

Delft University of Technology

Are stylolites fluid-flow efficient features?

Bruna, Pierre Olivier; Lavenu, Arthur P.C.; Matonti, Christophe; Bertotti, Giovanni

DOI 10.1016/j.jsg.2018.05.018 Publication date

2019 **Document Version** Accepted author manuscript

Published in Journal of Structural Geology

Citation (APA)

Bruna, P. O., Lavenu, A. P. C., Matonti, C., & Bertotti, G. (2019). Are stylolites fluid-flow efficient features? *Journal of Structural Geology*, *125*, 270-277. https://doi.org/10.1016/j.jsg.2018.05.018

Important note

To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

1

Are stylolites fluid-flow efficient features?

2

Pierre-Olivier BRUNA^{(1)*}, Arthur P.C. LAVENU⁽²⁾, Christophe MATONTI⁽³⁾ and Giovanni
 BERTOTTI⁽¹⁾

- 5 (1)Department of Geoscience and Engineering, Delft University of Technology, Delft, the6 Netherlands
- 7 (2) ADNOC Offshore, PO Box 303, Abu Dhabi, U. A. E.
- 8 (3) Aix-Marseille Université, CNRS, IRD, CEREGE, Um 34, 3 Place Victor Hugo (Case 67), 13331
 9 Marseille Cedex 03, France
- 9 10 11

12 * Corresponding author, p.b.r.bruna@tudelft.nl

13 Keywords: drains, barriers, stylolite life cycle, roughness, insoluble

14

15 Abstract

16 It sounds counter-intuitive to consider contraction features such as stylolites as potential 17 conduits for flow. However, this idea has grown since 1980, with geoscientists finding many 18 examples principally in carbonate reservoirs where stylolites can be considered as fluid-19 efficient features. Among others, these features can be reactivated stylolites, can generate 20 positive porosity and permeability anomalies, can drive corrosive fluids or can remain open in 21 an overpressured system. Conversely, stylolites can also be closed forever. These 22 impermeable stylolites can generate permeability anisotropy that may impact fluid 23 movements. Stylolites require particular attention to evaluate whether they act as drains or as 24 barriers to flow (compartmentalisation). We review some of the key studies of the past thirty 25 years with a special attention to the most recent ones. We end-up considering their 26 mechanical origin, their nucleation and growth, their past and present impact on reservoir 27 properties and performances as key factors influencing the flow efficiency differentiation of 28 these features. This short review presents the latest theories and observations about stylolites

29 with respect to the key factors aforementioned. The authors support herein that a distinction 30 should be made between processes occurring in the past and the present-day impact the 31 stylolite had on reservoir properties.

32

33 **Definition and morphology of a stylolite**

34 Stylolites are common features found in a variety of geological contexts principally in 35 carbonate rocks (Fig.1). Stylolites are planar structures that accommodate localised 36 contractional strain (Fletcher and Pollard, 1981; Schultz and Fossen, 2008). In general, their 37 2-D profile is easily distinguishable and consists of rough lines displaying positive and 38 negative peaks (teeth) of variable amplitudes (Fig. 1.A-C and G-I). These peaks develop 39 parallel to the direction of the maximal principal stress σ_1 (Choukroune, 1969; Groshong, 40 1975) although the stylolite plane can be oblique compared to the displacement direction (e.g. 41 slickolites, Gratier et al., 2005). Generally, during burial bedding parallel stylolites (BPS) or 42 "sedimentary stylolites" are generated whereas during reverse, strike slip or normal tectonic 43 regimes "tectonic stylolites" may be generated (David, 2016).

44 Stylolites form and grow through the process of pressure-solution occurring initially at the 45 micron scale (grains - crystals interface). It implies localised physical stress-induced 46 compaction of grains along fluid-filled interface and the chemical dissolution of authigenic 47 material of the rock (Ebner et al., 2009; Vandeginste and John, 2013). This process is at least 48 partially controlled by the mineralogical heterogeneity of the rock because it provides the 49 required contrast of solubility to start generating stylolite surfaces. The "proto-stylolite plane" 50 can be initially seen as a sharp surface that will roughen on localised less-soluble 51 heterogeneous material [i.e. pinning process, sensu Koehn et al., 2012)]. Following Alsharhan 52 and Sadd (2000), Pressure solution seams (PSS) are characterised by laterally discontinuous 53 undulating (peaks amplitude < 1cm) (Fig 1, A-B) and anastomosed surfaces. They contain 54 thin (< 1mm thick) but evenly distributed insoluble material along their surfaces. Stylolites 55 are laterally continuous rough (peaks amplitude > 1cm, fig. 1 B-C) and generally isolated 56 surfaces. They contain variable thickness of insoluble material not evenly distributed along 57 the surface. At the particle level "insoluble" minerals (e.g. quartz, phyllosilicates, oxides, 58 organic matter – see fig. 1.D-F) affect physico-chemical processes as well as the growth of 59 stylolite teeth. For instance, it was advanced by Koehn et al. (2007) that micas can enhance 60 the process of pressure-solution but can also flatten the stylolite profile on a longer time scale. 61 Vandeginste and John (2013) who worked on stylolite characterisation in IODP core sampling 62 Eocene to Early Oligocene Limestones in the Canterbury Basin, mention that the amplitude of 63 stylolite peaks is anti-correlated with the amount of insoluble minerals they contain. At the 64 tens to hundreds of meter scale, sedimentary facies and general lithological changes constitute 65 preferential zones of solubility contrast where stylolites may develop. It was sometimes 66 suggested that stylolites develop on bedding plane but it appears that this assumption is 67 complex to verify. Indeed the fine layering (varying from few centimetres to about 60 cm) 68 observed in the Flamborough Chalk cliffs, UK (Ammeraal, 2017) is not due to stratification 69 but to stylolitisation. This is supported by the relative homogeneity of the chalk succession 70 where no major facies change would be able to explain this bedding succession. This raise an 71 issue concerning the fractures observed in these chalk cliffs appearing bed-confined. 72 However, in this case it seems that this "mechanical stratigraphy" is more a dissolution 73 artefact (due to the presence of stylolites). Then, the horizontal bounding discontinuities need 74 to be cautiously characterised to decipher if they behave as barriers compartmentalising fluid 75 flow or as drains conducting fluids in both vertical (fractures) and horizontal directions 76 (stylolites).

The process of pressure-solution is also controlled by the diagenesis the rock experience.Alsharhan and Sadd (2000) showed that pressure-solution occurs generally syn- or post initial

79 diagenesis This mainly because lithification phases. is reduces the grain 80 rotation/rearrangement and allows for contraction and dissolution to start (Bathurst, 1987; 81 Sheppard, 2002). Concomitantly, the porosity of the rock should remain important enough to 82 receive products of dissolution – principally the main chemical components of the host rock. 83 Following the experiments of Koehn et al. (2007), each pressure solution surface start with a 84 slightly undulating profile that roughen with time – so we can consider that each PSS became 85 a stylolite and that the present-day conservation of PSS results of a deactivation of stylolite. 86 Along with the heterogeneity of the rock, Rustichelli et al., 2012) demonstrated that the 87 amount of stress applied to the rock, the temperature of the system and the pore fluid 88 chemistry are essential drivers and catalysers of the process of pressure-solution.

89 The 2-D lateral extension of stylolites varies from micrometres (Fabricius and Borre, 2007; 90 Gratier et al., 2005; Park and Schot, 1968) to several kilometres (Laronne Ben-Itzhak et al., 91 2012). This range of scales makes stylolites easily observable at the scale the geologist is 92 working: thin-sections, cores or outcrops (Bruna et al., 2013; Lavenu and Lamarche, 2017; 93 Matonti et al., 2015 – see fig. 1). In 3-D, stylolite extension follows the same rules as fracture 94 propagation. Theoretically, as stylolites are considered as anti-mode I fracture, they should 95 tend towards infinite size in an isotropic media (e.g. without structural or sedimentological 96 perturbations like fractures or erosion surfaces, Fletcher and Pollard, 1981). However, 97 stylolites vary in length and have a characteristic shape whereby they are thicker in their 98 central part (aperture, filled by insoluble material) and thin towards their tips. These 99 characteristics make stylolites potentially connected each other (fig. 1 G, H and I). 100 Unfortunately, only a limited amount of outcrops allow to investigate stylolites surfaces in 3-101 D (Laronne Ben-Itzhak et al., 2014 - mainly isolated features) and consequently their 102 connectivity is a matter rarely addressed.

104 **The life cycle of a stylolite**

105 This section deals with the nucleation (initiation), growth (acquisition of roughness) and death 106 (deactivation) of stylolites. To understand the stylolite initiation, the mechanical genetic 107 process must be understood at small scale and ideally reproduced experimentally in the 108 laboratory. So far, only Gratier et al. (2005) have been able to experimentally reproduce 109 microstylolites (or/and proto-stylolite surfaces) at stressed grains contacts. This work 110 constitutes a benchmark on how stylolites are initiated in Nature. These authors demonstrated 111 that the early development of a stylolite is controlled by a competition between: i) a local 112 stress-induced deflection of the grain-to-grain interface generating peaks – and consequently 113 favouring the roughness - and ii) opposed to this roughening process, the strength of the 114 grain-to-grain interface divided in surface energy at the micro-scale (resistance to 115 compression) and the elastic energy at the stylolite interface scale (surface tension). The local 116 deflexion of the grain-to-grain interface is materialised by dissolution pits. These dissolution 117 pits occur at the location of heterogeneities (e.g. at the grain-to-grain boundary or at the 118 bedding interface). Some of these dissolution pits predate the process of stylolitisation and act 119 as stress-concentration spots that induce an amplification of the dissolution process. It was 120 observed that stylolite peaks always grow opposite these dissolution pits. The process of 121 stylolite nucleation also requires fluid in the interface to initiate and to develop. Then, the 122 stylolite interface can be considered as a planar and continuous pore (Schmittbuhl et al., 123 2004).

124 The depth at which the stylolite initiation starts is still debated. Koehn et al. (2012) mention 125 early stylolite formation at 90 m depth. This number is based observation of stylolite intensity 126 and evaluation of the maximal burial depth of the host rock (neglecting temperature, pressure 127 and time). Kroon (2017) used BPS sampled in outcrop analogues of the Potiguar Basin 128 (Brazil) to determine the maximum value of vertical σ_1 and to deduct the associated burial

129 depth. He showed that the depth at which σ_{1max} is vertical varies from less than 200m to 945m 130 (4.7 and 22.2 MPa, respectively) for outcrops separated by 10 to 50 km only. However, the 131 depth of formation of stylolites is also dependent on more parameters than the depth of burial 132 exclusively. Vandeginste and John (2013) and Lavenu (2013) stated that texture, lithology 133 (including the presence of phyllosilicates in the rock) and the host rock original porosity are 134 drivers of stylolite initiation. While initial bed-parallel sedimentary the main 135 heterogeneities/solubility contrast can be reasonably considered as the primary cause of 136 stylolites spacing, the stress perturbations around stylolite planes cannot be ruled out. Indeed, 137 such as other mechanical discontinuities (as fractures or faults) stylolites probably lead to the 138 development of stress shadow-zone (Rabinovitch et al., 1999; Henrion, 2011; Bonneau et al., 139 2012) around and along stylolites axis, impeding the development of subsequent stylolites 140 close to it. The question of the stylolite spacing remains subjected to controversial discussions 141 in the scientific community. Ones argue that the spacing is self-organised (stress-induced 142 instability in compacting rock creating heterogeneity, Merino et al., 1983) and the others 143 mentioning that it is indistinguishable from random arrangement or that the roughly regular 144 spacing is due to pre-existing heterogeneities (Railsback, 1998). The spacing of stylolites may 145 depend on the strength of the rock. Bruna et al. (2013) and Martin-Martin et al. (2016) 146 observed that bedding parallel stylolites spacing and abundance is different in mud-dominated 147 facies compared to grain-dominated facies. In both cases, mud-dominated facies contains the 148 larger amount of stylolites and the smaller spacing. Experiments conducted by Koehn et al. 149 (2012) showed that the quenched noise (heterogeneity – resistive grains) initially present in 150 the rock is required for pinning processes to occur (creation of stylolite teeth). Then it seems 151 reasonable that the spacing of stylolite within interval of same lithologies follow a random 152 organization influenced by pre-existing heterogeneity.

The next phase of the development of stylolite is their growth - or roughening (Fig. 1, A-C, 153 154 G-I). The growth of a stylolite surface was qualified by Ebner et al. (2009) as a self-affine 155 scaling invariant with a characteristic Hurst exponent or roughness exponent. Specifically, 156 stylolite growth is characterised by two pseudo-linear growing regimes with two different 157 roughness exponents. This behaviour is expressed by a slope break between the two regimes 158 called the crossover length, which separate the surface-energy dominated regime and the 159 elastic energy dominated regime. This author mention that this length is function of stress 160 during stylolite growth and that a Fourier transform can be constituted along the stylolite 161 profiles. The amount of stress implied during the formation of the stylolite is resolved by the 162 relation linking crossover length and deformation stress. Then, stylolite can be used as a 163 paleostress gauge. Following this definition, we can expect that stylolite peak amplitude (i.e. 164 roughness) is comparable at each scale including the common outcrop scale where stylolites 165 are easily observable.

166 Koehn et al. (2007) showed that stylolites roughen progressively following a power law 167 distribution in time. After a certain time depending on the length of the stylolite, the growth 168 tends to saturate and the stylolite morphology became constant (it acquire is present-day 169 observed form). In their experiments, the critical saturation time was evaluated to 2500 years 170 for a stylolite long of 0.4 mm and more than 8000 years for a stylolite of 40 cm long. This 171 model seems to indicate that a stylolite growth involves a limited amount of time. However 172 the model proposed by Koehn et al. (2007) is valid for one stylolite in an idealised model. We 173 believe that for a large population of stylolites reaching this ideal situation at various moment 174 of the geological history and in rocks where the initial heterogeneity might be very different 175 from one place to another, then the stylolites history can be extended to a long geological 176 time. Work of Laronne Ben-Itzhak et al. (2012) conducted on cliffs of La Blanche Formation 177 in Israel displaying continuous large scale sedimentary stylolite exposures showed that below

50 cm, stylolites have the typical self-affine behaviour. However, above this threshold, theroughening exponent decreases to 0 indicating that the stylolite process was deactivated.

180 This last statement emphasises the death of the stylolites after their lateral propagation as a 181 planar interface (anti mode-I fracture) due to stress concentration at the proto-stylolite tips 182 (Beaudoin et al., 2016; Brouste et al., 2007; Katsman, 2010). The deactivation of the stylolite 183 can be related to the nature of stylolite interface fluid and with the diagenetic history of the 184 rock - the cessation of the stylolite process can occur during burial and do not require external 185 triggering mechanism (e.g. change of tectonic regime). Concerning the type of fluid, 186 Alsharhan and Sadd (2000), Esteban and Taberner (2003) and Paganoni et al. (2015), showed 187 that hydrocarbon saturated fluid leads to the cessation of the stylolite activity because the 188 mass transfer in oil is nil (Fig. 1, F). Concerning the diagenetic history, it determines the 189 volume of sink sites available to receive the product of the dissolution process and the 190 availability of nucleation sites for stylolites (Koepnick, 1986). The process of pressure-191 solution induces dissolution of host rock material and precipitation of this dissolved material 192 elsewhere in the system (pore space). The fluid circulation in the rock makes this process 193 happening. For instance, Paganoni et al. (2015) studied oil reservoir from onshore Abu Dhabi. 194 They found kaolin cements filling micro-fractures oriented perpendicular to burial stylolites 195 (contemporaneous) and pores in the matrix surrounding these fractures. They showed that insoluble kaolin are related to fluxes of aggressive organic acids waters. These waters 196 197 dissolve mica and feldspars minerals and keep Si and Al in solution though organo-metallic 198 chemical complexation. This process is effective during stylolitisation and induces the 199 precipitation of kaolin in the open fractures and in pores surrounding them. Vandeginste and 200 John (2013), indicates that during stylolitisation process, rock dissolution products migrate by 201 diffusion to zones of lower pressure where they precipitate as cements. Devoid of available 202 pore space fluids cannot reach stylolite interface and cannot disseminate the product of pressure-solution. The system is locked as observed by Bruna et al. (2013) in Lower Cretaceous limestone of the SE of France where the sedimentary series was buried at more than 1 km depth. At that depth, sedimentary formations with low cementation rate or with initial porosity preserved only were prone to the development of stylolites compared to early and intensely cemented ones that display very rare stylolites occurrences.

208

209 Time: an important parameter for stylolite fluid flow efficiency

210 All stylolites have been fluid conduits at least once in their life. The previous sections 211 demonstrated that the presence of fluid and their movements are primordial in the early 212 genesis of stylolites. Consequently, the principal question rose by this paper – are stylolites 213 fluid flow efficient features? - is already answered. This question has been strongly debated 214 since the early 1980s and the scientific community seems divided between researchers 215 considering stylolites as fluid conduits and others considering them as fluid barriers. 216 However, it seems relatively rare to find a clear discussion on when stylolites were active as 217 fluid conduits and when they became – permanently or temporarily – barriers to fluid flow. 218 We propose here to separate stylolites acting as fluid conduits in the past - after their 219 formation and during their development until their deactivation – from those still playing a 220 positive or negative flow role in currently exploited reservoirs (which may influence the 221 performance of the reservoir).

Braithwaite (1988), was one of the first to discuss the potential for stylolites to be hydrocarbon conduits. He studied samples from Montana, USA and from Hadeland, Norway and observed that stylolites can be implicated in the process of hydrocarbon migration from source rock to reservoir. Overpressure in these systems help stylolites remains open and constitute super-permeability features allowing fluids to migrate at fast rates. This type of behaviour was later demonstrated by Peacock et al. (2017) and by Koehn et al. (2012) who

interpreted stylolite interfaces as channels able to transit fluid freely within a reservoir system.
Padmanabhan et al. (2015) used the thermal connectivity anomalies in carbonate samples
from Turkey and Malaysia to emphasise that the diachronic role of stylolites (i.e. acting
sometimes as fluid conduits or fluid barriers) in the migration of hydrocarbon can generate
variation of maturity within the reservoir.

233 In another context, Martín-Martín et al. (2016) studied an Upper Cretaceous carbonate 234 platform in Spain where stylolites are interpreted to be the main control of the distribution of 235 stratabound dolomite bodies and also to be responsible for their later corrosion and 236 perforation making them highly porous and permeable layers. In their case stylolites act 237 initially as baffle zone. Mg-rich fluids are transported by faults until they reach a stylolite 238 barrier that laterally drives the dolomitisation process. Later high-pressure hydrothermal 239 fluids circulating again along faults induced a change in the function of the stylolite, whereby 240 it became a fluid conduit and induced corrosion and hydraulic fracturing in the dolomite 241 bodies [this process was also described by Gisquet et al. (2013) in the Etoile Massif in the SE 242 of France] (Fig. 2 B-C). In this case, the change of tectonic regime flipping σ_1 from vertical to 243 horizontal, or the induced fluid overpressure due to decompaction (inducing a disequilibrium 244 of pore-fluid pressure) are suggested by the authors to explain the opening of stylolites.

245 Stylolites can also be responsible for their own deactivation by promoting cementation and 246 consequently decreasing the initial or acquired porosity of the rock (Park and Schot, 1968). 247 Sheppard (2002), showed that the stylolitisation process favours the petrophysical 248 heterogeneity of the rock. Indeed, the pressure-solution mechanism is responsible for the 249 creation of a diffusion gradient from porous zone conducting the fluid needed in the 250 stylolitisation process to less porous zones where cementation occurred (Fig. 2 D-E). Then, 251 with stylolite development, planar porous zones may be created in rocks. Matonti et al. (2012) 252 in their work on the Castellas fault in the SE of France, suggested that stylolites, by increasing

253 dissolution, are the main cause for pervasive and complete cementation of the pore network 254 around faults affecting initially porous carbonates rocks during fault reactivation. Indeed, 255 fault strike-slip reactivation is related to the development of dense/numerous tectonic 256 stylolites, providing CaCO₃ enriched fluids that contributed to form a cementation 257 gradient/fringe visible on a 10-40 m scale around the main fault plane. Bertotti et al. (2017), 258 observed in the Jandaíra Formation, Brazil, that stylolite are the source of cement that fill 259 open joints and impede further fluid circulation in the rock. Fabricius and Borre (2007) 260 emphasised the influence of the rock texture in the degree of cementation coming from 261 stylolite production. Large pores are generally quickly filled by cements coming from the 262 stylolitisation process (the pressure differential between stylolite dissolution spot and the pore 263 is higher with large pore and favour the cementation in these locus). They observed in the 264 Ontong Plateau in Java and in the North Sea Gorm and Tyra chalk oil fields, that the 265 wackestone textures are les porous than the mudstone textures which appears to be 266 contradictory.

267

268 Influence of stylolite in present-day reservoir performance

As previously shown, stylolites can have a positive or negative impact on present day reservoir properties, which are partially linked to stylolites' geological history. The present section gives some examples and explanations on i) how stylolite may compartmentalise reservoirs acting as barriers to fluid flow and make them potentially difficult to exploit and ii) how stylolite can represent super-permeable drains and should potentially increase the productivity of the reservoir if they are rightly identified and used.

275

• **Stylolite playing a role of barrier**

277 The most common statement about stylolites is to consider them as barrier to fluid flow. For 278 Koehn et al. (2016), stylolites with low roughness are generally good barriers (Fig. 3) because 279 this makes them more continuous feature than stylolites with irregular profile. The nature of 280 their filling material is also influencing their fluid flow behaviour (Fig. 1, D-F). Stylolites are 281 good barrier if they are filled by non-permeable materials like clay, organic matter and/or 282 oxides (Mehrabi et al., 2016; Vandeginste and John, 2013). In addition, for Heap et al. (2014), 283 a stylolite can be considered as good barrier if its filling material is evenly distributed and 284 continuous along the seam and if the insoluble material composition is globally homogeneous 285 along it (Fig. 3). The Grignantes quarry in the SE France constitutes a key locality to discuss 286 these relationships. Here, the Meyrargues Limestone Formation, Berriasian of age (see Bruna 287 et al., 2013), includes alternating metre-scale beds containing isolated stylolites and 288 centimetre thick bioturbated packstone interbeds with solution seams bands. Work of Bruna et 289 al. (2013), Bruna (2013) and Matonti et al. (2015), evidenced the difference in shape and 290 insoluble composition of stylolites included (i) in beds - isolated seams, variable roughness 291 and clay-oxide insoluble filling – and the ones included in (ii) interbeds – over concentrated 292 and connected seams, low roughness and heterogeneous filling composed of pyrite, quartz, 293 clay, calcite with aperture up to 50 µm. They tested if these different types of stylolites and 294 associated insoluble filling displayed a typical P-wave velocity (Vp) signature by measuring 295 acoustic waves directly on outcrop and in the laboratory on plugs sample processed in both 296 atmospheric and under confinement (40 MPa) conditions. Figure 4, shows the obtained results 297 on outcrop demonstrating that stylolites in beds are mainly invisible for Vp but solution seams 298 bands located on interbeds showed an important decrease of acoustic waves velocities. The 299 authors interpreted this as underlining the importance of stylolite profile (low roughness), 300 heterogeneous filling and aperture on their hydraulic property and geophysical signature. At 301 the plug scale, Vp values, porosity and the occurrence of stylolites were statistically compared in and confirmed the observation conducted at the outcrop scale. It appears then that isolated and continuously filled stylolites are likely to display acoustic signature similar to their host rock making them less-to-no detectable, and when stylolites are open or discontinuously filled by insoluble material they have a distinctive acoustic signature. It is important to note here that these drastic contrasts in geophysical and hydraulic behaviour can occur below the metre scale, hence impacting heterogeneity distribution in reservoirs, below conventional seismic cross-section resolution.

However, stylolites acting as barriers can be important in reservoir as they may act as directional guide for fluid flow impeding vertical movements (when sedimentary stylolite only are developed) or restricting even more fluids spots - in the presence of both sedimentary and tectonic stylolites – (Alsharhan and Sadd, 2000; Bushara and Arab, 1998; Koepnick, 1986; Lavenu and Lamarche, 2017; Martín-Martín et al., 2016). Because the production of a compartmentalised reservoir is technically complex, one should carefully assess the presence of stylolites and evaluate their potential impact before starting any field development plans.

316

317

• Stylolite playing a role of drain

318 At a small scale, we previously discussed that stylolite filling continuity is a key to make 319 them good barriers. Heap et al. (2014) conducted experiments on a series of 4 samples with 320 different lithologies containing stylolites. In each of these samples, plugs where drilled in 321 order to obtain 3 subsamples: i) without stylolites, ii) with stylolite oriented along the 322 longitudinal axis of the subsample and iii) with stylolite oriented perpendicular to the long 323 axis of the subsample. They showed that the porosity value in sample devoid of stylolites is 324 systematically lower than in sample with stylolites. They also measured the permeability on the subsamples and demonstrated that the anisotropy of permeability is equivalent between 325 326 samples without stylolites and samples with perpendicular to long axis stylolites (gas permeability ranging from 10^{-19} to 10^{-14} m² in both cases). They also observed that the permeability is enhanced when stylolites are oriented in the longitudinal axis of the subsample. This study shows that stylolites are here not a proper barrier and represent a zone of enhanced permeability that can flank the stylolite walls on the order of millimetres to few centimetres around the stylolites.

332 As previously discussed, the roughness is also a key parameter influencing the fluid flow 333 behaviour of a stylolite. The work of Koehn et al. (2016) highlighted the fact that the 334 roughness profile of a stylolite is directly linked with its petrophysical behaviour by making 335 the stylolite potentially discontinuous. For instance in the case of the "rectangular layer 336 stylolite", insoluble material is concentrated in the horizontal part of the stylolite teeth, the 337 vertical edges of the stylolite teeth having a completely different behaviour. During stylolite 338 growth these vertical parts are parallel to the principal stress direction, and behave like 339 tension gashes that can remain open if subsurface conditions are favourable (e.g. 340 overpressure, Fig. 5). The authors showed that if the conditions are not favourable, fluids 341 could remain trapped in the teeth and locally accelerate the dissolution leading to the creation 342 of secondary vuggy porosity (Fig. 5 C). This latter process was also observed by Nader et al. 343 (2016), and can be enhanced by the nature of fluids remaining trapped in the system (Martín-344 Martín et al., 2016; Paganoni et al., 2015).

345 Stylolites also appear as weak interfaces (Bjørlykke and Høeg, 1997; Vajdova et al., 2012) 346 prone to break due to external mechanisms. Bruna et al. (2013) demonstrated that stylolites 347 could be locally reopened due to short and intense episodes of uplift. Shearing can also be 348 evocated as a potential reopening mechanism for stylolite, where it appears that the roughness 349 could be a limiting factor for reactivation. However, if stylolite seams are flat enough, the 350 reactivation seems mechanically possible as demonstrated in Barton and Bandis (1980).

352 It appears that the main parameters making stylolites a positive or negative fluid flow features 353 is linked with their shape (rough stylolites are not continuous high density layers), their 354 filling material, the nature of the fluid transiting trough them and the global geological history 355 (e.g. highly corrosive fluids circulating along faults and using stylolite to invade the host 356 rock). Indirectly, stylolites can also act as barrier by cementing locally part of the reservoir (if 357 the dissolved calcite is transferred locally around the stylolite and fill the actual pore space). 358 Heap et al., 2014 mention that mineral coating (e.g. stylolites formed before oil charge may 359 be significant barriers to fluid flow because they are entirely cemented compared to stylolites 360 formed after the oil entrapment that impede the cementation and consequently the closure of 361 stylolites), low fluid fluxes, low partial pressure of CO₂, high pH and high temperature may 362 also favor this process.

363

364 Concluding remarks

This paper proposes a short review of selected recent works conducted on stylolites. We covered the origin and the evolution of stylolites in terms of triggering mechanisms involved. We investigated how the stylolitisation process should impact reservoir properties and we discussed how stylolites can have a negative or positive control on present-day reservoir fluid flow and storage. In the present section, the authors wanted to raise some questions that do not seems to be answered yet.

371

The origin and life cycle of a stylolite has been the focus of numerous high quality studies that increased strongly the community's understanding of how a stylolite occurs, grow and die. However, an important part these articles focus on results obtained from numerical modelling or/and conducted at small scale sometimes compared to natural experimental examples. The rare studies focusing on larger scale stylolites (Laronne Ben-Itzhak et al.,

2014; Laronne Ben-Itzhak et al., 2012) opened a new perspective, showing in particular the process of deactivation of stylolites. This can probably constitute a basis to date when the stylolite stopped to grow. Because the cementation of the reservoir may be linked to the stylolite deactivation, understanding the relative timing of these processes will be a strong asset to reconstruct the evolution of a petroleum system (migration, charge, fluid flow). An approach based on dating and provenance evaluation (isotopic studies) of the different cements can be advanced as a research axis for the future.

384

385 Since the beginning of 1980s, it is understood that stylolites can laterally propagate almost 386 towards infinity in 3-D. However, the dimension of a single stylolite or the dimension of a 387 population of interconnected stylolites has not yet been investigated in detail. Bruna (2013) 388 and Bruna et al. (2015) observed springs flowing out from solution seem bands. Tracing the 389 spring waters in this area will be a way to evaluate the connectivity of these porous units. 390 Another methodology will be to apply fluid flow modelling workflow conducted on fracture 391 network to horizontal interface. These kinds of models can be calibrated from outcrop 392 analogues where the different populations of stylolites, their intrinsic characteristic and their 393 potential degree of connectivity can almost fully characterised in pseudo-3-dimension and 394 with a high degree of confidence (observable).

395

The potential of stylolites to be drain or barriers seems to follow a binary response. In fact stylolites can be drains AND barriers to fluid flow. Depending on facies variation, on diagenesis, on the heterogeneity of the reservoir itself, multiple types of stylolites can be generated and consequently their impact on fluid flow could be very different. Accordingly, the impact of stylolite is not only black or white but can be viewed as shades of grey. Rather than mentioning the presence of stylolites in reservoir intervals and stating that they will have

402 a negative impact on reserve and flow, efforts need to be consented on describing the 403 roughness of stylolite and the nature/thickness of insoluble filling. The understanding of 404 regional stress state and tectonic history of the area where the targeted reservoir is located 405 need also to be considered to take into account a potential reopening of these structures. As it 406 has been recognized for fractures several decades ago, stylolites properties and hydraulic 407 behaviour should now be considered as the final result of multifactorial (sedimentary, burial, 408 chemical, tectonic) and polyphased processes. Experiments of Heap et al. (2014) constitute a 409 benchmark to change the classical vision of stylolites as a simple barrier. Systematic testing 410 of various types of stylolite roughness and of different type of insoluble to decipher the 411 impact of these parameters on petrophysical properties would be an interesting axis of 412 research for the future. Obtained results could be compared to the modelling results obtained 413 by Koehn et al. (2016). Finally, conducting a series of experiments on full size core at 414 subsurface condition will help to get rid of artefacts/biases caused by surface decompaction 415 that can occur to natural samples.

416

417 Acknowledgements

Barry Reno is acknowledged for his great help improving English in this paper. Antonio
Benedicto and the second anonymous reviewer, are also warmly thanked for their
constructive remarks.

421

422 Figure Captions

Figure 1: Insoluble, shape and connectivity are some of the principal parameters characterizing stylolites. For each column, a photograph is shown to illustrate these parameters. The evolution of a stylolite goes through a variety of shapes, from almost flat – or wispy seam (A – Grignantes Quarry, SE France), passing by the stage of solution seam (B1

427 Grignantes Quarry, SE France) to more mature with visible picks (B2) up to the advanced 428 stage of columnar - or rectangular - stylolite (C, Offshore Abu Dhabi). D-E presentation of 429 some of the most common insoluble types: D) oxidised material (thin-section, Western 430 Australia), E) clay (Grignantes Quarry, SE France), F) organic matter and bitumen filled 431 stylolites (Maiella, Italy). Stylolite connectivity is at play when dealing with potential flow. In 432 case of isolated features (G, Grignantes Quarry, SE France), stylolites contribution to flow is 433 limited. If stylolites are connected (H, Abu Dhabi), a path is created and can enhance fluid 434 flow. In the case of multiple tectonic phases, isolated horizontal stylolites (I1 Grignantes 435 Quarry, SE France) can connect tectonic stylolites (I2, oblique to perpendicular) and improve 436 their connectivity.

437

438 Figure 2: Time evolution of stylolite behaviour (drain or barriers). The stylolite initiation (A) 439 is common for both of the presented example. At grain to grain contact, proto-stylolitisation 440 occur implying the transport of dissolution product in the seam interface (A') and the 441 roughening initiation (A", SEM picture from Gratier et al., 2005). B - C example of 442 evolution: ancient behaviour of stylolites acting initially as (B - B' photograph from Martín-443 Martín et al., 2016) baffle zones driving stratabound dolomitisation process and C - C') later 444 as conduits driving highly corrosive hydrothermal fluids responsible of natural hydro 445 fracturing and secondary porosity creation. Modified from Martín-Martín et al., 2016. D – E 446 example of evolution: the roughening of the stylolite increase (D') with time and the product 447 of dissolution start to fill available pores in the surrounding matrix. When the roughening tend 448 towards its maximum (columnar shape), the available pore space in the matrix is likely to be 449 filled by the product of dissolution and stylolites became inactive.

Figure 3: Stylolite system acting as potential barrier to fluid flow. A) sketch of stylolites population where some (green) are potential fluid flow barriers. This sketch present the principal parameters that condition this behaviour. B) outcrop example (Flamborough Chalk, UK, modified from Ammeraal, 2017) where fractures appear confined by two stylolite surfaces. C) block diagram showing the potential 3D fluid flow pathways through this kind of configuration. The reservoir is compartmentalised and fracture-controlled flow units can potentially be disconnected each other.

458

459 Figure 4: Relationship between microscale properties of stylolites and their contrasted 460 hydraulic behaviour/geophysical signatures. A: Panorama of the Grignantes Quarry outcrop, 461 composed Berriasian micritic carbonates, and showing alternating bed/interbed (in purple) 462 organisation (modified from Bruna et al. 2013). B: Map of interpolated Vp values measured 463 along a meter scale outcrop showing extremely low values located across the solution seam 464 interbeds (see. Matonti et al., 2015 for methodology). C: Close-up on interbred structures 465 composed of hundreds of anastomosing stylolites. D-E: Schemes illustrating the strong 466 decreasing effect of open stylolites on Vp values (stylolite aperture in blue on E), compared to 467 the "transparent" closed and filled stylolites (oxide/clay filling in brown on D).

468

Figure 5: Stylolite system acting as potential to fluid flow. A) sketch of stylolites population where some (green) are potential fluid flow barriers and where the connectivity between stylolite of tectonic and sedimentary origin is marked by green dots. This sketch present the principal parameters that condition this behaviour. B) block diagram showing the potential 3D fluid flow pathways through this kind of configuration. Exchanges trough stylolite interface are then possible. In addition, stylolites with well-developed peaks concentrate insoluble material on the top/bottom of the teeth. The side of the teeth remain potential pathways for

- 476 fluids. In the case of partial filling of the teeth sides, this configuration can generate
- 477 secondary porosity within the teeth area where corrosive fluid can be trapped and can
- 478 generate localised secondary porosity (modified from Koehn et al., 2016). Picture C (Oman,
- 479 courtesy of Juliette Lamarche) show a real example of stylolite-localised secondary porosity.
- 480

481 **References**

- 482 Alsharhan, A.S., Sadd, J.L., 2000. Stylolites in Lower Cretaceous carbonate reservoirs,
- 483 U.A.E. SEPM Special Publication 69, Middle East Models of Jurassic/Cretaceous 484 Carbonate Systems, 23.
- Ammeraal, D., 2017. Fracture stratigraphy in the Flamborough Chalk, Civil Engineering and Geoscience. Delft University of Technology, p. 105.
- Barton, N., Bandis, S., 1980. Some effects of scale on the shear strength of joints.
 International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,
 17, 5.
- Bathurst, R.G.C., 1987. Diagenetically enhanced bedding in argillaceous platform
 limestones: stratified cementation and selective compaction. Sedimentology 34, 30.
- 492 Beaudoin, N., Koehn, D., Lacombe, O., Lecouty, A., Billi, A., Aharonov, E., Parlangeau, C.,
- 493 2016. Fingerprinting stress: Stylolite and calcite twinning paleopiezometry revealing the
 494 complexity of progressive stress patterns during folding—The case of the Monte Nero
- 495 anticline in the Apennines, Italy. Tectonics 35, 1687-1712.
- Bertotti, G., de Graaf, S., Bisdom, K., Oskam, B., Vonhof, H.B., Bezerra, F.H.R., Reijmer,
 J.J.G., Cazarin, C.L., 2017. Fracturing and fluid-flow during post-rift subsidence in
 carbonates of the Jandaira Formation, Potiguar Basin, NE Brazil. Basin Research 29, 18.
- 499 Bjørlykke, K., Høeg, K., 1997. Effects of burial diagenesis on stresses, compaction and
- 500 fluid flow in sedimentary basins. Marine and Petroleum Geology 14, 267-276.
- 501 Braithwaite, C.J.R., 1988. Stylolites as open fluid conduits. Marine and Petroleum 502 Geology 6, 4.
- 503 Brouste, A., Renard, F., Gratier, J.-P., Schmittbuhl, J., 2007. Variety of stylolites' 504 morphologies and statistical characterization of the amount of heterogeneities in the
- 505 rock. Journal of Structural Geology 29, 422-434.
- 506 Bruna, P.-O., 2013. Tight Carbonates Reservoir Properties Evolution: A case study of
- Lower Cretaceous hemipelagic limestone from the Northern Provence region, CEREGE.Aix-Marseille Universite, p. 235.
- 509 Bruna, P.-O., Guglielmi, Y., Lamarche, J., Floquet, M., Fournier, F., Sizun, J.-P., Gallois, A.,
- 510 Marié, L., Bertrand, C., Hollender, F., 2013. Porosity gain and loss in unconventional
- 511 reservoirs: Example of rock typing in Lower Cretaceous hemipelagic limestones, SE
- 512 France (Provence). Marine and Petroleum Geology 48, 186-205.
- 513 Bruna, P.-O., Guglielmi, Y., Viseur, S., Lamarche, J., Bildstein, O., 2015. Coupling fracture
- 514 facies with in-situ permeability measurements to generate stochastic simulations of
- 515 tight carbonate aquifer properties: Example from the Lower Cretaceous aquifer,
- 516 Northern Provence, SE France. Journal of Hydrology 529, Part 3, 737-753.

- Bushara, M.N., Arab, H.M., 1998. Fracture/stylolite characterization using stochastic
 modeling in zone-II reservoir, offshore Abu Dhabi, 8th SPE Abu Dhabi International
 Petroleum Exhibition and Conference, Abu Dhabi.
- 520 Choukroune, P., 1969. An example of mesoscopic analysis of concentric folding in 521 limestone series. Techtonophysics 7, 14.
- 522 David, M.-E., 2016. Evaluation de la compaction chimique et des paléo-enfouissements
- 523 des carbonates par l'étude des stylolites sédimentaires Cas du Bassin de Paris.
- 524 University pierre et Marie Curie, Paris, p. 42.
- 525 Ebner, M., Koehn, D., Toussaint, R., Renard, F., 2009. The influence of rock heterogeneity
- on the scaling properties of simulated and natural stylolites. Journal of StructuralGeology 31, 72-82.
- 528 Esteban, M., Taberner, C., 2003. Secondary porosity development during late burial in 529 carbonate reservoirs as a result of mixing and/or cooling of brines. Journal of
- 530 Geochemical Exploration 78-79, 355-359.
- 531 Fabricius, I.L., Borre, M.K., 2007. Stylolites, porosity, depositional texture, and silicates in
- chalk facies sediments. Ontong Java Plateau Gorm and Tyra fields, North Sea.Sedimentology 54, 183-205.
- 534 Fletcher, R.C., Pollard, D.D., 1981. Anticrack model for pressure solution surfaces. 535 Geology 9, 419-424.
- 536 Gisquet, F., Lamarche, J., Floquet, M., Borgomano, J., Masse, J.-P., Caline, B., 2013. Three-
- 537 dimensional structural model of composite dolomite bodies in folded area (Upper
- 538 Jurassic of the Etoile massif, southeastern France). AAPG Bulletin 97, 26.
- Gratier, J.P., Muquet, L., Hassani, R., Renard, F., 2005. Experimental microstylolites in
 quartz and modeled application to natural stylolitic structures. Journal of Structural
 Geology 27, 89-100.
- 542 Groshong, R.H.J., 1975. Strain, fractures, and pressure solution in natural single-layer 543 folds. Geological Society of America Bulletin 86, 14.
- Heap, M.J., Baud, P., Reuschlé, T., Meredith, P.G., 2014. Stylolites in limestones: Barriers
 to fluid flow? Geology 42, 4.
- Katsman, R., 2010. Extensional veins induced by self-similar dissolution at stylolites:analytical modeling. Earth and Planetary Science Letters 299, 33-41.
- Koehn, D., Ebner, M., Renard, F., Toussaint, R., Passchier, C.W., 2012. Modelling of
 stylolite geometries and stress scaling. Earth and Planetary Science Letters 341-344,
 104-113.
- 551 Koehn, D., Renard, F., Toussaint, R., Passchier, C.W., 2007. Growth of stylolite teeth
- 552 patterns depending on normal stress and finite compaction. Earth and Planetary Science
- 553 Letters 257, 582-595.
- 554 Koehn, D., Rood, M.P., Beaudoin, N., Chung, P., Bons, P.D., Gomez-Rivas, E., 2016. A new
- stylolite classification scheme to estimate compaction and local permeability variations.Sedimentary Geology 346, 60-71.
- Koepnick, R.B., 1986. Distribution and permeability of stylolite-bearing horizons within
 a Lower Cretaceous carbonate reservoir in the Middle East, SPE Annual Technical
 Conference and Exhibition Las Vegas.
- Kroon, L.J., 2017. Multi-scale state of stress analysis of the Potiguar Basin NE Brazil, Civil
 Engineering and Geoscience. Delft University of Technology, Delft, p. 46.
- Laronne Ben-Itzhak, L., Aharonov, E., Karcz, Z., Kaduri, M., Toussaint, R., 2014. Sedimentary stylolite networks and connectivity in limestone: Large-scale field observations and implications for structure evolution. Journal of Structural Geology 63,
- 565 106-123.

- Laronne Ben-Itzhak, L., Aharonov, E., Toussaint, R., Sagy, A., 2012. Upper bound on
 stylolite roughness as indicator for amount of dissolution. Earth and Planetary Science
 Letters 337-338, 186-196.
- 569 Lavenu, A.P.C., 2013. Relationships between fracture pattern and geodynamics in
- 570 carbonates. Role of depositional facies, diagenesis and rock mechanical properties., 571 CEREGE. Aix-Marseille Universite, p. 198.
- 572 Lavenu, A.P.C., Lamarche, J., 2017. What controls diffuse fractures in platform 573 carbonates? Insights from Provence (France) and Apulia (Italy). Journal of Structural 574 Geology.
- 575 Martín-Martín, J.D., Gomez-Rivas, E., Gómez-Gras, D., Travé, A., Ameneiro, R., Koehn, D.,
- 576 Bons, P.D., 2016. Activation of stylolites as conduits for overpressured fluid flow in 577 dolomitized platform carbonates. Geological Society of London Special Publication.
- Matonti, C., Guglielmi, Y., Viseur, S., Bruna, P.O., Borgomano, J., Dahl, C., Marié, L., 2015.
 Heterogeneities and diagenetic control on the spatial distribution of carbonate rocks
 acoustic properties at the outcrop scale. Tectonophysics 638, 94-111.
- 581 Matonti, C., Lamarche, J., Guglielmi, Y., Marié, L., 2012. Structural and petrophysical 582 characterization of mixed conduit/seal fault zones in carbonates: Example from the 583 Castellas fault (SE France). Journal of Structural Geology 39, 103-121.
- 584 Mehrabi, H., Mansouri, M., Rahimpour-Bonab, H., Tavakoli, V., Hassanzadeh, M., 2016.
- 585 Chemical compaction features as potential barriers in the Permian-Triassic reservoirs of 586 Southern Iran. Journal of Petroleum Science and Engineering 145, 95-113.
- 587 Nader, F.H., Champenois, F., Barbier, M., Adelinet, M., Rosenberg, E., Houel, P., Delmas, J.,
- Swennen, R., 2016. Diagenetic effects of compaction on reservoir properties: The case of
 early callovian "Dalle Nacrée" formation (Paris basin, France). Journal of Geodynamics
 101, 5-29.
- Padmanabhan, E., Sivapriya, B., Huang, K.H., Askury, A.K., Chow, W.S., 2015. The impact
 of stylolites and fractures in defining critical petrophysical and geomechanical
 properties of some carbonate rocks. Geomechanics and Geophysics for Geo-Energy and
 Geo-Resources 1, 13.
- 595 Paganoni, M., Al Harethi, A., Morad, D., Morad, S., Ceriani, A., Mansurbeg, H., Al Suwaidi,
- A., Al-Aasm, I.S., Ehrenberg, S.N., Sirat, M., 2015. Impact of stylolitization on diagenesis
- and reservoir quality: A case study from an Early Cretaceous reservoir in a giant oilfield,
- Abu Dhabi, United Arab Emirates, SPE Abu Dhabi International Petroleum Exhibitionand Conference, Abu Dhabi.
- Park, W.C., Schot, E.H., 1968. Stylolites: their nature and origin. Journal of sedimentarypetrology 38, 17.
- Peacock, D.C.P., Korneva, I., Nixon, C.W., Rotevatn, A., 2017. Changes of scaling
 relationships in an evolving population: The example of "sedimentary" stylolites. Journal
 of Structural Geology 96, 118-133.
- Rustichelli, A., Tondi, E., Agosta, F., Cilona, A., Giorgioni, M., 2012. Development and
- distribution of bed-parallel compaction bands and pressure solution seams in
 carbonates (Bolognano Formation, Majella Mountain, Italy). Journal of Structural
 Geology 37, 181-199.
- 609 Schmittbuhl, J., Renard, F., Gratier, J.P., Toussaint, R., 2004. Roughness of stylolites:
- 610 implications of 3D high resolution topography measurements. Physical Review Letters611 93.
- 612 Schultz, R.A., Fossen, H., 2008. Terminology for structural discontinuities. AAPG Bulletin
- 613 92, 15.

614 Sheppard, T.H., 2002. Stylolite development at sites of primary and diagenetic fabric
615 contrast within the Sutton Stone (Lower Lias), Ogmore-by-Sea, Glamorgan, UK.
616 Proceeding of the Geologists' Association 113, 13.

Vajdova, V., Baud, P., Wu, L., Wong, T.-f., 2012. Micromechanics of inelastic compaction in
two allochemical limestones. Journal of Structural Geology 43, 100-117.

- 619 Vandeginste, V., John, C.M., 2013. Diagenetic implications of stylolitization in pelagic
- 620 carbonates, Canterbury Basin, offshore New Zealand. Journal of Sedimentary Research
- 621 83, 226-240.