

CONSTRUCTION OF RESPONSIVE WEB

SERVICE FOR SMOOTH RENDERING OF LARGE

SSC DATASET

AND THE CORRESPONDING PREPROCESSOR FOR SOURCE

DATA

MSc thesis in Geomatics for the Built Environment

Yueqian Xu

June 2017

on cover:

Maps of a 9km by 9km dataset rendered at 4 different scales

using the web service.

CONSTRUCTION OF RESPONSIVE WEB SERVICE
FOR SMOOTH RENDERING OF LARGE SSC

DATASET
AND THE CORRESPONDING PREPROCESSOR FOR SOURCE DATA

A thesis submitted to the Delft University of Technology in partial
fulfillment

of the requirements for the degree of

Master of Science in Geomatics

By

Yueqian Xu

June 2017

Yueqian Xu: Construction of a Responsive Web Service for Smooth Rendering

of Large SSC Dataset and the Corresponding Preprocessor for Source Data

(2017)

The work in this thesis was made in the:

Supervisors: Dr. Ir. Martijn Meijers
 Prof. Dr. Ir. Peter van Oosterom
Co-reader: Timothy Kol, MSc

Geo-Database Management Centre
Department of the OTB
Faculty of Architecture & the Built
Environment
Delft University of Technology

ABSTRACT

This research focuses on a smooth rendering of continuous 2D map based on a smooth
3D vario-scale geographical data structure. A Space Scale Cube (SSC) offers non-
redundant geometric data for the different level of details. SSC model represents
geographic data as a closed polyhedron, to generate a 2D map; SSC is intersected with the
projection plane; resulting in a set of 2D polygons. However, problems emerge when
creating maps with a large sized SSC dataset under web environment due to limited
bandwidth and decoding speed. Repetitively transmitting data from the server to the
client can be time and bandwidth consuming. A preprocess should be applied to a source
that allows the follow-up development of an online traffic and time-efficient prototype.

After preprocessing, large sized data will be subdivided based on octree algorithm to
minimize transmission time from server to the client; moreover, accessible to WebGL. A
prototype has been developed which enables smooth and timely vario-scale map
rendering against heavy user actions such as fast zooming and panning in a short period.
Modified prototype program allows query of only relevant data chunks by current
viewport position; it prevents repeated loading of same chunks; what is more, repeated
transmission of data from outside to GPU is eliminated. A tree structure is embedded at
the client side that facilitates retrieve time. Rendering happens every frame; hence the
prototype responses to heavy user actions timely. Also, it can obtain coordinates in RD
coordinate system by double clicking. After testing the modified program with a 9km by
9km dataset online, exceptional performance is indicated by a high average frame rate (57
fps) and low main memory occupation (with a network speed at 9MB/s). The prototype
performance is significantly affected by the client network condition; low network speed
can decrease the frame rate. For instance, the web service achieved a frame rate of 47 fps
at a network speed at 6MB/s.

ACKNOWLEDGEMENT

In this section I would like to express my special thanks of gratitude to people that helped
and supported me during the research and the writing of this thesis.

First of all, I would like to thank Martijn Meijers for being an inspiring supervisor.
Without your guidance and tutoring I cannot overcome those problems I encountered.
Thanks you for updating the data according to my research results; just because of this,
the thesis can keep improving.

Next, I would like to thank Peter van Oosterom for the helpful discussions, detailed
feedback that I found really encouraging during the research.

Furthermore, I would like send great thank to Timothy Kol for the tutoring of this fresh
new OpenGL field, as well as for co-reading this thesis, and the valuable comments he
gave. You are always inspiring and willing to help.

Finally, I would like to thank my family and all of my close friends for their continuous
support and comfort. Special thanks go to Arashi for their music being a heartwarming
company while I am studying abroad all alone!

CONTENT

1. INTRODUCTION ...1

1.1 CONTEXT ...1
1.2 MOTIVATION ... 2
1.2.2 PROBLEM STATEMENT & OVERALL GOAL .. 2
1.2.3 SCIENTIFIC RELEVANCE ... 3
1.3 OBJECTIVE .. 3
1.4 RESEARCH QUESTIONS ... 4
1.4.2 SUB-QUESTIONS FOR PREPROCESSING: .. 4
1.4.3 SUB-QUESTIONS FOR CLIENT SIDE DEVELOPMENT: .. 4
1.5 RESULTS CONCLUDED ... 5

2. THEORETICAL BACKGROUND & RELATED WORK .. 7

2.1 VARIO-SCALE DATA .. 7
2.2 NON-UNIFORM OCTREE ... 7
2.3 WEBGL FUNDAMENTAL .. 8
2.3.1 ARRAYBUFFER .. 9
2.3.2 FACE CULLING ... 9
2.3.3 FRAME RATE ... 9
2.4 DATA PREPROCESSING: BINARY FORMAT ... 10
2.5 GPU MEMORY VS. MAIN MEMORY .. 10
2.6 MEMORY MANAGEMENT: GARBAGE COLLECTION (GC)... 11

3. METHODOLOGY DESIGN AND DEVELOPMENT.. 13

3.1 SOURCE DATA PREPROCESSING ... 13
3.1.1 SSC DATASET .. 13
3.1.1 COLOR INFORMATION.. 14
3.1.2 PREPROCESS CONCEPT .. 14
3.1.3 OCTREE ORDER ... 15
3.1.4 NODE STRUCTURE ... 15
3.1.5 BINARY FILE .. 17
3.1.6 DUPLICATION OF TRIANGLES INTERSECTING WITH VERTICAL SPLITTING PLANE 18
3.1.7 BOUNDING BOX FILE .. 20
3.1.8 ALTERNATIVE (SEPARATE FILE FOR MULTI-AFFILIATED TRIANGLES) ... 20
3.2 PROGRAM OF THE CLIENT SIDE .. 22
3.2.1 JAVASCRIPT NODE STRUCTURE .. 22
3.2.2 CLIENT FRAMEWORK ... 23
3.2.3 INTERSECTION TESTING FUNCTION .. 24
3.2.4 LOAD CHUNK FUNCTION .. 26
3.2.5 RENDER CHUNK FUNCTION ... 27
3.2.6 MODIFIED LOADCHUNK & RENDERCHUNK FUNCTION .. 29
3.2.7 RENDERING FUNCTION .. 32
3.2.8 UNLOAD FUNCTION ... 32
3.2.9 PREVIOUS ALTERNATIVE ... 32
3.2.10 USER ACTIONS... 33
3.2.11 VIEWPORT BOUNDING BOX ... 35

4. IMPLEMENTATION DETAILS .. 37

4.1 PREPROCESSING .. 37
4.1.1 DATASET ... 37
4.1.2 FETCH RAW DATA FROM OBJ FILE .. 38
4.1.3 NORMALIZATION OF COORDINATES... 38
4.1.4 MISSING BOTTOM... 39
4.1.5 DETERMINE THRESHOLD AND LIMIT TREE DEPTH ... 39
4.2 CLIENT SIDE ...41
4.2.1 VERTEX SHADER AND FRAGMENT SHADER ... 41
4.2.2 FILL IN CANVAS ... 41
4.2.3 GET GEOGRAPHICAL COORDINATES... 42
4.2.4 SETTINGS ... 43
4.2.5 VALIDATION TECHNOLOGY ... 43

5. RESULTS AND ANALYSIS .. 45

5.1 DATA SIZE AFTER OCTREE DIVIDING.. 45
5.2 EVALUATE PROTOTYPE FUNCTIONS ... 47
5.3 PROTOTYPE PERFORMANCE ... 49
5.3.1 TIME CONSUMPTION ... 49
5.3.2 CPU MEMORY CONSUMPTION ...53
5.3.3 GPU MEMORY CONSUMPTION WITH UNLOAD FUNCTION TOGGLED ON... 57

6. CONCLUSION AND FUTURE WORK .. 59

6.1 CONCLUSION ... 59
6.2 FUTURE WORK... 60

APPENDIX: .. 63

REFERENCE: ... 65

LIST OF FIGURES

Figure 1-1: Concept of traditional tile sets (LoD are fixed; geometry between two levels is missing) 2

Figure 1-2: Brief view of the sample SSC and Leiden city center SSC ... 2

Figure 1-3: Example of anti-reloading and reusing of data in client memory .. 3

Figure 2-1: The space Scale Cube: A single 3D model representing terrain features by closed

polyhedrons. LoD increases from the top to bottom. And the concept of rendering SSC. 7

Figure 2-2: Fundamental WebGL concepts .. 9

Figure 2-3: Relationship between (1) server and client; (2) GPU memory and main memory 11

Figure 2-4: New objects are simply allocated at the end of the used heap. ... 12

Figure 2-5: GC roots, their reachable child objects, and temporally located objects that are marked

and need to be garbage-collected (adapted from Dynatrace, 2017). .. 12

Figure 3-1: Preprocessing concept ... 15

Figure 3-4: Node content .. 16

Figure 3-5: Rough view of tree structure embedded in Javascript... 17

Figure 3-6: Splitting of intersecting triangle leads to more redundancy than duplication 18

Figure 3-7: Pseudo code for intersection detection .. 18

Figure 3-8: Six situations of disjointness ... 19

Figure 3-9: Examples of duplication .. 19

Figure 3-10: Example of Javascript for client tree construction ... 20

Figure 3-11: Separate file for intersected triangles .. 21

Figure 3-12: Pseudo code for generating child nodes .. 22

Figure 3-13: Example of Node content.. 23

Figure 3-14: Client framework ... 23

Figure 3-15: Main functions and operating order in Javascript program .. 24

Figure 3-16: Intersection test function .. 25

Figure 3-17: An example of intersection test procedure .. 25

Figure 3-18: Load chunk function ... 27

Figure 3-19: Example of setting up the vertex and fragment shader .. 27

Figure 3-20: Render chunk function ... 28

Figure 3-21: Modified LoadChunk function. ArrayBuffer is passed to GPU memory only once while

loading the chunk. .. 30

Figure 3-22: Modified RenderChunk function. Instead of sending data from main memory to GPU,

data is fetched from GPU memory directly. ... 30

Figure 3-23: Example of node content updated after three mouse movements 31

Figure 3-24: Rendering function .. 31

Figure 3-25: Unload function to release GPU memory .. 32

Figure 3-26: Alternative for static rendering of intersecting chunks .. 33

Figure 3-27: Abridged general view of panning and zoom .. 34

Figure 3-28: z value versus zoom factor .. 34

Figure 3-29: updating mouse movement parameters .. 35

Figure 3-30: Update mouse movement parameters ... 35

Figure 3-31: Web browser viewport in WebGL rendering space and its expression 36

Figure 3-32: The relationship of the viewport extent and zoom factor ... 36

Figure 3-33: Update viewport bounding box .. 36

Figure 4-1: SSC model containing vertical triangles... 37

Figure 4-2: Pseudo code for coordinates normalizing ... 38

Figure 4-3: Example of the “missing bottom” problem and upper chunk with triangles duplicated

based on the lifespan .. 39

Figure 4-4: Specific shader used in this thesis and the manipulation of each vertex 41

Figure 4-5: Steps to fill in the web browser canvas .. 42

Figure 4-6: Modify viewport bounding box with actual model extent .. 42

Figure 4-7: The way to get real geographical coordinates and the example of this function 42

Figure 5-1: Geometry change with zoom step = 0.95 ... 47

Figure 5-2: Geometry change with zoom step = 0.99 .. 48

Figure 5-3: Obvious gradual change .. 48

Figure 5-4: Validation of no repetitive loading of already loaded chunks .. 48

Figure 5-5: Validation of the prototype accuracy ... 48

Figure 5-6: A typical workflow of intersection checking, loading, and rendering (old program; load

one chunk: 15ms) .. 50

Figure 5-7: A typical workflow of intersection checking, loading, and rendering (modified program;

load one chunk: 50ms) ... 50

Figure 5-8: Time consumption for pure tree traversal and rendering (old program: more than

30ms) .. 50

Figure 5-9: Time consumption for pure tree traversal and rendering (modified program: less than

10ms) ... 50

Figure 5-10: Javascript frame chart during 2581ms to 5632ms (Modified program: low fps due to

loading of chunks and data transmission to GPU) ... 51

Figure 5-11: Javascript frame chart after most chunks are loaded (Modified program: high fps) 51

Figure 5-12: delays for data transmission (from main memory to GPU) cause low fps (old program) 52

Figure 5-13: Relative low fps due to delay of data transmission through network (modified

program) ... 52

Figure 5-14: Higher frame rate at bandwidth = 9MB/s ... 53

Figure 5-15: Memory allocation at loading of Leiden dataset .. 53

Figure 5-16: Memory allocation after traversing through Leiden dataset .. 54

Figure 5-17: The 9km by 9km dataset memory use when loaded ... 54

Figure 5-18: Memory use after traversing most of the chunks of 9km by 9km dataset 54

Figure 5-19: Examples for memory slots of Array object and ArrayBuffer object (old program) 55

Figure 5-20: Memory usage right after initial loading and heavy user actions 56

Figure 5-21: Memory usage if idle the browser for seconds .. 56

Figure 5-22: Main memory usage and WebGLBuffer number after two user actions 56

Figure 5-23: Examples for temporal memory slots of ArrayBuffer object and a spatial but empty

memory slot for WebGLBuffer object in main CPU memory .. 57

Figure 5-24: GPU memory usage at different stages.. 58

Figure 6-1: 1:4 octree ... 61

Figure 6-2: GPU memory use after unloading (blue slots are occupied while the white ones are

empty) .. 61

LIST OF TABLES

Table 3-1: OBJ file content and data type .. 13

Table 3-2: A brief view of actual content in OBJ file ... 14

Table 3-3: Class id versus RGB values .. 14

Table 3-4: A slice of the binary file and the size in byte .. 17

Table 3-5: (a) Separate files, (b) Size of separate files ... 20

Table 3-6: Content for one vertex in GLSL, including position, RGB values, and offsets used to

fetch specific attribute ... 27

Table 4-1: Dataset details ... 38

Table 5-1: Data size of the Leiden dataset and the 9km by 9km dataset ... 45

Table 5-2: Performance of the 9kn by 9km dataset .. 45

Table 5-3: Comparison of chunk size of Leiden dataset ... 46

Table 5-4: Comparison of chunk size of 9km x 9km dataset ... 46

Table 5-5: Size of upper half/ lower half chunks of 9km by 9km dataset (without lifespan) 47

Table 5-6: Size of upper half/ lower half chunks of 9km x 9km dataset (lifespan involved) 47

Table 5-7: General performance comparison between old and modified program 50

Table 5-8: Most time-consuming calls during a complete performance recording........................... 51

Table 5-9: General performance of three datasets at different states (old program) 54

Table 5-10: Main memory use of the modified program at different stages 56

Table 5-11: Total GPU memory usage at 3 stages with the unload function switched on for the 9km

by 9km dataset ... 57

ACRONYMS

BBOX Bounding Box

CPU Central Processing Unit

CRS Coordinate Reference System

DOM Document Object Model

GC Garbage Collection

GLSL Graphic Library Shader Language

GPU Graphics Processing Unit

HTML Hyper Text Markup Language

HTTP Hypertext Transfer Protocol

KB kilobytes

LOD Level of Detail

MB Mega bytes

OBJ Object file

OGC Open Geospatial Consortium

RAM Random Access Memory

RGB Red Green Blue

SSC Space Scale Cube

tGAP topological Generalized Area Partitioning

WebGL Web Graphic Library

WMS Web map service

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 1

1. Introduction

1.1 Context

Geographical data are widely applied in various territories such as urban planning, civil
engineering, resource management, transportation management and much more. In
order to provide the users with the map at the scale which is close to what they want,
traditional map generalization method uses vector or raster format tile sets produced at
several scale levels and stored at the server side for the users to request them (Huang,
2016). It has a fast responsiveness to user interactions such as panning and zooming.
However, it leads to an unavoidable loss of details between two fixed and discrete scales.
Figure 1-1 gives the concept of traditional tile sets produced at fixed levels of details,
geometry change between two levels cannot be revealed.
It is stated by Suba, Meijers and van Oosterom (2013) that a Space Scale Cube (SSC)
offers non-redundant geometric data for the different level of details. SSC model
represents geographical data as closed polyhedrons; 2D maps are generated by
intersecting SSC with a projection plane. By orthographic projection, terrain features at
the specific level of details (LoD) can be represented by a set of 2D polygons casting upon
that plane. The gradual transition of a terrain feature is realized by moving the plane
downwards. Polygons intersecting with projection plane are then transmitted to GPU in a
format that is accessible to the graphic processor. To fetch data as precise as possible to
save time and online traffic, source data are divided into small chunks based on octree
algorithm. Three datasets are available: a sample smooth SSC with four objects, a classic
SSC of Leiden city center and a relative large classic SSC covering 9km by 9km area.
Figure 1-2 (a) and (b) provides a rough sight of the smooth sample and Leiden dataset
that will be used in this research respectively. The concept “lifespan” is involved to avoid
“missing bottom” problem. The bounding box of each chunk is used as a reference by
which the corresponding chunk can be concisely requested.
Currently, there is no technology for the smooth and timely rendering of large SSC
datasets that is also applicable for the domestic consumer (who has no basic knowledge of
map services) such as a map rendering prototype based on simple web service. This
project is aimed at developing a web-service based prototype to satisfy above-mentioned
requests. As a reflection of the development procedure and final results, this report
consists of the motivations and objectives of the project, theoretical support for essential
concepts, detailed developing steps, prototype performance, and the possible future
research directions.

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 2

Figure 1-1: Concept of traditional tile sets (LoD are fixed; geometry between two levels is missing)

adapted from OGC, (n.d.)

 (a) smooth SSC (b) SSC of Leiden city center

Figure 1-2: Brief view of the sample SSC and Leiden city center SSC

1.2 Motivation

1.2.2 Problem statement & overall goal

Recently, various efforts have been made to design file formats for transmission of 3D
geometry, for the use with high-performance 3D applications on the Web. The existing
solutions either send all data within a single batch, or they introduce an unnecessarily
large number of requests. However, limited bandwidth pairing with the limited
computational power of Javascript environment leads to a bottleneck (Ponchio, 2016). A
dataset covering 9km by 9km area results in a binary file larger than 200MB. Imaging, a
dataset comprising the whole Netherland, or even the whole Europe will be available. It is
impossible for a web-service based prototype to generate a map with complete data as a
whole. As a service facing domestic consumers, web service pursues fluent performance
and fast responsiveness. Hence, preprocessing and subdividing of source data are
indispensable.

To transfer only parts of data to the client, it requires partitioning of the dataset. In
previous work (Rovers, 2016), R-tree was used as a spatial dividing method; however,
drawback appears when objects are holding a long lifespan. All triangles belonging to this

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 3

long-lived object will be transferred if intersection plane intersects with the bounding box
of the object which causes redundancy (redundancy means the transmission of unneeded
data). In this case, another dividing method, octree, is tested and evaluated.

What is more, incompatibility exists between coordinate reference system (CRS) of
source data and CRS of WebGL. This conflict calls for a proper transformation between
two CRSs and; also, a manipulation of user interaction parameters so that they can
interact with the transformed source data.

The ultimate goal is to implement a web-based service along with its preprocessor that
scales well with large data sets, enables fast and smart transmissions of preprocessed data
chunks, eliminates decoding time through direct GPU uploads, minimizes the number of
HTTP requests by reusing data in client memory. Figure 1-3 gives a brief understanding
of the concept: “smart fetch.” Only chunks intersecting with current viewport are
requested. Box in dash line represents the current viewport, chunks marked in red are
chunks need to be loaded; chunks in blue represent chunks in client memory. As shown
in Figure 1-3, for the second user action, although chunk 300, 21 and 20 are intersecting
with the current viewport, no HTTP request will be generated for them. Instead of
fetching these chunks from the server, they can be directly obtained from 3 distinct
memory slots (either from main memory or GPU memory).

Figure 1-3: Example of anti-reloading and reusing of data in client memory

1.2.3 Scientific relevance

An efficient prototype would contribute to the continuing research on vario-scale data by
van Oosterom and Meijers (2013) and van Oosterom et al. (2014). There is currently no
web service for smart data requesting and smooth rendering of large SSC dataset. Rovers
(2016) developed a web service to explore spatial access for caching and retrieval of SSC
data; WebGL rendering was not involved in that research. Driel (2015) implemented a
web-based approach for the real-time intersection on SSC data; smart fetch of chunks
according to viewport position remained unaccomplished.

1.3 Objective

Subsection 1.2.2 defined the overall goal of the research. The primary object is to design
and develop a web service for smooth rendering and smart fetch of minimum redundant
preprocessed data against fast and heavy user actions. Delay during data transmission
should be minimized and decoding at client side (by Javascript) should be eliminated as

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 4

well. What is more, the web service should be enriched with user interactions. To achieve
the overall goal, this research designs, implements and validates the performance of the
web service. Concrete objectives are:

1. Divide source data based on octree algorithm with a well-defined chunk size
limitation.

2. Serialize and format data to eliminate decoding time at the client side.
3. Solve the inaccordance between WebGL and source data CRS.
4. Viewport position according to user actions should be accurately defined and be

updated in time.
5. Query relevant chunks by current viewport position.
6. Prevent repetitive loading of chunks already in client memory to save

transmission time as well as memory usage.
7. Timely rendering, i.e. if the data transfer between the client and server is

underway, the prototype should be able to render chunk(s) that are already in
GPU independently in irrespective of the whole loading progress is completed
or not.

8. Other user interactions enrichment, i.e. Fetching coordinates by double click at
a point a client is interested in.

1.4 Research questions

Primary research question - What is the architecture of web service that enables
smart SSC data fetching for smooth and simultaneous rendering against fast user
actions?

The following sub-questions have to be answered to reach the primary research question:

1.4.2 Sub-questions for preprocessing:

1. In the existing OBJ files, vertices and triangles can be distinguished by the
starting character of each line. However, it has already been proved that
progressively comparing and parsing strings (decoding) of a static file is slow
under Javascript environment. How should the text-based source files be
formatted? Is binary format a possible arrangement under this circumstance?

2. How should the original dataset be structured and serialized so that it can be
directly accessed by GPU?

3. During the spatial organization, what is the affiliation of a triangle if it is
intersecting with multiple octants? What will the size change regarding this
dividing method?

4. What will be the difference in total file sizes resulted from octree dividing with
different thresholds (size of max amount of triangles in one chunk)?

1.4.3 Sub-questions for client side development:

1. How should the octree structure be reflected in Javascript? How should the
chunks be indexed?

2. How to define a viewport bounding box and how to update it regarding user
actions?

3. If a user is repetitively zooming in/out during a short period, will there be
overload? How to update buffer data and vertex number without the unloading of
all chunks that were requested by previous render request?

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 5

4. What is the prototype program that allows dynamic loading and rendering of
single chunk?

5. Is the prototype performing well with predefined chunk size limit? What is the
memory consumption?

1.5 Results concluded

This thesis presents an approach for large dataset preprocessing and construction of a
web service-based prototype that enables simultaneous rendering of concisely requested
chunks. Following conclusions are obtained:

Preprocessing - The binary format has been proved as a possible data format for
WebGL data transmitting and rendering. Source OBJ file is encoded as a Float32Array;
the resulted typed array can be directly accessed by the graphic processor. The current
octree dividing method causes 30% volume increment to Leiden dataset; a huge (475%)
volume increase to the 9km by 9km dataset 500KB (max 4 levels) chunk size threshold.

Client program - A node structure reflecting octree structure containing necessary data
elements is generated in Javascript to store data in client memory. Node structure is
updated regarding every mouse movement; render function conducts a tree traversal
every frame to ensure that the prototype responds to fast user actions simultaneously.
Prototype program allows accurate chunk(s) requesting and loading, moreover, non-
repeat loading. Chunks loaded once are stored in client random access memory (RAM),
waiting for a next invoking. Rendering function communicates only with client memory
and runs in parallel with other functions.

Performance - Prototype performs well with the largest currently available dataset
without any halt; by using the modified program in local server mode, average fps can be
increased to 57. The performance in online mode is significantly affected by user
bandwidth; for a bandwidth = 6MB/s, obvious halt can be observed when zooming out
and the average frame rate is around 47. If the bandwidth is upgraded to around 9MB/s,
the frame rate increases to 57 fps although unstable.

Memory use - Main memory garbage is removed automatically; speculated GPU
memory use would be 240MB while the total RAM occupation including browser
framework will be around 500MB (the 9km x 9km dataset with 1135 chunks produced).
With the unloading function activated, enough GPU memory can be effectively retained.

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 6

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 7

2. Theoretical background & related work

This chapter gives a background for the research. The theoretical concepts those are vital
for comprehending the methodology design are described below. These core concepts
include vario-scale data in SSC model, normal octree structure for data splitting, data
rendering procedures using WebGL and some terminologies. What is more, data format
and serialization to enter GPU, a brief explanation of client memory usage and
management are included as well.

2.1 Vario-scale data

Instead of storing separate layers for discrete scale levels, a spatial model called Space
Scale Cube (SSC) was designed and described in van Oosterom and Meijers (2013) and
van Oosterom et al. (2014). A classic SSC (as shown in Figure 2-1 (a)) is created by
extruding the original data into an additional dimension; the 2D area objects are now
presented as a 3D volume. However, the model is still based on the considerable amount
of discreteness. Figure 2-1 (b) gives a smooth SSC within which a small change in map
scale results in a small geometry change so that continuous changes will turn to a gradual
transition. A dataset based on the SSC model is represented as closed triangular-meshed
polyhedral. Minor changes in map scale can be realized by moving an intersection plane
down/upwards. A map can be seen as a rectangle raster at the viewport size which
intersects with SSC. By orthographically projecting all points on the intersection plane
downwards; the color of the first polyhedron each point hits is the color of that point on
the map (as shown in Figure 2-1 (c)). On account of the rendering principle, vertical
polygons make no contribution to orthogonal projection; therefore, only oblique triangles
are kept after preprocessing to shrink data size. Moreover, not all polygons are needed for
each rendering; only polygons in chunk(s) that is intersecting with the current viewport
are concerned which further optimizes the data size.

Figure 2-1: The space Scale Cube: A single 3D model representing terrain features by closed polyhedrons.

LoD increases from the top to bottom. And the concept of rendering SSC. Adapted from van Oosterom et al.
(2014).

2.2 Non-uniform octree

To allocate data into small chunks and to have a well-organized indexing, a tree structure
should be involved. A normal octree is a tree structure in which each internal node has
exactly eight children resulted by evenly dividing each side of their parent node into two

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 8

parts. Different from the normal one, a non-uniform octree allows different depth levels
in each branch. Such a tree structure possesses the following advantages:

1. The bounding box of each chunk can be easily calculated at different levels.
2. It allows non-uniformly sized chunks. Geometry density can differ a lot regarding

terrain types (e.g. residential area against rural area).
3. It is straightforward. Recursively divide one chunk until its leaf node size does

not exceed the threshold. A limitation of maximum tree level is also able to be
restricted to prevent very deep tree structure which contains a large amount of
small sized chunks to balance HTTP request number.

One drawback of octree structure is the inflexibility of allocating triangles intersecting
with splitting planes. Details about octree dividing and triangle placement will be
introduced in Chapter 3. Another disadvantage of this tree structure is that a tree
structure reflecting the splitting (in preprocess) must be hard coded in Javascript to
generate the same indexing at the client system. It decreases the automation and
flexibility of the whole program.

2.3 WebGL fundamental

WebGL runs on the GPU on a computer; therefore the client needs to provide the code
that can be recognized by a GPU processor. The code should be provided in the form of
pairs of functions. For instance, a vertex shader and a fragment shader, are two essential
functions for GPU rendering. According to WebGLFundamentals (2015), they should be
written strictly in a, as stated, “ C/C++ like language called GLSL (GL Shader Language).”
A rendering program is composed by pairing all these functions.

A vertex shader is crucial for the vertex position computation. Based on the positions
manipulated by the function, various kinds of primitives including points, lines, and in
this case, triangles can be rendered by specifying a primitive type when calling the
gl.drawBuffer method. During the rasterization, a second user-supplied function
“fragment shader” is then involved in computing RGB values for each pixel of the current
primitive.

Set up states for these functions; for each chunk that requires a draw call, a bunch of
states should be set up. Then, by calling gl.drawElements or in this case, gl.drawArray,
shaders are executed on the GPU.

Although the web prototype canvas is a 2D surface, WebGL rendering space is actually in
3D; the additional z-direction is used for depth testing. Pixels differing only by their z-
coordinate correspond to the same pixel on the screen, as described by Nyman (2013),
“their z-coordinates are used to determine which one hides the other one.” Coordinates in
all three axes range from -1.0 to +1.0; keep in mind this is the only coordinate system
natively recognized by WebGL. A transformation between world CRS (e.g. RD system)
and WebGL system becomes significant Figure 2-2 (a) shows the native WebGL CRS.
Figure 2-2 (b) explains the concept: near z plane. A near z-plane can be seen as the
camera plane, everything above it will be cut away (although it is rendered, you cannot
see it because it is above you). While moving near z plane from the top of SSC
downwards, changes of map scale are performed.

Except for the organization of data, another primary goal of our preprocessor is to
process source data so that it can be fitted into WebGL CRS and output it in the form of
GL Shader Language.

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 9

 (a) WebGL coordinate system (b) Near z plane
 (WebGL fundamentals, 2016)

Figure 2-2: Fundamental WebGL concepts

2.3.1 ArrayBuffer

Usually, buffers contain vertex positions, normals, texture coordinates, vertex colors, etc.;
those contents are binary formatted and serialized in an order that is understandable to
WebGl. Attributes are used to specify how to fetch, manipulate data from buffers, and
provide them to the vertex shader. For example, positions can be put in a buffer as three
32-bit floats (x, y, z) per position. You would tell a particular attribute from which buffer
to obtain vertex position information, what type of data it should take out (e.g. three
component 32-bit floats), where do the positions start, and how many bytes one vertex
retains. GL Programming (n.d.) introduces the next steps of processing.

1. Clip primitives, color them by the above-mentioned fragment shader function.
2. Coordinates from source data are transformed to WebGL coordinates.
3. Rasterize the clipped primitives to pixel fragments.

The particular ArrayBuffer format and its content used in this case are described in Table
3-6.

2.3.2 Face culling

According to OpenGL (2016), in computer graphics, triangles primitives haves a
particular face orientation; face culling determines whether the triangle is visible or not.
Facing is defined by specifying the order of vertices (either clockwise or counter-
clockwise) that compose the triangle as well as the order in which they are projected on
the screen. If it is specified that a front-facing triangle follows a clockwise winding order,
but the triangle projected on the screen follows a counter-clockwise winding order, then it
will not be drawn.

2.3.3 Frame rate

Frame rate, expressed in fps (frame per second), is a significant indicator of the prototype
performance. This parameter indicates the number of frames displayed in an animated
display in a second. In our case, the rendering of one specific chunk will not start until
data transmission is completed. Typically, the maximum fps of a web browser is limited
to 60; therefore, an fps that closer to 60 indicates a shorter delay before the data is finally
passed to the client GPU.

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 10

2.4 Data preprocessing: binary format

Louis-Rosenberg (2012) stated in his work that rather than loading a meshed OBJ file,
processing it, and putting into arrays that could be sent to a GL buffer increases the client
performance significantly. Binary data that could go directly into GPU will be a suitable
data format. The binary representation of a mesh that exactly mirrors the data which
should be sent to an array buffer consists of a list of 32-bit-oats representing the vertex
data (6 for each vertex with position x, y, z, and normals) followed by a list of 16-bit
integers representing triangle indices. The word "little-endian" means the least significant
byte comes first in the array. The majority of standard systems (x86, x86-64, IOS) use
little-endian. Therefore, the float value should be written in little endian.

In this case, 32-bit floats are used. During preprocessing, by specifying an order for all
triangles and enabling face culling, normals are no longer needed; only vertex position
and its color are finally stored in ArrayBuffer. The attribute “vertex position” is followed
by another attribute essential for rendering: “vertex color.” Vertex color is formed by RGB
values of this vertex. WebGL recognizes RGB values in range 0 to 1; hence, floats are also
suitable for vertex color values. The resulted data can be directly fetched with an HTTP
request as an ArrayBuffer object. No new storage needs to be allocated because both the
vertex and color arrays use the same ArrayBuffer with different offsets.

The transforming between byte kilobyte and megabyte is declared here:

1 megabyte (MB) = 1000 kilobytes (KB) = 1x106 bytes (B).

2.5 GPU memory vs. Main memory

Some GPUs use their memory that’s separate from main memory. Other GPUs share the
same memory as the rest of the system. According to Nyman (2013), as a WebGL
developer, it is inexplicit which memory system the client machine uses. Some important
notes are:

 The very first step is uploading data to appropriate WebGL data structures.
Uploading means copying data from main memory to GPU memory. In this case,
a particular WebGL data structure is WebGL buffer (ArrayBuffer in binary format
as mention above).

 Rendering is fast after data transmission.

 Data transfer is relatively slow.
Consider GPU as a fast and efficient machine while working independently, but one that
takes long to communicate with main memory. Therefore, ensure that most of the
communications are made ahead of time and concisely. Though not all GPUs are so
isolated from the rest of the system — but WebGL forces us to think in these terms so that
the Javascript program must run efficiently no matter what particular GPU architecture a
future client uses. No matter what kind of GPU architecture it is, the communication
between GPU and server should be minimized. Figure 2-3 provides a general relationship
between client and server as well as the relationship between main memory and GPU
memory. A client contains following components: the prototype, Javascript scripts and
HTML scripts, main memory and GPU memory. The only element contacting with the
server through network component is the main memory; GPU memory fetches data from
main memory slots. A better program that eliminates communication of GPU with the
outside should allow data to be directly stored in GPU memory.

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 11

Figure 2-3: Relationship between (1) server and client; (2) GPU memory and main memory

2.6 Memory management: Garbage collection (GC)

According to Denning (2005), in computer science, if one (or more) memory slot is
frequently accessed, the memory access pattern should be well defined for efficiency. Two
types of access patterns are commonly conducted– temporal and spatial locality. Denning
(2005) defines temporal locality as the reuse of specific data within the relatively small
time period. Spatial locality stands for the use of data within relatively close storage
locations. In our case, node data elements are updated and located in main memory
spatially so that they can be invoked later faster.

Garbage collection (GC) is an automatic memory management system (TIBCO, n.d.)
widely available for object-oriented programming languages including Javascript.
Dynatrace (2017) stated that “with a built-in garbage collection, developers are allowed
to create new objects without worrying about memory allocation and deallocation
because garbage collector automatically reclaims memory for reuse.” Peyrott (2016)
describes a memory leak as the memory occupied by one object is not recovered although
the object is no longer required by an application. GC facilitates a prototype with less
boilerplate code while eliminating memory leaks.

Figure 2-4 briefly explains how memory management works for an object-oriented
language. Objects currently in use are tracked, and everything else is designated as
garbage. The blocks filled in blue represent heap memory (occupied memory), which are
the memory slots used for dynamic allocation while the shaded blocks are free memory.
In most configurations, the operating system allocates the heap in advance while the
program is running. It works in the following pattern:

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 12

1. An object generation claims a memory slot and moves the offset pointer forward.
The next object will be allocated at this offset (in between the filled block and
shaded block) and claims the next memory slot.

2. If an object is no longer in use, the garbage collector reclaims its underlying
memory and reuses it for future object generating.

Figure 2-5 presents the configuration of GC roots. Objects that are no longer referenced
(temporal located) causing classic memory leaks are removed by GC system. To
determine which object is causing a memory leak, most GCs uses a mark-and-sweep
algorithm; the algorithm consists of the following two steps as summarized by Peyrott
(2016):

1. The garbage collector builds a list of "roots." Roots are global variables whose
reference is kept in code. In JavaScript, a "window" object acts as a root and is
always reachable; hence GC considers it, and all of its child objects as reachable
(spatially located) objects as well.

2. Memory slots that are unreachable are then marked as free, swept from heap
memory.

For our research, an ideally designed program should be light and alive, which means all
necessary data for rendering is accessible directly from memory (it requires proper
referencing); moreover, memory for preprocessing at client side (i.e. unnecessary for
forwarding rendering) should be marked as garbage memory which can later be
automatically reclaimed.

Figure 2-4: New objects are simply allocated at the end of the used heap (adapted from Dynatrace, 2017).

Figure 2-5: GC roots, their reachable child objects, and temporally located objects that are marked and need

to be garbage-collected (adapted from Dynatrace, 2017).

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 13

3. Methodology design and development

The basic preprocessing concept is generating small binary files containing elementary
geometry and color information in the form of GLSL that goes directly into GPU. Chapter
3 describing the steps designed to achieve the main objectives consists of two parts: the
preprocessing of source data and the program designed for client side. The first part
includes the introduction of existing SSC dataset, the rough concept of preprocessing, tree
structure used and the corresponding node structure, the serialization of binary
formatted data, and the affiliation of triangles while splitting. The second part consists of
the node structure in Javascript reflecting what was produced during preprocessing, the
framework of client program as well as the development of each function in the program.

Details related only to this research such as the simplification of source data and the
missing bottom problem are explained in Chapter 4.

3.1 Source data preprocessing

3.1.1 SSC dataset

Content and data type of the original OBJ file is shown in Table 3-2. Lines starting with
“v” represent vertices, the following three floats are x, y, and z coordinates respectively. A
“g” indicates the beginning of a new object; the following four values are object id
(integer), class id (integer), which will be used as a color reference later, minimum and
maximum lifespan (integer). To counter the “missing bottom” problem (see subsection
4.1.4), the concept “lifespan” is involved. Minimum lifespan is the z value at which an
object appears for the first time, and it lives until the maximum lifespan is reached. An
object line is always followed by several lines starting with “f” which represent triangles
composing this object. A triangle line contains three integers: index of vertex forming the
triangle; the order of the vertices is defined as counterclockwise. Table 3-2 gives a brief
view of the actual content in source OBJ file.

OBJ File

v x coordinate (float) y coordinate (float) z coordinate (float)

g Object id (int) Class id (int) Lifespan min (int) Lifespan max (int)

f Vertex index 1 (int) Vertex index 2 (int) Vertex index 3 (int)

Table 3-1: OBJ file content and data type

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 14

OBJ File

v 93851.3255 463551.399 378

v 93848.358512 463548.100973 378

…

g 1001706 13000 437 506

f 114803 114802 114801

f 114801 114804 114803

….

g 1001704 12400 435 452

Table 3-2: A brief view of actual content in OBJ file

3.1.1 Color information

The other source file is the color information list which can be downloaded from
kadaster.nl. Each class id obtained from OBJ file has corresponding RGB values (0-255).
Table 3-3 shows an example of the color information of objects with class id “13000”.

Color information

Class id 13000 example

Red Value 255

white Green Value 255

Blue Value 255

Table 3-3: Class id versus RGB values

3.1.2 Preprocess concept

The basic preprocessing concept is generating small binary files containing elementary
geometry and color information in the form of GLSL that goes directly into GPU. Figure
3-1 shows the rough preprocessing procedure. Data will be obtained from source files,
processed and stored in a root node. If the root node contains more triangles than the
predefined threshold, it will be divided into eight smaller chunks based on the dividing
and duplication algorithm explained in subsection 3.1.6. This step is recursively
conducted until the size of nodes at the lowest level is below the limit. If a node needs to
be subdivided, it becomes a parent node; the bounding boxes of its eight children nodes
are generated and written into a separate text file. The output files include the binary files
of nodes at the lowest level of each branch and the bounding boxes of 8 children of every
parent node. The detailed steps are explained in the following subsections.

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 15

Figure 3-1: Preprocessing concept

3.1.3 Octree order

The dividing of SSC dataset follows the standard octree algorithm, if one octant is larger
than a given size, it will be recursively subdivided by the central plane in each direction,
results in eight child octants. The order and index of child octant are shown in Figure 3-2.

3.1.4 Node structure

An octant is constructed as a node structure in C++; Figure 3-4 demonstrates the content
of a node. Every node contains five data items: chunk level, chunk id, data in a chunk,
chunk bounding box and children list of the chunk.

 Chunk-level (integer)
After fetching all raw data, a root node which contains all triangles in SSC model is
constructed. The initial root level is 0. Afterward, every subdivision results in a lower
level. For example, the tree shown in Figure 3-2 is a three level tree. The leaf nodes in
different branches have different levels; chunk 00 at level 1 is the leaf node for branch 0
while chunk 0400 at level 3 is the leaf node for branch 4.

 Chunk id (string)
Chunk id can be seen as the name of a chunk; id of the root node is “0”, which is the index
of the chunk before any subdividing. Afterward, append the index of an octant to its
parent’s chunk id after every subdividing until the lowest level of the branch is reached.
Chunk id is also used as the binary file name of the corresponding chunk.

 Data in chunk (list of floats)
Data of the triangles in this chunk. Data that is necessary for octree dividing and binary
file outputting including coordinates of triangles in this chunk, corresponding color
index, and lifespan is kept in this list.

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 16

 Chunk bounding box (list of floats)
The bounding box is defined by its lower left (LL) corner and upper right (UP) corner.
Coordinates of LL corner followed by what of UP corner compose the bounding box list.

 Children of the chunk (list of nodes)
If the chunk needs a subdivision, the resulting child nodes (follow the same order as
shown in Figure 3-2) will be kept in this list. Nodes for chunks at the lowest level have an
empty child list. Figure 3-5 gives an intuitive view of the list of nodes.

 Figure 3-2: Order of children Figure 3-3: Chunk id at different levels

Figure 3-4: Node content

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 17

Figure 3-5: Rough view of tree structure embedded in Javascript

3.1.5 Binary file

If the size of all leaf nodes of a branch is below the given limitation, data of each leaf node
is then binary formatted and written into a bin file which is named after the node id. Only
leaf nodes result in the outputted binary files. Table 3-4 shows a slice of binary file
content, x, y, z coordinates are followed by their R, G, B values. Each value is a binary-
formatted 32-bit float which occupies 4 bytes, hence, 24 bytes for one vertex, 72 bytes for
one triangle. One value followed by another, without any white spaces or end of the line.

x1 y1 z1 R G B x2 y2 z2 R G B x3 y3 z3 R G B

0.7 0.3 0.5 1.0 0 0.5 0.8 0.4 0.2 1 0 0.5 0.7 0.3 0.5 1 0 0.5

12 bytes 12 bytes 12 bytes 12 bytes 12 bytes 12 bytes

Table 3-4: A slice of the binary file and the size in byte

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 18

3.1.6 Duplication of triangles intersecting with vertical splitting plane

The allocation of triangles to child nodes always follows an order; hence, a triangle with
multiple affiliations will be taken by the node with the smallest index and will be missing
in another chunk. Therefore, missing of geometries at chunk boundaries might occur. The
ideal design should be as less geometry in each chunk as possible; however, regardless of
whether the intersecting triangle is split up, generating two new vertices or it is
duplicated, redundancy occurs. Figure 3-6 explains the reason why duplication of multi-
affiliated triangles is used in this research. Assume the triangle in the figure is split up, for
example, left polygon needs to be triangulated first and results in two new triangles. In
this case, splitting causes 216 bytes redundancy while only 144 bytes are caused by
placing the triangle in both chunks. Therefore, this kind of triangle will be assigned into
all chunks it is intersecting with.

Figure 3-6: Splitting of intersecting triangle leads to more redundancy than duplication

Pseudo code for intersection detection is summarized in Figure 3-7. Instead of
complicated intersecting situations, situations of disjointness can be easily listed out. Six
cases of disjointness are given in Figure 3-8. To test the intersection with one child node
bounding box, for every triangle in its parent node, the triangle does not belong to this
child node if one (or more than one) of those cases is fulfilled. Two examples of
duplicated triangles are shown below. In Figure 3-9 (a), the triangle intersecting with
chunk 1 and chunk 2 will be added into both chunks. In Figure 3-9 (b), the triangle is
disjoint with chunk 1; however, its lifespan indicates its existence in chunk 1.

Figure 3-7: Pseudo code for intersection detection

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 19

Figure 3-8: Six situations of disjointness

 (a) Example of duplication due to vertical splitting (b) Duplication due to horizontal splitting

Figure 3-9: Examples of duplication

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 20

3.1.7 Bounding box file

Other than that only leaf node are outputted as binary files; a complete bounding box tree
is generated. If a chunk needs subdivision, write its child nodes bounding boxes as a list
of lists; each member list is composed by coordinates of the lower left and upper right
corners of bounding box followed by a “depTogo” indicator. If the chunk needs a
subdivision, depTogo equals to 1. Otherwise, it is 0. The order of member lists follows the
same order as the child nodes in the octree. The bounding boxes will be processed and
outputted as a Javascript automatically. Figure 3-10 gives an example of the outputted
bounding box Javascript script of a two level tree (a subdivision of chunk 00). “box0”
contains bounding boxes of all chunks after the first division. A subdivision was carried
out in chunk 0; resulted bounding boxes are stored in list “box00”. The Javascript script
will be later used to embed a tree structure at client side (see details in subsection 3.2.1).

Figure 3-10: Example of Javascript for client tree construction

3.1.8 Alternative (separate file for multi-affiliated triangles)

Duplicated triangles lead to an increment of file size; an alternative by which all triangles
holding multiple affiliations are stored in a separate file was come up with initially. The
initial idea was, as shown in Table 3-5 (a), generating separate files for every two adjacent
chunks to store those “shared triangles”. A file size test was carried out in advance, it was
found that even the total size of “shared triangles” in upper half chunks is small (2.4%)
compared with the size of the whole model, let alone the file size for every two chunks
(will be 0.6% of the total size). Considering that it takes relatively long to communicate
with GPU from the outside, it will be very consuming to take separate operations for such
small files. Therefore, this alternative was abandoned.

Table 3-5: (a) Separate files Table 3-5: (b) Size of separate files

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 21

Figure 3-11: Separate file for intersected triangles

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 22

3.2 Program of the client side

3.2.1 Javascript node structure

To fetch exact chunk(s), a node structure similar to what was used in octree dividing is applied to
construct a tree structure at the client side. In Figure 3-13, data elements of a node including BBox,
depth to go, intersection status, loading status, a buffer of triangles in this node, the number of vertices,
a WebGL buffer object and children of the node are listed out. The initial value for each data element is
given in column 1; Data types are listed in the second column. The third column provides an example of
a root node.

Node bounding box is a list of 6 floats which composed by the lower left corner and right up corner
coordinates of this parent node. “Depth to go” of a root node equals to 1 if the node is subdivided; this
value for child nodes equals to the last value of the corresponding child node bounding box list.
Intersection status indicates whether the node is intersecting with the current viewport or not. Loading
status indicates whether the corresponding bin file has finished loading from the server into client’s
main memory or not; once the loading is completed, “loaded” will be turned to true. Loading is the
process including fetching data from the server, transferring data through the network and retaining a
corresponding memory slot in client memory; it is significantly affected by network speed. Triangle
buffer is a Float32Array which contains all data obtained from bin file. A number of vertices can be
easily calculated from triangle buffer length. While loading a .bin file, a WebGL buffer object is
initialized for later data storing. If a parent node is subdivided, its child nodes will be inserted into
children list by the pseudo codes shown in Figure 3-12. Take the case in Figure 3-10, rootNode0 is the
tree_root illustrated in Figure 3-13; list “box0” is a list of lists containing all bounding boxes and depth
to go indicators of child chunks (after first dividing) of the tree root. For every child node, a new node
structure is initialized, and its “BBox” is filled in with the first six floats of the corresponding list in
“box0” while “depTogo” is the last float. So far, tree._root has a children list containing 8 child nodes:
rootNode00, rootNode01 … rootNode07. “depTogo” of rootNode00 is “1”, which means a subdivision of
rootNode00. The above steps are repeated with ParentNode = tree._root.childen[0] and “Child_BBox”
= “box00” shown in Figure 3-10.

Figure 3-12: Pseudo code for generating child nodes

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 23

Figure 3-13: Example of Node content

3.2.2 Client framework

A conceptual client framework is concluded in Figure 3-14, including working flow and communication
between client interface, Javascript, main memory and client GPU. The canvas of web browser is seen
as the client interface, by which mouse movement parameters are detected and passed into Javascript.
Current viewport bounding box is then generated based on mouse movements. An intersection test is
called after every new mouse movement; checking the intersection status of the viewport with every
node of the previously embedded node tree structure. Initialize requests for interested chunks from the
server; store fetched bin file content in client main memory. Meanwhile, values of data elements in
nodes are updated. In rendering function, data is copied from memory to client GPU; the rendering
operation itself is being conducted alone in GPU at every frame while the nodes are updated only after
new mouse movement.

A sequence in which main functions are called is indicated in Figure 3-15. Main functions including
mouse movements, viewport bounding box generating, intersection test, loading of chunks and main
rendering function; functions will be explained in following subsections.

Figure 3-14: Client framework

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 24

Figure 3-15: Main functions and operating order in Javascript program

3.2.3 Intersection testing function

The intersection testing function uses a depth-first algorithm which means the test will continue with
next branch until the bottom of the previous branch is reached.

Assume a new viewport bounding box is generated (the details about how to create a viewport bounding
box will be introduced in subsection 3.2.11). Firstly, a disjointness test (similar to the theory in
subsection 3.1.6) is conducted with the bounding box of the root node. If intersection status is true, the
test will be carried out with the bounding box of every child node. If the viewport is intersecting with
child node i, examine “depTogo” value of child node i. If “depTogo” is 0, which means the lowest level of
this branch is reached, then fetch node data element “intersecting”. If “intersecting” = false, which
means it was not intersecting with the last viewport position and was not rendered for last user action,
call load chunk function for child node i. If “intersecting” = true, which means it was intersecting with
last viewport position and is already loaded. If “depTogo” is 1, recursively call intersection testing
function for child nodes of node i until the bottom of this branch is reached.

If intersection status is false, set data element “loaded” of the current node as well as all its child nodes
to be false; it indicates the corresponding chunk will not be loaded after this mouse movement. Figure
3-17 gives an example of the intersection test procedure. Viewport marked in blue is intersecting with
chunk 00 and chunk 02; disjointness check will be applied to chunk 00, 01 and 02 successively;
“depTogo” of chunk 02 = 1, therefore, chunk 03 will not be checked until all child nodes of chunk 02 are
proceeded.

So far, data element “intersecting” of all nodes are updated; data element “loaded” of nodes that are not
intersecting with the current viewport are updated.

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 25

Figure 3-16: Intersection test function

Figure 3-17: An example of intersection test procedure

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 26

3.2.4 Load chunk function

In intersection testing function, loadChunk function would be called for every node that needs to be
loaded from the server. The process of loading a chunk is shown in Figure 3-18; a particular chunk is
queried by its file name (which has been introduced in subsection 3.1.4). First, fetch data element
“tribuffer” of the requested node; if the length of “tribuffer” is longer than 1, which means it has already
been loaded during previous mouse movements, then tune “loaded” to true. Otherwise, the “tribuffer” is
empty, which means the node has never been loaded and is not in main memory yet. Generate a new
XMLHttpRequest to fetch the chunk from the server; the response is an ArrayBuffer object which can
be accessed by GPU by creating a Float32Array with it. Assign the Float32Array to node.tribuffer so that
it is stored in client memory and can be invoked later. Set node.numVertices as the length of tribuffer
divided by 24 (as it has been introduced earlier that a vertex occupies 24 bytes of memory). Call WebGL
method “createbuffer” to initialize an empty buffer object in GPU; the buffer object is also set as a node
data element so it can be used afterward.

Once a chunk is stored in main memory, a buffer object is initialized; after that, vertex shader and
fragment shader are set up. “gl.vertexAttribPointer” method defines an array of generic vertex
attributes data. gl.vertexAttribPointer(index, size, type, normalized, stride, offset); the first argument is
the index of the vertex attribute that is to be modified; the second and third ones declare number and
type of components per vertex attribute. Next argument states that the data needs not to be normalized
when being cast to a float. A stride means the total length in bytes of all attributes of one vertex; the last
one specifies an offset in bytes of the first component in the vertex attribute array. For example, to
define attribute “vertex position” of vertex shader which tells the shader where to fetch vertex
coordinates from the Float32Array, the code is shown in Figure 3-19; positions of vertex 1 are the first
three floats (12 bytes) x, y, and z in the Float32Array; RGB values (12 bytes) can be fetched with a 12-
byte offset from beginning of the array. Vertex 2 can be fetched with a 24-byte offset from the start and
so on. Table 3-6 gives an impression of “vertPosition” and “vertColor” attribute content in GLSL as well
as the offset and length used to fetch particular attribute.

So far, buffer data is only obtained from the server and stored in main memory; no data except an
empty buffer object has been passed to client GPU yet. Keep in mind that LoadChunk function is the
only function communicates with the server. All data fetched and node states updated are stored in
main client memory, the RenderChunk function introduced in next section only communicates with
client memory.

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 27

Figure 3-18: Load chunk function

Figure 3-19: Example of setting up the vertex and fragment shader

 vertPosition vertColor

 x1 y1 z1 R G B

32-bit float 0.68 0.32 0.5 1 0 0.5

Offset 0 12 bytes from the start of this vertex

Total length 24 bytes

Table 3-6: Content for one vertex in GLSL, including position, RGB values, and offsets used to fetch specific attribute

3.2.5 Render chunk function

This render chunk function is casting as the main function for rendering; it determines which chunk(s)
to be rendered at this frame, then fetches corresponding buffer data, paste it to GPU and starts
rendering. Figure 3-20 gives the procedure of RenderChunk function. Once the function is called, it
starts to accomplish a tree traversal through all nodes. If the node is a leaf node (“depTogo” = 0) and
the chunk is loaded into main memory, moreover, the node is intersecting with the current viewport,
then invoke and copy the triangle buffer of this node from main memory and pass the buffer to the

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 28

empty buffer object previously initialized in GPU memory using “gl.bufferData” method. WebGL
bufferData method initializes and creates the buffer object's data store in GPU. After that, call
gl.drawArrays method to render primitives from array data. In this case, gl.drawArrays(gl.TRIANGLES,
0, node.numVertice) is used to draw triangles for a group of three vertices; there are in total,
node.numVertice vertices to be rendered for one node. Compared with the initial rendering program
(introduced as an alternative in subsection 3.2.9), the new rendering program is more dynamic; it
allows sequential rendering of a single chunk. Once the data buffer is processed and stored in main
memory, it can be passed to GPU at any time. As long as there is a non-empty buffer(s) at GPU side, the
rendering is underway, no matter whether all intersecting chunks are in main memory yet or not. In
other words, loading and rendering are running in parallel.

Figure 3-23 provides an example of memory state, server state and GPU state after three mouse
movements respectively. After first mouse movement, the viewport is intersecting with only chunk 00;
file “00.bin” is loaded into main memory from the server; node data elements including “tribuffer” are
updated and stored in main memory; at the GPU side, one buffer object is initialized, filled with
Float32Array passed from main memory and rendered. A panning is conducted, the viewport is now
intersecting with both chunk 00 and chunk 01. After intersection test function, it is detected that chunk
00 is intersecting with the current viewport as well as the previous one; therefore, load chunk function
is only called for chunk 01. Node data elements are updated; triangle buffer of node 01 is stored in main
memory now. At GPU side, buffer data of two chunks that need to be rendered are passed from
memory; two chunks are rendered. After the third mouse movement, only chunk 01 is intersecting with
the viewport; “intersecting” of node 01 is true before updating. Hence no chunks need to be loaded.
Triangle buffers of both nodes are still occupying storage in main memory. There are two buffer objects
at GPU side, one empty and one filled with buffer data of chunk 01; chunk 01 is then rendered.

Figure 3-20: Render chunk function

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 29

3.2.6 Modified LoadChunk & RenderChunk function

 After testing, it is found that average frame per second (fps) gets lower when sending abundant data
from main memory to GPU memory. It can be indicated that on this machine, GPU and main memory
are working separately; therefore, as mentioned in section 2.5 that sending data to GPU is relatively
slow; modification was applied to the LoadChunk function and RenderChunk respectively. As shown in
Figure 3-21, “tribuffer” is no longer a node data element; it is now a variable that will be renewed at
every loading; therefore, it is now temporally located in main memory; its spatial reference will be
unreachable for GC roots after a small duration. “tribuffer” still equals to the newly generated
Float32Array with HttpRequest response. The following steps are almost the same as before; expect the
“pass data to GPU” which was initially in RenderChunk function is now being placed in LoadChunk.
After fetching data from the server, a new buffer object is generated in GPU memory; data is passed to
GPU by filling in buffer object with “tribuffer” content. Set node.BufferObject equals to the newly filled
buffer. So far, “tribuffer” only occupies temporal main memory; filled BufferObject is actually spatially
located in GPU memory; a node.BufferObject performs as a pointer to corresponding GPU memory slot.

In the old program, data is fetched from main memory and is sent to GPU at every frame. The new
program shown in Figure 3-22 requires no transmission of data because it is already in GPU memory.
Instead of fetching node.tribuffer, fetch BufferObject from GPU, set up vertex attribute data and render
primitives as introduced before.

Figure 3-23 provides an example of main memory state, server state and GPU memory state after three
mouse movements respectively. After first mouse movement, the viewport is intersecting with only
chunk 00; file “00.bin” is loaded from the server; node data elements including a temporal located
“tribuffer” and a spatially located BufferObject are updated and stored in main memory. At GPU side,
one buffer object is stored, referenced and filled with “tribuffer” content and then rendered. A panning
is conducted, the viewport is now intersecting with both chunk 00 and chunk 01. After intersection
testing, it is detected that chunk 00 is intersecting with the current viewport as well as the previous one;
therefore, load chunk function is only called for chunk 01. Node data elements are updated. At GPU
side, buffer data of two chunks that need to be rendered are passed from temporal main memory; two
BufferObjects are stored and rendered. After the third mouse movement, only chunk 01 is intersecting
with the viewport; “intersecting” of node 01 is true before updating. Hence no chunks need to be loaded.
After a few second, “tribuffer” for both nodes are automatically deleted from main memory. There are
two full buffer objects at GPU side; only BufferObject for chunk 01 is fetched by referencing
node01.BufferObject and rendered.

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 30

Figure 3-21: Modified LoadChunk function. ArrayBuffer is passed to GPU memory only once while loading the chunk.

Figure 3-22: Modified RenderChunk function. Instead of sending data from main memory to GPU, data is fetched from GPU
memory directly.

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 31

 Figure 3-23: Example of node content updated after three mouse movements

Figure 3-24: Rendering function

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 32

3.2.7 Rendering function

Rendering function requests animation frames, which means it requires GPU to draw array(s) at every
frame. With the animated frames, subtle changes during panning or zooming are able to be rendered
completely. The rendering function is called right after one chunk finishes loading; therefore, the frame
rate depends closely on user network condition. What is more, parameters related to mouse movements
are located in this function and are updated to vertex shader every frame to ensure vertex position is
manipulated accurately and simultaneously according to user actions. Mouse movement parameters
will be introduced in following sections.

3.2.8 Unload function

An unload function is added to the client program in case of a massive dataset causing the client GPU to
be overloaded. The unload function is called every 20 seconds (or any user defined time interval). When
called, a tree traversal is conducted; if a leaf node is not requested during the past 30 seconds (or any
user defined period); moreover, the node is not intersecting with the current viewport and it has already
been loaded into the GPU, then delete the corresponding BufferObject from GPU and set the node to be
not loaded. Hence, the unloaded node will be recognized as never been loaded and be again fetched
from the server when it is visited next time.

Figure 3-25: Unload function to release GPU memory

3.2.9 Previous alternative

An alternative for loading and render was initially tried; Figure 3-26 gives a view of it. Instead of the
dynamic rendering of multiple chunks, the initial method initializes only one large buffer consist of all
chunks intersecting with the current viewport. Buffer data of the large buffer is composed by data in
each chunk (data in each chunk is seen as sub-data of the large buffer). The rendering will not start
until all requested chunks finish loading which lowers the frame rate; hence, the alternative was
abandoned.

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 33

Figure 3-26: Alternative for static rendering of intersecting chunks

3.2.10 User actions

 Panning

In this case, the concept “panning” can be regarded as rendering vertices at a different position. The
dragged distance in x and y-direction are offset in the corresponding direction from the original vertex
position. For example, in Figure 3-27 (a), the map is dragged from the initial position to position shown
in (b). It performs the same as adding x offset to x coordinates of all vertices in buffer array that are
currently in GPU. As thus, the vertices to the left of the map in canvas (as shown in (a), where is not
covered in native rendering range of WebGL) are now manipulated to be inside the rendering extent.

 Zooming

Figure 3-28 provides an understanding of zooming. Zooming is controlled by mouse wheel movements;
it results in two actions. First, move up/down the near z plane. Any geometry above near z-plane cannot
be shown on canvas. The extent of SSC model along the z-axis is usually 0 to 1; hence, the z value of
near z plane equals to 1 divided by zoom factor. For example, near z plane is exactly at the top of SSC
model when the zoom factor is 1. Near z plane is at half of the model when zoom factor equals to the 2. z
value of near z plane is also the z value of the viewport. This value can only be infinite close to zero
which means the near plane never reaches the bottom of the model; hence, there is always geometry to
be rendered.

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 34

Second, magnify the geometry. As what is illustrated in Figure 3-27 (c), after panning, vertices are
manipulated at a new position. Yet, to fill in the canvas, x and y coordinates of all vertices in GPU ought
to be multiplied by current zoom factor (which is always >=1).

 (a) Original position (b) after panning (c) zoomed in

Figure 3-27: Abridged general view of panning and zoom

Figure 3-28: z value versus zoom factor

 Update mouse movement parameters

Mouse movement parameters include old page position x and y (in pixels), which are mouse positions
on web page canvas before panning and can be obtained by fetching a click event position; original
location x and y (from -1 to 1), which can be seen as the position of current viewport centroid in WebGL
rendering space before panning. The framework of mouse movements is briefly shown in Figure 3-29.
Initial values of mouse movement parameters are defined; therein, the initial original location X and Y
value are explained in detail in chapter 4.

A panning action including left key pressing, dragging and releasing; If mouse left key pressed, set
dragging status to true (which means the map is being panning), fetch old page x and y value (in pixels),
set original x and y location (in WebGL CRS) equals to the current x and y location obtained from the
last mouse movement respectively. While panning the map, mouse movement parameters are being
updated at every pan step using code shown in Figure 3-30; e.pageX – oldPageX results in an offset

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 35

value in pixels, it will be first divided by current zoom factor and then normalized to WebGL
coordinates by multiplying panStepSize factor. Moreover, the viewport bounding box is updated at
every pan step as well (details will be explained in subsection 3.2.11). If left key is released, which means
the panning process finishes, set dragging status to false and call intersection testing function.

During a zoom process, zoom factor is updated at every zoom step. Recall that z value of viewport
bounding box equals to 1/zoom factor; therefore, viewport bounding box is being updated and,
intersection test function is called at every zoom step.

Figure 3-29: updating mouse movement parameters

Figure 3-30: Update mouse movement parameters

3.2.11 Viewport Bounding box

Viewport bounding box, in other words, the extent currently needs to be shown on canvas, is defined by
its centroid, radius in x and y-direction and z value. For example, in Figure 3-31 (a), only the extent
marked in blue needs to be rendered; therefore, the radius in x and y-direction equals to half of the
corresponding side length of WebGL rendering space (which is 2) divided by zoom factor. X and y
coordinate of centroid equal to location x and y introduced in the section above. A viewport bounding
box is expressed by the same parameters as the chunk bounding box: lower left x, y, upper right x, y and
z value (as given in Figure 3-31 (b)). Figure 3-32 provides an example of updated viewport bounding
box after zoom in; bounding box side length before zooming was 0.5 and equals to 0.2 after zooming in

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 36

(current zoom factor is 5). The extent of WebGL rendering space is a 2 by 2 square while only geometry
inside the 0.2 by 0.2 viewport needs to be loaded and rendered. After every updating of location x and y
and current zoom factor, viewport bounding box needs to be updated using the code shown in Figure
3-33.

Viewport bounding box does not affect rendering or WebGL rendering space; it depends only on mouse
movement parameters. The only reason it is involved is to determine chunks requested.

(a) Viewport (filled in blue) (b) Viewport Bounding Box expression

 in WebGl rendering space

Figure 3-31: Web browser viewport in WebGL rendering space and its expression

 (a) Viewport radius at Zoom = 5 (b) Viewport radius at zoom = 2

Figure 3-32: The relationship of the viewport extent and zoom factor

Figure 3-33: Update viewport bounding box

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 37

4. Implementation details

In Chapter 4, some implementation details in preprocessing stage and in client developing stage are
explained. Particulars of the specific datasets used in this thesis, how to fetch necessary information
from source data and how the data was normalized are described in subsection 4.1.1, 4.1.2 and 4.1.3
respectively. The missing bottom problem and threshold for octree algorithm are introduced in
subsection 4.1.4 and 4.1.5. Details about the specific shader used in this thesis are explained in
subsection 4.2.1; in subsection 4.2.2 states how to fill in web browser canvas and in subsection 4.2.3
explains a newly enriched user interaction. Some initial settings and the technologies to validate the
prototype are listed in subsection 4.2.4 and 4.2.5 respectively.

4.1 Preprocessing

4.1.1 Dataset

Removal of vertical triangles - The SSC model of source OBJ file contains both tilting triangles and
vertical polygons (as shown in Figure 4-1); however, in this case, vertical polygons are invisible due to
the orthographic projection; hence vertical polygons were removed to decrease dataset size.

Dataset details - Three datasets have been tested with the prototype; a small smooth dataset with
only 4 objects; a Leiden city center dataset containing 10k triangles and a relatively large dataset
covering a 9km by 9km area which contains 3091k triangles composing 26475 polygons. Details
including the number of non-vertical triangles, minimum and maximum coordinates of each dataset are
listed in Table 4-1.

Figure 4-1: SSC model containing vertical triangles

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 38

Dataset Number

of polygons

Number

of triangles

Scope

(minx, minY, maxX, maxY)

Smooth sample 4 136 (-0.993582, 0, 0, 1)

Leiden 1063 10,125 (93500, 463500, 94100, 464100)

9km by 9km 26475 3090.8k (182000, 308000, 191000, 317000)

Table 4-1: Dataset details

4.1.2 Fetch raw data from OBJ file

Preprocessing was carried out in C++ environment. The first step of preprocessing is obtaining raw data
from the source files. Read every line of OBJ file, split it at white space; if it is a vertex line, store the
three elements after “v” into list “vertices_x”, “vertices_y” and “vertices_z” respectively. If it is an object
line, store the second element found after “g” in list “class_id”, store the third element in list
“min_lifespan” and the last item in “max_lifespan”. Count lines until the next object line is found, keep
the count in list “triangle_number” which represents the triangle number of this object. If it is a triangle
line, store the three elements found after “f” in list “triangle_vertices”.

Class_id, minimum and maximum lifespan and the triangle number are four attributes of an object;
therefore, the lengths of these four lists are the same, which equals to the total object number in this
SSC model. It was mentioned above that the vertices in source file are ordered by counter-clockwise, to
avoid the triangles being culled, the triangle vertices are entered into “triangle_vertices” as vertex1,
vertex3, vertex2. The length of list “triangle_vertices” is 3*the total triangles in this SSC model.

4.1.3 Normalization of coordinates

It has been introduced in section 2.3 that the only native CRS WebGL can recognize is different from
the system of the source file. A crucial step is to normalize the original vertex coordinates so that they
can be fitted into a WebGL rendering space. Figure 4-2 briefly shows how the x coordinates were
normalized. After fetching raw data, the maximum and minimum value for all x, y and z coordinates
can be easily obtained from the corresponding list. The scaling factor for x coordinates equals to the
maximum x value minus the minimum one. Factors for y and z coordinates can be calculated by the
same way. The general scaling factor is the maximum value among three scaling factors. Every x, y z
value should first minus the minimum value in the corresponding direction and then be divided by the
general scaling factor. After normalization, all coordinates are ranged from 0 to 1. Yet not done so, to
simplify the “fill in canvas” (described in subsection 4.2.2), coordinates can be directly normalized from
-1 to 1.

In addition, WebGL accepts RGB values from 0 to 1; therefore, all color values require normalization as
well. It can be done by simply dividing the original 0-255 value by 255.0.

Figure 4-2: Pseudo code for coordinates normalizing

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 39

4.1.4 Missing Bottom

Missing bottom happens when a triangle is below the splitting plane, yet its lifespan is across the
splitting plane. The triangle will not be visible if only upper chunks are loaded. Figure 4-3 (a) illustrates
a typical missing bottom problem; holes can be seen when the viewport is only intersecting with the
upper half chunk. Figure 4-3 (b) gives a view of triangles in chunk 05 if lifespan is not considered. In
subsection 3.1.6, a duplication of triangles which belong to a polyhedron with long lifespan is applied as
a counterplan against the missing bottom problem. Figure 4-3 (c) and (d) shows triangles in the new
content in chunk 05, triangle belongs a polyhedron which has a long lifespan is now included in this
chunk and will be rendered if chunk 05 is requested.

 (a) Missing bottom (b) Chunk 05 (lifespan not involved)

(c) View from top of chunk 04 (d) Triangles below are duplicated

 (lifespan involved) into the upper chunk

Figure 4-3: Example of the “missing bottom” problem and upper chunk with triangles duplicated based on the lifespan

4.1.5 Determine threshold and limit tree depth

Take the bandwidth into consideration, assume that most PC users have a bandwidth of 5-10MB per
second; the file size of each chunk should be limited. One triangle occupies 72 bytes for rendering.
Multiple chunks might be loaded at the same time, the size of a single binary file was limited to be
below 500KB (6944 triangles); therefore, the loading of one chunk takes less than 0.1 second. What is
more, it was found that areas with a denser geometry such as city center or residential area could lead to
extreme deep leaf nodes (e.g. 5 or 6 levels) while chunks of the rural area at the same level contain
insufficient triangles (0 in extreme case). To avoid unnecessary XMLHttpRequests for these tiny
chunks, a limitation of maximum tree depth is set to be 4. An initial threshold of maximum 6944
triangles per chunk and maximum 3 subdivisions was first tested. The relationship between different
thresholds, total file size, and prototype performance are presented in chapter 5.

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 40

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 41

4.2 Client side

4.2.1 Vertex shader and fragment shader

It has been introduced in section 2.3 that a vertex shader does an important job to manipulate vertex
positions. In this case, a vertex shader contains two attributes: vertex position and vertex color; their
color can be obtained by the method explained in subsection 3.2.4. Five parameters: view matrix, zoom
factor, extent, x and y offset are then involved in vertex position manipulation; therein, zoom factor, x
and y offset are affected by mouse movements; extent is determined by dataset itself (will be introduced
in subsection 4.2.2). The final vertex positions at GPU side can be calculated using function shown
Figure 4-4 (b). Vertices obtained from binary file are first placed at the location determined by panning,
and then magnified with current zoom factor and finally transformed by the view matrix to be correctly
projected on the screen.

(a) Attributes and uniforms used for vertex shader

 (b) Actual vertex position obtained by GPU

Figure 4-4: Specific shader used in this thesis and the manipulation of each vertex

4.2.2 Fill in canvas

As what has been introduced in chapter 2, in WebGL coordinated system, all three axes go from -1.0 to
+1.0. However, the normalized SSC model is usually smaller than WebGL rendering scope. For
example, x, y and z-axis of the normalized 9km by 9km dataset goes from -0.67 to 0, 0 to 0.67 and 0 to 1
respectively. It will be located at the position shown in Figure 4-5 (a) if no manipulation is applied to
vertex coordinates. To fill in the canvas, an initial offset in both x and y directions are predefined.
xoffset = 0.5*(max_x – min_x), yoffset = 0.5*(max_y – min_y). The extent of specific normalized SSC
model = 2.0 (which is the extent of WebGL rendering space) divided by the maximum value between x
offset and y offset (0.67 in this case). Associate x, y offset and extent factor with the manipulation
function in Figure 4-4 (b), the model will first be panned from the original location to location shown in
Figure 4-5 (b); and then be magnified to fill in WebGL rendering space. Remember that the viewport
bounding box is only related with chunk bounding boxes; therefore, it should be modified regarding the
SSC extent to agree with the actual chunk bounding box values. The code for modification is shown in
Figure 4-6. This step can also be done during preprocessing by normalizing the coordinates into a range
from -1 to 1.

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 42

 (a) Original position of SSC (b) Move SSC to the center (c) Enlarge SSC to fill in canvas

Figure 4-5: Steps to fill in the web browser canvas

Figure 4-6: Modify viewport bounding box with actual model extent

4.2.3 Get geographical coordinates

An extra function for obtaining geographical coordinates by double click at the interested point is
implemented in this prototype. Current viewport bounding box coordinates are proportional to
Javascript canvas coordinates. An example explains the principle of this functionality is shown in
Figure 4-7 (a). Values in blue represent viewport coordinates; values in black are Javascript canvas
coordinates. The point marked in red represents the position of double-click-event; its Javascript
canvas coordinates can be fetched by event.pageX/Y; hence the corresponding viewport coordinates can
be easily calculated. A scaling factor was obtained at normalization during preprocessing; for example,
scale = 600 for dataset “Leiden”. The geographical coordinates equal to viewport coordinates multiplied
by scaling factor. Figure 4-7 (b) gives a view of how this function looks like; the popup disappears after
1.5 seconds.

 (a) Get geographical coordinates (b) Example of obtained coordinates

Figure 4-7: The way to get real geographical coordinates and the example of this function

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 43

4.2.4 Settings

 Canvas height, as well as width, is set as 600 pixels.

 gl.DEPTH_BUFFER_BIT is called at every frame to set buffer depth value as 1.0. It represents
the range of z value in which SSC model is able to be rendered on the screen.

 The zoom step is set to be 0.98, which means a small zoom action leads to a 0.00055 change in z
axis.

4.2.5 Validation technology

The performance of the prototype was tested using Firefox web browser; time consumption of each
Javascript function, the main memory consumption and fps were collected by Firefox performance
recorder. GPU consumption was measured by GPU-Z.

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 44

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 45

5. Results and Analysis

In chapter 5, results obtained from preprocessing and prototype testing are revealed and analyzed. The
data size changes after preprocessing (with/without lifespan) of both Leiden dataset and the 9km by
9km dataset are concluded in section 5.1. A brief data size comparison is listed in Table 5-1. It is found
that organizing source data without lifespan leads to subtle volume up compared with organizing data
with lifespan. A 475% volume increase to the 9km by 9km dataset was caused by the duplication due to
lifespan. In section 5.2, all prototype features are proved to be functional. Time consumption and both
CPU memory and GPU memory consumption of each dataset are listed and discussed in section 5.3.
Rough performance is indicated by frame rate and is shown in Table 5-2. The frame rate is significantly
affected by the client network condition. The modified program ensures that the data is loaded from the
server only for the first time; the data is later on stored in GPU memory and is waiting for the next
invoke.

Size (MB) Leiden dataset 9x9 dataset Number of chunks

One chunk 0.7 40 1

Without lifespan 0.79 43.9 400

With lifespan 0.93 233 1135

Table 5-1: Data size of the Leiden dataset and the 9km by 9km dataset

9x9 dataset Modified program

(local-server)

Old program

(local-server)

Modified

(6MB/s)

Modified

(9MB/s)

Average fps 57 39 47 57.8

Memory

use

Stored only in GPU Stored in main memory

Transferred to GPU at every
rendering

-- --

Table 5-2: Performance of the 9kn by 9km dataset

5.1 Data size after octree dividing

Table 5-3 gives a comparison of chunk sizes of Leiden dataset produced using different dividing
methods. If the source data is not divided, binary file size for data in a sinle chunk is 729 KB. The
threshold used is 500KB; 8 chunks (in total 790 KB) resulted if lifespan is not taken into consideration.
The size of each chunk differs a little; in general, chunks in the lower half are slightly larger than those
in the upper half. Compared with the non-divided file, an 9.75% increment in size was resulted due to
the duplication of triangles intersecting with vertical splitting planes. If lifespan is involved, the size of
lower chunk keeps the same while the size of upper chunks increase around 40% due to the duplication
of triangles in polyhedrons with long lifespan. The total size of 8 chunks is 930 KB, 28% volume up
compared with the non-duplicated binary file.

The comparison between volume changes of the 9km by 9km dataset after dividing with or without
lifespan is concluded in Table 5-4. This dataset containing more than 3090k triangles was organized
with a chunk size limit of 500KB, and maximum 3 subdivisions. The size of the non-divided chunk is
40MB. If lifespan was not involved, after organization, 400 chunks were generated, all chunks are

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 46

below the threshold; of which 130 (32.5%) chunks are less than 50KB; the maximum chunk size is
484KB. The total file size is 43.9MB, 9.75% volume up compared with the one-chunk file size.

If lifespan is counted, the 9km by 9km dataset results in 1135 chunks, all chunks are under the
limitation of which 72 (6%) chunks are relatively tiny (<50KB). The maximum file size is 488KB while
the minimum one is 25Kb. The total file size is 233MB; a huge volume increase (475% up) is caused by
the duplication due to the lifespan.

A comparison between upper chunks and lower chunks size of the 9km by 9km dataset (without
lifespan) is given in Table 5-5, 193 upper chunks retain in total 19.9MB (45%) while the remaining 207
lower chunks hold 24MB (55%), 10% more storage than what of the upper chunks. Table 5-6 gives the
same comparison for the 9km by 9km dataset divided with lifespan. 638 upper chunks hold in total
133MB (55%) while the remaining 497 lower chunks retain 45% of total file size. Upper chunks keep
10% more storage than what the lower chunk do which means if the user is panning around the top of
SSC, due to the larger viewport bounding box, more data will be requested.

Chunk Size (without lifespan) (KB) Size (with lifespan) (KB) Size (single chunk) (KB)

00

Lower

chunks

104 103

729

01 83 82

02 142 141

03 125 124

04

Upper

chunks

79 114 (44% up)

05 70 100 (42% up)

06 100 140 (40% up)

07 87 126 (45% up)

Total 790 (8% up) 930 (28% up)

Table 5-3: Comparison of chunk size of Leiden dataset

Threshold Size

(MB)

Chunks <
threshold

>
threshold

< 50KB Max

(KB)

Min

(KB)

One chunk 40 1 - - - - -

<500KB

(no lifespan)

43.9

(9.75%)

400 400

(100%)

0

(0%)

130
(32.5%)

484 0

<500KB

(with
lifespan)

239

(475% up)

1135 1123

(99%)

12

(1%)

72

(6%)

526 25

Table 5-4: Comparison of chunk size of 9km x 9km dataset

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 47

9km by 9km (without lifespan) Chunks Size (MB) Total size (MB)

Upper half 193 (48%) 19.9 (45%) 43.9

Lower half 207 (52%) 24.0 (55%)

Table 5-5: Size of upper half/ lower half chunks of 9km by 9km dataset (without lifespan)

9km by 9km (with lifespan) Chunks Size (MB) Total size (MB)

Upper half 638 128 (55%) 235

Lower half 497 107 (45%)

Table 5-6: Size of upper half/ lower half chunks of 9km x 9km dataset (lifespan involved)

5.2 Evaluate prototype functions

 Zoom and panning
The prototype functions well with both Leiden dataset and the 9km by 9km dataset. Chunks can be
accurately acquired according to the current viewport position and be rendered simultaneously. Zoom
step factor was initially set as 0.95 which enables the prototype to reveal SSC model at an interval =
0.0016 in the z-direction; any geometry change in z direction that is smaller than 0.0016 may not be
presented on screen. The result is evaluated and shown in Figure 5-1. Camera in (a) is at z = 0.02998;
after one zoom in step, it is at z = 0.02848 in (b). A sudden popup of a triangle (in green) and a block
(in black) are found. It indicates that the triangles are not oblique enough for revealing geometry
change with a relatively large zoom step.

A smaller zoom step (0.99) was then applied to examine the geometry change (interval = 0.0002); the
results are shown in Figure 5-2; a more gradual change can be observed. Figure 5-3 illustrates an
apparent gradual change (zoom interval = 0.0016; circled in black) of an ideal smooth sample dataset.

 Precise loading of chunks
A console logging function is inserted in LoadChunk function to evaluate which chunk is being loaded;
“only loaded + filename” will be logged on console if the function is called for a chunk already loaded
and stored in memory. By logging this string, it can be proved that LoadChunk function is only setting
data element “loaded status” to be true if the chunk is already loaded; no XMLHttpRequest is generated
to communicate with the server. Figure 5-4 shows the console output when repetitively viewing of the
same area; it proves that there is no repetitive loading of chunks.

 (a) Z value = 0.02998 (b) Z value = 0.02848

Figure 5-1: Geometry change with zoom step = 0.95

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 48

 (a) z = 0.1754 (b) z = 0.1748 (c) z = 0.1745 (d) z = 0.1743 (e) z = 0.1741 111

Figure 5-2: Geometry change with zoom step = 0.99

Figure 5-3: Obvious gradual change

Figure 5-4: Validation of no repetitive loading of already loaded chunks

 Validation of position of geometry
Accuracy can be evaluated by comparing coordinates obtained from the prototype with a reference. In
Figure 5-5, coordinates of a representing point are validated. In (a), coordinate obtained is (93808,
463781); it is nearly the same as what provided in (b) (93809, 463780). The accuracy of the prototype
can be ensured.

 (a) Coordinates obtained from prototype (b) Online map for validation

 (Adapted from EPSG (2016))

Figure 5-5: Validation of the prototype accuracy

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 49

5.3 Prototype performance

Prototype performance is validated based on time consumption of main program function, client CPU
memory use, and client GPU use. Validations are discussed in subsection 5.3.1, 5.3.2 and 5.3.3
respectively.

5.3.1 Time consumption

 Local-server mode
In past tests with data in one chunk, the prototype ground to a halt when experiencing rapid user
actions because of heavy computation as well as massive data transfer. Thanks to octree subdividing
and smart data fetching program, the prototype (both old and modified program) responses to heavy
user interactions fast and fluent without any halt. The performance of prototype in a complete
performance recording including operations such as initial loading of the web page, zoom into the
bottom, zoom out to the top and traverse through the whole dataset was analyzed.

A comparison (as shown in Figure 5-6 and Figure 5-7) of a typical workflow in early period of
performance recording (mainly loading and rendering chunk(s) for the first time) between old program
(passing data to GPU at every time the chunk is required) and the modified one (store data in GPU at
the first time the chunk is requested) is given in Table 5-7. An intersection test function including
intersection test, loading of one chunk, storing “tribuffer” at main memory, creating empty BufferObject
at GPU and storing it in main memory as a pointer takes the old program 15ms to finish. It takes the
modified program 50ms to complete the same process due to a relatively slow communication between
temporary memory “tribuffer” and GPU memory BufferObject. Network communication time can be
persuaded because the prototype is currently loading data from the local server. It can be indicated in
Figure 5-6 that only three chunks (two level-3 chunks and on level-4 chunk) are loaded and rendered; it
is because the viewport is near the bottom. Therefore, tree traversal and rendering are speedy (less than
10ms) for the old program. In latter period of performance recording (see Figure 5-8); the viewport is
near the top of the dataset (where the viewport bounds a larger range), which leads to the rendering of
more chunks at every frame. Lags due to rendering subsequent chunks can be clearly obtained from the
figure; it is caused by massive transmission of main memory data to GPU. Thus, fps is hindered
(average fps for the old program is only 39). For modified program, although the initial loading takes
relatively longer than the old program does, the rendering operation is light and fast. Repetitive
transmission of data between memory and GPU is avoided, as shown in Figure 5-9; a representative
rendering process for modified program takes less than 10ms and is without any transmission lag.
Therefore, average fps for the new program is 43% higher than the old one.

Most time-consuming Javascript calls for both programs are listed in Table 5-8. For the new program,
on average, rendering operations run for only 5.5% of performance period while the old program is
operating heavy rendering (80% of the time); Gecko and web browser graphic driver takes 46% and
34% of the time respectively. (According t0 MDN (2016) describe Gecko as “the name of the layout
engine developed by the Mozilla Project. Gecko's function is to read web content, such as HTML, CSS,
XUL, Javascript, and render it on the user's screen.”) Load chunk from a remote repository will be
tested in future work. In general, average fps is the best performance indicator; loading of chunks and
transmitting of data both hinder the fps. Modified program obtains an average 57 fps (43% better than
the old program) which indicate that, by using a new program, 30% of loading and transmission time
can be saved.

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 50

 Modified program Old program

Operation Time (ms) time

Check intersection & load one chunk 50 15

Tree traversal & Rendering > 30 10

Average fps 57 (43% up) 39

Table 5-7: General performance comparison between old and modified program

Figure 5-6: A typical workflow of intersection checking, loading, and rendering (old program; load one chunk: 15ms)

Figure 5-7: A typical workflow of intersection checking, loading, and rendering (modified program; load one chunk: 50ms)

Figure 5-8: Time consumption for pure tree traversal and rendering (old program: more than 30ms)

Figure 5-9: Time consumption for pure tree traversal and rendering (modified program: less than 10ms)

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 51

Modified program Old program

Function % of time Function % of time

Gecko

(browser functions)

45.9 renderChunk 80.13

Graphics 33.8 Graphics 9.14

RenderChunk 5.53 Gecko 3.44

Tools 3.67 loadChunk 0.44

loadChunk 2.37 Tools 0.2

Table 5-8: Most time-consuming calls during a complete performance recording

A period with low fps is shown in Figure 5-10 (in combination with Javascript call legend, see
Appendix), it is due to the loading and transmission of data from temporary memory to spatially located
GPU memory. Massive transmissions of chunks from the server to the temporal main memory (marked
in light orange color) are found during this period. The sequential loading of chunks framed in red is
the vital reason to the unstable frame rate at early stage. Once the chunks are loaded, the follow-up
rendering is fast; moreover, fps is high and stable. Figure 5-11 also explains the reason; the new
program renders the scene at a higher frame rate because the data is stored directly in GPU. Recall what
was mentioned in section 2.5, GPU works really fast independently. Unlike the old program (see Figure
5-12, framed in red), the frame rate is lowered because all requested chunks have to be sent to GPU
although they are already in main memory; rendering starts only after all (main memory-GPU)
transfers are finished.

Figure 5-10: Javascript frame chart during 2581ms to 5632ms (Modified program: low fps due to loading of chunks and data

transmission to GPU)

Figure 5-11: Javascript frame chart after most chunks are loaded (Modified program: high fps)

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 52

Figure 5-12: delays for data transmission (from main memory to GPU) cause low fps (old program)

 Online mode
The preprocessed 9km x 9km dataset, as well as the prototype, were published online
(http://varioscale.bk.tudelft.nl/gpudemo/2017/05/multinew/). Hereafter concludes the performance
including time and memory consumption and the average fps of this online web service based on a
bandwidth approximate to 6MB per second and 9MB per second. An 83.2-second performance record
including loading the page, zooming out to the top of the dataset, panning around while zooming into
the bottom of the dataset was recorded.

For bandwidth around 6MB/s, the average fps is 47.33 fps, 17% lower than the local server mode. While
zooming out, stagnations for about 3 seconds can be observed before all chunks in the current viewport
are rendered. While panning around near the bottom of the dataset, no noticeable halt or stuck was
found. The maximum fps (60 fps) occurred during the latter half of the record (while panning around
near the bottom of the dataset) in which few chunks were required for each intersection checking
function. The minimum fps (3.21 fps) was found when zooming out; as shown in Figure 5-13, 15 chunks
were requested at 20 seconds which caused the fps to plunge from 60 to 3.21. This low-fps period lasted
for about 2 seconds which means the loading (from the server to the client GPU) of 15 chunks took
around 2 seconds.

For a bandwidth around 9MB/s, the performance record is shown in Figure 5-14; the average frame
rate is 57.8 fps. Compared with the frame rate of local server mode (57 fps) shown in Figure 5-10,
although the average online frame rate seems to be higher than the local mode, it is unstable for of the
time due to the delay of data transmission. It can be clearly indicated that the loading process, as well as
the performance, is significantly affected by the client bandwidth.

Figure 5-13: Relative low fps due to delay of data transmission through network (modified program)

http://varioscale.bk.tudelft.nl/gpudemo/2017/05/multinew/

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 53

Figure 5-14: Higher frame rate at bandwidth = 9MB/s

5.3.2 CPU Memory consumption

Prototype memory usage and allocation of different datasets using both programs are described below.

 Old program
Figure 5-15 and Figure 5-16 gives top 5 memory consuming object group at loading and after map
traversing of Leiden dataset respectively. At loading, in total 4.8MB is occupied; the most consuming
objects are Javascript scripts. Only 4 chunks are requested at loading, hence, 4 ArrayBuffer objects
retaining 0.46MB (9% of total memory usage). After traversal through the whole dataset, 8 chunks are
loaded, maintaining 0.96MB (17% of total memory usage). No continuing loading or occupation of
memory was observed; it can be proved: data in main memory can be retrieved and reused.

Figure 5-17 and Figure 5-18 give top 5 memory consuming object group of the 9km by 9km dataset
(threshold = 500KB). At loading, Javascript scripts are again the most consuming objects; the second
most consuming objects are Array objects in which the node tree structure is stored. Figure 5-19 (a)
provides a close look at an Array object in client memory and explains by what it is composed. Take the
case of Array object at memory slot 0x1a2fb36d880, It is composed by, first fetching element 0 from
box0112 and “data” element of the first child node of rootNode0112; second, allocate a free memory slot
to fill empty “data” list with bounding box data. Therefore, more complex the tree is more consuming
the Array objects will be. Compared with the usage after traversal, an extra 0.4MB memory slot was
used for general math function at loading. The actual memory used for tree structure should be 0.79MB
for the 9km by 9km dataset. 9 chunks need to be loaded initially, causing a 0.94MB memory
occupation; after rough traversing, the whole dataset, 1245 (98%) chunks have been visited, resulting in
238MB memory usage of ArrayBuffer objects. It can be indicated in Figure 5-19 (b), ArrayBuffer object
regards to data element “tribuffer” of a node; “unknown slot” is the memory allocated for binary data
fetched from the server. By using the old program, “tribuffer” is spatially located in main memory and
can be referenced at any time. It is always occupying a memory slot.

Representative parameters for performance evaluation for different datasets are listed in Table 5-9; it
can be indicated that heavy tree traversal and rendering decreases fps. It is due to the drawback of the
old program. Average fps of the 9km by 9km dataset is 68% of fps for Leiden dataset. Speculated total
main memory consumption for 9km by 9km dataset will be around 238MB. The total random access
memory (RAM) usage of the browser can be speculated, and it is, in general, twice as much as the
above-mentioned memory, which will be 500MB (including the main memory occupied by the browser
framework).

Figure 5-15: Memory allocation at loading of Leiden dataset

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 54

Figure 5-16: Memory allocation after traversing through Leiden dataset

Figure 5-17: The 9km by 9km dataset memory use when loaded

Figure 5-18: Memory use after traversing most of the chunks of 9km by 9km dataset

Dataset Average fps Memory at
loading (MB)

after traversal
(MB)

ArrayBuffer
(MB)

Tree Structure
(MB)

Sample data 57.1 2.3 4.3 0.01 (0%) 0

Leiden 58.9 4.84 5.58 0.9 (17%) 0.03

9km x 9km 39.0 5.96 238 233 (98%) 0.79

Table 5-9: General performance of three datasets at different states (old program)

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 55

(a) Example of memory retained by Array object (b) Memory for ArrayBuffer object (spatial locality)

Figure 5-19: Examples for memory slots of Array object and ArrayBuffer object (old program)

 Modified program

Modified program was tested with 9km by 9km (500KB) dataset, Table 5-10 shows main memory usage
at three stages: first one, initial loading and heavy user actions (see Figure 5-20); second, after idling for
a few seconds (see Figure 5-21); third, idled after a small user action. After the first time period, 120MB
of main memory is occupied, mostly by ArrayBuffer (94%); however, if idle the prototype for 10
seconds, only 110MB are removed by garbage collection because the ArrayBuffer objects were
temporally located and they are no longer reachable. Figure 5-23 (a) shows a temporal located
ArrayBuffer; it has no connection with other spatially located objects (compared with the ArrayBuffer
object illustrated in Figure 5-23 (b)); hence, it is recognized as garbage in GC roots.

Figure 5-22 gives a comparison between main memory usages after some user actions, the amount of
WebGLBuffer objects (as framed in red) in main memory changes yet the main memory keeps the
almost the same. It is not only because garbage has been removed, but also WebGLBuffer objects in
main memory are just pointers to the truly filled Buffer objects in GPU. Figure 5-23 (b) provides a close
look at a WebGLBuffer and how it is referenced in GC roots. Unlike the old program which uploads only
needed data to GPU at every frame; by using a new program, after all chunks have been visited, all data
will be stored in GPU memory. Modified program works much better than the old one with the 9km by
9km dataset. In future, if an very-large dataset is available, GPU may encounter overloading problem.
An unloading program can be easily realized using gl.deleteBuffer method to delete BufferObject
directly from GPU in a particular condition. However, whether GPU memory becomes fragmented or
not due to deletion is unknown and requires future experiment.

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 56

Stages Main memory use

Right after heavy user actions 120.34 MB
Idle the browser for 10 seconds 10.25 MB
Idle the browser for another 1 minute 6.7 MB

Table 5-10: Main memory use of the modified program at different stages

Figure 5-20: Memory usage right after initial loading and heavy user actions

Figure 5-21: Memory usage if idle the browser for seconds

Figure 5-22: Main memory usage and WebGLBuffer number after two user actions

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 57

 (a) Temporally stored ArrayBuffer (b) Empty WebGLBuffer spatially stored in main memory

Figure 5-23: Examples for temporal memory slots of ArrayBuffer object and a spatial but empty memory slot for WebGLBuffer

object in main CPU memory

5.3.3 GPU Memory consumption with unload function toggled on

The GPU memory usage was recorded using GPU-Z with the unload function on; total memory usage
refers to the memory occupied by all applications of the client computer. GPU memory use was tested
with the 9km by 9km dataset at three different stages (as shown in Figure 5-24 (a), (b) and (c)): at the
initial loading of the page, right after the traversal of most of the chunks and after idling the prototype
for 30 seconds (at the same position as at stage 1). Memory usages are listed in Table 5-11; 169MB,
462MB, and 130MB at each stage respectively. After unloading of some inactive chunks, the GPU
memory occupation is lower than what at the initial stage which indicates that the unloading function is
resultful.

9km by 9km dataset Total GPU Memory use (MB)

Initial loading of the page 169

Traverse through most of the chunks 462

Back to the initial position and idle for 30 seconds 130

Table 5-11: Total GPU memory usage at 3 stages with the unload function switched on for the 9km by 9km dataset

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 58

(a) Stage 1: GPU memory use at the initial loading of the page (169MB)

(b) Stage 2: GPU memory use after traversing through the dataset (462MB)

(c) Stage 3: GPU memory use after unloading (130MB)

Figure 5-24: GPU memory usage at different stages

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 59

6. Conclusion and future work

This chapter includes a conclusion of main outcomes and the remaining problems as well as some
points worth a future research.

6.1 Conclusion

The binary format has been proved as a feasible data format for WebGL data transmitting and
rendering. The source OBJ file is serialized as x, y, z, R, G, B, x, y, z… and encoded as a Float32Array;
the resulting typed array can be directly accessed by the graphic driver. Triangles intersecting with
multiple octants are duplicated to all octants it is intersecting with to avoid missing geometry at the
boundary. Triangles whose lifespan are crossing horizontal splitting plane will also be duplicated to
chunks at both sides of the plane. Duplication due to the lifespan causes 30% size increment to Leiden
dataset; 475% size increase to 9km by 9km dataset if divided with a 500KB threshold.

A similar node structure reflecting the octree structure containing necessary data elements is generated
in Javascript to store data in client memory. A Javascript script containing a bounding box tree can be
automatically generated during preprocessing. Node data elements are updated regarding every mouse
movement; render function operates a tree traversal every frame to ensure that the prototype is
responding to heavy user actions simultaneously. Prototype program allows accurate chunk loading,
moreover, non-repetitive loading as well as non-repetitive transmission of data to GPU. Buffer objects
created and transmitted once are stored in GPU memory, waiting for a next invoking. An automatic
garbage removal program ensures main client memory never encounters overloading. An unload
function was tested and proved to be resultful for GPU memory retaining; memory slots occupied by
inactive chunks will be removed from GPU memory to prevent the GPU to be overloaded.

Modified program performs well for 9km by 9km dataset without any halt in local server mode; the
average fps is around 57. The frame rate is stable and relatively high after initial loading compared with
the regulated maximum fps for most monitors (60 fps). Yet GPU usage is hidden; it can be speculated
as around total chunk size (e.g. 233MB for the 9km by 9km dataset with lifespan) while the total RAM
occupation including WebGL memory and browser framework is roughly observed to be around
500MB. No continuing occupation of CPU memory is detected; moreover, no noticeable halt or waiting
for loading can be observed in local-server mode. However, in online mode, the performance is
significantly affected by the user bandwidth. The prototype was tested with a network speed equals to
6MB/s and 9MB/s respectively; the frame rate for lower network speed was around 47 fps while what
for the higher speed was about 57 fps. Yet, due to unavoidable delay of data transmission, the frame rate
was unstable. Halt can be observed when zooming out; time of halt depends on the network condition.
It is proved that the program allows reuse of data directly from GPU memory which means once most of
the chunks have been visited; the performance afterwards will be improved.

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 60

6.2 Future work

 The content in the binary file is serialized as x, y, z, R, G, B, x, y, z, … at the present stage. RGB
values are repeated for every vertex so that the file content can be accessed by GPU as an
ArrayBuffer object. It is fast for GPU processing, however, causing unnecessary repetition of the
same RGB value. Is it possible to assign RGB values once for a triangle, or even better, once for an
object?

 The duplication due to lifespan causes huge file size increment; is there a better way to deal with
lifespan?

 The viewport getting larger when zooming out which leads to a request of more chunks; hence, the
delay due to data transmission becomes longer. To avoid this situation, the desired data distribution
of a tree-organized chunk should be balanced; which means the total amount of data transferred for
every particular viewport should be almost equivalent. As shown in Figure 6-1, a different data
organization can be performed to obtain smaller upper chunks. However, because of the duplication
due to the lifespan; the dividing results require further analysis.

 For now, tree structure of 9km by 9km dataset occupies 0.79MB of memory. In future, suppose a
20km by 20km dataset is available, the tree structure could take up 6.4MB of memory. Consider the
size the map of Netherland or Europe. Is it possible to split tree structure script into multiple scripts,
load a particular part only when it is requested?

 Geometry changes are subtle that are easily being skipped over with a large zoom step. Is there a
way to magnify the change either within source data or during rendering? For example, generate a
small amination with frames in between two mouse movements; especially the zoom actions.

 Currently, the unloading function is based on time. Various unloading functions can be attempted
such as unloading by distance or the number of times a chunk has been required. Unloading by
distance means to unload chunk(s) that are furthest from the chunks in the current viewport.
Unloading by times that a chunk has been used means to unload chunk(s) that is not required by
the current rendering and was required less than a given number of times.

 Both the old and modified program uses only one memory (either the client main memory or the
GPU memory) partially. It is worthy to develop a memory allocation method that balances CPU and
GPU memory. For example, store frequently required chunks in the main memory hence no delay of
server-to-main memory data transfer happens if the chunk was unloaded from the GPU memory.

 As explained in section 2.6, memory slots are allocated sequentially based on an order of time (see
Figure 2-4). If some memory slots are removed from the GPU memory, will the GPU memory
become fragmented and discrete? The hypothesized fragmented GPU memory is shown in Figure
6-2; slots in white express the memory of chunks been unloaded.

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 61

Figure 6-1: 1:4 octree

Figure 6-2: GPU memory use after unloading (blue slots are occupied while the white ones are empty)

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 62

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 63

Appendix:

Figure 1: Legend for Javascript function

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 64

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 65

Reference:

Denning, P. J., (2005). The Locality Principle, Communications of the ACM, Volume 48, Issue 7,Pages
19–24.

Driel, M. (2015). Real-time intersections on space scale cube data. Master’s thesis, Utrecht University.

Dynatrace. (2017). Java Memory Management. Chapter: Memory Management. Accessed from:
https://www.dynatrace.com/resources/ebooks/javabook/how-garbage-collection-works/

Eberly, D (2006). 3D Game Engine Design: A Practical Approach to Real-Time Computer Graphics, p.
69. Morgan Kaufmann Publishers, United States. ISBN 0122290631.

EPSG (2016). Coordinate Systems Worldwide. Accessed from:
https://epsg.io/map#srs=28992&x=93809.996510&y=463781.774706&z=19.

GL Programming. (n.d.) Chapter 3: Viewing. Accessed from:
http://www.glprogramming.com/red/chapter03.html/

Huang, L., Meijers, M., Suba, R., and van Oosterom, P. (2016). Engineering web maps with gradual
content zoom based on streaming vector data. {ISPRS} Journal of Photogrammetry and Remote
Sensing, 114:274 – 293.

Mozilla developer network (2017). Documentation. Accessed from: https://developer.mozilla.org/en-
US/docs/Mozilla/Gecko.

Nyman, R. (2013). The concepts of WebGL. Accessed from:
https://webglfundamentals.org/webgl/lessons/webgl-fundamentals.html.

OGC. (n.d.). Request for Comments on Candidate Web Map Tiling Standard. Accessed from:
http://www.opengeospatial.org/standards/requests/54/

OpenGL. (2016). Face Culling. Accessed from: https://www.khronos.org/opengl/wiki/Face_Culling/

Peyrott, S. (2016). 4 Types of Memory Leaks in JavaScript and How to Get Rid Of Them. Accessed
from: https://auth0.com/blog/four-types-of-leaks-in-your-javascript-code-and-how-to-get-rid-of-
them/

Ponchio, F., Dellepiane, M. (2016). Multiresolution and fast decompression for optimal web-based
rendering. Graphical Models, 88:1 – 11, ISSN 15240703. Accessed from: http://www.
sciencedirect.com/science/article/pii/S1524070316300285/

https://www.dynatrace.com/resources/ebooks/javabook/how-garbage-collection-works/
https://epsg.io/map#srs=28992&x=93809.996510&y=463781.774706&z=19
http://www.glprogramming.com/red/chapter03.html/
https://developer.mozilla.org/en-US/docs/Mozilla/Gecko
https://developer.mozilla.org/en-US/docs/Mozilla/Gecko
https://webglfundamentals.org/webgl/lessons/webgl-fundamentals.html
http://www.opengeospatial.org/standards/requests/54/
https://www.khronos.org/opengl/wiki/Face_Culling/
https://auth0.com/blog/four-types-of-leaks-in-your-javascript-code-and-how-to-get-rid-of-them/
https://auth0.com/blog/four-types-of-leaks-in-your-javascript-code-and-how-to-get-rid-of-them/

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 66

Rovers, A (2016). Exploring the use of a generic spatial access method for caching and efficient retrieval
of vario-scale data in a client-server architecture. Master’s thesis, Technology University of Delft.

Rosenberg, J. (2012). Loading 3D model in WebGl. Accessed from: https://n-e-r-v-o-u -
s.com/blog/?p=2738/

Suba, R., Meijers, M. and van Oosterom, P. (2013). 2D vario-scale representations based on real 3D
structure. 16th ICA Generalisation Workshop.

TIBCO. (2016). Garbage Collection Policy Settings. Accessd from:https://docs.tibco.com/pub/sb-
lv/2.1.2/doc/html/admin/garbagecollection.html/

van Oosterom, P. and Meijers, M. (2013). Vario-scale data structures supporting smooth zoom and
progressive transfer of 2d and 3d data. International Journal of Geographical Information Science,
28(3):455–478.

van Oosterom, P., Meijers, M., Stoter, J., and ˇSuba, R. (2014). Data structures for continuous
generalisation: tGAP and SSC. In Lecture Notes in Geoinformation and Cartography, pages 83–117.
Springer Science Business Media.

WebGLFundamentals.org (2015). WebGL Fundamentals. Accessed from:
https://webglfundamentals.org/webgl/lessons/webgl-fundamentals.html/

https://webglfundamentals.org/webgl/lessons/webgl-fundamentals.html/

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 67

Construct Responsive Web Service for Smooth Rendering of Large SSC Dataset and the Preprocessor for Source Data - June -2017

 68

