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ABSTRACT 

This research focuses on a smooth rendering of continuous 2D map based on a smooth 
3D vario-scale geographical data structure. A Space Scale Cube (SSC) offers non-
redundant geometric data for the different level of details. SSC model represents 
geographic data as a closed polyhedron, to generate a 2D map; SSC is intersected with the 
projection plane; resulting in a set of 2D polygons. However, problems emerge when 
creating maps with a large sized SSC dataset under web environment due to limited 
bandwidth and decoding speed. Repetitively transmitting data from the server to the 
client can be time and bandwidth consuming. A preprocess should be applied to a source 
that allows the follow-up development of an online traffic and time-efficient prototype.   

After preprocessing, large sized data will be subdivided based on octree algorithm to 
minimize transmission time from server to the client; moreover, accessible to WebGL. A 
prototype has been developed which enables smooth and timely vario-scale map 
rendering against heavy user actions such as fast zooming and panning in a short period. 
Modified prototype program allows query of only relevant data chunks by current 
viewport position; it prevents repeated loading of same chunks; what is more, repeated 
transmission of data from outside to GPU is eliminated. A tree structure is embedded at 
the client side that facilitates retrieve time. Rendering happens every frame; hence the 
prototype responses to heavy user actions timely. Also, it can obtain coordinates in RD 
coordinate system by double clicking. After testing the modified program with a 9km by 
9km dataset online, exceptional performance is indicated by a high average frame rate (57 
fps) and low main memory occupation (with a network speed at 9MB/s). The prototype 
performance is significantly affected by the client network condition; low network speed 
can decrease the frame rate. For instance, the web service achieved a frame rate of 47 fps 
at a network speed at 6MB/s.  
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1. Introduction 

1.1 Context 

Geographical data are widely applied in various territories such as urban planning, civil 
engineering, resource management, transportation management and much more. In 
order to provide the users with the map at the scale which is close to what they want, 
traditional map generalization method uses vector or raster format tile sets produced at 
several scale levels and stored at the server side for the users to request them (Huang, 
2016). It has a fast responsiveness to user interactions such as panning and zooming. 
However, it leads to an unavoidable loss of details between two fixed and discrete scales. 
Figure 1-1 gives the concept of traditional tile sets produced at fixed levels of details, 
geometry change between two levels cannot be revealed.  
It is stated by Suba, Meijers and van Oosterom (2013) that a Space Scale Cube (SSC) 
offers non-redundant geometric data for the different level of details. SSC model 
represents geographical data as closed polyhedrons; 2D maps are generated by 
intersecting SSC with a projection plane. By orthographic projection, terrain features at 
the specific level of details (LoD) can be represented by a set of 2D polygons casting upon 
that plane. The gradual transition of a terrain feature is realized by moving the plane 
downwards. Polygons intersecting with projection plane are then transmitted to GPU in a 
format that is accessible to the graphic processor. To fetch data as precise as possible to 
save time and online traffic, source data are divided into small chunks based on octree 
algorithm. Three datasets are available: a sample smooth SSC with four objects, a classic 
SSC of Leiden city center and a relative large classic SSC covering 9km by 9km area. 
Figure 1-2 (a) and (b) provides a rough sight of the smooth sample and Leiden dataset 
that will be used in this research respectively. The concept “lifespan” is involved to avoid 
“missing bottom” problem. The bounding box of each chunk is used as a reference by 
which the corresponding chunk can be concisely requested.  
Currently, there is no technology for the smooth and timely rendering of large SSC 
datasets that is also applicable for the domestic consumer (who has no basic knowledge of 
map services) such as a map rendering prototype based on simple web service. This 
project is aimed at developing a web-service based prototype to satisfy above-mentioned 
requests. As a reflection of the development procedure and final results, this report 
consists of the motivations and objectives of the project, theoretical support for essential 
concepts, detailed developing steps, prototype performance, and the possible future 
research directions.  
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Figure 1-1: Concept of traditional tile sets (LoD are fixed; geometry between two levels is missing)  

adapted from OGC, (n.d.)  

                 
                  (a) smooth SSC                                        (b) SSC of Leiden city center  

 
Figure 1-2: Brief view of the sample SSC and Leiden city center SSC 

 

1.2 Motivation 

1.2.2 Problem statement & overall goal 

Recently, various efforts have been made to design file formats for transmission of 3D 
geometry, for the use with high-performance 3D applications on the Web. The existing 
solutions either send all data within a single batch, or they introduce an unnecessarily 
large number of requests. However, limited bandwidth pairing with the limited 
computational power of Javascript environment leads to a bottleneck (Ponchio, 2016). A 
dataset covering 9km by 9km area results in a binary file larger than 200MB. Imaging, a 
dataset comprising the whole Netherland, or even the whole Europe will be available. It is 
impossible for a web-service based prototype to generate a map with complete data as a 
whole. As a service facing domestic consumers, web service pursues fluent performance 
and fast responsiveness. Hence, preprocessing and subdividing of source data are 
indispensable.  

To transfer only parts of data to the client, it requires partitioning of the dataset. In 
previous work (Rovers, 2016), R-tree was used as a spatial dividing method; however, 
drawback appears when objects are holding a long lifespan. All triangles belonging to this 
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long-lived object will be transferred if intersection plane intersects with the bounding box 
of the object which causes redundancy (redundancy means the transmission of unneeded 
data). In this case, another dividing method, octree, is tested and evaluated.  

What is more, incompatibility exists between coordinate reference system (CRS) of 
source data and CRS of WebGL. This conflict calls for a proper transformation between 
two CRSs and; also, a manipulation of user interaction parameters so that they can 
interact with the transformed source data.   

The ultimate goal is to implement a web-based service along with its preprocessor that 
scales well with large data sets, enables fast and smart transmissions of preprocessed data 
chunks, eliminates decoding time through direct GPU uploads, minimizes the number of 
HTTP requests by reusing data in client memory. Figure 1-3 gives a brief understanding 
of the concept: “smart fetch.” Only chunks intersecting with current viewport are 
requested. Box in dash line represents the current viewport, chunks marked in red are 
chunks need to be loaded; chunks in blue represent chunks in client memory. As shown 
in Figure 1-3, for the second user action, although chunk 300, 21 and 20 are intersecting 
with the current viewport, no HTTP request will be generated for them. Instead of 
fetching these chunks from the server, they can be directly obtained from 3 distinct 
memory slots (either from main memory or GPU memory).  

                             
Figure 1-3: Example of anti-reloading and reusing of data in client memory 

 

1.2.3 Scientific relevance  

An efficient prototype would contribute to the continuing research on vario-scale data by 
van Oosterom and Meijers (2013) and van Oosterom et al. (2014). There is currently no 
web service for smart data requesting and smooth rendering of large SSC dataset. Rovers 
(2016) developed a web service to explore spatial access for caching and retrieval of SSC 
data; WebGL rendering was not involved in that research. Driel (2015) implemented a 
web-based approach for the real-time intersection on SSC data; smart fetch of chunks 
according to viewport position remained unaccomplished.  

1.3 Objective  

Subsection 1.2.2 defined the overall goal of the research. The primary object is to design 
and develop a web service for smooth rendering and smart fetch of minimum redundant 
preprocessed data against fast and heavy user actions. Delay during data transmission 
should be minimized and decoding at client side (by Javascript) should be eliminated as 
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well. What is more, the web service should be enriched with user interactions. To achieve 
the overall goal, this research designs, implements and validates the performance of the 
web service.  Concrete objectives are: 

1. Divide source data based on octree algorithm with a well-defined chunk size 
limitation. 

2. Serialize and format data to eliminate decoding time at the client side. 
3. Solve the inaccordance between WebGL and source data CRS. 
4. Viewport position according to user actions should be accurately defined and be 

updated in time.  
5. Query relevant chunks by current viewport position.  
6. Prevent repetitive loading of chunks already in client memory to save 

transmission time as well as memory usage. 
7. Timely rendering, i.e. if the data transfer between the client and server is 

underway, the prototype should be able to render chunk(s) that are already in 
GPU independently in irrespective of the whole loading progress is completed 
or not.  

8. Other user interactions enrichment, i.e.  Fetching coordinates by double click at 
a point a client is interested in.  

 

1.4  Research questions 

Primary research question - What is the architecture of web service that enables 
smart SSC data fetching for smooth and simultaneous rendering against fast user 
actions?  

The following sub-questions have to be answered to reach the primary research question: 

1.4.2 Sub-questions for preprocessing: 

1. In the existing OBJ files, vertices and triangles can be distinguished by the 
starting character of each line. However, it has already been proved that 
progressively comparing and parsing strings (decoding) of a static file is slow 
under Javascript environment. How should the text-based source files be 
formatted? Is binary format a possible arrangement under this circumstance? 

2. How should the original dataset be structured and serialized so that it can be 
directly accessed by GPU? 

3. During the spatial organization, what is the affiliation of a triangle if it is 
intersecting with multiple octants? What will the size change regarding this 
dividing method? 

4. What will be the difference in total file sizes resulted from octree dividing with 
different thresholds (size of max amount of triangles in one chunk)?    

1.4.3 Sub-questions for client side development: 

1. How should the octree structure be reflected in Javascript? How should the 
chunks be indexed? 

2. How to define a viewport bounding box and how to update it regarding user 
actions? 

3. If a user is repetitively zooming in/out during a short period, will there be 
overload? How to update buffer data and vertex number without the unloading of 
all chunks that were requested by previous render request? 
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4. What is the prototype program that allows dynamic loading and rendering of 
single chunk? 

5. Is the prototype performing well with predefined chunk size limit? What is the 
memory consumption? 

1.5  Results concluded 

This thesis presents an approach for large dataset preprocessing and construction of a 
web service-based prototype that enables simultaneous rendering of concisely requested 
chunks. Following conclusions are obtained: 

Preprocessing - The binary format has been proved as a possible data format for 
WebGL data transmitting and rendering. Source OBJ file is encoded as a Float32Array; 
the resulted typed array can be directly accessed by the graphic processor. The current 
octree dividing method causes 30% volume increment to Leiden dataset; a huge (475%) 
volume increase to the 9km by 9km dataset 500KB (max 4 levels) chunk size threshold.   

Client program - A node structure reflecting octree structure containing necessary data 
elements is generated in Javascript to store data in client memory. Node structure is 
updated regarding every mouse movement; render function conducts a tree traversal 
every frame to ensure that the prototype responds to fast user actions simultaneously. 
Prototype program allows accurate chunk(s) requesting and loading, moreover, non-
repeat loading. Chunks loaded once are stored in client random access memory (RAM), 
waiting for a next invoking. Rendering function communicates only with client memory 
and runs in parallel with other functions.  

Performance - Prototype performs well with the largest currently available dataset 
without any halt; by using the modified program in local server mode, average fps can be 
increased to 57. The performance in online mode is significantly affected by user 
bandwidth; for a bandwidth = 6MB/s, obvious halt can be observed when zooming out 
and the average frame rate is around 47. If the bandwidth is upgraded to around 9MB/s, 
the frame rate increases to 57 fps although unstable.  

Memory use - Main memory garbage is removed automatically; speculated GPU 
memory use would be 240MB while the total RAM occupation including browser 
framework will be around 500MB (the 9km x 9km dataset with 1135 chunks produced). 
With the unloading function activated, enough GPU memory can be effectively retained.  
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2. Theoretical background & related work  

This chapter gives a background for the research. The theoretical concepts those are vital 
for comprehending the methodology design are described below. These core concepts 
include vario-scale data in SSC model, normal octree structure for data splitting, data 
rendering procedures using WebGL and some terminologies. What is more, data format 
and serialization to enter GPU, a brief explanation of client memory usage and 
management are included as well.  

2.1 Vario-scale data 

Instead of storing separate layers for discrete scale levels, a spatial model called Space 
Scale Cube (SSC) was designed and described in van Oosterom and Meijers (2013) and 
van Oosterom et al. (2014). A classic SSC (as shown in Figure 2-1 (a)) is created by 
extruding the original data into an additional dimension; the 2D area objects are now 
presented as a 3D volume. However, the model is still based on the considerable amount 
of discreteness. Figure 2-1 (b) gives a smooth SSC within which a small change in map 
scale results in a small geometry change so that continuous changes will turn to a gradual 
transition. A dataset based on the SSC model is represented as closed triangular-meshed 
polyhedral. Minor changes in map scale can be realized by moving an intersection plane 
down/upwards. A map can be seen as a rectangle raster at the viewport size which 
intersects with SSC. By orthographically projecting all points on the intersection plane 
downwards; the color of the first polyhedron each point hits is the color of that point on 
the map (as shown in Figure 2-1 (c)). On account of the rendering principle, vertical 
polygons make no contribution to orthogonal projection; therefore, only oblique triangles 
are kept after preprocessing to shrink data size. Moreover, not all polygons are needed for 
each rendering; only polygons in chunk(s) that is intersecting with the current viewport 
are concerned which further optimizes the data size. 

 
Figure 2-1: The space Scale Cube: A single 3D model representing terrain features by closed polyhedrons. 

LoD increases from the top to bottom. And the concept of rendering SSC. Adapted from van Oosterom et al. 
(2014). 

2.2 Non-uniform octree 

To allocate data into small chunks and to have a well-organized indexing, a tree structure 
should be involved. A normal octree is a tree structure in which each internal node has 
exactly eight children resulted by evenly dividing each side of their parent node into two 
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parts. Different from the normal one, a non-uniform octree allows different depth levels 
in each branch. Such a tree structure possesses the following advantages: 

1. The bounding box of each chunk can be easily calculated at different levels. 
2. It allows non-uniformly sized chunks. Geometry density can differ a lot regarding 

terrain types (e.g. residential area against rural area).  
3. It is straightforward. Recursively divide one chunk until its leaf node size does 

not exceed the threshold. A limitation of maximum tree level is also able to be 
restricted to prevent very deep tree structure which contains a large amount of 
small sized chunks to balance HTTP request number.  

One drawback of octree structure is the inflexibility of allocating triangles intersecting 
with splitting planes. Details about octree dividing and triangle placement will be 
introduced in Chapter 3. Another disadvantage of this tree structure is that a tree 
structure reflecting the splitting (in preprocess) must be hard coded in Javascript to 
generate the same indexing at the client system. It decreases the automation and 
flexibility of the whole program.  

2.3 WebGL fundamental  

WebGL runs on the GPU on a computer; therefore the client needs to provide the code 
that can be recognized by a GPU processor. The code should be provided in the form of 
pairs of functions. For instance, a vertex shader and a fragment shader, are two essential 
functions for GPU rendering. According to WebGLFundamentals (2015), they should be 
written strictly in a, as stated, “ C/C++ like language called GLSL (GL Shader Language).” 
A rendering program is composed by pairing all these functions. 

A vertex shader is crucial for the vertex position computation. Based on the positions 
manipulated by the function, various kinds of primitives including points, lines, and in 
this case, triangles can be rendered by specifying a primitive type when calling the 
gl.drawBuffer method. During the rasterization, a second user-supplied function 
“fragment shader” is then involved in computing RGB values for each pixel of the current 
primitive. 

Set up states for these functions; for each chunk that requires a draw call, a bunch of 
states should be set up. Then, by calling gl.drawElements or in this case, gl.drawArray, 
shaders are executed on the GPU.  

Although the web prototype canvas is a 2D surface, WebGL rendering space is actually in 
3D; the additional z-direction is used for depth testing. Pixels differing only by their z-
coordinate correspond to the same pixel on the screen, as described by Nyman (2013),  
“their z-coordinates are used to determine which one hides the other one.” Coordinates in 
all three axes range from -1.0 to +1.0; keep in mind this is the only coordinate system 
natively recognized by WebGL.  A transformation between world CRS (e.g. RD system) 
and WebGL system becomes significant Figure 2-2 (a) shows the native WebGL CRS. 
Figure 2-2 (b) explains the concept: near z plane. A near z-plane can be seen as the 
camera plane, everything above it will be cut away (although it is rendered, you cannot 
see it because it is above you). While moving near z plane from the top of SSC 
downwards, changes of map scale are performed.   

Except for the organization of data, another primary goal of our preprocessor is to 
process source data so that it can be fitted into WebGL CRS and output it in the form of 
GL Shader Language.  
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                             (a)  WebGL coordinate system                                             (b) Near z plane 
                               (WebGL fundamentals, 2016)   

 
Figure 2-2: Fundamental WebGL concepts 

2.3.1 ArrayBuffer  

Usually, buffers contain vertex positions, normals, texture coordinates, vertex colors, etc.; 
those contents are binary formatted and serialized in an order that is understandable to 
WebGl. Attributes are used to specify how to fetch, manipulate data from buffers, and 
provide them to the vertex shader. For example, positions can be put in a buffer as three 
32-bit floats (x, y, z) per position. You would tell a particular attribute from which buffer 
to obtain vertex position information, what type of data it should take out (e.g. three 
component 32-bit floats), where do the positions start, and how many bytes one vertex 
retains. GL Programming (n.d.) introduces the next steps of processing.  

1. Clip primitives, color them by the above-mentioned fragment shader function. 
2. Coordinates from source data are transformed to WebGL coordinates.  
3. Rasterize the clipped primitives to pixel fragments. 

The particular ArrayBuffer format and its content used in this case are described in Table 
3-6.  

2.3.2 Face culling  

According to OpenGL (2016), in computer graphics, triangles primitives haves a 
particular face orientation; face culling determines whether the triangle is visible or not. 
Facing is defined by specifying the order of vertices (either clockwise or counter-
clockwise) that compose the triangle as well as the order in which they are projected on 
the screen. If it is specified that a front-facing triangle follows a clockwise winding order, 
but the triangle projected on the screen follows a counter-clockwise winding order, then it 
will not be drawn. 

2.3.3 Frame rate 

Frame rate, expressed in fps (frame per second), is a significant indicator of the prototype 
performance. This parameter indicates the number of frames displayed in an animated 
display in a second. In our case, the rendering of one specific chunk will not start until 
data transmission is completed. Typically, the maximum fps of a web browser is limited 
to 60; therefore, an fps that closer to 60 indicates a shorter delay before the data is finally 
passed to the client GPU.  
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2.4   Data preprocessing: binary format 

Louis-Rosenberg (2012) stated in his work that rather than loading a meshed OBJ file, 
processing it, and putting into arrays that could be sent to a GL buffer increases the client 
performance significantly. Binary data that could go directly into GPU will be a suitable 
data format. The binary representation of a mesh that exactly mirrors the data which 
should be sent to an array buffer consists of a list of 32-bit-oats representing the vertex 
data (6 for each vertex with position x, y, z, and normals) followed by a list of 16-bit 
integers representing triangle indices. The word "little-endian" means the least significant 
byte comes first in the array. The majority of standard systems (x86, x86-64, IOS) use 
little-endian. Therefore, the float value should be written in little endian. 

In this case, 32-bit floats are used. During preprocessing, by specifying an order for all 
triangles and enabling face culling, normals are no longer needed; only vertex position 
and its color are finally stored in ArrayBuffer. The attribute “vertex position” is followed 
by another attribute essential for rendering: “vertex color.” Vertex color is formed by RGB 
values of this vertex. WebGL recognizes RGB values in range 0 to 1; hence, floats are also 
suitable for vertex color values. The resulted data can be directly fetched with an HTTP 
request as an ArrayBuffer object. No new storage needs to be allocated because both the 
vertex and color arrays use the same ArrayBuffer with different offsets. 

The transforming between byte kilobyte and megabyte is declared here: 

1 megabyte (MB) = 1000 kilobytes (KB) = 1x106 bytes (B). 

2.5 GPU memory vs. Main memory  

Some GPUs use their memory that’s separate from main memory. Other GPUs share the 
same memory as the rest of the system. According to Nyman (2013), as a WebGL 
developer, it is inexplicit which memory system the client machine uses. Some important 
notes are: 

 The very first step is uploading data to appropriate WebGL data structures. 
Uploading means copying data from main memory to GPU memory. In this case, 
a particular WebGL data structure is WebGL buffer (ArrayBuffer in binary format 
as mention above). 

 Rendering is fast after data transmission. 

 Data transfer is relatively slow. 
Consider GPU as a fast and efficient machine while working independently, but one that 
takes long to communicate with main memory. Therefore, ensure that most of the 
communications are made ahead of time and concisely. Though not all GPUs are so 
isolated from the rest of the system — but WebGL forces us to think in these terms so that 
the Javascript program must run efficiently no matter what particular GPU architecture a 
future client uses. No matter what kind of GPU architecture it is, the communication 
between GPU and server should be minimized. Figure 2-3 provides a general relationship 
between client and server as well as the relationship between main memory and GPU 
memory. A client contains following components: the prototype, Javascript scripts and 
HTML scripts, main memory and GPU memory. The only element contacting with the 
server through network component is the main memory; GPU memory fetches data from 
main memory slots. A better program that eliminates communication of GPU with the 
outside should allow data to be directly stored in GPU memory. 



Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data  - June -2017 

 

 

   11  
  

 

Figure 2-3: Relationship between (1) server and client; (2) GPU memory and main memory 

 

2.6 Memory management: Garbage collection (GC) 

According to Denning (2005), in computer science, if one (or more) memory slot is 
frequently accessed, the memory access pattern should be well defined for efficiency. Two 
types of access patterns are commonly conducted– temporal and spatial locality. Denning 
(2005) defines temporal locality as the reuse of specific data within the relatively small 
time period. Spatial locality stands for the use of data within relatively close storage 
locations. In our case, node data elements are updated and located in main memory 
spatially so that they can be invoked later faster.  

Garbage collection (GC) is an automatic memory management system (TIBCO, n.d.) 
widely available for object-oriented programming languages including Javascript. 
Dynatrace (2017) stated that  “with a built-in garbage collection, developers are allowed 
to create new objects without worrying about memory allocation and deallocation 
because garbage collector automatically reclaims memory for reuse.” Peyrott (2016) 
describes a memory leak as the memory occupied by one object is not recovered although 
the object is no longer required by an application. GC facilitates a prototype with less 
boilerplate code while eliminating memory leaks.  

Figure 2-4 briefly explains how memory management works for an object-oriented 
language. Objects currently in use are tracked, and everything else is designated as 
garbage. The blocks filled in blue represent heap memory (occupied memory), which are 
the memory slots used for dynamic allocation while the shaded blocks are free memory. 
In most configurations, the operating system allocates the heap in advance while the 
program is running. It works in the following pattern: 
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1. An object generation claims a memory slot and moves the offset pointer forward. 
The next object will be allocated at this offset (in between the filled block and 
shaded block) and claims the next memory slot. 

2. If an object is no longer in use, the garbage collector reclaims its underlying 
memory and reuses it for future object generating.  

Figure 2-5 presents the configuration of GC roots. Objects that are no longer referenced 
(temporal located) causing classic memory leaks are removed by GC system. To 
determine which object is causing a memory leak, most GCs uses a mark-and-sweep 
algorithm; the algorithm consists of the following two steps as summarized by Peyrott 
(2016): 

1. The garbage collector builds a list of "roots." Roots are global variables whose 
reference is kept in code. In JavaScript, a "window" object acts as a root and is 
always reachable; hence GC considers it, and all of its child objects as reachable 
(spatially located) objects as well.  

2. Memory slots that are unreachable are then marked as free, swept from heap 
memory. 

For our research, an ideally designed program should be light and alive, which means all 
necessary data for rendering is accessible directly from memory (it requires proper 
referencing); moreover, memory for preprocessing at client side (i.e. unnecessary for 
forwarding rendering) should be marked as garbage memory which can later be 
automatically reclaimed.  

 
Figure 2-4: New objects are simply allocated at the end of the used heap (adapted from Dynatrace, 2017). 

 

 
Figure 2-5: GC roots, their reachable child objects, and temporally located objects that are marked and need 

to be garbage-collected (adapted from Dynatrace, 2017). 
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3. Methodology design and development  

The basic preprocessing concept is generating small binary files containing elementary 
geometry and color information in the form of GLSL that goes directly into GPU. Chapter 
3 describing the steps designed to achieve the main objectives consists of two parts: the 
preprocessing of source data and the program designed for client side. The first part 
includes the introduction of existing SSC dataset, the rough concept of preprocessing, tree 
structure used and the corresponding node structure, the serialization of binary 
formatted data, and the affiliation of triangles while splitting. The second part consists of 
the node structure in Javascript reflecting what was produced during preprocessing, the 
framework of client program as well as the development of each function in the program.  

Details related only to this research such as the simplification of source data and the 
missing bottom problem are explained in Chapter 4.  

3.1 Source data preprocessing 

3.1.1 SSC dataset 

Content and data type of the original OBJ file is shown in Table 3-2. Lines starting with 
“v” represent vertices, the following three floats are x, y, and z coordinates respectively. A 
“g” indicates the beginning of a new object; the following four values are object id 
(integer), class id (integer), which will be used as a color reference later, minimum and 
maximum lifespan (integer). To counter the “missing bottom” problem (see subsection 
4.1.4), the concept “lifespan” is involved. Minimum lifespan is the z value at which an 
object appears for the first time, and it lives until the maximum lifespan is reached. An 
object line is always followed by several lines starting with “f” which represent triangles 
composing this object. A triangle line contains three integers: index of vertex forming the 
triangle; the order of the vertices is defined as counterclockwise. Table 3-2 gives a brief 
view of the actual content in source OBJ file.   

 

OBJ File 

v x coordinate (float) y coordinate (float) z coordinate (float)  

g  Object id (int) Class id (int)  Lifespan min (int) Lifespan max (int) 

f Vertex index 1 (int) Vertex index 2 (int) Vertex index 3 (int)  

Table 3-1: OBJ file content and data type 
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OBJ File 

v 93851.3255 463551.399 378 

v 93848.358512 463548.100973 378 

… 

g 1001706 13000 437 506 

f 114803 114802 114801 

f 114801 114804 114803 

…. 

g 1001704 12400 435 452 

Table 3-2: A brief view of actual content in OBJ file  

 

3.1.1 Color information 

The other source file is the color information list which can be downloaded from 
kadaster.nl. Each class id obtained from OBJ file has corresponding RGB values (0-255). 
Table 3-3 shows an example of the color information of objects with class id “13000”. 
 

Color information 

Class id  13000  example 

Red Value 255  

white Green Value 255 

Blue Value  255 

Table 3-3: Class id versus RGB values 

 

3.1.2 Preprocess concept  

The basic preprocessing concept is generating small binary files containing elementary 
geometry and color information in the form of GLSL that goes directly into GPU. Figure 
3-1 shows the rough preprocessing procedure. Data will be obtained from source files, 
processed and stored in a root node. If the root node contains more triangles than the 
predefined threshold, it will be divided into eight smaller chunks based on the dividing 
and duplication algorithm explained in subsection 3.1.6. This step is recursively 
conducted until the size of nodes at the lowest level is below the limit. If a node needs to 
be subdivided, it becomes a parent node; the bounding boxes of its eight children nodes 
are generated and written into a separate text file. The output files include the binary files 
of nodes at the lowest level of each branch and the bounding boxes of 8 children of every 
parent node. The detailed steps are explained in the following subsections.  
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Figure 3-1: Preprocessing concept 

 

3.1.3 Octree order 

The dividing of SSC dataset follows the standard octree algorithm, if one octant is larger 
than a given size, it will be recursively subdivided by the central plane in each direction, 
results in eight child octants. The order and index of child octant are shown in Figure 3-2.  

3.1.4 Node structure 

An octant is constructed as a node structure in C++; Figure 3-4 demonstrates the content 
of a node. Every node contains five data items: chunk level, chunk id, data in a chunk, 
chunk bounding box and children list of the chunk.  

 Chunk-level (integer) 
After fetching all raw data, a root node which contains all triangles in SSC model is 
constructed. The initial root level is 0. Afterward, every subdivision results in a lower 
level. For example, the tree shown in Figure 3-2 is a three level tree. The leaf nodes in 
different branches have different levels; chunk 00 at level 1 is the leaf node for branch 0 
while chunk 0400 at level 3 is the leaf node for branch 4.  

 Chunk id (string) 
Chunk id can be seen as the name of a chunk; id of the root node is “0”, which is the index 
of the chunk before any subdividing. Afterward, append the index of an octant to its 
parent’s chunk id after every subdividing until the lowest level of the branch is reached. 
Chunk id is also used as the binary file name of the corresponding chunk. 

 Data in chunk (list of floats) 
Data of the triangles in this chunk. Data that is necessary for octree dividing and binary 
file outputting including coordinates of triangles in this chunk, corresponding color 
index, and lifespan is kept in this list.  
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 Chunk bounding box (list of floats) 
The bounding box is defined by its lower left (LL) corner and upper right (UP) corner. 
Coordinates of LL corner followed by what of UP corner compose the bounding box list.  

  Children of the chunk (list of nodes) 
If the chunk needs a subdivision, the resulting child nodes (follow the same order as 
shown in Figure 3-2) will be kept in this list. Nodes for chunks at the lowest level have an 
empty child list. Figure 3-5 gives an intuitive view of the list of nodes.  

 

           
              Figure 3-2: Order of children                                          Figure 3-3: Chunk id at different levels 

 

 
Figure 3-4: Node content  
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Figure 3-5: Rough view of tree structure embedded in Javascript  

 

3.1.5 Binary file  

If the size of all leaf nodes of a branch is below the given limitation, data of each leaf node 
is then binary formatted and written into a bin file which is named after the node id. Only 
leaf nodes result in the outputted binary files. Table 3-4 shows a slice of binary file 
content, x, y, z coordinates are followed by their R, G, B values. Each value is a binary-
formatted 32-bit float which occupies 4 bytes, hence, 24 bytes for one vertex, 72 bytes for 
one triangle. One value followed by another, without any white spaces or end of the line.  

 

x1 y1 z1 R G B x2 y2 z2 R G B x3 y3 z3 R G B 

0.7 0.3 0.5 1.0                 0       0.5 0.8 0.4 0.2 1 0 0.5 0.7 0.3 0.5 1 0 0.5 

12 bytes 12 bytes 12 bytes 12 bytes 12 bytes 12 bytes 

Table 3-4: A slice of the binary file and the size in byte 
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3.1.6 Duplication of triangles intersecting with vertical splitting plane 

The allocation of triangles to child nodes always follows an order; hence, a triangle with 
multiple affiliations will be taken by the node with the smallest index and will be missing 
in another chunk. Therefore, missing of geometries at chunk boundaries might occur. The 
ideal design should be as less geometry in each chunk as possible; however, regardless of 
whether the intersecting triangle is split up, generating two new vertices or it is 
duplicated, redundancy occurs. Figure 3-6 explains the reason why duplication of multi-
affiliated triangles is used in this research. Assume the triangle in the figure is split up, for 
example, left polygon needs to be triangulated first and results in two new triangles. In 
this case, splitting causes 216 bytes redundancy while only 144 bytes are caused by 
placing the triangle in both chunks. Therefore, this kind of triangle will be assigned into 
all chunks it is intersecting with.  

    
Figure 3-6: Splitting of intersecting triangle leads to more redundancy than duplication 

 

Pseudo code for intersection detection is summarized in Figure 3-7. Instead of 
complicated intersecting situations, situations of disjointness can be easily listed out. Six 
cases of disjointness are given in Figure 3-8. To test the intersection with one child node 
bounding box, for every triangle in its parent node, the triangle does not belong to this 
child node if one (or more than one) of those cases is fulfilled. Two examples of 
duplicated triangles are shown below. In Figure 3-9 (a), the triangle intersecting with 
chunk 1 and chunk 2 will be added into both chunks. In Figure 3-9 (b), the triangle is 
disjoint with chunk 1; however, its lifespan indicates its existence in chunk 1.  

 

 
Figure 3-7: Pseudo code for intersection detection 
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Figure 3-8: Six situations of disjointness 

 

                    

 (a) Example of duplication due to vertical splitting         (b) Duplication due to horizontal splitting 
 

Figure 3-9: Examples of duplication         
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3.1.7 Bounding box file 

Other than that only leaf node are outputted as binary files; a complete bounding box tree 
is generated. If a chunk needs subdivision, write its child nodes bounding boxes as a list 
of lists; each member list is composed by coordinates of the lower left and upper right 
corners of bounding box followed by a “depTogo” indicator. If the chunk needs a 
subdivision, depTogo equals to 1. Otherwise, it is 0. The order of member lists follows the 
same order as the child nodes in the octree. The bounding boxes will be processed and 
outputted as a Javascript automatically. Figure 3-10 gives an example of the outputted 
bounding box Javascript script of a two level tree (a subdivision of chunk 00). “box0” 
contains bounding boxes of all chunks after the first division. A subdivision was carried 
out in chunk 0; resulted bounding boxes are stored in list “box00”. The Javascript script 
will be later used to embed a tree structure at client side (see details in subsection 3.2.1). 

 

 
Figure 3-10: Example of Javascript for client tree construction  

 

3.1.8 Alternative (separate file for multi-affiliated triangles) 

Duplicated triangles lead to an increment of file size; an alternative by which all triangles 
holding multiple affiliations are stored in a separate file was come up with initially. The 
initial idea was, as shown in Table 3-5 (a), generating separate files for every two adjacent 
chunks to store those “shared triangles”. A file size test was carried out in advance, it was 
found that even the total size of “shared triangles” in upper half chunks is small (2.4%) 
compared with the size of the whole model, let alone the file size for every two chunks 
(will be 0.6% of the total size). Considering that it takes relatively long to communicate 
with GPU from the outside, it will be very consuming to take separate operations for such 
small files. Therefore, this alternative was abandoned.  

                          
Table 3-5: (a) Separate files                         Table 3-5: (b) Size of separate files 
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Figure 3-11: Separate file for intersected triangles 
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3.2 Program of the client side 

3.2.1 Javascript node structure 

To fetch exact chunk(s), a node structure similar to what was used in octree dividing is applied to 
construct a tree structure at the client side. In Figure 3-13, data elements of a node including BBox, 
depth to go, intersection status, loading status, a buffer of triangles in this node, the number of vertices, 
a WebGL buffer object and children of the node are listed out. The initial value for each data element is 
given in column 1; Data types are listed in the second column. The third column provides an example of 
a root node.  

Node bounding box is a list of 6 floats which composed by the lower left corner and right up corner 
coordinates of this parent node. “Depth to go” of a root node equals to 1 if the node is subdivided; this 
value for child nodes equals to the last value of the corresponding child node bounding box list. 
Intersection status indicates whether the node is intersecting with the current viewport or not. Loading 
status indicates whether the corresponding bin file has finished loading from the server into client’s 
main memory or not; once the loading is completed, “loaded” will be turned to true. Loading is the 
process including fetching data from the server, transferring data through the network and retaining a 
corresponding memory slot in client memory; it is significantly affected by network speed. Triangle 
buffer is a Float32Array which contains all data obtained from bin file. A number of vertices can be 
easily calculated from triangle buffer length. While loading a .bin file, a WebGL buffer object is 
initialized for later data storing. If a parent node is subdivided, its child nodes will be inserted into 
children list by the pseudo codes shown in Figure 3-12. Take the case in Figure 3-10, rootNode0 is the 
tree_root illustrated in Figure 3-13; list “box0” is a list of lists containing all bounding boxes and depth 
to go indicators of child chunks (after first dividing) of the tree root. For every child node, a new node 
structure is initialized, and its “BBox” is filled in with the first six floats of the corresponding list in 
“box0” while “depTogo” is the last float. So far, tree._root has a children list containing 8 child nodes: 
rootNode00, rootNode01 … rootNode07. “depTogo” of rootNode00 is “1”, which means a subdivision of 
rootNode00. The above steps are repeated with ParentNode = tree._root.childen[0] and “Child_BBox” 
= “box00” shown in Figure 3-10.  

 

    
Figure 3-12: Pseudo code for generating child nodes 
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Figure 3-13: Example of Node content  

 

3.2.2 Client framework 

A conceptual client framework is concluded in Figure 3-14, including working flow and communication 
between client interface, Javascript, main memory and client GPU. The canvas of web browser is seen 
as the client interface, by which mouse movement parameters are detected and passed into Javascript. 
Current viewport bounding box is then generated based on mouse movements. An intersection test is 
called after every new mouse movement; checking the intersection status of the viewport with every 
node of the previously embedded node tree structure. Initialize requests for interested chunks from the 
server; store fetched bin file content in client main memory. Meanwhile, values of data elements in 
nodes are updated. In rendering function, data is copied from memory to client GPU; the rendering 
operation itself is being conducted alone in GPU at every frame while the nodes are updated only after 
new mouse movement.  

A sequence in which main functions are called is indicated in Figure 3-15. Main functions including 
mouse movements, viewport bounding box generating, intersection test, loading of chunks and main 
rendering function; functions will be explained in following subsections.   

    
Figure 3-14: Client framework 
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Figure 3-15:  Main functions and operating order in Javascript program 

 

3.2.3 Intersection testing function 

The intersection testing function uses a depth-first algorithm which means the test will continue with 
next branch until the bottom of the previous branch is reached.  

Assume a new viewport bounding box is generated (the details about how to create a viewport bounding 
box will be introduced in subsection 3.2.11). Firstly, a disjointness test (similar to the theory in 
subsection 3.1.6) is conducted with the bounding box of the root node. If intersection status is true, the 
test will be carried out with the bounding box of every child node. If the viewport is intersecting with 
child node i, examine “depTogo” value of child node i. If “depTogo” is 0, which means the lowest level of 
this branch is reached, then fetch node data element “intersecting”. If “intersecting” = false, which 
means it was not intersecting with the last viewport position and was not rendered for last user action, 
call load chunk function for child node i. If “intersecting” = true, which means it was intersecting with 
last viewport position and is already loaded. If “depTogo” is 1, recursively call intersection testing 
function for child nodes of node i until the bottom of this branch is reached.  

If intersection status is false, set data element “loaded” of the current node as well as all its child nodes 
to be false; it indicates the corresponding chunk will not be loaded after this mouse movement. Figure 
3-17 gives an example of the intersection test procedure. Viewport marked in blue is intersecting with 
chunk 00 and chunk 02; disjointness check will be applied to chunk 00, 01 and 02 successively; 
“depTogo” of chunk 02 = 1, therefore, chunk 03 will not be checked until all child nodes of chunk 02 are 
proceeded.  

So far, data element “intersecting” of all nodes are updated; data element “loaded” of nodes that are not 
intersecting with the current viewport are updated.   
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Figure 3-16: Intersection test function 

 

    
Figure 3-17: An example of intersection test procedure 
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3.2.4 Load chunk function 

In intersection testing function, loadChunk function would be called for every node that needs to be 
loaded from the server. The process of loading a chunk is shown in Figure 3-18; a particular chunk is 
queried by its file name (which has been introduced in subsection 3.1.4). First, fetch data element 
“tribuffer” of the requested node; if the length of “tribuffer” is longer than 1, which means it has already 
been loaded during previous mouse movements, then tune “loaded” to true. Otherwise, the “tribuffer” is 
empty, which means the node has never been loaded and is not in main memory yet. Generate a new 
XMLHttpRequest to fetch the chunk from the server; the response is an ArrayBuffer object which can 
be accessed by GPU by creating a Float32Array with it. Assign the Float32Array to node.tribuffer so that 
it is stored in client memory and can be invoked later. Set node.numVertices as the length of tribuffer 
divided by 24 (as it has been introduced earlier that a vertex occupies 24 bytes of memory). Call WebGL 
method “createbuffer” to initialize an empty buffer object in GPU; the buffer object is also set as a node 
data element so it can be used afterward.  

Once a chunk is stored in main memory, a buffer object is initialized; after that, vertex shader and 
fragment shader are set up. “gl.vertexAttribPointer” method defines an array of generic vertex 
attributes data. gl.vertexAttribPointer(index, size, type, normalized, stride, offset); the first argument is 
the index of the vertex attribute that is to be modified; the second and third ones declare number and 
type of components per vertex attribute. Next argument states that the data needs not to be normalized 
when being cast to a float. A stride means the total length in bytes of all attributes of one vertex; the last 
one specifies an offset in bytes of the first component in the vertex attribute array. For example, to 
define attribute “vertex position” of vertex shader which tells the shader where to fetch vertex 
coordinates from the Float32Array, the code is shown in Figure 3-19; positions of vertex 1 are the first 
three floats (12 bytes) x, y, and z in the Float32Array; RGB values (12 bytes) can be fetched with a 12-
byte offset from beginning of the array. Vertex 2 can be fetched with a 24-byte offset from the start and 
so on. Table 3-6 gives an impression of “vertPosition” and “vertColor” attribute content in GLSL as well 
as the offset and length used to fetch particular attribute.  

So far, buffer data is only obtained from the server and stored in main memory; no data except an 
empty buffer object has been passed to client GPU yet. Keep in mind that LoadChunk function is the 
only function communicates with the server. All data fetched and node states updated are stored in 
main client memory, the RenderChunk function introduced in next section only communicates with 
client memory.  
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Figure 3-18: Load chunk function 

 

 
Figure 3-19: Example of setting up the vertex and fragment shader 

 

 vertPosition vertColor 

 x1 y1 z1 R G B 

32-bit float 0.68 0.32 0.5 1 0 0.5 

Offset 0 12 bytes from the start of this vertex 

Total length 24 bytes 

Table 3-6: Content for one vertex in GLSL, including position, RGB values, and offsets used to fetch specific attribute 

 

3.2.5 Render chunk function 

This render chunk function is casting as the main function for rendering; it determines which chunk(s) 
to be rendered at this frame, then fetches corresponding buffer data, paste it to GPU and starts 
rendering. Figure 3-20 gives the procedure of RenderChunk function. Once the function is called, it 
starts to accomplish a tree traversal through all nodes. If the node is a leaf node (“depTogo” = 0) and 
the chunk is loaded into main memory, moreover, the node is intersecting with the current viewport, 
then invoke and copy the triangle buffer of this node from main memory and pass the buffer to the 



Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data  - June -2017 

 

 

   28  
  

empty buffer object previously initialized in GPU memory using “gl.bufferData” method. WebGL 
bufferData method initializes and creates the buffer object's data store in GPU. After that, call 
gl.drawArrays method to render primitives from array data. In this case, gl.drawArrays(gl.TRIANGLES, 
0, node.numVertice) is used to draw triangles for a group of three vertices; there are in total, 
node.numVertice vertices to be rendered for one node. Compared with the initial rendering program 
(introduced as an alternative in subsection 3.2.9), the new rendering program is more dynamic; it 
allows sequential rendering of a single chunk. Once the data buffer is processed and stored in main 
memory, it can be passed to GPU at any time. As long as there is a non-empty buffer(s) at GPU side, the 
rendering is underway, no matter whether all intersecting chunks are in main memory yet or not. In 
other words, loading and rendering are running in parallel. 

Figure 3-23 provides an example of memory state, server state and GPU state after three mouse 
movements respectively. After first mouse movement, the viewport is intersecting with only chunk 00; 
file “00.bin” is loaded into main memory from the server; node data elements including “tribuffer” are 
updated and stored in main memory; at the GPU side, one buffer object is initialized, filled with 
Float32Array passed from main memory and rendered. A panning is conducted, the viewport is now 
intersecting with both chunk 00 and chunk 01. After intersection test function, it is detected that chunk 
00 is intersecting with the current viewport as well as the previous one; therefore, load chunk function 
is only called for chunk 01. Node data elements are updated; triangle buffer of node 01 is stored in main 
memory now. At GPU side, buffer data of two chunks that need to be rendered are passed from 
memory; two chunks are rendered. After the third mouse movement, only chunk 01 is intersecting with 
the viewport; “intersecting” of node 01 is true before updating. Hence no chunks need to be loaded. 
Triangle buffers of both nodes are still occupying storage in main memory. There are two buffer objects 
at GPU side, one empty and one filled with buffer data of chunk 01; chunk 01 is then rendered.  

 

              

Figure 3-20: Render chunk function 
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3.2.6 Modified LoadChunk & RenderChunk function 

 After testing, it is found that average frame per second (fps) gets lower when sending abundant data 
from main memory to GPU memory. It can be indicated that on this machine, GPU and main memory 
are working separately; therefore, as mentioned in section 2.5 that sending data to GPU is relatively 
slow; modification was applied to the LoadChunk function and RenderChunk respectively. As shown in 
Figure 3-21, “tribuffer” is no longer a node data element; it is now a variable that will be renewed at 
every loading; therefore, it is now temporally located in main memory; its spatial reference will be 
unreachable for GC roots after a small duration. “tribuffer” still equals to the newly generated 
Float32Array with HttpRequest response. The following steps are almost the same as before; expect the 
“pass data to GPU” which was initially in RenderChunk function is now being placed in LoadChunk. 
After fetching data from the server, a new buffer object is generated in GPU memory; data is passed to 
GPU by filling in buffer object with “tribuffer” content. Set node.BufferObject equals to the newly filled 
buffer. So far, “tribuffer” only occupies temporal main memory; filled BufferObject is actually spatially 
located in GPU memory; a node.BufferObject performs as a pointer to corresponding GPU memory slot.  

In the old program, data is fetched from main memory and is sent to GPU at every frame. The new 
program shown in Figure 3-22 requires no transmission of data because it is already in GPU memory. 
Instead of fetching node.tribuffer, fetch BufferObject from GPU, set up vertex attribute data and render 
primitives as introduced before. 

Figure 3-23 provides an example of main memory state, server state and GPU memory state after three 
mouse movements respectively. After first mouse movement, the viewport is intersecting with only 
chunk 00; file “00.bin” is loaded from the server; node data elements including a temporal located 
“tribuffer” and a spatially located BufferObject are updated and stored in main memory. At GPU side, 
one buffer object is stored, referenced and filled with “tribuffer” content and then rendered. A panning 
is conducted, the viewport is now intersecting with both chunk 00 and chunk 01. After intersection 
testing, it is detected that chunk 00 is intersecting with the current viewport as well as the previous one; 
therefore, load chunk function is only called for chunk 01. Node data elements are updated. At GPU 
side, buffer data of two chunks that need to be rendered are passed from temporal main memory; two 
BufferObjects are stored and rendered. After the third mouse movement, only chunk 01 is intersecting 
with the viewport; “intersecting” of node 01 is true before updating. Hence no chunks need to be loaded. 
After a few second, “tribuffer” for both nodes are automatically deleted from main memory. There are 
two full buffer objects at GPU side; only BufferObject for chunk 01 is fetched by referencing 
node01.BufferObject and rendered.  
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Figure 3-21: Modified LoadChunk function. ArrayBuffer is passed to GPU memory only once while loading the chunk. 

 

     

Figure 3-22: Modified RenderChunk function. Instead of sending data from main memory to GPU, data is fetched from GPU 
memory directly.  
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  Figure 3-23: Example of node content updated after three mouse movements 

 
 

        
Figure 3-24: Rendering function 
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3.2.7 Rendering function 

Rendering function requests animation frames, which means it requires GPU to draw array(s) at every 
frame. With the animated frames, subtle changes during panning or zooming are able to be rendered 
completely. The rendering function is called right after one chunk finishes loading; therefore, the frame 
rate depends closely on user network condition. What is more, parameters related to mouse movements 
are located in this function and are updated to vertex shader every frame to ensure vertex position is 
manipulated accurately and simultaneously according to user actions. Mouse movement parameters 
will be introduced in following sections.  

 

3.2.8 Unload function 

An unload function is added to the client program in case of a massive dataset causing the client GPU to 
be overloaded. The unload function is called every 20 seconds (or any user defined time interval). When 
called, a tree traversal is conducted; if a leaf node is not requested during the past 30 seconds (or any 
user defined period); moreover, the node is not intersecting with the current viewport and it has already 
been loaded into the GPU, then delete the corresponding BufferObject from GPU and set the node to be 
not loaded. Hence, the unloaded node will be recognized as never been loaded and be again fetched 
from the server when it is visited next time.   

 
Figure 3-25: Unload function to release GPU memory 

 

3.2.9 Previous alternative 

An alternative for loading and render was initially tried; Figure 3-26 gives a view of it. Instead of the 
dynamic rendering of multiple chunks, the initial method initializes only one large buffer consist of all 
chunks intersecting with the current viewport. Buffer data of the large buffer is composed by data in 
each chunk (data in each chunk is seen as sub-data of the large buffer). The rendering will not start 
until all requested chunks finish loading which lowers the frame rate; hence, the alternative was 
abandoned.  
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Figure 3-26: Alternative for static rendering of intersecting chunks  

 

3.2.10 User actions 

 Panning  

In this case, the concept “panning” can be regarded as rendering vertices at a different position. The 
dragged distance in x and y-direction are offset in the corresponding direction from the original vertex 
position. For example, in Figure 3-27 (a), the map is dragged from the initial position to position shown 
in (b). It performs the same as adding x offset to x coordinates of all vertices in buffer array that are 
currently in GPU. As thus, the vertices to the left of the map in canvas (as shown in (a), where is not 
covered in native rendering range of WebGL) are now manipulated to be inside the rendering extent.  

 Zooming  

Figure 3-28 provides an understanding of zooming. Zooming is controlled by mouse wheel movements; 
it results in two actions. First, move up/down the near z plane. Any geometry above near z-plane cannot 
be shown on canvas. The extent of SSC model along the z-axis is usually 0 to 1; hence, the z value of 
near z plane equals to 1 divided by zoom factor. For example, near z plane is exactly at the top of SSC 
model when the zoom factor is 1. Near z plane is at half of the model when zoom factor equals to the 2. z 
value of near z plane is also the z value of the viewport. This value can only be infinite close to zero 
which means the near plane never reaches the bottom of the model; hence, there is always geometry to 
be rendered.   
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Second, magnify the geometry. As what is illustrated in Figure 3-27 (c), after panning, vertices are 
manipulated at a new position. Yet, to fill in the canvas, x and y coordinates of all vertices in GPU ought 
to be multiplied by current zoom factor (which is always >=1).   

   
                                 (a) Original position                                (b) after panning                                    (c) zoomed in 

 
Figure 3-27: Abridged general view of panning and zoom 

 

      
Figure 3-28: z value versus zoom factor 

 

 Update mouse movement parameters 

Mouse movement parameters include old page position x and y (in pixels), which are mouse positions 
on web page canvas before panning and can be obtained by fetching a click event position; original 
location x and y (from -1 to 1), which can be seen as the position of current viewport centroid in WebGL 
rendering space before panning. The framework of mouse movements is briefly shown in Figure 3-29. 
Initial values of mouse movement parameters are defined; therein, the initial original location X and Y 
value are explained in detail in chapter 4.  

A panning action including left key pressing, dragging and releasing; If mouse left key pressed, set 
dragging status to true (which means the map is being panning), fetch old page x and y value (in pixels), 
set original x and y location (in WebGL CRS) equals to the current x and y location obtained from the 
last mouse movement respectively.  While panning the map, mouse movement parameters are being 
updated at every pan step using code shown in Figure 3-30; e.pageX – oldPageX results in an offset 
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value in pixels, it will be first divided by current zoom factor and then normalized to WebGL 
coordinates by multiplying panStepSize factor. Moreover, the viewport bounding box is updated at 
every pan step as well (details will be explained in subsection 3.2.11). If left key is released, which means 
the panning process finishes, set dragging status to false and call intersection testing function. 

During a zoom process, zoom factor is updated at every zoom step. Recall that z value of viewport 
bounding box equals to 1/zoom factor; therefore, viewport bounding box is being updated and, 
intersection test function is called at every zoom step.  

   
Figure 3-29: updating mouse movement parameters 

 

 
Figure 3-30: Update mouse movement parameters  

 

3.2.11 Viewport Bounding box 

Viewport bounding box, in other words, the extent currently needs to be shown on canvas, is defined by 
its centroid, radius in x and y-direction and z value. For example, in Figure 3-31 (a), only the extent 
marked in blue needs to be rendered; therefore, the radius in x and y-direction equals to half of the 
corresponding side length of WebGL rendering space (which is 2) divided by zoom factor. X and y 
coordinate of centroid equal to location x and y introduced in the section above. A viewport bounding 
box is expressed by the same parameters as the chunk bounding box: lower left x, y, upper right x, y and 
z value (as given in Figure 3-31 (b)). Figure 3-32 provides an example of updated viewport bounding 
box after zoom in; bounding box side length before zooming was 0.5 and equals to 0.2 after zooming in 
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(current zoom factor is 5). The extent of WebGL rendering space is a 2 by 2 square while only geometry 
inside the 0.2 by 0.2 viewport needs to be loaded and rendered. After every updating of location x and y 
and current zoom factor, viewport bounding box needs to be updated using the code shown in Figure 
3-33. 

Viewport bounding box does not affect rendering or WebGL rendering space; it depends only on mouse 
movement parameters. The only reason it is involved is to determine chunks requested.  

         
(a) Viewport (filled in blue)                             (b) Viewport Bounding Box expression 

                                         in WebGl rendering space 
 

Figure 3-31: Web browser viewport in WebGL rendering space and its expression 

 

                                            
     (a) Viewport radius at Zoom = 5                             (b) Viewport radius at zoom = 2 

 
Figure 3-32: The relationship of the viewport extent and zoom factor  

 
    

 
Figure 3-33: Update viewport bounding box 
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4. Implementation details 

In Chapter 4, some implementation details in preprocessing stage and in client developing stage are 
explained. Particulars of the specific datasets used in this thesis, how to fetch necessary information 
from source data and how the data was normalized are described in subsection 4.1.1, 4.1.2 and 4.1.3 
respectively. The missing bottom problem and threshold for octree algorithm are introduced in 
subsection 4.1.4 and 4.1.5. Details about the specific shader used in this thesis are explained in 
subsection 4.2.1; in subsection 4.2.2 states how to fill in web browser canvas and in subsection 4.2.3 
explains a newly enriched user interaction. Some initial settings and the technologies to validate the 
prototype are listed in subsection 4.2.4 and 4.2.5 respectively.  

4.1   Preprocessing 

4.1.1 Dataset 

Removal of vertical triangles - The SSC model of source OBJ file contains both tilting triangles and 
vertical polygons (as shown in Figure 4-1); however, in this case, vertical polygons are invisible due to 
the orthographic projection; hence vertical polygons were removed to decrease dataset size.  

Dataset details - Three datasets have been tested with the prototype; a small smooth dataset with 
only 4 objects; a Leiden city center dataset containing 10k triangles and a relatively large dataset 
covering a 9km by 9km area which contains 3091k triangles composing 26475 polygons. Details 
including the number of non-vertical triangles, minimum and maximum coordinates of each dataset are 
listed in Table 4-1. 

 

 
Figure 4-1: SSC model containing vertical triangles  
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Dataset Number  

of polygons 

Number  

of triangles 

Scope  

(minx, minY, maxX, maxY)  

Smooth sample 4 136 (-0.993582, 0, 0, 1) 

Leiden 1063 10,125 (93500, 463500, 94100, 464100) 

9km by 9km 26475 3090.8k (182000, 308000, 191000, 317000) 

Table 4-1: Dataset details 
 

4.1.2 Fetch raw data from OBJ file 

Preprocessing was carried out in C++ environment. The first step of preprocessing is obtaining raw data 
from the source files. Read every line of OBJ file, split it at white space; if it is a vertex line, store the 
three elements after “v” into list “vertices_x”, “vertices_y” and “vertices_z” respectively. If it is an object 
line, store the second element found after “g” in list “class_id”, store the third element in list 
“min_lifespan” and the last item in “max_lifespan”. Count lines until the next object line is found, keep 
the count in list “triangle_number” which represents the triangle number of this object. If it is a triangle 
line, store the three elements found after “f” in list “triangle_vertices”.  

Class_id, minimum and maximum lifespan and the triangle number are four attributes of an object; 
therefore, the lengths of these four lists are the same, which equals to the total object number in this 
SSC model. It was mentioned above that the vertices in source file are ordered by counter-clockwise, to 
avoid the triangles being culled, the triangle vertices are entered into “triangle_vertices” as vertex1, 
vertex3, vertex2. The length of list “triangle_vertices” is 3*the total triangles in this SSC model. 

4.1.3 Normalization of coordinates 

It has been introduced in section 2.3 that the only native CRS WebGL can recognize is different from 
the system of the source file. A crucial step is to normalize the original vertex coordinates so that they 
can be fitted into a WebGL rendering space. Figure 4-2 briefly shows how the x coordinates were 
normalized. After fetching raw data, the maximum and minimum value for all x, y and z coordinates 
can be easily obtained from the corresponding list. The scaling factor for x coordinates equals to the 
maximum x value minus the minimum one. Factors for y and z coordinates can be calculated by the 
same way. The general scaling factor is the maximum value among three scaling factors. Every x, y z 
value should first minus the minimum value in the corresponding direction and then be divided by the 
general scaling factor. After normalization, all coordinates are ranged from 0 to 1. Yet not done so, to 
simplify the “fill in canvas” (described in subsection 4.2.2), coordinates can be directly normalized from 
-1 to 1.  

In addition, WebGL accepts RGB values from 0 to 1; therefore, all color values require normalization as 
well. It can be done by simply dividing the original 0-255 value by 255.0. 

 
Figure 4-2: Pseudo code for coordinates normalizing  
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4.1.4 Missing Bottom 

Missing bottom happens when a triangle is below the splitting plane, yet its lifespan is across the 
splitting plane. The triangle will not be visible if only upper chunks are loaded. Figure 4-3 (a) illustrates 
a typical missing bottom problem; holes can be seen when the viewport is only intersecting with the 
upper half chunk. Figure 4-3 (b) gives a view of triangles in chunk 05 if lifespan is not considered. In 
subsection 3.1.6, a duplication of triangles which belong to a polyhedron with long lifespan is applied as 
a counterplan against the missing bottom problem. Figure 4-3 (c) and (d) shows triangles in the new 
content in chunk 05, triangle belongs a polyhedron which has a long lifespan is now included in this 
chunk and will be rendered if chunk 05 is requested.  

               
           (a) Missing bottom                                   (b) Chunk 05 (lifespan not involved)   

                   

              
(c) View from top of chunk 04                           (d) Triangles below are duplicated 

                                                   (lifespan involved)                                                   into the upper chunk 

 
Figure 4-3: Example of the “missing bottom” problem and upper chunk with triangles duplicated based on the lifespan   

4.1.5 Determine threshold and limit tree depth  

Take the bandwidth into consideration, assume that most PC users have a bandwidth of 5-10MB per 
second; the file size of each chunk should be limited. One triangle occupies 72 bytes for rendering. 
Multiple chunks might be loaded at the same time, the size of a single binary file was limited to be 
below 500KB (6944 triangles); therefore, the loading of one chunk takes less than 0.1 second. What is 
more, it was found that areas with a denser geometry such as city center or residential area could lead to 
extreme deep leaf nodes (e.g. 5 or 6 levels) while chunks of the rural area at the same level contain 
insufficient triangles (0 in extreme case). To avoid unnecessary XMLHttpRequests for these tiny 
chunks, a limitation of maximum tree depth is set to be 4.  An initial threshold of maximum 6944 
triangles per chunk and maximum 3 subdivisions was first tested. The relationship between different 
thresholds, total file size, and prototype performance are presented in chapter 5.  
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4.2 Client side 

4.2.1 Vertex shader and fragment shader 

It has been introduced in section 2.3 that a vertex shader does an important job to manipulate vertex 
positions. In this case, a vertex shader contains two attributes: vertex position and vertex color; their 
color can be obtained by the method explained in subsection 3.2.4. Five parameters: view matrix, zoom 
factor, extent, x and y offset are then involved in vertex position manipulation; therein, zoom factor, x 
and y offset are affected by mouse movements; extent is determined by dataset itself (will be introduced 
in subsection 4.2.2). The final vertex positions at GPU side can be calculated using function shown 
Figure 4-4 (b). Vertices obtained from binary file are first placed at the location determined by panning, 
and then magnified with current zoom factor and finally transformed by the view matrix to be correctly 
projected on the screen.  

 
(a) Attributes and uniforms used for vertex shader 

 
 (b) Actual vertex position obtained by GPU 

 
Figure 4-4: Specific shader used in this thesis and the manipulation of each vertex  

 

4.2.2 Fill in canvas 

As what has been introduced in chapter 2, in WebGL coordinated system, all three axes go from -1.0 to 
+1.0. However, the normalized SSC model is usually smaller than WebGL rendering scope. For 
example, x, y and z-axis of the normalized 9km by 9km dataset goes from -0.67 to 0, 0 to 0.67 and 0 to 1 
respectively.  It will be located at the position shown in Figure 4-5 (a) if no manipulation is applied to 
vertex coordinates. To fill in the canvas, an initial offset in both x and y directions are predefined. 
xoffset = 0.5*(max_x – min_x),  yoffset  = 0.5*(max_y – min_y). The extent of specific normalized SSC 
model = 2.0 (which is the extent of WebGL rendering space) divided by the maximum value between x 
offset and y offset (0.67 in this case). Associate x, y offset and extent factor with the manipulation 
function in Figure 4-4 (b), the model will first be panned from the original location to location shown in 
Figure 4-5 (b); and then be magnified to fill in WebGL rendering space. Remember that the viewport 
bounding box is only related with chunk bounding boxes; therefore, it should be modified regarding the 
SSC extent to agree with the actual chunk bounding box values. The code for modification is shown in 
Figure 4-6. This step can also be done during preprocessing by normalizing the coordinates into a range 
from -1 to 1.  
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                    (a) Original position of SSC               (b) Move SSC to the center                (c) Enlarge SSC to fill in canvas 

 
Figure 4-5: Steps to fill in the web browser canvas  

 

   
Figure 4-6: Modify viewport bounding box with actual model extent 

 

4.2.3 Get geographical coordinates 

An extra function for obtaining geographical coordinates by double click at the interested point is 
implemented in this prototype. Current viewport bounding box coordinates are proportional to 
Javascript canvas coordinates. An example explains the principle of this functionality is shown in 
Figure 4-7 (a). Values in blue represent viewport coordinates; values in black are Javascript canvas 
coordinates. The point marked in red represents the position of double-click-event; its Javascript 
canvas coordinates can be fetched by event.pageX/Y; hence the corresponding viewport coordinates can 
be easily calculated. A scaling factor was obtained at normalization during preprocessing; for example, 
scale = 600 for dataset “Leiden”. The geographical coordinates equal to viewport coordinates multiplied 
by scaling factor. Figure 4-7 (b) gives a view of how this function looks like; the popup disappears after 
1.5 seconds.  

        
       (a) Get geographical coordinates                                   (b) Example of obtained coordinates 

  
Figure 4-7: The way to get real geographical coordinates and the example of this function  
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4.2.4 Settings  

 Canvas height, as well as width, is set as 600 pixels.  

 gl.DEPTH_BUFFER_BIT is called at every frame to set buffer depth value as 1.0. It represents 
the range of z value in which SSC model is able to be rendered on the screen.  

 The zoom step is set to be 0.98, which means a small zoom action leads to a 0.00055 change in z 
axis. 

4.2.5 Validation technology 

The performance of the prototype was tested using Firefox web browser; time consumption of each 
Javascript function, the main memory consumption and fps were collected by Firefox performance 
recorder. GPU consumption was measured by GPU-Z.  
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5. Results and Analysis  

In chapter 5, results obtained from preprocessing and prototype testing are revealed and analyzed. The 
data size changes after preprocessing (with/without lifespan) of both Leiden dataset and the 9km by 
9km dataset are concluded in section 5.1. A brief data size comparison is listed in Table 5-1. It is found 
that organizing source data without lifespan leads to subtle volume up compared with organizing data 
with lifespan. A 475% volume increase to the 9km by 9km dataset was caused by the duplication due to 
lifespan. In section 5.2, all prototype features are proved to be functional. Time consumption and both 
CPU memory and GPU memory consumption of each dataset are listed and discussed in section 5.3. 
Rough performance is indicated by frame rate and is shown in Table 5-2. The frame rate is significantly 
affected by the client network condition. The modified program ensures that the data is loaded from the 
server only for the first time; the data is later on stored in GPU memory and is waiting for the next 
invoke.  

Size (MB) Leiden dataset 9x9 dataset Number of chunks 

One chunk 0.7 40 1 

Without lifespan 0.79 43.9 400 

With lifespan 0.93 233 1135 

Table 5-1: Data size of the Leiden dataset and the 9km by 9km dataset 

 

9x9 dataset Modified program 

(local-server) 

Old program 

(local-server) 

Modified 

(6MB/s) 

Modified 

(9MB/s) 

Average fps 57 39 47 57.8 

Memory 

use 

Stored only in GPU Stored in main memory 

Transferred to GPU at every 
rendering 

-- -- 

Table 5-2: Performance of the 9kn by 9km dataset 

5.1  Data size after octree dividing  

Table 5-3 gives a comparison of chunk sizes of Leiden dataset produced using different dividing 
methods. If the source data is not divided, binary file size for data in a sinle chunk is 729 KB. The 
threshold used is 500KB; 8 chunks (in total 790 KB) resulted if lifespan is not taken into consideration. 
The size of each chunk differs a little; in general, chunks in the lower half are slightly larger than those 
in the upper half. Compared with the non-divided file, an 9.75% increment in size was resulted due to 
the duplication of triangles intersecting with vertical splitting planes. If lifespan is involved, the size of 
lower chunk keeps the same while the size of upper chunks increase around 40% due to the duplication 
of triangles in polyhedrons with long lifespan. The total size of 8 chunks is 930 KB, 28% volume up 
compared with the non-duplicated binary file.  

The comparison between volume changes of the 9km by 9km dataset after dividing with or without 
lifespan is concluded in Table 5-4. This dataset containing more than 3090k triangles was organized 
with a chunk size limit of 500KB, and maximum 3 subdivisions. The size of the non-divided chunk is 
40MB. If lifespan was not involved, after organization, 400 chunks were generated, all chunks are 
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below the threshold; of which 130 (32.5%) chunks are less than 50KB; the maximum chunk size is 
484KB. The total file size is 43.9MB, 9.75% volume up compared with the one-chunk file size. 

If lifespan is counted, the 9km by 9km dataset results in 1135 chunks, all chunks are under the 
limitation of which 72 (6%) chunks are relatively tiny (<50KB). The maximum file size is 488KB while 
the minimum one is 25Kb. The total file size is 233MB; a huge volume increase (475% up) is caused by 
the duplication due to the lifespan.  

A comparison between upper chunks and lower chunks size of the 9km by 9km dataset (without 
lifespan) is given in Table 5-5, 193 upper chunks retain in total 19.9MB (45%) while the remaining 207 
lower chunks hold 24MB (55%), 10% more storage than what of the upper chunks. Table 5-6 gives the 
same comparison for the 9km by 9km dataset divided with lifespan.  638 upper chunks hold in total 
133MB (55%) while the remaining 497 lower chunks retain 45% of total file size. Upper chunks keep 
10% more storage than what the lower chunk do which means if the user is panning around the top of 
SSC, due to the larger viewport bounding box, more data will be requested.   

Chunk  Size (without lifespan) (KB) Size (with lifespan) (KB) Size (single chunk) (KB) 

00  

Lower  

chunks 

104 103  

 

 

 

729 

01 83 82 

02 142 141 

03 125 124 

04  

Upper  

chunks 

79  114 (44% up) 

05 70 100 (42% up) 

06 100 140 (40% up) 

07 87 126 (45% up) 

Total  790 (8% up) 930 (28% up) 

Table 5-3: Comparison of chunk size of Leiden dataset 

 

Threshold Size  

(MB) 

Chunks < 
threshold 

> 
threshold 

< 50KB Max 

(KB) 

Min 

(KB) 

One chunk 40 1 - - - - - 

<500KB 

(no lifespan) 

43.9  

(9.75%) 

400 400 

(100%) 

0 

(0%) 

130 
(32.5%) 

484 0 

<500KB  

(with 
lifespan) 

239 

(475% up) 

1135 1123  

(99%) 

12  

(1%) 

72 

(6%) 

526 25 

Table 5-4: Comparison of chunk size of 9km x 9km dataset 
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9km by 9km (without lifespan) Chunks Size (MB) Total size (MB) 

Upper half  193 (48%) 19.9 (45%) 43.9 

Lower half 207 (52%) 24.0 (55%) 

Table 5-5: Size of upper half/ lower half chunks of 9km by 9km dataset (without lifespan) 

 

9km by 9km (with lifespan) Chunks Size (MB) Total size (MB) 

Upper half 638 128 (55%) 235 

Lower half 497 107 (45%) 

Table 5-6: Size of upper half/ lower half chunks of 9km x 9km dataset (lifespan involved) 

5.2 Evaluate prototype functions  

 Zoom and panning 
The prototype functions well with both Leiden dataset and the 9km by 9km dataset. Chunks can be 
accurately acquired according to the current viewport position and be rendered simultaneously. Zoom 
step factor was initially set as 0.95 which enables the prototype to reveal SSC model at an interval = 
0.0016 in the z-direction; any geometry change in z direction that is smaller than 0.0016 may not be 
presented on screen. The result is evaluated and shown in Figure 5-1. Camera in (a) is at z = 0.02998; 
after one zoom in step, it is at z = 0.02848 in (b). A sudden popup of a triangle (in green) and a block 
(in black) are found. It indicates that the triangles are not oblique enough for revealing geometry 
change with a relatively large zoom step.  

A smaller zoom step (0.99) was then applied to examine the geometry change (interval = 0.0002); the 
results are shown in Figure 5-2; a more gradual change can be observed. Figure 5-3 illustrates an 
apparent gradual change (zoom interval = 0.0016; circled in black) of an ideal smooth sample dataset.  

 Precise loading of chunks 
A console logging function is inserted in LoadChunk function to evaluate which chunk is being loaded; 
“only loaded + filename” will be logged on console if the function is called for a chunk already loaded 
and stored in memory. By logging this string, it can be proved that LoadChunk function is only setting 
data element “loaded status” to be true if the chunk is already loaded; no XMLHttpRequest is generated 
to communicate with the server. Figure 5-4 shows the console output when repetitively viewing of the 
same area; it proves that there is no repetitive loading of chunks.  

              
 (a) Z value = 0.02998                                        (b) Z value = 0.02848 

 
Figure 5-1: Geometry change with zoom step = 0.95 
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                        (a) z = 0.1754                (b) z = 0.1748               (c) z = 0.1745              (d) z = 0.1743               (e) z = 0.1741 111 

  
Figure 5-2: Geometry change with zoom step = 0.99 

 

         
Figure 5-3: Obvious gradual change  

 

 
Figure 5-4: Validation of no repetitive loading of already loaded chunks 

 

 Validation of position of geometry  
Accuracy can be evaluated by comparing coordinates obtained from the prototype with a reference. In 
Figure 5-5, coordinates of a representing point are validated. In (a), coordinate obtained is (93808, 
463781); it is nearly the same as what provided in (b) (93809, 463780). The accuracy of the prototype 
can be ensured.  

 

     
                          (a) Coordinates obtained from prototype                                 (b) Online map for validation  

                                                                                         (Adapted from EPSG (2016)) 
 

Figure 5-5: Validation of the prototype accuracy 
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5.3 Prototype performance 

Prototype performance is validated based on time consumption of main program function, client CPU 
memory use, and client GPU use. Validations are discussed in subsection 5.3.1, 5.3.2 and 5.3.3 
respectively.  

5.3.1 Time consumption  

 Local-server mode 
In past tests with data in one chunk, the prototype ground to a halt when experiencing rapid user 
actions because of heavy computation as well as massive data transfer. Thanks to octree subdividing 
and smart data fetching program, the prototype (both old and modified program) responses to heavy 
user interactions fast and fluent without any halt. The performance of prototype in a complete 
performance recording including operations such as initial loading of the web page, zoom into the 
bottom, zoom out to the top and traverse through the whole dataset was analyzed.  

A comparison (as shown in Figure 5-6 and Figure 5-7) of a typical workflow in early period of 
performance recording (mainly loading and rendering chunk(s) for the first time) between old program 
(passing data to GPU at every time the chunk is required) and the modified one (store data in GPU at 
the first time the chunk is requested) is given in Table 5-7.  An intersection test function including 
intersection test, loading of one chunk, storing “tribuffer” at main memory, creating empty BufferObject 
at GPU and storing it in main memory as a pointer takes the old program 15ms to finish. It takes the 
modified program 50ms to complete the same process due to a relatively slow communication between 
temporary memory “tribuffer” and GPU memory BufferObject. Network communication time can be 
persuaded because the prototype is currently loading data from the local server. It can be indicated in 
Figure 5-6 that only three chunks (two level-3 chunks and on level-4 chunk) are loaded and rendered; it 
is because the viewport is near the bottom. Therefore, tree traversal and rendering are speedy (less than 
10ms) for the old program. In latter period of performance recording (see Figure 5-8); the viewport is 
near the top of the dataset (where the viewport bounds a larger range), which leads to the rendering of 
more chunks at every frame. Lags due to rendering subsequent chunks can be clearly obtained from the 
figure; it is caused by massive transmission of main memory data to GPU. Thus, fps is hindered 
(average fps for the old program is only 39). For modified program, although the initial loading takes 
relatively longer than the old program does, the rendering operation is light and fast. Repetitive 
transmission of data between memory and GPU is avoided, as shown in Figure 5-9; a representative 
rendering process for modified program takes less than 10ms and is without any transmission lag. 
Therefore, average fps for the new program is 43% higher than the old one.  

Most time-consuming Javascript calls for both programs are listed in Table 5-8. For the new program, 
on average, rendering operations run for only 5.5% of performance period while the old program is 
operating heavy rendering (80% of the time); Gecko and web browser graphic driver takes 46% and 
34% of the time respectively. (According t0 MDN (2016) describe Gecko as “the name of the layout 
engine developed by the Mozilla Project. Gecko's function is to read web content, such as HTML, CSS, 
XUL, Javascript, and render it on the user's screen.”) Load chunk from a remote repository will be 
tested in future work. In general, average fps is the best performance indicator; loading of chunks and 
transmitting of data both hinder the fps. Modified program obtains an average 57 fps (43% better than 
the old program) which indicate that, by using a new program, 30% of loading and transmission time 
can be saved.  
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 Modified program Old program 

Operation Time (ms) time 

Check intersection & load one chunk 50 15 

Tree traversal & Rendering > 30 10 

Average fps 57 (43% up) 39 

Table 5-7: General performance comparison between old and modified program 

 

 
Figure 5-6: A typical workflow of intersection checking, loading, and rendering (old program; load one chunk: 15ms) 

 

 
Figure 5-7: A typical workflow of intersection checking, loading, and rendering (modified program; load one chunk: 50ms) 

 

 
Figure 5-8: Time consumption for pure tree traversal and rendering (old program: more than 30ms) 

 

 
Figure 5-9: Time consumption for pure tree traversal and rendering (modified program: less than 10ms) 
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Modified program Old program 

Function % of time Function % of time 

Gecko  

(browser functions) 

45.9 renderChunk 80.13 

Graphics 33.8 Graphics 9.14 

RenderChunk 5.53 Gecko 3.44 

Tools 3.67 loadChunk 0.44 

loadChunk 2.37 Tools 0.2 

Table 5-8: Most time-consuming calls during a complete performance recording 

 

A period with low fps is shown in Figure 5-10 (in combination with Javascript call legend, see 
Appendix), it is due to the loading and transmission of data from temporary memory to spatially located 
GPU memory. Massive transmissions of chunks from the server to the temporal main memory (marked 
in light orange color) are found during this period. The sequential loading of chunks framed in red is 
the vital reason to the unstable frame rate at early stage. Once the chunks are loaded, the follow-up 
rendering is fast; moreover, fps is high and stable. Figure 5-11 also explains the reason; the new 
program renders the scene at a higher frame rate because the data is stored directly in GPU. Recall what 
was mentioned in section 2.5, GPU works really fast independently. Unlike the old program (see Figure 
5-12, framed in red), the frame rate is lowered because all requested chunks have to be sent to GPU 
although they are already in main memory; rendering starts only after all (main memory-GPU) 
transfers are finished. 

  

 
Figure 5-10: Javascript frame chart during 2581ms to 5632ms (Modified program: low fps due to loading of chunks and data 

transmission to GPU) 

 

 
Figure 5-11: Javascript frame chart after most chunks are loaded (Modified program: high fps) 
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Figure 5-12: delays for data transmission (from main memory to GPU) cause low fps (old program) 

 

 Online mode 
The preprocessed 9km x 9km dataset, as well as the prototype, were published online 
(http://varioscale.bk.tudelft.nl/gpudemo/2017/05/multinew/). Hereafter concludes the performance 
including time and memory consumption and the average fps of this online web service based on a 
bandwidth approximate to 6MB per second and 9MB per second. An 83.2-second performance record 
including loading the page, zooming out to the top of the dataset, panning around while zooming into 
the bottom of the dataset was recorded.  

For bandwidth around 6MB/s, the average fps is 47.33 fps, 17% lower than the local server mode. While 
zooming out, stagnations for about 3 seconds can be observed before all chunks in the current viewport 
are rendered. While panning around near the bottom of the dataset, no noticeable halt or stuck was 
found. The maximum fps (60 fps) occurred during the latter half of the record (while panning around 
near the bottom of the dataset) in which few chunks were required for each intersection checking 
function. The minimum fps (3.21 fps) was found when zooming out; as shown in Figure 5-13, 15 chunks 
were requested at 20 seconds which caused the fps to plunge from 60 to 3.21. This low-fps period lasted 
for about 2 seconds which means the loading (from the server to the client GPU) of 15 chunks took 
around 2 seconds. 

For a bandwidth around 9MB/s, the performance record is shown in Figure 5-14; the average frame 
rate is 57.8 fps. Compared with the frame rate of local server mode (57 fps) shown in Figure 5-10, 
although the average online frame rate seems to be higher than the local mode, it is unstable for of the 
time due to the delay of data transmission. It can be clearly indicated that the loading process, as well as 
the performance, is significantly affected by the client bandwidth.  

 

 
Figure 5-13: Relative low fps due to delay of data transmission through network (modified program) 

 

http://varioscale.bk.tudelft.nl/gpudemo/2017/05/multinew/
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Figure 5-14: Higher frame rate at bandwidth = 9MB/s 

 

5.3.2 CPU Memory consumption  

Prototype memory usage and allocation of different datasets using both programs are described below.  

 Old program 
Figure 5-15 and Figure 5-16 gives top 5 memory consuming object group at loading and after map 
traversing of Leiden dataset respectively. At loading, in total 4.8MB is occupied; the most consuming 
objects are Javascript scripts. Only 4 chunks are requested at loading, hence, 4 ArrayBuffer objects 
retaining 0.46MB (9% of total memory usage). After traversal through the whole dataset, 8 chunks are 
loaded, maintaining 0.96MB (17% of total memory usage). No continuing loading or occupation of 
memory was observed; it can be proved: data in main memory can be retrieved and reused.  

Figure 5-17 and Figure 5-18 give top 5 memory consuming object group of the 9km by 9km dataset 
(threshold = 500KB). At loading, Javascript scripts are again the most consuming objects; the second 
most consuming objects are Array objects in which the node tree structure is stored. Figure 5-19 (a) 
provides a close look at an Array object in client memory and explains by what it is composed. Take the 
case of Array object at memory slot 0x1a2fb36d880, It is composed by, first fetching element 0 from 
box0112 and “data” element of the first child node of rootNode0112; second, allocate a free memory slot 
to fill empty “data” list with bounding box data. Therefore, more complex the tree is more consuming 
the Array objects will be. Compared with the usage after traversal, an extra 0.4MB memory slot was 
used for general math function at loading. The actual memory used for tree structure should be 0.79MB 
for the 9km by 9km dataset. 9 chunks need to be loaded initially, causing a 0.94MB memory 
occupation; after rough traversing, the whole dataset, 1245 (98%) chunks have been visited, resulting in 
238MB memory usage of ArrayBuffer objects. It can be indicated in Figure 5-19 (b), ArrayBuffer object 
regards to data element “tribuffer” of a node; “unknown slot” is the memory allocated for binary data 
fetched from the server. By using the old program, “tribuffer” is spatially located in main memory and 
can be referenced at any time. It is always occupying a memory slot. 

Representative parameters for performance evaluation for different datasets are listed in Table 5-9; it 
can be indicated that heavy tree traversal and rendering decreases fps. It is due to the drawback of the 
old program. Average fps of the 9km by 9km dataset is 68% of fps for Leiden dataset.  Speculated total 
main memory consumption for 9km by 9km dataset will be around 238MB. The total random access 
memory (RAM) usage of the browser can be speculated, and it is, in general, twice as much as the 
above-mentioned memory, which will be 500MB (including the main memory occupied by the browser 
framework).  

  
Figure 5-15: Memory allocation at loading of Leiden dataset 
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Figure 5-16: Memory allocation after traversing through Leiden dataset 

 
 

 
Figure 5-17: The 9km by 9km dataset memory use when loaded  

 
 

 
Figure 5-18: Memory use after traversing most of the chunks of 9km by 9km dataset  

 

Dataset Average fps Memory at 
loading (MB) 

after traversal 
(MB) 

ArrayBuffer 
(MB) 

Tree Structure 
(MB) 

Sample data 57.1 2.3 4.3 0.01 (0%) 0 

Leiden 58.9 4.84 5.58 0.9 (17%) 0.03 

9km x 9km 39.0 5.96 238 233 (98%) 0.79 

Table 5-9: General performance of three datasets at different states (old program) 
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(a) Example of memory retained by Array object                  (b) Memory for ArrayBuffer object (spatial locality) 

 
Figure 5-19: Examples for memory slots of Array object and ArrayBuffer object (old program) 

 

 Modified program 

Modified program was tested with 9km by 9km (500KB) dataset, Table 5-10 shows main memory usage 
at three stages: first one, initial loading and heavy user actions (see Figure 5-20); second, after idling for 
a few seconds (see Figure 5-21); third, idled after a small user action.  After the first time period, 120MB 
of main memory is occupied, mostly by ArrayBuffer (94%); however, if idle the prototype for 10 
seconds, only 110MB are removed by garbage collection because the ArrayBuffer objects were 
temporally located and they are no longer reachable. Figure 5-23 (a) shows a temporal located 
ArrayBuffer; it has no connection with other spatially located objects (compared with the ArrayBuffer 
object illustrated in Figure 5-23 (b)); hence, it is recognized as garbage in GC roots.  

Figure 5-22 gives a comparison between main memory usages after some user actions, the amount of 
WebGLBuffer objects (as framed in red) in main memory changes yet the main memory keeps the 
almost the same. It is not only because garbage has been removed, but also WebGLBuffer objects in 
main memory are just pointers to the truly filled Buffer objects in GPU. Figure 5-23 (b) provides a close 
look at a WebGLBuffer and how it is referenced in GC roots. Unlike the old program which uploads only 
needed data to GPU at every frame; by using a new program, after all chunks have been visited, all data 
will be stored in GPU memory. Modified program works much better than the old one with the 9km by 
9km dataset. In future, if an very-large dataset is available, GPU may encounter overloading problem. 
An unloading program can be easily realized using gl.deleteBuffer method to delete BufferObject 
directly from GPU in a particular condition. However, whether GPU memory becomes fragmented or 
not due to deletion is unknown and requires future experiment.  
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Stages  Main memory use 

Right after heavy user actions 120.34 MB 
Idle the browser for 10 seconds 10.25 MB 
Idle the browser for another 1 minute 6.7 MB 

Table 5-10: Main memory use of the modified program at different stages 

 

 
Figure 5-20: Memory usage right after initial loading and heavy user actions 

 
 

 
Figure 5-21: Memory usage if idle the browser for seconds 

 
 

 
Figure 5-22: Main memory usage and WebGLBuffer number after two user actions 
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                       (a) Temporally stored ArrayBuffer                  (b) Empty WebGLBuffer spatially stored in main memory 

 
Figure 5-23: Examples for temporal memory slots of ArrayBuffer object and a spatial but empty memory slot for WebGLBuffer 

object in main CPU memory  

 

5.3.3 GPU Memory consumption with unload function toggled on 

The GPU memory usage was recorded using GPU-Z with the unload function on; total memory usage 
refers to the memory occupied by all applications of the client computer. GPU memory use was tested 
with the 9km by 9km dataset at three different stages (as shown in Figure 5-24 (a), (b) and (c)): at the 
initial loading of the page, right after the traversal of most of the chunks and after idling the prototype 
for 30 seconds (at the same position as at stage 1). Memory usages are listed in Table 5-11; 169MB, 
462MB, and 130MB at each stage respectively. After unloading of some inactive chunks, the GPU 
memory occupation is lower than what at the initial stage which indicates that the unloading function is 
resultful.  

 

9km by 9km dataset Total GPU Memory use (MB) 

Initial loading of the page 169 

Traverse through most of the chunks 462 

Back to the initial position and idle for 30 seconds 130 

Table 5-11: Total GPU memory usage at 3 stages with the unload function switched on for the 9km by 9km dataset 
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(a) Stage 1: GPU memory use at the initial loading of the page (169MB) 

 

 
(b) Stage 2: GPU memory use after traversing through the dataset (462MB) 

 

 
(c) Stage 3: GPU memory use after unloading (130MB) 

 
Figure 5-24: GPU memory usage at different stages 
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6. Conclusion and future work  

This chapter includes a conclusion of main outcomes and the remaining problems as well as some 
points worth a future research.   

6.1 Conclusion  

The binary format has been proved as a feasible data format for WebGL data transmitting and 
rendering. The source OBJ file is serialized as x, y, z, R, G, B, x, y, z… and encoded as a Float32Array; 
the resulting typed array can be directly accessed by the graphic driver. Triangles intersecting with 
multiple octants are duplicated to all octants it is intersecting with to avoid missing geometry at the 
boundary. Triangles whose lifespan are crossing horizontal splitting plane will also be duplicated to 
chunks at both sides of the plane. Duplication due to the lifespan causes 30% size increment to Leiden 
dataset; 475% size increase to 9km by 9km dataset if divided with a 500KB threshold.   

A similar node structure reflecting the octree structure containing necessary data elements is generated 
in Javascript to store data in client memory. A Javascript script containing a bounding box tree can be 
automatically generated during preprocessing. Node data elements are updated regarding every mouse 
movement; render function operates a tree traversal every frame to ensure that the prototype is 
responding to heavy user actions simultaneously. Prototype program allows accurate chunk loading, 
moreover, non-repetitive loading as well as non-repetitive transmission of data to GPU. Buffer objects 
created and transmitted once are stored in GPU memory, waiting for a next invoking. An automatic 
garbage removal program ensures main client memory never encounters overloading. An unload 
function was tested and proved to be resultful for GPU memory retaining; memory slots occupied by 
inactive chunks will be removed from GPU memory to prevent the GPU to be overloaded.  

Modified program performs well for 9km by 9km dataset without any halt in local server mode; the 
average fps is around 57. The frame rate is stable and relatively high after initial loading compared with 
the regulated maximum fps for most monitors (60 fps).  Yet GPU usage is hidden; it can be speculated 
as around total chunk size (e.g. 233MB for the 9km by 9km dataset with lifespan) while the total RAM 
occupation including WebGL memory and browser framework is roughly observed to be around 
500MB. No continuing occupation of CPU memory is detected; moreover, no noticeable halt or waiting 
for loading can be observed in local-server mode. However, in online mode, the performance is 
significantly affected by the user bandwidth. The prototype was tested with a network speed equals to 
6MB/s and 9MB/s respectively; the frame rate for lower network speed was around 47 fps while what 
for the higher speed was about 57 fps. Yet, due to unavoidable delay of data transmission, the frame rate 
was unstable. Halt can be observed when zooming out; time of halt depends on the network condition. 
It is proved that the program allows reuse of data directly from GPU memory which means once most of 
the chunks have been visited; the performance afterwards will be improved.  
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6.2 Future work 

 The content in the binary file is serialized as x, y, z, R, G, B, x, y, z, … at the present stage.  RGB 
values are repeated for every vertex so that the file content can be accessed by GPU as an 
ArrayBuffer object. It is fast for GPU processing, however, causing unnecessary repetition of the 
same RGB value. Is it possible to assign RGB values once for a triangle, or even better, once for an 
object? 
 

 The duplication due to lifespan causes huge file size increment; is there a better way to deal with 
lifespan? 
 

 The viewport getting larger when zooming out which leads to a request of more chunks; hence, the 
delay due to data transmission becomes longer. To avoid this situation, the desired data distribution 
of a tree-organized chunk should be balanced; which means the total amount of data transferred for 
every particular viewport should be almost equivalent. As shown in Figure 6-1, a different data 
organization can be performed to obtain smaller upper chunks. However, because of the duplication 
due to the lifespan; the dividing results require further analysis.  
 

 For now, tree structure of 9km by 9km dataset occupies 0.79MB of memory. In future, suppose a 
20km by 20km dataset is available, the tree structure could take up 6.4MB of memory. Consider the 
size the map of Netherland or Europe. Is it possible to split tree structure script into multiple scripts, 
load a particular part only when it is requested?   
 

 Geometry changes are subtle that are easily being skipped over with a large zoom step. Is there a 
way to magnify the change either within source data or during rendering? For example, generate a 
small amination with frames in between two mouse movements; especially the zoom actions.   
 

 Currently, the unloading function is based on time. Various unloading functions can be attempted 
such as unloading by distance or the number of times a chunk has been required. Unloading by 
distance means to unload chunk(s) that are furthest from the chunks in the current viewport. 
Unloading by times that a chunk has been used means to unload chunk(s) that is not required by 
the current rendering and was required less than a given number of times.  
 

 Both the old and modified program uses only one memory (either the client main memory or the 
GPU memory) partially. It is worthy to develop a memory allocation method that balances CPU and 
GPU memory. For example, store frequently required chunks in the main memory hence no delay of 
server-to-main memory data transfer happens if the chunk was unloaded from the GPU memory.  

 

 As explained in section 2.6, memory slots are allocated sequentially based on an order of time (see 
Figure 2-4). If some memory slots are removed from the GPU memory, will the GPU memory 
become fragmented and discrete? The hypothesized fragmented GPU memory is shown in Figure 
6-2; slots in white express the memory of chunks been unloaded.  
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Figure 6-1: 1:4 octree 

 
Figure 6-2: GPU memory use after unloading (blue slots are occupied while the white ones are empty) 
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Appendix: 

 

 

Figure 1: Legend for Javascript function  
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