
Department of Cognitive Robotics - Vehicle Engineering

POMDP based online parameter
estimation for autonomous pas-
senger vehicles
Researching online tyre parameter estimation perfor-
mance by improving the trajectory using a POMDP al-
gorithm.

Quinn Vroom - 4225554

M
as

te
ro

fS
cie

nc
e

Th
es

is

POMDP based online parameter
estimation for autonomous passenger

vehicles
Researching online tyre parameter estimation performance by

improving the trajectory using a POMDP algorithm.

Master of Science Thesis

For the degree of Master of Science in Vehicle Engineering at Delft
University of Technology

Quinn Vroom - 4225554

May 28, 2019

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright c© Department of Cognitive Robotics (CoR)
All rights reserved.

Abstract

The internal model is an important piece of the control system of an autonomous driving
vehicle. In order for the model to deliver accurate predictions, a valid model structure and
well chosen parameters are needed. Model parameters can be highly fluctuating or complex
to predict, especially when looking into tyre ground surface interaction models. Instead of
predicting parameter values beforehand, they could be estimated and updated in real-time.
Fluctuation or incorrectness can be adjusted while driving. However, this uncertainty in
parameter value must be accounted for when applying control. Solving this problem by
regarding the uncertainty in parameters of the internal vehicle model as a POMDP has been
researched in this paper. The research question being: is it worthwhile to use the POMDP
approach for online parameter estimation of autonomous passenger vehicles? To answer this
multiple sub-questions have been composed. We start off looking into: what is the most
suitable vehicle model? Different vehicle models and tyre models were compared. Literature
showed the bicycle model in combination with the linearized tyre model to be most suitable for
autonomous passenger vehicles. The next question is: What is the most promising algorithm?
Using literature, suitable algorithms for solving this POMDP have been found and compared.
From three compelling algorithms, the one best fitting the autonomous driving criteria was
chosen. Knowing the model and the algorithm for the simulation the next question became:
Does the algorithm perform on a vehicle model? To answer this question, the simulation
has been implemented in MATLAB and performance has been tested. The results showed
significant increase in parameter estimation performance. Within 2 timesteps the estimate
had converged correctly. The next question is: Does the algorithm perform within realistic
bounds? To answer this question, the same simulation as before has been used, but now with
saturation on the steering input. This showed parameter estimation performance increase
compared to the original trajectory, but not as overwhelming as without saturation. The
next question is: Does the algorithm suffer from high noise? To answer this question, the
same simulation has been used, but now with different levels of noise. The results showed
parameter estimation performance significantly affected by increasing noise. The final sub-
question is: Does the algorithm suit increasing model complexity? To answer this question,
the amount of parameters have been increased in the simulation and there has been looked
into the large matrices that accompany the algorithm. Results showed that increasing the

Master of Science Thesis Quinn Vroom - 4225554

ii

complexity has a significant effect on the size of the simulation and algorithm matrices. In
conclusion, from all of these experiments arose some very interesting results. This produced
a useful insight into the strengths and weaknesses of the POMDP algorithm performing on a
passenger vehicle, answering the research question. This also led to various recommendations
for future research. Interesting would be altering the belief filter to enhance performance on
bounded steering input and increased sensor noise.

Quinn Vroom - 4225554 Master of Science Thesis

Table of Contents

Preface v

1 Introduction 1

2 How does a POMDP work? 3
2-1 The abbreviation . 3
2-2 Structure of the POMDP . 3
2-3 POMDP based autonomous vehicle . 4

3 Vehicle model selection 7
3-1 Vehicle model complexity . 7

3-1-1 Bicycle model . 7
3-1-2 8 DOF vehicle model . 8

3-2 Tyre model . 9
3-2-1 Linear tyre model . 9
3-2-2 Magic Formula . 10

3-3 Conclusion . 11

4 Algorithm selection 13
4-1 What is the most promising algorithm? . 13

4-1-1 Requirements and criteria . 13
4-1-2 Comparison and choice . 14

4-2 How does the algorithm work? . 14
4-2-1 System and Kalman Filter . 15
4-2-2 Value iteration . 15
4-2-3 Algorithm . 16
4-2-4 Reaching convergence . 16
4-2-5 Adding parameter estimation . 17

4-3 Conclusion . 17

Master of Science Thesis Quinn Vroom - 4225554

iv Table of Contents

5 MATLAB implementation 19
5-1 MATLAB code . 19
5-2 Ensuring convergence . 20
5-3 Discretization of vehicle dynamics . 20

5-3-1 Comparing results . 21
5-3-2 Consideration . 22

5-4 Tune-able parameters . 23

6 Testing performance 25
6-1 Sine input experiment . 25

7 Applying steering bounds 29
7-1 Saturating the steering input . 29
7-2 Sine input experiment . 29

8 Testing noise influence 31
8-1 Sine input experiment . 31

9 Increasing model complexity 33
9-1 Algorithm size . 33
9-2 Root of the problem . 33
9-3 Amount of parameters estimated . 34

10 Conclusion and recommendations 37

A Equations of the POMDP algorithm 39
A-0-1 System and Kalman Filter . 39
A-0-2 Value iteration . 40
A-0-3 Algorithm . 40

Bibliography 43

Quinn Vroom - 4225554 Master of Science Thesis

Preface

Before you lies my Master of Science graduation thesis, where I have researched applying
POMDP machine learning to the task of autonomous driving while having uncertainty over
model parameters. The idea of doing my thesis on this subject came after a discussion with
my supervisor prof.dr.ir. Martijn Wisse. As a Vehicle Engineer student, I was very interested
in autonomous driving vehicles. At the time, my supervisor was looking into new control
algorithms very similar to solving POMDPs. It sparked my interest to see what performance
could be reached when applying this scheme to estimating parameters of autonomous driving
passenger vehicles.

Before I started on my thesis I was unfamiliar with POMDPs and how to solve them. Perform-
ing a literature study, implementing and testing a model, and writing a thesis was difficult,
but it has allowed me to answer the research question that we identified. Fortunately, my su-
pervisors were always there for all my questions regarding POMDPs and conducting research.

I would like to thank my supervisors prof.dr.ir. Martijn Wisse and dr.ir. Matthijs Spaan for
their guidance and support during this process. I would like to thank my fellow students
for their support and our daily card game during the break. I would also like to thank my
parents, Gerrit and Monique Vroom, my brother, Nino Vroom, and my girlfriend, Brenda
Paardekooper, for their patience and understanding.

I hope you enjoy your reading.

Quinn Vroom

Delft, University of Technology
May 28, 2019

Master of Science Thesis Quinn Vroom - 4225554

vi Preface

Quinn Vroom - 4225554 Master of Science Thesis

Chapter 1

Introduction

In the last decade, there has been increased development for autonomous driving vehicles.
With brands as Tesla equipping cars with autopilot since 2014 [1], research is accelerating.
There are different aspects that come into play when trying to let a vehicle drive autonomously,
such as recognition, prediction and control. For this research we are interested in the control
strategy.

An issue with real life systems is knowing the exact value of the parameters. When looking into
cars for example, parameter values will change over time. Parameters such as the dimensions
of a vehicle will not change, parameters such as mass will fluctuate, but tyre road friction will
change heavily over time. Tyre road surface interaction is dependent on multiple factors: tyre
size, tyre brand, tyre wear, temperature, weather, road surface. Accounting for all of these
factors in dynamic predictions requires a complex model combined with dozens of sensors
measuring the conditions.

A non regarded way of finding a control strategy for autonomous passenger vehicles is by
regarding the situation as a Partially Observable Markov Decision Process (POMDP). When
regarding the situation as a POMDP, uncertainty in state transition and measurement is
accounted for. Thus, regarding it as a POMDP makes it suited to deal with uncertain
situations. A typical goal of POMDP based vehicle navigation is decreasing uncertainty in
the current position estimate of the system [2]. However, more recent studies show that it
can also be used to decrease uncertainty in model parameter estimates [3]. By solving the
POMDP, an improved control strategy is created. This way a (slightly) deviating path is
chosen that improves model parameter inference performance. Hence, the research question
becomes:

Is it worthwhile to use the POMDP approach for online parameter estimation of autonomous
passenger vehicles?

This question is still very broad, because there are dozens of different algorithms and im-
plementations of the POMDP approach. To answer the research question, we have to cut
it into several smaller pieces. The first part is to determine which vehicle model suits an
autonomous driving simulation best, followed by establishing the POMDP based algorithm

Master of Science Thesis Quinn Vroom - 4225554

2 Introduction

that is most promising to use for this situation. Luckily, this has already been answered by
my literature study. After these two points, the building blocks of the simulation are there.
This leads to implementation and testing the algorithms performance, if it performs within
realistic bounds, if it can handle high noise and lastly if it suits increasing model complexity.
In summary, this produces the following sub-questions:

1. What is the most suitable vehicle model?
2. What is the most promising algorithm?
3. Does the algorithm perform on a vehicle model?
4. Does the algorithm perform within realistic bounds?
5. Does the algorithm suffer from high noise?
6. Does the algorithm suit increasing model complexity?

The goal of this thesis is to find an answer to the main research question by using the answers
of these sub-questions. Chapter 2 explains the basic working principle of a POMDP to better
understand how to regard the problem as a POMDP. Chapter 3 focuses on modelling vehicle
dynamics and answering sub-question 1. Chapter 4 contains the findings of the literature
study and explains the chosen algorithm, this will answer sub-question 2. Chapter 5 discusses
implementation details and assumptions for the model and algorithm. In chapter 6 we will
test the algorithm on a simulation and answer sub-question 3. In chapter 7 we will discuss
the effect of bounding the steering input and answer sub-question 4. In chapter 8 we test
the effect of increasing noise on performance and answer sub-question 5. Chapter 9 discusses
the suitability of the algorithm with regards to increasing model complexity and answers
the final sub-question. The 10th and last chapter contains the conclusions and lists the
recommendations for future research.

Quinn Vroom - 4225554 Master of Science Thesis

Chapter 2

How does a POMDP work?

In this chapter we will look into POMDPs. The goal of this research is improving parameter
estimation performance by using a POMDP based algorithm. Before we can look into different
algorithms to solve a POMDP, we need to understand what a POMDP is. More importantly,
we need to know how to regard something as a POMDP.

2-1 The abbreviation

POMDPs are classed under machine learning, specifically reinforcement learning. The abbre-
viation POMDP stands for Partially Observable Markov Decision Process. A POMDP can
be solved, which means finding a policy, or control strategy, that minimizes cost or maximizes
reward. The total cost is calculated using a predefined function. This cost function can be
tuned to accommodate different objectives for the policy to achieve. A POMDP is an exten-
sion of the regular Markov Decision Process (MDP) used in machine learning. Similar to an
MDP, the dynamics are known, however the underlying state of the system cannot directly
be observed by the agent, hence the Partially Observable part [4].

2-2 Structure of the POMDP

A POMDP can be written down as a tuple: (X,U,Z, T,O,C, γ). X represents the state
space of a system (or robot), U represents the action space of the system and Z represents
the observation space of the system. The system starts in a certain state x ∈ X, it performs
an action u ∈ U to reach a new state x′, then receives an observation z ∈ Z. The system
cannot directly measure its state, but has to make do with the observations. In the tuple, T
is a probability function which represents the transition T (x, u, x′) = P (x | x, u), also called
the dynamics of the system. This function describes the probability of reaching a certain new
state given the current state and the action, this accounts for things as control uncertainty and
changes of the surroundings. O is the observation model given by S(x′, u, z) = P (z | x′, u),

Master of Science Thesis Quinn Vroom - 4225554

4 How does a POMDP work?

which represents the sensor uncertainty. C is the cost function C(x, u), which represents the
cost for the system for taking action u in state x. The last parameter, γ, is the discount
factor. γ ensures a finite horizon by making earlier rewards more valuable. The value of γ
can be [0, 1). In a block scheme this becomes the model that can be seen in figure 2-1.

Figure 2-1: Basic POMDP overview [4]

Here, the highlighted section represents the dynamical model combined with the noisy sensors.
Out of the dynamics, here Markov Chain, comes the real state x, then the state is measured
by the noisy sensor and observation z is received. This is called the Hidden Markov Model,
because the model is hidden behind the observation. The so called "HMM Filter" in this
diagram maintains the observations over the time and translates it into a belief state x̂.
Then, using the current belief, the controller decides which action to take according to the
precalculated policy. The action u not only affects the dynamics of the system, but also the
noisy sensors. The objective is to minimize the expected cumulative cost. For a finite horizon
this objective becomes:

Jµ(π0) = Eµ

{
N−1∑
k=0

C(xk, uk) + CN (xN) | π0

}
(2-1)

Where N is the total time elapsed and π0 the initial policy. The controller chose the actions
using to the policy µ to reach this cumulative cost. The goal of the controller is to find a
policy which reaches the objective, which means finding the optimal policy. The optimal
policy µ∗ is given by:

µ∗ = argmin Jµ(π0) (2-2)

Which holds for any initial prior π0.

2-3 POMDP based autonomous vehicle

The explanation of a POMDP has been general thus far. To get a better sense of how
to regard something as a POMDP and how this relates to autonomous vehicles, the tuple
will be explained for a passenger vehicle. The state x contains the current position in the
world, for example defined in 2D position coordinates plus a rotational coordinate. The
actions u of an autonomous vehicle can contain things like steering input, throttle and brake
pressure. The observations z come from the sensors in the vehicle such as GPS for the
coordinates and accelerometers for rotation angle. The transition function T is represented

Quinn Vroom - 4225554 Master of Science Thesis

2-3 POMDP based autonomous vehicle 5

by the dynamics of the vehicle. A vehicle model of choice can be used here. The observation
model O describes how accurate a sensor delivers observations. Sensors like GPS output
measurements containing noise, while sensors like accelerometers do not directly observe the
desired state, causing increased deviation between observation and state. The cost function C
can be chosen according to the desired goal, such as minimizing the variance in a parameter
estimate. The discount factor γ is less important for autonomous driving with uncertain
parameters and can most likely be left at a value of 1. Belief over the state x̂ is often done
using a Kalman Filter. The dynamical vehicle model can be embedded into the Kalman Filter
to maintain an accurate belief from the noisy sensors observations.

Master of Science Thesis Quinn Vroom - 4225554

6 How does a POMDP work?

Quinn Vroom - 4225554 Master of Science Thesis

Chapter 3

Vehicle model selection

In this chapter we will look into dynamic modelling of passenger vehicles. The goal is to find
an answer to the first sub-question: What is the most suitable vehicle model?. To answer
this, we need to get an insight into different types of vehicle models and tyre road surface
interaction models. This is important, because the model choice directly influences which
and how many parameters have to be estimated. At the end of the chapter a suitable vehicle
model and tyre model are chosen.

3-1 Vehicle model complexity

The field of interest of this research is autonomous driving, so the dynamics of passenger
vehicles are the ones that need to be identified. Luckily, a lot of research has already been
done for modelling the dynamics of ground vehicles. The shape and size of the model of the
vehicle can be chosen in different ways. Dependent on the task, the level of complication
can be varied [5]. Choosing a more complex model will not automatically result in better
performance. More complex means more parameters to infer and/or tune. For this research
a small and computationally inexpensive model is preferred. The sooner the algorithm can
guide towards an accurate estimate of the model parameter(s), the better it will perform
overall. In the following subsections two different ways to model a vehicle are introduced and
briefly explained, also considering their respective practical applications.

3-1-1 Bicycle model

A very simple and effective way to model a 4 wheel passenger vehicle is the so called "bicycle
model", which is widely used in theoretical and practical studies involving passenger vehicles
[5] [6] [7] [8]. The bicycle model consists of a single front wheel and a single rear wheel, just
like a bicycle. It is a top-down view of the bicycle, so it is only allowed to move in x- and
y-direction. The bike cannot fall over or lean into a corner and there is also no weight transfer
in longitudinal direction. Normally, for the tyre dynamics a linearized model is chosen, but

Master of Science Thesis Quinn Vroom - 4225554

8 Vehicle model selection

this can be interchanged by a more sophisticated one, more on this in section 3-2. How the
bicycle model looks, can be seen in figure 3-1 below.

Figure 3-1: Bicycle model of a passenger vehicle [9]

To derive the 2 DOF equations of motion for the bicycle model, the longitudinal velocity is
considered to be constant and the lateral component of the longitudinal front wheel force Fx1
is neglected. This leads to the following differential equations [9]:

v̇ = −
(C1 + C2

mu

)
v +

(
− u+ bC2 − aC1

mu

)
r + C1

m
δ (3-1)

ṙ =
(bC2 − aC1

Izu

)
v +

(
− b2C2 − a2C1

Izu

)
r +

(aC1
Iz

)
δ (3-2)

Where C1 and C2 are parameters of the linearized tyre model. The A and B matrix, of a
linearized dynamical system, can easily be extracted from these two equations and used for
simulation. Even though this model is heavily simplified, the bicycle model is very effective
in practice [5] [6] [7] [8].

3-1-2 8 DOF vehicle model

A more complicated way of modelling a passenger vehicle is also an option. Here we look at
the 8 DOF example from Smith et al. [10]. In this case, the track width is considered, which
means that the vehicle is modelled with four wheels, instead of just two like in the bicycle
model. Forward velocity and wheel dynamics are also considered to be variables in this model.
Furthermore, lateral and longitudinal weight transfer, roll and pitch motion respectively, are
added to the model. Lastly, engine rotational speed en driving torque are considered in this
model. How this model looks can be seen in figure 3-2 below.

Quinn Vroom - 4225554 Master of Science Thesis

3-2 Tyre model 9

Figure 3-2: 8 DOF model of a passenger vehicle [10]

The corresponding equations of motion can be found in Smith et al. [10]. This more complex
model will produce more accurate and realistic results than the bicycle model [10]. The
main difference appears when looking at high-g maneuvers. Here the dynamical behaviour
becomes more and more nonlinear and harder to predict with simplified models. For normal
driving conditions however, a more complex models performs similar, but does require more
parameters to be specified for the model to work properly. This is often easier said than done.
Here it becomes obvious why practical applications involving normal autonomous driving tend
to apply simple models like the bicycle model [5] [6] [7] [8].

3-2 Tyre model

Next, we will discuss different ways of modelling tyre road friction dynamics. As explained
before, a fast and small model is preferred. The sooner the estimate is correct, the better.
Apart from choosing the level of complexity of the vehicle model, the fitting tyre dynamics also
have to be chosen. Of course, the most simple way to do this is by ignoring slip all together.
This leads to the model becoming more of a kinematic model than a dynamic model. This is
not relevant, as the goal is to find performance on a dynamic model, so this is not considered
in the following subsections. There will be two different tyre models introduced and briefly
explained, also considering their usual respective practical applications.

3-2-1 Linear tyre model

A very simple way to model the tyre behaviour under slip, is using a linearized tyre model.
The characteristics of a tyre can be seen in figure 3-3. On the left side of the figure is the tyre
behaviour in lateral direction and on the right side is the behaviour in longitudinal direction.
For the bicycle model, only the lateral behaviour is considered. The sideslip angle α represents
the angle between the direction the tyre is pointed and the direction the tyre is moving in. In
case of the front wheel(s), the steering angle also influences the sideslip angle α. Looking at
the graph, in this example there is a maximum side force Fy at a sideslip angle of around 8◦.
After this sideslip angle, the lateral force decreases again. The linearized tyre model considers

Master of Science Thesis Quinn Vroom - 4225554

10 Vehicle model selection

Figure 3-3: Typical tyre characteristics, showing the lateral steering force and the longitudinal
brake force against the tyre slip under normal conditions [9]

calm, highway driving scenario’s and thus simplifies the sideslip curve to just the first part.
Before the maximum, the curve is very close to linear. For the longitudinal behaviour, the
same principle holds. The definition of slip in this case is a little different though. Slip is
based on the difference in rotational wheel speed and forward wheel speed. A slip κ of 0
means that the wheels rotation is equivalent to its forward movement, a slip κ of 1 means
that the wheel is fully rotating, but not moving forward at all. Depending on the slip κ, a
different longitudinal force Fx is exerted on the ground. As with the sideslip α, the graph of
the slip κ shows that before the maximum, the graph is close to linear and after the maximum
it decreases gradually. The linearized tyre models thus take the form of:

Fy = Cα · α (3-3)
Fx = Cκ · κ (3-4)

Where Cα and Cκ are constants, matching the gradient of the beginning of the non-linear
curves.

3-2-2 Magic Formula

The linear tyre model is a very simplified way of modelling the tyre behaviour. A big downfall
of this method is the fact that the optimal point, at which the force exerted on the ground is
the highest, is not included. So when looking at more dynamic driving scenario’s the optimal
slip cannot be assessed with the linearized tyre model. A very sophisticated example of a
nonlinear tyre model is the Magic Formula [9]. The Magic Formula has seen many iterations
over the years, but is based on relatively simple equations. The Magic Formula is stated as
follows:

y = D sin[C arctan{Bx− E(Bx− arctanBx)}] (3-5)

Where B, C and D are tuning parameters for the exact shape of the curve. The Magic
Formula has the same basic shape as the curves in figure 3-3. The function can be used to
generate an output Y that represents either Fx or Fy, or even other variables. The exact values
of the parameters of the Magic Formula are based on empirical data. Different tyres have
been tested under different conditions to get an insight into the behaviour and estimate the

Quinn Vroom - 4225554 Master of Science Thesis

3-3 Conclusion 11

necessary parameters. The Magic Formula is a very accurate model and also a fairly quick
one due to the simplicity. However, to know the exact value of the parameters, extensive
knowledge and testing of the used tyre is needed. If the parameters are not known exactly,
the benefit over the linearized tyre model becomes less compelling.

3-3 Conclusion

From the reviewed methods in the mentioned papers it becomes clear, that the bicycle model
is the most appropriate one for this research. Due to its simplicity, it is computationally
inexpensive and has a fairly accurate prediction. The same principles hold for the tyre model.
The appropriate tyre model corresponding to the bicycle model is the linearized one. Under
normal driving conditions, this will lead to fairly accurate results. Choosing for method like
the Magic Formula generates an increase in parameters and will thus be more computationally
expensive and bigger in size. Being able to update the tyre parameter estimation more quickly
shows more potential for rapidly changing road conditions. Returning to the sub-question,
using the bicycle model together with the linearized tyre model is most suitable for this
research.

Master of Science Thesis Quinn Vroom - 4225554

12 Vehicle model selection

Quinn Vroom - 4225554 Master of Science Thesis

Chapter 4

Algorithm selection

In this chapter we will look into POMDP algorithms. The goal is to find an answer to the
second sub-question: What is the most promising algorithm?. This chapter consists of two
parts. First, we describe how we chose the most promising algorithm for solving our POMDP.
This chapter appeared earlier as my Literature Thesis [11]. The second part focuses on the
working principle and the most important equations of this algorithm.

4-1 What is the most promising algorithm?

To identify an algorithm that suits the goal of estimating parameters online of an autonomous
driving vehicle, literature has been reviewed. There are a couple of requirements belonging to
this specific task, which lead to criteria on which the algorithms can be compared. The criteria
are briefly described below, followed by a summary of the comparison of the algorithms and
a conclusion on the most promising one.

4-1-1 Requirements and criteria

First of all, the algorithm should be able to handle a continuous state space and observation
space. The action space would preferably also be continuous, but discrete is also manageable.
The steering input for example is bounded and can be approximated efficiently by discrete
steps in the angle. For the current state, in the state space as well as the observational space,
it is undesirable to define boundaries. Discretizing all of the possible states is not suitable
and very computationally demanding.
The next part is about the manner in which the POMDP is solved and a policy is obtained.
The task of online parameter estimation demands a policy that can be solved for online.
When the parameter estimate suddenly needs to change, a corresponding policy has to be
ready.
Another criterion is about the parameters that need to be estimated. Firstly, the amount
of parameters. When estimating the lateral tyre stiffness, this means that it has to estimate

Master of Science Thesis Quinn Vroom - 4225554

14 Algorithm selection

this for four tyres individually. Considering the bicycle model, this naturally reduces to two
tyres. The amount of parameters should thus be more than one, preferably four or more. The
initial estimate of the parameter is also an important factor. Tyre road interaction can be
very different than expected. For example when the temperature has changed rapidly from
one point to another. The deviation between the initial estimate and the true value can differ
a lot, thus the algorithm should handle big deviations well.
The last criterion is the experiments the algorithm has already been successfully tested on.
When the algorithm performs well on a dynamical system closely resembling a passenger
vehicle, it is more likely to perform well for the desired task. This of course is not a must,
but it adds to how promising an algorithm is.

4-1-2 Comparison and choice

From the literature study, three different algorithms were received. The three different papers
were compared using the requirements and criteria above, which led to the following results.

Continuous
space

Solve for
policy
online

Amount of
parameters
to infer

Initial estimate
deviation

Experiments

Webb et
al. [3]

yes yes multiple large double integrator,
differential drive,
double pendulum

Bai et al.
[12]

partially,
action
discrete

no single small,
predescribed

double pendulum

Slade et
al. [13]

yes yes single large double integrator,
planar manipula-
tion

Table 4-1: Three promising POMDP algorithms compared by requirements and criteria

Looking at the three different algorithms in table 4-1 and comparing them to the requirements
and criteria, it becomes clear that the one from Webb et al. [3] is the most promising to use.
This algorithm checks all the boxes, from continuous spaces to initial estimate deviation. On
top of that, the experiments it is tested on are very close in resemblance the autonomous
driving passenger vehicle task. Looking at the performance of the algorithm, in the paper it
showed a lot of parameter inference potential. It was tested on three different experiments
with different levels of complexity. Returning to the sub-question, the algorithm from Webb
et al. [3] is the most promising choice to implement on our vehicle model.

4-2 How does the algorithm work?

As discussed before, using the literature research we have established that the algorithm in
Webb et al. [3] shows promising result for autonomous driving passenger vehicles. In order to
understand this algorithm and the results it produces after implementation, we have to clarify

Quinn Vroom - 4225554 Master of Science Thesis

4-2 How does the algorithm work? 15

the working principles of the method. This way, we can draw well-motivated conclusion from
the results of the experiments. The algorithm is more thoroughly explained in Van den Berg
et al. [14] and Van den Berg et al. [15]. First, the original algorithm will be explained, and
then the modifications done in Webb et al. [3] that assist in parameter estimation. Note that
this is only a brief explanation of the algorithm, the complete set of equations can be found
in appendix A.

4-2-1 System and Kalman Filter

The algorithm starts off with the dynamics of the system. The system is defined in the
following matter.

xt+1 = f [xt, ut] +m, m ∼ N [0,M [xt, ut]] (4-1)
zt = h[xt] + n, n ∼ N [0, N [xt]] (4-2)

Where xt+1 represents the discretized system dynamics and zt represents the sensor data,
which is based on the current state. Note that both the system and the sensors are influenced
by noise, which is assumed to be of Gaussian nature.
On top of the system, there is a Kalman Filter present. The job of the Kalman Filter is to
maintain a belief over the current state, based on the sensor data zt and an internal model of
the system. The equations of the Extended Kalman Filter are stated below.

x̂t+1 = f [x̂t, ut] +Kt(zt+1 − h[f [x̂t, ut]]) (4-3)
Σt+1 = Γt −KtHtΓt (4-4)

where

Γt = AtΣtA
T
t +M [x̂t, ut] (4-5)

Kt = ΓtHT
t (HtΓtHT

t +N [x̂t])−1 (4-6)

At = ∂f

∂x
, Ht = ∂h

∂x
[f [x̂t, ut]] (4-7)

Where x̂ and Σ represent the state estimation and its variance respectively. Note that there
is assumed to be no noise on the control input u when passed on to the Extended Kalman
Filter.

4-2-2 Value iteration

The goal of solving the POMDP is finding the optimal policy. In our case case this policy
will lead to the fastest tyre parameter inference performance. The effectiveness of a policy is
defined by the predefined cost function, ct. The designer chooses the shape of the cost function
and tunes the parameters, in order to accommodate for the desired goals. The optimal policy
is the one that has the least cost over the whole trajectory. This means minimizing the
following equation.

Ez1,...,zl
[cl[Xl] +

l−1∑
t=0

ct[Xt, ut]] (4-8)

Master of Science Thesis Quinn Vroom - 4225554

16 Algorithm selection

Where Xt represents the belief at time t. The difference between x̂t and Xt is that the latter
represents the whole belief: state and uncertainty. A general approach is using value iteration.
A value functions is different than a cost function. A value function not only accounts for
the current cost, but also for (a part of) the expected future cost. The value is calculated for
each step of the trajectory using backwards recursion.

vl[X] = cl[X] (4-9)
vt[X] = min

u
(ct[X , u] + E

z
[vt+1[β[X , u, z]]]) (4-10)

πt[X] = arg min
u

(ct[X , u] + E
z

[vt+1[β[X , u, z]]]) (4-11)

Where β represents the discrete belief dynamics and πt represents the optimal policy/control
at time t. By working backwards, the value function of the next time is already available for
the current time step. This allows the POMDP to be solved.

4-2-3 Algorithm

To apply the method of value iteration to the system, there has to be a model for the belief
dynamics. The belief is updated via the Extended Kalman Filter, as discussed above. The
belief is stochastic, due to the fact that the measurement z cannot be known in advance.
Assuming the stochastic belief dynamics can modelled as a Gaussian leads to the following
simplified equations.

x̂t+1 = f [x̂, u] + w, w ∼ N [0,W [x̂t,Σt, ut]] (4-12)
Σt+1 = Φ[x̂t,Σt, ut] (4-13)

where

W [x̂t,Σt, ut] = KtHtΓt (4-14)
Φ[x̂t,Σt, ut] = Γt −KtHtΓt (4-15)

Note that these are based on the belief the Kalman Filter holds over the time. The method
requires a nominal trajectory defined as a series of beliefs and control inputs.

trajnominal = (x̄0, Σ̄0, ū0, ..., x̄l, Σ̄l, ūl) (4-16)

The algorithm uses an iterative approach based on linearized approximations and cost func-
tions about the nominal trajectory that converges to a locally optimal control policy:

u = Lt(x̂− x̄t) + lt + ūt (4-17)

See appendix A for a complete derivation from nominal trajectory to control policy.

4-2-4 Reaching convergence

The algorithm works in multiple steps. First, there has to be a nominal trajectory for the
system. This nominal trajectory will be improved by the algorithm in a couple of steps.
Using backwards recursion the two input correcting matrices Lt and lt are calculated for each

Quinn Vroom - 4225554 Master of Science Thesis

4-3 Conclusion 17

timestep, from t = L until t = 0. Then forward integration, from t = 0 until t = L, of the
deterministic dynamics is used to form a new trajectory. Simultaneously, the total cost of
this new trajectory is calculated and compared to the previous trajectory. If the total cost is
not lowered, the same forward integration is performed where lt is cut in half. The correcting
factor lt will always point towards the (local) optimum, but the magnitude can be too great.
This causes overshoot and will result in possibly worse performance. To counter overshoot in
this case, the correcting factor is made smaller in order to not overshoot. When a lower cost
is found, the whole process will run again. As said before, lt shows in which direction the
input u should be corrected. This also means that it will decrease when the current trajectory
is closer to an (sub)optimal one. Convergence can thus be seen in the magnitude of lt [14]
[15].

4-2-5 Adding parameter estimation

The algorithm is designed to minimize the cost function by altering the input. However, it
can also be used for online parameter estimation as shown in Webb et al. [3]. The trick to
do this, is by changing two simple things. First, the state is augmented with the parameter.
The discretized dynamics of the parameter(s) k are defined below.

kt+1 = kt + θ, θ ∼ N [0,Θ] (4-18)

Adding this to the discretized dynamics of the system x will lead to the augmented state y.

y =
[
x
k

]
(4-19)

This means that the dynamical model of the system is increased by including the parameter
into the state. The second thing to change is the cost function. The required value of k is
of course unknown, but high variance of k can be punished. After changing these things, the
algorithm will now not only reach the requested state, but also try to minimize the uncertainty
in its parameter estimation. Thus, when performing a task it will try to estimate the true
value to minimize cost. The cost function will look like equation 4-20 and 4-21 below.

cT (ŷ,Σ) = (x̂− x∗)T QT (x̂− x∗) + tr (STΣx) + tr (TTΣk) (4-20)
ct(ŷ,Σ,u) = (x̂− x∗)T Qt (x̂− x∗) + uTRtu + tr (StΣx) + tr (TtΣk) (4-21)

4-3 Conclusion

Returning to the sub-question, What is the most promising algorithm?. From the reviewed
literature it became clear that the algorithm from Webb et al. [3] was the most promising
one. It was the most suitable one, due to the estimation of multiple parameters and the
comparable experiments it was tested on. Knowing this, a brief insight into the equations
of the algorithm has been shown. The parameter estimation has been done by including the
parameter into the state and thus augmenting it. In the cost function a term is used to punish
the uncertainty over the parameter estimate, to reward inference behaviour.

Master of Science Thesis Quinn Vroom - 4225554

18 Algorithm selection

Quinn Vroom - 4225554 Master of Science Thesis

Chapter 5

MATLAB implementation

In the previous chapter, the mathematics of the algorithm have been explained. In this
chapter the implementation into Matlab is discussed. There are a couple of things that are
changed, simplified and/or added to make it perform optimally. First, the MATLAB code
is discussed, then ensuring convergence of the algorithm, followed by discretization of the
system dynamics and lastly the tune-ability of the parameters.

5-1 MATLAB code

The implemented simulation in MATLAB consists of multiple parts. It starts off with running
sim_matrix_preparation.m. Here the matrices Ft until Zt are calculated in symbolics, see
appendix A. The symbolic matrices are necessary, because the algorithm consists of several
linearized matrices that need to be calculated at each timestep. The m-file uses the dynamic
equations of the system, the corresponding parameter values, the timestep dt and the cost
function shape. All the other things are adjustable without re-running the file. Once this
m-file has generated Calc_F_till_Z.m it is time for the next step. The following step is
runningmain_sim.m to generate an initial trajectory. By inputting the parameters of the cost
function, parameters of the system, parameters of the noise and a control input a trajectory is
created. The trajectory is stored together with the cumulative cost. The initial trajectory will
form the starting point for the algorithm. The algorithm optimizes the trajectory iteratively,
according to the cost function. This step is only needed once per simulation.

The preparation of the simulation is now finished. The main script starts off with loading the
initial trajectory and defining all tune-able parameters. The main script contains two loops.
The first loop optimizes the trajectory by running obtain_new_policy.m until convergence,
while the second loop performs the new trajectory on the simulation and plots the results.
obtain_new_policy.m also contains two loops. The first loop performs backwards recursion
to find Lt and lt by calling control_input.m. The second loop performs forward integration on
the deterministic dynamics, by applying the control calculated using Lt and lt. If cost is not
decreased, there is assumed to be overshoot. lt is cut in half and the forward integration is

Master of Science Thesis Quinn Vroom - 4225554

20 MATLAB implementation

re-run until cost is decreased. In control_input.m Lt and lt are calculated using the linearized
matrices from Calc_F_till_Z.m.

In pseudocode this becomes:

Preparation:
sim_matrix_preparation.m
main_sim.m (initial trajectory)

Main script:
Loop:

obtain_new_policy.m:
Loop:

control_input.m: (backwards recursion)
calc_F_till_Z.m
calculate Lt and lt

Loop:
forward integration
if cost not decreased:
lt in half and repeat

if cost and lt not converged:
repeat loop

Loop:
run new policy on simulation

5-2 Ensuring convergence

As discussed previously, the algorithm will show convergence, when lt goes to zero or under a
predefined threshold. Note that lt is a 2D matrix, where the columns represents the time and
the rows (n) the correction on each input. To get an insight of the size of it, the magnitude of
the n× 1 vector is calculated for each timestep and these are all added up for the whole time
range. When working with the algorithm, it became apparent that this total magnitude will
converge. However, with saturated steering input, as will be explained in chapter 7, it did not
show convergence towards zero. To cease the algorithm when convergence has been reached,
the following method has been implemented. It will look at the last three time-steps, and if
the change in total magnitude is less then 1% for all three, it will finish. As a safety measure
it will also cease if the total cost difference over the last three iterations is less than 1%. This
implementation can be found in the second loop of obtain_new_policy.m.

5-3 Discretization of vehicle dynamics

For the vehicle, a linear bicycle model is most appropriate. The model has to be discretized
for it to work with the POMDP algorithm. The simplest way to perform discretization is
with Euler’s method. A more refined and accurate discretization would be achieved with
Runge-Kutta 4. This is also what Webb et al. [3] suggests. Discretization using Euler is done

Quinn Vroom - 4225554 Master of Science Thesis

5-3 Discretization of vehicle dynamics 21

in the following fashion.

xt+1 = xt + f(t, x) ·∆t (5-1)

While discretizing using Runge-Kutta 4 is a bit more complicated, as shown below.

k1 = h · f(t, x) (5-2)
k2 = h · f(t+ h/2, x+ k1/2) (5-3)
k3 = h · f(t+ h/2, x+ k2/2) (5-4)
k4 = h · f(t+ h, x+ k3) (5-5)

xt+1 = xt + 1/6 · (k1 + 2k2 + 2k3 + k4) (5-6)

Where f(t, x) represents the differential equation(s) of the system dynamics and h the time
step size of the simulation. In case of our dynamics, the equation is written like f(x, u), be-
cause time is not directly visible in the differential equation. As can be seen, the accurateness
of both models is highly dependent on the timestep. The smaller the timestep, the more
accurate results it will output. While Runge-Kutta 4 is generally more accurate, Euler is a
lot smaller and computationally inexpensive.

5-3-1 Comparing results

To compare performance of these different discretization methods, the linear bicycle dynam-
ics have been discretized in two manners. Firstly using Euler’s method and secondly using a
Runge-Kutta 4th order method.
The vehicle dynamics of choice are given in equation 3-1 and 3-2. These equations represent
f(t, x) in the discretization equations. Looking back at the course Vehicle Dynamics A [16]
for parameters corresponding to an average passenger vehicle gives the following table.

a 1.1 m
b 1.60 m
m 1600 kg
Iz 2100 kgm2

C1 2· 57000 N/rad
C2 2· 47000 N/rad
u 40 km/h
∆t 0.01 s

Table 5-1: Passenger vehicle simulation parameters

Let’s compare performance. As discussed before, for each method a directly identical simu-
lation has been run, without any noise in the system. For the (steering) input a sinusoidal
wave with an amplitude of 30◦ has been used. The lateral velocity v and the yaw rate r have
been plotted in figure 5-1. Next to this, the absolute error between the two methods has
been plotted for both states, v and r. When looking at the results, the sinusoidal shape of
the input signal shines through. The smallest error seems to appear around the peaks of the
lateral velocity and yaw rate, thus when the steering input changes its rotational direction.
However, looking the size of the error it seems to be in the same magnitude as typical sensor
noise [17]. Mean and variance of the error are given in table 5-2.

Master of Science Thesis Quinn Vroom - 4225554

22 MATLAB implementation

0 1 2 3 4 5 6 7 8 9 10

time [s]

-10

-8

-6

-4

-2

0

2

4

6

8

10

v
e
lo

c
it
y
 [
m

/s
]
o
r

y
a
w

 r
a
te

 [
ra

d
/s

]

Lateral velocity and yaw rate for Euler and RK4

Lateral velocity Euler

Lateral velocity RK4

Yaw rate Euler

Yaw rate RK4

Figure 5-1: State values during simulation

0 1 2 3 4 5 6 7 8 9 10

time [s]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

v
e
lo

c
it
y
 [
m

/s
]
o
r

y
a
w

 r
a
te

 [
ra

d
/s

]

Absolute error

Lateral velocity v

Yaw rate r

Figure 5-2: Absolute error between both
methods

mean variance
Lateral velocity v error [m/s] 1.22 ·10−2 3.67 ·10−5

Yaw rate r error [rad/s] 2.56 · 10−2 1.62 ·10−4

Table 5-2: Error between Euler and Runge-Kutta 4

5-3-2 Consideration

As discussed previously, before the simulation can run the algorithm matrices Ft until Zt
have to be calculated in symbolics. When trying to calculate these matrices from discretized
vehicle dynamics, these matrices become significantly large. The largest matrices have the
size n4, where n represents the amount of states in the state vector. To counter this effect,
a small discretization method is required, more on this in chapter 9. The suggested method,
Runge-Kutta 4, is too large to run sim_matrix_preparation.m on the hardware used. Euler
however is significantly smaller. Therefore the error between Euler and RK4 prediction is
tested.
Passenger vehicles have built-in sensors to estimate the lateral velocity and yaw rate. These
sensors have a certain error, when trying to predict and/or measure the velocity of the system.
Using GPS or integrating acceleration sensor output gives an error of 0.05 m/s [17]. Table
5-2 shows a lateral acceleration error of 0.01 m/s. Assuming the prediction error of RK4 <<
the prediction error of Euler, means the total prediction error of Euler ≡ the error between
Euler and RK4. From this we can conclude that using Euler instead of Runge-Kutta 4 for
discretization of the bicycle model is acceptable under these conditions. Runge-Kutta 4 is
more accurate, but the error between both methods is in the same order of magnitude as
sensor noise. Of course, when the calculation time would be less substantial, Runge-Kutta 4
would be the preferred method.

Quinn Vroom - 4225554 Master of Science Thesis

5-4 Tune-able parameters 23

5-4 Tune-able parameters

As discussed previously, the preparation of the simulation is a computationally demanding
task. In chapter 9 there is a more in-depth look into the root of this problem. The matrices
Ft until Zt have to be calculated in symbolics in MATLAB, to be used in the simulation.
To assist in decreasing the computation time, as much symbolics have been eliminated as
possible. All unused parameters have been made "0" in diagonal matrices and the constant
parameters of the vehicle model have been substituted by its value beforehand. Even the
parameter estimation has been limited to a single varying parameter, the tyre stiffness of
the front tyre. The result is a full simulation taking less than 5 minutes and a preparation
taking around 2 hours. The downside however, is not being able to adjust every parameter in
between simulations quickly. The noise matrices and cost function parameters are tune-able
between simulations though.

Master of Science Thesis Quinn Vroom - 4225554

24 MATLAB implementation

Quinn Vroom - 4225554 Master of Science Thesis

Chapter 6

Testing performance

In this chapter we will look into testing the algorithm. The goal is to find an answer to the
third sub-question: Does the algorithm perform on a vehicle model?. To answer this, we need
to try the POMDP algorithm on realistic driving scenarios. The algorithm starts off with an
initial trajectory and optimizes it using the cost function. The performance of the algorithm
is measured by the parameter estimate accurateness and variance over the simulation time.
The target is finding a policy that makes the EKF infer the true value of the parameter
quicker than with the initial trajectory. For the experiments the parameter values from table
5-1 are used. The simulation time is 10 seconds.

6-1 Sine input experiment

To answer the third sub-question, we develop a driving scenario and analyze how the algorithm
improves upon it. It is a scenario where the steering input of the initial trajectory is a sine
with an amplitude of 30◦. The initial guess of parameter C1 is 1.94 · 105 N/rad, while the
true value is 1.14 · 105 N/rad. Performing a slalom steering input will result in an improved
parameter estimation in the initial trajectory since it already gains insight into the handling
dynamics. The repeating pattern is also interesting for testing the influence of the initial
trajectory on the optimized one. The results of this experiment are on the next page.

Master of Science Thesis Quinn Vroom - 4225554

26 Testing performance

0 1 2 3 4 5 6 7 8 9 10

time [s]

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
10

5 Estimate of C1 vs time

Sine

POMDP controls

real value

Figure 6-1: Estimate of C1
[N/rad]

0 1 2 3 4 5 6 7 8 9 10

time [s]

0

0.2

0.4

0.6

0.8

1

1.2
Sigma C1 vs time

Sine

POMDP controls

Figure 6-2: Variance of C1 esti-
mate

0 1 2 3 4 5 6 7 8 9 10

time [s]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
10

5 Input delta vs time

1

2

Figure 6-3: Steering input δ [rad]

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

time [s]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
10

5 Input delta vs time

1

2

Figure 6-4: Zoomed in steering in-
put δ [rad]

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

time [s]

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
10

5 Estimate of C1 vs time

Sine

POMDP controls

real value

Figure 6-5: Zoomed in estimate of
C1 [N/rad]

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

time [s]

0

0.2

0.4

0.6

0.8

1

1.2
Sigma C1 vs time

Sine

POMDP controls

Figure 6-6: Zoomed in variance of
C1 estimate

Quinn Vroom - 4225554 Master of Science Thesis

6-1 Sine input experiment 27

The first three plots show the estimate of the parameter C1, the variance of C1 and the
steering input δ for the whole simulation time. The other plots show the same results, but
then only for the first 0.1 seconds of the simulation. The red line represents the original
trajectory and the blue line shows the improved, POMDP based trajectory. Looking at the
results, performance is almost perfect. Within 2 timesteps, or 0.02 seconds, the parameter
estimate has converged to the correct value. The algorithm gives the input a peak upwards
and downwards and then settles towards zero. The only problem with this improved steering
input is the unrealistically high steering angle of 8 · 104 rad. Due to the linearity of the tyre
model, it is accompanied by extremely high lateral acceleration and yaw rate. This means that
this kind of dynamic behaviour would not be possible in real life. Steering beyond 90 degrees
doesn’t make any sense then, but here it is proportionally connected. In this simulation
increasing steering simply results in increased lateral and rotational acceleration. It shows
that the algorithm can guide the EKF to perform parameter inference very quickly, however
the EKF probably needs unrealistically high values for it. Returning to the sub-question, the
results of this experiment show that the algorithm does perform on a vehicle model. Knowing
this, we can look into how it performs within realistic steering bounds.

Master of Science Thesis Quinn Vroom - 4225554

28 Testing performance

Quinn Vroom - 4225554 Master of Science Thesis

Chapter 7

Applying steering bounds

In this chapter we will continue testing the algorithm. The goal is to find an answer to
the fourth sub-question: Does the algorithm perform within realistic bounds?. In the previous
chapter we saw that the algorithm applied an unrealistically high steering input on the system.
Now we would like to see how performance is within realistic steering input bounds. First,
we will introduce a bound to the steering input and then we will test the algorithm again on
the same experiment.

7-1 Saturating the steering input

The algorithm will calculate a new input for each timestep of the simulation. This input
should result in a lower cost and thus be better performance. The downside of this method,
as can be seen in the previous chapter, is that the magnitude of the required input is not
within the boundaries of reality. In other experiments as well, it has corrects the steering
input to values way beyond feasible in reality. To counter this effect, Webb et al. [3] suggests
saturating the maximum value of the input. Even though there is no direct feedback to the
algorithm that it has been saturated, it will still convergence. This is also what we have
applied here. The saturation limit has been set to a 50◦ steering angle of the wheels, which
is already quite optimistic considering an average passenger vehicle. Note that there is no
steering ratio between the steering input and the angle of the front wheels.

7-2 Sine input experiment

To answer the fourth sub-question we use the same initial trajectory as before and analyze
how the algorithm improves upon it. Again, the initial guess of parameter C1 is 1.94 · 105

N/rad, while the true value is 1.14 · 105 N/rad. The results of the experiment are below.

Master of Science Thesis Quinn Vroom - 4225554

30 Applying steering bounds

0 1 2 3 4 5 6 7 8 9 10

time [s]

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
10

5 Estimate of C1 vs time

Sine

POMDP controls

real value

Figure 7-1: Estimate of C1
[N/rad]

0 1 2 3 4 5 6 7 8 9 10

time [s]

0

0.2

0.4

0.6

0.8

1

1.2
Sigma C1 vs time

Sine

POMDP controls

Figure 7-2: Variance of C1 estimate

0 1 2 3 4 5 6 7 8 9 10

time [s]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Input delta vs time

1

2

Figure 7-3: Steering input δ [rad]

Looking at the results, performance is a lot different than without steering saturation. The
new trajectory still leads to improved parameter inference performance. The parameter es-
timate goes a lot steeper down towards the true value than with the initial trajectory. Due
to the heavily changed steering input, the estimate keeps improving until the end of the sim-
ulation. As can be seen, it does not manage to reach convergence within the 10 seconds of
simulation time. The shape of the variance is very similar to the parameter estimate itself,
which is logical. An improved estimate should lead to a decreased variance in that estimate.
Interestingly, the steering input fluctuates for little over a second and then just stays at the
saturation limit. The results of the experiment show that the algorithm does perform and
is able to improve parameter estimation performance. However, bounding the steering input
leads to a significantly retarded convergence of the estimate towards the true value of the
parameter. It strengthens the suspicion from the previous experiment, that the EKF needs
high input values to be excited into fast converging parameter inference. Returning to the
sub-question, the results show that the algorithm performs within realistic bounds, but it is
not great. Comparing them to the previous results shows that saturating the input severely
limits the parameter inference performance.

Quinn Vroom - 4225554 Master of Science Thesis

Chapter 8

Testing noise influence

In this chapter we will test the algorithm on sensor noise. The goal is to find an answer
to the fifth sub-question: Does the algorithm suffer from high noise?. For real life driving
the algorithm has to handle noise well, especially noise in the same order of magnitude as
real sensor noise on lateral velocity and yaw rate. We will test the algorithm using the same
experiment yet applying different levels of noise.

8-1 Sine input experiment

To answer this sub-question we use the same initial trajectory as before and vary the sensor
noise. Then we can analyze how the algorithms performance is affected by it. Again, the
initial guess of parameter C1 is 1.94 · 105 N/rad, while the true value is 1.14 · 105 N/rad. As
discussed before, all noise is considered Gaussian. The diagonal of the noise matrix N has
been altered for this experiment. For all three states v, r and C1 the same Gaussian noise has
been applied to the system and the EKF. First a variance of 10−6 was tested, then a variance
of 10−4 and lastly a variance of 10−2. The variance of v is in m/s, the variance of r is in
rad/s and the variance of C1 is in N/rad. The results of the experiments are below.

Master of Science Thesis Quinn Vroom - 4225554

32 Testing noise influence

0 1 2 3 4 5 6 7 8 9 10

time [s]

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
10

5 Estimate of C1 vs time

Sine

POMDP controls

real value

Figure 8-1: Sensor noise
variance of 10−6

0 1 2 3 4 5 6 7 8 9 10

time [s]

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
10

5 Estimate of C1 vs time

Sine

POMDP controls

real value

Figure 8-2: Sensor noise
variance of 10−4

0 1 2 3 4 5 6 7 8 9 10

time [s]

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
10

5 Estimate of C1 vs time

Sine

POMDP controls

real value

Figure 8-3: Sensor noise
variance of 10−2

Looking at the results, performance is affected by increasing the measurement/sensor noise of
the system. The plot on the left shows the same performance as in the previous experiment.
The noise is increased in the plot in the middle (10−4) and even more increased in the plot on
the right (10−2). For the algorithm to work properly with the vehicle model, the noise matrices
for measurement noise in the simulation and the algorithm, have to be very small in magnitude
(10−6). The Extended Kalman Filter has to infer the parameter and it is clearly visible
from the results that the initial trajectory’s inference performance is affected by increasing
sensor noise. The initial trajectory’s inference performance is significantly decreased and the
POMDP controls follow this trend. This is not surprising, since they both use the same EKF.
Built-in sensors for measuring lateral velocity typically have a magnitude of noise of around
5.0 ·10−2 m/s [17]. Looking at the performance in figure 8-3 shows that the algorithm does
not handle real life sensor noise well. Returning to the sub-question, we can conclude that
the algorithm suffers severely from high noise.

Quinn Vroom - 4225554 Master of Science Thesis

Chapter 9

Increasing model complexity

In this chapter we will look into increasing the model complexity. The goal is to find an
answer to the last sub-question: Does the algorithm suit increasing model complexity?. In the
experiments performed in the previous chapters only one parameter, the front tyre stiffness,
has been estimated. For a real passenger vehicle it would be preferred to estimate the pa-
rameters of all four tyres. We would like to see how increasing the amount of parameters,
or increasing the model complexity would affect the algorithm. First, we will go deeper into
how the algorithm is affected by the complexity of a system and then we will explain why
only one parameter was estimated in the experiments.

9-1 Algorithm size

The algorithm is based on taking the derivative with respect to the steering input and equating
this to zero. This is a very simple and effective method, but, as discussed previously, it does
result in big matrices that have to be calculated, because it is an analytic solution. The
algorithm contains multiple linearized matrices that need to be calculated each iteration. The
largest among them have the size n4, where n is the amount of states the model contains,
i.e. the size of the state vector. The parameter that has to be estimated becomes part of the
so called "augmented state vector". This means that every uncertain parameter increases the
state size by 1, and then exponentially increasing the whole algorithm in size.

9-2 Root of the problem

To get a clear look into why a small increase of the model complexity has a big impact on the
computational performance, we need to look into the biggest matrices of the algorithm. One
of the big algorithm matrices is Ut, which can be found in appendix A. We will examine the
calculation of this matrix, beginning at the system dynamics. Let’s say we have the following

Master of Science Thesis Quinn Vroom - 4225554

34 Increasing model complexity

simple system:

xt+1 = f [xt, ut] +m, m ∼ N [0,M [xt, ut]] (9-1)
zt = h[xt] + n, n ∼ N [0, N [xt]] (9-2)

Where f represents the discretized dynamics. Using Euler this becomes:

f [xt, ut] = xt + dt · (Acont · xt +Bcont · ut) (9-3)

Then, it is used for the EKF equations:

At = ∂f [xt, ut]
∂x

, Ht = ∂h

∂x
[f [x̂t, ut]] (9-4)

Γt = AtΣtA
T
t +M [x̂t, ut] (9-5)

Kt = ΓtHT
t (HtΓtHT

t +N [x̂t])−1 (9-6)

Here the computational problems begin. Multiplying all these matrices is not a problem, but
dividing them leads to a big symbolic answer. Following these calculations:

Φ[x̂t,Σt, ut] = Γt −KtHtΓt (9-7)

The matrix Φ now has to be turned into a vector, this is done by putting all of the columns
under each other, creating a column vector. Doing this for Σ as well leads to the final
calculation:

Ut = ∂ vec[Φ]
∂ vec[Σ]

[
xt,Σt,ut

]
(9-8)

This final step also significantly increases the algorithms size. Both matrices are of size n×n,
meaning the vector versions become size n2×1. Taking the jacobian of one with respect to the
other leads to a matrix of size n2×n2, hence the algorithm matrices scale with n4. The size of
the matrix is important, but even more important is the fact that each element is loaded with
calculations. The dynamics are inputted as symbolics, meaning that every calculation step
each element becomes larger and larger. Recalling the discretization of the system dynamics
in equation 9-3, it is clear to see the importance of the chosen method. This calculation is done
in the beginning, before the matrix grows with symbolics each calculation step. Replacing
Euler with RK4 makes the discretized dynamics f considerably larger. Combining this with
the rest of the calculation steps is a recipe for slow performance and a heavy algorithm. This
computationally expensiveness is what makes the algorithm unsuitable for increasing model
complexity.

9-3 Amount of parameters estimated

In practise, increasing the amount of parameters to be estimated lead to computational short-
age very easily. For the experiments containing only one augmented parameter it takes roughly
2 hours to calculate the preparation matrices in symbolics on an i7 laptop with 8GB of RAM.
Each 10 second simulation can then be run within approximately 5 minutes. Augmenting
the state with a second parameter, lead to a depletion of RAM and MATLAB running out

Quinn Vroom - 4225554 Master of Science Thesis

9-3 Amount of parameters estimated 35

of it before finishing the preparation. This meant only one parameter could be estimated
in this setup. Optimizing the algorithm script and implementing it into C++ can decrease
calculation time immensely, but the size of the algorithm is to be considered. Using a simple
and computationally inexpensive dynamical model does not result in a small algorithm.

Returning to the sub-question, it becomes clear that the algorithm seems to be unsuitable
to increase model complexity. Adding an uncertain parameter causes the total algorithm to
scale with n4, which is significant. Naturally, there is a considerable amount of performance
to be gained by improving efficiency of the script and using C++, but more linear scaling
algorithms are far more suitable for large, complex systems.

Master of Science Thesis Quinn Vroom - 4225554

36 Increasing model complexity

Quinn Vroom - 4225554 Master of Science Thesis

Chapter 10

Conclusion and recommendations

The goal of this research is to test the POMDP algorithm for autonomous driving passenger
vehicles. Looking at the experiments performed and the corresponding results, it becomes
clear that the selected algorithm [3] is able to increase parameter inference performance.
The algorithm will update the trajectory in such a way that more useful information is
obtained for the Extended Kalman Filter. The EKF can then improve the parameter estimate
accordingly. In all of the experiments, the algorithm is able to improve the parameter inference
performance.

The main disadvantage to the algorithm, when used with the vehicle model within realistic
bounds, is the relatively improved performance. As can be seen in the results, an initial trajec-
tory containing steering input already gives information about the parameter estimate. The
EKF uses this to update the parameter estimate continuously and also uses this parameter
estimate in its own prediction model. The updated trajectory does improve inference perfor-
mance, but it is not exceptionally better. It only seems capable of marginal improvement,
unless the steering input is not restricted by saturation. As soon as the saturation is removed
and the system is allowed to perform unrealistic movements, the estimation of the parameter
is perfect within two timesteps. This means that the saturated results have a lot of room for
improvement. Looking at the way the algorithm works, it has to do with the combination
of the EKF and the vehicle model. The vehicle model is responsible for the measurements
and the EKF is responsible for the interpretation of these measurements with respect to the
internal dynamical model. If the parameter estimation could be done by something other
than the EKF or the measurements could be manipulated to excite the EKF more, it could
be possible to reach faster convergence on the parameter estimate. In this setup the vehicle
cannot provide the insane accelerations the EKF needs to update the parameter quickly and
adequately.

Returning to the sub-questions, the first one was: What is the most suitable vehicle model?.
From the reviewed papers it became clear that the bicycle model is the most suitable one for
this research. For the tyre model, the linearized one was chosen. They both were effective
in being accurate under normal driving (low slip conditions), while being simple and com-
putationally inexpensive. The next question was: What is the most promising algorithm?.

Master of Science Thesis Quinn Vroom - 4225554

38 Conclusion and recommendations

From the literature it became clear that the most promising algorithm was the one used in
Webb et al. [3]. The exceeding factors being the amount of parameters being inferred and the
similar dynamical systems in the experiments. The third question was: Does the algorithm
perform on a vehicle model?. To answer this question, the vehicle model has been imple-
mented together with the algorithm in MATLAB and the setup has been tested. From the
results it became clear that parameter inference performance was significantly increased by
changing the trajectory. The updated trajectory caused the parameter estimate to converge
to a correct value within 2 timesteps, or 0.02 seconds. The only downside being the incred-
ibly high steering input of 8 · 104 rad, resulting in unrealistically high lateral acceleration
and yaw rate. The fourth question was: Does the algorithm perform within realistic bounds?.
Using the same simulation as before, but now with saturation on the steering input results
were gathered. Compared to the unbounded results parameter estimation performance is de-
creased, but compared to the original trajectory it is still a significant improvement. Within
the total simulation time of 10s an accurate estimate was not reached, but the estimate was
within 10% of the correct value. The fifth question was: Does the algorithm suffer from high
noise?. Again using the same simulation as before, but now with increasing levels of sensor
noise results were gathered. From the results it became clear that the algorithms parameter
estimation performance suffers from increasing noise. The noise was increased until real-life
sensor noise levels for lateral velocity and performance was significantly decreased compared
to the original level of noise. The final sub-question was: Does the algorithm suit increas-
ing model complexity?. Again using the same simulation as before, but now increasing the
amount of parameters to estimate. From the results it became clear that it does not suit
increasing model complexity. The algorithm became so big, that more than one parameter
was not achieved on the used hardware. Looking into the big matrices that cause compu-
tational problems, it became clear that these matrices scale with a factor of n4. Combining
this with multiple matrices that need to be calculated and it becomes clear why adding only
1 parameter is this computationally expensive.

All of the sub-questions have been explored and the research question can now be answered.
The research question being: Is it worthwhile to regard the problem of estimating parameters
online for an autonomous passenger vehicle as a POMDP?. The tested algorithm can improve
the trajectory, such that lateral tyre stiffness parameter estimation performance is significantly
increased. However, applying realistic bounds to the steering angle severely limits inference
performance. Taking into account the effect of high noise and increasing of model complexity
on performance and calculation speed decreases appeal. Based on these findings, we can
conclude that in current form it is not worthwhile to regard this problem as a POMDP,
certainly not solve it using this algorithm. The potential is visible, but the drawbacks outweigh
the improved performance.

This research has brought interesting results and conclusions. The algorithm shows high
potential and excellent performance without saturation on the steering input. Interesting for
future research would be, to look into a different way of inferring the parameter value. The
Extended Kalman Filter seems to infer quickly only when the input is very high, so perhaps
an alternative to the current EKF could boost performance. This does not necessarily mean
replacing the EKF, it could be done by modifying it to be more sensitive to smaller steering
inputs. This could be highly beneficial.

Quinn Vroom - 4225554 Master of Science Thesis

Appendix A

Equations of the POMDP algorithm

In this appendix the derivation and the equations of the algorithm are displayed. The original
algorithm is thoroughly explained in Van den Berg et al. [14] and Van den Berg et al. [15].
Here only this original one will be clarified. The modifications done in Webb et al. [3] that
assist in parameter estimation have already been described in chapter 4.

A-0-1 System and Kalman Filter

The algorithm starts off with the dynamics of the system. The system is defined in the
following matter.

xt+1 = f [xt, ut] +m, m ∼ N [0,M [xt, ut]] (A-1)
zt = h[xt] + n, n ∼ N [0, N [xt]] (A-2)

Where xt+1 represents the discretized system dynamics and zt represents the sensor data,
which is based on the current state. Note that both the system and the sensors are influenced
by noise, which is assumed to be of Gaussian nature.
On top of the system, there is a Kalman Filter present. The job of the Kalman Filter is to
maintain a belief over the current state, based on the sensor data zt and an internal model of
the system. The equations of the Extended Kalman Filter are stated below.

x̂t+1 = f [x̂t, ut] +Kt(zt+1 − h[f [x̂t, ut]]) (A-3)
Σt+1 = Γt −KtHtΓt (A-4)

where
Γt = AtΣtA

T
t +M [x̂t, ut] (A-5)

Kt = ΓtHT
t (HtΓtHT

t +N [x̂t])−1 (A-6)

At = ∂f

∂x
, Ht = ∂h

∂x
[f [x̂t, ut]] (A-7)

Where x̂ and Σ represent the state estimation and it’s variance respectively. Note that there
is assumed to be no noise on the control input u when passed on to the Extended Kalman
Filter.

Master of Science Thesis Quinn Vroom - 4225554

40 Equations of the POMDP algorithm

A-0-2 Value iteration

The goal of solving the POMDP is finding the optimal policy. In our case case this policy
will lead to the fastest tyre parameter inference performance. The effectiveness of a policy is
defined by the predefined cost function, ct. The designer chooses the shape of the cost function
and tunes the parameters, in order to accommodate for the desired goals. The optimal policy
is the one that has the least cost over the whole trajectory. This means minimizing the
following equation.

Ez1,...,zl
[cl[Xl] +

l−1∑
t=0

ct[Xt, ut]] (A-8)

A general approach is using value iteration. A value functions is different than a cost function.
A value function not only accounts for the current cost, but also for (a part of) the expected
future cost. The value is calculated for each step of the trajectory using backwards recursion.

vl[X] = cl[X] (A-9)
vt[X] = min

u
(ct[X , u] + E

z
[vt+1[β[X , u, z]]]) (A-10)

πt[X] = arg min
u

(ct[X , u] + E
z

[vt+1[β[X , u, z]]]) (A-11)

Where β represents the discrete belief dynamics. By working backwards, the value function
of the next time is already available for the current time step. This allows the POMDP to be
solved.

A-0-3 Algorithm

To apply the method of value iteration to the system, there has to be a model for the belief
dynamics. The belief is updated via the Extended Kalman Filter, as discussed above. The
belief is stochastic, due to the fact that the measurement z cannot be known in advance.
Assuming the stochastic belief dynamics can modelled as a Gaussian leads to the following
simplified equations.

x̂t+1 = f [x̂, u] + w, w ∼ N [0,W [x̂t,Σt, ut]] (A-12)
Σt+1 = Φ[x̂t,Σt, ut] (A-13)

where

W [x̂t,Σt, ut] = KtHtΓt (A-14)
Φ[x̂t,Σt, ut] = Γt −KtHtΓt (A-15)

Note that these are based on the belief the Kalman Filter holds over the time. The nominal
trajectory defined as a series of beliefs and control inputs.

trajnominal = (x̄0, Σ̄0, ū0, ..., x̄l, Σ̄l, ūl) (A-16)

The value function is defined in the following manner.

vt[x̂,Σ] ≈ st + 0.5(x̂− x̄t)TSt(x̂− x̄t) + sTt (x̂− x̄t) + tTt vec[Σ− Σ̄t] (A-17)

Quinn Vroom - 4225554 Master of Science Thesis

41

Where vec[Σ] represents a vector where all the columns of matrix Σ are placed under each
other. Looking back at equation A-9, the parameters of the value function can be set for t = l
using Taylor expansion.

sl = cl[x̄l, Σ̄l] (A-18)

St = ∂2cl
∂x̄∂x̄

[x̄l, Σ̄l] (A-19)

sl = ∂cl
∂x̄

[x̄l, Σ̄l] (A-20)

tTl = ∂cl
∂vec[Σ] [x̄l, Σ̄l] (A-21)

Applying these equations to equation A-10 gives:

vt[x̂,Σ] = min
u

(ct[x̂,Σ, u] + Ew[st+1 + 0.5(f [x̂, u] + w − x̄t+1)TSt+1(f [x̂, u] + w − x̄t+1)

+ sTt+1(f [x̂, u] + w − x̄t+1) + tTt+1vec[Φ[x̂,Σ, u]− Σ̄t+1]])

vt[x̂,Σ] = min
u

(ct[x̂,Σ, u] + st+1 + 0.5(f [x̂, u]− x̄t+1)TSt+1(f [x̂, u]− x̄t+1)

+ sTt+1(f [x̂, u]− x̄t+1) + tTt+1vec[Φ[x̂,Σ, u]− Σ̄t+1] + 0.5vec[St+1]T vec[W [x̂,Σ, u]]) (A-22)

Given that

x̄t+1 = f [x̄t, ūt] (A-23)
Σ̄t+1 = Φ[x̄t, Σ̄t, ūt] (A-24)

There can be assumed:

f [x̄, ū]− x̄t+1 ≈ Ft(x̂− x̄t) +Gt(u− ūt) (A-25)
vec[Φ[x̂,Σ, u]− Σ̄t+1] ≈ Tt(x̂− x̄t) + Utvec[Σ− Σ̄t] + Vt(u− ūt) (A-26)
vec[W [x̂,Σ, u]] ≈ yt +Xt(x̂− x̄t) + Ytvec[Σ− Σ̄t] + Zt(u− ūt) (A-27)

ct[x̂,Σ, u] ≈ qt + 0.5
[
x̂− x̄t
u− ūt

]T [
Qt P Tt
Pt Rt

] [
x̂− x̄t
u− ūt

]
+
[
qt
rt

]T [
x̂− x̄t
u− ūt

]
+ pTt vec[Σ− Σ̄t]

(A-28)

Master of Science Thesis Quinn Vroom - 4225554

42 Equations of the POMDP algorithm

where

Ft = ∂f
∂x̂ [xt,ut] , Gt = ∂f

∂u [xt,ut]

Tt = ∂ vec[Φ]
∂x̂

[
xt,Σt,ut

]
, Ut = ∂ vec[Φ]

∂ vec[Σ]
[
xt,Σt,ut

]
Vt = ∂ vec[Φ]

∂u

[
xt,Σt,ut

]
, Xt = ∂ vec[W]

∂x̂

[
xt,Σt,ut

]
Yt = ∂ vec[W]

∂ vec[Σ]
[
xt,Σt,ut

]
, Zt = ∂ vec[W]

∂u

[
xt,Σt,ut

]
yt = vec

[
W
[
xt,Σt,ut

]]
, qt = ct

[
xt,Σt,ut

]
Qt = ∂2ct

∂x̂∂x̂

[
xt,Σt,ut

]
, qTt = ∂ct

∂x̂

[
xt,Σt,ut

]
Rt = ∂2ct

∂u∂u

[
xt,Σt,ut

]
, rTt = ∂ct

∂u

[
xt,Σt,ut

]
Pt = ∂2ct

∂u∂x̂

[
xt,Σt,ut

]
, pTt = ∂ct

∂ vec[Σ]
[
xt,Σt,ut

]
Using these assumptions on equation A-22 gives:

vt[x̂,Σ] ≈ min
u

et + 1
2

[
x̂− xt
u− ut

]T [
Ct ETt
Et Dt

] [
x̂− xt
u− ut

]
+
[

ct
dt

]T [
x̂− xt
u− ut

]
+ eTt vec

[
Σ− Σt

]
(A-29)

where

Ct = Qt + F Tt St+1Ft, Dt = Rt +GTt St+1Gt
Et = Pt +GTt St+1Ft, et = qt + st+1 + 1

2 vec [St+1]T yt
cTt = qTt + sTt+1Ft + tTt+1Tt + 1

2 vec [St+1]T Xt

dTt = rTt + sTt+1Gt + tTt+1Vt + 1
2 vec [St+1]T Zt

eTt = pTt + tTt+1Ut + 1
2 vec [St+1]T Yt

(A-30)

Then simply taking the derivative with respect to u and set equal to zero leads to an updated
control input.

u = Lt(x̂− x̄t) + lt + ūt (A-31)

where

Lt = −D−1
t Et (A-32)

lt = −D−1
t dt (A-33)

Filling it back in gives:

st = et + 1
2dTt 1t, St = Ct + LTt Et

sTt = cTt + lTt Et, tTt = eTt
(A-34)

Which in turn can be used for the next iteration, working all the way backwards.

Quinn Vroom - 4225554 Master of Science Thesis

Bibliography

[1] Tesla, “Dual motor model s and autopilot,” www.tesla.com/blog/dual-motor-model-s-and-
autopilot, 2014.

[2] N. Roy, W. Burgard, D. Fox, and S. Thrun, “Coastal navigation-mobile robot navigation
with uncertainty in dynamic environments,” in Proceedings 1999 IEEE International
Conference on Robotics and Automation (Cat. No. 99CH36288C), vol. 1, pp. 35–40,
IEEE, 1999.

[3] D. J. Webb, K. L. Crandall, and J. van den Berg, “Online parameter estimation via real-
time replanning of continuous gaussian pomdps,” 2014 IEEE International Conference
on Robotics and Automation (ICRA), pp. 5998–6005, 2014.

[4] V. Krishnamurthy, Partially Observed Markov Decision Process. Cambridge University
Press, 2016.

[5] J. M. Snider et al., “Automatic steering methods for autonomous automobile path track-
ing,” Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RITR-09-08, 2009.

[6] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, “Kinematic and dynamic vehicle
models for autonomous driving control design,” 2015 IEEE Intelligent Vehicles Sympo-
sium (IV), pp. 1094–1099, 2015.

[7] C. J. Taylor, J. Košecká, R. Blasi, and J. Malik, “A comparative study of vision-based
lateral control strategies for autonomous highway driving,” The International Journal of
Robotics Research, vol. 18, no. 5, pp. 442–453, 1999.

[8] J. Ryu, “State and parameter estimation for vehicle dynamics control using gps.,” PhD
thesis, Stanford, 2005.

[9] H. Pacejka, Tire and vehicle dynamics. Elsevier, 2005.

[10] D. E. Smith and J. M. Starkey, “Effects of model complexity on the performance of
automated vehicle steering controllers: Model development, validation and comparison,”
Vehicle System Dynamics, vol. 24, no. 2, pp. 163–181, 1995.

Master of Science Thesis Quinn Vroom - 4225554

44 Bibliography

[11] Q. Vroom, “Pomdp based autonomous driving passenger vehicles,” Literature Thesis,
TU Delft, 2018.

[12] H. Bai, D. Hsu, and W. S. Lee, “Integrated perception and planning in the continuous
space: A pomdp approach,” The International Journal of Robotics Research, vol. 33,
no. 9, pp. 1288–1302, 2014.

[13] P. Slade, P. Culbertson, Z. Sunberg, and M. Kochenderfer, “Simultaneous active pa-
rameter estimation and control using sampling-based bayesian reinforcement learning,”
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 804–810, 2017.

[14] J. Van Den Berg, S. Patil, and R. Alterovitz, “Motion planning under uncertainty us-
ing iterative local optimization in belief space,” The International Journal of Robotics
Research, vol. 31, no. 11, pp. 1263–1278, 2012.

[15] J. Van Den Berg, S. Patil, and R. Alterovitz, “Efficient approximate value iteration for
continuous gaussian pomdps,” Twenty-Sixth AAAI Conference on Artificial Intelligence,
2012.

[16] B. Shyrokau, Vehicle Dynamics A [lecture slides]. Technical University of Delft, 2016-
2017.

[17] D. M. Bevly, “Global positioning system (gps): A low-cost velocity sensor for correcting
inertial sensor errors on ground vehicles,” Journal of dynamic systems, measurement,
and control, vol. 126, no. 2, pp. 255–264, 2004.

Quinn Vroom - 4225554 Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Table of Contents
	Preface

	Main Matter
	Introduction
	How does a POMDP work?
	The abbreviation
	Structure of the POMDP
	POMDP based autonomous vehicle

	Vehicle model selection
	Vehicle model complexity
	Bicycle model
	8 DOF vehicle model

	Tyre model
	Linear tyre model
	Magic Formula

	Conclusion

	Algorithm selection
	What is the most promising algorithm?
	Requirements and criteria
	Comparison and choice

	How does the algorithm work?
	System and Kalman Filter
	Value iteration
	Algorithm
	Reaching convergence
	Adding parameter estimation

	Conclusion

	MATLAB implementation
	MATLAB code
	Ensuring convergence
	Discretization of vehicle dynamics
	Comparing results
	Consideration

	Tune-able parameters

	Testing performance
	Sine input experiment

	Applying steering bounds
	Saturating the steering input
	Sine input experiment

	Testing noise influence
	Sine input experiment

	Increasing model complexity
	Algorithm size
	Root of the problem
	Amount of parameters estimated

	Conclusion and recommendations

	Appendices
	Equations of the POMDP algorithm
	System and Kalman Filter
	Value iteration
	Algorithm

	Back Matter
	Bibliography

