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Abstract

Superstar researchers - those who author research papers which are far more
widely cited than average - are generally well-respected within their fields and are
frequently sought by new researchers for advice on career development and for
collaborations. Though the effect of collaboration with superstar researchers on
associated researchers is not well-researched yet, it is believed that collaboration
with superstar researchers increases the research output of associated researchers,
but may decrease their originality and innovation. This project explores a method
of visualizing the career development of researchers associated with superstars. Us-
ing a dataset of authors, papers, and paper citations, a graph has been created with
papers as edges and nodes as authors to visualize the career development of asso-
ciate authors after collaboration with a superstar. The utility of this visualization
is evaluated using heuristics.

1 Introduction
The network of institutions and researchers conducting and publishing papers is vast
and well-established. The research on collaboration between authors, particularly in-
volving those who write the 0.01% most cited papers, however, is not. Research output
of those associated with these so-called superstar researchers, when adjusted for qual-
ity, has been found to by 5-8% after the sudden death of the superstar [2]. Another
potential negative effect of the inequality and hierarchy in academic research is that
funding accumulates towards the researchers who are already most successful – an effect
known as the Matthew Effect. Researchers who are successful during their early research
grants, receive more funding later in their career and apply for grants more often than
those who are not[4]. Primarily, this project is inspired by the article by Kelty, et al.,
Don’t follow the leader: Independent thinkers create scientific innovation, which explores
the potential side effects of collaboration with superstars in academia, and finds that,
overall, academia "pays a price by focusing resources and attention on superstars" [10].
However, there is a lack of effective visualization of the effect of superstars on associ-
ated researchers. With all of the potential issues caused by the hierarchical structure of
academia, it is important to research this further. Therefore, the primary research ques-
tion this paper seeks to answer is how the career growth of researchers who collaborate
with superstars can be visualized in terms of their research, independent of that of the
superstar.

This task introduces some important subquestions to include:

• Which dataset is most appropriate for this project?

• How can a visualization from an appropriate dataset be produced?

• What are some useful conclusions that can be derived from the visualization and
the dataset?

• How can the usefulness of the visualization be properly evaluated?

Graph visualization is a common problem both in industry and in academics, and as
such, there are many available open-source solutions for graph libraries. It was decided
to create an interactive graph in a web browser (as opposed to static images) to allow for
manipulations, zooming, and panning on the graph. Many JavaScript graphing libraries
are based on D3.js1, but for this project, it does not provide enough abstraction and
its direct use would be more difficult than necessary. Cytoscape[6] is a very popular,
mature, and well-featured graph visualization and graph theory library used by many

1https://d3js.org/
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universities and major companies. Based on the available alternatives, I chose to use
Cytoscape for this project.

There has also been significant research into graph visualization techniques and us-
ability. For this project, it is essential to ensure that the visualization produced is
useful and clear. Bennett (et al.)[3] describe a number of important usability heuristics
for graphs, including limiting edge crossings, limiting edge bends, and reducing edge
lengths (while still trying to create uniform edge lengths). Additionally, Herman (et
al).[8] explain that graph visualization, in the form of nodes and edges, is most useful
if there is an inherent link between the data. Therefore, it is important to ensure that
the authors used as nodes in the produced visualization are well-connected and that the
graph design is intuitive.

This paper is structured as follows: the second section describes the problem in
greater detail and the methods used to answer these research questions; what follows is
a section describing the derivation of key parameters used in the creation of the graph;
the next section explains the results of my research and shows the key visualization; then
there is a section about responsible research and ethical implications of my research and
its results; and finally, a section concluding my research and deliverables.

2 Problem Description and Collaborative Work
To visualize career development of those associated with superstars, it is important to
first define the desired output of the visualization. This section describes the process
of conceptualizing the graph, identifying an appropriate dataset, and collaboratively
pre-processing it in preparation for building the graph visualization.

2.1 Formal Problem Description
This project aims to explore potential methods to visualize the career development of
those who associate with superstar researchers, independent of the superstar themselves.
Further, it aims to produce and evaluate such a visualization on the basis of usability
criteria. To that end, this project produces a graph of scientific research. Through
discussions with my supervisor and responsible professor, we have collectively built an
understanding that this involves graphing "superstar authors" (the most highly cited
authors in a given field), "associated authors" (those who collaborated with superstar
authors), and "collaborators" (those who later worked with an associated author). Fur-
thermore, the graph must be readable and useful, must not contain too much extraneous
information, and must be properly evaluated.

This graph requires several pieces of data. Since authors are nodes and papers are
edges, at least a list of papers and paper authors from multiple disciplines are necessary.
Additionally, a database of citations between papers is necessary to determine superstar
status. Thus, we chose to find a dataset including authors, papers, and citations. My
project group collaborators needed a similar dataset, so we decided to collaborate on
the selection and processing of a suitable dataset.

Processing such a dataset also has specific challenges. This dataset is large, so it is
necessary to efficiently store and process at least a few hundred gigabytes of data. It
will also be necessary to efficiently relate records, for example, to relate citations and
papers to find the most highly cited papers, and relate those papers to authors to find
the most highly cited authors.
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2.2 Collaborative Work with Research Project Team
My project group and I began with the selection of a suitable dataset. Our search
began with the Semantic Scholar Open Research Corpus (S2ORC) originally used by
the paper by Kelty (et al.)[11]. This dataset is delivered in a large set of files conforming
to the JSON Lines2 format in 4GB partitions, totaling to around 1 terabyte of data.
Each record of the dataset contains the full text of a paper and lists of indices in the
text of where various attributes like the authors, citations, author affiliations, and the
abstract. To produce useful results, these indices must be processed into their original
text and then related with that of other papers. To that end, I wrote a simple script
that took the S2ORC dataset as an input and produced a semi-processed JSON Lines
output containing, for each paper, a list of authors and the other attributes (using the
indices from the original dataset on the full text). After some refinement and tuning of
regular expressions, I was able to produce a fairly consistent result.

Once the S2ORC dataset was processed, our project group considered how to process
this data. In the case of a processed JSON Lines dataset, relating papers to other papers
through their citations would require, for each paper, linearly scanning through the entire
dataset to find each paper that it cites, and incrementing a counter on that paper for
each citation. This has a time complexity of O(k ∗ n2) for all papers, where k is the
number of papers each paper would cite on average, and n is the number of papers,
which is impractical for a dataset of this size. We also considered using language models
to determine the discipline of the paper and to parse metadata, but we arrived at the
conclusion that even an execution time of one second, which is very generous, processed
over millions of records, leads to a processing time of at least 12 days, and likely at very
high cost as well due to the cost of API calls. Our team then began to look for other,
more efficient options.

We looked to how datasets of this size are processed in industry and found a few po-
tential solutions. One of them is to use Apache Hadoop3 and Apache Spark4, a software
framework and engine respectively used in industry for big data analytics. Typically
these applications are run on a cluster and take advantage of parallel computing. In our
case, we wanted to ensure that our data processing was simple to replicate, and as such
we chose to avoid this option to avoid the expense of running a cluster computer. We
also considered using ElasticSearch and Kibana, a big data search engine and companion
UI respectively, for processing this dataset, but they do not offer the join functionality
we needed, and the time required to familiarize ourselves with the interface and API
was too significant. In the end, we chose to run a PostgreSQL5 database for process-
ing our dataset, because it is a mature project, has all the necessary functionality for
examining the dataset, and because it is heavily optimized for joins and operations on
a single-machine cluster. Every optimization our team considered, such as binary data
storage, indexes, and sorting, are already implemented in PostgreSQL, and in a way
that is likely far more efficient than our team could accomplish during the scope of our
research project.

After further examination, our group found that the S2ORC dataset is not appropri-
ate for our use case because we do not need the full text from the papers and have had
trouble normalizing various aspects of the dataset. For example, author names cannot
easily be related because of different spellings or abbreviations of their name (think of
J. Doe vs John Doe). We found that Semantic Scholar offers a dataset more suitable for
our use case called the Semantic Scholar Academic Graph (S2AG)6. The S2AG contains

2https://jsonlines.org/
3https://hadoop.apache.org/
4https://spark.apache.org/
5https://www.postgresql.org/
6https://blog.allenai.org/semantic-scholar-academic-graph-for-developers-6188cfec84d4
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Figure 1: PostgreSQL database table sizes

several datasets, including abstracts, authors, citations, papers, and TLDRs (summaries
of papers generated by language models). Additionally, this dataset is already neatly or-
ganized and indexed with unique identifier for each paper, citation, and author. Loading
this database into a PostgreSQL database makes it fairly easy to join on these identifiers,
without having to normalize other attributes such as paper titles or author names. Our
team decided to use this dataset.

The datasets including authors, citations, and papers contain hundreds of gigabytes
of data. We began loading the authors dataset first since it is simple and does not contain
multi-variate attributes that require multiple tables. This dataset was also used to
develop a script to process s2ag datasets into the database. Though the authors dataset
contains no multi-variate attributes, the papers dataset contains multi-variate attributes
for both authors and fields (paper disciplines). Additionally, for citations, it was decided
to place citation contexts (the paragraphs where the citations appear) in a separate
table from citation entries because they are not needed in many cases and excluding
them may improve query performance. Therefore, we have six tables: citation_context
(which contains the paragraphs where citations are located), citation_entry (which
contains a record of all citations between papers), paper_entry_paperfield (the fields
and disciplines of each paper), paper_entry (the main paper database, listing all papers),
paper_entry_paperauthor (a list of all authors for each paper), and author_entry
(which contains various attributes of each author). A script was written to organize
the s2ag datasets in this manner, and then optimized through, among other things,
batching insertions (multiple insertions at once instead of the naive approach of just
one) and multi-threading. The database processing took several days. The resulting
sizes of our database tables are shown in Figure 1.

3 Determining key parameters for data visualization
To produce a useful and intuitive visualization of such a large dataset, it is important
to ensure that the right subset of the dataset is used. To that end, I have decided
on several key parameters to be used to filter the dataset. A key parameter I have
decided is to focus specifically on recent data, to ensure that the visualization is as
relevant to the present as possible. The data used for the visualization will focus on
the years 2003 - 2023 (the last 20 full years available at the time of writing), which
should ensure that the conclusions presented by the visualization are recent. In terms
of determining superstar status, the authors of the papers which received the greatest
number of citations between 2003 and 2013 were used, and from the top of the list,
three were selected per discipline, with six disciplines total. The three selected were
offset by five from each other (as in, positions 1, 6, and 11) to ensure a fair sampling
from the list and to avoid situations where the three superstars were collaborators on
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the same highly-cited paper. Additionally, to further clarify the graph by removing
unnecessary information, only a sample of associates and collaborators are made into
graph nodes. The formula chosen for this purpose is, where N = the number of associates
or collaborators, ceil(0.1N) + 5, which ensures that an author with more associates or
collaborators is still shown with more connected nodes, while ensuring that the authors
with many hundreds of connected nodes do not crowd out the rest of the graph. To
identify associated authors (those who are associated with a superstar), collaborations
between the previously-identified superstars and other authors between 2008 and 2013
were considered. To identify collaborative authors, collaborations between the associated
authors and others between 2013 and 2023 were considered. This produces a large list
of associated and collaborative authors, with authors as nodes and papers as edges.

The quantity of six disciplines was chosen to provide a reasonably broad overview of
the development of associated authors in various fields while still providing a reasonably
small graph. The disciplines themselves were chosen to be a broad selection of STEM
and non-STEM subjects, and also to vary in relative size and prominence. The chosen
disciplines include Art, Computer Science, Engineering, History, Law, and Physics.

To properly signify the superstars, associates, and collaborators, the superstars are
shown as red nodes, the associates as green nodes, and the collaborators in grey. The
sizes of the nodes depends on the prominence of the author (the number of citations they
received - as defined earlier), relative to the prominence of the field (measured as the
average citation count of the top 10 cited authors between 2003-2013, using the same
dataset as before). Edges which represent more papers (more frequent collaboration
between two authors) are thicker than edges which represent only one paper. Within a
discipline, nodes are clustered and appear in a colored region of the graph corresponding
to that discipline.

4 Data Processing, Visualization, and Evaluation
This section describes the process of producing graph data from the intermediate dataset,
creating a visualization, deriving conclusions from the data, and evaluating the visual-
ization.

4.1 Data Processing
The process of converting the dataset from authors, papers, and citations to a graph
dataset of nodes and edges was complex and arduous due to the size of the dataset. Pro-
cessing the dataset brought several questions, including what the dataset result schema
should be, how to efficiently query the PostgreSQL database, and how to write the
script that efficiently queries the database and produces the resulting dataset. Each one
of these steps caused significant challenges.

To produce a usable graph from the dataset, it is necessary to first consider the
desired output. The graph shall contain a visualization of authors as nodes and papers
as (undirected) edges. Each edge could contain multiple papers. Nodes should be
colored according to the category of author (superstar, associate, or collaborator). The
size of the output should not be excessive, both in file size and in number of edges and
nodes, and, ideally, the output can be converted into the input format for multiple graph
libraries.

Then, I considered a potential resulting schema for the graph data. Initially, I re-
viewed academic research describing graph data structures used for large graph databases.
Particularly, I considered the semi-structured tree model described by Angles and Gutierrez[1].
However, I came to the conclusion that any graph data structure too large to fit in a
simple JSON file is also too large to properly visualize. Thus, I decided to save the
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Figure 2: Cytoscape’s grid layout

graph in a JSON file. I also considered how to properly address the problem of undi-
rected edges potentially being stored twice. To solve this, edges are stored in a nested
JSON object, with the lower-value author ID being on the outside and the higher-value
author ID being on the inside. This means that there is only one way to store an edge.
Each edge contains a list of papers that the two authors collaborated on. Additionally,
when this file is loaded into JavaScript or Python, a hash map object can be used to
efficiently query edges. Nodes are stored as an object as well, indexed by author ID and
containing a few pieces of information about that author, such as their citation count,
their name, their discipline, and their type (superstar, associate, or collaborator). This
JSON data structure is simple, efficient, and appropriate for this use case. However, for
usability purposes, it has been decided to split the graph into six different graphs, one
for each discipline. Therefore, the output should be a JSON file for each discipline.

With a schema and a plan, I then began writing a script to convert the dataset
into the JSON data structure. The first attempt was the naive method of querying
the database for all associates and then, for each one, all collaborators. This results
in several thousand queries, each taking an average of around 30 seconds, which would
result in multiple days of execution time and several gigabytes of storage. However,
optimizations previously used in the database insertion script, such as multi-threading,
cannot easily be used in this case because nodes connect to other nodes and it is difficult
to ensure thread safety. The solution was to move the database querying, which is the
bottleneck, to worker processes while performing graph operations on one process. An-
other optimization used is to cache intermediate results from database queries. Through
these optimizations, the script execution time is around three hours, which is enough
for this purpose.

4.2 Results: Creation of the visual graph
Once the dataset was processed, I began to write a small web application using the
Cytoscape library to host the visualization. This web application should be lightweight,
minimalistic, and prominently present the visualization. To avoid the use of unnecessary
libraries, this visualization is written in pure HTML, CSS, and JavaScript. I added a
tab bar, much like those present in web browsers, to allow the user to easily select which
discipline to view. To minimize memory usage, each graph is loaded when the user clicks
on the button to view it and unloaded when the user clicks on another button. These
choices result in a clean, fluid interface.

An important consideration in the creation of the graph was the layout of the nodes.
By default, Cytoscape uses a grid layout, which places nodes in a rectangular grid, as
shown in Figure 2. This layout obscures the edges and violates several of the heuristics
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Figure 3: Cytoscape’s AVSDF layout

Figure 4: Cytoscape’s cose layout

defined by Bennett (et al.)[3], particularly related to edge placement. Another layout
supported by Cytoscape is AVSDF, based on a circular drawing algorithm authored by
He and Sykora[7]. This algorithm, shown in Figure 3, aims to minimize edge cross-
ings. However, when run on a dataset of the size visualized in this project, it creates
a large ring with edges crossing the inside of the ring. This does not properly show
the collaborations between associate authors and collaborators. In addition, Cytoscape
supports force-directed graph layouts, such as cose (Compound Spring Embedder). cose
implements the algorithm defined by Dogrusoz (et al)[5]. It was determined through
trial and error that this layout produces qualitatively the best graph layout, particularly
when accounting for graph heuristics. Therefore, it was chosen to use the cose layout to
produce the graph.

The graph itself varies widely between disciplines. The art discipline has only one
associate and zero collaborators, while the physics discipline has relatively many asso-
ciates and collaborators. Table 1 describes the number of associates and collaborators
considered per discipline, along with contextualizing information about their relative
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Discipline Prominence Associates Collaborators Collaborators per associate
Art 1 1 1 1
Computer Science 20.1 77 10356 134.5
Engineering 10.7 55 4281 77.8
History 1.6 24 3993 166.4
Law 2.1 56 32109 573.4
Physics 33.6 177 109698 619.8

Table 1: Associates, collaborators, and collaborators per associate, per discipline, de-
rived from the first, sixth, and eleventh most popular author per discipline (as described
previously)

Figure 5: The superstar visualization graph for the Art discipline

prominence7. Figure 5 shows the graph for art, and figure 6 shows the graph for com-
puter science. The graph visualization tool has been published to GitHub Pages8, a
static web-hosting service commonly used to host sites for open-source projects.

4.3 Analysis of results
The graphs and data show notable results, particularly when comparing disciplines.
When looking at the graphs, it is clear that associates in some disciplines, particularly
law and physics, generally have more collaborators after working with superstars than
associates in others. For example, in the art discipline, among the sampled data, there
was only one associate and one collaborator (the superstar themselves), leading to just
one collaborator per associate, while the physics discipline has 109,698 collaborators and
177 associates, leading to an average of 619.8 collaborators per associate. This result for
physics means that authors are generally very successful after working with superstars,
whereas for art, this effect may be less significant. There does not appear to be a strong
correlation between the relative prominence of a field and the number of collaborators
per associate.

7The number of citations of the most cited author in the field, given previous constraints, divided
by the number of citations of the least prominent analyzed field.

8https://technophilus.github.io/rpgraph/
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Figure 6: The superstar visualization graph for the Computer Science discipline

4.3.1 Evaluating the visualization against heuristics

To produce an effective and understandable visualization, it is important that it is
intuitive and understandable. Bennett (et al.) describe heuristics for nodes, edges,
and the general layout of the graph that can be used to measure the usability of a
visualization. In this section, I will apply these heuristics to the superstar visualization
graph to evaluate the usability of the graph.

One important heuristic is that nodes should be evenly distributed throughout the
graph and there should be some distance between the nodes. Bennett (et al.) describe
that when clustering nodes, "the distance between nodes in a cluster should be equal,
and the number of different distance levels between nodes should be minimized." The
superstar visualization graph fulfils this criterion for smaller graphs, such as Art and
Computer Science, but for larger graphs, such as Law and Physics, it struggles with
the quantity of nodes and places them closer together. Another notable node heuristic
is that nodes should be kept away from unrelated edges. This graph adheres to that
heuristic fairly well for smaller graphs but again struggles for larger graphs.

Edges and edge placement also have relevant heuristics. According to Bennett (et
al.), "By far the most agreed-upon edge placement heuristic is to minimize the number
of edge crossings in a graph. The importance of avoiding edge crossings has also been
extensively validated in terms of user preference and performance. Similarly, based
on perceptual principles, it is beneficial to minimize the number of edge bends within
a graph[3]". The force-directed graph layout algorithm used to create the superstar
visualization graph minimizes edge crossings and does not create bent edges, even for
very large graphs. Additionally, edge length should be minimized to reduce the size of
the graph. This superstar visualization graph does this appropriately when accounting
for the previously mentioned node heuristics regarding space around nodes. Overall, the
graph visualization tool adheres to these edge heuristics for all size graphs.

Finally, it is important to consider heuristics relating to the overall layout of the
graph. An important heuristic is ensuring that the shape of the graph is similar to the
shape of its container. In this case, that would be the shape of the frame of the viewer
web page. The graph is dynamically generated and, as such, should appropriately be
generated with a shape similar to its container. There are a few other heuristics, such
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as maximizing convex faces, which are not achievable in this graph due to its nature
as a tree-like graph (cycles exist but are rare). Therefore, this graph visualization tool
generally adheres to layout heuristics.

5 Responsible Research
As with any research project, ethics and the ability to replicate findings are important
for proper scientific research. To that end, I have evaluated potential risks involved in
the handling of the dataset used for this visualization, the processing of the dataset, the
visualization itself, and the potential use cases of the visualization. Additionally, I have
considered potential difficulties in replicating this process. In this section, I will detail
my findings.

5.1 Ethical considerations
A critical concern that was considered during the production of this visualization is
respecting the privacy of the authors, the licenses of the papers, and the license of the
original dataset. Semantic Scholar, the organization responsible for the S2ORC and
S2AG datasets, requires an API key for accessing the dataset, though they provide API
keys with barely any preconditions. Therefore, I do not consider the dataset to be
private or restricted. Semantic Scholar also clarifies in their license agreement9 that the
data provided from the dataset typically are granted under separate licenses, including
the CC BY-NC license and the ODC BY license. These licenses require attribution and
the CC BY-NC license prohibits commercial use10. The papers provided as part of the
dataset are typically under other licenses. This project does not use the contents of the
papers, only the S2AG datasets, and therefore the CC BY-NC and ODC BY licenses are
applicable. The use of these datasets for this project is compliant with these licenses.

Another important consideration is the set of conclusions that may be made from
this visualization. It is important for those using this visualization to draw the correct
conclusions from it, and not to perpetuate existing unfair biases. For example, it is
known that race and gender, for example, are known to affect academic success, as
shown by Johnson-Bailey and Cervero[9]. There is a significant risk that those using
this visualization could make unfair connections between academic success and race,
and then attribute such success as a characteristic of the race of the author. However,
attempting to mitigate this by, for example, normalizing the size of the nodes by the
race of the author presents other significant ethical risks, such as determining how much
it is fair to adjust the node size and whether it is reasonable to increase the size of the
nodes of authors who are of racial minorities simply because of their race. Therefore, it
is left up to the interpreter of the visualization to understand that there may be racial
or other biases in the presented data and to account for that when drawing conclusions
from the visualization.

Environmental effects of large computation tasks are an additional factor that have
become even more noticeable with recent advancements in commercial applications of
machine learning, such as ChatGPT and Google Gemini. It has been noted that cloud
computing consumes significant amounts of energy that have detrimental environmental
effects. According to Uchechukwu (et al.), as of 2014, datacenter power consumption
worldwide is estimated to account total 26 gigawatts, which was 1.4% of global energy
consumption[12]. To ensure a limited impact and reasonable execution time based on
available resources, the scripts running the visualization were designed to run as ef-
ficiently as possible, and the choice of using PostgreSQL for our dataset storage also

9https://www.semanticscholar.org/product/api/license
10https://creativecommons.org/licenses/by-nc/4.0/deed.en
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reduces energy consumption by ensuring that queries and accesses are as efficient as
possible. However, it is worth considering that replications of this processing could be
done inefficiently and result in more power consumption than necessary.

5.2 Reproducibility
It is critical that the results of scientific research can be reproduced by others. Unfor-
tunately, the size of the dataset naturally causes difficulties in replication. Those who
wish to replicate this processing would require, at minimum, one terabyte of storage
and a persistent server (for PostgreSQL). For reasonable performance, an SSD is also
required, preferably one with a high IOPS (I/O operations per second) specification. It
is common for tasks like this to be performed on rented cloud servers. At the time of
writing, using the AWS pricing calculator11, assuming a 1 terabyte SSD storage volume
and an ec2 (virtual server) instance with 4 vCPUs and 16 GiB of memory, the cost of
processing this dataset for two weeks would be USD$81. This could be unaffordable,
particularly for student researchers. This could pose a significant hurdle to reproducing
the data processing and visualization.

The various scripts used for data processing and storage have been published at the
4TU12 data repository13 and all use only the python standard library and psycopg214, a
mature library used for interfacing with PostgreSQL. This is an intentional design choice
intended to improve reliability and ensure that the creation of this visualization can be
replicated. Therefore, the risk is low that libraries are deprecated or no longer main-
tained. However, there remains a risk of the deprecation of standard library functions
or compatibility-breaking changes in future Python versions.

It is possible that processing the dataset could also be hampered by changes in the
s2ag dataset schema, or by the elimination of the dataset entirely. Namely, it is possible
that Semantic Scholar is no longer hosted by the Allen Institute for AI15. Use of a
different dataset may be difficult due to changes in schema or fundamental changes in
the structure of the data. Therefore, the risk of being unable to replicate this data
processing and creation of the visualization due to changes in the dataset or lack of
availability of the original dataset is fairly high.

6 Conclusions and Future Work
This report demonstrates a procedure through which the careers of those who are asso-
ciated with superstar researchers can be visualized and how the resulting visualization
can be evaluated through established guidelines and heuristics. However, the visualiza-
tion and the analysis of the results of the visualization can both be further developed.
This report presents only one possible way to produce an evaluate such a visualization,
others are described in the following subsection. Overall, there is a significant amount
of development that can be made in this direction.

6.1 Future work
There are several directions for future development of this project, particularly relating
to data set selection, efficiency and scale of data processing, visualization technologies
and techniques, and analysis of results. More specifically to the process described in this

11https://calculator.aws
12https://www.4tu.nl/
13https://data.4tu.nl with DOI 10.4121/4243dace-9bc2-4ca2-a343-3d481d6a9316
14https://pypi.org/project/psycopg2/
15https://allenai.org/
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paper, future development could focus specifically on more intelligent sampling from the
dataset (rather than simply the first, sixth, and eleventh elements) and closer adherence
to the graph heuristics.

S2AG by Semantic Scholar was the original dataset used for this project and was
evaluated to contain all of the information within the scope of this project. However,
if additional specific data is needed or if more interdisciplinary knowledge is required, a
different dataset may be more useful. An in-depth exploration into superstar collabora-
tion may use something like S2ORC, a dataset of full texts and publication information
of papers, to produce a more specific and accurate dataset.

This project used a PostgreSQL database as an intermediate step when processing
the dataset. For the approach used in this project, and at the scale it was used during
this project, this was a good choice. The PostgreSQL database requires a persistent
server and a high-performance storage drive, and in our use, it was restricted by the I/O
performance of this drive. When attempting to produce larger graphs, use a larger por-
tion of the dataset, or when attempting to use a non-persistent server (such as DelftBlue
or a comparable supercomputer) to process this dataset, there are alternatives, such as
Apache Spark and Hadoop, that may be more suitable.

Web technologies, such as Cytoscape, JavaScript, HTML, and CSS were chosen to
produce this visualization in an interactive format. However, Cytoscape has far more
advanced configuration and performance tuning options than the ones used during this
project. The graph could be, for example, made to be better animated or better able to
align with the graph usability heuristics described in previous sections, such as by placing
nodes further apart and making the labels more clear. For this project, a warning label
was placed next to the physics tab to warn that it may take a significant amount of time
to render. In the future, this could be resolved through performance improvements.

Various conclusions have been drawn from the visualization, but far more research
can be conducted into specific results from the visualization and what factors may lead
to them. For example, research can be done to understand why physics has, on aver-
age, far more collaborators per associate within this sampling of the dataset than art.
Additionally, more intelligent sampling can be done to ensure the observed results more
closely match reality. The reasons for these patterns are likely to be domain-specific and
require extensive research into each discipline to fully understand.

6.2 Conclusion
The visualization of such a broad subject such as the career development of academics,
complicated by a very large dataset, is not a trivial problem. It is especially not trivial
to condense such a dataset into a visualization that is usable and intuitive. Producing
this visualization takes many steps that each require consideration, such as finding an
appropriate dataset, evaluating methods to process this dataset, processing the dataset
into a form from which it can be queried, processing the dataset into a graph dataset,
actually creating the graph, and ensuring it is presented in a form that is usable and
understandable.

From this visualization, it is possible to draw notable conclusions about the career
development of those who work with superstars, particularly across disciplines. In some
disciplines, such as physics, those who associate with a superstar author visually appear
to have more success than those in other disciplines, such as art. There is not a direct
correlation between the number of collaborators per associate and the prominence of
the field, which may mean that some fields are naturally more collaborative than other
fields.

Overall, this process of visualizing academic career development generally works well,
creates a useful graph, and can lead to several interesting conclusions, but it falls short
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in terms of fair sampling, visualization performance, node placement heuristics, and
conclusions about the academic field made from the data, and all of these issues can be
addressed in the future as further development on this project.
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