
Genetic Algorithm for Evolving an Objective Function of a Program Synthesizer

Nikolaos Efthymiou
Supervisor: Sebastijan Dumančić

EEMCS, Delft University of Technology, The Netherlands

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

Abstract
Program Synthesis is a challenging problem in Ar-
tificial Intelligence. An important element of a
program synthesizer is the objective function that
guides the combinatorial search for a program that
satisfies a given user intent. Given multiple I/O
example transformations that correspond to the
intended behavior of the program, this function
evaluates the performance of a generated program
based on the distance of its output to the correct
output. In this study, we consider the possibility of
using a Genetic algorithm for the evolution of such
a function as a means to partially automate the de-
sign process. In particular, we propose the Geneti-
cObjective algorithm that evolves domain-specific
objective functions by combining user-defined lo-
cal distance functions in an algebraic expression.
Using the Brute synthesizer, we conducted experi-
ments in the Robot Planning and the String trans-
formation domains, the results of which showed
that such an approach evolves informative func-
tions. The best evolved function reached the ef-
fectiveness of a manually-designed function in the
Robot domain, while it outperformed the effective-
ness of a hand-crafted function in the String do-
main.

1 Introduction
The problem of Program Synthesis (PS) is a long-standing
challenge in Artificial Intelligence [1]. It essentially concerns
combinatorial search over a space of programs to find one that
satisfies a given user specification [2, 3]. The importance of
this problem is evident, especially concerning the automation
of repetitive manual tasks [4–6]. Building strong AI seems
to require the ability to automatically synthesize universal
computation [7]. Apart from the evident importance of PS
in Theorem Proving and Software Development [8], there are
also applications in other fields, including Robotics and Bi-
ology [5]. Some of the methods developed for solving the
PS problem have also been applied in Information Extraction
for the problem of Rule Learning [9]. Related problems to
PS have also emerged throughout the years. Relaxing the PS
problem by only requiring the synthesis of the output instead
of the mapping/program itself leads to the Program Induction
problem, which has gained a lot of attention [10, 11]. Algo-
rithm synthesis is a new branch of PS, where a class of pre-
defined algorithms is applied to a program given by the user.
A synthesizer of divide and conquer algorithms is described
in [12].

We can identify three integral elements of PS: the spec-
ification, which describes the intended behavior of the pro-
gram, the program space that is defined via a programming
language and the search technique [13]. In this study, we con-
sider the case in which the specification is given in the form
of input/output examples and the program space is implicitly
defined by a Domain-Specific Language.

One key aspect of a program synthesizer is the objective
function that is used to guide the search. Using appropriate

such functions enhances the effectiveness of the search tech-
niques. The objective function can be thought of as a dis-
tance metric between the output of a given program and the
intended output, although more aspects might be considered
(e.g. the complexity of the generated program). Typically,
such functions are handcrafted and domain knowledge is es-
sential. This manual process is not only time-consuming but
also error-prone, since designing informative domain-specific
distance functions is a challenging open problem [5]. Identi-
fying the important “features” that can define a distance met-
ric is far from trivial.

In this work, we suggest a method that utilizes a Genetic
Algorithm, which we call GeneticObjective, to partly auto-
mate the design of such an objective function. Genetic Al-
gorithm (GA) is a well-known population-based metaheuris-
tic algorithm proposed by John Holland [14]. The algorithm
mimics in some way the biological evolution process of nat-
ural selection (Darwinism). Solutions are encoded as chro-
mosomes that are evolved over generations by means of var-
ious genetic operators. Each chromosome is comprised of
indivisible units, called genes [14]. GA belongs to a broad
class of algorithms that are studied in the sub-field of Artifi-
cial Intelligence known as Evolutionary Computation. GAs
have found applications in many fields including networking
(e.g. a distributed version of the Bandwidth allocation algo-
rithm), operations research (e.g. Single Row Facility Layout)
and medical imaging (e.g. MRI-based brain tumour segmen-
tation) [15–17].

In our study, the Genetic Algorithm we suggest takes as in-
put several user-defined domain-specific local distance func-
tions (genes), which correspond to distance metrics between
the output of two programs for specific features of the do-
main. Formulating several such functions is less compli-
cated than designing a complete distance function that leads
to an informed search of the program space. The aim of this
study is to show that implementing a Genetic Algorithm that
evolves an objective function of a synthesizer is feasible and
also to measure the quality of the evolved function by testing
the efficacy of the synthesizer when using the latter. More
specifically, we pose the following research question:
Question 1. How effective is a program synthesizer using
an objective function that is evolved by means of a Genetic
Algorithm?

In order to answer question 1, we will run the Brute synthe-
sizer [18] on two domains: Robot Planning and String trans-
formation [19, 20]. The use of Genetic Algorithms for such a
goal is a novel approach that is expected to have an essential
contribution to solving the Program Synthesis problem.

2 Background
2.1 Program Synthesis
Program Synthesis (PS) is a problem lying in the intersec-
tion of Artificial Intelligence, Programming Languages and
Formal Methods [21–23]. In its most general form, the PS
problem can be described as follows:
Problem 1 (PS problem). Given a programming language
that defines the program space and a user intent/specification,
find a program that satisfies this specification.

Given the description of the PS problem, three key compo-
nents can be identified: the user intent, the search space and
the search technique [13]. Changing the way in which any
of these components is expressed or defined leads to different
formulations of the problem and therefore to different ways
of tackling it.

User intent
The user intent captures the behavior of the desired program
and can be expressed in various ways. Natural language, log-
ical specification and input-output examples are three realiz-
able mechanisms for a user to describe their specification [4].
The last one is one of the most common frameworks for the
PS problem and it is usually referred to as the Programming
By Example (PBE) paradigm [24,25]. The given input/output
examples correspond to the intended behavior (output) of a
program. For instance, in the Robot planning domain, the
user provides a set of pairs consisting of the initial and the
target configurations of the grid (initial and target positions
of the robot and the ball) [19]. The facileness of expressing
the user intent in PBE is one of the main reasons for its wide
adoption [26, 27].

Search space
The search space realizes the trade-off between efficiency
and expressiveness. Considering typical high-level languages
(e.g. Java) increases the size of the program space and en-
ables solving more problems, but makes the search computa-
tionally expensive. So, a Domain Specific Language (DSL) is
often designed for the domain at hand to provide an adequate
level of expressiveness, while bypassing the intractability of
the combinatorial search. An example of a DSL for trans-
forming strings on a syntactic level can be found in [28]. In
the case of the Robot planning domain, the tokens that are
used for the construction of programs include tokens for mov-
ing the robot (moveUp, moveDown, moveLeft, moveRight)
and for dropping and picking up the ball. As for the String
transformation domain, there are tokens for moving the cur-
sor, for converting a symbol to upper/lower case and for drop-
ping a symbol [18].

Search technique
The search procedure specifies the way in which the search
(program) space is explored in order to find a desired pro-
gram; Enumerative and Deductive search are two classical
approaches. The former is essentially a bottom-up search
procedure that enumerates programs, while pruning to make
the search efficient [29]. The latter works in a top-down
fashion: a chain of deductive rules symbolically reduces the
user intent to a correct program [30]. Applying transforma-
tion rules within a deductive system is fundamentally a The-
orem Proving approach [31]. During the past years, tech-
niques from the advancing field of Machine Learning have
been utilized to ameliorate the classical approaches [32], with
Neural architectures being recurrently used in the context of
PS [11, 33–36]. The Brute program synthesizer, which we
use in our experiments, performs a best-first search using a
specific objective function [18].

2.2 Objective function of a program synthesizer
One aspect that is common to most of the search techniques
discussed above is the objective function that is used to mea-
sure the performance of a generated program. This function
guides the search and thus it is a key factor in the efficiency
and the effectiveness of a synthesizer. A common terminol-
ogy that has been used in the literature is the so-called rank-
ing function, which approximates the likelihood of a given
program to be the desired program [5, 13]. It is important
to note that there may exist multiple programs that satisfy a
given specification and in this case the ranking function can
be used in the disambiguation process [5]. Machine Learn-
ing approaches have been used in the variant of PS in which
a vast amount of synthesized programs are provided as input
and the ranking function shall predict a correct program [37].

It is a hard open problem to define appropriate functions,
since domain-specific knowledge and substantial manual ef-
fort are usually required [38–40]. Identifying the key features
of a domain that would lead to an informative objective (dis-
tance) function is a laborious task. Furthermore, it is error-
prone and in some cases these functions may lack robustness
to modifications in the underlying DSL. As a general rule,
the performance on the given examples and some complex-
ity metric of the generated program can be considered when
designing the objective function of a synthesizer [41–45].
Manually-designed objective functions for the Robot and the
String domains are presented in [46] and [47] respectively.

2.3 Genetic Algorithms for the evolution of
objective functions

The elements of GA in its simplest form are the following:
chromosome representation, fitness function, selection, mu-
tation and crossover. Each chromosome encodes a feasible
solution (assuming a meaningful and accurate encoding) to
the problem that GA is trying to solve. The fitness function is
used as a measure of the quality of each individual chromo-
some. Usually, this is the objective function of the underlying
optimization problem. Selection is the phase in which indi-
viduals are chosen for later breeding. Mutation concerns a
random perturbation (with probability pm) of the individuals
in the current iteration (population). Crossover (with proba-
bility pc) is analogous to the biological process of sexual re-
production, which involves the recombination of the genetic
information of a pair of parents that leads to the creation of
new offspring. In essence, the manipulation of chromosomes
using the biologically-inspired mechanisms mentioned above
increases on average the fitness of the individuals (chromo-
somes) over generations.

A generic version of GA is given in algorithm 1. S denotes
the solution space and F : S → R, M : S → S, C : S2 →
S2 and P : 2S → 2S

2 denote the fitness, mutation, crossover
and selection functions respectively.

GA has been shown to be a powerful optimizer in many
occasions. It has been used for solving various NP-hard
(intractable) problems such as Modular Exam Scheduling,
Channel routing in VLSI design and Graphical Steiner Tree
in Graph Theory [48–50]. It is important to note that in the
context of Metaheuristics, such as GA, “solving” means

Algorithm 1 GenericGA
1: Construct initial population X ⊆ S
2: best← NULL
3: while termination condition is not met do
4: Selected← P(X)
5: X← ∅
6: for (x, y) ∈ Selected do

7: (x′, y′)←

{
C((x, y)), if U(0, 1) ≤ pc
(x, y), otherwise

8: x′′ ←

{
M(x′), if U(0, 1) ≤ pm
x′, otherwise

9: y′′ ←

{
M(y′), if U(0, 1) ≤ pm
y′, otherwise

10: Add x′′, y′′ to X .
11: end for
12: best← argmax(F(best), maxx∈X F (x))
13: end while
14: return best

finding near-optimal solutions. Genetic Algorithms have
been used to evolve functions, such as mating selection
fitness functions for the Circle Packing in Squares problem
and similarity functions for clustering [51, 52]. The special
case of GA in which each chromosome represents a computer
program is known as Genetic Programming (GP). GP is a
natural way to solve the PS problem and in fact this approach
was presented in the seminal work of Koza [53].

The literature review above highlights that the objective
function used by a program synthesizer highly affects the effi-
cacy of the synthesis. In addition, coming up with an insight-
ful and informative such function is a challenging endeavor
and domain experts, even after some contemplation, can be
fallible in this matter. Given the power of GA, we suggest
using it for evolving an objective function of a program syn-
thesizer.

3 Methodology
Our method is based on the idea that objective functions (rep-
resented as algebraic expressions) involving some domain-
specific “local” distance functions are evolved with a GA that
we call GeneticObjective. The fitness of an individual func-
tion f is computed as a function of the efficiency and the ef-
fectiveness of Brute when the latter is using f as an objective
function.

3.1 Mathematical notation
For a set A, 2A denotes the power set of A. For a set of sym-
bols S, S∗ denotes the Kleene star on S, i.e. S∗ =

⋃
i≥0 S

i.
For n ∈ N, [n] = {1, ..., n}. For two sets A,B, A \ B de-
notes the set difference and AB = {f |f : B → A}. From
asymptotic analysis, we are using ∼ as the asymptotic equal-
ity symbol.

(
n
k

)
denotes the binomial coefficient. For a rooted

tree T , h(T) denotes the height of the tree, which is defined
as the length of a longest path from the root of T to a leaf.
For a subtree S of T , d(S, T) denotes the depth of S in T ,

which is defined as the distance between the roots of the two
trees. In the context of probability theory, X ∼ Y denotes
equality in law. U(a, b) denotes the uniform distribution in
[a, b] and U{a, b} denotes the discrete uniform distribution in
{a, a + 1, ..., b}. Ber(p) denotes a Bernoulli random vari-
able with parameter p. x ∈R X denotes a uniform random
selection from a countable set X . We denote the Manhattan
distance with L1. abs denotes the absolute value function, |s|
denotes the length of a string (sequence of characters) s and
|s ∩ s′| denotes the number of distinct matching characters
between s and s′.

3.2 Problem formulation

Program Synthesis domain and examples
Let D denote the set of all possible domains. For our pur-
poses, we can think of a 1-to-1 correspondence between do-
mains and DSLs. The Robot domain is defined uniquely by
some DSL that contains tokens for manipulating/processing
input grids. This domain involves a robot and a ball on a
grid. The intended program transforms an initial configura-
tion of the grid to a target configuration by moving the robot
in order to place the ball on a target cell and then reach a
target position [19]. In the String transformation domain, a
string is given together with a cursor pointing to a specific
position of the string and the goal is to transform the string
to a target string, by moving the cursor, converting characters
to lower/upper case and dropping characters [18]. For each
domain D, let ID and OD denote the input and output do-
mains of D respectively, i.e. a program written in the DSL
of D maps an element of ID to an element of OD through a
sequence of transformations. For the Robot domain, we have
that ID = OD = N5 × {0, 1}: grid’s size s, robot’s position
(coordinates) pr, ball’s position (coordinates) pb, holding flag
h. We denote with A the set of all alphanumeric symbols. For
the string domain, ID = OD = A∗×N (string s, cursor’s po-
sition i).

We denote a set of examples for a domain D ∈ D with:

ED = {eij} ⊆ ID ×OD, i ∈ I ⊆ [tD], j ∈ J ⊆ [nDi] (1)

, where tD denotes the number of tasks of domain D and nDi

denotes the number of examples of task i in domain D. Each
e = (x, y) ∈ E is a pair of an input x and the correct output y
for x (PBE paradigm).

Local distance functions
GeneticObjective constructs a domain-specific objective
(distance) function, which is composed of finitely many
manually-crafted local distance functions FD ⊆ R≥0

OD
2

.
We think of each function in this set as a distinct distance met-
ric between a given program’s output y and the correct out-
put y∗ for selected features of the domain. Each function in
Frobot takes as input two 5-tuples y = (s, rx, ry, bx, by, h) and
y∗ = (s∗, r∗x, r

∗
y, b

∗
x, b

∗
y, h

∗), where (rx, ry) = pr, (bx, by) =
pb, (r

∗
x, r

∗
y) = p∗r and (b∗x, b

∗
y) = p∗b . Taking into account the

components that are used in the manually-designed objective
function in the Robot domain [46], we suggest the subsequent

local distance functions to form Frobot:

Frobot =

L1(pr, p
∗
b),

L1(pr, p
∗
r),

L1(p∗b , p
∗
r),

L1(pr, pb),

L1(pb, p
∗
b)

(2)

Each function in Fstring takes as input two 2-tuples y = (s, i)
and y∗ = (s∗, i∗). Fstring is defined as follows:

Fstring =

abs(|s| − |s∗|),
min(|s|, |s′|)− |s ∩ s∗|,

abs(i–i∗),

abs(cU(s)–cU(s∗)),

abs(cL(s)–cL(s∗))

(3)

, where cU(s) and cL(s) compute the number of upper and
lower case symbols respectively. GeneticObjective requires
the existence of FD and this is the sole task that has to be
performed manually. GeneticObjective combines the “impor-
tant” functions of FD in an algebraic expression. Let T O

C
denote the set of all correctly parenthesized algebraic expres-
sions over the set of operators O and the set of terms C. We
set O = {+,−, ·, /}. In the context of a domain D ∈ D,
we think of these algebraic expressions as domain-specific
objective functions, which take as input a program’s output
y ∈ OD and the correct output y∗ ∈ OD and evaluate a dis-
tance between the two (the absolute value is used to ensure
non-negativity, a 0 distance is considered when y = y∗ and
an infinite distance is considered when dividing by 0). For
the Robot domain, we set T O

C = T O
Frobot

and analogously for
the string domain.

Evaluating Brute for a given objective function
The evaluation criteria for assessing the quality of Brute are:
its running time, the percentage of solved tasks and the per-
centage of solved examples (a task is called solved if Brute
managed to successfully solve all of its examples). Consider
a domain D ∈ D. We define a function V : T O

FD
×2ID×OD →

[0, 1], which evaluates the efficiency and the effectiveness of
Brute on a given set of examples ED (using the notation from
1) while using a given objective function to guide its search.
V is used as the fitness function of GeneticObjective. Thus,
as a measure of quality of an objective function f we use
the efficacy of Brute when employing f during the search.
Let S denote the percentage of solved tasks and U the aver-
age percentage of unsolved examples over the unsolved tasks.
Finally, R denotes the average normalized runtime of Brute
over the examples (ratio between the runtime of Brute and the
given timeout). V is defined (equation 4) as a convex com-
bination of the three components described above, adjusted
such that it can be used as the objective of a maximization
problem.

V(T, ED) = w1S + w2(1− U) + w3(1−R) (4)

We note that for the Robot domain, there is only a single
task and so the fitness function only has a component cor-

responding to the percentage of examples solved and a com-
ponent corresponding to the average normalized running time
of Brute.

Domain-Specific Objective problem
We can now define the Domain-Specific Objective (DSO)
problem that GeneticObjective is trying to solve as an op-
timization (maximization) problem. More specifically, we
think of V as a black-box function (it runs the Brute proce-
dure) and thus the problem is an example of Unconstrained
Discrete Black-Box Optimization:

Problem 2 (DSO). Given a set of examples ED, the black-box
function V and T O

FD
, find argmaxT∈T O

FD

V(T, ED).

It is clear that T O
FD

is a countably infinite set and thus
we cannot solve problem 2 exhaustively. For our purposes,
we are not interested in expressions containing an arbitrarily
large number of operators, since these are computationally
impractical to work with. We now argue that even if the num-
ber of operators in an expression is upper-bounded by B, we
cannot hope for a brute-force approach, since the search space
is prohibitively large. We show the asymptotic behaviour of
|T O

FD
|, in the case in which every expression contains at most

B operators. It is known from Combinatorics that the number
of parenthesizations of an arithmetic expression with n oper-
ators is given by the Catalan number Cn = 1

n+1

(
2n
n

)
[54].

With a straightforward combinatorial argument, we can ob-
serve that:

|T O
FD
| =

B∑
n=0

Cn|O|n|FD|n+1 (5)

We note that even though the associativity of addition im-
plies the equivalence of the expressions (□ + □) + □ and
□ + (□ + □), these are considered two distinct expressions
(parenthesization is different). Using Stirling’s approxima-
tion formula for n!, we observe that CB ∼ 4BB− 3

2π− 1
2 . By

only considering the last term of the sum in Equation 5, it
easily follows that |T O

FD
| ∼ (4|O||FD|)BB− 3

2π− 1
2 .

3.3 GeneticObjective
Following the notation of Algorithm 1, we set S = T O

FD
and

in the following subsections we define: a) the chromosome
encoding, b) the construction of the initial population and c)
functions M,C,P . The termination condition is met simply
by reaching a given number of generations (iterations). We
set F = V .

Chromosome encoding
Each chromosome represents an element of T O

FD
. The repre-

sentation has the form of a binary expression tree (this repre-
sentation is unique). A binary expression tree is a full binary
tree (we consider only binary operators in the set O), in which
the internal nodes store an operator and the leaves store the
terms (elements of FD). In other words, the symbol of each
node v (we denote this by v.symbol) is a function symbol. A
tree T is evaluated recursively starting from the root (for a
similar approach, see [52]). When the tree is used by Brute
as a distance function, the absolute value of the evaluation of
the tree is used.

Initial population
For creating the initial population, we generate random binary
expression trees of a given maximum height H . H implies an
upper bound of 2H − 1 on the number of operators that are
present in a tree. Let Tree(s, tleft, tright) denote the expression
that constructs a binary expression tree with symbol s, left
child tleft and right child tright. A random tree is generated by
evaluating Trand(0, H, p) (algorithm 2), where p ∈ [0, 1] is
the probability of placing an operator node.

Algorithm 2 Trand(dcur, dmax, p)

1: if dcur = dmax then
2: return Tree(c ∈R FD, ∅, ∅)
3: else

4: pop ←
{
1, if dcur = 0

p, otherwise
5: if Ber(pop) = 1 then
6: return Tree(op ∈R O,

Trand(dcur + 1, dmax, p),
Trand(dcur + 1, dmax, p))

7: else
8: return Tree(c ∈R FD, ∅, ∅)
9: end if

10: end if

The given construction ensures that 1 ≤
h(Trand(0, H, p)) ≤ H . At every step of the algorithm,
except when starting at the root, an operator node is placed
with probability p and a term node (a leaf) is placed with
probability 1− p.

Selection
We implement deterministic k-tournament selection without
replacement [55, 56]. This procedure samples k individuals
from the population without replacement (k is the tournament
size) and then the chromosome with the highest fitness value
is deterministically chosen as the “winner” of the tournament
and thus as a selected parent for reproduction. Note that 1-
tournament is equivalent to random selection. We run this
procedure in pairs to produce the desired number of parent
pairs, by excluding from the second iteration the chromosome
chosen as the first parent. This selection method exhibits
advantages over other alternatives (e.g. stochastic Roulette
Wheel). For instance, it does not require the fitness values to
be scaled [57]. k-tournament, among other selection meth-
ods, has linear time complexity, which is preferable over the
linearithmic or even quadratic complexity of other commonly
used schemes [55]. A common notion used in many selection
schemes is selection pressure. Loosely speaking, the higher
the selection pressure, the more favored are the individuals
with high fitness [58, 59]. Tournament selection is also pre-
ferred due to the easy adjustment of the selection pressure, by
changing the tournament size.

Random Walk
For describing the mutation and crossover functions, we ex-
plain the RandWalk algorithm, which takes as input a tree
T and returns a random subtree of T (algorithm 3).

Algorithm 3 RandWalk(T)

1: Pick x ∈R {0, ..., h(T)}
2: Pick v ∈R {0, 1}x
3: S ← T , i← 0
4: while (i < x) ∧ (deg(S.root) ̸= 1) do

5: S ←
{
S.left, if v[i] = 0

S.right, otherwise
6: i← i+ 1
7: end while
8: return S

Line 4 of algorithm 3 reflects the fact that the random walk
terminates either at a node (internal or leaf) of depth x or at
a leaf of depth smaller than x. The algorithm ensures that
d(RandomWalk(T), T) ∼ U{0, h(T)}. In the context of
the mutation and crossover operations, by random node or
subtree of T we mean RandWalk(T).

Mutation
We describe the mutation function M : T O

FD
→ T O

FD
in algo-

rithm 4. This function replaces the symbol of a random node
in the given tree with a different random symbol of the same
type (operator or term symbol).

Algorithm 4 M(T)

1: S ← RandWalk(T)
2: if deg(S.root) = 1 then ▷ Leaf node
3: S.root.symbol← c ∈R FD \ {S.root.symbol}
4: else
5: S.root.symbol← o ∈R O \ {S.root.symbol}
6: end if
7: return T

Crossover
The crossover function C : T O

FD

2 → T O
FD

2 produces two
children from a given pair of trees (T1, T2) by exchanging a
random subtree of T1 with a random subtree of T2.

Elitism
In order to ensure that the sequence of maximum fitness val-
ues over generations is non-decreasing, we used elitism as
part of GeneticObjective. This mechanism transfers (copies)
some of the fittest individuals of a generation to the next and
it has a significant impact on the performance of GA [60,61].
The number of individuals copied, i.e. the elite size, is an-
other way of adjusting the selection pressure. Tuning the elite
size is highly important as a means to avoid premature con-
vergence [62].

3.4 Evaluation of GeneticObjective
The GeneticObjective GA attempts to find an objective func-
tion T , from a given set of functions, which maximizes the
effectiveness/efficiency of Brute, when the latter is using T to
guide its search. We expect that a random function T results
to a low value of V with high probability. In other words, we
expect that random objectives do not contain task-specific in-
formation and lead to an ineffective search procedure. Using

GeneticObjective, a Metaheuristic algorithm, we cannot pro-
vide any theoretical guarantee of global optimality. Instead,
we analyze the algorithm’s performance experimentally, by
trying multiple configurations of the parameters of the algo-
rithm. The fitness value of the best function found by the GA
is compared to the fitness of a manually-designed objective
function for each domain (robot and string).

4 Results and Discussion
A (train) set of examples is used for the fitness function
during the execution of the GA (while functions are being
evolved) and a different unseen (test) set of examples is used
for the fitness evaluation of the best function (individual)
found to get an unbiased estimate. This final value is then
compared to the fitness value of the manually-designed objec-
tive functions of each domain, as suggested by [46] and [47],
on the same test set. The size of the train/test sets and the
value of parameters such as the number of generations, the
population size and Brute’s timeout were chosen such that
GeneticObjective runs in a reasonable amount of time. We
ran the experiments on a machine running Ubuntu 20.04.4
LTS with Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz, 8
cores, 32GB of RAM.

The parameters of the GA are the following: the number
of generations G, the population size N , the crossover proba-
bility pc, the mutation probability pm, the tournament size s,
the elite size e, the maximum height H and the probability p
of placing an operator symbol for the construction of a ran-
dom tree, the weights {wi}3i=1 in the fitness function V and
the timeout t given to Brute in the fitness evaluations.

We experimented with various values of p and H to test
the influence of the initial population on the performance of
the GA. From the construction of a random expression (Al-
gorithm 2), it is clear that on expectation a (1 − p)2 fraction
of the trees in the initial population has height 1. Thus, we
mostly used values of p satisfying p > 1 −

√
0.1 to ensure

that less than 10% of the initial population has a height value
of 1 on expectation. This leads to a more diverse initial popu-
lation in terms of tree structure/shape. To ensure a reasonable
running time, we did not exceed the value of 5 for the max-
imum height H in the initial population. We explored the
effect of selection pressure, by adjusting the values of s (we
mostly tested binary and ternary tournaments) and e (mostly
in the range [2, 16]). Finally, we tested whether providing
more time (increasing G) or examining more candidate solu-
tions in each generation (increasing N) leads to an improve-
ment of GeneticObjective. We present the configurations of
selected experiments for the Robot and the String domains.
For each configuration, we present: a) the maximum fitness
value ftrain obtained by GeneticObjective on the train set, b)
the fitness value ftest of the best function found on the test set
and we compare the latter to the fitness value fmanual of the
manually-designed function on the test set. In the case of
the Robot domain, the best fitness value obtained by Ge-
neticObjective (0.95) is equal to the fitness value obtained
by the manually-designed function. As for the String do-
main, a fitness value of 0.29 was reached, which outper-
forms the one of the manually-designed function (0.24).

4.1 Robot planning domain
A set of 150 examples of different complexity (grid size) were
used for the train set and 350 examples were used for the test
set. This sample was drawn from a larger set of examples
that was used by [18]. In Table 1, we present selected con-
figurations (with different values of the parameters) and the
respective results.

Table 1: Robot experiments

id G pc pm s e H p ftrain ftest

1 20 0.8 0.08 3 6 2 0.7 0.895 0.862
2 15 0.9 0.01 3 6 2 0.7 0.774 0.78
3 15 0.9 0.05 3 6 2 0.7 0.819 0.769
4 15 0.9 0.11 3 6 2 0.7 0.957 0.943
5 15 0.9 0.16 3 6 2 0.7 0.785 0.773
6 30 0.8 0.08 2 6 4 0.5 0.861 0.854
7 30 0.8 0.08 2 6 4 0.7 0.862 0.864
8 30 0.8 0.08 2 6 4 0.9 0.936 0.788
9 15 0.5 0.08 3 6 2 0.7 0.182 0.178
10 15 0.6 0.08 3 6 2 0.7 0.867 0.868
11 15 0.7 0.08 3 6 2 0.7 0.887 0.847
12 15 0.9 0.08 3 6 2 0.7 0.961 0.947
13 15 0.8 0.08 2 6 1 0.7 0.862 0.866
14 15 0.8 0.08 2 6 2 0.7 0.965 0.89
15 15 0.8 0.08 2 6 3 0.7 0.747 0.613
16 15 0.8 0.08 2 6 4 0.7 0.862 0.871
17 15 0.8 0.08 2 6 5 0.7 0.876 0.832
18 15 0.8 0.01 2 6 4 0.7 0.742 0.607
19 15 0.8 0.15 2 6 4 0.7 0.96 0.818
20 15 0.8 0.08 2 10 2 0.7 0.867 0.867
21 15 0.8 0.08 2 16 2 0.7 0.9 0.845
22 15 0.8 0.08 2 2 2 0.7 0.335 0.272
23 15 0.8 0.08 3 6 2 0.7 0.96 0.947
24 15 0.8 0.08 4 6 2 0.7 0.867 0.868

fmanual = 0.95

In the fitness function, we assigned a weight of 0.9 to
the percentage of examples solved and a weight of 0.1 to
the average normalized running time (solving more exam-
ples successfully is more important than running fast). We
used N = 60, t = 1sec. Increasing G did not lead to any
improvement and thus we mostly ran the GA with G = 15.
The diversity of the population is affected by pc and we ob-
serve that for a low value of pc = 0.5 (configuration 9), the
algorithm performs poorly. This is why we ran most of the
experiments with pc ∈ {0.8, 0.9}. A low value for the prob-
ability of mutation, such as pm = 0.01 (e.g. configuration
18), also negatively affects the performance of GeneticOb-
jective, since a low degree of randomness may lead to pre-
mature convergence. A value of pm = 0.16 led to a sub-
optimal solution (configuration 5) as well; such a high value
adds more stochastic noise to the procedure. The effect of
pm can be seen from configurations 2− 5, where it takes the
values pm = 0.01, 0.05, 0.11, 0.16, while all other parame-
ters are fixed. As seen from the results of configuration 22, a
low value of e = 2 led to poor results, highlighting the sig-
nificance of elitism as suggested by [60, 61]. We hypothesize
that this is due to lack of exploitation of the good solutions
(individuals). It seems that H , p and G do not significantly

affect the efficacy of GeneticObjective.
The best results were obtained with configurations 12 and

23, for both of which ftest = 0.947. We ran the latter con-
figuration 5 times and the curves of the best and the average
fitness values over generations for each trial are shown in Fig-
ure 1. It is interesting to observe that the two trials in which
the value of 0.94 was reached had a significant difference in
the maximum fitness value of the initial population (0.55 vs
0.26). From the same Figure, we notice the convergence of
the best fitness curve after 6-7 generations for all trials. The
best objective function that was found (in 36 minutes) after
simplifying the expression is the following (using the nota-
tion from 2):

T ∗
robot = L1(pb, p

∗
b)(L

1(pr, pb) + 2) + L1(pr, p
∗
r) (6)

(a) Average fitness curve for each of the 5 runs

(b) Best fitness curve for each of the 5 runs

Figure 1: Best configuration in the Robot domain

4.2 String transformation domain
For the String domain, we used a train set of 150 examples
and a test set of 225 different examples drawn from a larger

Table 2: String experiments

id G pc pm s H p ftrain ftest

1 15 0.8 0.08 3 2 0.7 0.289 0.285
2 15 0.9 0.16 2 2 0.7 0.281 0.263
3 20 0.9 0.1 3 4 0.7 0.352 0.238
4 15 0.9 0.1 3 4 0.7 0.328 0.247
5 15 0.9 0.1 2 1 0.7 0.293 0.239
6 15 0.9 0.1 3 1 0.7 0.261 0.259
7 15 0.9 0.1 2 2 0.7 0.292 0.239
8 15 0.9 0.1 3 2 0.7 0.293 0.239
9 15 0.8 0.01 3 4 0.7 0.351 0.27
10 15 0.8 0.05 3 4 0.7 0.317 0.218
11 15 0.8 0.1 3 4 0.7 0.343 0.265
12 15 0.8 0.2 3 4 0.7 0.299 0.184
13 15 0.7 0.05 3 3 0.7 0.388 0.286
14 15 0.6 0.05 3 3 0.7 0.308 0.288
15 15 0.8 0.05 3 4 0.8 0.293 0.257
16 15 0.8 0.05 3 4 0.9 0.339 0.243
17 15 0.9 0.1 2 3 0.7 0.33 0.276

set used by [18]. The levels of difficulty (complexity) that
were chosen for each set were the same. Selected configu-
rations of the experiments in the Robot domain are shown in
Table 2, together with the respective fitness values. Regard-
ing the weights in the fitness function V (see Equation 4), we
used [w1, w2, w3] = [0.6, 0.3, 0.1], i.e. solving many tasks
of the domain is the most important goal. We used e = 6,
which was shown to perform well in the Robot domain. Most
configurations of the parameters led to good results compared
to the manually-designed function, which had a fitness value
of 0.24. An exception was configuration 12, which resulted
in a poor performance on the test set. This was because of
the high mutation probability pm = 0.2 that makes the GA
similar to random search. The objective function with the
highest fitness value on the test set was found (in 98 minutes)
with configuration 14 and the function evolved is the follow-
ing (after simplifying):

T ∗
string = 4dlen +

dm(dp + dlen)

dp
(7)

, where dlen(s, s
∗) = abs(|s| − |s∗|), dm(s, s∗) =

min(|s|, |s′|)− |s∩ s∗| and dp(s, s
∗) = abs(i− i∗) (see no-

tation in 3). Configuration 13 led to a similar performance on
the test set and a higher value on the train set. If we think of
the difference between ftest and ftrain as the generalization
error, the latter configuration suffered in this aspect. This is
likely due to the complexity of the function that was evolved,
which contained 19 operators compared to the 7 operators of
T ∗

string in the expression tree representation before the simpli-
fication.

5 Conclusions
In this study, we examined an important aspect of a pro-
gram synthesizer in the Programming By Example (PBE)
paradigm, namely the objective (distance) function that is
used to measure the performance of a generated program. In
particular, we assessed the effect of using an objective func-
tion evolved by a Genetic Algorithm on the performance of a

program synthesizer. In order to answer Question 1, we pro-
posed the GeneticObjective GA that evolves domain-specific
objective functions by combining several user-defined local
distance functions in an algebraic expression. Such an ap-
proach partly automates the laborious task of manually de-
signing an informative distance function. We tested our
proposed method using the Brute synthesizer on two well-
studied program synthesis domains: the Robot planning and
the String transformation domain. For each domain, we ana-
lyzed the performance of GeneticObjective and we compared
the quality of the evolved function with an existing manually-
crafted function. The experiments we conducted showed that
our approach had a positive result on both domains, by reach-
ing or even surpassing the manually-designed function. We
hypothesize that the low scores for both the evolved and the
existing function in the string domain are due to the inher-
ent difficulty of the domain and thus a more effective search
procedure would be required to obtain better results.

6 Limitations and Future Work
Due to the high amount of computational resources required
for the experiments, this study had a limited scope regarding
the number of configurations tested and the number of trials
per configuration. Thus, future work could possibly focus on
experimenting with more such configurations.

In the case of well-studied domains, such as the Robot and
the String domains that were used in this study, there ex-
ist manually-designed objective (distance) functions that per-
form well in practice. An interesting direction would be to
integrate such an existing objective function f in the fitness
function of GeneticObjective. Specifically, the distance, as
given by f , between a program’s output and the correct out-
put could be considered together with the percentage of suc-
cessful examples, the percentage of successful tasks and the
running time of Brute. Such an approach could lead to an
improvement of the GA, even though we suspect that a small
weight should be given to the distance component in order to
avoid the GA attempting to “mimic” the given distance func-
tion.

Our suggested method for constructing the initial popula-
tion does not ensure the absence of equivalent objective func-
tions (due to associativity, distributivity and commutativity).
Altering the way in which objective functions are represented
and constructed could lead to an improvement of GeneticOb-
jective. Although constructing equivalent algebraic expres-
sions occurs with low probability as the number of local dis-
tance functions and the size of an expression tree increase, an
alternative representation could be tested.

Lastly, the scope of our study could be broadened by con-
sidering more complex objective functions than algebraic ex-
pressions. For instance, introducing conditional expressions
between the local distance functions could lead to more in-
formative objective functions and thus to an enhancement of
GeneticObjective.

7 Responsible Research
The most crucial aspect concerning the level of integrity of
our research is Reproducibility. In order to ensure that other

scientists in the research community can run experiments us-
ing our proposed method, the repository containing the code
base has been made publicly available1. Specific instruc-
tions on how the experiments can be ran and more informa-
tion concerning the implementation files can be found in the
README file of the given repository. The results we ob-
tained rely on the speed of the machine used. Thus, to make
our experimentation phase even more transparent, we have in-
cluded the specifications of the computer used for this study
in the Results section. Finally, we revealed the sources of
the data sets that were used in our experiments and the corre-
sponding data files can also be found on our repository.

References
[1] Zohar Manna and Richard J Waldinger. Toward auto-

matic program synthesis. Communications of the ACM,
14(3):151–165, 1971.

[2] Joey Hong, David Dohan, Rishabh Singh, Charles Sut-
ton, and Manzil Zaheer. Latent programmer: Discrete
latent codes for program synthesis. In International
Conference on Machine Learning, pages 4308–4318.
PMLR, 2021.

[3] Zohar Manna and Richard Waldinger. Fundamentals of
deductive program synthesis. In Logic, algebra, and
computation, pages 41–107. Springer, 1991.

[4] Sumit Gulwani. Dimensions in program synthesis. In
Proceedings of the 12th international ACM SIGPLAN
symposium on Principles and practice of declarative
programming, pages 13–24, 2010.

[5] Oleksandr Polozov and Sumit Gulwani. Flashmeta: A
framework for inductive program synthesis. OOPSLA
2015, page 107–126, New York, NY, USA, 2015. Asso-
ciation for Computing Machinery.

[6] Sumit Gulwani. Automating repetitive tasks for the
masses. In Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 1–2, 2015.

[7] James Clift, Daniel Murfet, and James Wallbridge.
Geometry of program synthesis. arXiv preprint
arXiv:2103.16080, 2021.

[8] Neel Kant. Recent advances in neural program synthe-
sis. arXiv preprint arXiv:1802.02353, 2018.

[9] Robert Vacareanu, Marco A Valenzuela-Escarcega,
George CG Barbosa, Rebecca Sharp, and Mihai Sur-
deanu. From examples to rules: Neural guided rule
synthesis for information extraction. arXiv preprint
arXiv:2202.00475, 2022.

[10] Jacob Devlin, Rudy Bunel, Rishabh Singh, Matthew
Hausknecht, and Pushmeet Kohli. Neural program
meta-induction. In Proceedings of the 31st International
Conference on Neural Information Processing Systems,
NIPS’17, page 2077–2085, Red Hook, NY, USA, 2017.
Curran Associates Inc.

1https://github.com/FabianRadomski/
EvolvingProgramSynthesisers/tree/efthymiou objective function

https://github.com/FabianRadomski/EvolvingProgramSynthesisers/tree/efthymiou_objective_function
https://github.com/FabianRadomski/EvolvingProgramSynthesisers/tree/efthymiou_objective_function

[11] Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju,
Rishabh Singh, Abdel-rahman Mohamed, and Push-
meet Kohli. Robustfill: Neural program learning under
noisy i/o. In Proceedings of the 34th International Con-
ference on Machine Learning - Volume 70, ICML’17,
page 990–998. JMLR.org, 2017.

[12] Ruyi Ji, Yingfei Xiong, and Zhenjiang Hu. Black-
box algorithm synthesis–divide-and-conquer and more.
arXiv preprint arXiv:2202.12193, 2022.

[13] Sumit Gulwani, Alex Polozov, and Rishabh Singh. Pro-
gram Synthesis, volume 4. NOW, August 2017.

[14] John H. Holland. Adaptation in Natural and Artificial
Systems. University of Michigan Press, 1975.

[15] Hidehiro Kobayashi, Masaharu Munetomo, Kiyoshi
Akama, and Yoshiharu Sato. Designing a distributed
algorithm for bandwidth allocation with a genetic algo-
rithm. Systems and Computers in Japan, 35(3):37–45,
2004.

[16] Dilip Datta, André RS Amaral, and José Rui Figueira.
Single row facility layout problem using a permutation-
based genetic algorithm. European Journal of Opera-
tional Research, 213(2):388–394, 2011.

[17] AR Kavitha and C Chellamuthu. Brain tumour seg-
mentation from mri image using genetic algorithm with
fuzzy initialisation and seeded modified region grow-
ing (gfsmrg) method. The Imaging Science Journal,
64(5):285–297, 2016.

[18] Andrew Cropper and Sebastijan Dumancic. Learn-
ing large logic programs by going beyond entailment.
ArXiv, abs/2004.09855, 2020.

[19] Andrew Cropper. Playgol: Learning programs through
play. arXiv preprint arXiv:1904.08993, 2019.

[20] Dianhuan Lin, Eyal Dechter, Kevin Ellis, Joshua Tenen-
baum, and Stephen Muggleton. Bias reformulation
for one-shot function induction. In Proceedings of the
Twenty-First European Conference on Artificial Intelli-
gence, ECAI’14, page 525–530, NLD, 2014. IOS Press.

[21] Susmit Jha, Sumit Gulwani, Sanjit A Seshia, and Ashish
Tiwari. Oracle-guided component-based program syn-
thesis. In 2010 ACM/IEEE 32nd International Confer-
ence on Software Engineering, volume 1, pages 215–
224. IEEE, 2010.

[22] Rishabh Singh and Pushmeet Kohli. Ap: Artificial pro-
gramming. In 2nd Summit on Advances in Programming
Languages (SNAPL 2017), April 2017.

[23] Richard J. Waldinger and Richard C. T. Lee. Prow: A
step toward automatic program writing. In Proceedings
of the 1st International Joint Conference on Artificial
Intelligence, IJCAI’69, page 241–252, San Francisco,
CA, USA, 1969. Morgan Kaufmann Publishers Inc.

[24] Sumit Gulwani. Automating string processing in
spreadsheets using input-output examples. SIGPLAN
Not., 46(1):317–330, jan 2011.

[25] Sumit Gulwani. Programming by examples: Applica-
tions, algorithms, and ambiguity resolution. In Proceed-
ings of the 8th International Joint Conference on Au-
tomated Reasoning - Volume 9706, page 9–14, Berlin,
Heidelberg, 2016. Springer-Verlag.

[26] Alan Leung, John Sarracino, and Sorin Lerner. Interac-
tive parser synthesis by example. ACM SIGPLAN No-
tices, 50(6):565–574, 2015.

[27] Disha Shrivastava, Hugo Larochelle, and Daniel Tar-
low. Learning to combine per-example solutions for
neural program synthesis. Advances in Neural Infor-
mation Processing Systems, 34, 2021.

[28] Sumit Gulwani, William R Harris, and Rishabh Singh.
Spreadsheet data manipulation using examples. Com-
munications of the ACM, 55(8):97–105, 2012.

[29] Rajeev Alur, Arjun Radhakrishna, and Abhishek
Udupa. Scaling enumerative program synthesis via di-
vide and conquer. In International conference on tools
and algorithms for the construction and analysis of sys-
tems, pages 319–336. Springer, 2017.

[30] Kangjing Huang, Xiaokang Qiu, Peiyuan Shen, and
Yanjun Wang. Reconciling enumerative and deductive
program synthesis. In Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation, pages 1159–1174, 2020.

[31] Zohar Manna and Richard Waldinger. A deductive ap-
proach to program synthesis. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 2(1):90–
121, 1980.

[32] Aditya Menon, Omer Tamuz, Sumit Gulwani, But-
ler Lampson, and Adam Kalai. A machine learning
framework for programming by example. In Interna-
tional Conference on Machine Learning, pages 187–
195. PMLR, 2013.

[33] Kensen Shi, Hanjun Dai, Kevin Ellis, and Charles Sut-
ton. Crossbeam: Learning to search in bottom-up
program synthesis. arXiv preprint arXiv:2203.10452,
2022.

[34] Matej Balog, Alexander L Gaunt, Marc Brockschmidt,
Sebastian Nowozin, and Daniel Tarlow. Deep-
coder: Learning to write programs. arXiv preprint
arXiv:1611.01989, 2016.

[35] Xinyun Chen, Dawn Song, and Yuandong Tian. Latent
execution for neural program synthesis beyond domain-
specific languages. Advances in Neural Information
Processing Systems, 34:22196–22208, 2021.

[36] Emilio Parisotto, Abdel-rahman Mohamed, Rishabh
Singh, Lihong Li, Dengyong Zhou, and Pushmeet
Kohli. Neuro-symbolic program synthesis. arXiv
preprint arXiv:1611.01855, 2016.

[37] Rishabh Singh and Sumit Gulwani. Predicting a correct
program in programming by example. In International
Conference on Computer Aided Verification, pages 398–
414. Springer, 2015.

[38] Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica
Piskac. Complete completion using types and weights.
In Proceedings of the 34th ACM SIGPLAN Conference
on Programming Language Design and Implementa-
tion, PLDI ’13, page 27–38, New York, NY, USA, 2013.
Association for Computing Machinery.

[39] Alon Mishne, Sharon Shoham, and Eran Yahav.
Typestate-based semantic code search over partial pro-
grams. In Proceedings of the ACM international con-
ference on Object oriented programming systems lan-
guages and applications, pages 997–1016, 2012.

[40] Daniel Perelman, Sumit Gulwani, Thomas Ball, and
Dan Grossman. Type-directed completion of partial ex-
pressions. In Proceedings of the 33rd ACM SIGPLAN
conference on Programming Language Design and Im-
plementation, pages 275–286, 2012.

[41] Ashwin Kalyan, Abhishek Mohta, Oleksandr Polozov,
Dhruv Batra, Prateek Jain, and Sumit Gulwani. Neural-
guided deductive search for real-time program synthe-
sis from examples. arXiv preprint arXiv:1804.01186,
2018.

[42] Colin G Johnson. Genetic programming with fitness
based on model checking. In European Conference on
Genetic Programming, pages 114–124. Springer, 2007.

[43] Hila Peleg and Nadia Polikarpova. Perfect is the enemy
of good: Best-effort program synthesis. Leibniz inter-
national proceedings in informatics, 166, 2020.

[44] Mohammad Raza, Sumit Gulwani, and Natasa Milic-
Frayling. Compositional program synthesis from natu-
ral language and examples. In Proceedings of the 24th
International Conference on Artificial Intelligence, IJ-
CAI’15, page 792–800. AAAI Press, 2015.

[45] Shivam Handa and Martin C Rinard. Inductive program
synthesis over noisy data. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Soft-
ware Engineering, pages 87–98, 2020.

[46] Stef Rasing. Improving inductive program
synthesis by using very large neighborhood
search and variable-depth neighborhood search.
https://repository.tudelft.nl/islandora/object/uuid:
a24ed4f6-6abd-4661-86b8-c5a965d62e4e?collection=
education, 2022.

[47] Bas Jenneboer. Program synthesis with a*.
https://repository.tudelft.nl/islandora/object/uuid:
873c3b33-2501-4438-a610-6dcb8ab8ad72?collection=
education, 2022.

[48] D. Corne, H.-L. Fang, and C. Mellish. Solving the
modular exam scheduling problem with genetic algo-
rithms. In Proceedings of the 6th International Con-
ference on Industrial and Engineering Applications of
Artificial Intelligence and Expert Systems, IEA/AIE’93,
page 370–373. Gordon Breach Science Publishers,
1993.

[49] Jens Lienig and Krishnaiyan Thulasiraman. A new ge-
netic algorithm for the channel routing problem. In Pro-
ceedings of 7th International Conference on VLSI De-
sign, pages 133–136. IEEE, 1994.

[50] A Kapsalis, VJ Raywad-Smith, and George D Smith.
Solving the graphical steiner tree problem using genetic
algorithms. Journal of the Operational Research Soci-
ety, 44(4):397–406, 1993.

[51] Penousal Machado and António Leitao. Evolving fit-
ness functions for mating selection. In European
Conference on Genetic Programming, pages 227–238.
Springer, 2011.

[52] Andrew Lensen, Bing Xue, and Mengjie Zhang. Ge-
netic programming for evolving similarity functions for
clustering: Representations and analysis. Evolutionary
computation, 28(4):531–561, 2020.

[53] John R. Koza. Genetic programming as a means for
programming computers by natural selection. Statistics
and Computing, 4:87–112, 1994.

[54] Muzafer Saračević, Saša Adamović, and Enver Biševac.
Application of catalan numbers and the lattice path
combinatorial problem in cryptography. Acta Polytech-
nica Hungarica, 15(7):91–110, 2018.

[55] David E Goldberg and Kalyanmoy Deb. A compara-
tive analysis of selection schemes used in genetic algo-
rithms. In Foundations of genetic algorithms, volume 1,
pages 69–93. Elsevier, 1991.

[56] Tobias Blickle and Lothar Thiele. A mathematical anal-
ysis of tournament selection. In ICGA, volume 95,
pages 9–15. Citeseer, 1995.

[57] Anupriya Shukla, Hari Mohan Pandey, and Deepti
Mehrotra. Comparative review of selection techniques
in genetic algorithm. In 2015 international confer-
ence on futuristic trends on computational analysis
and knowledge management (ABLAZE), pages 515–
519. IEEE, 2015.

[58] Brad L Miller, David E Goldberg, et al. Genetic algo-
rithms, tournament selection, and the effects of noise.
Complex systems, 9(3):193–212, 1995.

[59] Gabriela Ochoa, Inman Harvey, and Hilary Buxton. Op-
timal mutation rates and selection pressure in genetic
algorithms. In Proceedings of the 2nd Annual Confer-
ence on Genetic and Evolutionary Computation, pages
315–322. Citeseer, 2000.

[60] Giorgio Guariso and Matteo Sangiorgio. Improving the
performance of multiobjective genetic algorithms: An
elitism-based approach. Information, 11(12):587, 2020.

[61] Robin C Purshouse and Peter J Fleming. Why use
elitism and sharing in a multi-objective genetic algo-
rithm? In Proceedings of the 4th Annual Conference
on Genetic and Evolutionary computation, pages 520–
527, 2002.

[62] Chang Wook Ahn and Rudrapatna S Ramakrishna.
Elitism-based compact genetic algorithms. IEEE Trans-

https://repository.tudelft.nl/islandora/object/uuid:a24ed4f6-6abd-4661-86b8-c5a965d62e4e?collection=education
https://repository.tudelft.nl/islandora/object/uuid:a24ed4f6-6abd-4661-86b8-c5a965d62e4e?collection=education
https://repository.tudelft.nl/islandora/object/uuid:a24ed4f6-6abd-4661-86b8-c5a965d62e4e?collection=education
https://repository.tudelft.nl/islandora/object/uuid:873c3b33-2501-4438-a610-6dcb8ab8ad72?collection=education
https://repository.tudelft.nl/islandora/object/uuid:873c3b33-2501-4438-a610-6dcb8ab8ad72?collection=education
https://repository.tudelft.nl/islandora/object/uuid:873c3b33-2501-4438-a610-6dcb8ab8ad72?collection=education

actions on Evolutionary Computation, 7(4):367–385,
2003.

	Introduction
	Background
	Program Synthesis
	User intent
	Search space
	Search technique

	Objective function of a program synthesizer
	Genetic Algorithms for the evolution of objective functions

	Methodology
	Mathematical notation
	Problem formulation
	Program Synthesis domain and examples
	Local distance functions
	Evaluating Brute for a given objective function
	Domain-Specific Objective problem

	GeneticObjective
	Chromosome encoding
	Initial population
	Selection
	Random Walk
	Mutation
	Crossover
	Elitism

	Evaluation of GeneticObjective

	Results and Discussion
	Robot planning domain
	String transformation domain

	Conclusions
	Limitations and Future Work
	Responsible Research

