)pn(t )) =
∫ ∞

0
pn(t )L(α,β)(φ

(α,β)
λ

(t ))∆α,β(t )d t =−(λ2 + (α+β+1)2)F (pn(t )). (2.21)

Applying the Fourier-Jacobi transform on both sides of 2.20 gives a three term recurrence relation for qn(λ),
where we use (2.21). We get:

(λ2 + (α+β+1)2)qn(λ) = An qn+1(λ)+Bn qn(λ)+Cn qn−1(λ).

Comparing the An , Bn and Cn with the constants of the three term recurrence relation for Wilson polyno-
mials we again find that the qn are Wilson polynomials as stated in the theorem with initial conditions q−1 = 0
and q0 = F (λ).





3
Cherednik operator and Jacobi

polynomials

The goal of this chapter is to give an overview of the theory related to Cherednik operators and the Jacobi
polynomials. Root systems and the associated Weyl group are covered and of course the Cherednik opera-
tor and the non-symmetric Jacobi polynomials are discussed extensively. Some information is given about
the Cherednik-Opdam transform. Finally, the relation between the non-symmetric and symmetric Jacobi
polynomials is given.

The next two sections are mainly based on the book of Hall [5] and the book of Humphreys [7].

3.1. Root systems
Let α ∈Rn . The reflection in hyperplane Pα perpendicular to α for β ∈Rn is given by

σα(β) =β−2
(β,α)

(α,α)
α,

where (·, ·) is an inner product on Cn : (x, y) = ∑n
i=1 xi yi for x, y ∈ Cn . For now it would be enough to give the

inner product only on Rn , but at some point we need the inner product to be defined on Cn as well. From

now on 2 (β,α)
(α,α) is denoted by 〈β,α〉. An example in R2 of a reflection σα is given in Figure 3.1. Now we can

define a root system.

Definition 3.1. A subset R of the euclidean space Rn is called a root system in Rn if the following axioms are
satisfied:

1. R is finite, spans Rn , and does not contain 0.

2. If α ∈ R, the reflection σα leaves R invariant.

3. If α,β ∈ R, then 〈β,α〉 ∈Z.

Ifα ∈ R for some root system R, the vectorα∨ = 2α
(α,α) is called the coroot ofα. The set of coroots {α∨|α ∈ R}

also forms a root system. Some more examples of root systems in R2 are given in Figure 3.2. For γ ∈ Rn , we
define R+ ⊂ R to be the set of roots α ∈ R such that (α,γ) > 0. R+ is called the set of positive roots.

The definitions for the weight and root lattice can be found in [11]: The weight lattice P of the root system
R is defined by

P := {λ ∈Rn | 〈λ,α〉 ∈Z ∀α ∈ R}.

We define the root lattice Q of the root system R as follows:

Q :=
{ ∑
α∈R

cαα|cα ∈Z
}

.

13
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x

y

Pα

α

β

σα(β)

Figure 3.1: An example of the reflection σα of a vector β in R2.

Figure 3.2: Root systems in R2 [5].
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P+ denotes the set P , where Z is replaced by Z+ and R by R+:

P+ := {λ ∈Rn | 〈λ,α〉 ∈Z+ ∀α ∈ R+}.

We define Q+ in a similar way:

Q+ :=
{ ∑
α∈R+

cαα|cα ∈Z+

}
.

Each root system has a base and the roots of a base are called simple roots.

Definition 3.2. A subset ∆ of R is called a base if:

1. ∆ is a basis of Rn ,

2. each root β can be written as β=∑
kαα (α ∈∆), with kα ∈Z all non-positive or all non-negative.

3.2. Weyl group
Let R be a root system in Rn . The group generated by the reflections σα (α ∈ R) is called the Weyl group of R.
The next lemma gives a nice property for elements of GL(Rn), the set of invertible linear transformations of
Rn . W ⊂GL(Rn), so in particular this property holds for Weyl group elements.

Lemma 3.3. Let R be a root system in Rn with Weyl group W . If σ ∈GL(Rn) leaves R invariant, then σσασ−1 =
σσ(α) ∀α ∈ R.

Rn can be divided in finitely many regions by the hyperplanes Pα (α ∈ R). The (open) Weyl chambers are
the connected components of Rn\

⋃
α∈R Pα. Let ∆ be a base of R. A vector λ ∈ P is dominant if (λ,α) ≥ 0 for

all α ∈ ∆ and λ is strictly dominant if (λ,α) > 0 for all α ∈ ∆. For each λ ∈ P there exists a unique dominant
weight, λ∗, in the Weyl orbit of λ. This is a consequence of the following theorem.

Theorem 3.4. Let C be a Weyl chamber and λ ∈ Rn . Then there exists exactly one point in the Weyl orbit of λ
that lies in the closure C of C.

We define a partial ordering ¹ on the weight lattice P as follows (from [14]):

Definition 3.5. Let λ,µ ∈ P.

1. We write λ≤µ if µ−λ ∈Q+, and λ<µ if λ≤µ and λ 6=µ.

2. We write λ¹µ if λ∗ <µ∗, or if λ∗ =µ∗ and λ≥µ, and λ≺µ if λ¹µ and λ 6=µ.

An example is given with two elements in R2 which shows that the ordering is indeed a partial ordering.
Take λ = (6,6) and µ = (8,2). Note that those elements are already dominant. Look at µ−λ = (2,−4) ∉ Q+,
since an element is only in Q+ if we can construct it by a sum over positive multiples of positive roots. But
also λ−µ= (−2,4) ∉Q+. Hence we can not compare λ and µ.

The reflections associated to the simple roots of R generate the Weyl group.

Theorem 3.6. If ∆ is a base, then W is generated by the reflections σα with α ∈∆.

Throughout this report, one specific root system is used. Take the following root system R of type BCn

in Rn : R = {±2εi ,±4εi ,±2(ε j ±εk )} for 1 ≤ i ≤ n and 1 ≤ j < k ≤ n. We choose the set of positive roots R+ =
{2εi ,4εi ,2(ε j ± εk )} for 1 ≤ i ≤ n and 1 ≤ j < k ≤ n and the base ∆ = {2(εi − εi+1),2εn} for 1 ≤ i ≤ n − 1. Set
αi := 2(εi −εi+1) for 1 ≤ i ≤ n −1 and αn := 2εn . According to theorem 3.6 the Weyl group is generated by the
elements σαi (1 ≤ i ≤ n), which from now on will also be denoted by si for 1 ≤ i ≤ n.

The si ’s satisfy certain quadratic relations and braid relations:

s2
i = 1 for 1 ≤ i ≤ n,

si si+1si = si+1si si+1 for 1 ≤ i ≤ n −2,

si si+1si si+1 = si+1si si+1si for i = n −1,

si s j = s j si for |i − j | > 1.

(3.1)
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We proof that s2
i = 1 by working from the definition:

σα
(
σα(β)

)=σα (
β−2

(β,α)

(α,α)
α

)
=β−2

(β,α)

(α,α)
α−2

(β,α)

(α,α)
α−2 ·−2

(β,α)

(α,α)

(α,α)

(α,α)
α=β,

where with the second equality linearity of the inner product is used. The other properties of si can be shown
in similar ways.

With the si ’s we can define a length function l for all w ∈ W by setting l (i d) = 0 and for w = si1 · · · sin the
representation that uses the least amount of si ’s, l (w) = n. For λ ∈ P+ we define two sets: Wλ := {w |wλ= λ}
and W λ := {w |l (w w ′) ≥ l (w) ∀w ′ ∈Wλ}. Intuitively W λ is exactly all the smallest length elements in the Weyl
group that send λ to a unique element in its Weyl orbit. We can define a subset of R containing all the roots
that are orthogonal to λ by Rλ := {α ∈ R|(λ,α) = 0}. The set Rλ,+ is Rλ with R replaced by R+.

3.3. The Cherednik operator and non-symmetric Jacobi polynomials
This section gives the definition of the Cherednik operator and the non-symmetric Jacobi polynomials and it
lists a number of properties of that operator and those functions.

We have seen that the Weyl group elements are only defined to act on Rn , which we now expand to func-
tions f on Rn by w f (x) = f (w−1x) for all w ∈W . Note that the relations 3.1 are still satisfied for si working on
functions.

Let k be a multiplicity function, i.e. a W -invariant complex function, on a root system R. We define

ρk = 1

2

∑
α∈R+

kαα.

The Cherednik operator is defined as follows.

Definition 3.7. Let R+ ⊂ R be a choice of positive roots, k an arbitrary multiplicity function and let ξ ∈Rn . The
Cherednik operator Dξ = Dξ(R+,k) is the differential difference operator on Rn defined by

Dξ = ∂ξ+
∑
α∈R+

kα(α,ξ)
1

1−e−α
(1−σα)− (ρk ,ξ),

where for all λ ∈Rn , eλ is a function on Rn defined by eλ(x) = e(λ,x) for all x ∈Cn .

The Cherednik operator will act on functions in C[P ] as well as functions on L2(Rn ,τ(t )d t ), where

τ(t ) = ∏
α∈R+

|2sinh(
1

2
(α, t ))|2kα .

With C[P ] we denote the space of Laurent polynomials on the compact torus Tn = iRn/(πiZ)n , which exists
of finite linear combinations of functions eλ with λ ∈ P . Therefore ∂ξeλ and weλ for w ∈W , λ ∈ P need to be
defined: ∂ξeλ = (λ,ξ)eλ and weλ = ew(λ). The second definition is consistent with w f (x) = f (w−1x) if weλ is
applied to x ∈Rn . This chapter is mainly focused on the Cherednik operator on C[P ]. The next lemma gives a
relation between Weyl group elements and the Cherednik operator.

Lemma 3.8. For all w ∈W and ξ ∈Rn , we have

w ◦Dξ ◦w−1 = Dwξ+
∑

α∈R+∩wR−
kα(α, wξ)σα.

Proof. We show the lemma for functions on C[P ]. Consider the operator

Sξ = ∂ξ+
1

2

∑
α∈R+

kα(α,ξ)
1+e−α

1−e−α
(1−σα)

To see how Sξ relates to Dξ the second part of Sξ is rewritten:

1

2

∑
α∈R+

kα(α,ξ)
1+e−α

1−e−α
(1−σα) = ∑

α∈R+
kα(α,ξ)

1

1−e−α
(1−σα)− 1

2

∑
α∈R+

kα(α,ξ)
1−e−α

1−e−α
(1−σα)
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= ∑
α∈R+

kα(α,ξ)
1

1−e−α
(1−σα)− 1

2

∑
α∈R+

kα(α,ξ)

+ 1

2

∑
α∈R+

kα(α,ξ)σα,

so

Sξ = Dξ+
1

2

∑
α∈R+

kα(α,ξ)σα.

Note that Sξ is invariant with respect to the choice of R+, since

kα(α,ξ)
1+e−α

1−e−α
= k−α ·−(−α,ξ)

e−α(eα+1)

e−α(eα−1)
= k−α(−α,ξ)

1+eα

1−eα

and for each α ∈ R either α ∈ R+ or −α ∈ R+. Remark also that

w ◦eα ◦w−1
(
eλ

)
= w ◦eα

(
ew−1λ

)
= w

(
eαew−1λ

)
= ewαeλ.

Also, we have

w ◦∂ξ ◦w−1
(
eλ

)
= w ◦∂ξ

(
ew−1λ

)
= w

(
(w−1λ,ξ)ew−1λ

)
= (λ, wξ)eλ = ∂wξ

(
eλ

)
,

and

w ◦ 1

2

∑
α∈R+

kα(α,ξ)
1+e−α

1−e−α
(1−σα)◦w−1 = 1

2

∑
α∈R+

kα(α,ξ)
1+e−wα

1−e−wα
(1−σwα),

since w ◦σα ◦w−1 =σw(α) by Lemma 3.3, and continuing the calculation, using that kwα = kα :

= 1

2

∑
w−1α∈R+

kα(w−1α,ξ)
1+e−α

1−e−α
(1−σα)

= 1

2

∑
α∈R+

kα(α, wξ)
1+e−α

1−e−α
(1−σα),

where the last equality is a consequence of the fact that Swξ is invariant with respect to the choice of R+. Now
it is clear that

w ◦Sξ ◦w−1 = Swξ.

Dwξ is expressed in Swξ

Dwξ = Swξ−
1

2

∑
α∈R+

kα(α, wξ)σα. (3.2)

Now we have

w ◦Dξ ◦w−1 = Swξ−
1

2

∑
α∈R+

kα(α,ξ)σwα

= Swξ−
1

2

∑
w−1α∈R+

kα(α, wξ)σα. (3.3)

We want to write the summation back to α ∈ R+ again:

1

2

∑
w−1α∈R+

kα(α, wξ)σα = 1

2

∑
α∈R+

kα(α, wξ)σα−
∑

α∈R+∩wR−
kα(α, wξ)σα, (3.4)

where the last summation compensates for the positive roots that are not part of wα, α ∈ R+ (those roots are
given by w(−α) if wα ∈ R−). Combining (3.3) and (3.4) with (3.2) proves the lemma.

w ◦Dξ ◦w−1 = Swξ−
1

2

∑
α∈R+

kα(α, wξ)σα+
∑

α∈R+∩wR−
kα(α, wξ)σα

= Dwξ+
∑

α∈R+∩wR−
kα(α, wξ)σα.
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The following result is important for showing that Dξ has certain polynomials as eigenfunctions.

Lemma 3.9. The operator
1

1−e−α
(1−σα) on C[P ] gives a mapping from C[P ] into itself. Specifically,

1

1−e−α
(1−σα)

(
eλ

)
=


eλ

∑k−1
n=0 e−nα if 〈λ,α〉 > 0

0 if 〈λ,α〉 = 0

−eσαλ
∑−k−1

n=0 e−nα if 〈λ,α〉 < 0

,

where k = 〈λ,α〉.

Proof. Apply
1

1−e−α
(1−σα) to eλ (λ ∈ P ). We find

1

1−e−α
(1−σα)

(
eλ

)
= eλ−eσαλ

1−e−α
= eλ

(
1−e−(1−σα)λ

)
1−e−α

. (3.5)

If (1−σα)λ is a positive multiple of α, the last expression is equal to the sum of a geometric series.

(1−σα)λ=λ− (λ−〈λ,α〉α) = 〈λ,α〉α.

We know that 〈λ,α〉 ∈ Z and if it is also a positive number, it is possible to rewrite (3.5) in terms of a
geometric series.

eλ
(
1−e−(1−σα)λ

)
1−e−α

= eλ
k−1∑
n=0

e−nα,

where k = 〈λ,α〉. There are two other cases to consider, namely 〈λ,α〉 = 0 and 〈λ,α〉 < 0. For the first case it is
easily seen that eλ is mapped to 0. The second case is obtained by noting that we can write

eλ−eσαλ

1−e−α
= −eσαλ

(
1−e−(σα−1)λ

)
1−e−α

and then apply the same trick as before

−eσαλ
(
1−e−(σα−1)λ

)
1−e−α

=−eσαλ
−k−1∑
n=0

e−nα.

The resulting expression for the elements in the image of the map in the proposition above can be ordered,
which is shown by the next two lemmas ([14]).

Lemma 3.10. For all µ ∈ P we have µ≤µ∗.

Proof. If µ= µ∗ the statement is clearly true. Note that µ∗ ∈ P+. So let µ ∈ P\P+. We show that µ< µ∗. There
exists a root α ∈ R+ such that 〈µ,α〉 < 0, since µ ∉ P+. Thus we have

σαµ=µ−〈µ,α〉α>µ,

because −〈µ,α〉α ∈ Q+. If σαµ = µ∗, then we are done. Otherwise, we can repeat the argument from before
to see that there exists β ∈ R+ such that σβ(σαµ) >σαµ>µ. Note that there are finitely many Weyl chambers
and µ∗ is unique, so continuing the argument eventually gives µ<µ∗.

Lemma 3.11. Let µ ∈ P and α ∈ R+. If 〈µ,α〉 ≥ 2, then µ− rα≺µ for r = 1, . . . ,〈µ,α〉−1.
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Proof. Suppose 〈µ,α〉 ≥ 2 and µr =µ− rα for r ∈ {1, . . . ,〈µ,α〉−1}. We need to show that µ∗
r <µ∗. There exists

an element w ∈ W such that wµr = µ∗
r . w leaves the root system R invariant, so α is send to a positive or a

negative root. Therefore wα ∈ Q+ or −wα ∈ Q+. We first show the case wα ∈ Q+. Then µ∗
r = wµ− r wα <

wµ≤µ∗, where the last inequality follows from the previous lemma. Next the case −wα ∈Q+. There we find
µ∗

r = wµ− r wα< wµ−〈µ,α〉wα= (wσα)µ≤µ∗.

Next we prove two useful properties of the Cherednik operator on C[P ].

Definition 3.12. Let δk be the weight function

δk = ∏
α∈R+

∣∣∣e α
2 −e−

α
2

∣∣∣2kα
.

For f , g ∈C[P ] we define the following inner product

( f , g )k =
∫
Tn

f gδk d t ,

where d t is the Haar measure on Tn that is normalized by
∫
Td t = 1 and g = ∑

λ∈P c−λeλ for g = ∑
λ∈P cλeλ

with cλ ∈C and c−λ the complex conjugate of c−λ. g is referred to as the conjugate of g .

Note that we can also represent this inner product as

( f , g )k =
∫

[0,π]n
f (u)g (u)|δk (u)|du, (3.6)

where

δk (u) = ∏
α∈R+

∣∣∣e (α,i u)
2 −e

(α,−i u)
2

∣∣∣2kα = ∏
α∈R+

∣∣∣∣2sin

(
(α,u)

2

)∣∣∣∣2kα
.

Before stating the next proposition, we give some remarks. δk is Weyl group invariant. (wα,β) = (α, w−1β),
because (siα,β) = (α, siβ) . This is checked easily from the definition and w can be written as a combination
of si ’s.

Proposition 3.13. The operator Dξ is symmetric with respect to the inner product (·, ·)k for ξ ∈Rn .

Proof. The proof is based on the proof of Heckman [6]. Split up Dξ in three different parts: ∂ξ,
∑
α∈R+ kα(α,ξ) 1

1−e−α (1−
σα) and (ρk ,ξ). And determine their adjoint operators separately. Start with ∂ξ and apply integration by parts:

(∂ξ f , g )k =
∫
Tn

∂ξ( f )gδk d t

=−
∫
Tn

f ∂ξ(g )δk d t −
∫
Tn

f g∂ξ(δk )d t

=
∫
Tn

f ∂ξ(g )δk d t −
∫
Tn

f g

( ∑
α∈R+

kα(α,ξ)
e−

α
2 +e

α
2

e−
α
2 −e

α
2

)
δk d t . (3.7)

The last step requires some explanation. The first integral is because of ∂ξ(g (u)) =−∂ξ(g (u)). To see this deter-
mine the derivatives of g = ∑

λ∈P cλeλ and g = ∑
λ∈P c−λeλ: ∂ξg = ∑

λ∈P (λ,ξ)cλeλ and ∂ξg = ∑
λ∈P (λ,ξ)c−λeλ.

Moreover, ∂ξg = ∑
λ∈P (−λ,ξ)c−λeλ = −∑

λ∈P (λ,ξ)c−λeλ , since (λ,ξ) is real-valued. The second integral fol-
lows by writing out the derivative of δk and taking the conjugate. It is easier to work with a different expression
for δk :

δk = ∏
α∈R+

∣∣∣e α
2 −e−

α
2

∣∣∣2kα = ∏
α∈R+

(
e
α
2 −e−

α
2

)kα (
e
α
2 −e−

α
2

)kα

= ∏
α∈R+

(
e
α
2 −e−

α
2

)kα (
e−

α
2 −e

α
2

)kα = ∏
α∈R

(
e
α
2 −e−

α
2

)kα
.

The derivative of
(
e
α
2 −e−

α
2

)kα
is

∂ξ

((
e
α
2 −e−

α
2

)kα
)
= kα(

α

2
,ξ)

(
e
α
2 +e−

α
2

)(
e
α
2 −e−

α
2

)kα−1
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= kα(
α

2
,ξ)

e
α
2 +e−

α
2

e
α
2 −e−

α
2

(
e
α
2 −e−

α
2

)kα

The product rule then gives:

∂ξ (δk ) =
∑
α∈R

kα(
α

2
,ξ)

e
α
2 +e−

α
2

e
α
2 −e−

α
2
δk = ∑

α∈R+
kα(α,ξ)

e
α
2 +e−

α
2

e
α
2 −e−

α
2
δk .

The conjugate of the sum term is indeed equal to the one in (3.7).
Next consider

∑
α∈R+ kα(α,ξ) 1

1−e−α (1−σα). To put this operator to the other side of the inner product
1

1−e−α and (1−σα) get turned around and also the conjugate must be applied. So the operator becomes (note

that the conjugate only influences 1
1−e−α ):

∑
α∈R+

kα(α,ξ)(1−σα)

(
1

1−e−α

)
= ∑
α∈R+

kα(α,ξ)

(
1

1−eα
−σα 1

1−eα

)
= ∑
α∈R+

kα(α,ξ)

(
1

1−eα
− 1

1−e−α
σα

)
.

The σα part of this equation is already correct; the other part needs to be combined with the second part of
(3.7).

1

1−eα
− e−

α
2 +e

α
2

e−
α
2 −e

α
2
= e−

α
2

e−
α
2 −e

α
2
− e−

α
2 +e

α
2

e−
α
2 −e

α
2
=− e

α
2

e−
α
2 −e

α
2
= 1

1−e−α
,

so we find ∂ξ+
∑
α∈R+ kα(α,ξ) 1

1−e−α (1−σα) as adjoint for ∂ξ+
∑
α∈R+ kα(α,ξ) 1

1−e−α (1−σα).
(ρk ,ξ) is a real-valued constant, thus stays the same if you put it at the other side of the inner product.

Therefore we conclude that Dξ is symmetric.

Proposition 3.14. The operator Dξ is upper triangular with respect to the ordering¹, i.e. Dξ(eλ) =∑
µ¹λ aλ,µeµ,

for certain coefficients aλ,µ.

Proof. Firstly, ∂ξ(eλ) = (λ,ξ)eλ. Secondly, for the term
∑
α∈R+ kα(α,ξ) 1

1−e−α (1−σα) we use Proposition 3.9.

We see by lemma 3.11 that eλ and eσαλ are the highest order terms in the cases 〈λ,α〉 > 0 and 〈λ,α〉 < 0
respectively. Also, if 〈λ,α〉 < 0, then σαλ ¹ λ: the dominant weights of σαλ and λ are clearly equal and
−〈λ,α〉α ∈Q+, so σαλ=λ−〈λ,α〉α>λ. Finally, ρ(k)(ξ) is just a constant for a given ξ.

The fact that Dξ is a triangular operator gives that there are eigenfunctions of degree λ in C [P ] with eigen-
value aλ,λ from proposition 3.14.

Definition 3.15. The non-symmetric Jacobi polynomials E(λ,k) are defined as the unique eigenfunctions of Dξ

that are of the form:
E(λ,k) = eλ+ ∑

µ≺λ
cλ,µeµ. (3.8)

It is useful to have an explicit expression for the eigenvalues of the non-symmetric Jacobi polynomials.

Proposition 3.16. Let λ ∈ P. The eigenvalue of E(λ,k) is given by

γλ =λ+
1

2

∑
α∈R+

kαε(〈λ,α〉)α,

with

ε(x) =
{

1 for x > 0

−1 for x ≤ 0
.

Proof. Apply Dξ to eλ and determine which parts of the operator give eλ terms. Clearly(
∂ξ− (ρk ,ξ)

)
(eλ) = (λ,ξ)eλ− (ρk ,ξ)eλ
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= (λ,ξ)eλ− 1

2

∑
α∈R+

kα(α,ξ)eλ.

The remaining part of Dξ only gives a nonzero coefficient for eλ if 〈λ,α〉 > 0 (see 3.14). In that case the
coefficient is equal to kα(a,ξ). So we find

Dξ(eλ) =
(

(λ,ξ)+ 1

2

∑
α∈R+

kαε(〈λ,α〉)(α,ξ)

)
eλ+ l .o.t .

(λ,ξ) + 1
2

∑
α∈R+ kαε(〈λ,α〉)(α,ξ) = (

γλ,ξ
)

and since ξ is an arbitrary vector, γλ is indeed the eigenvalue of
E(λ,k).

Proposition 3.17. If λ,µ ∈ P and λ 6=µ, then
γλ 6= γµ,

if kα ≥ 0.

Proof. Suppose λ ∈ P+. We prove that γλ = wλ(λ+ρk ) with wλ the longest of Wλ. We can describe the action
of w0 on the elements of R+ as follows: wλ(Rλ,+) =−Rλ,+ and wλ(R+\Rλ,+) = R+\Rλ,+. Use that for applying
wλ to ρk :

wλρk = 1

2

∑
α∈R+

kαwλα= 1

2

∑
α∈R+

kαε(〈λ,α〉〉)α.

We can also show that the j th component of ρk is equal to:

ρk, j = (k1 +2k2 + (n − j )2k3)ε j .

So we have ρk,1 > . . . > ρk,n > 0, if kα ≥ 0 and either k1 > 0 or k2 > 0. Therefore 〈λ+ρk〉 > 0 and ε(〈λ,α〉) = 1
for all α ∈ R+. Now we can derive that for λ,µ ∈ P+ with λ 6= µ, λ+ρk and µ+ρk are in the same open Weyl
chamber. We find that γλ and γµ do not lie in the same Weyl-orbit. So γλ 6= γµ is true for λ,µ ∈ P+. To show
the proposition also holds for λ,µ ∈ P\P+, we first give the proof for the expression: γwλ∗ = wγλ∗ for λ∗ ∈ P+
and w ∈W λ∗ . Start writing out wγλ∗ :

wγλ∗ = wλ∗+ 1

2

∑
α∈R+

kαε(〈λ∗,α〉)wα

= wλ∗+ 1

2

∑
w−1α∈R+

kαε(〈λ∗, w−1α〉)α.

There are two cases in the sum for 〈λ∗, w−1α〉: 〈λ∗, w−1α〉 = 0 or 〈λ∗, w−1α〉 > 0. For 〈λ∗, w−1α〉 = 0 we have
that α ∈ R+, since saying that w ∈ W λ is equivalent to the following statement: wα ∈ R+ for all α ∈ Rλ,+. For
the other α it does not matter if α or −α is in the summation, since with 〈λ∗, w−1α〉 > 0 we have:

ε(〈λ∗, w−1α〉)α=−ε(〈λ∗, w−1α〉) · (−α) = ε(〈λ∗, w−1(−α)〉) · (−α).

We get:

wγλ∗ = wλ∗+ 1

2

∑
α∈R+

kαε(〈λ∗, w−1α〉)α

= wλ∗+ 1

2

∑
α∈R+

kαε(〈wλ∗,α〉)α= γwλ∗ .

Take λ,µ ∈ P\P+ with λ 6=µ. We find:

γλ−γµ = γwλ∗ −γvµ∗ = wγλ∗ − vγµ∗ 6= 0.

If λ∗ 6=µ∗ this is clear by the reasoning earlier in this proof. If λ∗ =µ∗, we have w 6= v and because they are in
W λ∗ , w and v can not send γλ∗ to the same element.

Next we mention another property of E(λ,k).
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Theorem 3.18. The set {E(λ,k)|λ ∈ P } forms an orthogonal basis of C[P ] with respect to (·, ·).

Proof. The set consist of polynomials of different orders, so they are independent. And by definition of C[P ]
it also spans that space. The orthogonality follows from the next calculation. For λ 6=µ ∈ P , ξ ∈Rn

(γλ,ξ)(E(λ,k),E(µ,k))k = (DξE(λ,k),E(µ,k))k = (E(λ,k),DξE(µ,k))k = (γµ,ξ)(E(λ,k),E(µ,k))k ,

where the symmetry of Dξ is used for the second equality. γλ 6= γµ according to Proposition 3.17, so (γλ,ξ) 6=
(γµ,ξ) for some ξ ∈Rn . Thus, (E(λ,k),E(µ,k))k = 0.

Corollary 3.19. (E(λ,k),eµ)k = 0 for µ≺λ.

Proof. Write eµ = E(µ,k)+∑
ζ≺µ cζ,µE(ζ,k) by the fact that {E(λ,k)|λ ∈ P } is a basis. By linearity of the inner

product the corollary follows.

Another nice property of the Cherednik operator is that Dξ and Dη on C[P ] are commutative.

Proposition 3.20. The operators Dξ and Dη are commutative on C[P ].

Proof. Let f = ∑
µ¹λ cµ,λeµ with cµ,λ ∈ C and by 3.18 also f = ∑

µ¹λbµ,λE(µ,k). For each E(µ,k) in that sum
holds that it is an eigenfunction of Dξ and Dη:

DξDηE(µ,k) = Dξ(γµ,η)E(µ,k) = (γµ,η)DξE(µ,k) = (γµ,η)(γµ,ξ)E(µ,k),

and similarly

DηDξE(µ,k) = (γµ,ξ)(γµ,η)E(µ,k).

This means that ∀µ DξDηE(µ,k) = DηDξE(µ,k) and thus DξDη f = DηDξ f .

The Cherednik operator can also be applied to functions in L2(Rn ,τd t ). This space is endowed with the
bilinear form (·, ·)τ:

( f , g )τ =
∫
Rn

f (t )g (−t )τd t . (3.9)

Dξ is symmetric with respect to this bilinear form.

Proposition 3.21. The operator Dξ is symmetric with respect to the bilinear form (·, ·)τ for ξ ∈Rn .

The proof of this proposition is very similar to the proof of proposition 3.13.

3.4. The Cherednik-Opdam transform
The Cherednik-Opdam transform is the transform we want to apply to the non-symmetric Jacobi polynomials
and is defined in this section.

The eigenfunctions E(λ,k) are not the only eigenfunctions of Dξ. According to Opdam [12] there exists an
open neighborhood U of 0 ∈ Rn such that there exist a holomorphic function G(t ,λ) on (Rn + iU ) with λ ∈ C
with the properties:

1. G(0,λ) = 1,

2. ∀ξ ∈Cn : DξG(t ,λ) = (λ,ξ)G(t ,λ),

and the functions also depend on the multiplicity function k. Furthermore, G(t ,λ) is bounded for λ ∈ iRn

(see [2]). We can use G(t ,λ) to get a W -invariant eigenfunction φλ by setting:

φλ =
1

|W |
∑

w∈W λ

wG(t ,λ).

The Cherednik-Opdam transform of a function f ∈ L2(Rn ,τd t ) is:

f̃ (λ) =
∫
Rn

f (t )G(−t ,λ)τd t , λ ∈ iRn .
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The inverse of this transform is given by:

f (t ) =
∫

iRn
f̃ (λ)G(t ,λ)σdλ, t ∈Rn ,

where

σ= (2π)−n
∏
α∈R+

c̃0(ρk )2

c̃(λ)c̃0(−λ)
, (3.10)

with

c̃(λ) = ∏
α∈R+

Γ(〈λ,α〉+k α
2
+kα)

Γ(〈λ,α〉+k α
2

)
,

and

c̃0(λ) = ∏
α∈R+

Γ(〈λ,α〉+k α
2
+kα+1)

Γ(〈λ,α〉+k α
2
+1)

.

Applying the Cherednik-Opdam transform to D j f with f ∈ L2(Rn ,dµ), which acts on the variable t , leads
to another operator that acts on the variable λ. We show the operator that is associated to D j :

�D j f (λ) =
∫
Rn

D j ( f (t ))G(−t ,λ)τd t =
∫
Rn

f (t )D j (G(−t ,λ))τd t

=λ j

∫
Rn

f (t )G(−t ,λ)τd t =λ j f̃ (λ).

Here the symmetry of D j with respect to the bilinear form is used (proposition 3.21) and the fact that G(−t ,λ)
is an eigenfunction. So the multiplication operator λ j is the operator associated to D j .

3.5. Relation symmetric and non-symmetric Jacobi polynomials
The Jacobi polynomials defined in the paper of Zhang [16] are called symmetric Jacobi polynomials, since
they are Weyl group invariant and are equal to the standard Jacobi Polynomials in the one variable case. This
is shown at the end of chapter 4. A partition is a vector η ∈Nn such that η1 ≥ η2 ≥ . . . ≥ ηn ≥ 0. Call the set of
partitions P . For each element η ∈P we have that 2η ∈ P . Now it is possible to define the symmetric Jacobi
polynomials.

Definition 3.22. For each η= (η1, . . . ,ηn) ∈Nn , η1 ≥ . . . ≥ ηn ≥ 0, Pη onTn is defined as

Pη = pW
η + ∑

η′∈P

2η′≺2η

cη,η′p
W
η′

such that (
Pη, pW

η′
)

k
= 0,

where pW
η =∑

w∈W w
(
e2(η1ε1+...+ηnεn )

)
is the Weyl group orbit sum of the power function.

These symmetric polynomials form an orthogonal basis.

Lemma 3.23. The polynomials {Pη} form an orthogonal basis for L2
(
T, |δk(ν) (s)|d s

)W , L2-space of Weyl invari-
ant polynomials.

The symmetric Jacobi polynomials can be described by the non-symmetric Jacobi polynomials in the
following way:

Theorem 3.24.

Pη =
∑

w∈W λ

wE(2η,k).

For the proof of both the lemma and theorem we refer to [12].





4
Spherical transform of symmetric Jacobi

polynomials

In the paper [16] Zhang describes a method to express the spherical transform of symmetric Jacobi polynomi-
als and to show that the spherical transform is equal to (symmmetric) multivariable Wilson polynomials. This
chapter gives an overview of Zhang’s method. The chapter also includes some extra steps and calculations
that are omitted in the paper.

4.1. Introduction
We start by giving a small description of the method of Zhang. The idea of the method is to write symmet-
ric Jacobi polynomials in W -invariant polynomials of Cherednik operators, since the spherical transform of a
W -invariant polynomial of Cherednik operators is easily determined. The symmetric Jacobi polynomials that
form an orthogonal basis on the torusTn , are written as Laurent polynomials in sines. A certain transforma-
tion can be applied to get polynomials onRn in variable x. After that an operator associated (and very similar)
to the Cherednik operator is given in a form that can act on polynomials in x and this is used to change the
Jacobi polynomials in x to polynomials in the Cherednik-like operators. To preserve the orthogonality of the
Jacobi polynomials a weight function is multiplied with the Jacobi polynomial onRn . The spherical transform
of the weight function times the Jacobi polynomial is determined resulting in a (symmetric) multivariable
Wilson polynomial, which is defined at the end of this section.

The spherical transform and some necessary definitions are discussed first. Recall the root system R with
R+ = {2εi ,4εi ,2(ε j ± εk )} for 1 ≤ i ≤ n and 1 ≤ j < k ≤ n. The Cherednik operator on functions on Rn from
the previous chapter (definition 3.7) is used in this chapter with the multiplicity function k = (k1,k2,k3) with
k1 = b, k2 = ι

2 and k3 = a
2 associated to the roots of R. Define Di := Dεi . For the operators Di there exist a

W-invariant functionφλ that is an eigenfunction with eigenvalue (λ,εi )2 =λ2
i , as described in section 3.4. For

a W-invariant polynomial p in the variables Di , we have

p(D1, . . . ,Dn)φλ = p(λ1, . . . ,λn)φλ, (4.1)

since p exists of combinations of D2
i . The spherical transform of W-invariant functions f ∈ L2(Rn ,dµ(t ))W ,

where this L2-space only contains R-valued functions, is given by

f̃ (λ) =
∫
Rn

f (t )φλ(t )dµ(t ), (4.2)

with

dµ(t ) := τ(t )d t = ∏
α∈R+

|2sinh(
1

2
(α, t ))|2kαd t .

This transform has a Plancherel formula∫
Rn

| f (t )|2τd t =
∫

iR
| f̃ (λ)|2d µ̃(λ). (4.3)

25
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The Plancherel measure d µ̃(λ) is given by

d µ̃(λ) = (2π)−nc2
0

c(λ)c(−λ)
dλ,

with

c(λ) =
n∏

j=1

Γ(λ j +b)Γ(2λ j )

Γ(λ j +b + ι
2 )Γ(2λ j +2b)

∏
1≤ j<k≤n,

ε=±

Γ(λ j +ελk )

Γ(λ j +ελk + a
2 )

and

c0 =
n∏

j=1

Γ(ρ j +b +1)Γ(2ρ j +1)

Γ(ρ j +b + ι
2 +1)Γ(2ρ j +2b +1)

∏
1≤ j<k≤n,

ε=±

Γ(ρ j +ερk +1)

Γ(ρ j +ερk + a
2 +1)

.

The inner product of f , g ∈ L2(Rn ,dµ(t ))W is given by

( f , g )µ(t ) =
∫
Rn

f (t )g (t )dµ(t ).

The weight function f−2ν on Rn is defined by

f−2ν(t ) =
n∏

j=1
cosh−2ν(t j ), ν ∈R.

Note that this function is W -invariant, since cos(−t j ) = cos(t j ). For a sufficiently large ν, the spherical trans-
form of f−2ν can by made explicit.

Theorem 4.1. For ν> ι+b +a(n −1) the spherical transform of f−2ν is given by

�f−2ν(λ) = Nν

n∏
j=1

∏
ε=±

Γ(ν− 1
2ρ1 +ε 1

2λ j )

Γ(ν− 1
2ρ1 +ε 1

2 (ι+b +a( j −1)))
, λ ∈ iRn .

Nν is a normalization constant that is given by

Nν =
∫
Rn

f−2νdµ(t )

= 2n(2ι+2b+a(n−1))n! Γa

(
ι+1+2b +a(n −1)

2

)
· Γa(ν− ( a

2 (n −1)+ ι+b))

Γa(ν+ 1−ι
2 )

∏
1≤i< j≤n

Γ( a
2 ( j − i +1))

Γ( a
2 ( j − i ))

,

where

Γa(σ) =
n∏

j=1
Γ(σ− a

2
( j −1)).

For the proof, see [16, Theorem 3.2]. It consists of a lot of tedious computations.
Let Sn be the group of permutations of an element inNn , and call the symmetric power sum mη for η ∈Nn :

mη(y1, . . . , yn) = ∑
ζ∈Snη

yζ1
1 . . . yζn

n .

We need the symmetric power sum for the definition of the Wilson polynomials.

Definition 4.2. The (unique) polynomials qλ that satisfy the following two conditions are called multivariable
Wilson polynomials:

1. qη = mη,W + ∑
ζ∈P

2ζ≺2η

cη,ζmζ,W , cη,ζ ∈C,

2. (qη,mζ,W )∆W = 0 if ζ≺ η,
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where mη,W (x) = mη(x2
1 , . . . , x2

n). The weight function ∆W given by

∆W (x) = ∏
1≤ j<k≤n,
ε1,ε2=±1

Γ(ν+ i (ε1x j +ε2xk ))

Γ(i (ε1x j +ε2xk ))

× ∏
1≤ j≤n,
ε=±1

Γ(ν0 + iεx j )Γ(ν1 + iεx j )Γ(ν2 + iεx j )Γ(ν3 + iεx j )

Γ(2iεx j )
,

with ν≥ 0 and ℜ(ν j ) > 0 ( j = 0,1,2,3). The inner product (·, ·)∆W is determined by

(mη,W ,mζ,W )∆W =
(

1

2π

)n ∫
Rn

mη,W (x)mζ,W (x)∆W (x)d x.

These definitions allow us to continue with the description of Zhang’s method.

4.2. Transformation ofTn to Rn

The symmetric Jacobi polynomials are orthogonal with respect to a measure on Tn = iRn/(πiZ)n , but the
spherical transform is defined on Rn . Therefore, we need a transformation for the functions on Tn to main-
tain the orthogonality properties on Rn . Set y j = e i u j for 1 ≤ j ≤ n with u ∈ [0,π]n , then y ∈Tn , and v j = e t j

for 1 ≤ j ≤ n, t ∈Rn . Consider the components separately. There are many different ways to send an element
v j ∈R+ to an element onT, the unit circle. The transformation

y j =
−v j + i

i v j −1

is used here. It will become clear throughout this chapter why this particular transformation is chosen. First
we verify that the given transformation maps to T. One of the characterizations of the unit circle is that the
conjugate of an element is equal to its inverse. So, we check if y = y−1:

y = −v j − i

−i v j −1
= i v j −1

−v j + i
= y−1.

Then, after some calculations, we find

sin(u j ) =
y j − y−1

j

2i
=

v j − v−1
j

v j + v−1
j

= tanh(t j ),

and

cos(u j ) =
y j + y−1

j

2
=− 2

v j + v−1
j

=−cosh−1(t j ).

The fact that tanh(t j ) is sent to sin(u j ) (or actually the other way around) is particularly important for the
method of Zhang.

4.3. Orthogonal basis of symmetric Jacobi polynomials
This section describes how the symmetric Jacobi polynomials can be written in sines. Moreover, in the new
sine variables the Jacobi polynomials still form an orthogonal basis.

Let ν> ι+b +a(n −1). Choose the multiplicity function k(ν) = (k(ν)
1 ,k(ν)

2 ,k(ν)
3 ) with

2k(ν)
2 = 2(2ν− (1+ ι+b +a(n −1)))+1, 2(k(ν)

1 +k(ν)
2 ) = ι+2b, 2k(ν)

3 = a. (4.4)

The symmetric Jacobi polynomials Pν,η (definition 3.22) can be constructed with polynomials of the vari-
ables cos(2u j ), because for l ,m ∈N, cosm(2u j ) is a Laurent polynomial in C[P ] with highest power e−2mi u j ,
cosm(2u j ) and cosl (2u j ) are linearly independent in C[P ] and cosm(2u j ) only contains powers of ex with
the powers in 2Z. Furthermore, for each f (u)e2mi u j , there is also f (u)e−2mi u j present in the polynomial.
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Here f (u) is some (combination of) exponential functions of ui , i 6= j and m ∈ N, since the polynomial is
W -invariant. Combining them leads to 2m f (u)cosm(2u j )+ l .o.t .. This argument can be applied repeatedly
to replace all exponent functions by cosines.

Moreover, the Jacobi polynomials can be expressed as functions of sin2(u j ) by the trigonometric equality
cos(2u j ) = 1−2sin2(u j ). Set x j = sin(u j ). The symmetric power sum mη(x2

1 , . . . , x2
n) is W -invariant and can

be used to express Pν,η in x1, . . . , xn :

P x
ν,η(x1, . . . , xn) = (−1)η1+...+ηn 22(η1+...+ηn )mη(x2

1 , . . . , x2
n)+ ∑

ζ<η
cη,ζmζ(x2

1 , . . . , x2
n).

The Jacobi polynomial in the new variable x also satisfies an orthogonality property with respect to the
inner product (·, ·)k(ν) under change of variable:

(P x
ν,η, pW,x

ζ
)k(ν),x =

∫
[−1,1]n

P x
ν,η(x)pW,x

ζ
(x)δx

k(ν) (x)d x = 0, ζ< η,

since the changing of variable does not affect the orthogonality. The next section explains a bit more about
the changing of variables in the inner product. By the same reasoning as in corollary 3.19

(P x
ν,η,mζ)k(ν),x = 0, ζ< η

also holds.

4.4. Change of variables in two inner products
In this chapter we work with two different inner products, namely the inner product on C[P ] and the inner
product in L2(Rn ,dµ(t ))W . In this section the inner products are subjected to change of variables to be able
to show the equality of the norms of the Jacobi polynomials onTn and the Jacobi-type polynomials on Rn .

We start with the inner product on C[P ]:

Lemma 4.3. For f , g ∈C[P ] that can be written in the variables x j = sin(u j ), we have the inner product in the
variable x:

( f x , g x )k(ν),x = 2(2k(ν)
1 +4k(ν)

2 +2k(ν)
3 (n−1))n

∫
[−1,1]n

f x (x)g x (x)
∏

j
|x j |2k(ν)

1 +2k(ν)
2 |1−x2

j |k
(ν)
2 − 1

2
∏
i< j

|x2
i −x2

j |2k(ν)
3 d x.

Proof. The change of variables of the inner product on C[P ] is shown by first writing the weight function in

x j = sin(u j ) as in the previous section. Recall that the weight function is δk(ν) =∏
α∈R+

∣∣∣sin
(

(α,u)
2

)∣∣∣2k(ν)
α

. We get:

∏
α∈R+

∣∣∣∣2sin

(
(α,u)

2

)∣∣∣∣2k(ν)
α

=∏
j
|2sin(u j )|2k(ν)

1 |2sin(2u j )|2k(ν)
2

∏
i< j ,ε=±

|2(sin(ui +εu j ))|2k(ν)
3

=∏
j
|2sin(u j )|2k(ν)

1 |22 sin(u j )cos(u j )|2k(ν)
2

∏
i< j ,ε=±

|2(sin(ui +εu j ))|2k(ν)
3 . (4.5)

In the product over j the |cos(u j )| is the same as |1− sin2(u j )| 1
2 , so we find:∏

j
|2sin(u j )|2k(ν)

1 |22 sin(u j )cos(u j )|2k(ν)
2 = 2(2k(ν)

1 +4k(ν)
2 )n

∏
j
|x j |2k(ν)

1 +2k(ν)
2 |1−x2

j |k
(ν)
2 .

For the other product in (4.5) take together the following terms:

|2(sin(ui +u j ))|2k(ν)
3 |2(sin(ui −u j ))|2k(ν)

3 = 22k(ν)
3 |sin(ui +u j )sin(ui −u j )|2k(ν)

3 .

Apply the angle sum and difference identities sin(α±β) = sin(α)cos(β)±cos(α)sin(β):

sin(ui +u j )sin(ui −u j ) = (sin(ui )cos(u j )+cos(ui )sin(u j ))(sin(ui )cos(u j )−cos(ui )sin(u j ))

= sin2(ui )cos2(u j )−cos2(ui )sin2(u j ) (4.6)

= x2
i (1−x2

j )− (1−x2
i )x2

j = x2
i −x2

j .
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Therefore we get that: ∏
i< j ,ε=±

|2(sin(ui +εu j ))|2k(ν)
3 = 22k(ν)

3
∏
i< j

|x2
i −x2

j |2k(ν)
3

Combining everything we find for the weight function:

∏
α∈R+

∣∣∣∣2sin

(
(α,u)

2

)∣∣∣∣2k(ν)
α

= 2(2k(ν)
1 +4k(ν)

2 +2k(ν)
3 (n−1))n

∏
j
|x j |2k(ν)

1 +2k(ν)
2 |1−x2

j |k
(ν)
2

∏
i< j

|x2
i −x2

j |2k(ν)
3 .

Also note that the range of sin(u j ) is [−1,1] and that d x j = cos(u j )du j , thus the inner product of f , g ∈ C[P ]
in the variable x becomes the inner product as stated in this lemma.

The other inner product follows pretty much the same steps only the variable that it is changed to is
different, x j := tanh(t j ).

Lemma 4.4. For f , g ∈ L2(Rn ,dµ(t )) that can be written in the variables x j = tanh(t j ), we have the inner
product in the variable x:

( f x , g x )µ(t ),x = 2(2k1+4k2+2k3(n−1))n
∫

[−1,1]n
f x (x)g x (x)

∏
j
|x j |2k1+2k2 |1−x2

j |−k1−2k2−2k3(n−1)−1
∏
i< j

|x2
i −x2

j |2k3 d x.

Proof. Start with the weight function τ:

∏
α∈R+

∣∣∣∣2sinh

(
(α,u)

2

)∣∣∣∣2kα
=∏

j
|2sinh(u j )|2k1 |22 sinh(u j )cosh(u j )|2k2

∏
i< j ,ε=±

|2(sinh(ui +εu j ))|2k3 . (4.7)

In the product over j we use that cosh−2(t j ) = 1− tanh2(t j ) and we find:

∏
j
|2sinh(u j )|2k1 |22 sinh(u j )cosh(u j )|2k2 = 2(2k1+4k2)n

∏
j

∣∣∣∣ sinh(u j )

cosh(u j )
cosh(u j )

∣∣∣∣2k1 ∣∣∣∣ sinh(u j )

cosh(u j )
cosh2(u j )

∣∣∣∣2k2

= 2(2k1+4k2)n
∏

j
|x j |2k1+2k2 |1−x2

j |−k1−2k2 .

For the other product in (4.7) the same angle sum and difference identities hold as for the sines in (4.6), so:∏
i< j ,ε=±

|2(sinh(ui +εu j ))|2k3 = 22k3
∏
i< j

|sinh2(ui )cosh2(u j )−cosh2(ui )sinh2(u j )|2k3

= 22k3
∏
i< j

∣∣∣∣∣ sinh2(ui )

cosh2(ui )
cosh2(ui )cosh2(u j )−cosh2(ui )cosh2(u j )

sinh2(u j )

cosh2(u j )

∣∣∣∣∣
2k3

= 22k3
∏
i< j

|x2
i −x2

j |2k3 |cosh2(ui )cosh2(u j )|2k3 .

Now we still need to write the cosh in this equation in the x variable and we can even change the sum to the
sum over one variable: ∏

i< j
|cosh2(ui )cosh2(u j )|2k3 = ∏

i< j
|1−x2

i |−2k3 |1−x2
i |−2k3

=∏
j
|1−x2

j |−2k3(n−1).

Combining all the calculations for the weight function gives:

∏
α∈R+

∣∣∣∣2sinh

(
(α,u)

2

)∣∣∣∣2kα
= 2(2k1+4k2+2k3(n−1))n

∏
j
|x j |2k1+2k2 |1−x2

j |−k1−2k2−2k3(n−1)
∏
i< j

|x2
i −x2

j |2k3 .

The inner product of f , g ∈ L2(Rn ,dµ(t )) in the variable x is as stated above, since tanh(t j ) has range [−1,1]
and d x j =

(
1− tanh2(t j )

)
d t j .
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The inner products in the lemmas 4.3 and 4.4 look very similar. Note that adding a conjugation to g x in
4.4 does not influence the inner product, since g x is real valued. We have that:

2k(ν)
1 +2k(ν)

2 = ι+2b = 2k1 +2k2,

k(ν)
2 − 1

2
= 2ν− (1+ ι+b +a(n −1)) = 2ν−k1 −2k2 −2k3(n −1)−1,

2k(ν)
3 = a = 2k3,

and using the identities above we also find:

2(2k(ν)
1 +4k(ν)

2 2k(ν)
3 (n−1))n = 22k(ν)

2 −2k2 2(2k1+4k2+2k3(n−1))n .

This means that the inner products are equal to each other except for the constant 22k(ν)
2 −2k2 and a factor∏

j |1−x2
j |2ν. This factor is compensated by the function f−2ν, which is discussed in Section 4.6.

4.5. Symmetric power function in D
The Cherednik operator can act on functions on Rn . If these functions are written in the different variables
x j = tanh(t j ), it is easier to work with the Cherednik operator in the x j variables as well. In this section the
change of variables in the Cherednik operator is given. The operator that is equal to the conjugation of f−2ν

with the Cherednik operator, D j , is also given in x. The D j ’s play an important part in the calculation of the
spherical transform.

We start by writing down the operator D j explicitly:

D j = ∂ j −a
∑
i< j

1

1−e−2(ti−t j )
(1−σεi−ε j )+a

∑
j<k

1

1−e−2(t j −tk )
(1−σε j −εk )+a

∑
i 6= j

1

1−e−2(ti+t j )
(1−σεi+ε j )

+2b
1

1−e−2t j
(1−σε j )+2ι

1

1−e−4t j
(1−σε j )− (ρk ,ε j ).

We write the operator in different variables in the next lemma.

Lemma 4.5. Set x j := tanh(t j ), then we have

D j = (1−x2
j )∂ j − a

2

∑
i< j

1+xi −x j −xi x j

xi −x j
(1−σεi−ε j )+ a

2

∑
j<k

1+x j −xk −x j xk

x j −xk
(1−σε j −εk )

+ a

2

∑
i 6= j

1+xi +x j +xi x j

xi +x j
(1−σεi+ε j )+b(1+ 1

x j
)(1−σε j )+ ι

(
1+ 1

2
(x j + 1

x j
)

)
(1−σε j )− (ρk ,ε j ),

on polynomials in the variables x = (x1, . . . , xn).

Proof. The proof consists of many tedious computations for each term in D j . (ρk ,ε j ) stays the same, since it
is a constant. The derivative of tanh(t j ) is

∂ j tanh(t j ) = 1− tanh2(t j ) = 1−x2
j .

One of the remaining terms is shown as an example. The other terms are obtained by similar calculations.
We look at

b(1+ 1

x j
)(1−σε j ).

Important is that the Weyl group elements σα with α ∈ R+ are now applied to x. The same notation is used,
since −x j =− tanh(t j ) = tanh(−t j ) and clearly permutations of x are the same as permutations of t . We proof
that

(1+ 1

x j
) = 2

1−e−2t j
.

Start with the lefthandside and by elementary computations the righthandside easily follows:

(1+ 1

x j
) = 1+ e t j +e−t j

e t j −e−t j
= e t j −e−t j +e t j +e−t j

e t j −e−t j

= 2e t j

e t j −e−t j
= 2

1−e−2t j
.
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Define a new operator Di by conjugation of Di by the function f−2ν:

Di := f−2νDi f2ν. (4.8)

The operator D j is now easily written in the variable x with lemma 4.5. Use that f−2ν is W -invariant.

D j =−2νx j + (1−x2
j )∂ j − a

2

∑
i< j

1+xi −x j −xi x j

xi −x j
(1−σεi−ε j )+ a

2

∑
j<k

1+x j −xk −x j xk

x j −xk
(1−σε j −εk )

+ a

2

∑
i 6= j

1+xi +x j +xi x j

xi +x j
(1−σεi+ε j )+ ι

(
1+ 1

2
(x j + 1

x j
)

)
(1−σε j )+b(1+ 1

x j
)(1−σε j )− (ρk ,ε j ).

The extra term −2νx j compared to the lemma 4.5 results from the product rule. Remark that D j = D j −2νx j .
The next lemma shows how the operators D j act on polynomials in x. The result is somewhat similar to the
upper triangularity of the operators D j , in the sense that applying D does not change the ordering of the
polynomial by much.

Lemma 4.6. The action of the operators D j on the monomials xη = xη1
1 . . . xηn

n for η ∈Nn is as follows,

D j xη = ∑
ζ∈Nn ,

2ζ∗¹(2η j )∗

aζ,ηxζ,

where η j = (η1, . . . ,η j +1, . . . ,ηn) and the coefficient of xη
j

is

aη j ,η =−2ν−η j +a#{i < j : ηi > η j }+ ι

2
(1− (−1)η

j
).

Proof. The proof is elementary calculations.

The symmetric power sum mη in D2
j acting on the monomial 1 can be expressed in a sum of symmetric

powersums mζ in x2
j with ζ≺ η.

Lemma 4.7. The operators mη(D2
1 , . . . ,D2

n) acting on the constant monomial 1 gives

mη(D2
1 , . . . ,D2

n)1 = dηmη(x2
1 , . . . , x2

n)+ ∑
ζ∈P

2ζ≺2η

cη,ζmζ(x2
1 , . . . , x2

n),

with cη,ζ ∈R and the leading coefficient

dη =
n∏

j=0

η j −1∏
k=0

(−2ν+ (n − j )a −2k)(−2ν+ (n − j )a + ι−1−2k).

Proof. Apply the previous lemma successively and use that mη(D2
1 , . . . ,D2

n)1 is W -invariant.

The following statement follows directly from the lemma and is used to determine the spherical transform
of the symmetric Jacobi polynomials.

Corollary 4.8.

mη(x2
1 , . . . , x2

n) = d−1
η mη(D2

1 , . . . ,D2
n)1+ ∑

ζ≺η
cζ,ηmζ(D2

1 , . . . ,D2
n)1.

4.6. Spherical transform of symmetric Jacobi polynomials
To determine the spherical transform of a symmetric Jacobi polynomial we need to change the variables of
this polynomial. After that it is just a combination of lemmas and theorems we have seen in this chapter to
show that the spherical transform results in a multivariable Wilson polynomial.

Section 4.3 gives the Jacobi polynomials in the variables x j = sin(u j ): P x
ν,η(x1, . . . , xn). Now we change the

variable in P x
ν,η such that x j becomes tanh(t j ) corresponding with the transformation treated in section 4.2

and we define a new function on Rn :

Hν,η(t ) := f−2ν(t )P x
ν,η(tanh(t1), . . . , tanh(tn)).

These functions have the same norm as the Jacobi polynomials on Tn up to a multiplicative constant and
even form an orthogonal basis.
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Lemma 4.9. The functions {Hν,η}η form an orthogonal basis for the space L2(Rn ,dµ(t ))W and

22k(ν)
2 −2k2 (Hν,η, Hν,η)µ(t ) = (P x

ν,η,P x
ν,η)k(ν) .

Proof. In the section 4.4 we have seen that the inner products of the different spaces we are working on are

equal to each other accept for the constant 22k(ν)
2 −2k2 and a factor

∏
j |1− x2

j |2ν. The function f−2ν can be

expressed in x j = tanh(t j ):

f−2ν(t ) =
n∏

j=1
cosh−2ν(t j ) =

n∏
j=1

(1−x2
j )ν.

Therefore | f−2ν(t )|2 = ∏
j |1− x2

j |2ν adds the extra factor we need for the two inner products to be equal up

to a multiplicative constant. The fact that the polynomials {Pν,η}η form an orthogonal basis for Tn now
immediately gives that the functions {Hν,η}η form an orthogonal basis as well only for a different space:
L2(Rn ,dµ(t ))W .

Finally, we get to the main result, namely the spherical transform of Hν,η.

Theorem 4.10. The spherical transforms of the Jacobi type function Hν,η(t ) on Rn are given by

�f−2ν(λ)qν,η(λ), λ ∈ iRn ,

where qν,η(λ) is a W -invariant polynomial. The polynomials {qν,η(λ)}η form an orthogonal basis of the space

L2(iRn ,�f−2ν(λ)2d µ̃(λ))W . Their norm in that space is given by

‖qν,η‖ = ‖Hν,η‖µ(t ),x = ‖P x
ν,η‖k(ν),x ,

and they are multiples of the multivariable Wilson polynomials.

Proof. In Section 4.3 the polynomial P x
ν,η is written as a combination of mη(x1, . . . , xn) and lower order terms.

With Corollary 4.8 this can be changed to variables D j :

P x
ν,η(x1, . . . , xn) = (−1)

−(η1+...+ηn )
(22(η1+...+ηn )dη)−1mη(D2

1 , . . . ,D2
n)+ ∑

ζ≺η
cζ,ηmζ(D2

1 , . . . ,D2
n)1.

Therefore, we have

f−2ν(t )P x
ν,η(x1, . . . , xn) = (−1)

−(η1+...+ηn )
(22(η1+...+ηn )dη)−1mη(D2

1, . . . ,D2
n) f−2ν(t )+ ∑

ζ≺η
cζ,ηmζ(D2

1, . . . ,D2
n) f−2ν(t ).

Formula (4.1) gives the spherical transform of mη(D2
1, . . . ,D2

n) f−2ν(t ):

mη(λ2
1, . . . ,λ2

n)�f−2ν(λ).

So, the spherical transform is of the form that is stated in the theorem.
Moreover, the functions {qν,η(λ)}η satisfy the orthogonality relation by the Plancherel formula (4.3). We

can take �f−2ν(λ)2 together with the Plancherel measure d µ̃(λ) and they are equal (up to a constant) to the
weight function of the Wilson polynomials, ∆W , in definition 4.2, since λ ∈ iRn . The orthogonality of the
{qν,η(λ)}η, and the fact that the leading term is equal to mη(λ2

1, . . . ,λ2
n), gives that they are multiples of multi-

variable Wilson polynomials (definition 4.2).

4.7. Comparison method of Zhang and method of Koornwinder
The method of Zhang describes the spherical transform of multivariable Jacobi-type polynomials and the
method of Koornwinder (2) gives the Fourier-Jacobi transform of a Jacobi-type polynomial in one variable.
If we consider the one variable case in the method of Zhang, it should actually be the same transform as in
Koornwinder. This section checks if this is indeed the case.

The method of Zhang contains a fair amount of calculations, but the paper of Koornwinder has more
explicit computations. Henceforth, Zhang’s method seems a bit more elegant, but this is not entirely true.
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This description of Zhang’s method does not contain the tedious computations of the spherical transform,
while it is included in the method of Koornwinder.

Moreover, the Jacobi polynomials in Koornwinder agree with the Jacobi polynomials in one variable de-
fined in Zhang (definition 3.15). The symmetric Jacobi-polynomials P x

ν,η in one variable with x = tanh(t )

are polynomials in tanh2(t ) and are orthogonal with respect to the weight function (tanh2(t ))k(ν)
1 +k(ν)

2 (1 −
tanh2(t ))k(ν)

2 . The standard Jacobi polynomials P (α,δ)
n (1−2tanh2(t )) are also polynomials in tanh2(t ) and are

orthogonal with respect to the weight function (tanh2(t ))α+
1
2 (1− tanh2(t ))δ+1. The parameters of the weight

functions look different, but they are actually equal to each other. P (α,δ)
n (1−2tanh2(t )) and P x

ν,η must be equal
up to a multiplicative constant. This follows by Van Diejen [15], who showed that the Jacobi polynomials are
the unique polynomials of tanh2(t ) that are orthogonal to the corresponding weight function. The parame-

ters of φλ and φα,β
λ

can also easily be compared to see that they are the same hypergeometric functions and
the same holds for the parameters of the Wilson polynomials.

Lastly, note that the inverse of the Fourier-Jacobi transform is defined on R+ in Koornwinder and iR in
Zhang. This difference is explained by the fact that the functions are symmetric, so integrating over R+ or R
only differs by a factor two. The formulas in the article of Koornwinder contain iλ and the formulas in the
article of Zhang only λ which clarifies the discrepancy between the R and iR. Hence, the methods yield the
same result.





5
Cherednik-Opdam transform of

non-symmetric Jacobi polynomials in one
variable

The symmetric theory about Jacobi polynomials and spherical transforms has been discussed extensively
in the previous chapters. The non-symmetric Jacobi polynomials and the Cherednik-Opdam transform are
already mentioned in Chapter 3, but have not really been discussed yet. This chapter covers some non-
symmetric theory in one variable. Of course, the non-symmetric Jacobi polynomials and the Cherednik-
Opdam transform are important subjects of the chapter. We also see the interesting operators, the intertwin-
ers, and some different representation of a double degenerate Hecke algebra. Most of the non-symmetric
theory also holds for the multivariable case, but the advantage of the one variable case is that a lot of formu-
las can be made explicit.

5.1. Introduction
Since this chapter is on the one variable case, the operators and functions we need are given in one variable.
The root system on R is R = {±2ε,±4ε} with R+ = {2ε,4ε}. The weight lattice is now P = 2Z and also the root
lattice Q = 2Z. The positive weight and root lattice are P+ = Q+ = 2Z+. The ordering becomes: 0 ≺ 2 ≺ −2 ≺
4 ≺ . . .. The Weyl group exists of two elements: i d and σε. Call s := σε and ρ = ρk = k1 +2k2 with k = (k1,k2)
the multiplicity function. Then, the Cherednik operator is given by

D := d

d t
+2k1

1

1−e−2t (1− s)+4k2
1

1−e−4t (1− s)−ρ, (5.1)

Note that for a function f , the operator s is a reflection s f (t ) = f (−t ). The non-symmetric Jacobi polynomials
are eigenfunctions of D with multiplicity function k := k(ν) = (k(ν)

1 ,k(ν)
2 ) with 2k(ν)

2 = 2(2ν− (1+ ι+b + a(n −
1)))+1 and 2(k(ν)

1 +k(ν)
2 ) = ι+2b. They are of the form:

E(λ,k) = eλ+ ∑
µ≺λ

cλ,µeµ,

and we have:
DE(λ,k) = γλE(λ,k),

with

γλ =
{
λ+ρ for λ> 0

−(λ+ρ) for λ≤ 0
.

5.2. Intertwiners
Intertwiners are operators that can be used to generate all the eigenfunctions E(µ,k) starting from E(0,k) = 1.
Define X f (t ) = e2t f (t ) and U = X s. The operator s and D form a degenerate affine Hecke algebra, and if we

35
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add X , it becomes a double affine Hecke algebra (see [2]). In Rwe have two intertwiners: I0 :=U D −DU and
I1 := sD −Ds.

Theorem 5.1. The intertwiners I1 and I0 can be applied to the non-symmetric Jacobi polynomials to get:

I1E(λ,k) = k1E( −λ,k)

I0E( −λ,k) = k0E(2+λ,k),

with λ ∈ P+ and certain constants k0, k1.

Before we proof this we first give a lemma with two identities and an easier way to write D . Define

c(t ) = 4k(ν)
2

1−e−4t +
2k(ν)

1

1−e−2t ,

then D can be written as

D = ∂

∂t
+ c(t )(1− s)−ρ.

Lemma 5.2. For the function c(t ), the next identity holds:

c(t )+ c(−t ) = 2ρ. (5.2)

Furthermore, we have
e−2x c(x)+e2x c(−x) =−2b. (5.3)

Proof. Remember that ρ = k(ν)
1 +2k(ν)

2 , then the first identity follows directly from

1

1−e−α
+ 1

1−eα
= 1−eα+1−e−α

1−e−α−eα+1
= 1.

To see the second identity:

e−2t c(t )+e2t c(−t ) = 2be−2t

1−e−2t +
2ιe−2t

1−e−4t +
2be2t

1−e2t +
2be−2t

1−e4t

= 2b
e−2t −1+e2t −1

1−e−2t −e2t +1
+2ι

e−2t −e2t +e2t −e−2t

1−e−4t −e4t +1
=−2b.

The proof of the theorem can now be given.

Proof. First take a look at the intertwiner I1 and apply D to it. With help of identity 3.3 we see it is possible to
switch the places of I1 and D .

D I1 = DsD −DDs = (−sD −2ρ)D −D(−sD −2ρ) =−sD2 +DsD

=−(sD −Ds)D =−I1D.

Now, using that E(λ,k) is an eigenfunction of D :

D I1E(λ,k) =−I1DE(λ,k) =−γλI1E(λ,k) = γ−λI1E(λ,k),

since γλ+γ−λ = 0. Therefore, I1E(λ,k) is an eigenfunction of D with eigenvalue γ−λ and it also means that
I1E(λ,k) = k1E(−λ,k) for some constant k1. Note that U = X s = sX −1, so it follows that U 2 = 1. Using the
lemma 5.2,

U D +DU −2U = 2b

is shown step by step. U D and DU are applied to f (t ):

DU f (t ) = D(e2t f (−t ))
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= 2e2t f (−t )−e2t f ′(−t )+ c(t )
(
e2t f (−t )−e−2t f (t )

)−ρe2t f (−t ),

and

U D f (t ) = e2t f ′(−t )+e2t c(−t )
(

f (−t )− f (t )
)−ρe2t f (−t )

= e2t f ′(−t )+ c(−t )
(
e2t f (−t )−e2 f (t )

)−ρe2t f (−t ).

We can already see that the derivative terms cancel each other out, so those are immediately left out in the
next calculation.

(U D +DU −2U ) f (t ) = 2e2t f (−t )+e2t f (−t ) (c(t )+ c(−t ))

− f (t )
(
e−2t c(t )+e2t c(−t )

)−2ρe2t f (−t )−2e2t f (−t )

= 2b f (t ),

where the last step is by the identities (5.2) and (5.3). Thus U D +DU −2U = 2b. This equation is necessary
for the application of D to the intertwiner I0.

D I0 = DU D −DDU = (−U D +2U +2b)D −D (−U D +2U +2b)

=−U D2 +2U D +DU D −2DU =−(U D −DU )D +2I0

= I0 (2−D) .

So again we find eigenfunctions for D (assume λ> 0):

D I0E(−λ,k) = I0 (2−D)E(−λ,k) = (
2−γ−λ

)
I0E(−λ,k) = γλ+2I0E(−λ,k).

This last equality follows from 2−γ−λ = 2+λ+ρ = γλ+2. Therefore I0E(−λ,k) = k0E(2+λ,k) for some constant
k0.

5.3. Another representation of the affine Hecke algebra
The operators s and U are defined to work on x, but we can also rewrite them to get an operator working on
λ. This is useful, since we can take the operators out of the inner product that depends on the variable x.
The now operators we get form another representation of the double affine Hecke algebra mentioned in the
previous section.

We begin with the operator s.

Proposition 5.3. We have sE(0,k) = 1 and for λ ∈ P,

sE(λ,k) =
E(−λ,k)− ρ

γλ
E(λ,k) if λ> 0

− ρ
γλ

E(λ,k)+
(
1− ρ2

γ2
λ

)
E(−λ,k) if λ< 0

. (5.4)

Proof. This proof uses the same method as the proof in [4, Proposition 2.7]. Let µ ∈ P with µ > 0. First we
apply s to eλx : s(eλx ) = e−λx and recall that the set {E(λ,k)|λ ∈ P } forms a basis for C [P ]. Therefore we can
write sE(µ,k) and sE(−µ,k) as a sum of E(λ,k) with λ¹−µ:

sE(µ,k) = E(−µ,k)+ ∑
λ¹µ

aµ,λE(λ,k) (5.5)

and

sE(−µ,k) = ∑
λ¹−µ

a−µ,λE(λ,k). (5.6)

From lemma 3.8 we get

sDεs = D−ε+
(
−2k(ν)

1 −2k(ν)
2

)
s.
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Now multiply by s on the right side and note that D−ε =−Dε. We find

sD +Ds =−2ρ.

Now we know that (γλ+D)sE(λ,k) =−2ρE(λ,k) and we use this to find the coefficients in (5.5) and (5.6):

(γµ+D)sE(µ,k) = (γµ+D)E(−µ,k)+ (γµ+D)
∑
λ¹µ

aµ,λE(λ,k)

= (γµ+γ−µ)E(−µ,k)+ ∑
λ¹µ

(γµ+γλ)aµ,λE(λ,k)

= (2γµ)E(µ,k)+ ∑
λ≺µ

(γµ+γλ)aµ,λE(λ,k),

where in the last step the E(−µ,k) is removed since γµ+γ−µ = 0. Thus the coefficients must be equal to

aµ,µ =− ρ

γµ
and aµ,λ = 0 for λ≺µ.

Similarly, we have:

(γ−µ+D)sE(−µ,k) = (2γ−µ)E(−µ,k)+ ∑
λ≺µ

(γ−µ+γλ)a−µ,λE(λ,k).

So,

a−µ,−µ =− ρ

γ−µ
and a−µ,λ = 0 for µ≺µ.

a−µ,µ is not determined by this formula, thus we need another way to get this coefficient. Apply s twice to
E(−µ,k):

s2E(−µ,k) = s(a−µ,−µE(−µ,k)+a−µ,µE(µ,k))

= a−µ,−µ(a−µ,−µE(−µ,k)+a−µ,µE(µ,k))+a−µ,µ(E(−µ,k)+aµ,µE(µ,k))

= (a2
−µ,−µ+a−µ,µ)E(−µ,k)+a−µ,µ(a−µ,−µ+aµ,µ)E(µ,k)

= (a2
−µ,−µ+a−µ,µ)E(−µ,k).

s2 is the identity, therefore a−µ,µ = 1− ρ2

γ2−µ
.

Similarly, we have for the operator U acting on E(λ,k):

Proposition 5.4. We have for λ ∈ P,

U E(λ,k) =


E(2−λ,k)+ 2k(ν)

1
2γλ−2 E(λ,k) if λ> 0

2k(ν)
1

2γλ−2 E(λ,k)+
(
1− (2b)2

(2γλ−2)2

)
E(2−λ,k) if λ< 0

. (5.7)

The proof is omitted since it is almost the same as the proof of the previous proposition.
It would be nice if (5.4) and (5.7) can be written as a single expression for all λ ∈ P without losing the

properties of E(λ,k). We try to normalize E(λ,k) with a different constant for every λ ∈ P and we call the
normalized functions F (λ,k). For µ ∈ P with µ> 0 we assume the normalized functions look like this:

F (µ,k) := E(µ,k)

cµ
and F (−µ,k) := E(−µ,k)

c−µ
, cµ,c−µ ∈R.

Dividing (5.4) by cµc−µ gives expressions where sF (µ,k) and sF (−µ,k) are easily extracted from.

s
E(µ,k)

cµc−µ
= E(−µ,k)

cµc−µ
− ρ

γµ

E(µ,k)

cµc−µ
,
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s
E(−µ,k)

cµc−µ
=− ρ

γ−µ
E(−µ,k)

cµc−µ
+

(
1− ρ2

γ2−µ

)
E(µ,k)

cµc−µ
.

Replace all the E functions by F , and multiply by c−µ and cµ respectively.

sF (µ,k) = c−µ
cµ

F (−µ,k)− ρ

γµ
F (µ,k),

sF (−µ,k) =− ρ

γ−µ
F (−µ,k)+

(
1− ρ2

γ2−µ

)
cµ

c−µ
F (µ,k).

The last equations show some similarities with the operator S j from [2]:

S j = sλj +
k j

λα j

(
sλj −1

)
.

In our case the operator is assumed to work on the eigenvalues γλ instead of λ. Also ρ is replacing k j . The
idea is now to derive cµ and c−µ from the formulas for sF by comparing with S j . The term without reflection

in sF is already correct. S j gives the reflection term
(
1+ ρ

γλ

)
s j for λ ∈ P . So we get

(
1+ ρ

γµ

)
= c−µ

cµ
,

(
1+ ρ

γ−µ

)
=

(
1− ρ2

γ2−µ

)
cµ

c−µ
,

which both lead to

c−µ
cµ

=
(
1+ ρ

γµ

)
.

Thus we find the ratio between the constants. Now it is possible to show that normalization by the value
in the point 0 (cλ = E(λ,k)(0)) works. Use the formula in (5.4):

E(−µ,k) = sE(µ,k)+ ρ

γµ
E(µ,k),

and evaluate in the point 0:

E(−µ,k)(0) = sE(µ,k)(0)+ ρ

γµ
E(µ,k)(0) = (1+ ρ

γµ
)E(µ,k)(0).

sE(µ,k)(0) = E(µ,k)(0), because s only influences terms with the variable in them and filling in 0 conveniently
cancels those terms.

Repeating the same arguments for (5.7) gives the ratio:

cµ
c2−µ

= 1− 2k(ν)
1

2γ2−µ−2
,

and cλ = E(λ,k)(0) also satisfies this ratio.
Call the operator working on λ that is associated to s Sλ and the one associated to U uλ. From section 3.4

we get that for D we have the multiplication operator λ. So we find that another representation of the double
affine Hecke algebra is Sλ, λ and uλ.

5.4. Cherednik-Opdam transform in one variable
The Cherednik-Opdam transform is given in 3.4. We now look at the transform in one variable and in par-
ticular, the function G(t ,λ) that is an important part of this transform. The one variable Cherednik-Opdam
transform is given by:

f̃ (λ) =
∫
R

f (t )G(−t ,λ)τd t , λ ∈ iR.
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The function G(t ,λ) is an eigenfunction of the Cherednik operator D with multiplicity function k̄ = (b, ι2 ), and
we can express it as hypergeometric functions:

G(t ,λ) = 2F1

(
λ+ρ

2
,
−λ+ρ

2
;

1+ ι
2

+b,−sinh2(t )

)
+ 1

λ−ρ sinh(2t )2F ′
1

(
λ+ρ

2
,
−λ+ρ

2
;

1+ ι
2

+b,−sinh2(t )

)
.

Note that the hypergeometric function is equal to φλ from chapter 2. Next, we prove that G(t ,λ) can be given
as a function of its symmetric (or even) part and that it is equal to φλ.

Proof. First of all, take G+ the even part and G− the uneven part of G . We have:

G± = 1

2
(G(t ,λ)±G(−t ,λ)) = 1

2
(G ± sG)

and
G =G++G−.

We calculate DG+, DG− and D2G+.

DG+ = 1

2
(DG +DsG) = 1

2
(DG − (2ρ+ sD)G)

= 1

2
λ(G − sG)−ρG =λG−−ρG , (5.8)

where the second equality uses identity 3.3. We now find for the uneven part:

DG− = DG −DG+ =λG − (λG−−ρG) =λG++ρG .

Use the expression for DG+ and DG− for D2G+. We find:

D2G+ = D(λG−−ρG) =λDG−−λρG

=λ2G++λρG −λρG =λ2G+.

Use (5.8) and use that G+ is symmetric:

λG− = DG++ρG = (G+)′−ρG++ρG .

Divide it by λ and fill it in for the following calculation:

G =G++G− =G++ (G+)′

λ
− ρ

λ
G++ ρ

λ
G =

(
1− ρ

λ

)
G++ (G+)′

λ
+ ρ

λ
G .

Thus we find:

G =G++ 1

λ−ρ (G+)′.

In section 3.4 φλ is given in terms of G(t ,λ) and that shows that G+ =φλ.

5.5. Determining the Cherednik-Opdam transform of the non-symmetric
Jacobi polynomials

This section treats the methods that are used to determine the Cherednik-Opdam transform of the non-
symmetric Jacobi polynomials. The first approach is essentially a direct calculation, the second method is
adapting the method of Zhang of chapter 4 to the non-symmetric cases and the last one considers the paper
of Peng and Zhang [13] .

First of all, we need the transformation of E(λ,k) to the Rn domain. Unlike for the W -invariant Pν,η,
powers of sines as well as powers of cosines are needed to express the non-symmetric E(λ,k). It is still possible
to apply the transform of section 4.2, and we call the transformed non-symmetric Jacobi function E x (λ,k).
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The first method tries to express µ ã(
f−2νE x (λ,k)

)
(µ) in a sum of Jacobi polynomials in different degrees.

We have:

µ ã(
f−2νE x (λ,k)

)
(µ) =µ( f−2νE x (λ,k),G(x,µ))k = ( f−2νE x (λ,k),DG(x,µ))k

= (D f−2νE x (λ,k),G(x,µ))k = ( f−2ν(D −2νx)E x (λ,k),G(x,µ))k .

Note that we do not know the action of D on E x (λ,k), but we do know how D acts on E(λ,k). Though we have
to be careful, since the D in our calculations above needs to be transformed to the Tn domain to be able to
apply to E(λ,k). Writing D in sines by using lemma 4.5, we find when we now set x = sin(u):

D j = (1−x2)
d

d x
+ ι

(
1+ 1

2
(x + 1

x
)

)
(1− s)+b(1+ 1

x
)(1− s)−ρ.

And rewrite it again to powers of ex :

D j = d

du
+ ι

(
1+ 1

2
(

e i u −e−i u

2i
+ 2i

e i u −e−i u
)

)
(1− s)+b(1+ 2i

e i u −e−i u
)(1− s)−ρ

= d

du
+ ι

(
1+ 1

2
(

e i u −e−i u

2i
+ 2i e i u

1−e−2i u
)

)
(1− s)+b(1+ 2i e i u

1−e−2i u
)(1− s)−ρ.

Apply this operator to E(λ,k) and we immediately see that this results in a function that does not lie in the
space C[P ]. The resulting function namely contains uneven powers of ex . Therefore this method does lead
anywhere.

We continue with the method of Zhang and we take a look at the changes needed for the non-symmetric
Jacobi polynomials. Most steps need to stay the same like the transformation of Tn to Rn and the changing
of variables in the different inner products. What goes wrong in this approach is the fact that we cannot write
our non-symmetric Jacobi function as a polynomial in the operators D applied to 1. This is because applying
D to 1 only gives polynomials of tanh(t ) and E(λ,k) also contains cosh−1(t ). We try if applying D once to the
function c0 + c1e i s + c−1e i s can be used to make E(2,k) and E(−2,k). After a lot of calculations, this turns out
not to work either.

The last method we look at is the paper of Peng and Zhang [13]. They discuss the Cherednik-Opdam
transform of the symmetric Jacobi polynomials and some kind of non-symmetric Jacobi polynomial in one
variable. The non-symmetric polynomial in this article is just the symmetric Jacobi polynomial multiplied by
tanh(t ), so this polynomial is not the same non-symmetric Jacobi polynomial as defined in 3.8.

Though these methods do not give any concrete results, there are still other possibilities for determining
the Cherednik-Opdam transform of the non-symmetric Jacobi-type polynomials. Some suggestions are given
in the next section.

5.6. Recommendations for future research
We conclude this section by giving some recommendations for future research. In the first method we tried
for calculating the Cherednik-Opdam transform, the resulting functions are not in our original space. It could
work to expand the space and add the polynomials f (t )E(λ,k), where f (t ) is a to be determined function
consisting of combinations of e t and e−t . This idea is based on the paper of Peng and Zhang [13], where
they look at the symmetric Jacobi polynomial in tanh(t ) and a "non-symmetric" variant by multiplying the
symmetric polynomial by tanh(t ). Moreover, it might be interesting to try to expand the methods in the paper
of Peng and Zhang [13] to multiple variables.





A
Useful definitions and theorems

Theorem A.1.

B(x, y) =
∫ ∞

0

sx−1

(1+ s)x+y d s.

Theorem A.2.

B(x, y) = Γ(x)Γ(y)

Γ(x + y)
.

Proof. Use changing of variables t = s
s+1 .

Theorem A.3 (Binomial theorem).

(x + y)n =
n∑

k=0

(
n

k

)
xk yn−k .

Theorem A.4 (Pfaff’s transformation).

2F1(a,b;c; x) = (1−x)−a
2F1

(
a,c −b;c;

x

x −1
.
)

Theorem A.5 (Gauss (1812)). For Re(c −a −b) > 0, we have

2F1(a,b;c;1) = Γ(c)Γ(c −a −b)

Γ(c −a)Γ(c −b)
. (A.1)

Corollary A.6 (Chu-Vandermonde).

2F1(−n, a;c;1) = (c −a)n

(c)n
.

Lemma A.7.

2F1(−n,b;c; x) = (c −b)n

(c)n
2F1(−n,b;b +1−n − c;1−x).

Proof.

2F1

(−n, b
c

; x

)
=

n∑
k=0

(−n)k (b)k

(c)k k !
(x −1+1)k

A.3=
n∑

k=0

(−n)k (b)k

(c)k k !

k∑
j=0

k !

j !(k − j )!
(x −1) j

=
n∑

j=0

(x −1) j

j !

n∑
k= j

(−n)k (b)k

(c)k (k − j )!
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=
n∑

j=0

(−n) j (b) j

(c) j j !
(x −1) j

·
n∑

k− j=0

(−n + j )k− j (b + j )k− j

(c + j )k− j (k − j )!

A.6=
n∑

j=0

(−n) j (b) j (c −b)n− j

(c) j (c + j )n− j j !
(x −1) j

=
n∑

j=0

(−n) j (b) j (c −b)n

(c)n(c −b +n + j −1) j j !
(x −1) j

= (c −b)n

(c)n

n∑
j=0

(−n) j (b) j

(−c +b −n +1) j j !
(1−x) j .



B
Proofs and calculations

B.1. Calculation in second method Koornwinder
First 2.16 and 2.17 are calculated.(

(cosh(t ))−(α+β+δ+µ+2)
)′′

Pn
(
1−2tanh2(t )

)
+2

(
(cosh(t ))−(α+β+δ+µ+2)

)′ (
Pn

(
1−2tanh2(t )

))′
=

(
− (
α+β+δ+µ+2

)
tanh(t )

(
(cosh(t ))−(α+β+δ+µ+2)

)′
− (
α+β+δ+µ+2

)(
1− tanh2(t )

)
(cosh(t ))−(α+β+δ+µ+2)

)
Pn

(
1−2tanh2(t )

)
−2

(
α+β+δ+µ+2

)
tanh(t ) (cosh(t ))−(α+β+δ+µ+2) (Pn

(
1−2tanh2(t )

))′ (B.1)

Next 2.18 is written out with the help of the differential equation to which the Jacobi polynomials are a solu-
tion (see [3, 10.8 (14)]).

(cosh(t ))−(α+β+δ+µ+2) (Pn
(
1−2tanh2(t )

))′′
= (cosh(t ))−(α+β+δ+µ+2)

(
16tanh2(t )cosh−4(t )P ′′

n

(
1−2tanh2(t )

)
+ (−4cosh−2(t )+12tanh2(t )

)
P ′

n

(
1−2tanh2(t )

))
= (cosh(t ))−(α+β+δ+µ+2) ·4

(
2(α+1)cosh−2(t )

−2(α+δ+2)tanh2(t )cosh−2(t )P ′
n

(
1−2tanh2(t )

)
−n (n +α+δ+1)cosh−2(t )Pn

(
1− tanh2(t )

))
+ (cosh(t ))−(α+β+δ+µ+2) (−4cosh−2(t )+12tanh2(t )

)
P ′

n

(
1−2tanh2(t )

)
= (cosh(t ))−(α+β+δ+µ+2) ·4

(
(2α+1)cosh−2(t )

− (2α+2δ+1)tanh2(t )cosh−2(t )P ′
n

(
1−2tanh2(t )

)
−n (n +α+δ+1)cosh−2(t )Pn

(
1− tanh2(t )

))
= (cosh(t ))−(α+β+δ+µ+2) ·

(
− (2α+1)tanh−1(t )

+ (2α+2δ+1)tanh(t )
)(

Pn
(
1−2tanh2(t )

))′
−4n (n +α+δ+1)cosh−2(t ) (cosh(t ))−(α+β+δ+µ+2) Pn

(
1− tanh2(t )

)
.

(B.2)

Then B.1 and B.2 are added to find:

−(
2
(
µ+1

)
tanh(t )+ (2α+1)tanh−1(t )+ (

2β+1
)

tanh(t )
)

p ′
n(t )
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+
(
− (
α−β+δ−µ−1

)
tanh(t )

(
(cosh(t ))−(α+β+δ+µ+2)

)′
− (
α+β+δ+µ+2

)(
1− tanh2(t )

)
(cosh(t ))−(α+β+δ+µ+2)

)
Pn

(
1−2tanh2(t )

)
+ (2α+1)tanh−1(t )

(
(cosh(t ))−(α+β+δ+µ+2)

)′
Pn

(
1−2tanh2(t )

)
−4n (n +α+δ+1)cosh−2(t ) (cosh(t ))−(α+β+δ+µ+2) Pn

(
1− tanh2(t )

)
=−(

2
(
µ+1

)
tanh(t )+ (2α+1)tanh−1(t )+ (

2β+1
)

tanh(t )
)

p ′
n(t )

+
((
α−β+δ−µ−1

)(
α+β+δ+µ+2

)
tanh2(t ) (cosh(t ))−(α+β+δ+µ+2)

− (
α+β+δ+µ+2

)(
1− tanh2(t )

)
(cosh(t ))−(α+β+δ+µ+2)

)
Pn

(
1−2tanh2(t )

)
− (2α+1)

(
α+β+δ+µ+2

)
(cosh(t ))−(α+β+δ+µ+2) Pn

(
1−2tanh2(t )

)
−4n (n +α+δ+1)cosh−2(t ) (cosh(t ))−(α+β+δ+µ+2) Pn

(
1− tanh2(t )

)
=−(

2
(
µ+1

)
tanh(t )+ (2α+1)tanh−1(t )+ (

2β+1
)

tanh(t )
)

p ′
n(t )

+
((
α−β+δ−µ)(

α+β+δ+µ+2
)

tanh2(t )

−2(α+1)
(
α+β+δ+µ+2

)−4n (n +α+δ+1)cosh−2(t )
)
pn(t ).

(B.3)

Finally adding 2.19 and replacing cosh−2(t ) by 1− tanh2(t ) gives 2.15.
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