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Abstract

In-line Raman spectroscopy combined with chemometric modeling is a valuable pro-

cess analytical technology (PAT) providing real-time quantitative information on cell

culture compounds. Considering that compound quantification through chemometric

models depends on pre-processing to maintain consistent changes in intensity at cer-

tain wavenumbers, all causes of signal distortion should be well understood to pre-

vent quantification inaccuracies. This work investigated spectral distortion caused by

the changing bioreactor parameters temperature, bubble quantity, and medium vis-

cosity. In addition, the isolated spectral contribution of Saccharomyces cerevisiae cells

in suspension was also determined. A temperature range from 20 to 40�C resulted in

peak shifts up to 0.8 cm�1 to lower wavenumbers, bubbles generated under standard

bioreactor operation conditions led to signal attenuation of up to 7.93% reduction in

peak intensity, and changes in liquid viscosity resulted in complex peak shift behavior.

Isolated biomass concentrations reaching 5 g/L caused up to 44.6% reduction in dis-

tinct peak intensity, which was similar to spectra from batch process fermentations.

Correcting for the attenuation revealed spectral features of biomass associated with

proteins and lipids in the 1000–1500 cm�1 region. However, the spectral contribu-

tion of yeast biomass is dominated by signal extinction, which attenuates Raman

spectra in a non-linear manner as biomass accumulates. The obtained knowledge on

different sources of spectral distortion aids in the development of robust pre-

processing and modeling strategies to obtain chemometric models applicable across

experimental setups.

K E YWORD S

in-line measurements, process analytical technology, Raman spectroscopy, real-time monitoring,
Saccharomyces cerevisiae, spectral pre-processing

1 | INTRODUCTION

Monitoring the progression of substrate, product, and biomass con-

centration in bioprocesses is traditionally measured off-line. This

means that a physical sample is manually taken from the system and

analyzed by using an external standalone machine. Off-line measure-

ments are labor-intensive and severely limit the real-time resolution

of monitoring a process. Furthermore, manual sampling is invasive and

increases the risk of altering or contaminating the process. The pro-

cess analytical technology (PAT) framework published in 20041
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addressed these issues and aims to improve process understanding

and control through real-time monitoring strategies. The PAT initiative

and eased regulatory acceptance toward new analytical tools led to an

increase in research and application of real-time monitoring

strategies.2

Optical spectroscopy PAT offers non-invasive and non-

destructive measurement methods and can be placed in-line to the

bioreactor allowing direct measurements, thereby lowering the risk of

contamination.3 Of the available spectroscopic tools, Raman spectros-

copy is especially suitable for bioreactor environments due to the low

signal interference from water. It also enables measurements through

glass interfaces, facilitating easy integration with closed systems.4

Raman spectroscopy is based on measuring inelastically scattered light

coming from the interaction between monochromatic light and mole-

cules in the sample. Each molecule provides a unique pattern of peaks

based on the vibrational modes in the molecule's structure (Raman

fingerprint), making Raman a powerful analytical tool for analyzing

specific targets of interest. Furthermore, there is a linear correlation

between Raman signal intensity and molecule concentration, which

allows for compound quantification after signal calibration.5 Raman

spectroscopy can be applied in-line, on-line, or at-line for the auto-

mated monitoring of bioreactor processes, using immersion probes,

flow-cells, or measurements through glass windows.6,7 When applying

in-line Raman spectroscopy in cell cultures through immersion probes,

the obtained spectra contain contributions from all compounds in the

medium. This allows for multiplexed monitoring with a single probe,

but this also makes the signal highly complex. To address this com-

plexity, multivariate modeling approaches based on dimensionality

reduction and linear regression are commonly used to extract relevant

spectral features for a target molecule. These models are typically cali-

brated with a dataset of Raman spectra capturing variations in the

process, combined with quantitative reference measurements of

the compound of interest. A calibrated model translates new spectral

data into quantitative predictions for the compound of interest by

applying learned weights to the spectral features associated with the

compound. Through this approach, a single signal can be processed by

multiple models to quantify various compounds simultaneously.

Reported studies show that similar spectral data pre-processing strat-

egies are often used to establish models for different compounds.8

The aim of data pre-processing is to correct for signal distortion

to ensure that model calibration and prediction is based solely on the

variations linearly correlated with the concentration of the molecular

compounds of interest.9 However, data pre-processing steps should

be applied with caution as excessive adjustments may introduce

undesired spectral artifacts. It is therefore essential to have a good

understanding of the multiple sources of signal distortion during bio-

reactor processes. Spectral distortion in Raman spectra can occur in

three categories: baseline shifts, peak shifts over the wavenumber

axis, and peak intensity changes not related to concentration changes.

All these types of distortion can potentially decrease quantitative

model performance by disrupting signal linearity and the alignment of

model weights to the appropriate wavenumber variables. Raman spec-

tra acquired in-line in bioreactor systems are subject to multiple

sources of signal distortion and noise that can affect the spectra

negatively. Strong background fluorescence from compounds in the

sample can potentially mask signal of interest, making it challenging to

detect and analyze subtle spectral changes.10 In addition, particles

such as cells, cell debris, and bubbles with sizes near the excitation

laser wavelength can induce undesired optical scattering effects, lead-

ing to Raman signal attenuation or distortion.11 These effects become

more pronounced as a cell culture progresses, as increasing biomass

concentration and the accumulation of fluorescent compounds further

amplifying scattering and fluorescence effects.12–14 Whereas mole-

cules and particles significantly smaller than the excitation wavelength

(πd=λ�1) scatter light isotropically according to Rayleigh scattering,

larger particles (πd=λ�1, πd=λ�1) can scatter light asymmetrically,

and predominantly in the forward direction.11 The increased forward

scattering and multiple scattering events by particles can lead to a

reduction in the measured signal by in-line probes that use backscat-

tering as measurement mode. While the heterogeneous composition

of yeast biomass should give rise to spectral bands associated with

proteins, lipids, and nucleic acids,15 in-line Raman spectra of yeast sus-

pension cultures are often dominated by non-linear spectral extinc-

tion.16 The yeast Saccharomyces cerevisiae has an average single cell

diameter of 8μm,17 significantly larger than the laser excitation wave-

lengths used by the Raman spectroscope (typically in between

532nm and 1064nm). This means that the cells can attenuate spectral

features of other process compounds by causing anisotropic light

scattering. The dominance of the resulting extinction effect compli-

cates quantitative modeling approaches, and the spectral fingerprint

related to the yeast cell's molecular composition has not yet been

observed during in-line measurements. To remove extinction effects

caused by biomass to ensure high quantification model performance

for other molecular compounds in the bioreactor, stable peaks from

medium sulfate and water have been used as internal normalization

standards. This approach is based on the assumption that sulfate or

water have a constant concentration and that the presence of bio-

mass leads to a uniform signal extinction over the spectral fingerprint

region.18,19 In other cases, fluorescence and scattering effects are cor-

rected using spectral normalization steps in combination with Whitta-

ker baseline corrections that fit a smooth baseline using penalized

least squares, followed by baseline subtraction.4,20 Within bioreactor

processes, optical scattering effects are not limited to cells, as bubbles

formed in the bioreactor can reach sizes at which anisotropic light

scattering occurs.21 It is essential to understand spectral attenuation

caused by bubbles as recent efforts in Raman spectroscopy model cal-

ibration involve miniaturization, flow-cell measurements, and high-

throughput data collection. Some of these systems do not introduced

bubbles in the matrix, which may lead to poor model transferability to

bioreactor applications.

In addition to baseline distortions and signal extinction, changes

in measurement conditions affecting molecular vibrations can cause

unwanted peak shifts and intensity changes. An increase in system

temperature can lead to the lengthening of molecular bonds by ther-

mal expansion, lowering the vibrational frequency that causes spectral

features to shift toward lower wavenumbers (red shift).22
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Furthermore, an increase in temperature can decrease the population

of molecules occupying the ground vibrational state, reducing the

measured Stokes scattering intensity.23 The level of hydrogen bond-

ing in the medium can also affect vibrational frequencies, and several

process parameters can dictate hydrogen bonding between water and

medium compounds (e.g., temperature, ionic strength, pH). The spec-

tral baseline caused by the cell culture medium predominantly consists

of contributions from water, with features belonging to restricted

translational and librational movements in the low wavenumber

region (< 800 cm�1), the water HOH-bending peak at 1641 cm�1, and

the OH-stretching modes in the high wavenumber region

(> 3000 cm�1).24 The stability of this water baseline is dependent on

multiple medium factors, such as the temperature,25 presence of

hydrogen bonding compounds, and salt concentration.26

Conformational changes of these water bands can cause misalignment

in spectral baselines and influence the efficiency of common data pre-

processing strategies.

The position of key spectral features along the wavenumber axis

must remain stable, as misalignment between the wavenumber vari-

ables and weights assigned by the model can lead to impaired predic-

tive performance.27 Peak shifts are especially problematic for sharp

spectral features that comprise only a few wavenumbers, where a

small wavenumber shift can lead to large prediction errors. Small shifts

can be less problematic for broad spectral features as the prediction is

based on a wider span of variables, providing more robustness against

misalignments. However, when broad features overlap with the signal

of other compounds, a model has to decompose the peak and correct

for the overlap,28 again increasing the sensitivity to wavenumber

shifts. Misalignment can also affect model performance through data

pre-processing. For example, internal standard normalizations can be

sensitive to wavenumber shifts due to the high dependency on a sin-

gular spectral feature, where a misalignment will lead to a skewed cor-

rection of the entire spectra. Derivative-based pre-processing steps

amplify a spectrum's inflection points, causing sharp minima and max-

ima in the derivative spectrum, and peak shifts were reported to

increase prediction errors.29 The importance of minimizing the impact

of spectral misalignment is reflected by the availability of peak

alignment methods correcting wavenumber shifts caused by changes

in measurement conditions or differences between analytical

instruments.30

We need to understand how spectra are influenced by measure-

ment conditions to build robust and accurate prediction models for in-

line Raman spectroscopy. In this work, we systematically explore the

individual influence of temperature, bubble quantities, viscosity, and

S. cerevisiae biomass on Raman spectra. The resulting spectra are ana-

lyzed for baseline shifts, wavenumber shifts, and changing peak inten-

sities to determine the spectral contributions of each parameter as

well as the potential impact on data pre-processing strategies and

quantitative model performance. These findings contribute to the

understanding of spectral distortion in bioreactor-based cell cultures.

This knowledge will support the development of more robust and

accurate quantification models, and facilitate the use of spectral

data obtained from different experimental setups and processes.

Moreover, improving knowledge on the spectral contribution of yeast

biomass provides the means to critically evaluate standard quantita-

tive modeling approaches and the development of innovative biomass

quantification methods.

2 | MATERIALS AND METHODS

2.1 | Measurement setup

2.1.1 | Bioreactor and controller setup

All experiments were performed in an Applikon Bio 2 L bioreactor sys-

tem (Getinge, Sweden). To prevent light contamination in the Raman

measurements, the bioreactor was encapsulated with a custom PVC

light cover. The temperature was controlled by a Biostat B-Plus con-

troller (Sartorius Stedim, Germany) while the stirring speed was

controlled by an Applikon ADI 1032 Stirrer Controller P100 (Getinge,

Sweden).

2.1.2 | Raman signal acquisition

A Raman RXN2 analyzer (Endress + Hauser Inc., Switzerland)

equipped with a 400 mW 785 nm laser was connected to the bioreac-

tor via an RXN-10 optical fiber and bIO-Optic immersion probe. The

immersion probe was mounted through the bioreactor head plate and

submerged into the liquid, and sterilized by autoclaving along with the

bioreactor when necessary. Spectra were collected over the range of

100–3400 cm�1 with a resolution of 4 cm�1, and a 60-s acquisition

time resulted in detector saturations between 30% and 58%. The

Raman spectroscope was set to continuously collect 60-s spectra, and

at least 10 spectra were acquired per measurement condition. This

resulted in low noise measurements.

2.2 | Bioreactor parameter experiments

2.2.1 | Media solutions

Four different types of media were used to study the bioreactor

parameter effects: (1) Distilled water, (2) Synthetic media, (3) Synthetic

media with low glucose concentration (cglucose = 24.4 g/L), (4) Syn-

thetic media with high glucose concentration (cglucose = 47.6 g/L). The

synthetic media were prepared with distilled water and contained

5 g/L (NH4)2SO4 (Merck, Darmstadt, Germany), 3 g/L KH2PO4

(Merck, Darmstadt, Germany), and 0.5 g/L MgSO4�7H2O (Honeywell,

Seelze, Germany).31 The media were adjusted to pH 6.0 with 2 M

KOH (Merck Sigma, Darmstadt, Germany), and 50% w/v glucose solu-

tion was prepared with glucose monohydrate (Merck, Darmstadt,

Germany) and added to the desired concentration. The synthetic

medium was completed with 0.2 g/L Antifoam-C (BASF, Ludwigsha-

fen, Germany). An additional 15% vol/vol glycerol (Merck Sigma,
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Darmstadt, Germany) solution was prepared for studying the effect of

viscosity on the spectra.

2.2.2 | Temperature control

Temperature effects on the Raman spectra were studied in the range

of 20–40�C with step sizes of 5�C. The temperature values were

reached using the bioreactor thermostat and controlled with the Bio-

stat B-plus bioreactor controller. Media mixing was performed by con-

tinuously stirring at 830 rpm without sparging. A maximum deviation

of 0.1�C from the setpoint was allowed during the measurements.

2.2.3 | Sparging and bubble size control

The bioreactor stirrer was operated at 80, 500, 675, and 830 rpm to

form different quantity of bubbles and bubble sizes without the need

of sparging. Bubble formation started at 500 rpm, and increased for

higher stirring speeds (Figure S2). During these measurements the

temperature was kept constant at 30�C using the same setup as

described in Section 2.2.2.

2.2.4 | Viscosity control

The 15% v/v glycerol solution was used in combination with active

temperature control to generate different viscosity levels in the biore-

actor. The temperature of the glycerol solution was operated in the

range of 20–45�C with a step size of 5�C. A Lovis 2000 M/ME vis-

cometer (Anton Paar, Austria) was used to measure the viscosity of

this solution at each temperature. During measurements, the bioreac-

tor was mixed by stirring at 830 rpm without sparging. The viscosity

reference measurements are provided in Table S1.

2.3 | Fermentations and biomass measurements

2.3.1 | Batch fermentation

Two batch fermentations were conducted with an inoculation cell

density of 0.015 g/L. The yeast strain S. cerevisiae CEN.PK113-7D

was used for all cell culture experiments.32 All cultures were grown

on sterile synthetic media (see Section 2.2.1) supplemented with

0.2 g/L sterile Antifoam-C (BASF, Ludwigshafen, Germany) and filter

sterilized vitamin solution (in-house) after autoclaving. Glucose was

used as a carbon source, and an initial concentration of 40 g/L was

reached by the addition of sterilized 50% glucose solution (see

Section 2.2.1). Medium aeration was performed by stirring at

830 rpm and sparging air at 0.5 L/min. A pH of 6.0 was maintained

by the addition of 2 M KOH, and the temperature was kept constant

at 30�C. The working volume of the reactors was 1 L, and the fer-

mentations were operated until glucose depletion was detected by

the drop in off-gas CO2 measured with a ServoPRO 4900 off-gas

analyzer (Servomex, UK).

2.3.2 | Reference sampling

Samples of the supernatants of the batches were analyzed for their

ethanol and glucose concentrations using an Agilent 1260 Infinity

HPLC (Agilent Technologies, USA). A BIO-RAD Aminex HPX-87H

(300 � 7.8 mm) cation-exchange column (Bio-Rad, USA) operated at

60�C was used with a 0.5 g/L H2SO4 eluent at a flow rate of 0.6 mL/

min. The injection volume was 5 μm, and an Agilent 1260 refractive-

index and variable wavelength detector were used for sample

characterization.

The cell density of the fermentations was determined off-line by

optical density at a wavelength of 660 nm (OD660) using a Libra S11

spectrophotometer (Biochrom, UK). The dry biomass weight was mea-

sured by loading 10 mL of cell suspension on nitrocellulose membrane

filters (pore size, 0.45 μm; Gelman Laboratory, USA), drying the filters

in a microwave, and subsequently weighing the dry biomass on a pre-

cision scale (Mettler Toledo, USA).

2.3.3 | Biomass harvest and measurement

After glucose depletion occurred in the batch fermentations, the bio-

reactor broth was harvested and the biomass was washed twice by

centrifuging and resuspending the cells. The suspension was centri-

fuged at 5000 rpm for 5 min in 400 mL bottles using an Avanti J-E

centrifuge (Beckman Coulter, USA) to pellet the cells. After discarding

the supernatant, the cell pellet was resuspended in fresh synthetic

media. After the second washing step, the biomass was resuspended

in 350 mL of synthetic media to a final concentration of 15 g/L. The

washed cell suspension was added in steps of 25 mL to a bioreactor

with 700 mL of clean synthetic media to measure concentration

ranges of biomass. The Raman measurements were performed while

maintaining 830 rpm of stirring, sparging with 0.5 L/min of air, and

temperature control at 30�C. During the measurements, samples were

taken to determine the cell viability using a NucleoCounter NC-202

(Chemometec, Denmark).

2.4 | Data analysis

2.4.1 | Spectral processing

Spectral pre-processing was performed in PLS_Toolbox (v 9.3, Eigen-

vector Research, WA) running on MATLAB 2023a (MathWorks, WA),

and Python 3.10 using libraries from scikit-learn (https://scikit-learn.

org33) and Chemotools (https://paucablop.github.io/chemotools/34).

For each measurement condition, 10 spectra of 1 min were averaged

to a single spectrum by an in-house Python script to improve spectral

quality and reduce noise.
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2.4.2 | Peak shift detection

Peak shift quantification was performed by determining the exact

peak location. The location of spectral peaks was determined

using the zero-crossing point after spectral derivatization, which

coincides with the position of a peak. Peak position determination

was performed using an in-house Python script, and the workflow

consisted of three steps. First, spectra of the bioreactor parame-

ters and biomass measurements were reduced to the fingerprint

region (350–1800 cm�1) to minimize the leverage of the high

spectral tails on the baseline correction. Second, AirPls baseline

correction (λ = 300) was applied to remove spectral baselines,

thereby reducing the influence of baselines on peak locations.

Third, a second-order derivative (15-point window, second order

polynomial) was taken from the baseline-corrected spectra.

Fourth, linear regression was applied between the datapoints

before and after the zero-crossing of the second derivative spec-

tra, and the exact crossing point was calculated to determine the

peak position.

2.4.3 | Signal extinction analysis

The decrease in peak intensity was measured to determine the level

of signal extinction caused by bioreactor parameters and biomass.

The spectra were reduced to the fingerprint region (350–1800 cm�1)

and pre-processed using the AirPls baseline correction (λ = 300),

effectively removing the baseline while retaining the peak intensity

in relation to the original baseline, as well as the relative differences

between the individual measurements. After pre-processing, the

absolute peak intensity was used for analysis.

3 | RESULTS AND DISCUSSION

Spectral distortion as a result of the bioreactor process parameters

temperature, bubble quantity, and viscosity, as well as biomass

concentration, was investigated. The influence on the spectral

baseline was determined by inspecting the full Raman spectrum,

and changes in wavenumber shifts and peak intensities were quan-

titatively assessed using four pre-defined peaks: immersion probe

window (406 cm�1), water HOH-bending (1641 cm�1),25 and

when present in the mixture, the peaks of media sulphate

(981 cm�1) and glucose COH-bending (1125 cm�1).35 Four mea-

surement matrices with known spectral features were used to per-

form these experiments: (1) distilled water, (2) synthetic media,

(3) synthetic media with low glucose concentration (25 g/L), and

(4) synthetic media with high glucose concentration (50 g/L). To

study the effects of viscosity, a mixture of 15% (v/v) glycerol solu-

tion in water was measured under different temperatures to

change the liquid viscosity without adjusting the absolute glycerol

concentration.

3.1 | Spectral effects of temperature

Changes in temperature can occur during process development or

when spectral data is combined from different (miniaturized) experi-

mental setups. Temperature influences the vibrational state popula-

tions of molecules and alters hydrogen bonding dynamics, both

between water molecules and between water and other compounds

in the medium. These changes can alter peak positions and intensities

in a Raman spectrum. The spectral baseline of cell culture media is pri-

marily influenced by contributions from water, and the resulting spec-

tral changes in the water matrix due to temperature increases from

20 to 40�C are shown in Figure 1. The baseline effects of temperature

on the other matrices are shown in Figure S1.

The largest spectral baseline changes occurred in the broad bands

related to the vibrational modes of water in the low (< 800 cm�1) and

high (> 3000 cm�1) wavenumber regions. The baseline below

200 cm�1 (Figure 1a) showed an increase in intensity at higher tem-

peratures as a result of the increasing band at 60 cm�1 just outside of

the spectroscopes range (<100 cm�1), which belongs to restricted

translational movements of water molecules.36,37 Furthermore, the

baseline from approximately 300 to 800 cm�1 also increases with

higher temperatures as the underlying broad features associated

with the librational modes of water become more prominent due to

the reduced hydrogen bonding and increased molecular motion.24

The observed baseline changes in the low wavenumber region were

similar in the synthetic media matrices (Figure S1). The bands in the

high wavenumber region (Figure 1b) originate from OH-stretching

vibrations of water, and although a large section of these peaks is out-

side of this spectroscope's measurement range (>3425 cm�1), some

of the conformational changes are still visible between 3000 and

3425 cm�1. For example, higher temperatures weaken hydrogen

bonds between water molecules, reducing the formation of large

water molecule clusters, which typically decreases the intensity of the

strong hydrogen bonding band at 3200 cm�1 and increases or

broadens the intensity of the weaker hydrogen bonding band around

3400–3600 cm�1.24,38 For all four matrixes, a decrease in the band at

3200 cm�1 was observed (Figure S1), while the visible part of the

band at 3400 cm�1 increased in water and decreased in the synthetic

media matrices. This difference is most likely caused by the dissolved

salts in the synthetic medium, which can disrupt the hydrogen bond-

ing behavior of water molecules.39 The conformational change

between these two OH-stretching bands in water matches examples

in the field of Raman thermometry, where the ratio between these

bands is used as an indicator for system temperature.40 However, as

the majority of this second band was outside of the detectable range

for this spectroscope, further analysis was not performed on this

region.

Four peaks were quantitatively analyzed for wavenumber shifts

caused by temperature, and the results are displayed in Figure 2. An

average peak shift across the four different mixtures of 0.73, 0.61,

and 0.80 cm�1 was found for the immersion probe glass, sulphate,

and glucose peaks, respectively, while the water HOH-bending peak

KLAVERDIJK ET AL. 5 of 13
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at approximately 1641 cm�1 showed a less consistent shift pattern. A

peak shift to lower wavenumbers can occur due to thermal expansion

at higher temperatures, causing increasing bond lengths and the dis-

ruption of hydrogen bonds. Both of these factors can reduce the

energy difference between the ground and elevated vibrational states,

thereby affecting the peak position. In AirPls baseline corrected spec-

tra, the temperature increase led to an average relative intensity

decrease of 2.33%, 4.46%, 4.65%, and 2.56% for the probe window,

sulphate, glucose, and water peaks across all measurement matrixes

(Figure 2e).

Figure 2a shows that the linear trajectory of the probe window

peak shifts at 406 cm�1 is similar for each matrix, where the mean

peak shift per 5�C step was 0.18 cm�1 with a standard deviation of

0.03 cm�1 across all measurement matrixes. Peak shifts when measur-

ing crystal structures are commonly studied over wider temperature

ranges, and the observations on the probe window glass match in

order of magnitude with examples of Raman sapphire crystal studies

in literature (�0.41 cm�1 per 20�C).41 For the two matrices containing

glucose it was observed that the probe window peak is identified at

slightly higher wavenumbers compared to the matrices without glu-

cose. Glucose has a broad CCC-bending peak at 432 cm�135 that

partly overlaps with the 406 cm�1 probe window peak, thereby

slightly affecting the peak position in the 25 and 50 g/L glucose syn-

thetic media samples. The average peak shift for sulphate (0.61 cm�1

at 981 cm�1) is comparable to observations under similar conditions

in literature (�0.30–0.70 cm�1), where it was also found to be depen-

dent on the salt concentration.42,43 The average glucose peak shift

(0.80 cm�1 at 1125 cm�1) could not be directly verified with existing

literature under similar measurement conditions. The changing peak

positions of sulphate and glucose can be the result of changes in

hydrogen bonding, while for sulphate, ionization effects in the media

can also play a role when temperature changes. The water peak at

approximately 1641 cm�1 shown in Figure 2d belongs to the HOH-

bending vibrational mode. The HOH-bending is more confined to indi-

vidual water molecules and it should therefore be less affected by

hydrogen bonding.25 The results do not show a consistent pattern in

the wavenumber shift and the detected decreases in peak intensities

were relatively small (2.56% on average). A possible explanation for

F IGURE 1 The low (a) and
high (b) wavenumber region of
water matrix for a temperature
range from 20 to 40�C (blue to
red in the color bar). The
displayed spectra are the average
of 10 individual 60-s spectra
acquired at each temperature.

F IGURE 2 The effect of temperature on the peak locations of probe window (a), media sulphate (b), glucose (c), water HOH-bending (d), and
the total intensity decrease per peak and measurement matrix (e). The peak location was derived by pre-processing the spectra with AirPls
baseline correction (lambda = 300), taking a Savitzky Golay derivative (first order, 15-point window length), and interpolating the zero-crossing
point of the x-axis.
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the decrease in measured peak intensities relative to the baseline is

the increase of molecules in higher vibrational states when tempera-

ture increases. As the Raman spectroscope used in this work mea-

sures Stokes scattering, which primarily occurs when molecules are in

the ground vibrational state, a shift of molecules to higher vibrational

states could decrease the measured signal intensity.

The experimental data showed baseline and conformational

changes mainly in the low and high wavenumber regions as a result of

temperature changes. For the application of Raman spectra for

quantitative real-time monitoring, spectra are typically reduced to the

fingerprint region (around 350–1800 cm�1) as a part of data pre-

processing, sometimes including the region in between 2800 and

3000 cm�1, as the excluded regions contain little chemical informa-

tion on biological molecules. Therefore, the expectation is that

temperature-induced changes observed at the tails of the spectra

(<300 cm�1 and >3000 cm�1) will not influence model building unless

the full spectra are used for analysis. Thus, if the full spectrum is sub-

jected to pre-processing involving polynomial fitting, the intensity dif-

ferences in the spectral tails can strongly influence baseline and

scatter corrections by exerting high leverage on the polynomial fit. As

a consequence, improper baseline alignment may occur in key spectral

areas such as the fingerprint region and thereby impact the accuracy

of compound quantification using chemometric models.

The observed peak shifts and intensity changes as a result of

changing temperature pose a far larger challenge for model building,

as these phenomena can directly affect the linear correlation between

signal intensity and molecule concentration and can lead to spectral

misalignments between peaks and model coefficients. In general,

there are few bioreactor or cell culture processes that see a tempera-

ture shift of more than 5�C (leading to an average shift of 0.2 cm�1 in

the glucose peak). However, peak shifts can be problematic in model

calibration approaches where data from different experimental

sources with varying levels of temperature control are combined

(e.g., bioreactor, glassware, flow-cells, and alternative miniaturized

setups) or during process development. Calibrating a model with sam-

ples at room temperature and subsequently applying it to cell culture

conditions may lead to poor predictive performance as a result of

spectral feature misalignment and peak intensity differences. A poten-

tial mitigation strategy is the use of spectral alignment techniques to

correct feature positions between different measurement condi-

tions.30 In applications where multiple spectrometers are used across

different facilities, these methods are already implemented to correct

for variations between instruments.44 Peak alignment approaches,

combined with methods to account for normalizing the changes in

peak intensities, could effectively standardize the spectra and facili-

tate the fusion of data obtained from various sources and at different

process conditions.

3.2 | Spectral effects of bubbles

Both bubbles and cells attenuate Raman spectra by acting as light

scattering particles.16,21 To isolate the spectral contribution of

biomass that can be used as input for biomass quantification models,

it is key to understand the light-attenuating effects of bubbles. To this

end, bioreactors were operated at different impeller speeds (80, 500,

675, and 830 rpm) to generate bubbles of different sizes and quanti-

ties within the four matrices. We observed bubble formation around

the baffles starting at 500 rpm, which was therefore chosen as the

second step after the 80 rpm baseline condition. Bubble formation

increased with higher rpms regardless of the mixture composition

(Figure S2). This section focuses on peak intensity changes to assess

the impact of bubbles, as a peak shift analysis did not result in peak

shifts larger than 0.11 cm�1 across different impeller speeds

(Figure S3). Although the water HOH-bending peak showed peak

shifts of up to 0.67 cm�1, the inconsistent patterns were attributed to

noise and therefore considered to be independent of the bubbles.

Figure 3 shows the impact of bubble formation on the absolute peak

intensity for the probe window, sulphate, water HOH-bending, and

glucose peak. The intensity decreases per peak and measurement

matrix for increasing stirring rates are summarized in Figure 3e.

Interestingly, extinction of 0.87% to 4.68% for the peak of the

immersion probe (406 cm�1) was observed when measuring the syn-

thetic media matrices. This peak should not be affected by bubbles

behind the window, as seen for water and synthetic media without

glucose, because it arises from the immersion probe itself. For the

synthetic media matrices with glucose, this observed intensity change

might be due to extinction of the broad glucose CCC-bending peak at

432 cm�1 by the bubbles, which partly overlaps with the probe win-

dow peak at 406 cm�1,35 similar to the results in the temperature

change experiment. The extinction of the sulphate, glucose, and water

peaks was 6–8% in the synthetic media measurements, while the con-

centration of these compounds remained constant. For the water

matrix, the probe window and water HOH-bending peaks only

showed a 0.42% and 1.30% decrease in peak intensity, respectively.

This aligns with the visual inspection of the overall spectral changes in

water, which are small compared to those in synthetic media

(Figure S4). The synthetic media matrices contained high salt concen-

trations and antifoam-C that can impact the bubble formation while

stirring. High salt concentrations increase surface tension and can

reduce bubble coalescence, thereby increasing the stability of small

bubbles when compared to water.45 Antifoam-C works as a defoam-

ing agent by lowering surface tension and is added to cell culture

medium to displace bubble stabilizing surfactants. Despite the pres-

ence of antifoam, it was visually observed that bubble formation

increased drastically in the synthetic media matrices when compared

to water, leading to a higher bubble density during the Raman mea-

surements and thus greater signal attenuation. The bubble size and

quantity were not measured during these experiments, and there is

only visual proof of the increasing bubble quantity and decreasing

bubble size (Figure S2). The exact bubble and particle size distribution

during bioreactor processes is challenging to estimate and measure,

and is an active field of research.46

The reported measurements here show that the spectral extinc-

tion caused by increasing bubble quantities and decreasing bubble

size is significant (up to 8%), especially considering the constant

KLAVERDIJK ET AL. 7 of 13
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concentration of compounds in the samples during the measurements.

This means that the observed peak extinction can disrupt the propor-

tionality between signal intensity and molecule concentration, and

that bubble size and quantity should be taken into account as signal-

attenuating particles during model development. Furthermore, the

production of fermentation compounds, such as ethanol, glycerol, or

extracellular proteins, can also affect the surface tension and thereby

bubble coalescence.45 The combination of these changing factors over

the course of a fermentation makes bubble formation a dynamic fac-

tor during a single process. In terms of high-throughput model calibra-

tion for quantitative monitoring, differences in signal intensity

between spectra obtained in bioreactor settings and (miniaturized)

high-throughput setups may arise due to the absence of bubbles

(e.g., as seen for flow-cells and sample chambers). For example, the

sulphate peak that is often used as a normalization reference18 seems

to suffer from similar levels of signal extinction compared to the glu-

cose and water peak. As the peak shift was minimal for these spectra

and the signal extinction appears uniformly distributed over the fin-

gerprint peaks, sulphate normalization would lead to appropriate cor-

rection of signal extinction caused by bubbles. In cases where the

extinction is not uniformly distributed, multiplicative scatter correc-

tions such as extended multiplicative scatter correction (EMSC) would

be more appropriate. In both cases, the normalization step should be

critically evaluated to ensure that spectra from different experimental

setups are adjusted equally to make signal intensities representative

of the environment in which the models will be applied.

3.3 | Effects of viscosity

Cell culture media viscosity is influenced by changing concentrations

of substrates and products, which interact with water through

hydrogen bonding, as well as the accumulation of biomass that

increases the viscoelastic properties of the medium. To study the

spectral changes caused by viscosity, a 15% v/v glycerol solution was

measured under temperatures ranging from 20 to 45�C with incre-

ments of 5�C. Increasing the temperature leads to the dissociation of

hydrogen bonds between glycerol and water, and allowed a viscosity

range of 1.55 to 1.03 mPa.s, thereby simulating a yeast fermentation

of up to 55 g/L of yeast biomass47 (the measured viscosities are

shown in Table S1). This approach was selected to allow for viscosity

adjustments without changing the compound (glycerol) concentra-

tions. Several peaks belonging to glycerol vibrational modes were

investigated for wavenumber shifts and intensity changes. The finger-

print regions of the acquired spectra are shown in Figure 4 (peak

shifts are shown in Figure S5).

As a changing temperature setpoint was required to control the

viscosity of the 15% v/v glycerol solution, the data does not allow

F IGURE 3 The effect of bubble quantity caused by increasing stirring speeds on the peak intensities for the probe window (a), media
sulphate (b), glucose with low concentration on the left y-axis and high concentration on the right y-axis (c), water HOH bending (d), and the total
intensity decrease per peak and measurement matrix due to bubble quantity increase (e). The datapoints were acquired by taking the absolute
peak intensities at the indicated wavenumbers after pre-processing spectra with AirPls baseline correction (lambda = 300).

F IGURE 4 The Raman spectra fingerprint region of 15% v/v
glycerol solution measured at a viscosity ranging from 1.55 to
1.03 mPa.s (second colorbar) obtained by increasing the temperature
from 20 to 45�C in increments of 5�C (first colorbar). The displayed
spectra are the average of 10 individual 60-s spectra acquired at each

temperature step.
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evaluation of the effects of temperature and viscosity independently.

In the previous temperature measurements (Section 3.1) an increasing

temperature generally led to an increasing baseline intensity in the

low wavenumber range (<800 cm�1) and peak shifts toward lower

wavenumbers (up to 0.8 cm�1). Similar spectral changes were

observed in the 15% v/v glycerol mixture, where the baseline in the

low wavenumber region shifted up and the glycerol peaks shifted to

lower wavenumbers. Glycerol fingerprint features, such as the two

CC-stretch (821 and 851 cm�1) and two CH2-rock (925 and

977 cm�2) peaks,48 moved to lower wavenumbers by 0.63, 0.95, 0.83,

and 0.84 cm�1, respectively. These peak shifts were comparable in

magnitude to the shifts observed for other peaks analyzed during the

temperature experiments. The overlap of glycerol peaks in the 1000

to 1350 cm�1 region complicates peak position determination due to

influences of shouldering peaks. The peak shift determination method

calculated a shift to lower wavenumbers by 2.48 cm�1 for the

observed spectral features at 1050 and 1060 cm�1 (Figure S5). Addi-

tionally, a 1.50 cm�1 shift was calculated for the peak at 1111 cm�1

attributed to the CO-stretch vibrational mode involved in hydrogen

bonding. However, the large overlap with the shoulder at 1090 cm�1

coming from a CH2 rocking mode affects the accuracy of peak shift

determination. The overall observed effects (hydrogen bond strength)

match those seen during the changing temperature experiments, and

no additional effects of viscosity could be identified. It should be

noted that viscosity is influenced by multiple factors beyond hydrogen

bonding during fermentation, such as ionic strength and cell density,

where various chemical and physical properties of the medium may

affect Raman spectral features differently.

3.4 | Effects of yeast biomass

Yeast cells constitute the majority of the particulate matter during fer-

mentation in a bioreactor. The S. cerevisiae cells used in this work have

an average diameter of �8 μm in their single cell form with an ellipsoi-

dal shape,17 and at this size the cells can cause anisotropic light

scattering (πd=λ�1) when considering the excitation laser wave-

length of 785nm. To determine the impact of anisotropic light scat-

tering, two batch fermentations were operated to generate yeast cells

for the measurement of isolated biomass, using a concentration range

0 to 5 g/L. The yeast cell viability was above 96% during all the wash-

ing steps and measurements, minimizing the contribution of different

scattering effects and fluorescence as a result of dead cells and cell

debris. The experiment was performed twice with biomass from two

individual batch cultures to test for reproducibility (Figure S6) and all

resulting spectra of the isolated biomass are shown in Figure 5. Two

high concentration biomass spectra were poorly corrected by the

baseline correction (Figure 5c) and therefore removed for further

analysis.

Peak shift analysis resulted in an average wavenumber shift of

0.36, 0.29, and 1.90 cm�1 for the probe window, sulphate, and water

HOH-bending peaks, respectively (Figure S7). Increasing the biomass

concentration was not expected to affect vibrational modes and cause

peak shifts, and this is most likely due to the addition of underlying

spectral features. The overall spectral changes caused by biomass did

not directly show distinct peaks or spectral markers, as is typically

observed for molecular compounds. The major observed spectral

effects over the full spectral range were a strong intensity decrease in

the low (<800 cm�1) and high (>3000 cm�1) wavenumber regions

(Figure 5a), and a slight baseline increase caused by background fluo-

rescence in the fingerprint region (350–1800 cm�1, Figure 5b). After

correcting for this fluorescence baseline increase in the fingerprint

region with an AirPls baseline correction, the impact of increasing bio-

mass becomes visible. Figure 5c shows the extinction of other spectral

features (sulphate peak 981 cm�1, water peak 1641 cm�1) relative to

the baseline for increasing biomass concentration. Subsequent nor-

malization to correct for the signal extinction using the sulphate peak4

reveals an increase in intensity in the 1000–1500 cm�1 range for

increasing biomass (Figure 5d). The intensity changes in this range lin-

early correlate with the biomass concentration (Figure S8) and can be

associated with the composition of S. cerevisiae, which is mainly char-

acterized by a heterogeneous distribution of protein and lipid

F IGURE 5 The full (a),
fingerprint region (b), AirPls
(lambda = 300) pre-processed
fingerprint region (c), and AirPls
(lambda = 300) followed by
sulphate peak normalization pre-
processed fingerprint region (d) of
spectra acquired for 0 to 5 g/L
isolated biomass (blue to red in

the colorbar). Each displayed
spectra is the average of
10 individual 60-s spectra
acquired at a single
concentration step.
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structures.49 These compounds typically display broad bands, where

lipids and proteins have strong features in the 1400–1500 cm�1

range,50 while proteins also display broad features in the 1200–

1400 cm�1 range.51 Moreover, the observed signal in these regions

aligns with Raman microscopy measurements of S. cerevisiae strains in

literature on strain discrimination.15 The spectral features indicated in

Figure 5d could be linked to phenylalanine (1002 cm�1),52 phospho-

lipids (1084 cm�1),53 broad amide III bands (1246 cm�1),51 protein CH

deformation (1344 cm�1), CH2-deformation of proteins and lipids

(1448 cm�1), and amide I stretching (1669 cm�1),51 although the low

intensity of these features makes a more exact identification of each

band challenging. Nevertheless, these measurements indicate that the

molecular composition of S. cerevisiae can be measured using in-line

Raman spectroscopy, even though literature suggests that no

identifiable Raman spectroscopy features are detectable with in-line

measurements.16,54 This is most likely due to the difference in pre-

processing strategy, where we correct for the otherwise dominant

extinction effects. The measured shift of the water HOH-bending

peak to higher wavenumbers by 1.90 cm�1 seems to be caused by the

increase of the underlying spectral feature at 1669 cm�1 (amide I

stretching). Similarly, the increase of the spectral feature at

1002 cm�1 (phenylalanine) most likely caused the shift to higher

wavenumbers of the sulphate peak.

The intensity of the specific peaks associated with the composi-

tion of S. cerevisiae is considerably lower compared to the extinction

effects induced by the cells as particles. To determine the degree of

signal extinction caused by the yeast cells as particles, the peak inten-

sity of the probe window (406 cm�1), sulphate (981 cm�1), and water

HOH-bending (1641 cm�1) was determined from the AirPls corrected

biomass spectra. To investigate if these peak extinctions translate to

real fermentation data, a comparison was made to spectra acquired

during yeast batch cultivations. Raman spectra from four individual

batch cultivations with biomass concentrations reaching from 0.1 to

3 g/L were pre-processed by the same AirPls baseline correction, and

the measured signal decreases are shown in Figure 6.

The pattern of signal extinction for all peaks was similar between

the two isolated biomass experiments and resulted only in a slight

intensity offset. The average intensity decrease of the probe window

peak at 406 cm�1 (Figure 6a) was 4.8% and 16.1% for the isolated

yeast measurements and batch fermentations, respectively, and a

large offset in signal intensity between the isolated yeast measure-

ments and batch data was observed. The difference in intensity

decrease stems from a different fit of the AirPls baseline correction

caused by overlapping spectral features of glucose and other com-

pounds during the fermentations with the probe window peak. With-

out this overlap, it is clear that the probe window peak experiences

little intensity decrease for the isolated biomass measurements com-

pared to the fermentations. In contrast, signal extinction was compa-

rable for the sulphate and water peaks between the isolated biomass

measurements and the batch cultivations, which both show a non-

linear decrease in peak intensities when the biomass concentration

increases (Figure 6b,c). Increasing the yeast concentration from 0 to

5 g/L led to average signal extinctions of 44.7% and 44.6% for the sul-

phate (981 cm�1) and water (1641 cm�1) peaks, respectively. The

batch cultivations only reached up to 3 g/L of biomass and resulted in

an average extinction of 36.6% and 33.3% for the sulphate and water

peaks. During both experiments, the sulphate and water peaks were

mostly free from other overlapping molecular signals, and their con-

centrations are assumed to be constant, which is why these peaks are

utilized as internal standards in other reported work.4,16,18 The

observed non-linear pattern for increasing the biomass concentration

is similar to the observations of Yang et al. (2024) who measured the

extinction of glucose and ethanol peaks.54 Although the degree of

extinction between the sulphate and water peaks appears to be simi-

lar in this work, this does not guarantee uniform extinction across the

fingerprint region in the raw spectra. The AirPls baseline correction

performed optimally with a lambda value of 300. Slight changes to the

lambda value affected the fit of both broad and narrow peaks, which

could potentially influence the measured signal extinction. Previous

literature on the extinction effect of yeast cells as particles also

F IGURE 6 The effect of biomass on the peak intensities for the probe window (a), media sulphate (b), and water HOH-bending (c) peak. The
datapoints were acquired by taking the absolute peak intensities at the indicated wavenumbers after pre-processing spectra with AirPls baseline
correction (lambda = 300).
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highlighted that the extinction effect is not uniformly distributed

across the fingerprint region.16,54 Therefore, the use of internal stan-

dards for normalizing extinction effects should be carefully assessed,

as this does not guarantee a proper correction for features far from

the internal standard.

The biomass experiment revealed weak bands associated with

the molecular composition of yeast proteins and lipids in the 1000–

1500 cm�1 region and showed a strong non-linear signal extinction

for increasing concentrations. However, the detected spectral fea-

tures for biomass spanned a broad range that overlaps with the strong

and sharp spectral features of commonly found molecular compounds

in fermentations, namely glucose and ethanol. As the increase in bio-

mass and product concentration typically correlates strongly during

fermentation, it may be unlikely for multivariate linear regression

models to extract the right spectral variation for biomass from the sig-

nals of ethanol. Broad features are also more sensitive to removal by

baseline and scattering corrections as these can be perceived as spec-

tral baseline effects.

The findings in this work highlight how multivariate linear regression

models can be challenged by Raman spectra from yeast cultivations, as

the strong signal extinction by cells as particles disrupts the proportional-

ity between signal intensity and molecule concentration. When looking

at bioreactor applications of Raman spectroscopy over the last decades,

the majority was for mammalian cell cultures such as Chinese hamster

ovary (CHO) cells.6 The typical effective pre-processing strategies for

CHO cell processes include a baseline correction or derivative step fol-

lowed by a standard normal variate (SNV) scatter correction,20,55 and

strong signal extinction effects as observed for yeast cells are not

reported. Yeast cells are smaller and have a high optical density, which

results in stronger light scattering. The extremity of signal extinction is

seen even at the low yeast concentrations in this work, and this supports

approaches that employ the signal extinction itself to quantify yeast bio-

mass. For example, Yang et al. (2024) used the intensity decrease of the

water HOH-bending peak to quantify biomass concentrations.54 How-

ever, such approaches might only be viable when yeast cells are the only

light scattering particles in the medium. As presented in Section 3.2,

operating the bioreactor at a typical stirring rate of 830 rpm generated

bubbles leading up to a 7.91% reduction of distinct peak intensity, while

biomass of up to 5 g/L led to signal extinctions of 44.6%. Since the bio-

mass can be expected to have a relatively uniform size, further research

is required to determine the precise influence of bubble size and size dis-

tributions on signal attenuation. Despite the spectral distortion caused

by biomass or bubbles, there have been many successful cases of moni-

toring compounds such as glucose, ethanol, and other products during

yeast fermentation with Raman spectroscopy.4,56 This indicates that the

extinction effects can be removed from spectra with the appropriate

scatter corrections and normalization steps.

4 | CONCLUSION

Raman spectroscopy is becoming an established analytical tool for cell

culture monitoring and has been successfully applied to quantify small

molecular compounds in real time. However, without understanding

the impact of different process parameters, quantitative model perfor-

mance cannot be guaranteed when leveraging data from different

scales, processes, or measurement conditions. This study investigated

the spectral impact of temperature, bubble quantity, viscosity, and

yeast biomass. Changing the temperature in the bioreactor from 20 to

40�C resulted in a maximal peak shift of up to 0.80 cm�1 toward

lower wavenumbers, while a decrease in peak intensity was observed

of up to 4.46% (relative to the spectral baseline). An increasing num-

ber of bubbles generated through high stirring speeds resulted in sig-

nal extinction, reflected by up to 7.93% lower peak intensities in

synthetic media samples. The spectral effects of liquid viscosity as a

function of temperature in a 15% v/v glycerol water mixture led to

complex peak shift behavior with magnitudes similar to those

observed for temperature alone, and we were therefore not able to

truly isolate the effects of viscosity. Increasing biomass concentra-

tions led to strong signal extinctions of up to 44.7% in the fingerprint

region, causing a significant reduction in the measured signal of peaks

from compounds with constant concentrations. In addition to signal

attenuation, we were able to identify weak spectral bands associated

with proteins and lipids in the 1000–1500 cm�1 spectral region after

normalizing for scattering effects. This demonstrated that spectral

features related to the molecular composition of yeast cells can be

detected with in-line Raman spectroscopy, although the signal extinc-

tion caused by the cells as particles remains the dominant effect.

Overall, this work shows that Raman spectra are sensitive to

wavenumber shifts and peak intensity changes for different opera-

tional conditions, and that particles such as bubbles and cells can

cause significant signal extinction during in-line measurements. These

effects can complicate model calibration and subsequent application,

as mismatches between the affected spectral features might reduce

quantification accuracy. Moreover, predictive models may face diffi-

culties in generalizing between spectra acquired from different mea-

surement conditions, especially considering sharp spectral features

spanning few wavenumbers. A better understanding of these sources

of spectral noise aids in the design of appropriate data pre-processing

steps, thereby removing baseline shifts, restoring linearity through

normalization, and reestablishing variable alignment. Furthermore,

data pre-processing and modeling strategies should be tailored to

each compound of interest. For example, the spectral contribution

from yeast biomass is dominated by signal extinction rather than by

its molecular spectral features. The insights obtained through this

work contribute to a better understanding of signal distortion in bio-

processing, thereby serving the development of robust quantification

models. This work will support rapid model calibration with the use of

(miniaturized) alternative setups to minimize time- and labor-intensive

(re)calibration activities, thereby making real-time monitoring with

Raman spectroscopy more accessible.
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