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Abstract: Gallium nitride (GaN)-based vertical power Schottky barrier diode (SBD) has demonstrated
outstanding features in high-frequency and high-power applications. This paper reviews recent
progress on GaN-based vertical power SBDs, including the following sections. First, the benchmark
for GaN vertical SBDs with different substrates (Si, sapphire, and GaN) are presented. Then, the latest
progress in the edge terminal techniques are discussed. Finally, a typical fabrication flow of vertical
GaN SBDs is also illustrated briefly.

Keywords: GaN; Schottky barrier diode (SBD); vertical power devices; edge termination techniques

1. Introduction

Today silicon devices have reached their physical limits either in terms of scaling down or in
terms of their physical properties [1,2]. To further optimize device performance, new materials must be
explored. Wide band gap materials (e.g., silicon carbide (SiC), gallium nitride (GaN), and diamond) have
recently attracted a lot of interest for high power and high temperature applications [3–8]. SiC-based
power devices have been already commercialized for high-voltage and high-power application [9,10];
diamond is another promising candidate [11,12]. Among all of these wide bandgap semiconductor
material, GaN has a higher electron mobility than SiC and higher critical electric field than Si [13].
GaN-based devices are expected to meet the requirements of the future advanced power systems in
the field of radio frequency and power conversion application.

The field of power electronics is concerned with the processing of electrical power using electronic
devices. Power diodes are essential component in power converters and inverters in power transmission.
With the superior physical and chemical properties of GaN, GaN-based power diodes can significantly
increase the efficiency and reduce the energy loss [6,14]. Since the year 2000, GaN-based rectifiers
(including Schottky barrier diode (SBD) and PN junction diode) have attracted considerable interest
from researchers. With the absence of minority carrier accumulation and low barrier height, SBD
can operate at higher frequencies with a lower turn-on voltage (VON) than the PN junction diode [5].
Yoshimoto et al. [15] demonstrated the operation of GaN SBD at high frequency with low power loss
in power converter, comparing them with commercial Si fast recovery diode (FRD) and SiC SBDs via a
typical E resonant rectifying tested at a frequency of 30 MHz.

The typical schematic structure of GaN SBD is shown in Figure 1a,b, including quasi-vertical and
fully-vertical structure [16–22]. For the quasi-vertical GaN SBD, a mesa structure is processed and both
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of the anode and cathode are located at the same side of the wafer, as shown in Figure 1a. Quasi-vertical
SBDs have several drawbacks [20,22]: (1) nonuniform distribution of current, (2) the current crowding
problems, (3) large total device area, and (4) the deep etched sidewall process. All these issues greatly
promote the development of fully-vertical SBD, where the electrodes (anode and cathode) are located
at two sides of the wafer separately, with current flowing from anode to cathode through the drift layer
in a vertical direction, as shown in Figure 1b. The fully-vertical SBDs have the advantages of effective
device size and good thermal performance by cooling from both sides of the wafer.
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Figure 2. Benchmarks of the RON,sp vs. breakdown voltage (BV) of vertical SBDs with GaN on Si, 
sapphire, and GaN substrates. 

The main objective in the design of power devices is to obtain a high breakdown voltage (BV) 
while keeping the RON,sp as low as possible [39]. However, a large number of dislocations in the GaN 
drift layer can cause leakage current when device is reverse biased [40,41]. To study the substrates 
impact on the performance of GaN-based power device, Figure 2 summarizes the data from 

Figure 1. Gallium nitride Schottky barrier diode (GaN SBD) structure and current flowing directions:
(a) quasi-vertical and (b) fully-vertical.

The GaN epitaxy layer grown on GaN substrate has lower dislocation densities than foreign
substrates (e.g., Si, sapphire, or SiC), because of low lattice mismatch and low thermal expansion
coefficient mismatch [20–27]. However, the dislocation density of GaN-on-GaN is limited by the defect
density in the GaN substrate [28–30]. Before 2010, most GaN SBD devices were fabricated on a foreign
substrate, as a result of the poor availability of bulk GaN (or free-standing) substrates. Most studies of
vertical GaN-on-GaN SBD power devices have appeared in the last decade [31,32]. Moreover, with the
appearance of the quasi-vertical device and novel device structures [33,34], sapphire and Si substrates
have been investigated in recent years [35–38].

The main objective in the design of power devices is to obtain a high breakdown voltage (BV)
while keeping the RON,sp as low as possible [39]. However, a large number of dislocations in the GaN
drift layer can cause leakage current when device is reverse biased [40,41]. To study the substrates
impact on the performance of GaN-based power device, Figure 2 summarizes the data from literatures
of GaN vertical SBDs with different substrates. The RON,sp versus BV characteristics of GaN vertical
SBD devices is still far from the ideal GaN limit [30]. The GaN homoepitaxial has low dislocations and
high crystal quality, thus SBD shows much better performance than heteroepitaxial SBD.
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This paper reviews the recent progress of vertical GaN SBD from literatures. The following aspects
are covered; the device characteristics of GaN-based SBD in Section 2, terminal edge techniques in
Section 3, the typical fabrication flow of vertical GaN SBD in Section 4, and the conclusion in Section 5.

2. Device Characteristics of Vertical GaN SBDs

This section focuses on the forward and reverse characteristics of vertical SBD. A typical SBD
structure and its electric field distribution under reverse bias are shown in Figure 3a,b. It reveals that
the maximum electric field is located at the interface between anode and semiconductor [42,43].
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2.1. Forward Conduction Characteristics

A conventional SBD structure consists of anode metal, drift layer, substrate, and cathode metal.
When the diode is working in on-state, the turn-on voltage (VON), and RON are the important
parameters [44]. For a vertical power Schottky diode, from the theory of the thermionic emission,
the VON of an SBD can be expressed as [45]

VON =
nkT

q
ln
( JON

A∗∗T2

)
+ n∅B + RON JF (1)

where Jon is the forward current at VON, n is the ideality factor of the Schottky contact, A** is the
effective Richardson’s constant, ΦB is the Schottky barrier height (SBH), and RON is the on-resistance.
The ambipolar diffusion coefficient Richardson’s constant is expressed as

A∗∗ =
4πqm∗nk2

h3 (2)

where mn* is the effective electron quality and h is Planck’s constant. The theoretically calculated value
of A** for GaN is 26.4 A·cm−2

·K−2. Combining Equations (1) and (2), VON is determined mainly by the
Schottky barrier height and on-state resistance.

The total specific series resistance (RS,sp) consists of three parts: the ohmic contact resistance of
the cathode (RCont), the substrate resistance (RSub), and the specific on-state resistance of the drift layer
(RD,sp). The ideal RON,sp is equal to RD,sp in vertical SBD devices and given by [46]

RS,sp = RD,sp + RSub + RCont (3)

RD,sp =
WD

qµnND
(4)

where WD is thickness of the depletion region, q is the electronic charge, µn is the electron mobility,
and ND is the doping concentration of the drift layer. The depletion width WD under a certain BV is
given by
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WD =
2BV
EC

(5)

The ND can be expressed as

ND =
εsE2

c
2qBV

(6)

where Ec is the critical electric field of the material and εs is the dielectric constant of the drift layer.
The specific capacitance (capacitance per unit area) associated with this depletion region is

given by
CSBD,sp =

εs

WD
(7)

2.2. Reverse Breakdown Characteristics

From Equations (5) and (6), the relationship of WD, ND and BV can be expressed as

BV = EcWD −
qNDW2

D
2ε

(8)

According to the Equation (8), the reverse breakdown voltage is inversely dependent on the
doping level in the drift layer and positively dependent on the depletion width. For example, in the
quasi-vertical SBDs, increasing the depth of the mesa region, further leading to increase of the effective
thickness in the drift layer, can help improve the BV characteristics. Low ND or high WD of the drift
layer results in a high BV, however, with an increase of RON characteristics.

According to Equations (3)–(6), the relationship between RON,sp and BV can be expressed as [14]

RON,sp =
4BV2

εsµnEC3 (9)

where εsµnEc is the intrinsic properties of semiconductor materials, commonly referred to as Baliga’s figure
of merit (BFOM). Table 1 lists the physical properties of Si, GaAs, SiC, GaN, and Diamond [8,42,47,48].
The critical electric field of GaN is 11 times greater than Si and the saturation velocity is 2.5 times
greater than Si.

Table 1. Physical properties of Si, GaAs, SiC, GaN, and diamond.

Materials Eg (eV) ε
µn

(cm2/V·s)
Ec

(MV/cm)
Vsat

(107cm/s)
Total Dislocation

(cm2)
Thermal Conductivity

(W/m·K)

Si 1.12 11.8 1350 0.3 1 - 145
GaAs 1.42 13.1 8500 0.4 2 - 50

4H-SiC 3.26 10 720 2.0 2 >102 370
GaN 3.44 9 1250 3.3 2.5 >105 253

Diamond 5.5 5.7 2000 13.0 1.5 >104 2290

Eg, energy bandgap; ε, relative dielectric constant; µn, electron mobility; Ec, critical electric field; Vsat,
saturation velocity

According to the equations above, the ideal RON,sp for the drift region of a vertical power device
is given by [14,30]

Ron,sp(Si) = 5.93× 10−9BV2.5 (10)

Ron,sp(4H− SiC) = 2.97× 10−12BV2.5 (11)

Ron,sp(GaN) = 3.12× 10−12BV2.5 (12)

A large number of traps and threading dislocations exist in GaN materials in reality. The presence
of unintentional surface defect donors (e.g., nitrogen vacancy) can cause a reduction of the effective



Electronics 2019, 8, 575 5 of 15

width of Schottky barrier, resulting in high leakage current under reverse bias, explained by the
thin surface barrier (TSB) model [49]. Trap-assisted tunneling (TAT) is another trap-related leakage
conduction mechanism [50]. Besides of the leakage induced by traps, threading dislocation is also a
main cause of the devices leakage when device is reverse biased.

Temperature has a strong impact on leakage current under high reverse bias. The thermionic
emission is positive correlated with temperature, thus, the Frenkel–Poole Emission (PFE) is a
domination conduction mechanism in vertical GaN Schottky diodes at high electronic field and
high temperature [11,51]. Additionally, trap-assisted tunneling (TAT) is also a temperature-dependent
mechanism that causes increase in leakage current [50].

In a vertical power device, the peak electric field is crowded at the interface between the Schottky
contact metal and the n-GaN drift layer, as shown in Figure 4, causing early device breakdown
at the edge under reverse bias. Thus, novel terminal techniques are need to improve the vertical
device breakdown.
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3. Edge Termination Techniques

Edge termination techniques are proposed and utilized to improve the crowded electric field at
the periphery of active region. The most commonly used termination techniques are discussed in this
section, including field rings, junction termination extension (JTE), field plates, trench termination,
reduced surface field (RESURF), and N-based termination.

3.1. Field Rings

A planar junction termination structure adopting the p-GaN region can provide the redistribution
of high electric field at the edge of Schottky contact metal [30], as shown in Figure 5a. The p-GaN
termination regions are formed by Mg+ ion implantation under anode edges in the n-GaN drift layer.
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In early 2002, a research group from the University of Florida [50,51] reported a vertical
GaN-on-GaN SBD structure with p-guard ring junction termination. They found that a GaN SBD with
p-guard ring termination structure has a BV of 160 V. As shown in Figure 5b, the superior characteristics
are obtained by “moving” the peak electric field at edge away from the surface into bulk with the help
of depletion region in PN junction. Furthermore, the peak electric field at the edges can be reduced
by extension of PN junction in depletion layer. However, the p+-GaN implantation method with
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high-temperature annealing conditions can increase the significant risk and complexity of the p-guard
ring fabrication [52–58].

Comparing with the n-type GaN dopant process (Si implantation, activation temperature of
1250 ◦C [59]), p-GaN dopants require a higher annealing temperature of 1340 ◦C to activate Mg ions [60].
A low activation ration of Mg+ for GaN results in low hole concentration, which can affect the GaN
crystal quality causing low mobility and carrier concentration. The poor activation of dopants (Mg+

atoms) has only produced 1015–1017 cm−3 orders of magnitude of the carrier concentration [21]. Besides,
the extremely high temperatures required to activate the implanted Mg during the annealing process
also damage the GaN surface [61,62]. Greenlee, J.D., et al. [63] reported that the second annealing
process followed by multicycle rapid thermal annealing (MRTA) process can compensate for the defects
of the GaN surface and improve the crystalline quality of implanted p-GaN.

3.2. Junction Termination Extension (JTE)

The p-type region formed by Mg+ implantation can redistribute the surface electric field at the
edge of the PN junction. This p-type region has been named JTE [64]. Koehler et al. [61] reported a
GaN junction barrier-controlled Schottky (JBS) device with a JTE structure in 2016. Their study shows
an improved reverse characteristic in JBS with JTE, achieving a higher BV of 610 V than conventional
SBD (BV of 200 V). In the JBS rectifier, the forward current is designed to flow in the undepleted gaps
between the P+ regions when the diode is forward biased to keep in unipolar operation mode [65].
The pn junction below Schottky metal creates a potential barrier to shield the Schottky contact under
reverse bias [13,30].

3.3. Field Plates

The field plate is another technique to redistribute the electric field at the edge of the Schottky
contact metal under reverse bias. Currently, three types of field plates are used for SBDs, including a
metal field plate (Figure 6a), a resistive field plate (Figure 6b), and a floating field plate (Figure 6c).
As shown in Figure 6d, the field plate located at the edge of an electrode can extend the depletion
boundary and reduce electric field crowding under the reverse bias [66].

The metal field plate is formed by extending the contact metal over the field oxide/dielectrics at
the edge of the junction [67], as shown in Figure 6a. In 2009, Horii et al. [68] demonstrated improved
reverse characteristics in vertical GaN SBDs with a metal field plate (FP) for the first time, achieving
680 V of BV (400 V of BV without FP). Zhang et al. [37,69] was the first to report a quasi-vertical
GaN-on-Si SBD where the destructive BV of the SBD without and with a FP structure is 90 V and
205 V, respectively.

Resistive field plate is an alternative field plate technique to smooth the electric field around the
surface. This high-resistivity region can help spread the electric field at the edge of the anode metal.
As shown in Figure 6b, Ozbek and Baliga [70,71] reported two types of GaN SBDs with a resistive
field plate formed by Ar ion implantation on GaN and sapphire substrates, respectively. The vertical
GaN-on-GaN SBD shows a higher breakdown voltage of 1650 V compared with the diodes without
termination (BV of 300 V) [70]. Another GaN-on-Sapphire SBD show a BV of 1700 V with a resistive
field plate, which is four times higher than that of the conventional SBD [71].

The structure of GaN SBD with floating field plate is shown in Figure 6c. When a negative bias
is applied to the floating metal plate (or biased field plate) on a n-GaN drift layer it repels electrons
away from the device surfaces. This will result in an expansion of the depletion region and then the
peak electric field can be reduced around the edges. Thus, vertical SBDs with a biased field plate
termination can achieve higher BV than devices without it. However, the introduction of an additional
package terminal to provide a separate bias to the biased field plate increases the additional bias circuit
cost [72]. Seung-Chul et al. [73] demonstrated that vertical GaN SBDs with a metal floating field plate
termination has a higher BV of 353V than conventional structure (159 V).
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3.4. Trench Termiantion

Baliga [66] investigated a typical trench metal oxide semiconductor (MOS) barrier Schottky (TMBS)
rectifier structure consisting of an MOS structure at the trench region, as shown in Figure 7a. A trench
region containing an MOS structure produces a potential barrier that can shield the Schottky contact
at the reverse bias. The potential barrier is against the high electric field in the bulk of the GaN drift
region. The reduction of the electric field around Schottky metal enables the reduction of the leakage
current under reverse bias [74]. However, it has oxide layer reliability issues due to the high electric
field at the corner of the trench.
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Zhang et al. [75] reported a novel GaN trench metal–insulator–semiconductor (MIS) barrier
Schottky diode with trench field rings, as shown in Figure 7b. They demonstrated that the GaN
vertical FR-TMBS has a higher BV (700 V) than conventional SBDs (400 V). The FR regions were formed
by Ar ion implantation, which could avoid a peak electric field at the trench corner and premature
breakdown in the oxide layer. The electric field distribution at -1000V along the vertical cutline in the
trench is shown in Figure 7c. Zhang et al. [76] also reported a vertical GaN-JBS with Ar-implanted
trench termination, achieving a BV of 500–600 V.



Electronics 2019, 8, 575 8 of 15

3.5. Reduced Surface Field (RESURF)

Planar junction termination is an effective technique to improve breakdown voltage. RESURF is
the most popular termination techniques in the design of high-voltage power devices. RESURF vertical
SBDs can achieve a high BV since the depletion of the Schottky contact in the vertical direction is
reinforced by the adjacent PN junction [77–79]. Li et al. [80] studied the reduced surface field (RESURF)
impact on JBS diodes, and reported that the vertical surface field within the trench is much reduced
compared to conventional SBD, as shown in Figure 8b.
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3.6. N-Based Termination

N-based termination (NT) techniques was reported by Yang et al. [6,81], as shown in Figure 9.
By utilizing the nitridation plasma to form an N-based termination region around the edge of the
anode, the N vacancies can be compensated and the Ga dangling bonds on the GaN surface can also
be passivated. The NT structure at the junction edge presents a higher energy barrier height and/or
effective barrier thickness around vertical GaN SBDs. Therefore, the leakage current at the edge is
decreased under reverse bias due to the suppression of electron transport via thermionic-field emission
(TFE) or tunneling. The NT-SBD with a BV of 995 V and a RON,sp of 1.2 mΩ·cm2 has shown excellent
static (high JF density of 2000 A/cm2) and switching characteristics (fast reverse recovery time of ~17 ns
and small reverse recovery charge of ~0.8 nC), which impart potential advantages in high-power and
high-frequency applications.

In summary, the benchmark for different edge termination techniques is shown in Figure 10.
A resistive FP termination device with low donor concentration (ND = 1 × 1014 cm−3) has the
highest BV (1.6 kV) in this map [71], a TiN-based GaN SBD is followed (1.2 kV) without any
termination technique [82]. Utilizing a metal FP termination with low drift layer donor concentration
(ND=8 × 1015 cm−3) can significantly increase the BV (1.1 kV) [83]. Trench termination technique might
not evidently improve the BFOM of SBDs, comparing with other techniques, explained by high donor
concentration (ND = 2 × 1016 cm−3) in the GaN drift layer [39]. N-based termination structure has a
similar reverse breakdown characteristic (BV of 995 V) with metal FP (BV of 1.1 KV) except for high
RON, attributed to a relative thick drift layer (11 µm) [6].
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4. Fabrication Steps of Vertical GaN SBDs

A proposed process flow of vertical GaN SBD has been shown in Figure 11, which is similar
to the literature [84]. The GaN epilayer was subsequently grown on sapphire substrates by metal
organic chemical vapor deposition (MOCVD) [85]. In Figure 11a, the contact metal was deposited
on GaN epilayer. After that, the samples were annealed at a certain condition to further improve
the ohmic behavior. (Ti/Al/Ni/Au at 600–840 ◦C in N2 for 20–30s [2,26,29,33,65,67,71,72]; Ti/Al/Pt/Au
at 700 ◦C–850 ◦C in N2 for 30s [5,53,54,86]; Ti/Al [19,31,37,38,68,75,76,82]; Ti/Al/Ti/Au [32,67,83,87];
Ti/Al/Au [18,81].) Then, the nickel layer is formed on ohmic contact metal by an electroplating process,
as shown in Figure 11b. To remove the sapphire substrate, a laser power was used to cause local
heating at the GaN/sapphire interface which in turn lead to the decomposition of the GaN, as shown in
Figure 11c,d. Finally, the Schottky metal (Ni/Au) was deposited using e-beam evaporation, as shown
in Figure 11e.
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(c) laser lift-off, (d) sapphire removal, and (e) Schottky contact.



Electronics 2019, 8, 575 10 of 15

5. Conclusions

This paper reviewed and summarized the reported GaN vertical power SBDs (Table 2). The recent
progress of GaN vertical power SBD on different substrates has been presented. The RON,sp versus
BV characteristics of GaN vertical SBD devices is still far from the ideal GaN limit [30]. The GaN
homoepitaxial has low dislocations and high crystal quality, thus SBD shows much better performance
than GaN heteroepitaxial SBD.

Table 2. Summary of the reported vertical GaN power SBDs in the literature.

Year Substrate BV
(V)

RON,sp
(mΩ·cm2)

VON
(V)

Schottky
Metal

Ohmic
Metal Manufacturer Ref.

1999 Sapphire 450 NA 4.2 Au Ti/Al/Ni/Au CIT [7]
2000 Sapphire 550 5.7 3.5 NA Pt/Au U. Florida [3]
2000 Sapphire 450 23 N.A Pt/Au Ti/Al/Pt/Au U. Texas [86]
2000 Sapphire 310 8.2 N.A Pt/Au Ti/Al/Pt/Au U. Texas [86]
2000 Sapphire 280 6.4 N.A Pt/Au Ti/Al/Pt/Au U. Texas [86]
2000 Sapphire 500 130 3.5 Ni/Pt/Au Ti/Al/Pt/Au U. Florida [88]
2001 GaN 450 20.5 3 Pt/Au Ti/Al U. Florida [34]
2001 GaN 700 3.01 1.8 Pt/Ti/Au Ti/Al/Pt/Au U. Florida [5]
2002 GaN 160 2.6 1.8 Pt/Ti/Au Ti/Al/Pt/Au U. Florida [54]
2002 GaN 160 3 1.8 Pt/Ti/Au Ti/Al/Pt/Au U. Florida [53]
2004 GaN 353 160 NA Pd/Mo/Ti/Au Ti/Al/Ni/Au Seoul [73]
2006 GaN 630 2.2 1.2 Pt Ti/Al U. Auburn [31]
2007 GaN 580 1.3 1.35 Au Ti/Al/Ti/Au Sumitomo [32]
2009 GaN 680 1.1 1.2 Au Ti/Al/Ti/Au Sumitomo [68]
2010 GaN 1100 0.71 1 Ni/Au Ti/Al/Ti/Au Sumitomo [83]
2010 GaN 600 1.3 0.95 Pt Ti/Al/Ni/Au U. Auburn [29]
2011 GaN 1650 9 0.5 Pt Ti/Al/Ni/Au NCSU [71]
2011 Sapphire 1700 NA NA Ni NA NCSU [70]
2012 Sapphire 230 1 NA Ni/Au Ti/Al/Ni/Au RWTH [33]
2013 GaN 600 1.2 0.9 Pd Al Avogy [52]
2014 Si 205 6 0.5 Ni/Au Ti/Al MIT [37]
2014 GaN 620 0.89 1.46 Ni/Au NA Sumitomo [15]
2015 GaN 790 2.25~2.61 0.5 Ni Ti/Al TOYODA [67]
2016 GaN 300 NA NA Ni/Au Ti/Al/Ni/Au Naval [65]
2016 GaN 800 4.94 0.77 Ni/Au Ti/Au HRL [17]
2016 GaN 700 3.06 0.67 Ni/Au Ti/Au HRL [19]
2016 GaN 700 2 0.8 Ni/Au/Ni Ti/Al MIT [75]
2017 GaN NA 0.72 0.73 Ni/Au Ti/Al/Au MANA [18]
2017 GaN 610 NA 0.5 Pd/Au Ti/Al/Ni/Au Naval [61]
2017 GaN 503 1.65 0.59 Pt/Au Tt/Al/Ti/Au ASU [87]
2017 GaN 1200 7 0.69 TiN Ti/Al U. Shenzhen [82]
2017 GaN 600 1.7 3.5 Ni/Au Ti/Al MIT [76]
2017 GaN 600 7.6 0.7 Ni/Au Ti/Al MIT [76]
2017 Sapphire 100 0.59 0.75 Ni/Ti/Pt/Au NA IIT [36]
2017 Si 148 13.9 0.69 Ni/Au AuSb/Au NIT [35]
2017 GaN 640 1.9 1 Pd Ti/Au Cornell [80]
2018 GaN 995 1.3 1.7 Pt/Au Ti/Al/Au U. Zhejiang [81]
2018 Si 254 1.6 0.76 Ni/Au NA EPFL [38]
2019 GaN 802 250 0.74 Ni/Au Ti/Al/Ni/Au U. Shenzhen [26]

Then, the performance of GaN vertical SBDs with different edge termination techniques are
discussed, including field rings, JTE, field plates, trench termination, RESURF, and N-based termination.
In the practical design, the breakdown voltage is effectively improved by redistribution of electric field
at electrode edges with all these edge termination techniques.

In the future studies, the performance of GaN vertical SBDs should be improved by optimizing the
device structure and quality of the epitaxial layers. We hope this review can be valuable for research
on GaN vertical power SBDs.
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