Indoor positioning with the Microsoft Hololens

Laurens Oostwegel

CGI ŤUDelft Supervisors TU Delft Stelios Vitalis TU Delft Ken Arroyo Ohori CGI Robert Voûte

Emergency Response

. Location not known beforehand

- . Little time available
- . No extensive 3D data at hand

SLAM

. Simultaneously Localization and Mapping

. No connection with

existing data

. Drift Error

CG

f UDelft

5

Previous attempts

. Marker-Based

. ICP algorithm

Develop a method to estimate **the position** of the **Microsoft Hololens** on a **2D floor plan**, without any pre-existing infrastructure.

. Position precision & reliability

. When does the method fail

Research Questions

CGI

How can the Microsoft Hololens improve indoor positioning, using the on-the-fly produced mesh with an existing 2D floor plan?

- 1. What **spatial matching techniques** are feasible to match a **3D mesh** acquired real-time with the Microsoft Hololens with an **existing 2D floor plan**?
- 2. What is the most promising spatial matching technique in terms of **accuracy** and **speed**?
- 3. How can the **indoor positioning** of the Hololens be improved by making use of the researched positioning method?
- 4. In which cases does the researched positioning method **fail** to estimate the position on a 2D floor plan?

Methodology

Repeat every 10 seconds

CGI TUDelft

Methodology

Repeat every 10 seconds

CGI

Methodology

Repeat every 10 seconds

Location

" I'm in the bedroom "

Position

" I'm at point (0.5, 10) with a precision of 3m "

CGI TUDelft

Location

" I'm in the bedroom "

Position

" I'm at point (0.5, 10) with a precision of 3m "

CGI TUDelft

221B Baker Street / Lizarralde (2017) 14

Floor Plan

- . Correct scale
- . Vector format
- . Semantics
- . No noise

Methodology

Repeat every 10 seconds

. Iterative Closest Point (ICP)

. Local Quadratic Approximation &

Instantaneous Kinematics

. Hough Transform

CGI FuDelft Algorithms

Iterative Closest Points

CGI ŤUDelft

Not the real ICP algorithm

Local Quadratic Approximation & Instantaneous Kinematics

- . ICP & small distances
- . Helical motion

CGI

CGI ŤUDelft

Translation + Rotation

Evaluation

- . Accuracy and speed of algorithms
- . On-the-fly error metrics
- . Accuracy of position
- . Robustness (failures)

CGI TUDelft

Questions?

Local Quadratic Approximation & Instantaneous Kinematics

. Distance to tangent plane for x(i) + v(x(i)) $d_i + \mathbf{n}_i \cdot (\bar{\mathbf{c}} + \mathbf{c} \times \mathbf{x}_i).$

. Instead of the regular distance function $F(C) := F(\mathbf{c}, \bar{\mathbf{c}}) = \sum_{i} (d_i + \mathbf{n}_i \cdot (\bar{\mathbf{c}} + \mathbf{c} \times \mathbf{x}_i))^2$. Squared distance approximation:

CGI TUDelft

26

