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Sensitivity Analysis and Experimental Testing of a
Model Predictive Control-based Motion Cueing

Algorithm During Curve Driving Simulation
J. R. van der Ploeg, Supervisors: D. Cleij, D. M. Pool, M. Mulder, H. H. Bülthoff

Abstract—Motion simulators are important for research and
training purposes. In an attempt to increase the motion cueing
quality of motion simulators, Motion Cueing Algorithms (MCAs)
based on Model Predictive Control (MPC) are being developed.
Research has shown that MPC-based MCAs have the potential
to improve the motion cueing quality with respect to classical
washout filter-based approaches by utilising the available
physical space more effectively. This paper investigates the
sensitivity of an MPC-based MCA when changing the internal
parameters of the cost function of the algorithm. A preliminary
analysis explored all possible combinations of parameters using
the Root Mean Square Error (RMSE) and Pearson Correlation
Coefficient (PCC). Based on those results, the effect of a
select set of parameter combinations on the perceived motion
quality was tested in a passive driving simulation experiment.
It was shown that the error weight parameter on the lateral
acceleration (Way) has more influence on the perceived motion
quality than the error weight parameter on the roll rate (Wp). It
was also found that the established baseline condition was rated
as the best perceived motion quality. Additionally, combination
of the RMSE of the translational accelerations plus a weighted
RMSE of the rotational rates above the perception threshold
showed a high correlation with the mean continuous rating,
therefore having the potential to become a method for predicting
how humans perceive motion quality.

I. INTRODUCTION

Increasing use is made of full-motion vehicle simulators.
They are being used to investigate human perception, cognition
and action, for example by research organisations and by
R&D departments of companies. Next to research, they are
also used to test new innovations in a safe and controllable
environment. Several studies have found that the addition of
motion in simulations increases the perceived realism, while
also increasing the performance of drivers [1] [2]. However,
bad or false motion cues may decrease these benefits, meaning
that no motion may be favoured over bad or false motion
[3]. The challenge in providing motion cues is to simulate
the vehicle motions as accurately as possible, while keeping
the motion platform within its boundaries. This is generally
handled by a so-called Motion Cueing Algorithm (MCA).

Currently, most of the MCAs are based on washout filters
[4], [5], but this type of algorithm is not able to handle
physical limits of the motion platform explicitly. In order to fit
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Simulation division of the Faculty of Aerospace Engineering, Delft University
of Technology, 2629HS Delft, the Netherlands
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the motion envelope within the physical limits of the motion
platform, the MCA is usually tuned such that the worst-case
scenario does not exceed the limits [6]. The consequence is
that for all other scenarios, the MCA performs sub-optimal.
Searching for a solution to this problem resulted in the
development of an adaptive washout filter, where the washout
filter parameters are adjusted in real-time using an overlaying
cost function [7] [8] [9]. Still, the physical limits are not
explicitly accounted for. Therefore, an MCA based on Model
Predictive Control (MPC) is gaining popularity [10] [11] [12],
because MPC is able to explicitly account for physical limits
and therefore uses the physical motion space more effectively
[10].

Multiple comparisons between the classical washout filter-
based MCAs and newly developed MPC-based MCAs have
shown that MPC has the potential to provide an improve-
ment in motion cueing quality with respect to filter-based
approaches [13] [12], but this comparison only included one
combination of parameter settings. MPC contains many pa-
rameters that have an influence on the motion cueing quality.
[14] has investigated the influence of the prediction horizon
length on motion cueing quality by determining the increase
in computational costs and motion cueing quality for larger
prediction horizons. [15] proposed a strategy to predict future
motion during online driving simulation, where it is assumed
that driving behaviour is somewhat constant, as is the case
when looking at racing drivers. [16] presented an implemen-
tation of MPC that incorporates all actuators and still runs
in real-time, despite the computational costs. Both [16] and
[17] implemented an MPC-based MCA on non-conventional
motion simulators. All these efforts help in creating a better
MCA by improving one of the aspects of the MPC-algorithm.

Although offline simulations with an unlimited prediction
horizon and perfect prediction have shown promising results
for MPC-based MCAs [13], the main challenge lies with
online simulations. They have a worse prediction quality,
and on top of that they require the prediction horizon to be
finite due to the computational costs of the algorithm and the
unreliability of longer predictions. This increases the need for
tuning the parameters of the MPC-based MCA (note that these
are different from parameters in the Classical Washout Filter).
Currently, little is known about how all these parameters
influence the behaviour of an MPC-based MCA. Initially, it
was thought the parameters of an MPC-based MCA were more
intuitive to tune, because they all have a clear function that
could be directly related to the simulator output (in contrast
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to parameters such as damping or cut-off frequency). For
example, increasing the error weight parameter on longitu-
dinal acceleration should increase the tracking performance
of the longitudinal acceleration. However, the large number of
parameters and their interaction make this a complex problem.
This research will help in understanding the behaviour of
an MPC-based MCA and in tuning the parameters of the
algorithm.

The goal of this research is therefore to investigate the
influence of the parameters of the cost function of the MPI
MPC-based MCA on the perceived motion quality. First,
the change in the Root Mean Square Error (RMSE) and
Pearson Correlation Coefficient (PCC) due to changing the
parameters has been measured. Initially, only one parameter
was changed each time, after which two parameters were
varied to analyse the interaction effect between all parameters.
Based on these results, a passive driving simulation experiment
has been performed on a hexapod-based motion simulator,
where the continuous perceived motion mismatch rating [18]
of 20 participants has been measured.

This paper is structured as follows: first, the MPC-based
MCA that is considered in this research is explained in
Section II. Section III then briefly summarises the preliminary
analysis of the influence of the error weight parameters on
the behaviour of the algorithm by measuring the RMSE and
PCC. From this analysis followed an experiment with human
participants to measure the perceived motion quality and verify
the used approach. The setup of this experiment is explained
in Section IV. The results are presented in Section V and
discussed in Section VI. Finally, Section VII draws the main
conclusions from this research.

II. MODEL PREDICTIVE CONTROL MOTION CUEING

Model Predictive Control (MPC) is a technique initially
developed to meet specially tailored control needs of nonlinear
systems such as nuclear power plants and oil platforms [19].
Those processes need to be optimised at each control step, as
the system characteristics change over time. MPC fits those
needs, because MPC is a technique that explicitly optimises the
future behaviour of a system over a specific time interval, the
prediction horizon, based on the system input, the current state
of the system and the future state of the system (which is based
on the current state and inputs). It does this by minimising the
squared error between a reference signal of the future and the
calculated future signals. In other words, it solves an optimal
control problem of a future trajectory, and this optimal control
problem is solved at each time step to determine the next
control step.

Recently, it has been proposed to use MPC to control
motion simulators [10], as the next step towards better motion
cueing. MPC algorithms are able to use the available physical
space of motion simulators more effectively, since an optimal
trajectory is calculated based on the current state of the system.
Filter-based MCAs are usually scaled down to be able to
accommodate the worst-case scenario, causing the process to
be sub-optimal for all other scenarios. On top of that, MPC-
based MCAs handle limits explicitly, therefore producing an

optimised result while respecting the constraints. This also
means that the algorithm does not have to be tuned in order
to stay within the physical limits of the system. Instead, the
tuning process is more focused on improving the performance
and stability of the system.

Several institutions have implemented MPC-based MCAs
on motion simulators [20] [11] [12], but this research focuses
on the algorithm developed at the Max Planck Institute for Bi-
ological Cybernetics in Tübingen, Germany, where the MPC-
algorithm is also implemented on novel motion platforms,
such as the Cable-Robot Simulator [16] and the CyberMotion
simulator [17], an eight degrees of freedom serial robot
simulator. However, in order to make the results of this study
applicable to a wider audience, this research will be performed
on a commonly available hexapod motion simulator.

The MPI MPC-based MCA includes an explicit model
of the actuators of the motion platform, therefore directly
optimising the control input. Although this increases the com-
putational cost (due to a larger optimal control problem), the
algorithm runs in real-time by utilising several computational
tricks and simplifications, as explained in [16]. One of them
is that instead of converging to the optimal solution of the
optimal control problem each time-step, a maximum number
of iterations per time-step can be set, meaning that a sub-
optimal solution is taken in order to be able to continue to
the next time step at a sufficiently high control frequency.
However, doing this consecutively causes the algorithm to
converge to the optimal solution anyway over multiple time-
steps [21].

One of the challenges of MPC algorithms is determining the
reference signals of the future motion. One could think of that
as the desired trajectory of the system, because the algorithm
will try to make the system do exactly as that reference signal.
For some systems, such as controlling temperature, this is
rather straightforward, since the future is predictable. However,
in case of motion cueing for human-in-the-loop simulations,
making a prediction of the future is difficult and risky.

Based on the predicted future motion, MPC determines
the optimal future trajectory of the simulator each time step,
meaning that the entire prediction horizon is optimised. Figure
1 shows the principle of MPC. The algorithm tries to track a
reference signal by calculating the required control inputs that
cause the system to approach that reference signal. Note that
in general, only the first time step (k+1) is used to control the
motion platform. For the next time step, the entire prediction
horizon is optimised again, creating a new optimised command
for the motion platform at every time step.

A. Parameters of the Cost Function of the Algorithm
The optimisation of the future trajectory of the simulator

is done via a cost function that minimises the squared error
between reference values and actual values of the output
signals (yk), state signals (xk), input signals (uk) and the
terminal state (xn), over a certain prediction horizon (N ) [16].
The mathematical form is shown in (1) - (3).

uk = arg min
uk

1

N

N−1∑

k=0

lk(xk, uk) + ln(xn) (1)
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k (now) k+1 k+2 ... ... k+n

           Prediction Horizon         

     Past Future     
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Predicted Trajectory

Historic Trajectory

Predicted Control Input

Historic Control Input

Fig. 1. Graphical representation of the principle of MPC, adapted from [11].

where:

lk(xk, uk) =
(
y(xk, uk)− ŷk

)2
Wy +

(
xk − x̂k

)2
Wx

+
(
uk − ûk

)2
Wu (2)

and:
ln(xn) = ||xn − x̂n||2Wxn

(3)

Many parameters have an influence on the behaviour of
the MPC algorithm, as can be seen in (1) - (3), where Wy ,
Wu, Wx and Wxn are all diagonal matrices with error weight
parameters on the diagonal. This means that if the value of
these parameters is increased, there will be a higher penalty
on the squared error between the desired output and the output
of the MPC-controller for that specific signal. Terminal state
parameters (Wxn ) are basically the same as the normal state
parameters, but terminal state parameters are the last state
values in the prediction horizon. This can be used to ensure
that the future prediction always ends up at a certain point,
which can increase the stability of the algorithm.

There are nine output error weights (Wy , three translational
accelerations, three angular velocities and three angular ac-
celerations), twelve state error weights (Wx, three positions,
three angles, three translational velocities and three angular
velocities), twelve terminal state error weights (Wxn

, again
three positions, three angles, three translational velocities and
three angular velocities) and six input error weights (Wu, three
translational accelerations and three angular accelerations).

As already explained before, MPC needs a reference tra-
jectory against which the output error should be minimised,
so for all these signals (ŷk, x̂k, ûk and x̂n), there needs to
be a reference signal as well. Most of the reference signals
are straightforward and logically chosen. First of all, the
state reference values represent the state towards which the
motion platform will perform washout, generally the motion
platform’s neutral position.

There is no need for input filtering, due to the fact that
hexapod-based motion simulators only have limited physical
possibilities. Should one perform a similar analysis on a
different simulator with more physical possibilities, such as the
CyberMotion Simulator of the MPI [22], this set of parameters
could be of interest to reduce extreme behaviour such as
constant spinning.

There is also no need for increasing stability by setting
a value for the terminal state parameters (only in case of
instability). Therefore, the input and terminal state reference
signals are of little importance and thus set to zero. Finally, the
output reference signals are the most interesting and difficult
ones, due to their dependence on a prediction of what the
output will be in the future, meaning that these will not be
constant.

There are a lot of parameters that influence the behaviour
of the MPC-controller. Some parameters have a direct influ-
ence on the simulator output and therefore the influence can
easily be deduced, but other parameters may not impact the
behaviour of the algorithm in a clear way, which makes it
more difficult to explain the behaviour. Note that the following
description is based on having the reference signals for the
input, state and terminal state all zero, as that is the case that
will be used in this research. First of all, for the prediction
horizon, a longer prediction horizon generally increases the
performance, but the risk of an inaccurate prediction increases
with longer prediction horizons, as well as the computational
cost [14].

Second, the error weights put a penalty on the error of
that specific signal. Higher output error weights (Wy) should
improve tracking of the predicted reference, higher state error
weights (Wx) increase the washout, high input error weights
(Wu) penalise high input values, and high terminal state
error weights (Wxn

) are there to improve the stability of the
algorithm.

As a standard practice at the MPI, the values for the output
error weights are chosen to reflect the variance of specific force
in m/s2 and angular velocity in rad/s for typical vehicle
manoeuvres [16]. The input error weights are set to a very
small value, because in general there is no need for input
filtering on a hexapod-based motion simulator. The terminal
state error weights are set to a very small value as well,
because this is only necessary to tune in case of unstable
behaviour.

TABLE I
OVERVIEW OF THE PARAMETER VALUES OF THE COST FUNCTION OF THE

MPC-CONTROLLER IN THE BASELINE CONFIGURATION.

N 20
∆t 0.1

ax ay az p q r ṗ q̇ ṙ

Wy 1 1 1 10 10 10 0 0 0
Wu 0.01 0.01 0.01 - - - 0.01 0.01 0.01
ŷk Dependent on MPC prediction
ûk 0 0 0 - - - 0 0 0

x y z φ θ ψ ẋ ẏ ż p q r

Wx 8.2 5.1 3.6 5.4 3.7 6.8 0 0 0 0 0 0
Wxn 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
x̂k 0 0 0 0 0 0 0 0 0 0 0 0
x̂n 0 0 0 0 0 0 0 0 0 0 0 0

Then finally, for the state error weights (Wx) an optimisation
has been performed. The manoeuvre that will be used to
analyse the influence of some of the parameters is a car
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driving through a curve, and the state error weights have been
optimised such that with the baseline settings for Wy , Wu

and Wxn
, the simulator platform moves back to its neutral

position within a reasonable time span. This has been done
by optimising a cost function that calculates the the total error
of all output signals during the curve, while putting a very
high penalty on all motion at some time after the curve, such
that the motion platform is in its neutral position before a next
curve starts. A summary of the parameters as they will be used
initially is shown in Table I.

B. Prediction Strategies

A very important but tricky aspect of the MPC-controller
is the future prediction of y. For passive simulations, this is
straightforward, as the future trajectory is know. However, this
is not the case when uncertainties in the control loop or online
motion cueing are present, which is most often the case. There
are multiple options if that is the situation.

The easiest and most straightforward to implement is to
assume that there will be no change in the near future and
keep the predicted output constant. The downside of a constant
prediction method is that longer prediction horizons cause the
algorithm to show behaviour opposite to what is desired. If
for example the current output is an acceleration of 1 m/s2 to
the left and the prediction horizon is 10 seconds, the algorithm
will prepare for such a prediction by moving to the right, such
that a larger movement to the left can be made. But because
the prediction is constant, the algorithm will keep doing this
until the motion changes. The result is that an acceleration to
the left is simulated by providing an acceleration to the right,
which is undesirable.

Another, similar option is to use the current output values
and scale them linearly, however it is difficult to actually
implement that, as the value could go up or down, so keeping
it constant is a safer method.

A completely different approach would be to have an actual
prediction of what is going to happen, based on a virtual driver
or a recording of a previous simulation run. Then comparing
the current position of the simulated vehicle to the one from
the recording enables the algorithm to predict what is going
to happen. However, for this method to work, the behaviour
of the recorded driving and the actual driver should be very
similar, because else the prediction is false. This method is
only suitable for experienced drivers [15], such as racing
drivers. Therefore, in this research a constant prediction will
be used.

The prediction horizon is defined by two parameters, the
number of steps and the time in between steps. Small time
steps are only useful when the behaviour of the system
changes rapidly. Furthermore, a long prediction time is only
beneficial if the prediction is accurate, and even then at a
certain point the gain in performance is not worth the increased
computational costs. For uncertain predictions, it can even
make the performance worse. At the time of performing this
analysis, the maximum number of prediction steps that could
be handled in real-time was a around 100, therefore, to ensure
that this version of an MPC-based MCA can run in real-time

for most practical implementations, it has been decided to
limit the number of steps to 20 for this research. In order
to still have a meaningful prediction time, a time step of 0.1
seconds is taken, such that the prediction time is 2.0 seconds.
For driving a vehicle, not a lot will change in 0.1 seconds, so
this is a safe value to take.

III. OUTPUT WEIGHT SENSITIVITY ANALYSIS

An initial analysis on the sensitivity of the MPC-based
MCA of the MPI due to varying the output error weight
parameters (Wy) of the cost function has been performed.
To investigate all possible parameter combination, only the
objective metrics Root Mean Square Error (RMSE) and Pear-
son Correlation Coefficient (PCC) are evaluated, since these
can be determined without the need for human-in-the-loop
experiment. The RMSE is an indication of the performance
of signal tracking (therefore penalising both magnitude and
shape errors) and the PCC (which penalises shape errors) has
been shown to correlate with the perceived motion quality
[23].

Magnitude or scaling errors are not perceived as bad when
staying within a certain range [24], but shape errors (which are
a result of false cues) lead to large decreases in perceived mo-
tion quality, with [6] arguing that they are the most detrimental
to perceived motion quality. See (4) and (5) for mathematical
expressions of the RMSE and PCC, respectively. In these
equations, N = number of data points, yi = actual value, ŷi)
= reference value, µ = mean and σ = standard deviation.

RMSE =

√∑N
i=1(yi − ŷi)2

N
(4)

PCC(y, ŷ) =
1

N − 1

N∑

i=1

(
yi − µy

σy

)(
ŷi − µŷ

σŷ

)
(5)

The vehicle motion is obtained by letting CarSim perform
a curve driving manoeuvre. A baseline condition has been
established such that the values for the output error weights
reflect the variance of specific force in m/s2 and angular
velocity in rad/s−1 for typical vehicle manoeuvres [16]. The
MPC parameter values are listed in Table I. First, all param-
eters have been changed one by one, therefore only looking
at their individual sensitivity. After that, two parameters have
been changed simultaneously to investigate their interaction
effects.

In the first analysis, it became clear that all parameters
mostly influence their corresponding motion channel, namely
that increasing a certain error weight parameter decreased
the RMSE and increased the PCC for that same motion
channel. The RMSE and PCC of ay due to varying all six
parameters individually can be found in Figures 2 and 3.
The parameter names have the concerned motion channel
as subscript, i.e., Wax is the error weight parameter on the
longitudinal acceleration.

It is clear that Way has the most influence on ay . Even a
small increase in Way already causes the algorithm to produce
a smaller RMSE in ay than an optimised classical washout
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filter. The RMSE in ay can be decreased by as much as 95%
when increasing Way . Next to that, it can be observed that
Wp also affects ay , which is due to tilt-coordination. In this
example, Wp negatively affects the cueing accuracy for ay ,
since the RMSE increases and the PCC decreases due to an
increase of Wp. The RMSE in ay is increased by as much as
114% when increasing Wp. Both of these effects are expected,
but on top of that, Wr seemed to affect most other motion
channels. This is caused by the fact that yaw rate is difficult
to simulate on hexapod based motion simulators as it is only
possible to reproduce a yaw rate for a short amount of time
before the physical limits are reached.

After the individual sensitivity had been established, all
parameters were tested against each other to analyse the effects
of changing two parameters simultaneously. To limit the scope
of this research, the maximum number of parameters that will
simultaneously be varied is two. The effect of changing two
parameters simultaneously can also still be graphically shown
(in a 3-dimensional plot), which is often important in gaining
an understanding of what is happening. The most interesting
parameter combination turned out to be Way and Wp, due to
them both having an effect on ay , the most dominant stimulus
during curve driving.

Note that in the analysis, the translational error weight

parameters range from 0-10 and the angular rates range from
0-100. This difference in scale has the same reason as the
choice of values for the parameters in the baseline case, i.e.,
the difference in units. This means that to achieve a penalty
of equal magnitude on the angular rates in rad/s, the weight
needs to be around ten times as high as the weight on the
translational accelerations in m/s2. The maxima of 10 m/s2

and 100 rad/s where chosen as the change in RMSE or PCC
becomes rather small for these high weight values.

In some cases, undesired behaviour starts happening way
before these values, making it less interesting to investigate
higher values. Undesired behaviour does not mean introducing
large errors, but introducing oscillating behaviour on certain
motion channels as a result of increasing certain parameters
too much, for example increasing Way and Wp simultaneously.
If we look at Figure 4, we see that if both Way and Wp are
increased, a high RMSE for ax, q and r occurs, which is
the result of oscillating behaviour on those motion channels.
Figure 6 shows the simulator output when both Way and Wp

are increased too far, where it can be seen that all other motion
channels show oscillating behaviour. This happens because at
this point, a small performance increase in ay or p outweighs
the large error on other motion channels.

Figures 4 and 5 show the RMSE and PCC, respectively, of
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Fig. 4. Sensitivity of RMSE due to varying Way and Wp simultaneously.

Fig. 5. Sensitivity of PCC due to varying Way and Wp simultaneously.

all motion channels due to varying Way and Wp. Generally
speaking, we see the following behaviour when Way and Wp

are varied. First, increasing Way results in a lower RMSE

in ay , but also in a higher RMSE in p, meaning that a better
reproduction of the lateral acceleration is realised at the cost of
a false cue in roll rate. Decreasing Way has a reversed effect,
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which causes a reduced tracking performance of ay . Increasing
Wp reduces the RMSE in p, meaning that the false cue that is
generated due to tilt-coordination, also reduces. However, this
comes at the cost of a reduced tracking performance of ay .
And decreasing Wp allows for more use of tilt-coordination,
causing the RMSE in p to increase.

Finally, it can be seen that increasing either Way or Wp

does not result in a drastic change in RMSE or PCC, but
when Way and Wp are increased simultaneously, the RMSE
on the remaining motion channels drastically increases. This
is because if both Way and Wp are increased too much, a very
small performance increase in ay or p is realised at the cost of
large errors on other motion channels. Therefore we can say
that Way and Wp show interaction effects. The RMSE in ay
can be decreased by as much as 95% when increasing Way

with respect to the baseline condition, but this reduces to 66%
when Wp is increased as well. This is an expected result, since
ay and p are related via tilt-coordination.

We can conclude that Way mainly affects the sustained part
of the curve, because that is where ay is most dominantly
present. Wp mainly affects the curve onset and exit, as there
is only a roll rate during those segments. Increasing both
parameters too much results in undesired behaviour, as was
seen in Figure 6.

The impact of the six output error weight parameters on
the performance of the MPC-based MCA has been studied by
looking at the RMSE and PCC between the desired and actual
simulator output signals with a range of different values of the
parameters. But these metrics are merely an indication of the
quality of a simulator, thus these results are not conclusive. To
verify the predicted sensitivity of the MPC-based MCA output

and thus motion cueing quality, a passive driving simulation
experiment was performed. In this experiment, the perceived
motion cueing quality is measured by using the continuous
rating method, first used in [18].

IV. METHOD

A. Control, Dependent and Independent Variables

The state error weight, terminal state error weight and input
error weight parameters are all control variables, they will
remain constant throughout the entire analysis. This research
will only focus on the effects of changing Way and Wp,
since they showed the most interesting behaviour and are most
important in curve driving simulation. The MPC parameter
values, vehicle manoeuvre and prediction strategy are the same
as used before. And finally, the dependent variable is the
continuous mismatch rating (CR), because it has been shown
that this is a good indication of the perceived motion quality
[25] and with the CR it is possible to analyse the results per
section of the curve, which is not possible with only a single
metric. The MPI hexapod simulator (Bosch Rexroth eMotion-
1500-6DOF-650-MK1) (see Figures 7 and 8) was used for the
experiment, a commonly available simulator.

B. Experiment Procedure

All of the nine conditions were played back to back, i.e.,
a single simulation trial consisted of nine curves. An initial
acceleration and final deceleration were included to make
the trial more realistic. As part of the continuous rating
method [25], two training trials were performed to let the
participants get used to the method and to get a feeling for
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Fig. 7. The front view of the MPI hexapod simulator.

Fig. 8. The seat of the MPI hexapod simulator.

which motion feels good and which motion feels bad. After
that, participants had to rate three repeated measurement
trials, in order to get rid of outlier behaviour and to be able
to quantify whether participants rated consistently. One trial
took approximately 6 minutes.

Twenty participants participated in the experiment. During
the experiment, participants saw computer-generated visuals
(from Unity) projected on a screen in front of them that
matched the vehicle motion that was generated in CarSim,
see Figure 9. Based on those visuals, participants had a
certain expectation of what they would feel if they would
be situated in a real car. Because they are not in a real car
but in a motion simulator, discrepancies can occur between
their expectation and what they really perceive. Participants
could report this by turning a knob that indicates to what
extent they feel a mismatch between the visuals and the
motion, also known as the continuous rating method [18]

[25]. The rating knob is shown in Figure 10. Participant’s
ratings were shown on the screen and measured throughout
the experiment. The continuous rating captures the perceived
motion incongruence over time of the simulation. Finally, to
help in the interpretation of the CR results, a questionnaire
was filled in after the experiment in which participants were
asked to indicate how they decided on a certain rating. On
top of that, after each experiment trial a sickness score was
asked to monitor motion sickness during the experiment.

Fig. 9. The experiment visuals projected on the simulator’s screen.

Fig. 10. The turning knob with which participants provided their contin-
uous rating. The rating bar on the screen shows the current rating.

C. Experiment Conditions

The baseline condition (see Table I) served as the reference
MPC condition. From there Way and Wp were increased and
decreased the same relatively. Both of these parameters were
varied independently, meaning that in total, the full factorial
of nine experimental conditions was tested. The final result
has been a trade-off between getting a maximum difference
between the experiment conditions and keeping the simulation
comfortable, since human subjects will take place inside a
simulator. This means that there must be no negative PCC
on any of the motion channels, since this indicates that there
are false cues present that are in opposite direction of what is
expected and this might cause motion sickness. Taking both
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Fig. 11. The output of the simulator for all nine experiment conditions, including perception thresholds for tilt rates.

of these goals into account resulted in both parameter values
being increased and decreased by 60%, meaning that the tested
parameter values for the experiment were indicated in Table II.
Figure 11 shows the traces of the simulator outputs for all nine
experiment conditions, including the perception threshold for
tilt rates of 3 deg/s [26], or 0.0524 rad/s. It can be seen that
C2, C3 and C6 surpass the perception threshold clearly, while
C5 and C9 just surpass the threshold. Figures 12 and 13 show
the RMSE and PCC values for all experiment conditions. It
can be observed that increasing Way lowers the RMSE of ay,
but increases the RMSE of p, while Wp does the opposite.

TABLE II
THE PARAMETER VALUES, CORRESPONDING TOTAL RMSE AND AVERAGE

PCC OF ALL NINE EXPERIMENT CONDITIONS.

Wp Way Condition Total RMSE Average PCC
0.4 C1 1.767 0.622

4 1 C2 1.547 0.727
1.6 C3 1.500 0.743
0.4 C4 1.814 0.525

10 1 C5 1.621 0.666
1.6 C6 1.563 0.705
0.4 C7 1.856 0.459

16 1 C8 1.694 0.593
1.6 C9 1.626 0.656

D. Hypotheses

The goal of this experiment was to measure the effect of
the MPC-based MCA’s output error weight parameters on the

perceived motion cueing quality. Based on the results of the
sensitivity analysis in Section III, the following hypotheses
were formulated:

• H1 Varying Way will have more influence on the per-
ceived motion quality than Wp. Table II shows the
summed RMSE (the angular rates received a weight of 10
to compensate for the difference in units) and the average
PCC per condition. Using these values, we can calculate
the change in RMSE and PCC due to a change in either
Way or Wp with respect to the middle values. Adding
these values gives us a total change in RMSE or PCC
due to changing one of the parameters. Doing this for
both parameters and both metrics yields a total change in
RMSE of 46.3% due to Way and 22.1% due to Wp and
a total change in PCC of 76.9% due to Way and 63.4%
due to Wp. Since Way has more influence on both the
RMSE and PCC, it is expected that Way also has more
influence on the perceived motion quality.

• H2 C8 will be rated as the best condition. [26] found
that the perception threshold for tilt rates is 3 ◦/s. This
means that participants will notice tilt-coordination when
the value of 3 ◦/s is exceeded, which should be given a
high mismatch rating since this is a false cue. Only C1,
C4, C7 and C8 stay below the perception threshold, and
from these conditions, C8 has the lowest RMSE and the
highest PCC on the relevant motion channels. Therefore
it is expected that C8 will receive the lowest CR.
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Fig. 12. RMSE values for all experiment conditions. The reference Classical Washout Filter (CWF) has been included for comparison.
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E. Data Analysis

The only dependent variable is the CR, which is measured
over time. Before analysing the data, it will be checked
whether participants were consistent using Cronbach’s Alpha,
a measure of internal consistency. Additionally, the mean
ratings for left and right curves will be compared for each
condition individually to verify that there are no differences
in rating a left or right curve. This is done because the
visuals were not symmetric due to the fact that visuals where
created from the perspective of the driver (left seat). After the
usability of the data has been determined, the mean CR of all
participants per condition will be used to compare the different
conditions.

On top of that, because Way and Wp affect different parts
of the curve, the mean CR of all participants per condition
will also be determined for each curve segment separately,
in order to analyse the results in different curve segments.
First, the effect of varying the parameters Way and Wp

will be investigated by looking at what happens during each
curve segment due to varying the parameters. After that, the
performance of the conditions will be analysed and it will be
determined which condition was perceived as most realistic.

Finally, in order to determine whether the RMSE and PCC
are indicative for the perceived motion quality, a correlation
coefficient will be calculated between the RMSE or PCC of
a combination of motion channels and the mean continuous
rating. Note that adding the RMSE values includes a weight of
10 on the rotational rates due to the difference in units. Also
note that the mean continuous rating indicates a mismatch,
therefore a lower value indicates a better motion quality. This
implies that for a positive correlation, the PCC should be
checked for inverse correlation.

V. RESULTS

Two out of the 20 participants have been excluded from
the results due to a poor consistency in giving their rating
(Cronbach’s Alpha < 0.7). Additionally, it has been checked
whether there is a difference in rating a left or a right turn.
A Wilcoxon test for all conditions individually showed no
significant difference between the given ratings for left or right
curves (p > 0.05). These findings are explained in more detail
in Appendix A.

A. Effect of Changing Parameters

Figure 14 shows the average mean CR over time for all
experiment conditions. It seems that C5 received the lowest
CR over time, but the highest CR over time is not entirely
clear from this figure. C7 has the highest peak, while C3 is
rated higher during the curve onset and exit. Table III shows
the mean ratings per curve segment for all conditions, where
the lowest means are shown in italics and the highest values
are in bold. C3 received the highest mean rating over the entire
curve, curve onset and curve exit, but during the sustained part
C7 is rated worse. This is caused by the fact that C3 had the
highest Way and the lowest Wp, resulting in the lowest RMSE
in ay but the highest false cue in p during the curve onset and
exit. Conversely, C7 had the lowest Way and the highest Wp,

resulting in the highest RMSE in ay , which is felt most during
steady curve driving. Figure 15 shows the spread of the mean
ratings per curve segment in a boxplot, where it can again be
seen that C3 received a high mismatch rating during the curve
onset (red), and C7 received a high mismatch rating during
the sustained part (green).

TABLE III
MEAN CONTINUOUS RATINGS OF THE ENTIRE CURVE PER CURVE

SEGMENT PER CONDITION.

Mean rating over

Condition Entire curve Curve onset Sustained part Curve exit

C1 0.2528 0.1182 0.4724 0.1131
C2 0.2629 0.1653 0.4184 0.1663
C3 0.3246 0.2403 0.4911 0.2010
C4 0.3019 0.1665 0.5186 0.1669
C5 0.1604 0.0879 0.2557 0.1139
C6 0.2319 0.1464 0.3677 0.1478
C7 0.3177 0.1399 0.5652 0.1864
C8 0.1967 0.1038 0.3406 0.1101
C9 0.2009 0.1141 0.3203 0.1387

In Section IV, we determined the total change in RMSE
and PCC due to changing the parameters. This procedure can
be done for the mean CR as well, resulting in a total change
in mean CR of 223.8% due to changing Way and 161.4%
due to changing Wp. A two-way repeated measures ANOVA
test confirms that there is a significant effect due to Way (p <
0.05), while the effect of Wp is not statistically significant (p >
0.05). There is also an interaction effect present (p < 0.05).
Table IV shows the ANOVA results of the two-way repeated
measures ANOVA tests on the entire curve, but also for each
section of the curve. Interestingly, Wp shows a significant
effect during the curve onset, while Way only shows an effect
on the entire curve. This can be explained by the fact that
Way influences the general feeling during the curve, while
Wp mainly influences the motion during the curve onset and
exit, because there high tilt rates generally occur.

For all curve segments, an interaction effect between the
two parameters is present. This means that the effect of one
parameter is influenced by the value of the other parameter.
Figure 16 shows the mean rating per condition, where it can
be seen that for low values of Way (0.4), increasing Wp results
in a worse mean rating, for medium values of Way (1.0), the
middle value of Wp results in the best mean rating and for
high values of Way (1.6), increasing Wp results in a better
mean rating. This stresses the importance of incorporating
interaction effects in this type of research.

B. Performance of Conditions

The mean rating over time of all participants was shown in
Figure 14, where it can be seen that the average rating differs
per condition. Table III lists the numeric values of the mean
ratings per condition, where it can be seen that C5 (baseline
condition) received the lowest mean CR overall, therefore
indicating that this is the most preferred condition. Figure 17
shows a boxplot of the mean ratings of all participants per
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Fig. 14. The mean rating over time for all experiment conditions.

Fig. 15. Boxplot of the mean ratings per curve segment for all experiment conditions.

condition, where it can be seen that some median ratings lie
within the spread of other conditions. Nevertheless, a Friedman
Test on all nine conditions (18 participants, 3 repetitions)
shows that there is a strong significant overall effect (p <
0.01). This is because smaller effects during each curve

segment that are not significant on their own, add up to an
overall significant effect.

To determine whether C5 differs significantly from the
other conditions, a Wilcoxon signed-rank test was performed
between C5 and all other conditions (see Appendix C). Based



13

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Value of Way

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

M
e

a
n

 s
u

b
je

c
ti
v
e

 r
a

ti
n

g

Mean subjective rating over the entire curve for all experiment conditions

  C1

  C2

  C3

  C4

  C5

  C6

  C7

  C8

  C9

Wp = 4

Wp = 10

Wp = 16

Fig. 16. The mean overall rating of all experiment conditions.

Fig. 17. Boxplot of the mean ratings for all experiment conditions.



14

TABLE IV
ANOVA RESULTS OF THE TWO-WAY REPEATED MEASURES ANOVA TEST

ON THE EFFECTS OF BOTH PARAMETERS AND THEIR INTERACTION AND
OF THE FRIEDMAN TEST.

Way Wp Interaction Friedman Test
F Sig.1 F Sig.1 F Sig.1 F Sig.1

Entire
curve

3.65 * 1.69 - 8.08 ** 20.4 **

Curve
onset

1.56 - 6.01 ** 8.70 ** 11.7 -

Sustained
part

2.54 - 3.16 - 5.43 ** 18.7 *

Curve
exit

0.40 - 0.62 - 4.77 ** 3.4 -

1’**’ indicates a strong significant effect (p < 0.01), ’*’ denotes
significance (p < 0.05) and ’-’ means no significance (p > 0.05).

on this, C1, C2, C3, C4, C6 and C7 have been rated signifi-
cantly worse than C5 (p < 0.05). However, when imposing a
Sidak-correction (p < 0.00639, 8 tests), only C2 and C3 are
significantly different from C5. This means that the results
suggest that there is a difference, but due to the number of
tests, a false positive becomes more likely and therefore the
significance level tightens.

C. Correlation between RMSE/PCC and CR

Lastly, a correlation coefficient between the CR and the
RMSE or PCC of a combination of motion channels has been
calculated to determine whether any of the combinations are
a good indication of what humans perceive as good or bad.
Table V shows the values of the correlation coefficient for the
different combinations of motion channels with RMSE and
PCC. It can be seen that none of the combinations show a
strong correlation (correlation > 0.6).

TABLE V
CORRELATION VALUES BETWEEN THE RMSE OR PCC OF A

COMBINATION OF MOTION CHANNELS WITH THE MEAN CONTINUOUS
RATING.

Signals Correlation with RMSE Inverse correlation with PCC

all 0.2293 0.2576
ay , p 0.2145 -0.0362
ax,ay ,p,q,r 0.2172 -0.0138
ax,ay ,az 0.2038 0.3858
p,q,r -0.1680 -0.1320

Additionally, although the RMSE and PCC do not show a
strong correlation with the mean continuous ratings, another
interesting observation can be made. If we compare the mean
rating per experiment condition in Figure 16 with the RMSE
in ay in Figure 12 (upper middle plot), we see a similar
trend for most conditions, except for C2, C3 and C6. These
three conditions all surpassed the perception threshold for roll
rate by a large margin and received a worse rating than one
would predict based on the RMSE in ay . This means that
the RMSE in ay is a good indicator when looking at the
perceived motion quality during curve driving, but an error

in p above the perception threshold decreases the perceived
motion quality. Therefore, it will be checked whether a sum
of the RMSE in ay and the RMSE in pabovethreshold times a
certain weight will result in a high correlation with the mean
continuous mismatch rating. The RMSE in pabovethreshold is
similar to other RMSE calculations, but now only the error
above the perception threshold is considered. Figure 18 shows
the correlation of CR with the RMSE in ay and a weighted
RMSE in pabovethreshold and indeed, there are weights that
result in a high correlation. A weight of 49.4 results in the
highest correlation of 0.9799, therefore having the potential to
predict the distribution of perceived motion quality.

Fig. 18. Correlation between RMSE in ay + a weighted RMSE above the
perception threshold in p and the mean continuous mismatch rating.

VI. DISCUSSION

This paper presents a first investigation into the sensitivity
of an MPC-based MCA to varying the parameters of its cost
function. An experiment was set up based on the results of
a preliminary analysis, where participants experienced nine
different motion conditions as a result of changing the lateral
acceleration and roll rate error weight parameters (Way and
Wp, respectively) of the cost function of the MPC-algorithm.
Participants continuously rated their perceived mismatch be-
tween visual and inertial information, which is indicative of
the perceived motion quality [25].

It was found that Way has more influence on the mean
continuous rating than Wp, just as was hypothesised based on
the RMSE and PCC predictions. Conditions where Way was
set to a higher relative value than Wp (C2, C3 and C6) resulted
in a perceptible false cue in p, which is reflected by higher
mean CRs during the curve onset and exit. On the other hand,
most conditions where Way was set to a lower relative value
than Wp (C4 and C7) resulted in poor tracking of ay , which is
reflected by higher mean CRs during the sustained part of the
curve. With respect to the baseline condition, the following
behaviour was observed:

• Increasing Way ensures that the algorithm tries to de-
crease the error in ay more, but this might cause a
perceptible false cue in p due to tilt-coordination.

• Increasing Wp causes the algorithm to decrease the
error in p, but at the cost of the performance of ay ,
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because a hexapod-based motion simulator is not able
to reproduce sustained accelerations without the use of
tilt-coordination.

• Decreasing Way also results in poor tracking of ay .
• Decreasing Wp allows for more tilt-coordination, which

introduces perceptible tilt rates, which is reflected in the
CR.

Generally speaking, the following conclusions can be drawn:
Way mainly influences the tracking performance of ay, i.e.
increasing Way reduces the RMSE in ay . Wp directly affects
the curve onsets and exits, since only there a roll rate is
present. Therefore Wp influences the tilt-coordination that is
used. A two-way repeated measures ANOVA test indicated
that the effect of Way is statistically significant, while the
effect of Wp is not. Therefore, we can conclude that Way

indeed has more influence on the perceived motion quality
for the considered curve driving scenario and we can accept
hypothesis H1.

The second hypothesis stated that C8 would be rated as the
best condition, as C8 had the lowest total RMSE, while not ex-
ceeding the perception threshold in p due to tilt-coordination.
However, it was found that not C8 but C5 (baseline condition)
received the lowest overall rating, while C5 also contains
perceptible tilt rates due to tilt-coordination, according to [26].
On the contrary, [27] argues that priority should be given to the
minimisation of translational acceleration errors, even at the
cost of perceptible tilt rates, which explains why C5 received
a slightly lower mean CR than C8 (due to having a lower
RMSE in ay).

This means that the baseline condition, where the weight
values approximately compensate for the difference in units
(as stated in [16]), is a good compromise between tracking all
stimuli while not introducing large perceptible tilt rates due to
tilt-coordination. Although it was shown that C5 received the
lowest mean continuous rating, no significant differences were
found between C5 and C8. At the same time, it can also not
be shown that C8 is the best performing condition. Therefore
H2 is rejected.

Finally, it was also checked whether there is any correlation
between the predicted RMSE or PCC and the measured CR.
From the correlation coefficients for different combinations
of the RMSE or PCC with the mean continuous mismatch
rating (Table V), it can be concluded that there is no strong
correlation between the mean continuous rating and one of the
combinations listed. However, a weighted sum of the RMSE
in ay and RMSE in pabovethreshold showed a high correlation
of 0.9799. Humans prefer strong translational accelerations, to
the point where priority should be given to the minimisation
of translational acceleration errors, even if that means that
perceptible tilt rates are introduced [27]. This means that
the relevant translational accelerations (in this case lateral
acceleration) should show correlation with the CR. But we
can see that surpassing the perception threshold eventually
leads to a worse perceived motion quality, which explains
why the sum of the RMSE in ay and a weighted (49.4)
RMSE in pabovethreshold shows a high correlation with the
CR. This result implies that a small RMSE in p due to tilt-
coordination does not affect the perceived motion quality, but

the influence of the RMSE in pabovethreshold is five times as
large as the influence of the RMSE in ay (after accounting for
a difference in units). Therefore we can conclude that false roll
rate cues above the perception threshold are more detrimental
to the perceived motion quality than lateral acceleration scaling
errors, for this curve driving scenario.

However, this result should be handled with care, because
even though it follows from reason that a curve driving motion
simulation has a high perceived motion quality when the
RMSE in ay (the dominant stimulus) is small and a large
false cue in p decreases the perceived motion quality, there is
no logical explanation for the weight penalty on the RMSE in
pabovethreshold. Note that in this experiment, the RMSE of all
other motion channels remained fairly constant, but those will
also affect the CR. Therefore, predicting the distribution of the
perceived motion quality by looking at the RMSE of specific
forces plus a weighted RMSE of tilt rates above the perception
threshold could be tested to verify that this is indeed the case
in general and not only for this experiment. Also note that
although [23] found that the PCC is a good indicator for the
perceived motion quality, no such conclusion can be drawn
from this research.

This research is a first investigation into the sensitivity
of the MPC-algorithm due to changing the parameters, and
due to the number of parameters of the algorithm, most of
them needed to be kept constant. But as is apparent from this
research, even two parameters can change the behaviour of the
algorithm significantly. Therefore, the results of this research
are only applicable when all other parameters are as used in
this research. Nevertheless, it will help future users in the
tuning process by providing an understanding of the influence
of the parameters of the cost-function. Future studies could
investigate the impact of different parameters, such that an
overview is created of the influence of all parameters on the
behaviour of the algorithm.

VII. CONCLUSION

In this paper, the effect of percentage-wise variation of
two parameters (Way and Wp) of the cost-function of the
MPI MPC-based MCA on the behaviour of the algorithm has
been studied. Both investigated parameters had a significant
impact on the perceived motion quality, although it was found
in this experiment that Way causes an overall larger change
in the continuous rating than Wp. Increasing Way introduces
perceptible errors in p, decreasing Way decreases the tracking
performance of ay, increasing Wp also decreases the tracking
performance of ay and decreasing Wp also introduces percep-
tible errors in p. These observations should help future users
of an MPC-based MCA in tuning the parameters of such an
algorithm and in understanding the behaviour. Surprisingly,
it was concluded from the experiment that condition C5 (the
baseline condition) received the lowest continuous perceived
mismatch rating, therefore having the highest perceived motion
quality. Finally, a combination of the RMSE of ay plus a
weighted RMSE of p above the perception threshold showed
a high correlation with the mean continuous ratings, therefore
having the potential to become a method for predicting how
humans perceive motion quality.
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N. Filliard, R. Hähne, A. Kemeny, M. Mayrhofer, M. Mulder, H.-G.
Nusseck, P. Pretto, G. Reymond, R. Schlässelberger, J. Schwandter, H. J.
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APPENDIX A
PARTICIPANT FILTERING

All participants have performed three experiment runs, and
the use of the continuous subjective rating method is only valid
when participants are consistent over multiple runs. Therefore,
Cronbach’s Alpha will be used as a measure of consistency
and in case of a poor score, participants will be excluded
from the results. Cronbach’s Alpha is calculated by using
Equation 6, where K = number of items (in this case, 3),
Total Variance is the variance of the items’ sum and Item
Variance is the variance of the individual items. An example
of a poor consistency is shown in Figure 19, where it can be
seen that the three experiment runs are not rated consistently,
which also follows from a low Cronbach’s Alpha (0.2326). A
high consistency is shown in Figure 20, where all experiment
runs are rated very similar and Cronbach’s Alpha is high
(0.9609). Table VI shows the values of Cronbach’s Alpha for
all participants and based on this, participants 10 and 18 were
removed from the results due to a poor consistency.

c =
K

K − 1

(
TotalV ariance− ΣK

i=1ItemV ariance

TotalV ariance

)
(6)

APPENDIX B
DIFFERENCES BETWEEN RATING A LEFT OR A RIGHT

CURVE

One participant indicated to find it difficult to give an
equal rating for left/right curves, since the visuals are not
symmetrical due to the driver being positioned in the left
seat of the vehicle. Therefore, it has been checked whether
there is a difference in rating between left and right curves by
performing a Wilcoxon signed rank test on the data for each
curve. The results of this can be found in Table VII. Because
there is no significant difference between a left or a right curve
for all conditions, all data can be
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Fig. 19. Rating over time per experiment run for participant 10.
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TABLE VI
THE VALUES OF CRONBACH’S ALPHA FOR ALL PARTICIPANTS. BOLD

VALUES INDICATE INCONSISTENT PARTICIPANTS.

Participant Cronbach’s Alpha Participant Cronbach’s Alpha

1 0.8848 11 0.9174
2 0.9536 12 0.9059
3 0.8604 13 0.9273
4 0.9325 14 0.9224
5 0.9106 15 0.9609
6 0.9151 16 0.8225
7 0.9219 17 0.8487
8 0.8945 18 0.6180
9 0.9181 19 0.8650
10 0.2326 20 0.9715

TABLE VII
P-VALUES OF THE WILCOXON SIGNED RANK TEST ON LEFT/RIGHT DATA

FOR EACH EXPERIMENT CONDITION.

Condition p-value

1 0.0854
2 0.5277
3 0.6475
4 0.0840
5 0.4631
6 0.3271
7 0.3028
8 0.6051
9 0.2311

APPENDIX C
WILCOXON SIGNED RANK TEST RESULTS

To determine if there are significant differences between
experiment conditions, a Wilcoxon signed-rank test was per-
formed between all experiment conditions individually. The
results are shown in Table VIII.

TABLE VIII
P-VALUES OF THE WILCOXON SIGNED RANK TEST BETWEEN ALL

CONDITIONS.

C1 C2 C3 C4 C5 C6 C7 C8

C2 0.983
C3 0.372 0.012
C4 0.122 0.586 0.679
C5 0.043 0.002 0.001 0.018
C6 0.528 0.231 0.001 0.306 0.022
C7 0.094 0.420 0.913 0.500 0.008 0.215
C8 0.011 0.199 0.053 0.014 0.157 0.679 0.014
C9 0.327 0.005 0.001 0.085 0.102 0.094 0.094 0.879
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1
INTRODUCTION

In these days, increasing use is made of motion simulators. They are being used to investigate human per-
ception, cognition and action, for example by research organisations and by R&D departments of companies.
Next to research, they are also used to test new innovations in a safe and controllable environment. Several
studies found that the addition of motion in simulations increases the perceived realism, while also increas-
ing the performance of drivers [1] [2]. However, bad or false motion cues decrease these aspects, meaning
that no motion is favoured over bad or false motion [3]. The challenge in providing motion cues is to simulate
the vehicle motions as accurately as possible, while keeping the motion platform within its boundaries. This
is handled by a so called motion cueing algorithm (MCA).

1.1. PROBLEM STATEMENT
Currently, most of the MCAs are based on washout filters [4], [5]. This strategy is based on motion washout,
where the simulator will slowly move back to its neutral position whenever possible. On top of that, the strat-
egy makes use of tilt coordination, where low frequency motion is filtered out, since low frequency motion
required a lot of physical space and would cause the motion platform to exceed its physical limits. Instead,
this low frequency motion is replicated by tilting the motion platform without exceeding human perceptual
thresholds. The gravity, now under an angle, gives the feeling of accelerating in a certain direction. The high
frequency motion is not filtered but usually scaled down. Both of these techniques help in keeping the simu-
lator within its physical limits, which is ultimately done by tuning this algorithm. There are two downsides to
this approach. Firstly, tuning the washout filter has to be done by an expert through a trial-and-error process,
since the parameters that have to be tuned (cut-off frequency, damping and gain) are not directly related
to the output of the simulator. Secondly, the goal of the tuning process is to keep the simulator within its
physical limits, while providing the most realistic motion. It is not possible to explicitly account for simulator
limits, so this is done by selecting the worst case scenario of the entire simulation and making sure this sce-
nario does not exceed the simulator limits. The consequence of this tuning process is that all motion will be
scaled down the same amount, which is undesirable.

To overcome these longstanding challenges in motion cueing, a new type of algorithm, based on model pre-
dictive control, is currently being developed by the Max Planck Institute for Biological Cybernetics in Tübin-
gen [6]. The principle behind MPC-based MCAs is that at every time step, the future motion of the simulator
is predicted for some time interval (prediction horizon), and optimal simulator control inputs are calculated
for this interval using a dynamic model of the simulator. Each time step, only the first of these optimal control
inputs is send to the simulator. In case of offline simulations (where the control input is known in advance),
the future cues are already known, meaning that the prediction can be called perfect. In case of online simu-
lations (with the user giving control inputs), predicting future motions becomes a lot more difficult, because
it is not possible to perfectly predict human behaviour.

Offline simulations with an unlimited prediction horizon and perfect prediction have shown promising re-
sults for MPC-based MCAs [7]. However, online simulations have a worse prediction quality, and on top of
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that they require the prediction horizon to be limited due to the computational costs of this algorithm and
the unreliability of longer predictions. This increases the need for parameter tuning, but currently there is
no clear overview on how all parameters influence the behaviour of the MPC-controller, while it would be
of great help in understanding the behaviour of an MPC-based MCA and in tuning the parameters of the
algorithm.

1.2. PROJECT GOAL
The goal of this research is to investigate the sensitivity of the parameters of the cost function of the MPC-
based MCA of the Max Planck Institute for Biological Cybernetics. The algorithm has a large number of ad-
justable parameters, and this project will only incorporate the most important parameters in the sensitivity
analysis. Firstly, an offline sensitivity analysis will be carried out, where the effects of changing parameters
will be measured using objective measures related to perceived fidelity (using computer simulations). This
report will be concluded after this analysis, but the research continues by executing a human-in-the-loop
experiment to determine the effects on human perception and to validate the sensitivity analysis. The results
of this experiment will be reported in a paper that will be written at a later stage.

From the literature review, the following research question has been constructed: How do the error weight
parameters of the cost function of a model predictive control-based motion cueing algorithm influence the
human perceived motion on a hexapod motion simulator?
This main question can be subdivided into the following sub-questions that will be answered in this report:

• What are the challenges in motion cueing in general?

• What are the challenges of a model predictive control-based motion cueing algorithm?

• What is the purpose of all parameters of the MPC-controller?

• How can the influence of changing the parameters on the perceived fidelity be measured/analysed
objectively?

– Which objective measures are related to the perceived cueing quality?

– How are several of these measures combined into a single measure of sensitivity?

– How should this single measure of sensitivity be analysed, knowing that the sensitivity can depend
on other parameters?

Based on the outcome of the first part of this research, an experiment will be conducted in which the per-
ceived fidelity will be measured using human participants. The main question for that last part will be:

• How do the parameters influence the perceived fidelity of the motion presented by the simulator?

1.3. RESEARCH SCOPE
The aim of this research is to deliver a thorough analysis, so instead of incorporating all possible parameters
in the analysis, the scope of this research will be narrowed down by focusing on the most important aspects
of this problem. In order to do this, a number of (big) decisions should be made beforehand. First of all,
there are numerous parameters that influence the behaviour of the MPC controller, the cost function alone
already contains over 100 parameters. Their functions will be explained later in Chapter 3, but for now it is
important to understand that only the output error weights will be investigated thoroughly. This is because
these parameters are most directly related to the output of the MCA.

Secondly, there are two different types of simulators available for this research at the Max Planck Institute for
Biological Cybernetics, the CyberMotion Simulator (CMS) and the CyberPod Simulator (CHS). The CMS is an
8-degree-of-freedom motion simulator, consisting of a robot arm with a cabin attached, mounted on a linear
rail system [8]. Although this simulator has more physical space and more dexterity [9], it is also a much less
common simulator. Since this research is meant to give future users of an MPC-based MCA a first insight in
its possibilities, it makes more sense to perform the research on a commonly available simulator. Although
a hexapod simulator has more physical limits than the CMS, which might even influence the results, this re-
search will be done using the CHS.
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Next to that, the type of manoeuvre also influences the behaviour of the algorithm. Sustained accelerations
are the most difficult manoeuvres to simulate, since either a large physical space is needed to generate such
an acceleration, or tilt coordination has to be applied. Most simulators are mainly limited by their physical
space, making tilt coordination a necessary technique. Sustained curve driving is the most challenging ma-
noeuvre for motion simulators and research on driving simulation often looks at curve driving [10] [11], so
the manoeuvre that will be used throughout this project is a car driving through a sustained curve as well.

Finally, a decision has to be made about the type of prediction that will be used. All possible options will
be discussed later in Chapter 3, but the the scope of this research will be limited to the parameters of the
cost function. Therefore, the prediction strategy will be kept simple, meaning that the prediction of future
motions will be the same as the current motion, also called a constant prediction.

1.4. REPORT STRUCTURE
The structure of this preliminary thesis is built up as follows. First, in Chapter 2, a general introduction to mo-
tion cueing is given. The classical way of translating desired motion to simulator motion is discussed, along
with some information about the most common simulator, the hexapod. This chapter will be concluded with
an overview on all available motion cueing algorithms.

Chapter 3 goes deeper into the subject of a model predictive control based MCA. The basic principle of MPC
will be explained, after which the version of the Max Planck Institute for Biological Cybernetics will be shown
in more detail. The functions of all parameters will be explained, and also different types of producing a pre-
diction of the motion in the future will be described.

Then a short look into objective and subjective metrics for motion simulation follows in Chapter 4, which is
basically a preparation for the sensitivity analysis of the output error weight parameters. In Chapter 5, this
sensitivity analysis is conducted, where first the use case is described. The sensitivity of the parameters is
measured using multiple metrics that are described in Chapter 4, along with an explanation of the behaviour
of the MPC-controller.

Lastly, in Chapter 6, the results of the sensitivity analysis are summarised, along with a proposal for an ex-
periment in which the perceived sensitivity to changes in the MPC-parameters will be measured using a
continuous subjective rating method, first used by [12].





2
SIMULATOR MOTION CUEING

Simulations have been around for a very long time and a lot of different types of simulations exist. In a sim-
ulation, the goal is to mimic a certain situation, setting or environment, such that a subject placed in the
simulator experiences a situation as if everything happening is real. The main advantages of simulators is
that they provide a controllable environment that is easily manipulated, allowing for a safer and cheaper way
of testing certain innovative or dangerous situations, compared to real-life testing [13]. Although acquisition
costs can be high for simulators, so can the costs for building prototypes, and creating situations in a simu-
lation environment is usually cheaper than creating the same situation in the real world. Another advantage
is that simulators enable repetitions of the exact same situation over and over again and on top of that, many
variables are easily changed in a simulation environment, making simulators being favoured over real-life
testing in many research experiments.

While simulators can have endless possibilities, they have one big disadvantage, and that is the fact that
it is difficult to determine to what extent the simulation corresponds to the real world situation. This can
only be done by comparing the simulation to the real world situation, but in some cases this defeats the
purpose of a simulator. And next to the problem of validating the resemblance of the simulation and the real
world situation, motion simulators potentially introduce motion sickness. There is still no consensus on what
causes motion sickness, and thus it is very hard to determine whether motion sickness in a simulator is caused
by the simulator or the simulated situation. Nevertheless, motion simulators are an important instrument in
both research and development, as well as in training. Converting the desired motion into simulator motion
is handled by a motion cueing algorithm (MCA).

2.1. INTRODUCTION TO SIMULATOR MOTION CUEING
Training pilots/professional drivers and studying human motion perception and control behaviour is often
done through the use of motion simulators [14] [15] [16]. A motion simulator is a device capable of giving
the operator the feeling that the vehicle is moving, which is done through actual movements of the motion
platform. It has been shown that motion cues positively affect driving behaviour and improve performance
[17], and that the reproduction of inertial cues contributes to a realistic driving behaviour [18] [19]. Therefore
it is important that the driver of the simulator perceives motion as realistic, but one should keep in mind that
a simulation without any motion cues is favoured over one with bad or false motion cues [3]. The desired
inertial cues are usually obtained from vehicle models or from real vehicle data. An MCA translates these
desired inertial cues into simulator platform motion. Reproducing the desired inertial signals is not as easy
as it sounds, because they consist of first and second order derivatives of angles and positions, respectively.
Integrating these quantities over time will result in large values for positions and angles, but a motion simu-
lator has physical limits. This means that the desired quantities cannot be reproduced one-to-one and thus
discrepancies will occur between the desired cues and the cues that the simulator produces. The purpose of
an MCA is to reproduce the desired inertial cues as accurately as possible, while staying within the simulator
limits (displacements, velocities and accelerations).

Motion simulators are being used to simulate many different types of motion, for example car driving, fly-
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ing, sailing, being in an elevator, riding an attraction, basically everything that moves. In all these cases, the
goal is to have the human perceive the motion as if he or she is actually in the real situation. So in a good
motion simulator, a human does not perceive being in a motion simulator. And in that wording lies the key
mechanism of most motion simulators: perception, because the human vestibular system is not perfect. The
main shortcoming of the human vestibular system is the fact that we are not able to sense low angular ve-
locities and accelerations, or small deviations in them. Also, it is hard for a human to distinguish between
being tilted or being subjected to an acceleration, which allows us to make use of so called tilt-coordination.
Tilt-coordination is a technique where the feeling of a long, sustained, translational acceleration is given by
tilting the platform of a motion simulator, rather than actually moving the platform a long distance. For this
to work, the tilting of the simulator platform must happen without the human noticing, which is only possi-
ble due to the inability of humans of detecting low tilt rates. The actual value at which humans start noticing
tilt rates is dependent on many factors, but a commonly used value is 3°/s [20], meaning that using only tilt-
coordination for the simulation of linear motion is perceived as linear motion if the tilt rate is below 3°/s.
However, this value is increased significantly in case of an active driving task [21], up to double the value of
what has been found earlier [22].

Humans are able to perceive inertial forces and angular velocities, which is why motion simulators aim to re-
produce those specific signals. But as already mentioned before, humans are not perfect in perceiving accel-
erations and velocities, meaning that slight variations in these vestibular stimuli are not perceived as different
and low forces and velocities are not noticed at all. For example, if a certain acceleration force is scaled down
by as much as 10 %, the human cannot distinguish it from the unscaled acceleration force [23]. This entails
that a perfect reproduction of inertial forces is not necessary for a perfect motion simulation. Therefore it
can be argued that in a motion simulation with human subjects, perceptual realism is more important than
a perfect reproduction of desired vehicle motion, although both are related. However, perceptual fidelity is a
lot more difficult to measure, due to its dependence on the human subject.

2.2. MOTION SIMULATORS

There are many different types of motion simulators around, for example the the NASA Ames Vertical Motion
Simulator [24] or the CyberMotion Simulator of the Max Planck Institute for Biological Cybernetics [8]. But
the most common motion simulator has the Stewart platform or hexapod configuration as its motion system
[25], of which many variations exist. The Stewart platform is a mechanism that is able to cover all six degrees
of freedom (three linear and three angular movements) using six legs. Older and larger types of the hexapod
simulator often make use of hydraulically driven legs, such as the Simona Research Simulator of the TU Delft
(see Figure 2.2), and newer and smaller ones are driven electrically, such as the Bosch eMotion 1500 of the
Max Planck Institute for Biological Cybernetics (see Figure 2.1).

Figure 2.1: The hexapod simulator of the Max Planck Institute
for Biological Cybernetics.

Figure 2.2: Simona Research Simulator of the TU Delft
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2.3. TYPES OF MOTION CUEING ALGORITHMS
Currently, motion cueing algorithms can be subdivided in four different types: classical washout filters, adap-
tive classical washout filters, optimal control-based MCA’s and finally model predictive control-based MCA’s
[26]. The most common type of MCA is still the oldest of these four, the classical washout filter, which is basi-
cally a set of motion filters that translate desired motion into motion that fits within the physical limits of the
simulator.

2.3.1. CLASSICAL WASHOUT FILTER

The original way of designing an MCA [4] [5] consists of two parts. It filters out low-frequency motions, the
ones that are slowly changing, because this type of motion would require a lot of simulator space. These
long, sustained motions are instead simulated by tilting the motion platform. This causes the gravity vector
to be no longer aligned with the vertical axes of the human body, creating a feeling of acceleration due to
the inability of humans of distinguishing between the two motions. This technique is called tilt-coordination
[3]. Of course, tilting the platform to simulate low-frequency motions should preferably be done below the
detection threshold of 3°/s, because otherwise the human will notice being rotated. So when a real vehicle
performs an acceleration manoeuvre, a motion simulator will move forward to simulate the high-frequency
acceleration and simultaneously the platform will rotate so simulate the low-frequency motion. The forward
motion of the motion platform cannot last long due to the physical limits, but the keeping the platform at an
angle can last forever.

While the low-frequency motion is filtered and simulated using tilt-coordination, the high-frequency motion
and is only scaled. A schematic representation of how this algorithm can be implemented is shown in Figure
2.3. It can be seen that the linear acceleration is divided into high-frequency and low-frequency motion, and
both the high-frequent acceleration and the rotational velocities are only scaled. At all times, the algorithm
tries to move the simulator back to its neutral position, which is called washout, hence the name washout
filter. This also has to be done below the detection threshold of humans, because this motion is often opposite
of what should be happening. Washout is done because the possible movements of the motion platform are
highest when the motion platform is in the middle of physical limits.

Figure 2.3: A schematic representation of the classical washout filter [27].

A classical washout filter, as the name suggests, filters the desired motion, but this algorithm does not know
the boundaries of the physical space of the simulator. So while this is the simplest implementation of an MCA,
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the tuning process is not as straightforward as one might think. The low-pass and high-pass filters have to
be tuned, which include the order of the filters, the break-off frequency and the gains for each motion chan-
nel. Generally, tuning is done through a trial-and-error process in which the motion is tuned down until the
worst case scenario stays within the physical limits of the simulator. Basically, tuning is a trade-off between
needed physical space and simulator fidelity. Usually an expert is needed to understand the influence of the
parameters on the motion of the simulator.

2.3.2. ADAPTIVE WASHOUT FILTER
The second MCA [28] [29] [30] is similar to the classical washout filter, in the sense that the algorithm still has
the same two parts, which are high-pass filters and a washout component. But now there is an overlaying
cost function that determines the filter gains based on the motion error, motion magnitude and the changing
adaptive parameters. The advantage of this MCA is that it is able to optimise the filter gains based on the cur-
rent state of the motion platform, causing the algorithm to handle the physical space more efficiently. Tuning
this type of algorithm is also similar to the classical washout filter, but the parameters of the cost function are
more intuitive, because there the trade-off is between limiting the platform movement and reproducing the
desired vehicle motion.

2.3.3. OPTIMAL CONTROL-BASED
Adaptive washout filters optimise the parameters of the classical washout filters, but there is another type of
MCA that focuses more on the optimisation of the classical washout filter itself, rather than its parameters.
Optimal control-based MCAs [31] handle the motion cueing problem as an optimal control problem. The
difference between simulator motion and desired motion is seen as an error that should be minimised, or
in case a vestibular model is included, the perception error will be minimised. This is done with a so-called
cost function, in which weight parameters determine which error is penalised the most, or which parameter
of the algorithm is to be minimised the most. A block diagram of this algorithm can be found in Figure 2.4.
Despite the complexity of this MCA, the tuning is simpler than the other MCAs discussed so far, because the
parameters that can be tuned are much more intuitive than the ones for the washout filters.

Figure 2.4: Block diagram of an Optimal control-based MCA. [31]

2.3.4. MODEL PREDICTIVE CONTROL
The last and most recently developed MCA, as proposed in [32], [33] and [34], is based on the optimal control-
based MCA, but now the optimisation also takes into account the future trajectory of the vehicle motion.
Because of such a prediction, the algorithm is able to anticipate future events and prepare for them. The al-
gorithm finds a sequence of future actions to minimise the error between the desired and actual motion over
a certain prediction horizon while explicitly accounting for the physical limits of the simulator, meaning that
the simulator motion is optimised for a certain time segment, and not only for the current time.
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The main advantage of such an MPC-based MCA is that the controller is able to determine the input, based
on the current state of the simulator. Whereas a classical washout filter has to be tuned down for the worst
case scenario, and thus also all other scenarios are tuned down, MPC-based MCAs can behave differently
in each situation, such that it uses the simulator space more effectively. Another benefit of using MPC for
motion cueing is that tuning the algorithm will be more intuitive, although at the same time it also becomes
more complex due to the interaction between the many different parameters. Instead of cut-off frequencies,
damping and gain factors, the user can adjust error weight parameters that are closely related to the motion
produced by the simulator. The tuning is similar to the one for optimal control-based MCAs, meaning that
there are weight parameters that emphasise which motion errors are to be minimised. On top of that, the
prediction horizon can be adjusted, where a larger prediction horizon means that there is more knowledge of
the future taken into account, which enables the algorithm to anticipate better when simulator limits will be
reached, improving the stability of the system.

Although a larger prediction horizon seems like a good option, one must keep in mind that there are down-
sides as well to an increased prediction horizon. First of all, while it might result in less motion errors due to
having more knowledge of the future, a longer prediction horizon is more susceptible to an inaccurate pre-
diction, and a false prediction is unwanted as this potentially increases false cues or decreases the stability of
the system. Next to that, a larger prediction horizon comes at the cost of higher computational costs, because
the optimal control problem at hand becomes larger. It is important to realise that the computational costs
are limited by the hardware, causing it to be the major limitation when tuning the algorithm.





3
MODEL PREDICTIVE CONTROL-BASED

MOTION CUEING ALGORITHM

The previous chapter dealt with simulator motion cueing in general, and ended with a short description of a
new type of MCA that has some advantages over the filter-based algorithms. There are again many different
types of implementations, so in this chapter, first the basic principle of MPC in motion cueing is explained,
after which more detailed information is given on the version that is used by the Max Planck Institute for
Biological Cybernetics. Finally, some recent results are shown to indicate the potential of algorithm.

3.1. PRINCIPLE OF MODEL PREDICTIVE CONTROL IN MOTION CUEING
Model predictive control (MPC) is a technique that is used as an identification technique and to control com-
plex systems [35], the latter being of importance here. It is used in many different industries, developed
initially to meet specially tailored control needs of systems such as nuclear power plants and oil platforms
[35]. These industries needed something to control their systems that optimised the process at each control
step, while the system is allowed to change. MPC is a technique that is able to optimise the future behaviour
of a system over a specific time interval, the prediction horizon. It does this based on the system input, the
current state of the system and the future state of the system (which is based on the current state and inputs),
by minimising the squared error between a reference signal of the future and the calculated future signals. In
other words, it solves an optimal control problem of a future trajectory, and this optimal control problem is
solved at each time step. One of the challenges of this algorithm is that a reference signal of the future has
to be established. One could think of that as the desired trajectory of the system, because the algorithm will
try to make the system do exactly as that reference signal. For some systems, such as controlling tempera-
ture, this is rather straightforward. But in other cases where the future is uncertain, such as MCAs for driving
simulators, determining such a reference signal of future prediction is risky, due to the fact that a human is
involved in the control loop. More on this will be discussed in Subsection 3.2.2.

While MPC originates from the energy industry, it has been implemented in many other industries, of which
the simulation industry is of importance here. In motion cueing algorithms for motion simulators, MPC is
used to determine the movements of the motion platform, based on the current state of the platform and the
control inputs. The objective function of MPC in MCAs is to minimise the error between the future reference
motion cues and the actual simulator motion cues, meaning that the entire prediction horizon is optimised.
But only the first time step is used to control the motion platform, because the next time step, the entire pre-
diction horizon is optimised again, creating a new command for the motion platform at every time step. A
graphical overview of the principle of MPC, as it is implemented in motion cueing algorithms, is shown in
Figure 3.1.

One can also opt to include a model of the vestibular system of the human in the control loop. In that case,
the objective function will not minimise the error between reference motion and actual motion, but rather
try to mimic the vestibular stimuli of the human according to the model. This allows for more possible ways
of providing a sense of motion, since the human vestibular system is not perfect, as has been explained in
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Figure 3.1: A graphical overview of the principle of MPC in motion cueing, from [33].

Section 2.1.

One of the main advantages of an MPC-based MCA over the classical filter-based approaches is that the cur-
rent state and constraints of the motion platform are explicitly accounted for in the algorithm. Therefore, this
algorithm does not have to be tuned in order to stay within the physical limits of the system. Instead, the
tuning process is fully focused on improving the performance and stability of the system.

Another advantage is that MPC algorithms are able to use the available physical space of motion simulators
more effectively, since an optimal trajectory is calculated based on the current state of the system. Filter-
based MCAs are scaled down entirely for the worst-case scenario, causing the process to be sub-optimal for
all other scenarios. MPC is more dynamic and therefore, in theory, has the potential to have a higher perfor-
mance than filter-based approaches.

There are many different implementations of an MPC-based MCA. The ULTIMATE simulator of Renault has
a hexapod motion system that is positioned on a combined XY table, meaning that there are eight degrees
of freedom, equipped with an MPC-based MCA [36]. At the university of Padova, Italy, MPC is applied to the
motion simulators to control the driving simulators. They are working on incorporating a model of the hu-
man vestibular system into the MPC algorithm [33] and on deriving a suitable prediction strategy to improve
the algorithm [37]. And also at the Max Planck Institute for Biological Cybernetics in Tübingen, Germany, re-
search is being done on implementing and improving an MPC-based MCA for motion simulators. On top of
the commonly used hexapod motion simulator, the MPC algorithm is also implemented on different motion
platforms, such as the novel Cable-Robot Simulator [6] and on the CyberMotion simulator [38], an eight de-
grees of freedom serial robot simulator. The MPC-based MCA that will be investigated in this research is the
one developed at the Max Planck Institute for Biological Cybernetics for the hexapod simulator. In Section
3.2, this version of the algorithm will be explained in more detail.

3.2. MODEL PREDICTIVE CONTROL-BASED MOTION CUEING ALGORITHM OF

THE MPI
The MPI MPC-based MCA is set up different than other reported MPC-based MCAs, such as the one from
Padova. Due to high computational costs that are associated with MPC, [37] uses a strategy called ’move-
blocking’, which reduces the size of the optimal control problem by assuming that several of the input values,
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or its derivatives, are constant over several time-steps [39]. But as already stated in [37], the calculated opti-
mal sequence is an approximation because some values are taken from the previously calculated solution. On
top of ’move-blocking’, they also make use of a strategy based on ’explicit MPC’ [40], which basically means
that the algorithm tries to determine the physical limits by looking up the limits in a pre-calculated table,
which is based on the current state of the motion system. These strategies enable the MPC-based MCA to run
real-time.

The MPI has been able to make the MPC-based MCA run real-time as well, while also incorporating all ac-
tuators inside the model. This increases the size of the optimal control problem, but several computational
tricks and simplifications have been applied in order for the algorithm to run real-time. One of them is that
instead of converging to the optimal solution of the optimal control problem each time-step, a maximum
number of iterations per time-step can be set, meaning that a sub-optimal solution is taken in order to be
able to continue to the next time step at a sufficiently high control frequency. However, doing this consecu-
tively causes the algorithm to converge to the optimal solution anyway over multiple time-steps [41].

There are two main parts of the MPC-based MCA of the MPI that are worth a detailed explanation. First, it has
been stated that the objective of an MPC-based MCA is to minimise the error between a reference signal and
the predicted future signals of the system. It does this by minimising a cost function. There are different ways
of making such a function, but in this report, only the one from the MPI will be explained in Subsection 3.2.1.
Second, the reference signals in the algorithm are interesting, since we are dealing with driving simulation in
which a human might be involved in the control loop. The different possibilities are described in Subsection
3.2.2.

3.2.1. PARAMETERS OF THE COST FUNCTION OF THE ALGORITHM

The cost function of the MPC-controller minimises the squared error between reference values and actual
values of the output signals (yk ), state signals (xk ), input signals (uk ) and the terminal state (xn), over a certain
prediction horizon (N) [6]. The mathematical form is shown below.

Minimise:
1

N

∫ N−1

k=0
lk (xk ,uk )+ ln(xn) (3.1)

Where

lk (xk ,uk ) = ||y(xk ,uk )− ŷk ||2Wy +||xk − x̂k ||2Wx +||uk − ûk ||2Wu (3.2)

And

ln(xn) = ||xn − x̂n ||2Wxn (3.3)

The MPI version of an MPC-based MCA has many parameters that have an influence on the behaviour of the
algorithm, as can be seen in the functions above, where Wy , Wu , Wx and Wxn are all vectors of error weight
parameters. This means that if the value of these parameters is increased, there will be a higher penalty on the
squared error between the desired output and the output of the MPC-controller for that specific signal. There
are nine output error weights (Wy , three translational accelerations, three angular velocities and three angu-
lar accelerations), twelve state error weights (Wx , three positions, three angles, three translational velocities
and three angular velocities), twelve terminal state error weights (Wxn , again three positions, three angles,
three translational velocities and three angular velocities) and six input error weights (Wu , three translational
accelerations and three angular accelerations). Terminal state parameters are basically the same as the nor-
mal state parameters, but terminal state parameters are the last state values in the prediction horizon. This
can be used to ensure that the future prediction always ends up at a certain point, which can increase the
stability of the algorithm. As already explained before, MPC needs a reference trajectory against which the
error should be minimised, so for all these signals, there needs to be a reference signal as well. Most of the
reference signals are straightforward and logically chosen. First of all, the state reference is the values towards
which the motion platform will washout, so this is chosen to be its neutral position. Since there is no need yet
for input filtering or increasing stability by setting a value for the terminal state parameters, these reference
signals are of little importance and thus set to zero. Finally, the output reference signal is where things get
interesting, due to their dependence on a prediction of what the output will be in the future, meaning that
these will not be constant. This will be discussed in Subsection 3.2.2.
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This MPC algorithm has been set up in such a way that all physical limits can easily be changed. These con-
straints include limits on the states, terminal states and inputs. The variable constraints allow this algorithm
to be generic and thus easily integrated on a different simulator. Adding these parameters results in the total
list of parameters, as is summarised in Table 3.1.

Symbol Name Number of parameters
N Prediction horizon 1
∆t Prediction time step 1
Wy Output error weights 9
Wx State error weights 12
Wu Input error weights 6
Wxn Terminal state error weights 12
ŷk Output reference 9
x̂k State reference 12
ûk Input reference 6
x̂n Terminal state reference 12
- State bounds 12
- Terminal state bounds 12
- Input bounds 6

Table 3.1: Summary of the parameters of the cost function of the MPC-controller and the variable constraints.

As can be seen, there are a lot of parameters that influence the behaviour of the MPC-controller, some are
straightforward, others may not directly indicate how they affect the performance. Note that the following
description is based on having the reference signals for the input, state and terminal state all zero, as that
is the case that will be used in this research. First of all, the prediction horizon is not as straightforward as
one might think. It can be expected that a longer prediction horizon increases the performance, but the risk
of an inaccurate prediction increases with longer prediction horizons and a longer prediction horizon in-
creases computational costs. More on this will be discussed in Subsection 3.2.2. Second, the error weights
put a penalty on the error of that specific signal. Higher output error weights should increase tracking perfor-
mance, higher state error weights increase the washout, high input error weights penalise high input values
and high terminal state error weights are there to improve the stability of the algorithm. As a standard prac-
tice, the values for the output error weights are chosen to reflect the variance of specific force in m/s2 and
angular velocity in r ad/s−1 for typical vehicle manoeuvres [6]. The input error weights are set to a very small
value, because in general, there is no need for input filtering. Should one perform a similar analysis on a
different simulator with more physical possibilities, this set of parameters could be of interest to reduce ex-
treme behaviour. The terminal state error weights are set to a very small value as well, because this is only
necessary to tune in the case of unstable behaviour. Then finally, for the state error weights an optimisation
has been performed. The manoeuvre that will be used to analyse the influence of some of the parameters
is a car driving through a corner, and the state error weights have been optimised such that in the standard
configuration that has just been explained, the simulator platform moves back to its neutral position within
a reasonable time span. This has been done by designing a cost function that tries to minimise the total error
of all vestibular signals during the curve, while putting a very high penalty on the motion at some time after
the curve. A summary of the parameters as they will be used initially is shown in Table 3.2.

Investigating all these parameters simultaneously will become too broad and time-consuming, therefore only
a selection will be analysed in detail. Terminal state error weight parameters (Wxn ) have an effect on the mo-
tion, but are there to generate simulator stability, so there is no need in tuning them after there is stability.
Input error weight parameters (Wu) also make sure that the simulator has stability, for example in the case
of the CyberMotion simulator, no input filtering causes the simulator to perform extreme motions (without
necessarily making it better). But since this is not an issue on hexapod simulators, these are of no interest in
this research. State error weight parameters (Wx ) cause the simulator to washout. Although they are impor-
tant, all they do is determine to which extent the motion platform will perform washout behaviour, which is
not needed in case of a hexapod motion system. Therefore the output error weight parameters (Wy ) are the
ones that will be investigated in this research, since those most directly influence the tracking performance
of the MCA. And from these, only the three translational acceleration and three angular velocity error weight
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Parameters Values
Wy [1 1 1 10 10 10 0 0 0]
Wx [8.1805 5.1302 3.5618 5.3556 3.6541 6.8171 0 0 0 0 0 0
Wu [0.01 0.01 0.01 0.01 0.01 0.01]
Wxn [0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01]
ŷk Dependent on prediction strategy
x̂k [0 0 0 0 0 0 0 0 0 0 0 0]
ûk [0 0 0 0 0 0]
x̂n [0 0 0 0 0 0 0 0 0 0 0 0]

Table 3.2: Summary of the parameter values of the cost function of the MPC-controller as will be used initially in this research.

parameters are selected, since these reflect the human vestibular system.

3.2.2. PREDICTION STRATEGIES
A very important but tricky aspect of the MPC-controller is the prediction, which creates the future output
reference signal. If there is no human involved in the control loop, or any other uncertain factor, it is straight-
forward as the future is known. But it is not in case of uncertainties in the control loop or online motion
cueing, which is often the case as many simulations require a human subject to steer a vehicle, and in that
case the future is uncertain. There are multiple options if that is the situation. The easiest and most straight-
forward to implement is to assume that there will be no change in the near future and keep the predicted
output equal to the current output. The downside of this method is that longer prediction horizons cause
the algorithm to do unexpected things. If for example the current output is an acceleration of 1 m/s2 to the
left and the prediction horizon is 10 seconds, the algorithm will prepare for such a prediction by moving to
the right, such that a larger movement to the left can be made. But because the prediction is constant, the
algorithm will keep doing this until the motion changes. The result is that an acceleration to the left is sim-
ulated by providing an acceleration to the right, which is undesirable. Another, similar option is to use the
current output values and scale them accordingly, however it is difficult to actually implement that, as the
value could go up or down, so keeping it constant is a safer method. A completely different approach would
be to have an actual prediction of what is going to happen, based on a virtual driver or a recording of a pre-
viously made simulation. Then comparing the current position of the simulated vehicle to the one from the
recording enables the algorithm to know what is going to happen. But for this method to work, the behaviour
of the recorded driving and the actual driver should be very similar, because else the prediction is false. This
method is only suitable for experienced drivers [37], such as racing drivers. Therefore, for this research a con-
stant prediction will be used.

The length of the prediction is the result of two parameters, the amount of steps and the time in between
steps. Small time steps are only useful when the behaviour of the system would be able to change signifi-
cantly within that time. And the total prediction time is only beneficial if prediction is accurate, and even
then at a certain point the gain in performance is not worth the increased computational costs. And for un-
certain predictions, it can even make the performance worse. At the time of performing the analysis, the
maximum amount of steps can could be handled in real-time was a little below 100, therefore, to ensure that
this version of an MPC-based MCA can run real-time on other installations, it has been decided to limit the
amount of steps to 20 for this research. In this way, the results will be useful to the majority of users of this
algorithm in their first stage of implementation. In order to still have some meaningful prediction time, a
time step of 0.1 seconds it taken, such that the prediction time is 2.0 seconds. For driving a vehicle, not a lot
will change in 0.1 seconds, so this is a safe value to take.

When this research was already nearly finished, a new option had been implemented to introduce a non-
linear spacing of the prediction horizon. This means that it is possible to have a small time step in the near
future, medium time steps after that and finally large time steps in the far future, such that more emphasis
can be put on the near future. However, this will not be considered in this research.





4
METRICS

Assessing simulator motion cueing quality is a difficult process. The ultimate goal of motion simulators is to
give the subject the feeling of actually being inside the vehicle, and to have the subject behave the same as if he
or she is inside the real vehicle. unfortunately, it is not always possible to compare the behaviour of subjects
inside a simulator and inside a real vehicle due to various reasons. Therefore, often use is made of multiple
measures that are somehow related to behavioural and perceived fidelity. In this chapter, some frequently
used objective metrics are described and a method to measure perceived motion quality is explained. The
objective metrics will be used in the initial analysis in Chapter 5, because it is a cheap and fast way to analyse
a lot of different settings of the MPC-based MCA. After this initial analysis, promising and interesting settings
will be analysed further in an experiment, where the perceived motion quality will be measured.

4.1. OBJECTIVE METRICS
Many studies have been performed that focused on determining objective metrics related to human percep-
tion. We know that the human vestibular system is not perfect, which is exploited by motion simulators. We
also know how the human vestibular system determines motion, namely it senses specific forces using the
otoliths and it senses angular velocity using the semi circular canals. But there is still a lot of uncertainty about
how these signals are processed in the brain, therefore it is difficult to determine the effect of certain signals
on the perceived fidelity of a simulation. One way to find out if certain objective metrics are an indication
of perceptual fidelity is to actually measure the perceptual fidelity by using human subjects and comparing
them to objectively measured metrics. Such a study found that the Pearson Correlation Coefficient between
the desired signals and the actual simulator signals is correlated with the perception of humans [42]. Next to
that, the Root Mean Square Error is a frequently used metric when comparing signals. Both of these metrics
will be explained below.

4.1.1. ROOT MEAN SQUARE ERROR

In motion simulators, the goal is to achieve realistic driving behaviour of subjects. It has been shown that
humans are not able to differentiate between two motion cues if the differences are small [23]. In addition,
there is an absolute threshold under which humans are not able to determine if they are moving of not [43].
Thus it can be argued that small errors do not matter much in motion simulation, but large errors are to be
avoided. Therefore, the Root Mean Square Error (RMSE) between the desired and actual motion is a good
objective measure to define the motion quality of a motion simulator. The following equation shows the
calculation for the RMSE for each motion channel individually, where y is the actual simulator output, ȳ is
the desired simulator output and N is the number of data points.

RMSE =
√

(y − ŷ)2

N
(4.1)

Figure 4.1 shows the simulator motion when using a classical washout filter. Using the above equation, we
can calculate the RMSE for each motion channel individually, resulting in the values in Table 4.1.
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ax ay az p q r
0.1700 0.3610 0.0394 0.0220 0.0156 0.0706

Table 4.1: RMSE vallues for each motion channel when using a classical washout filter.

Figure 4.1: Simulator motion of the curve manoeuvre for a classical washout filter.

4.1.2. PEARSON CORRELATION COEFFICIENT
The RMSE is a useful metric that penalises large errors, but errors that only consists of a magnitude error
are not always bad. Moreover, multiple experiments suggest that motion scale factors below 1 are preferred
[11]. Therefore, a second objective metric that does not penalise motion scale factors, but rather looks at
the resemblance between the two signals, is proposed, called the Pearson Correlation Coefficient (PCC). It is
a coefficient that gets closer to 1 when two signals are similar in shape, even if the magnitude differs. The
following equation is used to calculate the PCC for each motion channel individually, where µ is the mean of
the data set, σ is the standard deviation of data and N is the number of data points.

ρ(A,B) = 1

N −1

N∑
i=1

(
Ai −µA

σA

)(
Bi −µB

σB

)
(4.2)

Using the above equation, we can calculate the PCC for each motion channel individually, resulting in the
values in Table 4.2.

ax ay az p q r
0.9999 0.9718 0.8888 0.8291 0.2167 -0.3232

Table 4.2: PCC vallues for each motion channel when using a classical washout filter.

4.2. PERCEIVED MOTION QUALITY
Objective metrics are useful when many different simulations have to be analysed, because it is a faster and
cheaper option than using human subjects. This means that they are ideal for initial analyses, but ultimately,
when determining the perceived motion quality, a subjective experiment will have to be performed. Many
methods exist to assess the perceived motion quality of a simulation, such as asking human subjects to rate
certain manoeuvres based on a rating scale, for example on a scale of 1 to 10. Others have more detailed
questionnaires that ask participants to rate certain parts of a manoeuvre by drawing a line, where the length
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of the line indicates the realism of those parts [3]. But what these methods are missing is the ability to detect
time-varying ratings and the effect of these time-varying ratings on the overall perception of the simulation.
Therefore, this research will make use of a continuous subjective rating method that asks subjects to rate the
motion mismatch between what they would expect, based on what they see on their visuals, and what they
feel [12]. This is done by turning a knob, based on the perceived mismatch experienced by participants. If they
perceive a large mismatch, they can turn the knob to the right, causing the rating bar to become increasingly
more filled and more red. If the perceived mismatch becomes smaller, they can turn back to the left and the
bar becomes more empty and green. Figure 4.2 show what participants will see during the experiment, with
the turning knob located at the right hand side and the rating bar located at the bottom of the screen in front
of them. Figure 4.3 shows the turning knob in more detail. This method has been used and validated in other
studies as well, where subjects were able to give a rating of the motion mismatch using a turning knob [7] [44]
[10], making it a sound decision to use this method here as well.

Figure 4.2: The view as is seen through the eyes of participants,
with the turning knob located at the bottom right.

Figure 4.3: The turning knob with which participants can in-
dicate the perceived motion mismatch. The rating bar on the
background shows the current rating.





5
SENSITIVITY ANALYSIS OF THE OUTPUT

ERROR WEIGHT PARAMETERS

This chapter will present an initial analysis on the sensitivity of the error weight parameters of the cost func-
tion of the MPC-based MCA of the MPI. Here, only the objective metrics will be measured to be able to analyse
all possible combinations of parameters within a reasonable time-span. First, the control, dependent and in-
dependent variables will be described to establish the analysis setting. Then the sensitivity of the MPC-based
MCA will be determined in the following two phases, because it is unknown whether the parameters influ-
ence each others sensitivity.

• First, all parameters will be changed one by one, therefore only looking at their individual sensitivity.
This will be done by changing the parameters slightly and running the simulation again, such that we
are able to determine the RMSE and PCC for every parameter value. This will result in a RMSE/PCC
versus parameter value plot for each parameter.

• After the individual sensitivity has been established, all parameter combinations will be tested against
each other to analyse the effects of changing two parameters simultaneously.

From these two analyses followed some interesting, unwanted behaviour, which led to the determination
of sensible ranges for all parameters. From all these results, a selection will be made that will be further
investigated in an experiment, of which the proposal is described in Chapter 6. Note that when there are no
units displayed, the translational accelerations are in m/s2 and the rotational rates are in r ad/s.

5.1. CONTROL, DEPENDENT AND INDEPENDENT VARIABLES
As has already been explained, analysing all possible parameter combinations is not feasible within the al-
located time for this project, which means that the number of parameters that will be investigated has been
narrowed down to just the six output error weights: three translational accelerations (Wax , Way and Waz ) and
three angular velocities (Wp , Wq and Wr ). The values for the standard setting can be found in Table 5.1. The
state error weight, terminal state error weight and input error weight parameters are control variables, they
will remain constant throughout the entire analysis. The manoeuvre consists of a car first driving straight
at 70 km/h, slowing down to 50 km/h, doing a curve of 60° with a radius of curvature of approximately 90m
and then accelerating back to 70 km/h. As has been discussed in Subsection 3.2.2, a constant prediction of 20
steps of 0.1 seconds will be used, because this is a straightforward implementation and thus easily accessible
for new users of this algorithm. A model of the MPI hexapod simulator will be used, since this is a commonly
available simulator. And finally, the dependent variables consist of the metrics that are described in Chapter
4.

5.2. OUTPUT ERROR WEIGHT PARAMETER SENSITIVITY
Determining the sensitivity of the MPC-based MCA due to changing the output error weight parameters will
be done by looking at how changing these parameters affect the metrics described in Chapter 4, the RMSE and
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Table 5.1: Summary of the parameter values of the cost function of the MPC-controller as will be used as standard values.

Parameters Values
Wy [1 1 1 10 10 10 0 0 0]
Wx [8.1805 5.1302 3.5618 5.3556 3.6541 6.8171 0 0 0 0 0 0
Wu [0.01 0.01 0.01 0.01 0.01 0.01]
Wxn [0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01]

PCC. First of all, a classical washout filter will be tuned such that the results of this analysis can be compared
to something we already know. Then the effect of changing one parameter at a time will first be analysed,
after which the effect of changing two parameter simultaneously will be examined.

5.2.1. COMPARATIVE CLASSICAL WASHOUT FILTER

In order to understand the performance of the different settings of the MPC-controller, a comparison will be
made with a currently available motion cueing strategy, which is the classical washout algorithm as described
in [27] and [45]. As had already been explained in Chapter 2, this algorithm also needs to be tuned. A number
of parameter sets have been tested, from which the best performing set will be chosen, such that it can be
argued that the benchmark is of relatively high quality. With this, it will be possible to indicate if the MPC-
based MCA performs better/worse than a good CWF MCA, given certain parameters.

One of the parameter sets has been optimised for curve driving in car simulation, which has also been used in
[44], while the other three parameters sets are documented in published papers [3, 17, 46]. The comparison
of the filter responses for all specific forces and rotational rates can be found in Figure 5.1. We are dealing
with curve driving simulation, so the parameter set that replicates the lateral specific force best while not
introducing large perceptible false cues will be used as baseline for the analysis. In this case, that is the
parameter set that has been optimised for curve driving manoeuvres [44], which will simply be called the
classical washout filter for the remainder of this report.

Figure 5.1: A comparison of multiple classical washout filters.
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5.2.2. MPC SENSITIVITY PLOTS
The sensitivity of the MPC-algorithm due to changing the output error weight parameters will be determined
by calculating the change in RMSE/PCC with respect to the baseline condition (Equation 5.1), while con-
stantly changing one parameter slightly at a time. For each simulation, the RMSE and PCC will be calculated
for each motion channel (three translational accelerations and three angular velocities). The outcome will be
plotted against the parameter value, resulting in a plot where one can see what happens to the RMSE or PCC
when the parameters change. The translational accelerations and angular velocities are plotted separately
due to the difference in parameter values. All the plots can be found below. Under each figure, an explana-
tion will be given of what can be seen in the figures.

Relative change = RMSE/PCC at max parameter value−Baseline RMSE/PCC

Baseline RMSE/PCC
(5.1)

Figure 5.2: The RMSE between desired and actual ax, plotted against the parameter values of the output error weight parameters.

What we can see in Figure 5.2 is that when Wax is increased, the RMSE for motion channel ax is decreased, as
one would expect. Even a slight increase already makes have a lower RMSE than the CWF. Changing the other
two translational error weight parameters does not result in a significantly different RMSE. For the angular
velocity error weight parameters, we see that increasing Wq also increases the error of the x-acceleration,
because a higher Wq decreases the allowance of having a pitch rate error, thus decreasing the possibility of
using tilt-coordination. This is an effect that we will be seeing more often, because due to the small physical
space, simulation accelerations will be a trade-off between performing tilt-coordination and decreasing an-
gular velocity errors. Lastly, Wr also increases the error on motion channel ax. This effect requires a look at
what the simulator is doing to understand what is happening. The motion data of the simulator when setting
Wr to 85 can be found in Figure 5.4. When trying to track the yaw rate signal too much, other signals start
oscillating. This is because when the simulator has reached its maximum yaw angle, it can still generate a
little yaw rate by pitching and rolling. Figure 5.3 shows the PCC of the x-acceleration due to changing all six
parameters. Wax , Way and Waz do not change the correlation of ax, but Wq and Wr have an effect, although
these effects are the same as mentioned before.

Table 5.2 shows the relative changes in RMSE and PCC for motion channel ax, when changing the parameters.
It can be observed that Increasing Wax has the most influence on reducing the RMSE for motion channel ax,
which is as expected, since Wax should reduce the error on motion channel ax. Just as Wq increases the error,
because it restricts the use of tilt-coordination. The change in PCC due to changing Wq is very high, but this
is due to the fact that the PCC in the baseline condition is near zero, so a small change will result in a large
relative change.
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Table 5.2: The relative changes in RMSE and PCC for motion channel ax when changing the output error weight parameters.

Parameter Wax Way Waz Wp Wq Wr

Relative change in RMSE -0.9412 -0.02601 0.1279 0.1552 1.735 2.003
Relative change in PCC 0.0585 0.006546 -0.005379 -0.0271 -0.3402 -0.4869

Figure 5.3: The PCC between desired and actual ax, plotted against the parameter values of the output error weight parameters.

Figure 5.4: The motion data when setting Wr to 85.



5.2. OUTPUT ERROR WEIGHT PARAMETER SENSITIVITY 47

Figure 5.5: The RMSE between desired and actual ay, plotted against the parameter values of the output error weight parameters.

Figures 5.5 and 5.6 show the metrics for the y-acceleration. Similar to ax, here also a trade-off can be seen
between tracking the y-acceleration or decreasing the roll rate error. Note that the effect is larger than for ay,
but that is due to the manoeuvre used, which has more lateral than longitudinal accelerations. Again, even a
slight increase in Way makes the RMSE lower than for a CWF. And also here, increasing Wr introduces larger
errors that are explained by the oscillating behaviour as is seen in Figure 5.4. Another interesting observation
is that the RMSE decreases exponentially when increasing Way, meaning that after a certain point, the error
will not decrease much anymore.

Figure 5.6: The PCC between desired and actual ay, plotted against the parameter values of the output error weight parameters.

Table 5.3 shows the change in metrics for ay. The effect of changing Way and Wp on motion channel ay is
comparable to the effect of changing Wax and Wq on motion channel ax, because in both cases the rotational
rates are used to produce a feeling of sustained acceleration via tilt-coordination. Only increasing Way can
result in almost perfect tracking of ay, since setting the parameter to 10 already reduces the RMSE by 95 %.

Table 5.3: The relative changes in RMSE and PCC for motion channel ay when changing the output error weight parameters.

Parameter Wax Way Waz Wp Wq Wr

Relative change in RMSE 0.002845 -0.9574 0.139 1.138 0.004357 1.272
Relative change in PCC -0.0006491 0.0793 0.01304 -0.6652 0.002604 -0.6663

The z-acceleration does not show a lot of sensitive behaviour, other than losing correlation when parameters
like Wp and Wr are increased or when Waz itself is very small, as seen in Figure 5.8. Also here the oscillating
behaviour is seen in Figure 5.7, although smaller than for the x-acceleration and y-acceleration.
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Figure 5.7: The RMSE between desired and actual az, plotted against the parameter values of the output error weight parameters.

Figure 5.8: The PCC between desired and actual az, plotted against the parameter values of the output error weight parameters.

Table 5.4 shows the sensitivity of az, and it can be seen that also here, Waz has the most influence on the
corresponding motion channel, az, although the change in RMSE is lower compared to changes for ax and
ay. This is likely caused by the fact that az is not dominantly present in driving simulation, but we can still
conclude that Waz has a lower impact on the performance of the MPC-algorithm than Wax and Way .

Table 5.4: The relative changes in RMSE and PCC for motion channel az when changing the output error weight parameters.

Parameter Wax Way Waz Wp Wq Wr

Relative change in RMSE 0.2197 1.419 -0.2912 -0.591 -0.1566 1.882
Relative change in PCC -0.1877 0.1412 0.016 -1.123 0.06694 -0.6256

The RMSE for the roll rate error (Figure 5.9) barely shows any sensitivity, apart from the oscillating behaviour
of increasing Wr. This is due to the fact that there is no large desired roll rate, so the error is only large when
roll rate is used to simulate other stimuli, as is done in tilt-coordination. This effect can be identified by the
small increase in RMSE when increasing Way. The PCC for the roll rate (Figure 5.10) does show interesting
behaviour, because increasing Wp first reduces the PCC, before it increases again. This is because by increas-
ing Wp, the algorithm tries to reduce the roll rate error, but in doing so it introduces a very small false cue.
Therefore the error decreases slightly but also the PCC decreases. This is solved when Wp is increased further.

In Table 5.5, the changes in RMSE and PCC can be seen for motion channel p. An interesting observation is
that the changes in RMSE for motion channel p due to changes in Way and Wp are approximately of equal
magnitude as the changes in RMSE for motion channel ay, but now Wp reduces the RMSE and Way increases
the RMSE. Again, increasing Wp reduces the RMSE of the corresponding motion channel, p, by almost 95 %,
indicating a high influence.
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Figure 5.9: The RMSE between desired and actual p, plotted against the parameter values of the output error weight parameters.

Figure 5.10: The PCC between desired and actual p, plotted against the parameter values of the output error weight parameters.

Table 5.5: The relative changes in RMSE and PCC for motion channel p when changing the output error weight parameters.

Parameter Wax Way Waz Wp Wq Wr

Relative change in RMSE 0.01833 1.293 -0.1462 -0.9438 -0.01044 4.091
Relative change in PCC -0.002945 0.2845 0.04056 0.1823 0.01011 -1.09
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Figure 5.11: The RMSE between desired and actual q, plotted against the parameter values of the output error weight parameters.

The pitch rate shows similar behaviour as the roll rate, which is expected since they both have a counter part,
x-acceleration and y-acceleration, that require angular rates to perform tilt-coordination.

Figure 5.12: The PCC between desired and actual q, plotted against the parameter values of the output error weight parameters.

Table 5.6 shows the change in RMSE and PCC for motion channel q, and again it can be observed that the
effect of changing Way and Wp on motion channel p is comparable to the effect of changing Wax and Wq on
motion channel q. Note that the immensely high increase in PCC due to changing Wq is due to the fact that
the PCC in the baseline condition is very close to zero, making any change results in a large relative change.

Table 5.6: The relative changes in RMSE and PCC for motion channel q when changing the output error weight parameters.

Parameter Wax Way Waz Wp Wq Wr

Relative change in RMSE 0.5617 -0.03812 -0.06576 0.01715 -0.9544 5.75
Relative change in PCC 122.0 15.31 41.19 12.9 332.4 78.94

The yaw rate is always difficult to simulate, because most of the times driving a curve requires more yaw
rate than a hexapod simulator can provide. Therefore, no matter what you do, you will often fall short on
providing yaw rate in a motion simulator. That is also seen in Figures 5.13 and 5.14. The RMSE only slight
decreases when increasing Wr, but as seen earlier in Figure 5.4, this has bad consequences, as this increased
performance of the yaw rate decreases the performance of all other motion channels.

Finally, Table 5.7 shows the change in RMSE and PCC for motion channel r. Interestingly, all parameters,
except for Wr , have a negative effect on the tracking of r. This is because the MPC-algorithm is already not
able to track r very well, and putting increasing other parameters makes it even worse. Increasing Wr does
result in a reduction in RMSE for motion channel r, although not as large as for other parameters and their
corresponding motion channel.
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Figure 5.13: The RMSE between desired and actual r, plotted against the parameter values of the output error weight parameters.

Figure 5.14: The PCC between desired and actual r, plotted against the parameter values of the output error weight parameters.

Table 5.7: The relative changes in RMSE and PCC for motion channel r when changing the output error weight parameters.

Parameter Wax Way Waz Wp Wq Wr

Relative change in RMSE -0.005011 -0.003741 0.01118 0.01712 0.002315 -0.444
Relative change in PCC 0.03174 0.005922 -0.03257 -0.09728 0.008043 0.5162
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We have seen that all output error weight parameters mostly influence their corresponding motion channels,
although it can also be observed that due to tilt-coordination, other parameters have an influence as well,
often reducing the performance of that specific motion channel. We have also seen that changing Wax , Way ,
Wp and Wq have more influence on their corresponding motion channels than Waz and Wr . An important
thing to notice is that in some cases, multiple parameters have an influence on one motion channel, therefore
it is important to see what happens when both are changed simultaneously, which will be done in the next
section.

5.2.3. TWO-WAY SENSITIVITY PLOTS
The previous subsection looked into the behaviour of different individual motion channels while individu-
ally changing the output error weight parameters. During that part of the analysis, one output error weight
parameter changed, while all others remained constant. This subsection will look at what happens when two
output error weight parameters are changed simultaneously, by doing the exact same thing as before, but now
three-dimensional plots are created. This also shows whether two parameters are influenced by each other,
which is the case for some of them. First, two parameters will be changed simultaneously to see if the sen-
sitivity of the parameters changes, in other words, it will be checked whether the parameters influence each
other. This will be done by determining the relative change, using Equation 5.1 with B asel i neRMSE/PCC
being the baseline condition and also when one of the other parameters is increased. This means that we
will be able to see if the sensitivity changes when one other parameter is changed as well. When relevant, the
parameter combinations will be shown visually in 3D-plots to explain some of the behaviour. All 3D-plots of
the possible parameter combinations can be found in Appendix A.2.

The parameter sensitivity correlation will be determined per parameter, resulting in a table with all sensitivi-
ties calculated as a result of increasing one or two parameters. The bold lines indicate the individual sensitiv-
ity due to changing only one parameter, calculated per motion channel. The other rows show the sensitivities
when the parameter from the first column is increased as well. A different value between the rows indicate
that the parameter from the first column has an effect on the sensitivity of the bold parameter.

Table 5.8 shows the sensitivity correlation of Wax with the other parameters. It can be seen that Wq reduces
the effect of changing Wax when looking at ax, meaning that these parameters are correlated. This is as
expected, since providing ax is mostly done via tilt-coordination, which introduces an error in q. Therefore
changing Wax influences ax and q, while Wq also influences both motion channels. Note that introducing
both these parameters has a very large effect on q, but this is because the RMSE is nearly zero when only
increasing Wq , causing the relative change to be deceptive. The effect is visualised in Figure 5.15,

Table 5.8: Relative changes in RMSE per motion channel for all parameter combinations involving Wax .

Added parameter ax ay az p q r
Wax -0.9412 0.0028 0.2197 0.0183 0.5617 -0.0050
Way -0.9391 0.0139 0.0698 0.0037 0.6001 -0.0089
Waz -0.9449 -0.0085 0.3503 0.0182 0.6664 -0.0043
Wp -0.9479 0.0119 0.7570 0.0198 0.5448 0.0045
Wq -0.5146 -0.1217 1.5540 0.4282 21.6756 0.1827
Wr -0.9321 -0.1260 0.0657 -0.2033 -0.3346 0.1627

To illustrate the behaviour of the MPC-algorithm when changing Wax and Way , Figure 5.16 shows what hap-
pens when Wax and Way are changed simultaneously. It can be seen that these two parameters are barely
influenced by each other, because for each motion channel, only one parameter changes the RMSE. If we
look at the upper middle plot, ay, we see that Wax does not influence the RMSE, not in the standard case but
also not for higher values of Way . Therefore, we can say that these two parameters are uncorrelated. This also
means that the related plots from Subsection 5.2.2 can be used solely.

Figure 5.17 belongs to Wax and Wr . This figure is shown because here it can be seen that increasing Wr too
much introduces large errors, even if other parameters increase as well. Although the effect of Wr is slightly
suppressed, it is still there.



5.2. OUTPUT ERROR WEIGHT PARAMETER SENSITIVITY 53

Figure 5.15: RMSE when changing Wax and Wq simultaneously.

Figure 5.16: RMSE when changing Wax and Way simultaneously.
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Figure 5.17: RMSE when changing Wax and Wr simultaneously.

The sensitivity correlation of Way with the other parameters can be found in Table 5.9. We see that Way

and Wp , two parameters related via tilt-coordination, are correlated with each other. Figure 5.18 illustrates
this behaviour, where it can be seen that all motion channels are influenced by the simultaneous increase of
Way and Wp . If we look at what happens with the simulator motion (Figure 5.19), we see that ay is followed
fairly well and the error in p is rather small, but all other stimuli start oscillating. This is because at a certain
point, the values for Way and Wp are so high that a very small error in y-acceleration or roll rate is weighted
more than a large error of the other stimuli, causing the algorithm to do weird things in order to decrease
the error in y-acceleration or roll rate by a final little bit. Setting both parameter to a lower value shows that
the difference in tracking y-acceleration and roll rate only slightly decreases, but other errors are reduced by
much more, as is seen in Figure 5.20.
Also Wr seems to be correlated with Way . When looking at the 3D-plot, it becomes clear that this is caused
by the fact that increasing Wr too much introduces oscillating behaviour, similar to the behaviour when both
Way and Wp are increased too much. This behaviour was already shown in Figure 5.4.

Table 5.9: Relative changes in RMSE per motion channel for all parameter combinations involving Way .

Added parameter ax ay az p q r
Wax 0.0085 -0.9569 1.1220 1.2600 -0.0145 -0.0076
Way -0.0260 -0.9574 1.4193 1.2929 -0.0381 -0.0037
Waz 0.1214 -0.9380 2.1333 1.6892 0.0030 0.0152
Wp 2.5817 -0.6610 12.2521 15.8741 4.3445 1.3060
Wq -0.0770 -0.9579 1.7536 1.3203 -0.1034 0.0007
Wr -0.4739 -0.9484 -0.0577 -0.5861 -0.8284 0.2754

When looking at the sensitivity correlation of WAz in Table 5.10, it seems that there is a lot of correlation.
However, the sensitivities are all very small and if we look at the interaction between Waz and Wa y in Figure
5.21, we see that there is little to no correlation, even though the relative change in RMSE would suggest there
is an effect.

The largest sensitivity correlation for parameter Wp is with Way , as can be seen in Table 5.12. This effect has
already been explained when discussing Way , therefore it will not be discussed here anymore. Also correla-
tion seems to be present between Wp and Wr , and also between Wq and Wr as can be seen in Table 5.12. If we
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Figure 5.18: RMSE when changing Way and Wp simultaneously.

Table 5.10: Relative changes in RMSE per motion channel for all parameter combinations involving Waz .

Added parameter ax ay az p q r
Wax 0.0566 0.1261 -0.2153 -0.1463 -0.0031 0.0119
Way 0.2986 0.6585 -0.0820 0.0013 -0.0259 0.0304
Waz 0.1279 0.1390 -0.2912 -0.1462 -0.0658 0.0112
Wp -0.0604 0.0019 0.2443 0.0098 -0.0280 0.0021
Wq 0.0147 0.1067 -0.2658 -0.1009 -0.0036 0.0121
Wr -0.1360 -0.0481 -0.7528 -0.0646 -0.0800 0.0369

look at the sensitivity correlation of Wr (Table 5.13), we can see that Wr seems to affect all other parameters.
This is due to the fact that when Wr is increased too much, other motion channels start to show oscillating
behaviour due to r being difficult to simulate, as was already explained in Subsection 5.2.2 and is clear from
Figure 5.4. It can be concluded that Wr is correlated with all other parameters due to r being very difficult
to simulate for a hexapod-based motion simulator. This leads to Wr having a strong impact and therefore
should be tunes with care.

Table 5.11: Relative changes in RMSE per motion channel for all parameter combinations involving Wp .

Added parameter ax ay az p q r
Wax 0.0244 1.1569 -0.4108 -0.9437 0.0062 0.0268
Way 3.2479 16.0185 1.2406 -0.5862 4.6516 1.3543
Waz -0.0377 0.8802 -0.2819 -0.9335 0.0583 0.0080
Wp 0.1552 1.1375 -0.5910 -0.9438 0.0171 0.0171
Wq 0.0640 1.1519 -0.7092 -0.9414 0.0492 0.0082
Wr -0.4607 -0.0275 -0.8660 -0.9768 -0.8200 0.1794

Note that a complete overview of all 3D-plots for each parameter combination can be found in Appendix A.2.
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Figure 5.19: The output motion of the simulator with high Way and Wp values.

Table 5.12: Relative changes in RMSE per motion channel for all parameter combinations involving Wq .

Added parameter ax ay az p q r
Wax 21.5770 -0.1204 0.7661 0.3879 -0.3376 0.1914
Way 1.5919 -0.0075 -0.0400 0.0014 -0.9575 0.0067
Waz 1.4605 -0.0241 -0.1263 0.0420 -0.9513 0.0033
Wp 1.5194 0.0111 -0.4004 0.0315 -0.9529 -0.0065
Wq 1.7351 0.0044 -0.1566 -0.0104 -0.9544 0.0023
Wr -0.1378 -0.3147 -0.9103 -0.8228 -0.9801 0.1829

Table 5.13: Relative changes in RMSE per motion channel for all parameter combinations involving Wr .

Added parameter ax ay az p q r
Wax 2.4670 0.9804 1.5178 2.9828 1.8761 -0.3502
Way 0.6224 1.7562 0.1223 -0.0810 0.2040 -0.2881
Waz 1.3008 0.8992 0.0051 4.5773 5.6476 -0.4298
Wp 0.4022 0.0339 -0.0557 1.1040 0.1947 -0.3553
Wq -0.0532 0.5505 -0.6935 -0.0882 1.9483 -0.3438
Wr 2.0035 1.2724 1.8816 4.0910 5.7505 -0.4440
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Figure 5.20: The output motion of the simulator with medium Way and Wp values.

Figure 5.21: RMSE when changing Way and Wa z simultaneously.
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5.3. SENSIBLE PARAMETER VALUE RANGES
The previous section has shown what happens when the output error weight parameters are changed, and it
became apparent that not all combination deliver satisfying results. In some cases, the algorithm becomes
unstable and starts to produce oscillations on some motion channels, something that is undesirable. This
section will explain why the used parameter ranges were chosen.

First, the translational error weight parameters range from 0-10 and the angular rates range from 0-100. This
difference in scale has the same reason as the values of the parameters for the standard case, and that is due
to the difference in units. Looking at the values for common vehicle manoeuvres, the values for translational
accelerations in m/s2 are approximately ten times as high as the values for angular rates in r ad/s. This means
that to achieve a penalty of equal magnitude on the angular rates in r ad/s, the weight needs to be ten times
as high as the weight on the translational accelerations in m/s2.

Second, the translational accelerations are only shown until the value 10 and the angular rates until the value
100. This is because after that, the change in RMSE or PCC becomes rather small in most cases. Other com-
binations show that undesired behaviour starts happening way before these values, making it obsolete to
investigate higher values. Undesired behaviour does not mean that large false cues are introduced, since this
is often an expected result. For example, ensuring a perfect tracking of ay causes large errors in p, and this is
not undesired behaviour but it is simply a logical consequence. What is meant with undesired behaviour is
the oscillating behaviour of certain motion channels as a result of increasing certain parameters too much.
Note that this applies because all other parameter values, thus including the state, terminal state and input
error weight parameters, have values in that same range. Changing all parameters the same relatively will
produce the same result.

There are two cases where undesired behaviour occurs. First, Wr has to be tuned carefully, as increasing it
too much introduces oscillating behaviour. Figure 5.17 already shows that increasing Wr above 50 increases
the RMSE rapidly. This is also the case when changing one of the other parameters, therefore Wr should
not be set to values above 50. The second case is when Way and Wp are increased simultaneously. Figure
5.18 already showed that the RMSE starts to increase rapidly when both parameters are increased. The point
where this starts to happen is around Way = 5 and Wp = 50, but increasing these parameters individually
does not introduce the unwanted behaviour. This also supports the need to analyse the behaviour of the
MPC-algorithm when multiple parameters are changed.
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EXPERIMENT PROPOSAL

Now that the first part of the analysis has been performed, it is time to summarise the results and investigate a
selection of parameter values more thorough by performing an experiment with human subjects. The impact
of the six output error weight parameters on the performance of the MPC-based MCA has been studied by
looking at the RMSE and PCC of the desired and actual simulator output signals with many different values
of the parameters. But as has already been discussed, these metrics are merely an indication of the quality of
a simulator, thus these results are not conclusive. In order to verify this approach of looking at motion cueing
quality and to actually determine the effect of changing the output error weight parameters on the motion
cueing quality, an experiment is proposed. In this experiment, the motion cueing quality will be determined
by using the continuous rating method, explained in Section 4.2.

Since we are dealing with a curve driving manoeuvre, performed by a car, ay is the most dominant of the
stimuli. The second most important stimulus is the yaw rate, but as has been observed, simulating yaw rate
is difficult on a hexapod simulator. Increasing Wr does not really improve the performance of the simulation
and quickly results in undesirable behaviour. Therefore, it has been decided that Way and Wp will be inves-
tigated further in the experiment, since Wp has the highest correlation with Way due to their interaction in
tilt-coordination for producing ay. The idea is to have a baseline condition, which will be the standard MPC
condition as is explained in Subsection 3.2.1, and increase and decrease the parameters the same relatively.
Then both of these parameters will be increased on their own, but also simultaneously, meaning that in total,
there will be nine experimental conditions. After careful consideration, it has been determined that both pa-
rameter values are increased and decreased by 60 %, meaning that the parameter values for the experiment
are as indicated in Table 6.1. The final result has been a trade-off between getting a large enough difference
between the experiment conditions and keeping the simulation comfortable, since human subjects will take
place inside a simulator. This means that there must be no negative PCC on any of the motion channels,
since this indicates that there are false cues present that are in opposite direction of what is expected and this
might cause motion sickness.

Table 6.1: The parameter values of all nine experiment conditions.

Experiment condition Wax Way Waz Wp Wq Wr
1 1 0.4 1 4 10 10
2 1 1 1 4 10 10
3 1 1.6 1 4 10 10
4 1 0.4 1 10 10 10
5 (MPC baseline) 1 1 1 10 10 10
6 1 1.6 1 10 10 10
7 1 0.4 1 16 10 10
8 1 1 1 16 10 10
9 1 1.6 1 16 10 10

59
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6.1. METHOD
20 human subjects will be asked to take place inside the hexapod simulator of the Max Planck Institute for
Biological Cybernetics. During the simulation, the participant will see computer-generated visuals projected
on a screen in front of them that match the vehicle motion, see Figure 6.1. Based on those visuals, participants
should have a certain expectation of what they would feel if they would be situated in a real car. But because
they are not in a real car but in a motion simulator, discrepancies can occur between their expectation and
what they really perceive. If this occurs, participants should indicate this by turning a knob that indicates to
what extent they feel a mismatch, also known as the continuous rating method described in Section 4.2. The
knob is shown in Figure 6.2.

Figure 6.1: The visuals that subjects will see during the experi-
ment.

Figure 6.2: The turning knob with which participants can in-
dicate the perceived motion mismatch. The rating bar on the
background shows the current rating.

The manoeuvre is exactly the same as used in the analysis, consisting of a car first driving straight at 70 km/h,
slowing down to 50 km/h, doing a curve of 60° with a radius of curvature of approximately 90m and then ac-
celerating back to 70 km/h. Note that all control, dependent and independent variables are the same as
described in Section 5.1, but now only two of the output error weight parameters will be changed. In order
to speed up the experiment, all of the nine conditions will be played back to back, meaning that one trial
consists of nine curves. An initial acceleration and final deceleration will be included to make the trial more
realistic. Since doing a continuous mismatch rating is not a straightforward method for participants, two
training trials will be performed to let the participant get used to the method and to get a feeling for what
motion feels good and what motion feels bad. After that, participants will have to rate three more trials, in
order to get rid of outlier behaviour and to make sure participant rate consistently.

During the experiment, the continuous rating will be measured. The continuous rating shows the time-
varying perception of the simulation, and in order to help in the interpretation of these results, a question-
naire will be filled in afterwards that asks participant how they decided on a certain rating. On top of that,
after each experiment trial a sickness score is asked to monitor motion sickness during the experiment. The
experiment instructions and questionnaire that will be handed to participant can be found in Appendix C.

6.2. APPARATUS
The experiment will be performed on the hexapod simulator of the Max Planck Institute for Biological Cy-
bernetics, a commonly available motion simulator. Specifications of this simulator can be found in Table 6.2.
The visuals will be created in Unity and projected on a screen using a real-time projector running at 120 Hz,
with a horizontal field of view of 66 ° and a vertical field of view of 39 °. Figures 6.1 and 6.2 show the visuals
that participants will see and the knob that will be used to give a rating, respectively.

6.3. GOAL AND HYPOTHESES
The goal of the experiment is to investigate the influence of the error weight parameters on the motion cueing
quality, more specifically Way and Wp . It is expected to see lower mismatch rating when the RMSE is small
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Minimum Position Maximum Position Velocity Acceleration
Surge -0.499 m 0.628 m ± 0.79 m/s ±7.0 m/s2

Sway -0.506 m 0.506 m ± 0.81 m/s ±7.0 m/s2

Heave -0.383 m 0.372 m ± 0.55 m/s ±10.0 m/s2

Roll -24.01 \degree 24.01 \degree ± 34.3 \degree/s ±250 \degree/s2

Pitch -25.05 \degree 28.02 \degree ± 37.4 \degree/s ±250 \degree/s2

Yaw -27.25 \degree 27.25 \degree ± 41.3 \degree/s ±500 \degree/s2

Table 6.2: Simulator actuator velocity and acceleration limits.

and the PCC is close to 1. The values for the RMSE and PCC per motion condition for all experiment condi-
tions are shown in Table 6.3 and the simulator output is shown in Figure 6.3. Looking at the values, we can
see that C3 (condition number 3) has the lowest RMSE in ay, but this also means that the RMSE in p in the
highest, due to the use of tilt-coordination. And if we look at Figure 6.3, we can see that p rises to twice the
perception threshold of 3 °/s [20], or 0.05 r ad/s. But it might also be possible that participants do not notice p
due to being distracted by the visuals or other present motion. On top of that, [23] argues that priority should
be given to the minimisation of specific force errors, even if this introduces perceptible tilt rates, since these
contribute more to the realism of driving simulation. This can be explained due to the fact that the human
vestibular system is not perfect and in case of strong expected motion, the vestibular system might associate
all strong motion with good and correct motion, but this can also vary between humans. Therefore it is pos-
sible that C3 will rated as the best condition. In this case, C7 will probably be rated as the worst conditions,
because there the RMSE of ay is the highest of all conditions, because there no tilt-coordination is used due
to the parameter settings.

Conditions C2, C3 and C6 all have a tilt-coordination part that surpasses the 3 °/s perception threshold, and
if the false cues are noticed, these conditions will probably receive a high mismatch rating. In this case, C5
and C9 will likely receive the lowest mismatch rating, and thus be rated most realistic, since these conditions
provide the lowest RMSE while still staying under the perception threshold for p.

Table 6.3: The RMSE and PCC values for all experiment conditions per motion channel.

RMSE PCC
Condition ax ay az p q r ax ay az p q r
1 0.2065 0.6657 0.0153 0.0100 0.0146 0.0633 0.9387 0.9608 0.4488 0.8276 0.0007 0.5556
2 0.1957 0.2770 0.0497 0.0255 0.0143 0.0627 0.9475 0.9822 0.9233 0.9192 0.0121 0.5755
3 0.1938 0.1479 0.0708 0.0320 0.0141 0.0626 0.9494 0.9919 0.9528 0.9629 0.0217 0.5791
4 0.2091 0.7452 0.0160 0.0064 0.0147 0.0633 0.9364 0.8542 0.1721 0.6367 -0.0021 0.5546
5 0.1986 0.4139 0.0398 0.0195 0.0145 0.0629 0.9445 0.9264 0.8077 0.7375 0.0019 0.5756
6 0.1956 0.2720 0.0607 0.0265 0.0143 0.0627 0.9472 0.9608 0.8925 0.8409 0.0099 0.5812
7 0.2116 0.8045 0.0168 0.0042 0.0147 0.0634 0.9344 0.7098 -0.0122 0.5704 -0.0008 0.5525
8 0.2021 0.5320 0.0347 0.0150 0.0146 0.0629 0.9414 0.8319 0.6323 0.5803 -0.0033 0.5773
9 0.1978 0.3812 0.0552 0.0220 0.0145 0.0627 0.9447 0.9068 0.7969 0.7012 -0.0024 0.5870

6.4. FINAL WORDS
This reports ends with the experiment proposal that has been described in this chapter. The data that will
be gathered during this experiment will be used to test the hypotheses and the results will be reported in the
form of a paper.



62 6. EXPERIMENT PROPOSAL

Figure 6.3: The output of the simulator for all nine experiment conditions.
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A
SENSITIVITY PLOTS

In this appendix, the sensitivity plots are shown. Appendix A.1 shows the RMSE and PCC for each motion
channel, where it can be seen how these metrics change when one of the parameters is varied. Appendix A.2
shows three-dimensional plots, where the RMSE and PCC are shown per motion channel as a result of varying
two parameters simultaneously.

A.1. SENSITIVITY PLOTS

Figure A.1: The RMSE between desired and actual ax, plotted against the parameter values of the output error weight parameters.
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Figure A.2: The PCC between desired and actual ax, plotted against the parameter values of the output error weight parameters.

Figure A.3: The RMSE between desired and actual ay, plotted against the parameter values of the output error weight parameters.

Figure A.4: The PCC between desired and actual ay, plotted against the parameter values of the output error weight parameters.
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Figure A.5: The RMSE between desired and actual az, plotted against the parameter values of the output error weight parameters.

Figure A.6: The PCC between desired and actual az, plotted against the parameter values of the output error weight parameters.

Figure A.7: The RMSE between desired and actual p, plotted against the parameter values of the output error weight parameters.
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Figure A.8: The PCC between desired and actual p, plotted against the parameter values of the output error weight parameters.

Figure A.9: The RMSE between desired and actual q, plotted against the parameter values of the output error weight parameters.

Figure A.10: The PCC between desired and actual q, plotted against the parameter values of the output error weight parameters.
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Figure A.11: The RMSE between desired and actual r, plotted against the parameter values of the output error weight parameters.

Figure A.12: The PCC between desired and actual r, plotted against the parameter values of the output error weight parameters.
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A.2. TWO-WAY SENSITIVITY PLOTS

Figure A.13: RMSE when changing Wax and Way simultaneously.
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Figure A.14: RMSE when changing Wax and Waz simultaneously.

Figure A.15: RMSE when changing Wax and Wp simultaneously.
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Figure A.16: RMSE when changing Wax and Wq simultaneously.

Figure A.17: RMSE when changing Wax and Wr simultaneously.
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Figure A.18: RMSE when changing Way and Waz simultaneously.

Figure A.19: RMSE when changing Way and Wp simultaneously.
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Figure A.20: RMSE when changing Way and Wq simultaneously.

Figure A.21: RMSE when changing Way and Wr simultaneously.
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Figure A.22: RMSE when changing Waz and Wp simultaneously.

Figure A.23: RMSE when changing Waz and Wq simultaneously.
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Figure A.24: RMSE when changing Waz and Wr simultaneously.

Figure A.25: RMSE when changing Wp and Wq simultaneously.
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Figure A.26: RMSE when changing Wp and Wr simultaneously.

Figure A.27: RMSE when changing Wq and Wr simultaneously.
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Figure A.28: PCC when changing Wax and Way simultaneously.

Figure A.29: PCC when changing Wax and Waz simultaneously.
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Figure A.30: PCC when changing Wax and Wp simultaneously.

Figure A.31: PCC when changing Wax and Wq simultaneously.
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Figure A.32: PCC when changing Wax and Wr simultaneously.

Figure A.33: PCC when changing Way and Waz simultaneously.
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Figure A.34: PCC when changing Way and Wp simultaneously.

Figure A.35: PCC when changing Way and Wq simultaneously.
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Figure A.36: PCC when changing Way and Wr simultaneously.

Figure A.37: PCC when changing Waz and Wp simultaneously.
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Figure A.38: PCC when changing Waz and Wq simultaneously.

Figure A.39: PCC when changing Waz and Wr simultaneously.
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Figure A.40: PCC when changing Wp and Wq simultaneously.

Figure A.41: PCC when changing Wp and Wr simultaneously.
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Figure A.42: PCC when changing Wq and Wr simultaneously.





B
MOTION PLOTS FOR ALL CONDITIONS

INCLUDING IMU DATA

All experiment conditions had different parameters values, causing the simulator output to be different for
each condition. The traces of the simulator outputs for each condition are shown in this Appendix. Also the
desired motion is added, which is what the simulator is trying to achieve. And on top of that, the IMU data is
added to show that the simulator actually did what was calculated.
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Figure B.1: Simulator output for condition C1, including the desired output and the measured IMU data.

Figure B.2: Simulator output for condition C2, including the desired output and the measured IMU data.
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Figure B.3: Simulator output for condition C3, including the desired output and the measured IMU data.

Figure B.4: Simulator output for condition C4, including the desired output and the measured IMU data.
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Figure B.5: Simulator output for condition C5, including the desired output and the measured IMU data.

Figure B.6: Simulator output for condition C6, including the desired output and the measured IMU data.
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Figure B.7: Simulator output for condition C7, including the desired output and the measured IMU data.

Figure B.8: Simulator output for condition C8, including the desired output and the measured IMU data.



96 B. MOTION PLOTS FOR ALL CONDITIONS INCLUDING IMU DATA

Figure B.9: Simulator output for condition C9, including the desired output and the measured IMU data.



C
EXPERIMENT FORMS

Participants were instructed to first read an instruction form, where the experiment procedure was explained
in detail. After that, the experimenter asked questions to verify that the participants understood their task.
During the training phase, it was again checked if participants understood their task by observing their rating.
Finally, the instructions were briefly repeated after the training trials, such that everything was clear for the
experiment trials. After the experiment was finished, participants were asked to fill in a questionnaire that
evaluated how they gave their rating. Both forms are shown below.
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Aim of the experiment 
In an ideal world, motion simulators would replicate real motion perfectly. Unfortunately, motion 
simulators are limited in their physical space, meaning that the simulator motion might not always 
be what you would expect. The goal of this experiment is to investigate the perceived realism of a 
couple of different settings of a motion simulator. We will do so by asking participants (you) to rate 
the mismatch between visual and inertial stimuli while driving in the CyberPod Simulator. 
 
Your Task 
You will be positioned in the CyberPod Simulator, where you will experience five six-minute driving 
simulations in total, of which two are training sessions and the other three experiment trials. Each 
experiment trial consists of an initial acceleration from 0-70 km/h, followed by nine 60o curves (left 
or right), and finally a deceleration from 70-0 km/h. In each curve, the car decelerates from 70-50 
km/h, performs the curve manoeuvre, and accelerates from 50-70 km/h again. This information is 
also shown on the dashboard that you can see in front of you.  
 
The motion that you feel might not always be as you would expect, based on what you see. It is 
therefore important that you focus on the motion that you feel, because it is your task to rate the 
mismatch between the motion that you feel, and the motion that you would expect based on what 
you see. In order for you to be able to focus on the motion that you feel, you do not have to drive 
the car, meaning that you are a passenger. The visual steering wheel and speedometer can help 
you imagine what a real car would feel like (see Figure 1 below). 
 
 
  
       
 
 
 
 
 
 
 
 
 
 

Figure 1 The view during driving 
The rating 
It is possible that the motion that you feel is not the same as compared to what you would expect 
when driving a real car, based on what you see. Your task is to continuously rate the mismatch 
between the motion that you feel, and the motion that you would expect based on the visuals, 
which are always 100% correct. Possible mismatches include, but are not limited to: 
-        The motion may feel weaker or stronger than the visuals indicate 
-        The direction of the motion may feel wrong when compared to the visuals 
-        The timing of the motion may be incorrect 
-        There is motion where there shouldn’t be any according to the visuals, or vice versa 
 

Instructions for participants 



 

During each trial, all nine curves are set up identical (so the visuals are the same), but the motion 
that you feel might feel different each time. The differences may be small or even unnoticeable, 
but your task is to rate the mismatch as you perceive it at that time. The initial acceleration and 
final deceleration are exactly the same for each condition, therefore we ask you to only rate the 
mismatch during the nine curves. 
 
In order to give a rating of the mismatch, you can turn a knob at your right hand side. Turning this 
knob to the left means that you think the motion you feel is coherent with what you would expect, 
turning the knob to the right means that you think there is a discrepancy between what you feel 
and what you would expect. During the training session, you will experience all possible motions of 
the experiment, and you will determine which one is the worst motion (highest mismatch). This 
motion will get a maximum rating. A minimum rating can be given when you think there is no 
mismatch between what you feel and what you expect to feel. Use these two extreme points and 
base all your rating on this scale. Remember to not include the initial acceleration and final 
deceleration in determining the worst motion, we are only interested in the curve driving part. 
 
Training 
The rating scale that you use, should range from no mismatch (knob turned to the left) to worst 
that you have felt in the entire trial (knob turned to the right). In order for you to determine what 
the worst motion is, you will first get to feel all the motions before you have to start rating. During 
this run, it is important that you determine which of the motions you would rate as the worst. 
After this first training trial, you will get to experience all the motions another time, but this time 
you’ll have to give a rating for all the motion mismatches. Try to base your rating on the previously 
experienced trial, in which you determined what the worst motion was. This motion should get a 
maximum mismatch rating, which will look like the bar as indicated below in Figure 2. 
 

 
Figure 2 Knob turned all the way to the right (largest mismatch) 

 

At moments when you think there is no mismatch, you should turn the knob all the way to the left, 
until the rating bar disappears. Now that you have determined the minimum and maximum rating, 
you have calibrated your rating scale. Please try to use this rating scale consistently throughout the 
rest of the experiment. 
 
The Experiment 
After the training session, there is some time for a (small) break. If you still have any questions 
regarding the rating, now is the time to ask. When everything is clear, it is time to begin the 
experiment trials. The same nine curves will be simulated three times, each time in a different 
order. All that you have to do is continuously rate the mismatch between what you think you 
should be feeling and what you are actually feeling. Use the rating scale that you calibrated during 
the training session. Try to be as consistent as possible, meaning that you give the worst motion of 
the entire trial the highest possible rating.  
 
Afterwards 

When you are done with the trials, we will ask you to fill out a questionnaire, after which you will 

receive your payment (if you are not an employee of the MPI)  and then you are finished.  



 

Safety/comfort 
The goal of this experiment is to gather data regarding the quality of certain settings of the motion 
simulator, not to make you sick, so it is important that we stop the experiment before you are 
really sick. Therefore we ask you to give an indication of how you are feeling in between every trial, 
according to the table below.  
 

Symptom  Score 

No problems  0 

Slight discomfort but no specific symptoms  1 

Dizziness, warm, headache, stomach awareness, 
sweating, etc.           

 

Vague 2 
Some 3 
Medium 4 
Severe 5 

Nausea Some 6 
Medium 7 
Severe 8 
Retching 9 

Vomiting  10 

 
 
 
 
 
 
 
 
 
 
 
Important 
Please keep in mind that should you start to feel bad/sick/anything unpleasant, please let the 
experimenter know such that the simulator can be paused or stopped. Also if you want a break, 
notify the experimenter. Note that stopping is possible at all times, participating in this experiment 
is fully voluntarily. 

To summarise: 

When rating the mismatch: 

- Always use the motion that you expect based on what you see as the reference motion.  

- Don’t overthink your rating, we are interested in your first impression of the motion. 

- A late rating is better than no rating, so try to rate all mismatches, even if you feel you are too 

late 

- Try to be consistent during all trials. 

 

 

 

 

 

 

 

 

 

 

 

 

 



MISC scores:  

     

 

Continuous rating of motion quality in the CyberPod Simulator - Questionnaire 

Subject ID:         Date:  

1.  How would you rate your current state?  

1 2 3 4 5 6 7 8 9 

Tired        Energetic 

Demotivated       Motivated 

Distracted       Concentrated 

Weak        Fit 

Ill        Healthy 

 

2. Please give an indication on how much the following factors influenced your 

mismatch rating  (cross one of the boxes): 

 Low       Medium    High 

The motion that I experienced was stronger than I expected        

The motion that I experienced was weaker than I expected        

The motion that I experienced was in a wrong direction        

The motion that I experienced came later than I expected        

The motion that I experienced came earlier than I expected        

The motion that I experienced felt slippery (like sliding on an icy road)        

I experienced motion when I did not expect to experience motion        

I did not experience motion when I expected to experience motion        

I experienced jerky motions        

I experienced rotations during the curves        

I experienced rotations during accelerating/decelerating        

Other:        

 

3. How much experience do you have driving a car (km/year)? 

0  <1000   <5000   <10000  >10000 

  

 

4. How often you do travel by car (either as passenger or driver)? 

Never  Yearly  Monthly Weekly Multiple times  Daily 

per week   

  

 

General comments: 

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………………………….  

End of questionnaire, thank you! 





D
PARTICIPANT RATING PLOTS

The dependent measure of the experiment, described in the IEEE paper and in Chapter 6 from Part II, was
the continuous rating [47]. Each participant performed three experiment trials, and this appendix shows the
rating over time per participant per trial, as well as the mean rating over time per participant.
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104 D. PARTICIPANT RATING PLOTS

Figure D.1: Rating over time per trial for participant 1

Figure D.2: Mean rating over time for participant 1



105

Figure D.3: Rating over time per trial for participant 2

Figure D.4: Mean rating over time for participant 2
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Figure D.5: Rating over time per trial for participant 3

Figure D.6: Mean rating over time for participant 3



107

Figure D.7: Rating over time per trial for participant 4

Figure D.8: Mean rating over time for participant 4



108 D. PARTICIPANT RATING PLOTS

Figure D.9: Rating over time per trial for participant 5

Figure D.10: Mean rating over time for participant 5
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Figure D.11: Rating over time per trial for participant 6

Figure D.12: Mean rating over time for participant 6



110 D. PARTICIPANT RATING PLOTS

Figure D.13: Rating over time per trial for participant 7

Figure D.14: Mean rating over time for participant 7
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Figure D.15: Rating over time per trial for participant 8

Figure D.16: Mean rating over time for participant 8



112 D. PARTICIPANT RATING PLOTS

Figure D.17: Rating over time per trial for participant 9

Figure D.18: Mean rating over time for participant 9
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Figure D.19: Rating over time per trial for participant 10

Figure D.20: Mean rating over time for participant 10
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Figure D.21: Rating over time per trial for participant 11

Figure D.22: Mean rating over time for participant 11
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Figure D.23: Rating over time per trial for participant 12

Figure D.24: Mean rating over time for participant 12
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Figure D.25: Rating over time per trial for participant 13

Figure D.26: Mean rating over time for participant 13
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Figure D.27: Rating over time per trial for participant 14

Figure D.28: Mean rating over time for participant 14



118 D. PARTICIPANT RATING PLOTS

Figure D.29: Rating over time per trial for participant 15

Figure D.30: Mean rating over time for participant 15
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Figure D.31: Rating over time per trial for participant 16

Figure D.32: Mean rating over time for participant 16



120 D. PARTICIPANT RATING PLOTS

Figure D.33: Rating over time per trial for participant 17

Figure D.34: Mean rating over time for participant 17
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Figure D.35: Rating over time per trial for participant 18

Figure D.36: Mean rating over time for participant 18



122 D. PARTICIPANT RATING PLOTS

Figure D.37: Rating over time per trial for participant 19

Figure D.38: Mean rating over time for participant 19
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Figure D.39: Rating over time per trial for participant 20

Figure D.40: Mean rating over time for participant 20
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