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Abstract

This research aims at quantifying the uncertainty in the predictions of tensor network con-
strained kernel machines, focusing on the Canonical Polyadic Decomposition (CPD) con-
strained kernel machine. Constraining the parameters in the kernel machine optimization
problem to be a CPD results in a linear computational complexity in the number of features,
whereas the original problem suffers heavily from the curse of dimensionality as the number
of parameters scale exponentially. By employing a product feature map with polynomial
features, the original data input is transformed to a higher-dimensional space.

Three different methods are investigated for quantifying the uncertainty of the predictions
of the CPD constrained kernel machine. Firstly, the delta method is proposed which is
a frequentist approach that linearizes a nonlinear parametric model around the estimated
model. By estimating the covariance of the model parameters, the delta method can estimate
the uncertainty in the model predictions based on the estimated parameter uncertainties.
The delta method is compared to two other methods that are able to reflect the prediction
uncertainty: the Bayesian method and Single Bayesian Core (SBC) method. The Bayesian
method treats the parameters in the factor matrices of the CPD as probability distributions
rather than single values and the SBC method incorporates both frequentist and Bayesian
aspects. The three different methods are assessed and compared based on the degree to which
the constructed uncertainty intervals are correct and informative.

It was found by regression and classification experiments that all three methods can provide
valuable uncertainty quantification measures in terms of correctness and informativeness for
the CPD constrained kernel machine. However, the Bayesian method provides in general more
conservative uncertainty intervals compared to the delta and SBC method. A major draw-
back of the Bayesian method is its lack of scalability as the size of the mean and covariance,
constructed by the unscented transform in the Bayesian method, scale exponentially. Further-
more, the delta and SBC method produce high quality uncertainty intervals and the methods
provide remarkably similar uncertainty quantification on the prediction error variance.

Master of Science Thesis Rutger Smeenk



ii

Rutger Smeenk Master of Science Thesis



Table of Contents

1 Introduction 1
1-1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1-2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1-3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Tensor networks 5
2-1 Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2-1-1 Tensor basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2-1-2 Tensor operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2-2 Tensor networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2-2-1 Canonical Polyadic Decomposition . . . . . . . . . . . . . . . . . . . . . 11
2-2-2 Basic operations of the CPD . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Supervised kernel machines with the CPD 13
3-1 Kernel machines in supervised learning . . . . . . . . . . . . . . . . . . . . . . . 13

3-1-1 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3-1-2 Kernel machine model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3-1-3 Product feature mapping . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3-1-4 Pure power polynomial feature map . . . . . . . . . . . . . . . . . . . . 15
3-1-5 Quantized pure power polynomial feature map . . . . . . . . . . . . . . . 16
3-1-6 Optimization problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3-2 Supervised learning with tensor networks . . . . . . . . . . . . . . . . . . . . . . 17
3-2-1 Curse of dimensionality . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3-2-2 Tensor network constrained optimization problem . . . . . . . . . . . . . 18
3-2-3 CPD-ALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Master of Science Thesis Rutger Smeenk



iv Table of Contents

4 Uncertainty quantification: A frequentist approach 25
4-1 Prediction uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4-1-1 Sources of uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4-1-2 Parameter covariance for linear least squares . . . . . . . . . . . . . . . . 28
4-1-3 Asymptotic parameter covariance for nonlinear least squares . . . . . . . 30

4-2 Delta method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4-2-1 Parameter covariance for the CPD constrained kernel machine . . . . . . 33
4-2-2 Prediction uncertainty by the delta method . . . . . . . . . . . . . . . . 36
4-2-3 Uncertainty intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Uncertainty quantification: A Bayesian approach 39
5-1 Bayesian inference with stochastic cores . . . . . . . . . . . . . . . . . . . . . . 40

5-1-1 Bayesian CP-ALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5-1-2 The unscented algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5-2 Bayesian inference with single stochastic core . . . . . . . . . . . . . . . . . . . 44

6 Quantitative assessment and experiment results 47
6-1 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6-1-1 Model prediction performance measure . . . . . . . . . . . . . . . . . . . 48
6-1-2 CI and PI quality measure . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6-2 Hyperparameters and K-fold cross-validation . . . . . . . . . . . . . . . . . . . . 50
6-2-1 Hyperparameters for regression and classification . . . . . . . . . . . . . 50
6-2-2 K-fold cross-validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6-2-3 Choosing the hyperparameters . . . . . . . . . . . . . . . . . . . . . . . 52
6-2-4 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6-3 Illustrative comparison of uncertainty intervals . . . . . . . . . . . . . . . . . . . 52
6-3-1 Uncertainty quantification on 1-D synthetic data . . . . . . . . . . . . . 52
6-3-2 Uncertainty quantification on 1-D dataset . . . . . . . . . . . . . . . . . 55
6-3-3 Confidence intervals for 2-D classification tasks . . . . . . . . . . . . . . 57

6-4 Quantitative assessment of uncertainty quantification on synthetic data . . . . . 59
6-4-1 Experiment settings and hyperparameters . . . . . . . . . . . . . . . . . 60
6-4-2 Synthetic 3-D data experiment . . . . . . . . . . . . . . . . . . . . . . . 60
6-4-3 Synthetic 8-D data experiment . . . . . . . . . . . . . . . . . . . . . . . 62

6-5 Quantitative assessment of uncertainty quantification on datasets . . . . . . . . 63
6-5-1 Experiment settings and hyperparameters . . . . . . . . . . . . . . . . . 64
6-5-2 Results on datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7 Conclusion and Discussion 73
7-1 Discussion on the uncertainty quantification performance on synthetic experiments 74
7-2 Discussion on the uncertainty quantification performance on datasets . . . . . . 75
7-3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7-4 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Rutger Smeenk Master of Science Thesis



Table of Contents v

A Algorithms 79
A-1 K-fold cross validation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A-2 Bayesian CP-ALS algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
A-3 Unscented Transform algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

B Results experiments 83
B-1 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
B-2 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
B-3 Experiment 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
B-4 Experiment 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
B-5 Experiment 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
B-6 Experiment 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Bibliography 93

Glossary 99
List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Master of Science Thesis Rutger Smeenk



vi Table of Contents

Rutger Smeenk Master of Science Thesis



List of Figures

2-1 Graphical representation of a scalar a, vector a, matrix A and tensor A . . . . . 6
2-2 Tensor index contraction over the third index between two 3-way tensors A and B 9
2-3 Graphical representation a 3-way rank-1 tensor . . . . . . . . . . . . . . . . . . . 10
2-4 Graphical representation a 3-way CP decomposition . . . . . . . . . . . . . . . . 11

3-1 Graphical representation of the deterministic part of the kernel machine model . 14
3-2 Graphical representation of deterministic part of the kernel machine model with

product feature mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3-3 Graphical representation of the tensor based kernel machine . . . . . . . . . . . 19

4-1 Illustration of estimation error and structural model error . . . . . . . . . . . . . 27

6-1 Regression with confidence intervals for the delta, Bayesian and SBC methods on
1-D synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6-2 Regression with prediction intervals for the delta, Bayesian and SBC methods on
1-D synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6-3 Regression with prediction intervals for the delta, Bayesian and SBC methods on
1-D climate dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6-4 Prediction with confidence intervals for the delta, Bayesian and SBC methods on
1-D climate dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6-5 Classifier with confidence intervals for the delta, Bayesian and SBC methods on
2-D banana dataset. The dashed lines represent the 95% confidence interval on
the classifier. The solid line represents the classifier. The classifier casts doubt on
the labels with confidence level 95% between the solid line and the dashed lines.
The classifier is certain on the labels with confidence level 95% between the dashed
lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6-6 Classifier with confidence intervals for the delta, Bayesian and SBC methods on
2-D ripley dataset. The dashed lines represent the 95% confidence interval on the
classifier. The solid line represents the classifier. The classifier casts doubt on the
labels with confidence level 95% between the solid line and the dashed lines. The
classifier is certain on the labels with confidence level 95% between the dashed lines. 59

Master of Science Thesis Rutger Smeenk



viii List of Figures

6-7 Sorted predictions (middle full line) and corresponding prediction intervals (dots
below and above middle line) for run number 1 of the Power plant, Airfoil and
Concrete experiments, where blue corresponds to the delta method, green is the
Bayesian method and red is the SBC method. The middle blue line aligns with the
red line as the predictions of delta and SBC equal. . . . . . . . . . . . . . . . . 67

6-8 Sorted predictions (middle full line) and corresponding prediction intervals (dots
below and above middle line) for run number 1 of the Ripley experiment, the
classifier casts doubt with significance level of 5% on the labels of prediction lying
between the two big dots (in red) and is confident with significance level of 5% on
the labels of the predictions outside the big dots (in green). . . . . . . . . . . . . 68

6-9 Sorted predictions (middle full line) and corresponding prediction intervals (dots
below and above middle line) for run number 1 of the Banknote experiment, the
classifier casts doubt with significance level of 5% on the labels of prediction lying
between the two big dots (in red) and is confident with significance level of 5% on
the labels of the predictions outside the big dots (in green). . . . . . . . . . . . . 69

6-10 Sorted predictions (middle full line) and corresponding prediction intervals (dots
below and above middle line) for run number 1 of the Raisin experiment, the
classifier casts doubt with significance level of 5% on the labels of prediction lying
between the two big dots (in red) and is confident with significance level of 5% on
the labels of the predictions outside the big dots (in green). . . . . . . . . . . . . 70

Rutger Smeenk Master of Science Thesis



List of Tables

6-1 Results 3-D synthetic experiment for the delta method with 95% nominal confi-
dence level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6-2 Results 3-D synthetic experiment for the Bayesian method with 95% nominal con-
fidence level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6-3 Results 3-D synthetic experiment for the SBC method with 95% nominal confidence
level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6-4 Results 8-D synthetic experiment for the delta method with 95% nominal confi-
dence level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6-5 Results 8-D synthetic experiment for the SBC method with 95% nominal confidence
level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6-6 Dataset Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6-7 Experiment choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6-8 CWC metrics for each experiment . . . . . . . . . . . . . . . . . . . . . . . . . 65

B-1 Results case study 1 for the delta method . . . . . . . . . . . . . . . . . . . . . 83
B-2 Results case study 1 for the Bayesian method . . . . . . . . . . . . . . . . . . . 84
B-3 Results case study 1 for the SBC method . . . . . . . . . . . . . . . . . . . . . 84
B-4 Results case study 2 for the delta method . . . . . . . . . . . . . . . . . . . . . 85
B-5 Results case study 2 for the Bayesian method . . . . . . . . . . . . . . . . . . . 85
B-6 Results case study 2 for the SBC method . . . . . . . . . . . . . . . . . . . . . 86
B-7 Results case study 3 for the delta method . . . . . . . . . . . . . . . . . . . . . 86
B-8 Results case study 3 for the Bayesian method . . . . . . . . . . . . . . . . . . . 87
B-9 Results case study 3 for the SBC method . . . . . . . . . . . . . . . . . . . . . 87
B-10 Results case study 4 for the delta method with 95% nominal confidence level . . 88
B-11 Results case study 4 for the Bayesian method with 95% nominal confidence level 88
B-12 Results case study 4 for the SBC method with 95% nominal confidence level . . 89
B-13 Results case study 5 for the delta method with 95% nominal confidence level . . 89
B-14 Results case study 5 for the Bayesian method with 95% nominal confidence level 90

Master of Science Thesis Rutger Smeenk



x List of Tables

B-15 Results case study 5 for the SBC method with 95% nominal confidence level . . 90
B-16 Results case study 6 for the delta method with 95% nominal confidence level . . 91
B-17 Results case study 6 for the Bayesian method with 95% nominal confidence level 91
B-18 Results case study 6 for the SBC method with 95% nominal confidence level . . 92

Rutger Smeenk Master of Science Thesis



Chapter 1

Introduction

More than ever before, data is used to generate knowledge in research and industry. Pro-
cessing data in a clever way can enhance valuable analysis and decision-making. In today’s
era, the availability of increasingly larger datasets leads to a need to extract important and
desired information from the data while coping with the extreme computational burden that
is accompanied with processing large amounts of data. Artificial intelligence (AI) algorithms
process the large amounts of data in order to generate valuable information. Applications of
AI algorithms can be found in both research and product development, for example, AI pow-
ered robots to grow plants in the farming industry use less resources [46], protein structure
prediction for revolutionary breakthroughs in biological sciences [21] and the prediction of
renewable energy availability for improving energy utilization [11]. These developments and
advances are fueled by the exponential growth in both AI model size and data availability
[58].

Parallel to the increase in model and data size are the negative economic, social and envi-
ronmental side effects [33]. For example, the environmental impact of training large-scale
machine learning models causes CO2 emissions up to 280.000 kg and causes up to 3 million
dollars for cloud compute costs for training natural language processing models [24, 50]. In
addition, the social downside stems from the fact that the trend in the AI community is to
seek for models that opt for the best results in the sense that these models have the highest
accuracy compared to other benchmark models. Training these kind of models with increased
training data comes with exponentially increased computational costs, excluding researchers
with fewer resources [33]. Recently, more researchers have called for a switch in the current
AI community attitude towards heavily taking into account and assessing the efficiency of
algorithms instead of solely focusing on the accuracy [51, 45].

Many datasets in science and engineering, for example, remote sensing and biological data,
are represented by enormous datasets that possess billions of elements and are commonly
represented by large block matrices or tensors, which are multidimensional generalizations of
matrices. In order to deal with such massive data structures, tensor algorithms have proven
to be suitable for processing large scale datasets. This research focuses on tensor networks,
which are also called tensor decompositions, as a tool for increased efficiency by reducing the
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2 Introduction

computational burden of large-scale learning. Tensor networks decompose higher dimensional
tensors into sparsely interconnected small scale lower dimensional core tensors. The central
idea with tensor networks is to compress data by approximating it with a tensor network,
resulting in a compressed data format. Hence, the goal with tensor networks is to preserve
the valuable information within the data while the data is structured in a compressed format.
Tensor networks allow for a vast decrease of data elements while maintaining the inherent
relationships within the original data. Hence, tensor networks can be used to efficiently, and
thereby sustainably, apply machine learning models on large-scale learning problems while
still maintaining competitive accuracy. Tensor networks are currently not widely adopted in
AI, thereby, more researchers in the AI community may grasp the opportunity of integrating
tensor networks in large-scale models in order to reduce compute significantly [33, 5].

Yet another challenge facing machine learning models is an increasing need for the models
to be reliable as machine learning is increasingly becoming dominant in various different
fields in technology and society. This is because the results of machine learning models
are not always fully reliable. More specifically, uncertainty in the model predictions can
arise from stochastic environments which can also be partially unobservable. On a similar
note, uncertainty can be embedded in collecting, organizing and analyzing data, where minor
error can easily accumulate through positive feedback loops when analyzing big datasets [47].
Moreover, uncertainty in the model predictions results from limited data, hyperparameters,
overparameterization, optimization and sampling errors as well as model misspecification [41].
Providing quantitative uncertainty measures that coexist with model predictions is extremely
valuable in various real-world situations. Hence, model predictions from machine learning
inference could be of little intrinsic practical value if the uncertainty of the model is not
well quantified. For example, in space weather prediction, some very rare occurrences such
as geomagnetic storms are hard to predict, although data on solar flare, solar wind, and
changes in the Earth’s magnetosphere are available. Therefore, data and model parameter
uncertainty is critical in such machine learning models [47, 41]. Hence, it is important to
assess to what extend the results are respectable. In this regard, uncertainty quantification
of machine learning models is an important task and has seen increased interest within the
scientific community in recent years.

The machine learning paradigm that is focused on in this research is supervised learning
which is one of the most important cornerstones in machine learning in general and is used
extensively in various industries and technologies. In supervised learning, labelled classes are
present where the task is to most accurately identify unseen data [25]. Supervised kernel ma-
chines are studied in this research in which test inputs are projected to a higher dimensional
feature space. The present research explores how to provide valuable uncertainty quantifica-
tion for efficient and sustainable large-scale learning supervised kernel machines.

1-1 Problem formulation

This research aims at unifying kernel machines, tensor networks and uncertainty quantifica-
tion. Whilst kernel machines can be formulated and solved in the primal space, rendering
a direct parameterization, they are usually formulated and solved in the dual space by em-
ploying the kernel trick [20]. However, such kernel based methods require at least OpN2q in
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1-2 Implementation 3

storage complexity and OpN3q in computational complexity, where N is the number of dat-
apoints [59]. With large datasets, these methods become practically infeasible. On the other
hand, the parameters in the primal formulation scale exponentially with the number of fea-
tures in the dataset. To alleviate this exponential increase, tensor networks are employed with
kernel machines. The particular tensor network that is considered is the Canonical Polyadic
Decomposition (CPD). The CPD imposes inherent nonlinearity into the otherwise linear in
the parameters kernel machine. The parameters in the CPD constrained kernel machine can
be learned by means of the Alternating Linear Scheme (ALS) which iteratively optimizes a
single factor matrix, keeping the others constant [55].

From the uncertainty quantification perspective, several methods of uncertainty quantifica-
tion are explored and tested for a supervised kernel machine in which the parameters are
constrained to be a CPD. Three different methods for uncertainty quantification are inves-
tigated: the delta method [10, 32, 22], the Bayesian method [34] and the Single Bayesian
Core (SBC) method [35]. The delta method treats the parameters as single point values
whereas the Bayesian method treats the parameters as probability distributions. The SBC
method possesses both frequentist and Bayesian elements. In the uncertainty quantification
assessment, both correctness and informativeness needs to be assessed. Correctness relates
to accurately quantifying and representing uncertainty in a model or system. On the other
hand, informativeness pertains to the extent to which the results of the uncertainty quantifi-
cation process provide valuable insights and useful information. In this regard, the following
research question can be stated:

How to provide uncertainty quantification for tensor network constrained
kernel machine, focusing on the CPD constrained kernel machine, and
which of the investigated methods is most accurate in terms of correct-
ness and informativeness?

In order to answer this research question, two sub-questions can be formulated that will act
as guidelines to achieve the main research question:

• How can the uncertainty quantification methods be applied to tensor network constrained
kernel machines?

• Which of the researched methods performs best in terms of correctness and informative-
ness?

1-2 Implementation

All experiments were performed on a Lenovo laptop with 16 GB of RAM and an Intel Core
i7-9750 CPU running at 2.60 GHz. In order to replicate the experiments performed in this
research, the code for the experiments is provided in: https://github.com/RutgerSmeenk/
uncertainty_quantification_CPD_kernel_machines.git.
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4 Introduction

1-3 Thesis outline

In this research, tensors, tensor operations and the CPD are discussed in Chapter 2. Knowl-
edge on tensors and the CPD is needed in order to introduce the CPD constrained kernel
machine in Chapter 3. After discussing the model that is dealt with in this research, the
uncertainty quantification aspect from a frequentist point of view is discussed in Chapter 4.
In turn, the uncertainty quantification aspect from a Bayesian point of view is discussed in
Chapter 5. Thereafter, the assessment criteria and the experiment results are outlined in
Chapter 6. Finally, a discussion on the obtained results and a conclusion are provided in
Chapter 7.
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Chapter 2

Tensor networks

This chapter will elaborate on tensors and tensor networks, focussing on the Canonical
Polyadic Decomposition (CPD), which will be of fundamental value in overcoming the dif-
ficulty of applying kernel machines to high dimensional data, also known as the curse of
dimensionality.

2-1 Tensors

2-1-1 Tensor basics

The main concepts and operations which will be described are based on the descriptions by
[23, 3, 5, 40].

Tensors are multidimensional generalizations of matrices, and as such, a tensor describes a
multidimensional data framework. Hence, a zero-dimensional tensor is a scalar a, a one-
dimensional tensor is a vector a, a two-dimensional tensor is a matrix A and a D-dimensional
tensor is represented by A. The order of a tensor is the number of its dimensions, where modes
or ways are also used for the naming of dimensions. Since only real-valued tensor entries are
considered throughout this study, a tensor is denoted by A P RI1ˆI2ˆ¨¨¨ˆID . Furthermore,
a specific entry within the tensor is denoted by Api1, i2, . . . , iDq, but can also be denoted
by ai1,i2,...,iD . The entry number for a specific dimension cannot be greater than the size
of the dimension 1 ď ik ď Ik. Hence, I1, I2, . . . , ID are the dimension sizes of the tensor.
Schematically, tensors can be graphically described by diagrams. In this framework, scalars,
vectors, matrices and tensors are defined in Figure 2-1. The edges within a tensor network
graph represent the indices for a particular structure. In this regard, scalars have zero free
edges, whereas vectors and matrices have one and two free edges respectively.
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6 Tensor networks

a a A A

Figure 2-1: Graphical representation of a scalar a, vector a, matrix A and tensor A

An important notion that is frequently used when working with tensors is multi-indexing in
which every combination of indices can be recovered. A multi index i “ i1i2 ¨ ¨ ¨ iD can take
all possible combinations of values of indices i1, i2, . . . , iD for id “ 1, 2 . . . , Id, d “ 1, 2, . . . , D
and in a specific order. The formula for multi-indexing is given by:

i1i2 ¨ ¨ ¨ iD “ i1 ` pi2 ´ 1qI1 ` pi3 ´ 1qI1I2 ` ¨ ¨ ¨ ` piD ´ 1qI1 ¨ ¨ ¨ ID´1. (2-1)

A tensor can be vectorized by converting a multi-dimensional tensor into a one-dimensional
vector while preserving the order of its elements. The elements of a vectorized tensor can be
mapped to the tensor entry by means of the formula for multi-indexing described in equation
(2-1) as follows:

vecpAqi1i2¨¨¨iD
“ ai1,i2,...,iD . (2-2)

Furthermore, matricization is frequently used when working with tensors. Hereby, a tensor is
unfolded into a matrix where the elements of the original tensor are reordered. Matricization
can be performed with respect to different fixed modes d P t1, 2, . . . , Du of the tensor. The
mode-d matricization of a D-way tensor A P RI1ˆI2ˆ¨¨¨ˆID is defined by the following matrix:

Apdq P RIdˆI1I2¨¨¨Id´1Id`1¨¨¨ID (2-3)

where Id and I1I2 ¨ ¨ ¨ Id´1Id`1 ¨ ¨ ¨ ID are the amount of rows and columns of the matrix Apdq

respectively. By means of multi-indexing, the entries are defined as:

`

Apdq

˘

id,i1¨¨¨id´1id`1¨¨¨iD
“ ai1,i2,...,iD . (2-4)

The mode-d fibers of the tensor A are the columns of the mode-d matricization Apdq.

On the other hand, tensorization is the transformation of a vector, matrix or low-order tensor
into a higher-order tensor. Tensorization is the reversed process of vectorization or matri-
cization. The process of tensorization will be denoted by T . When performing vectorization,
matricization or tensorization, the multi-indexing formula described in equation (2-1) can be
employed in order to perform the computations such that the entries are rightly reordered. In
conclusion, vectorization, matricization and tensorization are reshaping operations by means
of multi-indexing.

Some mathematical products are extensively used when working with tensors. Firstly, the
Kronecker product b of matrix A P RIˆJ and matrix B P RKˆL is given by
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2-1 Tensors 7

A b B “

»

—

—

—

–

a11B a12B . . . a1JB
a21B a22B . . . a2JB

...
... . . . ...

aI1B aI2B . . . aIJB

fi

ffi

ffi

ffi

fl

P RIKˆJL. (2-5)

Next, the Hadamard product ˚ computes the element-wise matrix product. The Hadamard
product of matrix A P RIˆJ and matrix B P RIˆJ is given by

A ˚ B “

»

—

—

—

–

a11b11 a12b12 . . . a1Jb1J

a21b21 a22b22 . . . a2Jb2J
...

... . . . ...
aI1bI1 aI2bI2 . . . aIJbIJ

fi

ffi

ffi

ffi

fl

P RIˆJ . (2-6)

Another important product is the Khatri-Rao product d. The Khatri-Rao product of matrix
A P RIˆJ and matrix B P RKˆJ is given by

A d B “
“

a1 b b1 a2 b b2 ¨ ¨ ¨ aJ b bJ

‰

P RIKˆJ (2-7)

where aj are the columns of A and bj are the columns of B. The defined Khatri-Rao product
constitutes the column-wise Khatri-Rao product.

The different matrix products have distinct properties. For the Hadamard and Khatri-Rao
product the most important properties are:

A ˚ B “ B ˚ A
pA ˚ Bq ˚ C “ A ˚ pB ˚ Cq

A d pB d Cq “ pA d Bq d C.

(2-8)

Another important property that combines the Hadamard product and Khatri-Rao product
is given as follows:

pA d AqT pB d Bq “ AT A ˚ BT B. (2-9)

Other properties that are used later in this research are regarding the matrix vectorization
operation and matrix calculus [40]. For the vectorization operation the following can be
stated:

TrpAT Bq “ vecpAqT vecpBq (2-10)

where Trpq is the trace of a matrix. In addition, vectorization can directly be used with the
Kronecker product for expressing matrix multiplication as a linear transformation of matrices
as follows

vecpABCq “ pCT b AqvecpBq. (2-11)
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8 Tensor networks

Moreover, concerning matrix calculus, the following derivative can be stated:

BTrpXXT Cq

BX “ XT C ` XT CT . (2-12)

Two other properties that will be used are with regards to vector calculus. Firstly the following
can be stated:

BAx
Bx “ A OR AT . (2-13)

where A is not a function of x and the derivative equals A or AT depending on the chosen
layout of the derivative which can either be numerator, i.e. y and xT , or denominator, i.e.
yT and x. Similarly, depending on the layout, the following chain rule can be defined for a
vector derivative:

Bgpuq

Bx “
Bgpuq

Bu
Bu
Bx OR Bu

Bx
Bgpuq

Bu . (2-14)

2-1-2 Tensor operations

An important tensor operation is the mode-
`

k
d

˘

product, also known as tensor contraction of
two tensors A P RI1ˆI2ˆ¨¨¨ˆID and B P RJ1ˆJ2ˆ¨¨¨ˆJK , which have common modes Id “ Jk

produces an D ` K ´ 2-order tensor C P RI1ˆ¨¨¨ˆId´1ˆId`1ˆ¨¨¨ˆIDˆJ1ˆ¨¨¨ˆJk´1ˆJk`1ˆ¨¨¨ˆJK . This
can be formulated as:

C “ A ˆk
d B. (2-15)

Then, the entries are computed as follows:

ci1,...,id´1,id`1,...,iD,j1,...,jk´1,jk`1,...,jK “

Id
ÿ

id“1
ai1,...,id´1,id,id`1,...,iD bj1,...,jk´1,jk,jk`1,...,jK . (2-16)

This operation is a contraction of two tensors in single common mode. Two tensors can
be contracted in several modes. The tensor contraction operation can be viewed as a higher
dimensional analogue of matrix multiplication, inner product and outer product. For example,
considering the mode-

`

k
d

˘

product of two matrices A and B can be written as A ˆ1
2 B “

A ˆ1 B “ AB, where the subscript and superscript are omitted for simplicity since we have
common modes ID “ J1 as we are dealing with matrices. In a tensor network diagram,
connected edges represent tensor contraction. Hence, when two nodes are connected this
means two tensors can be contracted in order to produce a single tensor by summing over
all possible values of repeated indices. For example, tensor index contraction over index i3
between tensor A and tensor B which are both 3-way tensors, results in a 4-way tensor
C “ A ˆ3

3 B as follows:
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2-1 Tensors 9

Cpi1, i2, i4, i5q “

I3
ÿ

i3“1
Api1, i2, i3qBpi3, i4, i5q. (2-17)

Tensor index contraction of two 3-way tensors in which the third index is contracted: is
visualized in Figure 2-2.

A B
I3

I1

I2 I4

I5

Figure 2-2: Tensor index contraction over the third index between two 3-way tensors A and B

Further, the product between a tensor and a matrix is described by the mode-d product, also
known as multilinear product, of a tensor A P RI1ˆ¨¨¨ˆID and a matrix B P RKˆId results in
a tensor

C “ A ˆd B P RI1ˆ¨¨¨ˆId´1ˆKˆId`1ˆ¨¨¨ˆID (2-18)

where the entries are given by

ci1,i2,...,id´1,k,id`1,...,iD
“

Id
ÿ

id“1
ai1,i2,...,iD bk,id

. (2-19)

Furthermore, another important tensor operation is the inner product. The inner product
between two tensors A,B P RI1ˆI2ˆ¨¨¨ˆID is computed by summing over all indices as follows:

c “ xA,By “

I1
ÿ

i1“1

I2
ÿ

i2“1
. . .

ID
ÿ

id“1
ai1,i2,...,iD bi1,i2,...,iD (2-20)

where c yields a scalar. As an example, the inner product of two 3-way tensors results in a
scalar c “ xA,By “ A ˆ

1,2,3
1,2,3 B “ A ¯̂B “

řI1
i1“1

řI2
i2“1

řI3
i3“1 ai1,i2,i3bi1,i2,i3 . Here, ¯̂ denotes

the contraction of all the modes.

The Frobenius norm of the tensor A P RI1ˆI2ˆ¨¨¨ˆID is given by ||A||F “
a

xA,Ay. Another
way to represent the inner product between two tensors is by means of the vecp¨q function.
The inner product product between two tensors can alternatively be computed by vectorizing
the tensors first and then multiplying the vectors by means of the transpose as follows:

xA,By “ xvecpAq, vecpBqy “ vecpAqT vecpBq “ xA,ByF . (2-21)

Hence, the inner product xA,By equals the Frobenius inner product xA,ByF .

There also exists an outer product between tensor A P RI1ˆI2ˆ¨¨¨ˆID and B P RJ1ˆJ2ˆ¨¨¨ˆJK
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10 Tensor networks

A ˝ B “ C (2-22)

where C is a pD`Mq-th order tensor with elements ci1,...,iD,j1,...,jM “ ai1,...,iD bj1,...,jM . Another
important concept is the notion of a rank-1 tensor. A D-way tensor A P RI1ˆI2ˆ¨¨¨ˆID is a
rank-1 tensor if it can be written as the outer product of D vectors. Hence,

A “ ap1q ˝ ap2q, . . . , ˝ apDq (2-23)

where ’˝’ represents the outer product and the vector apdq P RId , d “ 1, 2, . . . , D, has size d.
The visualization of a rank-1 order tensor for a 3-way tensor is depicted in Figure 2-3.

Figure 2-3: Graphical representation a 3-way rank-1 tensor

From an element wise point of view the specific element in a rank-1 tensor is computed by

ai1,i2,...,iD “ a
p1q

i1
a

p2q

i2
. . . a

pDq

iD
. (2-24)

Finally, there is a relationship between the Kronecker product and the outer product between
D vectors apdq P RId where d “ 1, 2, . . . , D as [4]:

vecpap1q ˝ ap2q ˝ ¨ ¨ ¨ ˝ apDqq “ apDq b apD´1q b ¨ ¨ ¨ b ap1q. (2-25)

2-2 Tensor networks

The main idea of low-rank tensor approximations, which are the same as low-rank tensor
networks, is that by employing a tensor network format, the computational costs and storage
costs can be drastically reduced. This is because tensor networks cause large-scale data to
be approximated in a highly compressed and distributed format [5]. An important remark
is that tensor compression by means of tensor network formats almost always comes with
incurring some compression error since the low-rank tensor representation is an approximation
of the original tensor. For tensors with dimension equal to two pD “ 2q (matrices), the
tensor decompositions boil down to the well-known singular value decomposition (SVD), while
there exist various other decompositions for matrices such as the Schur, Jordan, LU and QR
decomposition [13]. For higher order tensors pD ě 3q the decompositions vary considerably,
are constructed in different ways and have special characteristics and properties.
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2-2 Tensor networks 11

In tensor networks, the original tensor is decomposed in a number of factors. The number of
factors in the decomposition corresponds to the tensor network rank R or the tensor network
ranks tR1, R2, . . . , RN u. In general, a low-rank tensor network approximates the original
tensor with much less elements within its decomposition. This can be a major advantage
as the number of elements in a tensor to be stored is

śD
d“1 Id ď ID, where Id is the size of

each mode and I “ maxdtIdu. Hence, the memory requirements scale exponentially in D, by
which the storage complexity of the original tensor is OpIDq, which make high-dimensional
data difficult to work with.

2-2-1 Canonical Polyadic Decomposition

One of the most well-known tensor decompositions is the CPD. The CPD factorizes a tensor
into a sum of component rank-1 tensors. Consider a D-way tensor A P RI1ˆI2ˆ¨¨¨ˆID , the
goal is to write this tensor as a linear combination of rank-1 tensors. This is given as:

A “

R
ÿ

r“1
ap1q

r ˝ ap2q
r ˝ ¨ ¨ ¨ ˝ apDq

r . (2-26)

In this formulation R is the tensor rank which is the smallest value for which equation (2-26)
holds exactly. By limiting R, a low-rank approximation of A is obtained, resulting in less
elements needed to represent the tensor. The visualization of the CP decomposition for a
3-way tensor is depicted in Figure 2-4.

Figure 2-4: Graphical representation a 3-way CP decomposition

The factor matrices are defined as the concatenation of the components in the CPD, i.e.
Apdq “ rapdq

1 apdq

2 . . . apdq
r s P RIdˆR, d “ 1, . . . , D. Furthermore, the CPD can also be

expressed by normalizing the columns of the factor matrices to length one:

A “

R
ÿ

r“1
λrap1q

r ˝ ap2q
r ˝ ¨ ¨ ¨ ˝ apDq

r “ rrλ; Ap1q, Ap2q, . . . , ApDqss (2-27)

where in this formulation the norms are comprised in the vector λ P RR and Ad P RIdˆR,
d “ 1, . . . , D and rr¨ss is called the Kruskal operator. Furthermore, the mode-d matricization
is given by:

Apdq “ ApdqΛpApDq d ¨ ¨ ¨ d Apd`1q d Apd´1q d . . . Ap1qqT (2-28)
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12 Tensor networks

where Λ “ diagpλq.

The rank of a tensor A, also called the CP rank, can be defined as the smallest number
of rank-1 terms in an exact CP decomposition, where the CP decomposition is an exact
representation of the tensor A. In other words, the rank of a tensor is the smallest number
of rank-1 tensors that can generate A as their sum. It has been proven in [14] that finding
the tensor rank over the natural numbers is NP-hard. Such NP-hard problems are unknown
to be solvable in polynomial time [19].

2-2-2 Basic operations of the CPD

In this subsection, some important tensor operations that are specific to the CPD are formu-
lated. These operations are valuable at later stages of the research. Vectorization for a tensor
A, given it is a CPD, can be performed by means of Khatri-Rao products as follows:

vecpAq “

˜

1
ä

d“D

Apdq

¸

λ (2-29)

where
Ä1

d“D is a sequence of Khatri-Rao products, Apdq P RIdˆR are the factor matrices in
the CP decomposition and λ are the weights of the CPD which is a vector of non-zero entries
of the diagonal core tensor Λ P RRˆRˆ¨¨¨ˆR. The non-normalized CPD effectively has a norm
vector λ equal to vector of ones 1R. This is the simplest and most trivial version of the CPD.

Another important property can now be defined by substituting equation (2-29) into the inner
product formulation for tensor defined in equation (2-21) and then applying the property
defined in equation (2-9). This results in:

||A||2F “ xA,Ay “ vecpAqT vecpAq

“ λT
´

Ap1q d ¨ ¨ ¨ d ApDq
¯T ´

Ap1q d ¨ ¨ ¨ d ApDq
¯

λ

“ λT
´

Ap1qT Ap1q ˚ Ap2qT Ap2q ˚ ¨ ¨ ¨ ˚ ApDqT ApDq
¯

λ.

(2-30)

In the formulation in equation (2-30), the storage complexity is vastly reduced. This is due
to the sequence of Khatri-Rao products, with resulting storage complexity of OpIDRq, that
is written in terms of a sequence of Hadamard products with a storage complexity of OpR2q.
Likewise, the Frobenius inner product of a CPD tensor and a rank-1 tensor can be stated since
a rank-1 tensor is a CPD of rank-1. This allows for computational gains as the tensors do
not have to be computed explicitly first. With the CPD tensor A “ rrλ; Ap1q, Ap2q, . . . , ApDqss

and rank-1 tensor B “ bp1q ˝ bp2q ˝ ¨ ¨ ¨ bpDq the Frobenius inner product is given as:

xA,By “

´

bp1qT Ap1q ˚ bp2qT Ap2q ˚ ¨ ¨ ¨ ˚ bpDqT ApDq
¯

λ. (2-31)
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Chapter 3

Supervised kernel machines with the
CPD

In this chapter, supervised learning with the CPD constrained kernel machine will be dis-
cussed. Firstly, supervised learning from a general machine learning perspective will be dis-
cussed. Thereafter, linear models with nonlinear feature mapping and kernel methods within
supervised learning will be discussed. Finally, a product feature mapping will be elaborated
upon which will form the basis for the next chapter where tensors are considered.

3-1 Kernel machines in supervised learning

Kernel machines are widely used in unsupervised and supervised learning tasks such as regres-
sion and classification. In regression tasks the goal is to predict quantitative outputs, whereas
classification tasks are concerned with predicting qualitative outputs [15, 29]. Oftentimes, the
dimension of the original vector space is not sufficient in order to perform complicated data
analysis in the sense that data is, for example, not linearly separable in a classification task.
A mapping can be constructed that maps the input space to a higher dimensional space [2].
Kernel machines provide a way of mapping the original space X into a reproducing kernel
Hilbert space H. In order to distinguish easily between tensors, matrices, vectors and scalars
in subsequent chapters, the nonlinear feature map will be noted by the symbol zp¨q. By using
a right feature map zp¨q : X Ñ H, the similarities in the mapped data can be analyzed as the
original nonlinear problem in the original sample space X has become linear in H.

3-1-1 Supervised learning

The primary objective in supervised learning is to learn a model that can accurately predict
the correct output for new, unseen inputs. The supervised learning algorithm adjusts its
internal parameters based on the input-output pairs in the training dataset. The training
dataset is given by a matrix of inputs X P RNˆD, where N are the number of samples and D
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14 Supervised kernel machines with the CPD

are the number of features in the training dataset. The rows the matrix X are the input vectors
xn, n “ 1, . . . , N . Each input vector is accompanied by an output yn, also called observation,
where all sample outputs are given by y “ ry1 y2 ¨ ¨ ¨ yN sT . The input/output pairs are
assumed to be mutually independent and identically distributed samples of datapoints which
form the training dataset. Thereby, the optimization problem in supervised learning that
needs to be minimized directly with respect to the parameters is given by [12]:

min
w

1
N

N
ÿ

n“1
L pyn, fpxn, wqq (3-1)

where fp¨, ¨q : RD ˆ RD Ñ R is a nonlinear function parameterized by weights w that needs
to be learned and Lp¨, ¨q : RˆR Ñ R` is a loss function. For simplicity, the parameter vector
w will be omitted in the notation for fpxn, wq in this section of the survey such that the
notation becomes fpxnq.

3-1-2 Kernel machine model

The primal formulation of a kernel machine, given by a direct parameterization between
parameters w and feature mapping zpxq, will we be the main focus throughout this research.
This model is assumed to have Gaussian noise that is added to the deterministic function
fpxn, wq. The following model describes a kernel machine:

yn “ fpxnq ` en “ zpxnqT w ` en n “ 1, . . . , N. (3-2)

In this formulation, zp¨q : RD Ñ H is the feature map and, unless otherwise stated, it can be
assumed that en is a Gaussian random variable with variance σ2

e . Furthermore, the zpxnqT w
term can also be conveniently written as inner product as xzpxnq, wy. When the feature
mapping is comprised of non-linear functions then fpxnq is a non-linear function of the input
data vector x, however, fpxnq is linear in the parameters w. The kernel machine model is
visualized by means of a tensor network diagram in Figure 3-1.

fpxnq “ zpxnqT w

ID

Figure 3-1: Graphical representation of the deterministic part of the kernel machine model

3-1-3 Product feature mapping

There are many ways in which the feature map zp¨q can be constructed. Consider a input
matrix X P RNˆD where the rows are the input vectors xn, n “ 1, . . . , N . In this way x

pdq
n
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3-1 Kernel machines in supervised learning 15

is the pn, dq-th element of input matrix X. A way of constructing the feature map, is by
obtaining the multidimensional feature map from the local ones as [49, 55]:

zpxnq “

D
â

d“1
zdpxpdq

n q (3-3)

where
ÂD

d“1 is a sequence of tensor products which are Kronecker products when considering
only vectors, zd is the local feature map of the d-th dimension. Thus, every input element x

pdq
n

is mapped to a M̂d-dimensional vector. It is assumed that the same local map is applied to each
element xpdq. The dimension of the feature space is M “

śD
d“1 M̂d, where M̂1 “ ¨ ¨ ¨ M̂D “ M̂ ,

and thereby M “ M̂D. In this formulation of a multidimensional feature map, the feature
map zp¨q can be viewed as a M “ M̂D dimensional vector or as a D-th order tensor, where
N is the local dimension of zd. The important property of the constructed tensor is that
the tensor is rank-1 as it is a product of D order-1 tensors. The feature map in equation
(3-3), which is a sequence of tensor products of vectors zdpx

pdq
n q, is the same as a sequence of

Kronecker products since we are dealing with vectors only.

It is assumed that the same local map is applied to each element xpdq. Hence, since zd is
the local feature map of the d-th dimension zdpx

pdq
n q “ zpx

pdq
n q. Considering all samples and

employing the product feature map, the model can then be written as:

y “ Zw ` e, where Z “

»

—

—

—

—

—

—

—

–

zpx
p1q

1 qT b ¨ ¨ ¨ b zpx
pdq

1 qT b ¨ ¨ ¨ b zpx
pDq

1 qT

...
zpx

p1q
n qT b ¨ ¨ ¨ b zpx

pdq
n qT b ¨ ¨ ¨ b zpx

pDq
n qT

...
zpx

p1q

N qT b ¨ ¨ ¨ b zpx
pdq

N qT b ¨ ¨ ¨ b zpx
pDq

N qT

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (3-4)

Here, e is a vector of Gaussian random variables and Z is an N ˆ M matrix, where M is the
dimension of the feature space.

3-1-4 Pure power polynomial feature map

Throughout this research, the main type of feature that is employed in the product feature
map are pure power polynomial features [4]. A particular feature can capture important
patterns, relationships or characteristics in the data that can be highly informative and dis-
criminative for the type of problem at hand. The pure power polynomial product feature
map zp¨q : RD Ñ RM̂D for an input sample xn P RD is defined as in equation (3-3), where
the mapping zdp¨q : R Ñ RM̂ is defined as

zdpxpdq
n q “

”

1, xpdq
n , pxpdq

n q2, pxpdq
n qM̂´1

ı

. (3-5)

Hence, the md-th element of the feature map vector zdpx
pdq
n q is defined as

zdpxpdq
n qmd

“ pxpdq
n qmd , md “ 0, 1, . . . , M̂ ´ 1. (3-6)
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16 Supervised kernel machines with the CPD

The feature map vector has length M̂D “ M , since equal degree of feature map per dimension
is considered. Pure power polynomial features contain more higher-order terms than the more
commonly used affine polynomials. Moreover, it is guaranteed that any continuous function
on a locally compact domain can be approximated arbitrarily well by polynomials of increasing
degree [8, 56].

3-1-5 Quantized pure power polynomial feature map

In this research, uncertainty intervals will be visualized in a regression case for 1-dimensional
data. However, the CPD is particularly useful when dealing with multi-dimensional data
where each dimension captures different aspects or features of the data. CPD excels in
capturing interactions and patterns among multiple dimensions, which are absent in one-
dimensional data. While it can be applied to one-dimensional data, doing so does not yield
meaningful results, and in many cases, it can be considered useless. In order to tackle this
problem and still be able to provide both meaningful uncertainty quantification results and
visualizations for 1-D data problems, the 1-D data is lifted to higher order data by utilizing
quantized features [56]. For one-dimensional problems, this research assumes that M̂ can
be written as a power of 2 as such: M̂ “ 2K . Then, the following quantized vector can be
defined:

spd,kqpxdq “

”

1, x2k´1
d

ı

. (3-7)

The quantized pure power (M̂ ´ 1) polynomial feature map can then be stated as:

zdpxpdq
n q “

K
â

k“1
spd,kqpxdq. (3-8)

An example can be given as follows. Choosing M̂ to be a power of 2 such as M̂ “ 8, this
results in K “ log2p8q “ 3. Therefore, the pure power quantized polynomical feature map
for 1-D data is constructed from:

zdpxpdq
n q “ r1, xs b r1, x2s b r1, x3s. (3-9)

3-1-6 Optimization problem

The deterministic part of the kernel machine in equation (3-2) is formed by an inner product
between the parameters w and the inputs mapped into the feature space zpxq. The goal is to
learn the model parameters such that the deterministic part of the kernel machine optimally
predicts the underlying function that governs the observations yn. The optimization problem
for the primal problem of kernel machines can be stated as [55]:

min
w

N
ÿ

n“1
Lpyn, xzpxnq, wyq ` λregxw, wyp (3-10)
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3-2 Supervised learning with tensor networks 17

where xw, wyp is the p-th norm regularization term and λreg P R` is a scaling hyperparameter.
The regularization term is included in the objective function in order to prevent overfitting of
the data. An overfitted model has relatively low error on the training data but is less able to
perform well on unseen data. In this way, the regularization term functions as a penalty term
that usually limits the complexity of the models to avoid overfitting [52]. In this research,
the regularization term is usually denoted by Rpwq : RD Ñ R` which includes the scaling
parameter. Throughout this research, a squared loss function and Tikhonov regularization
are employed. This form of the optimization problem stated in equation (3-10) boils down to
Kernel Ridge Regression (KKR). In this way, the KKR optimization problem can be stated
as:

min
w

N
ÿ

n“1
pyn, xzpxnq, wyq2 ` λreg||w||22. (3-11)

The KKR optimization problem can be used to solve both regression and classification tasks.
In regression tasks the observation yn represents a continuous variable, whereas in a binary
classification task the goal is to predict the right discrete label, hence, yn P t´1, 1u.

The KKR optimization problem is a linear least squares problem. Such type of problems are
convex quadratic programming problems which have a global optimal solution. By setting the
gradient of the KKR optimization problem to zero and solving with respect to the parameters
w, the closed-form solution is obtained, which has the following form:

wLS “ pλregI ` ZT Zq´1ZT y. (3-12)

A major drawback of kernel machines is their lack of scalability. More specifically, making
predictions for the KKR problem requires construction and inversion of λregI ` ZT Z which
amounts to NM2 ` M3 operations. Therefore, solving the kernel machine least squares
problem renders a computational complexity of OpM3q when N ! M , where M is the size of
the parameter vector w, and a computational complexity of OpNM2q when N " M .

3-2 Supervised learning with tensor networks

3-2-1 Curse of dimensionality

The curse of dimensionality refers to an exponentially increasing number of parameters that
is required to describe data or a system in a machine learning context. By mapping an input
space to a high-dimensional space, the volume associated to the dimensions of the input space
increases rapidly. In general, this causes machine learning models to inhibit greater error and
the learning algorithms to have increased running times. In the context of tensors, the curse
of dimensionality refers to the event in which the number of elements ID of a D-th order
tensor of size I ˆ I ˆ ¨ ¨ ¨ ˆ I grows exponentially with the order of the tensor which is D. The
number of elements can become enormous when considering multi-way arrays that possess
a great number of dimensions. In order to perform computations, and to store such data,
excessive computational and storage resources are required [5].
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18 Supervised kernel machines with the CPD

The optimization problem described in equation (3-11) suffers heavily from the curse of di-
mensionality when employing high-dimensional data. This is the case as the product feature
map described in equation (3-13) is employed. In the KKR problem with product feature
map, the parameter tensor W is a D-th order tensor with M “ M̂D elements. Thereby, the
complexity of the optimization problem scales exponentially with respect to the number of
features D. In this regard, when M ! N , it is more advantageous to use the primal for-
mulation compared to the dual formulation. The dual formulation is obtained by using the
kernel trick [20], which scales burdensome in the number of samples as the computational and
storage complexity is OpN3q and OpN2q respectively. Throughout this research, the primal
problem is examined. To conclude, the optimization problem in equation (3-10) becomes
computationally expensive when the dataset contains a large number of features.

3-2-2 Tensor network constrained optimization problem

Constraining the parameters within an optimization problem to be a low-rank tensor network
can alleviate the curse of dimensionality. A tensorized representation of the weight vector
and the feature map needs to be stated first in order to employ a tensor network on the
parameters. As can be inferred from equation (2-26), an outer product of vectors can represent
a tensor. The feature map in equation (3-3) is written in terms of a sequence of Kronecker
products. These Kronecker products can be interchanged with with outer products allowing
for a tensorized representation of the feature map. This is shown by the relation between
Kronecker products and outer products of vectors in equation (2-25). Thereby, tensorization
of zpxnq is achieved by considering outer products. Hence,

Zpxnq “ z1pxp1q
n q ˝ z2pxp2q

n q ˝ ¨ ¨ ¨ ˝ zDpxpDq
n q. (3-13)

where Zp¨q “ RD Ñ RM̂1 b RM̂2 b ¨ ¨ ¨ b RM̂D is the tensorized multidimensional feature
mapping [48, 55, 33]. The deterministic part of the kernel machine model can be represented
in tensorized format due to the formulation of the feature map in 3-13 and tensorization of
the parameter vector w. Thereby, this tensorized formulation has the following form:

yn “ fpxnq ` en “ xZpxnq,Wy ` en n “ 1, . . . , N. (3-14)

Since Zpxnq is composed of outer products, the tensor network diagram for the deterministic
part of the kernel machine is visualized in Figure 3-2.

Rutger Smeenk Master of Science Thesis



3-2 Supervised learning with tensor networks 19

fpxnq “

z1

z2

z3

...

W

I

I

I

1

1

1

Figure 3-2: Graphical representation of deterministic part of the kernel machine model with
product feature mapping

The curse of dimensionality, which is inherent to the kernel machine model in equation (3-14),
can be alleviated by constraining the parameter tensor W to be a low-rank tensor network.
More specifically, this research examines the CP decomposition of the weights. The determin-
istic part of the kernel machine model is visualized in the tensor network diagram in Figure
3-3, where the parameter tensor W is constrained to be a Canonical Polyadic Decomposi-
tion (CPD).

fpxnq “

z1 W1

z2 W2

z3 W3

... ...

I

I

I

1 R

1 R

1 R

Figure 3-3: Graphical representation of the tensor based kernel machine

Ultimately, by incorporating a squared loss function, Tikhonov regularization, a product
feature map and constraining the parameters to be a CPD, the following optimization problem
can be stated:
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min
W

VN “

N
ÿ

n“1
pyn ´ xZpxnq,Wyq

2
` λregxW ,Wy

subject to CP-rank pWq “ R.

(3-15)

This optimization can also be rewritten such that the constraint is removed. This is realized
by employing the Frobenius property that is described in equation (2-30). In addition, by
employing the Frobenius inner product of the CPD with a rank-1 tensor described in equation
(2-31), the optimization problem of equation (3-15) is equivalent to [53]:

min
W

VN “ min
W

1
N

N
ÿ

n“1

´

yn ´

´

zpxp1q
n qT Wp1q ˚ zpxp2q

n qT Wp2q ˚ ¨ ¨ ¨ zpxpDq
n qT WpDq

¯

λ
¯2

` λregλ
´

Wp1qT Wp1q ˚ Wp2qT Wp2q ˚ ¨ ¨ ¨ ˚ WpDqT WpDq
¯

λ

“ min
W

1
N

N
ÿ

n“1

ˆ

yn ´

ˆ

D
˚

d“1
zpxpdq

n qT Wpdq

˙

λ

˙2
` λregλT

ˆ

D
˚

d“1
WpdqT Wpdq

˙

λ.

(3-16)

3-2-3 CPD-ALS

The optimization problem in equation (3-15) and (3-16) becomes non-convex as the parame-
ters are now constrained to be a low-rank tensor network. More specifically, representing the
parameters as a CPD, causes the kernel machine to no longer be linear in the parameters and
the optimization problem becomes nonlinear and non-convex.
A frequently used learning algorithm for optimizing nonlinear problems when dealing with
tensor networks is a block coordinate descent approach, called the Alternating Linear Scheme
(ALS) algorithm [57]. The idea behind optimizing the nonlinear problem is to optimize a
block of parameters while keeping the other parameters constant. In this way, the original
nonlinear problem is transformed into multiple convex and analytically solvable sub-problems.
This is achievable because of the multi-linear structure of the CPD. The blocks that are iter-
atively updated should be chosen such that the sub-problem is indeed convex and analytically
solvable. Updating of the different blocks of parameters is performed by starting at the first
block and sweeping to the last block where the algorithm will start to turn backwards again.
The ALS algorithm is a monotonically decreasing algorithm, meaning that the objective func-
tion value consistently decreases with each iteration, that does not necessarily converges to
the global optimum [18, 6].
In the case of the CPD constrained kernel machine of 3-15, the number of parameters is
reduced from M̂D to DM̂R. In the Canonical Polyadic Decomposition Alternating Linear
Scheme (CP-ALS) algorithm, the optimization problem is split into several sub-problems
where each such problem is a linear least squares problem in which Wpdq is updated. Each
linear least squares sub-problem can be solved by solving the normal equations [55]. The ALS
sub-problem that needs to be solved for the optimization problem of equation (3-15) can be
stated by first formulating the data-fitting term ⟨W ,Zpxq⟩ which can be rewritten linearly
in terms of the unknown factor matrix as:
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⟨W ,Zpxq⟩ “

〈
vec

´

Wpdq
¯

, zpxd
nq b

ˆ

D
˚

p“1,p‰d
zpxppq

n qT Wppq

˙

〉
. (3-17)

Likewise, the regularization term in equation (3-15) can be written linearly as follows:

⟨W ,W⟩ “

〈
vec

´

WpdqT Wpdq
¯

, vec
ˆ

D
˚

p“1,p‰d
WppqT Wppq

˙

〉
. (3-18)

In the new formulation, the CPD constraint is incorporated in both the data-fitting term and
the regularization term. Hence, a linear least squares problem for vec

`

Wpdq
˘

is obtained by
substituting equation (3-17) and equation (3-18) into equation (3-15) [55]:

min
vecpWpdqq

VN “
1
N

N
ÿ

n“1

˜

yn ´

〈
vec

´

Wpdq
¯

, zpxd
nq b

ˆ

D
˚

p“1,p‰d
zpxppq

n qT Wppq

˙

〉¸2

` λreg

〈
vec

´

WpdqT Wpdq
¯

, vec
ˆ

D
˚

p“1,p‰d
WppqT Wppq

˙

〉
.

(3-19)

The CP-ALS sub-problem as formulated in equation (3-19) can be solved by the normal
equations which requires NM̂2R2`M̂3R3 operations. In the CP-ALS optimization algorithm,
a non-convex optimization problem that consists of multiple convex and analytically solvable
sub-problems is encountered. While the CP-ALS algorithm is monotonically decreasing, it
does not provide a guarantee of converging to the global optimum solution. Thereby, the
computational complexity of the algorithm is NDM̂2R2 when N " M̂R, therefore, the
algorithm can be suitably used even for large N and D, given that R and M̂ are small. With
regards to the storage complexity, the required storage is RM̂D ` 2R2M̂2 ` 2RM̂ , which is
attributed by the weight tensor in CPD format, the rank-RM̂ Gram matrix, the regularization
matrix and by the transformed responses and solution of the linear system. Hence, the storage
complexity is O

´

R2M̂2
¯

when RM̂ " D, and thereby, the storage complexity is independent
of the number of samples N [55].

Furthermore, the optimization problem in equation (3-19) can be solved by setting the deriva-
tive with respect to vecpWpdqq to zero since it is a linear least squares problem. In order to
do this, expressions for the prediction model gradient and regularization term gradient are
defined. Firstly, the prediction model can be defined as

fpxn, wq “

〈
vec

´

Wpdq
¯

, zpxpdq
n q b

ˆ

D
˚

p“1,p‰d
zpxppq

n qT Wppq

˙

〉
. (3-20)

The model is a linear combination of vecpWpdqq as it is written as an inner product of
vecpWpdqq. Thereby, the following result is obtained for the derivative of the prediction
model with respect to vecpWpdqq:

Bfpxn, wq

BvecpWpdqq
“ zpxd

nq b

ˆ

D
˚

p“1,p‰d
zpxppq

n qT Wppq

˙

. (3-21)
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22 Supervised kernel machines with the CPD

The linear least squares problem is solved for all samples at once. By doing so, first the
feature map for an entire input matrix X P RNˆD is stated. This done by transforming each
dimension of the input matrix Xpdq P RN separately as follows:

ZpXpdqq “ rzpx
pdq

1 q zpx
pdq

2 q . . . zpx
pdq

N qs P RMˆN . (3-22)

Furthermore, the term ZpXpdqqT Wpdq in equation (3-21) can also be written for all samples
which is done as follows:

ZpXpdqqT Wpdq “

”

zpx
pdq

1 qT Wpdq zpx
pdq

2 qT Wpdq . . . zpx
pdq

N qT Wpdq
ı

P RNˆR. (3-23)

By considering all samples for the prediction model fpX, wq “ rfpx1, wq fpx2, wq . . . fpxN , wqsT

and the derivative for a single sample in equation (3-21), the derivative of the model for all
samples with respect to vecpWpdqq is given by

BfpX, wq

BvecpWpdqq
“

„

zpxd
1q b

ˆ

D
˚

p“1,p‰d
zpx

ppq

1 qT Wppq

˙

zpxd
2q b

ˆ

D
˚

p“1,p‰d
zpx

ppq

2 qT Wppq

˙

. . . zpxd
N q b

ˆ

D
˚

p“1,p‰d
zpx

ppq

N qT Wppq

˙ȷT

“

˜

ZpXpdqq d

ˆ

D
˚

p“1,p‰d
ZpXppqqT Wppq

˙T
¸T

.

(3-24)

The prediction model fpX, wq is an inner product of vecpWpdqq which can be inferred from
the derivative of fpX, wq with respect to vecpWpdqq in equation (3-24). Hence, the prediction
model for all samples are defined as:

fpX, wq “

˜

ZpXpdqq d

ˆ

D
˚

p“1,p‰d
ZpXppqqT Wppq

˙T
¸T

vecpWpdqq. (3-25)

In this formulation, the matrix C is defined as

C “

˜

ZpXpdqq d

ˆ

D
˚

p“1,p‰d
ZpXppqqT Wppq

˙T
¸T

. (3-26)

The derivative in equation (3-24) equals C but can also equal CT depending on the conven-
tion of the numerator with respect to the denominator which is clarified in equation (2-13).
Similarly, the regularization term Rpwq is rewritten as an inner product of vecpWpdqq. The
regularization term in the CP-ALS sub-problem of equation (3-19) can be stated by using the
vectorization property of equation (2-10) as follows:
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Rpwq “ λreg

〈
vec

´

WpdqT Wpdq
¯

, vec
ˆ

D
˚

p“1,p‰d
WppqT Wppq

˙

〉

“ λregvec
´

WpdqT Wpdq
¯T

vec
ˆ

D
˚

p“1,p‰d
WppqT Wppq

˙

“ λregTr
ˆ

WpdqT Wpdq
D
˚

p“1,p‰d
WppqT Wppq

˙

.

(3-27)

The following result is obtained by applying the derivative rule stated in equation (2-12) to
the gradient of the regularization term:

BRpwq

BWpdq
“

ˆ

Wpdq
D
˚

p“1,p‰d
WppqT Wppq

˙

`

ˆ

Wpdq
D
˚

p“1,p‰d
WppqT Wppq

˙

“ 2λregWpdqp
D
˚

p“1,p‰d
WppqT Wppqq.

(3-28)

The derivative of the regularization term with respect to vecpWpdqq becomes:

BRpwq

BvecpWpdqq
“ 2λregvecpWpdq

D
˚

p“1,p‰d
WppqT Wppqq

“ 2λregpp
D
˚

p“1,p‰d
WppqT Wppqq b IM qvecpWpdqq

(3-29)

where the last equality holds by equation (2-11) and is written in order to write the expresion
linear in vecpWpdqq. Considering the ALS sub-problem in equation (3-19), the goal is to set
the derivative equal to zero considering all samples in the optimization problem in order to
solve for the parameters in the linear least squares problem. The cost function in the ALS
sub-problem in equation (3-19) considering all samples can be defined as:

VN “

N
ÿ

n“1
pyn ´ fpxn, wqq2 ` Rpwq “ ||y ´ f ||22 ` Rpwq. (3-30)

Setting the partial derivative of this cost function with respect to vecpWpdqq to zero can be
done by using equation (2-14) and plugging in the two expressions given in equation (3-24)
and (3-28):

BVN

BvecpWpdqq
“ ´2 Bf

BvecpWpdqq
py ´ fq `

BRpwq

BvecpWpdqq

“ ´
2
N

CT py ´ CvecpWpdqqq ` 2λregpp
D
˚

p“1,p‰d
WppqT Wppqq b IM qvecpWpdqq.

(3-31)

Solving this linear system with respect to vecpWpdqq amounts to solving the following linear
system:
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pCT C ` λregNpp
D
˚

p“1,p‰d
WppqT Wppqq b IM qqvecpWpdqq “ CT y. (3-32)

Ultimately, making predictions can be inferred from the cost function in equation (3-16).
With the obtained factor matrices from the CP-ALS algorithm, predictions by the estimated
model can be produced as:

fpx˚n, ŵq “ xZpxnq,Wy “

ˆ

D
˚

d“1
zpxpdq

n qT Wpdq

˙

λ (3-33)

where x˚n denotes a test input. The CP-ALS algorithm is a monotonically decreasing learning
algorithm that has a linear complexity in both sample size and dimensionality. A single sweep
in the algorithm updates the factor matrices in the order 1 Ñ D and back from D Ñ 1 [55].
The CP-ALS algorithm is stated in the following algorithm:

Algorithm 1 MATLAB Function: CP-ALS[55]

1: procedure CP ALS(X, y, M, R, λreg, number of sweeps)
2: D Ð sizepX, 2q Ź Extract number of features
3:
4: ZW Ð1 Ź Initialization of algorithm
5: Γ Ð 1
6: for d Ð D to 1 do
7: Wpdq Ð randnpM, Rq

8: Wpdq Ð Wpdq{||Wpdq||

9: ZW Ð ZW ˚ ZpXpdqqT Wpdq

10: Γ Ð WpdqT
˚ Wpdq

11: end for
12:
13: for i Ð 1 to number of sweeps do Ź Sweeping over the factor matrices
14: for d Ð 1 to D do
15: ZWd Ð ZW{pZpXpdqqT Wpdqq

16: Γd Ð Γ{pWpdqT Wpdqq

17: C Ð

ˆ

ZpXpdqq d

´

˚D
p“1,p‰d ZpXppqqT Wppq

¯T
˙T

18: Λreg Ð λregpIM b Γdq

19: A Ð CT C ` Λreg
20: b Ð CT y
21: w Ð solvepA, bq

22: W Ð reshapepw, pM, Rqqq

23: ZW Ð ZWd ˚ pZpXpdqqT Wq

24: Γ Ð ΓdpWT , Wq

25: Wpdq Ð W
26: end for
27: end for
28: return Wp1q, Wp2q, . . . , WpDq Ź Return the factor matrices
29: end procedure
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Chapter 4

Uncertainty quantification: A
frequentist approach

By minimizing the cost function of the constrained Canonical Polyadic Decomposition (CPD)
kernel machine, model parameters can be learned and, in turn, predictions can be made. How-
ever, those predictions are not provided with any quantification on how certain the predictions
are. This is a downside as it becomes increasingly important to evaluate the reliability, pre-
dictability and efficacy of machine learning models before the models are directly applied in
practice [47, 1]. This is because machine learning models are increasingly adopted in different
fields, from investment opportunities and medical diagnoses to sports games and weather
forecasting [1].

4-1 Prediction uncertainty

4-1-1 Sources of uncertainty

Before providing the details concerning the delta method, it is important to precisely set
out the sources that contribute to the uncertainty in the predictions. The prediction error
in equation (4-1) depends on two main types of uncertainties: epistemic uncertainty and
aleatory uncertainty. Epistemic uncertainty is concerned with the lack of knowledge about a
particular environment, process or system. In contrast, aleatory uncertainty concerns inherent
variability in a particular system. This kind of stochasticity is especially present in human
and natural systems [26, 54]. This research focuses on the prediction error variance. The
prediction error can be stated as follows:

ϵnpxn, ŵq “ yn ´ fpxn, ŵq “ en ` f˚pxnq ´ fpxn, ŵq (4-1)

where f˚pxnq is the prediction of the true system for sample n, fpxn, ŵq is the prediction with
a model for parameter values ŵ and en is an additive, independent and identically distributed
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26 Uncertainty quantification: A frequentist approach

random noise variable attributed by an observation. The true function, or system, can also
be stated for all samples as f˚ “ rf˚px1q f˚px2q . . . f˚pxN qsT “ rf˚

1 f˚
2 . . . f˚

N sT . The
prediction error in equation (4-1) depends on the uncertainty in the training data (aleatory
uncertainty) which is attributed by en. On the other hand, the prediction error depends
on the uncertainty in the model (epistemic uncertainty) which is given by the model error
f˚pxnq ´ fpxn, ŵq. It is important to note that there will always exist a prediction error no
matter how close the prediction fpxn, ŵq is to the prediction of the true system f˚pxnq. This
is because, even if the true system is known, there will always be aleatory uncertainty coming
from the independent error term en.

In order to further decompose the prediction error, a distinction should be made between two
different sources of error which together form the model error f˚pxnq ´ fpxn, ŵq. Structural
model errors are the type of errors that come from deficiencies in the model structure. These
type of errors are caused by inherent incapability of producing correct model outputs. As
such, even with perfect and infinite estimation data, the model prediction deviates from the
true system [32, 31, 44]. Estimation errors refer to model errors that are caused by the unpre-
dictable fluctuations or variations in the observed data used for model estimation [32, 31, 44].
These errors can arise from various sources, such as measurement errors, inherent variability,
or unaccounted factors. It should be emphasized that estimation errors are epistemic sources
of uncertainty whereas the observation noise is aleatory uncertainty. This is because the
observation noise is inherent to the data and can not be accounted for, whereas estimation
errors are due to the lack of acquiring the true model parameters, which in principal can
be accounted for. For example, increased sample size, more accurate parameter estimation
techniques, or improved model calibration reduce parameter estimation errors.
Despite having a well-structured model without any structural model errors, the model pre-
dictions will still contain errors due to the presence of these estimation errors. In other words,
these errors are not a result of the model’s structural flaws, such as choosing a too simplis-
tic model structure which is unable to explain the data, but rather arise from the inherent
uncertainty and noise in the data.

An illustration of structural model error and estimation error is provided in Figure 4-1. In
Figure 4-1a, a polynomial of degree 2 is fitted to data with an underlying true function. It
can be observed that a polynomial of degree 2 is inherently unable to explain the data in the
sense that the underlying true function is not well approximated. In Figure 4-1b, the same
kind of model is used to fit the data as the model that is used to generate the data. There
is approximately no structural model error, however, different realizations of the prediction
still deviate from each other. This can be ascribed to estimation errors which are due to the
use of different training and test data, different noise realizations on the data and different
parameter initialization.

Rutger Smeenk Master of Science Thesis



4-1 Prediction uncertainty 27

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1.5

-1

-0.5

0

0.5

1

1.5

(a) Structural model error

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1.5

-1

-0.5

0

0.5

1

1.5

0.73 0.74 0.75 0.76

1.1

1.15

1.2

1.25

(b) Estimation error

Figure 4-1: Illustration of estimation error and structural model error

Whether the prediction error in equation (4-1) contains structural model errors depends on
whether the true system f˚ is part of the model structure M. The model set can first be
defined as

Definition 4.1 (Model set [27, 31]). A model set M˚ is a collection of models where each
model predicts the current output of a system given information about inputs.

Most often a pertinent model set is non-countable as it contains an infinite number of models.
Thereby, a search for the best model within the model set is done over an area where the
model is differentiable with respect to the parameters and that the parameters live within
a open set. This is done by restricting the model class to contain only parametric models
fpx, wq with a finite number of parameters. This research only considers parametric models
with well defined gradients of the model with respect to the parameters. The model structure
can be defined as

Definition 4.2 (Model structure [27, 31]). A model structure M is a differentiable mapping
from a connected open subset DM of Rd to a model set M˚, such that the gradient of the
predictor set are smooth. Thereby

M : w P DM Ñ Mpwq “ fpx, wq P M˚. (4-2)

Furthermore, w0 is defined as the parameter vector for the true system and w˚ is the asymp-
totic value of the parameter estimate. In other words, w˚ is the parameter vector that asymp-
totically minimizes a cost function. Two cases can be distinguished when the prediction error
in equation (4-1) is further decomposed.

1. The true system is in the model structure (f˚ P M). There exists a w0 such that
f˚pxnq “ fpxn, w0q for all samples. In this case, ŵ Ñ w0 as N Ñ 8. Thereby, the
model parameter error w0 ´ ŵ will be an estimation error caused by data disturbances.
Hence, the prediction error of equation (4-1) can be stated as:

Master of Science Thesis Rutger Smeenk



28 Uncertainty quantification: A frequentist approach

ϵnpxn, ŵq “ en ` fpxn, w0q ´ fpxn, ŵq
loooooooooooomoooooooooooon

estimation error

. (4-3)

2. The true system is not in the model structure (f˚ R M). In this case the asymptotic
value of the parameter estimate can be defined as ŵ Ñ w˚ as N Ñ 8. Now, the
prediction error of equation (4-1) can be stated as:

ϵnpxn, ŵq “ en ` f˚pxnq ´ fpxn, w˚q
looooooooooomooooooooooon

structural model error

` fpxn, w˚q ´ fpxn, ŵq
loooooooooooomoooooooooooon

estimation error

. (4-4)

Moreover, the parameter estimation error be further decomposed by considering the
different sources of error of parameter estimates:

ŵ “ w˚ ` ŵ ´ w˚ ´ wb
looooooomooooooon

Stochastic error

` wb
loomoon

Bias error

. (4-5)

Here, wb constitutes bias in the parameters. Therefore, the parameter stochastic error
and the parameter bias error constitute errors in the estimated parameters.

4-1-2 Parameter covariance for linear least squares

The parameter covariance can be propagated through the variance of the model output when
the prediction error is sufficiently small. Therefore, an expression for the parameter covariance
needs to be obtained. Before obtaining an analytical expression for the parameter covariance
for the nonlinear CPD constrained kernel machine, it is interesting to obtain an expression for
a model that is linear in the parameters first. This case can clearly show why it is important
to assume that the true function is part of the model structure f˚ P M. Consider a model
that is linear in the parameters and the following least squares optimization problem needs
to be solved [32, 43, 30]:

VN pŵq “

N
ÿ

n“1

1
2ϵ2

npxn, ŵq. (4-6)

The parameters w˚ “ ŵ ` ∆w are defined as the parameter vector that asymptotically mini-
mizes the cost function in equation (4-6) and ∆w must be small. A quadratic approximation
of the cost function around the estimated parameters ŵ is given by the second order Taylor
expansion:

VN pw˚q “ VN pŵ ` ∆wq « VN pŵq ` ∆wT V 1
N pŵq `

1
2∆wT V 2

N pŵq∆w (4-7)

where V
1

N pŵq “ B
BwVN pwq

ˇ

ˇ

w“ŵ is the Gradient of the cost function and V
2

N pŵq “ B2

Bw2 VN pwq
ˇ

ˇ

w“ŵ
is the Hessian of the cost function. The Gradient of the cost function can be stated as:
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4-1 Prediction uncertainty 29

V 1
N pŵq “

N
ÿ

n“1
ϵ1
npxn, ŵqϵnpxn, ŵq “ ϵ1pX, ŵqT ϵpX, ŵq (4-8)

where ϵ1
npxn, ŵq “ B

Bŵϵnpxn, ŵq
ˇ

ˇ

w“ŵ and where ϵpX, ŵq and ϵ1pX, ŵq denote the vector for
all prediction errors and matrix of derivatives for all prediction errors respectively. Then, the
Hessian of the cost function can be defined as:

V 2
N pŵq “

N
ÿ

n“1
ϵ1
npxn, ŵqT ϵ1

npxn, ŵq

“ ϵ1pX, ŵqT ϵ1pX, ŵq `

N
ÿ

n“1
ϵnpxn, ŵqϵ2

npxn, ŵq

(4-9)

where ϵ2
npxn, wq “ B2

Bw2 ϵnpŵq
ˇ

ˇ

w“ŵ. The derivative of the Taylor expansion in equation (4-7)
with respect to ∆w can be taken and the following expression for ∆w is obtained:

V 2
N pŵq∆w “ ´V 1

N pŵq. (4-10)

Since models that are linear in the parameters are considered, ϵ1pX, ŵq is a constant matrix
and ϵ2

npxn, ŵq is zero. Hence the second order derivative of the cost function can be defined
as

V 2
N pŵq “ ϵ1pX, ŵqT ϵ1pX, ŵq. (4-11)

It is assumed that the prediction error has zero mean and variance σ2
e , i.e., the true system is

in the model structure, thereby, w˚ “ w0. By substitution of equation (4-10), the covariance
of the estimated parameters can be stated as:

Covpŵ ´ w0q “ Covpŵq “ CovppV 2
N pŵqq´1V 1

N pŵqq

“ CovppV 2
N pŵqq´1ϵ1pX, ŵqT ϵpX, ŵq

“ σ2
epV 2

N pŵqq´1ϵ1pX, ŵqT ϵ1pX, ŵqpV 2
N pŵqq´1

“ σ2
epV 2

N pŵqq´1V 2
N pŵqpV 2

N pŵqq´1 “ σ2
epV 2

N pŵqq´1.

(4-12)

The matrix ´E rV 2
N pŵqs “ Iw is the well-known Fisher information matrix. Hence, the

covariance matrix of the least squares estimate is proportional to the inverse of the Fisher
information matrix. In general, the Fisher information matrix can be used to compute the
covariance matrix of maximum likelihood estimators, which are unbiased. Moreover, the
inverse of the Fisher information matrix gives a lower bound on the parameter covariance of
unbiased estimators which is known as the Cramér–Rao lower bound:

Covpŵq ľ I´1
w (4-13)

where ľ imposes positive-definiteness.
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30 Uncertainty quantification: A frequentist approach

Maximizing the log-likelihood function with the assumption that the noise is Gaussian dis-
tributed is equivalent to minimizing a sum of squares cost function. Hence, a least-squares
approach to obtaining optimal parameter estimates is a specific case of maximum likelihood
[2]. Simply maximizing the likelihood function can lead to over-fitting of the model on the
data which is a general property of maximum likelihood as. Over-fitting is closely linked to
high variance, meaning the error introduced by the sensitivity of the model to small fluctua-
tions or noise in the training data. High variance of the model causes the model to capture
the noise in the training data, leading to a high degree of flexibility and poor performance on
unseen data [2]. Regularization can control the over-fitting of the model, which is especially
advantageous for models with many parameters. A downside of regularization is the introduc-
tion biased estimators which lead to a bias to the model predictions which shift the average
model prediction away from the underlying true function leading to poor performance on
both training data and test data. The trade-off between model flexibility and bias is known
as the bias-variance trade-off. In addition, the Cramér–Rao lower bound in equation (4-13)
is not directly applicable as the parameters in this research inhibit deliberate bias introduced
by the regularization term.
It is important to note that the final parameter covariance expression in equation (4-12)
can only be used when the underlying true system is part of the model structure. This
is because, there are no structural model errors in this case. Hence, the asymptotic pre-
diction error ϵnpxn, w˚q “ en only contains the aleatory error term en which is the in-
herent randomness that is incorporated in the observations. In contrast, when the un-
derlying true system is not part of the model structure, the asymptotic prediction error
ϵnpxn, w˚q “ en ` f˚pxnq ´ fpxn, w˚q contains the aleatory term en as well as a structural
model error term f˚pxnq´fpxn, w˚q which is defined in equation (4-4). In this case, the gradi-
ent of the prediction error ϵnpxn, w˚q depends on the input xn, thereby, the independence be-
tween the two terms is lost [44]. Hence, Er∇fpxn, w˚qT ϵnpxn, w˚qT ϵnpxn, w˚q∇fpxn, w˚qqs ‰

Er∇fpxn, w˚qT Erϵnpxn, w˚qT ϵnpxn, w˚qs∇fpxn, w˚qqs.
When the structural model error is unknown, the parameter covariance matrix cannot be
computed as higher-order moments of the input xn show up in the computation of the general
expression. These terms cannot be computed when the structural model errors are unknown
and it becomes impossible to obtain a closed-form expression of the parameter covariance
matrix. Therefore, when there is significant structural model error, the parameter covariance
expression underestimates the variability which causes a far too optimistic approximation
of the uncertainty of the estimates [17, 44]. In [30], a asymptotic parameter covariance
expression is derived for least squares estimators of nonlinear models. It was found that the
parameter covariance in the general case suffers from the same problem as the linear case in
that the structural model error should be exactly known in order to accurately compute the
parameter covariance. In practice, the structural model error is hardly ever known. In [44], it
is emphasized that the parameter covariance matrix underestimates the true value as it does
not take into account the structural model errors and the input when wrongly assuming that
there is no structural model and using the corresponding expressions accordingly.

4-1-3 Asymptotic parameter covariance for nonlinear least squares

In [27, 28], an asymptotic covariance expression is derived for parameters that minimize a
least squares cost function. These results treat ŵ ´ w˚ as a random variable and it is shown
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4-1 Prediction uncertainty 31

that the parameter estimation error
?

Npŵ ´ w˚q is Gaussian. The provided expressions are
asymptotic results, meaning asymptotic in the number of samples N . However, the resulting
expressions can be approximated by non-asymptotic estimates which provide reasonable and
valuable results.

Not in the model structure This heuristic approach is a review from [28, 27] and starts with
the general case that the true function is not necessarily in the model structure (f˚ R M).
Consider the following estimated parameters:

ŵ “ arg min 1
N

N
ÿ

n“1
ϵ2
npxn, ŵq. (4-14)

Hence, the cost function that is optimized is given by VN pwq “ 1
N

řN
n“1 ϵ2

npxn, wq. The error
term can be stated as follows:

ϵnpxn, ŵq “ yn ´ fpxn, ŵq “ en ` f˚pxnq ´ fpxn, wq. (4-15)

where f˚pxnq is the true function, fpxn, wq is the nonlinear model and en is zero mean
Gaussian noise with variance σ2

e . Furthermore, the gradient of the model evaluated at the
asymptotic parameter estimates w˚ and the gradient of the prediction error evaluated at w˚

are equal in the following way:

∇fpxn, w˚q “ ´
B

Bwϵnpxn, wq
ˇ

ˇ

w“w˚ “
B

Bwfpxn, wq
ˇ

ˇ

w“w˚ . (4-16)

Also, consider the following notation for the gradient and the Hessian of the cost function:

V 1
N pw˚q “

B

BwVN

ˇ

ˇ

w“w˚ V 2
N pw˚q “

B2

Bw2 V pwq
ˇ

ˇ

w“w˚ . (4-17)

It can be immediately stated that

V 1
N pŵq “ 0 (4-18)

as ŵ minimizes VN . Then, by employing a Taylor series expansion for the gradient of the
cost function around w˚, the following equation is obtained:

0 “ V 1
N pw˚q ` V 2

N pξN qpŵ ´ w˚q (4-19)

where ξN is a value between ŵ and w˚. Next, the notion of an asymptotic mean for a random
variable gptq should be defined which can be stated as follows:

Ērgptqs “ lim
NÑ8

1
N

N
ÿ

t“1
Ergptqs. (4-20)
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32 Uncertainty quantification: A frequentist approach

Then, it can be shown that V 2
N pwq converges uniformly in w to V̄ 2pwq which gives:

V 2
N pξN q Ñ V̄ 2pw˚q as N Ñ 8 w.p. 1. (4-21)

Given this convergence, equation (4-19) can be rewritten in the following form:

pŵ ´ w˚q “ ´rV̄ 2pw˚qs´1V 1
N pw˚q. (4-22)

Here, the second term can be written as:

´V 1
N pw˚q “

1
N

N
ÿ

n“1
2∇fpxn, w˚qϵnpxn, w˚q. (4-23)

In [28], the gradient of the cost function as defined in equation (4-16) can be expressed as
a sum of an asymptotically normal distributed random variable with zero mean and the
difference can be stated as

DN “ E

«

1
N

N
ÿ

n“1
∇fpxn, w˚qϵnpxn, w˚q ` ∇Rpw˚q ´ Ēr∇fpxn, w˚qϵnpxn, w˚q ´ ∇Rpw˚qs

ff

.

(4-24)

Also, by definition, the asymptotic mean of the gradient of the cost function is

V̄ 1pwq “ ´Ēr2∇fpxn, w˚qϵnpxn, w˚qs “ 0 (4-25)

and therefore, the expression in equation (4-23) is asymptotically normal distributed with
mean 0 and covariance Q, apart from the difference which is assumed to converge to 0 fast
enough, i.e.

?
NDN Ñ 0 as N Ñ 8. Therefore, the gradient of the cost function in equation

(4-23) is a sum of random variables with zero mean values. Given this, the following final
result is proven in [30]:

?
Npŵ ´ w˚q Ñ N p0, Pw˚q as N Ñ 8 (4-26)

where

Pw˚ “ rV̄ 2pw˚qs´1QrV̄ 2pw˚qs´1

Q “ lim
NÑ8

NE
“

rV 1
N pw˚qsT rV 1

N pw˚qs
‰

.
(4-27)
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4-2 Delta method 33

In the model structure The second case is a special case of the first case. In this case,
the underlying true system is part of the model structure (f˚ P M). Therefore, in this case
w˚ “ w0, and thereby, the prediction error ϵnpxn, w˚q “ en has zero mean and variance σ2

e .
As a consequence of true system being in the model structure, DN “ 0 and Q “ σ2

e V̄ 2pw0q.
In addition, V̄ 2pw0q can be written as:

V̄ 2pw0q “ 2Ē
“

∇fpxn, w0qT ∇fpxn, w0q
‰

´ Ē
“

2∇fpxn, w0qT en

‰

“ 2Ē
“

∇fpxn, w0qT ∇fpxn, w0q
‰

.
(4-28)

Therefore, the parameter covariance can be reduced to

Pw0 “ σ2
eI´1

w

Iw “ 2Ē
“

∇fpxn, w0qT ∇fpxn, w0q
‰

.
(4-29)

In this formulation of the parameter covariance, Iw is the Fisher information matrix of the
parameters.

Approximating the covariance When applying the delta method in order to quantify the
uncertainty in the case of a dataset, the simplified version as in equation (4-29) can be used.
This is because the structural model error is unknown in this case. Therefore, it is assumed
that the true underlying model is part of the model structure, and thereby it is assumed
that there is no structural model error within the prediction error. The expression for the
parameter covariance that is used is thus the one in equation (4-29), however, this expression
is asymptotic in the number of samples. In order to approximate the expression with finite
amount of data the following approximation can be used [27]:

P̂N “ σ̂2
e

«

2
N

N
ÿ

n“1
∇fpxn, ŵqT ∇fpxn, ŵq

ff´1

,

σ̂2
e “

1
N

N
ÿ

n“1
ϵ2
npxn, ŵq.

(4-30)

4-2 Delta method

Here, the main theory and results on the delta method are discussed. As opposed to a Bayesian
approach where model parameters are treated as random variables, the delta method is a
frequentist approach that treats model parameters as single values.

4-2-1 Parameter covariance for the CPD constrained kernel machine

In order to compute the prediction error variance for the CPD constrained kernel machine, the
covariance matrix of the parameter estimates Pŵ needs to be constructed as this covariance of
the parameters affects the uncertainty in the predictions. More specifically, the covariance of
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34 Uncertainty quantification: A frequentist approach

the model parameters can be propagated to the covariance of the model output. Thereby, the
variance originating from estimation errors σ2

f̂n
can be estimated. In what follows, a heuristic

approach to derive parameter covariance expressions is provided. The cost function that is
dealt with in equation (3-19) comprises of a mean squared error term and a regularization
term. The following assumptions must hold in order for the delta method to provide accurate
uncertainty quantification results:

• The true system is described by w˚ “ w0 (i.e. f˚ P M).

• V̄ 2pw0q is invertible.

• Training data and test data have the same second order properties, meaning statistical
properties related to the data distribution are similar.

Then, the approach described in section 4-1-3 can directly be applied to give the following
asymptotic covariance [27, 9]:

Pw0 “ rV̄ 2pw0q ` HRpw0qs´1rσ2
e V̄ 2pw0qsrV̄ 2pw0q ` HRpw0qs´1. (4-31)

where HRpwq is the Hessian of the regularization term evaluated at w0. This expression
is asymptotic in the number of samples which is not feasible in practice. The following
approximation can be used in order to approximate the expression with a finite amount of
data:

P̂N “ σ̂2
e

”

V̂ 2
N ` HRpŵq

ı´1
V̂ 2

N

”

V̂ 2
N ` HRpŵq

ı´1
,

where σ̂2
e “

1
N

N
ÿ

n“1
ϵ2
npxn, ŵq,

and V̂ 2
N pŵq “

2
N

N
ÿ

n“1
∇fpxn, ŵqT ∇fpxn, ŵq.

(4-32)

The error term can directly be stated from the optimization problem in equation (3-19), which
is

ϵnpxn, ŵq “ yn ´ fnpxn, ŵq “ yn ´

〈
vec

´

Ŵpdq
¯

, zpxd
nq b

ˆ

D
˚

p“1,p‰d
zpxppq

n qT Ŵppq

˙

〉
. (4-33)

Furthermore, it can be observed that
řN

n“1 ∇fpxn, ŵqT ∇fpxn, ŵq constitutes the Jacobian
when considering all data samples. In this Jacobian, the prediction model for all samples
fpX, wq are considered and the gradient with respect to each factor matrix vecpWpdqq is
concatenated. This is done as it is clear from the optimization problem in equation (3-19)
that both the mean squared error term and the regularization term, which are functions of
the CPD constrained parameters in the cost function, can be written linearly in terms of a
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4-2 Delta method 35

vectorized factor matrix. This is a special property of the CPD constrained kernel machine.
In this regard, the Jacobian can be stated as follows:

J “

»

—

—

—

—

—

—

–

Bfpx1,wq

BvecpWp1qq

ˇ

ˇ

ˇ

w“ŵ
Bfpx1,wq

BvecpWp2qq

ˇ

ˇ

ˇ

w“ŵ
. . . Bfpx1,wq

BvecpWpDqq

ˇ

ˇ

ˇ

w“ŵ
Bfpx2,wq

BvecpWp1qq

ˇ

ˇ

ˇ

w“ŵ
Bfpx2,wq

BvecpWp2qq

ˇ

ˇ

ˇ

w“ŵ
. . . Bfpx2,wq

BvecpWpDqq

ˇ

ˇ

ˇ

w“ŵ...
... . . . ...

BfpxN ,wq

BvecpWp1qq

ˇ

ˇ

ˇ

w“ŵ
BfpxN ,wq

BvecpWp2qq

ˇ

ˇ

ˇ

w“ŵ
. . . BfpxN ,wq

BvecpWpDqq

ˇ

ˇ

ˇ

w“ŵ

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(4-34)

where the Jacobian has size N ˆ DM̂R. Recall the prediction model for all samples from
equation (3-25):

fpX, wq “

˜

ZpXpdqq d

ˆ

D
˚

p“1,p‰d
ZpXppqqT Wppq

˙T
¸T

vecpWpdqq “ CpdqvecpWpdqq (4-35)

which is linear in vecpWpdqq keeping all other factor matrices constant. Thereby, the Jacobian
in equation (4-34) can be written as

J “

„

BfpX, wq

BvecpWp1qq

ˇ

ˇ

ˇ

w“ŵ

BfpX, wq

BvecpWp2qq

ˇ

ˇ

ˇ

w“ŵ
, . . . ,

BfpX, wq

BvecpWpDqq

ˇ

ˇ

ˇ

w“ŵ

ȷ

“

”

Ĉp1q Ĉp2q, . . . , ĈpDq
ı

.

(4-36)

where the hat on top of C denotes terms that are evaluated at the final estimated parameters
such that Ĉpdq is evaluated at the estimated factor matrices except the d-th. Lastly, in order
to state the Hessian of the regularization term, first recall the gradient of the regularization
term with respect to one of the factor matrices from equation (3-29):

BRpwq

BvecpWpdqq
“ 2λregpp

D
˚

p“1,p‰d
WppqT Wppqq b IM qvecpWpdqq. (4-37)

To compute the Hessian of the entire regularization term, the second-order derivatives with
respect to each factor matrix have to be by obtained by taking the second derivative with
respect to each combination of vectorized factor matrices: B2Rpwq

BvecpWpdqqBvecpWpkqq
for d “ 1, . . . , D

and k “ 1, . . . , D. An analytical expression for the off-diagonal blocks of this Hessian can
be hard to compute as the derivative with respect to vecpWpdqq in equation (4-37) is not
straightforward. Therefore, an approximation of the Hessian is computed by considering the
block-diagonal elements as follows:

HRpwq “ 2λreg

»

—

—

—

–

Wz1 0 . . . 0
0 Wz2 . . . 0
...

... . . . ...
0 0 . . . WzD

fi

ffi

ffi

ffi

fl

(4-38)
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36 Uncertainty quantification: A frequentist approach

where Wzd “ p˚D
p“1,p‰d WppqT WppqqbIM . As the delta method will be combined with a cross-

validation procedure, which will be further elaborated on in section 6-2-2, the delta method
has ’freedom’ to allow for less or more regularization by means of the λreg regularization
hyperparameter. In this regard, it is assumed that the impact of only considering the block
diagonal terms of the Hessian of the regularization term remains limited.
Ultimately, following the form in equation (4-32), the parameter covariance can be approxi-
mated by:

P̂N “ σ̂2
ep2JT J ` HRpŵqq´1p2JT Jqp2JT J ` HRpŵqq´1. (4-39)

4-2-2 Prediction uncertainty by the delta method

The delta method can be used to approximate the prediction error variance for a function of a
random variable when the function is well-behaved and can be approximated by its first-order
Taylor series expansion. In this regard, the most important assumptions for the method to
be accurate are [39]:

• The nonlinear function can be well-approximated by a linear function in the vicinity of
the linearization point.

• The random estimators involved in the function should have approximately Gaussian
distributions, which is often the case with high sample size, and are consistent, meaning
that they converge to their true values when the sample size increases.

• The random variables involved in the delta method should be independent.

• By the Central Limit Theorem the random parameter vector ŵ should have an approx-
imate Gaussian distribution:

?
Npŵ ´ w˚q Ñ N p0, Pw˚q as N Ñ 8.

The prediction error variance quantifies the uncertainty in the predictions of the function due
to the uncertainty in the model parameters. The prediction uncertainty can be stated by this
linearization technique as follows [28, 22, 10]:

fpx, ŵq « fpxn, w˚q ` ∇fpxn, w˚qT pŵ ´ w˚q. (4-40)

For ease of notation, the estimated model fpx, ŵq is denoted by f̂ . Given the last assumption
in 4-2-2 it holds by the delta method that

?
N

´

f̂n ´ fpxn, w˚q

¯

Ñ N p0,Vpf̂nqq as N Ñ 8. (4-41)

The expression for the prediction error can then be deduced for the n-th sample as follows:

Vpf̂nq « V
`

fpxn, w˚q ` ∇fpxn, w˚qT pŵ ´ w˚q
˘

“ V
`

fpxn, w˚q ` ∇fpxn, w˚qT ŵ ´ ∇fpxn, w˚qT w˚
˘

“ V
`

fpxn, w˚qT ŵ
˘

“ ∇fpxn, w˚qT Pw˚∇fpxn, w˚q.

(4-42)
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With finite amount of data, equation (4-42) can be approximated by replacing w˚ with ŵ.
By considering all samples at once, the following expression provides the Jacobian when
considering test data, which is denoted by a lower subscript p˚q:

g “

„

BfpX˚, wq

BvecpWp1qq

ˇ

ˇ

ˇ

w“ŵ

BfpX˚, wq

BvecpWp2qq

ˇ

ˇ

ˇ

w“ŵ
, . . . ,

BfpX˚, wq

BvecpWpDqq

ˇ

ˇ

ˇ

w“ŵ

ȷ

“

”

Ĉp1q
˚ Ĉp2q

˚ , . . . , ĈpDq
˚

ı

.

(4-43)

By substituting the approximated parameter covariance of equation (4-39) into equation
(4-42) and considering the Jacobian of equation (4-43), the prediction error variance can be
stated as:

Vpf̂q “ diag
`

σ̂2
egp2JT J ` HRpŵqq´1p2JT Jqp2JT J ` HRpŵqq´1gT

˘

,

where σ̂2
e “

1
N

N
ÿ

n“1
pyn ´ fnpxn, ŵqq

2 ,
(4-44)

and where Vpf̂q “ rVpf̂1q Vpf̂2q, . . . ,Vpf̂N qsT the prediction error variance vector correspond-
ing to the predictions and σ2

e is the observation noise variance. The diagonal in equation (4-44)
is taken as the diagonal elements of the covariance matrix represent the variances of the indi-
vidual predictions. Since J is of size N ˆ DM̂R and g is of size Ntest ˆ DM̂R, the bottleneck
in computing p2JT J`HRpŵqq´1p2JT Jqp2JT J`HRpŵqq´1q is the construction and inversion
of JT J which has a computational complexity of OppDM̂Rq2N ` pDM̂Rq3q. Multiplying
the parameter covariance with the gradient of the model with respect to the factor matrices
evaluated at the estimated parameters from the left and its transpose on the right in equation
(4-44) has a computational complexity of OppDM̂Rq2Ntestq.

4-2-3 Uncertainty intervals

It is important to explicitly indicate what the variance in the model outcome consists of
since the uncertainties in the predictions originate from different sources. Recall the general
case of the prediction error in equation (4-4). It is assumed that the aleatory uncertainty is
independent of the epistemic uncertainty. From equation (4-44), the variance of the estimated
test inputs Vpf˚q “ rVpf˚1q Vpf˚2q, . . . ,Vpf˚N qsT is a sum of the prediction error variance
and the observation noise variance, as such

Vpf˚q “ Vpf̂q ` σ2
e . (4-45)

Hence, the error originating from structural model errors is not included in the estimated
prediction error. It is important to distinguish two main uncertainty measures: confidence
intervals (CIs) and prediction intervals (PIs). CIs are concerned with the variance originating
from model errors. Hence, CIs try to quantify the uncertainty between the prediction fpxn, ŵq

and the underlying true function f˚. In this regard, the noise variance term σ2
e in equation

(4-45) is omitted. On the other hand, PIs are concerned with the variance originating from
both the model errors and the observation noise σ2

e . Hence, PIs try to quantify the uncertainty
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38 Uncertainty quantification: A frequentist approach

between the observations yn and the prediction fpxn, ŵq. Thus, CIs do not take into account
the inherent variability in the individual predictions, thereby, they will be narrower than PIs.
PIs in a classification task are only concerned with the model errors as this gives information
about the uncertainty associated with the model predictions. More specifically, the PIs in a
classification task give information on the range of values at which the classifier casts doubt
on its prediction with a certain confidence level. Thereby, the PIs in a classification task are
equal to the CIs in a regression task. Thereby, approximate 95% CIs for a regression task are
computed by:

fpX, wq ˘ 2
b

Vpf̂q. (4-46)

Then, approximate 95% PIs for a regression task are computed by:

fpX, wq ˘ 2
b

Vpf̂q ` σ2
e . (4-47)

It is important to emphasize that these approximate uncertainty intervals hold as it is assumed
that the noise variance is homoscedastic and Gaussian distributed. Confidence intervals for a
classification task can be directly be constructed based on the regression framework [7]. For
a classification task, confidence intervals are computed by:

sign
ˆ

fpX, wq ˘ 2
b

Vpf̂q

˙

. (4-48)
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Chapter 5

Uncertainty quantification: A Bayesian
approach

The machine learning prediction model that is considered in this research is the Canonical
Polyadic Decomposition (CPD) constrained kernel machine. The optimization problem that
is solved in order to fit this model to data is given in equation (3-15). However, such a
prediction model does not provide any uncertainty quantification by itself. The frequentist
approach to model uncertainty quantification was based on the delta method. The other
two methods that will quantify the uncertainty in the form of prediction intervals (PIs) will
be a Bayesian approach and the Single Bayesian Core (SBC) method which contains both
frequentist and Bayesian aspects.
In the frequentist framework, the coverage probability of an uncertainty interval refers to
the percentage of times that the interval will contain future observations for PIs and will
contain the underlying true function for confidence intervals (CIs) over an infinite number
of repeated sampling. It is a long-run property based on the concept of repeated sampling.
On the other hand, Bayesian prediction intervals do not have a direct uncertainty interval
coverage probability interpretation as frequentist intervals. In a Bayesian approach, prediction
intervals are constructed based on the posterior distribution, which represents the updated
belief about the parameters after incorporating the observed data and prior information. A
Bayesian prediction interval provides a probability distribution of possible values for the future
observation, and the interval represents the range of values with a certain probability. Despite
the fact that uncertainty intervals of a frequentist and Bayesian approach differ slightly in
their interpretation, it is still interesting to evaluate which constructed uncertainty intervals
actually deliver more accurate uncertainty measures on a test set.
Furthermore, it should be noted that the observation noise variance σ2

e is either processed as
a hyperparameter denoted by σ̄2

e or an estimator denoted by σ̂2
e .
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40 Uncertainty quantification: A Bayesian approach

5-1 Bayesian inference with stochastic cores

The Bayesian approach provides an inherently different way of approaching quantifying the
uncertainty compared to frequentist approach. Bayesian machine learning prediction models
provide a probabilistic framework to make predictions and quantify uncertainty in model
parameters and predictions. A Bayesian framework starts with prior beliefs about model
parameters and updates them based on observed data to obtain the posterior distribution,
which reflects the updated beliefs about the parameters.

5-1-1 Bayesian CP-ALS

In [34], Bayesian inference in performed for low-rank tensor approximation. Ultimately, this
leads to a probabilistic interpretation of ALS. The goal is to incorporate the same strategy in
order to provide a Bayesian framework of the Canonical Polyadic Decomposition Alternating
Linear Scheme (CP-ALS) algorithm. In order for this method to be accurate, the following
assumptions can be stated:

• The prior distribution of each parameter factor matrix is assumed to be Gaussian and
statistically independent.

• The observation noise σ2
e is assumed to be Gaussian, independent and identically dis-

tributed.

Modelling a prior First, a prior distribution for the model parameters is specified. The prior
distribution represents our initial beliefs about the parameters before observing any data. It
encapsulates any existing information, expert knowledge, or assumptions about the model.
In the case of the CP-ALS algorithm a multivariate Gaussian prior is assigned to every factor
matrix of the CPD. It is important to note that wpdq P RM̂Rˆ1 is the vectorization of the d-th
factor matrix vecpWpdqq. In mathematical terms the following prior is obtained:

ppwpdqq “ N pm0
d, P0

dq, d “ 1, . . . , D. (5-1)

Here, m0
d is the prior mean and P0

d is the prior covariance matrix. The factor matrices are
assumed to be statistically independent. Hence, the joint prior distribution is given as

pptwpdquq “ N

¨

˚

˚

˚

˚

˝

»

—

—

—

–

m0
1

m0
2

...
m0

D

fi

ffi

ffi

ffi

fl

,

»

—

—

—

—

–

P0
1 0 ¨ ¨ ¨ 0

0 P0
2

. . . ...
... . . . . . . 0
0 ¨ ¨ ¨ 0 P0

D

fi

ffi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‹

‚

. (5-2)

Here, twpdqu denotes the priors of all factor matrices. By the statistical independence as-
sumption, the joint prior distribution is written as follows:

pptwpdquq “ ppwp1qqppwp2qq . . . ppwpDqq. (5-3)
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5-1 Bayesian inference with stochastic cores 41

By the same independence, the prior on one factor matrix conditioned on all other factor
matrices is written as follows:

ppwpdqq|twpdquzdq “ ppwpdqq. (5-4)

Here, twpdquzd is the collection of all factor matrices except for the d-th.

Computing the posterior The goal is to find the joint posterior distribution pptwpdqu|yq by
means of Bayes’ rule. In order to do this, first the posterior distribution of one factor matrix
is stated, given the measurement and the other factor matrices. Therefore, the likelihood
function needs to be defined. The likelihood function represents the probability of observing
the data given the model and its parameters. It quantifies how well the model explains the
observed data for a specific set of parameter values. The likelihood is defined as:

ppy|twpdquq “ N pfpxn, wq, σ2
eIq

where fpxn, wq “

´

wpdq
¯T

zpxpdq
n q b

ˆ

D
˚

p“1,p‰d
zpxppq

n qT Wppq

˙

.
(5-5)

Bayes’ theorem is used to update the prior distribution to obtain the posterior distribution
of the model parameters. It combines the prior distribution, the likelihood function, and
the observed data. Given that the factor matrices are statistically independent and are
multilinear, the posterior distribution ppwpdq|twpdquzd, yq “ N pm`

d , P`
d q of the d-th factor

matrix given the observations and all other factor matrices can be stated by Bayes’ rule:

ppwpdq|twpdquzd, yq “
ppy|twpdquqppwpdqq

ppy|twpdquzdq
. (5-6)

This posterior is Gaussian since the likelihood ppy|twpdquq and the prior ppwpdqq are Gaussian
and have mean m`

d and covariance P`
d [42]:

m`
d “ Epwpdq|twpdquzd, yq “

„

pP0
dq´1 `

CT C
σ̄2

e

ȷ´1 „

CT y
σ̄2

e

` pP0
dq´1m0

d

ȷ

P`
d “ Vpwpdq|twpdquzd, yq “

„

pP0
dq´1 `

CT C
σ̄2

e

ȷ´1 (5-7)

where Epwpdq|twpdquzd denotes the posterior mean, Vpwpdq|twpdquzd denotes the posterior co-
variance and the matrix C is defined in equation (3-26).

Bayesian CP-ALS Given the update equations in equation (5-7), the goal is now to find the
joint posterior distribution of all factor matrices. Hence, pptwpdqu|yq is the posterior joint
distribution of all factor matrices given the observations y. Given the statistical independence
assumption given in equation (5-3) and by utilizing Bayes’ rule, the joint posterior can be
stated as:
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42 Uncertainty quantification: A Bayesian approach

pptvecpWpdqquq|yq “
ppy|twpdquqppwp1qqppwp2qq . . . ppwpDqq

ppyq
. (5-8)

Therefore, similar to the CP-ALS algorithm, a block coordinate descent algorithm can be
applied by conditioning the posterior distribution of one factor matrix on all other factor ma-
trices. This itterative algorithm will be called Bayesian CP-ALS which sequentially updates
the factor matrices by using the update equations in equation (5-7). The updating equations
incorporate a prior covariance and a prior mean of the d-th factor matrix. The Bayesian
CP-ALS algorithm is formulated in Appendix A-2.

5-1-2 The unscented algorithm

In the Bayesian CP-ALS algorithm the posterior distribution ppwpdqq|twpdquzd, yq for each
factor matrix is computed. The mean of each factor matrix can be used similar to the con-
ventional CP-ALS to make predictions. However, with regards to uncertainty quantification,
it is desirable to have an expression for the parameter covariance for the estimated parame-
ters in the CPD. This would give the most plausible and complete picture of the uncertainty
concerning the estimated parameters in the model. This is not provided by the Bayesian
CP-ALS algorithm as only the conditional mean and covariance of each separate factor ma-
trix are obtained. The estimate for the full parameter tensor W is computed by means of a
nonlinear function since the factor matrices together form the CPD. However, the low-rank
tensor estimate W is not Gaussian since the nonlinear function that computes the low-rank
tensor estimate is dependent on the posterior distributions of the factor matrices.

The Unscented Transform (UT) is a numerical technique used for propagating probability
distributions through nonlinear functions in order to approximate the distribution’s mean
mUT and covariance PUT [42, 34]. The UT approximates the transformation using a set
of carefully chosen sample points, known as sigma points, and their corresponding weights.
More specifically, the UT approximates the mean and covariance of a distribution that is a
nonlinear function of a known distribution which is the distribution h „ N pm, Pq, where the
mean m P RDM̂Rˆ1 and covariance P P RDM̂RˆDM̂R are build from the estimated means and
covariances of the factor matrices as follows:

h „ N pm, Pq “ N

¨

˚

˚

˚

˚

˝

»

—

—

—

–

m1
m2
...

mD

fi

ffi

ffi

ffi

fl

,

»

—

—

—

—

–

P1 0 ¨ ¨ ¨ 0

0 P2
. . . ...

... . . . . . . 0
0 ¨ ¨ ¨ 0 PD

fi

ffi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‹

‚

. (5-9)

Sigma points selection A set of sigma points around the mean of the given probability
distribution are selected as follows:

Rutger Smeenk Master of Science Thesis



5-1 Bayesian inference with stochastic cores 43

xp0q “ m,

xpiq “ m `

b

DM̂R ` τ
”?

P
ı

i
, i “ 1, . . . , DM̂R,

xpi`Mq “ m ´

b

DM̂R ` τ
”?

P
ı

i
, i “ 1, . . . , DM̂R.

(5-10)

Here,
?

P denotes the Cholesky factor in order that
?

P
?

PT
“ P and

“
?

P
‰

i
is the i-th

column of the matrix
?

P. Also, the scaling parameter can be defined as τ “ α2
UTpDM̂R `

κq ´ DM̂R, where α is a scaling parameter that determines the spread of the sigma points
and κ is another scaling parameter which ensures that the sigma points are symmetrically
placed around the mean. The scaling parameter α is often set to a small positive value to
avoid placing sigma points too close to the mean.

Propagation through nonlinear function Each sigma point is passed through the nonlin-
ear function, and the resulting transformed points are obtained. First, the sigma points
are reshaped into its corresponding factor matrices. Thus, for sigma points xp0q, xpiq and
xpi`Mq where i “ 1, . . . , DM̂R, the corresponding factor matrices have the form Wpdq

i where
d “ 1, . . . , D and i “ 0, . . . , DM̂R. Then, the sigma points are propagated through the
nonlinearity by reconstructing the vectorized low-rank tensor estimate as also described in
equation (2-29):

spiq “ vecpWiq “

˜

1
ä

d“D

Wpdq

i

¸

λ, i “ 0, . . . , 2DM̂R. (5-11)

where spiq are the i-th transformed sigma points.

Approximating the unscented mean and covariance The approximated mean mUT and
covariance mUT can be computed as follows:

mUT “

2M
ÿ

i“0
wm

i spiq

PUT “

2M
ÿ

i“0
wP

i

´

spiq ´ mUT

¯ ´

spiq ´ mUT

¯T
(5-12)

where wm
i and wP

i are the weighting factors which are defined similarly as in [34] as follows:

wm
0 “

τ

DM̂R ` τ
, wP

0 “ wm
0 ` p1 ´ α2 ` βq,

wm
i “ wm “ wP

i “ wP “
1

2pDM̂R ` τq
, i “ 1, . . . 2DM̂R.

(5-13)

In [34] the, α “ 0.001, κ “ 3 ´ M and β “ 2 are used as constants in the weighting factors.
These values were chosen as these were suggested by literature [16, 42]. Ultimately, the
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unscented mean and covariance are used to predict test inputs. Hence, a particular test input
z˚ “ zpxn˚q is mapped to a feature map given in equation (3-3) and the feature map for all
test inputs is stated as Z˚ “ ZpX˚q. The mean and prediction error variance can be stated
as follows:

Epf̂q “ Z˚mUT,

Vpf̂q “ diagpZ˚PUTZT
˚ q.

(5-14)

The unscented transform algorithm is given in Appendix A-3. The Bayesian method with the
unscented transform is expensive from both a storage complexity and computational com-
plexity. The unscented mean mUT P RMˆ1 and covariance PUT P RMˆM scale exponentially
in the number of features as M “ M̂D, rendering a storage complexity of OpM̂2Dq. Also, the
prediction error variance for all test inputs Vpf̂q is computed by multiplying the PUT from the
left with Z˚ and from the right with ZT

˚ and taking the diagonal of the resulting matrix. The
computational complexity for this is OpNMq which also scales exponentially in the number of
features since M “ M̂D. Furthermore, in the construction of PUT in the UT, the bottleneck
is a series of outer products of mUT that are required. This has a computational complexity
of OpDM̂RM2q, or similarly, OpDRM̂2D`1q. Therefore, the computational complexity can
quickly become large when the number of features increases. In addition, when the unscented
covariance is constructed, computing the prediction error variance Vpf̂q has a computational
complexity of OpM̂DNtestq.

5-2 Bayesian inference with single stochastic core

Another method of uncertainty quantification incorporates both Bayesian and frequentist
aspects. This method only regards the stochasticity of one of the computed factor matrices
and is based on [36]. This method is referred to as the SBC method. Firstly, the SBC
method computes the factor matrices by means of the conventional CP-ALS algorithm. Using
these factor matrices, a single Bayesian update step is performed. In this method, similar
assumptions as noted in 5-1-1 apply.

First, it is important to note that the C matrix can also be defined by the following notation
ZWzd. Here, Z denotes the training inputs that are mapped to the feature space and Wzd

denotes a matrix that is computed from all factor matrices except the d-th. This corresponds
to the terms that are present in the matrix C in equation (3-26) where ZpXpdqq is present for
all dimensions d “ 1, . . . , D and all factor matrices are present except for the d-th. The mean
and covariance of the posterior distribution for one of the factor matrices ppwpdq|twpdquzd, yq

can be defined as:

Epwpdq|twpdquzd, yq “

«

pP0
dq´1 `

WT
zdZT ZWzd

σ̄2
e

ff´1 «

WT
zdZT y
σ̄2

e

` pP0
dq´1m0

d

ff

,

Vpwpdq|twpdquzd, yq “

«

pP0
dq´1 `

WT
zdZT ZWzd

σ̄2
e

ff´1

.

(5-15)
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5-2 Bayesian inference with single stochastic core 45

This posterior distribution can be thought of as a posterior distribution for a projected model
since ZWzd is a projection of the basis functions into a smaller subspace. In order to project
the posterior distribution back to the original space, ppwpdq|twpdquzd, yq is projected back to
ppw|yq as follows:

Epw|yq “ WzdEpwpdq|twpdquzd, yq

Vpw|yq “ WzdVpwpdq|twpdquzd, yqWT
zd.

(5-16)

In practice, the the computation for the mean and covariance in equation (5-16) is not com-
puted explicitly. Instead, it is desired to compute the mean and variance for unseen test
inputs Z˚. Therefore, Z˚Wzd is computed efficiently by exploiting the structure of the ma-
trices, which results in a matrix of size Ntest ˆ M̂R. More specifically, Z˚Wzd is computed
by using equation (3-26) but instead of using the training inputs X, the test inputs X˚ are
adopted. Using the estimated parameters and the test matrix in the C matrix is denoted by
Ĉpdq

˚ . Therefore, the predictions Epf̂q and the total error variance Vpf̂q can be stated as:

Epf̂q “ z˚WzdEpwpdq|twpdquzd, yq “ Ĉpdq
˚

«

pP0
dq´1 `

ĈT Ĉ
σ̂2

e

ff´1 «

ĈT y
σ̂2

e

` pP0
dq´1m0

d

ff

,

Vpf̂q “ diag
´

Z˚WzdVpwpdq|twpdquzd, yqWT
zdZT

˚

¯

“ diag

¨

˝Ĉpdq
˚

«

pP0
dq´1 `

ĈT Ĉ
σ̂2

e

ff´1

ĈpdqT

˚

˛

‚.

(5-17)

The observation noise variance for the SBC method in an estimator σ̂2
e for regression tasks and

an hyperparameter σ̄2
e in classification tasks. In section 6-2, this will further be elaborated on.

The sole interest of the SBC method is the prediction error variance Vpf̂q in equation (5-17).
The prediction Epf̂q is not actually used in the SBC method as the obtained factor matrices
by the conventional CP-ALS algorithm are used for making predictions. The difference in the
computational complexity of the SBC method compared to the delta method depends on the
computation and inversion of ĈT Ĉ which has a computational complexity of OppM̂Rq2N `

pM̂Rq3q. Then, by multiplying with Ĉpdq
˚ from the left and ĈpdqT

˚ from the right, and taking
the diagonal of the resulting matrix, the prediction error variance for all test inputs Vpf̂q is
computed. Multiplying

”

pP0
dq´1 ` ĈT Ĉ

σ̂2
e

ı´1
with Ĉpdq

˚ from the left and its transpose from the
right exhibits a computational complexity of OppM̂Rq2Ntestq, which is less compared to the
delta method as Ĉpdq

˚ is effectively a single term of the gradient of the model with respect to
the factor matrices evaluated at the estimated parameters (equation (4-43)).
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Chapter 6

Quantitative assessment and
experiment results

The three uncertainty quantification methods that were investigated in this research are
the delta method, the Bayesian method and the Single Bayesian Core (SBC). In order to
compare the quality of the uncertainty intervals that can be constructed with each method,
an assessment measure is needed. This results section will focus on confidence intervals (CIs)
and prediction intervals (PIs). PIs are designed to provide a range of values in which a future
observation is likely to fall with a specified level of confidence. This target of individual
predictions is more intuitive and straightforward to interpret than estimating the uncertainty
between the prediction and the underlying true function, provided by CIs, in regression tasks.
This is because the underlying true function is unknown when quantifying the uncertainty of
the predictions for a dataset. Moreover, when assessing the quality of PIs, their accuracy can
be validated by comparing them to the actual outcomes of future observations for regression
experiments on actual datasets. It can be calculated how often test inputs fall within the PI
with the specified confidence level. This direct validation makes it easier to assess whether
the prediction intervals are providing reliable uncertainty estimates.

In the experiments, the goal is to assess and compare the quality of the constructed CIs and
PIs for the three different methods. The quality of the intervals is assessed from a correctness
and informativeness perspective. Correctness relates to the capability of accurateness of the
interval: does the interval approximately cover the underlying true function for CIs and the
test inputs for PIs about 95% of the time. Here, 95% is the chosen confidence level. Ideally,
the coverage of CIs and PIs should be close to the nominal confidence level. Furthermore,
the quality of the intervals is assessed from an informativeness perspective, where the width
is the point of focus.
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48 Quantitative assessment and experiment results

6-1 Performance metrics

6-1-1 Model prediction performance measure

It is important to acquire models with high predictive power, besides the need for valuable
and qualitative uncertainty quantification measures in the form of PIs. The model prediction
performance can be evaluated by means of the mean squared error (MSE) in a regression
task. Given either the prediction for the n-th test sample fpxn, ŵq or the mean predictive
distribution Epf̂nq for the n-th test sample, the MSE can be stated as (here stated for Epf̂nq):

MSE “
1
N

N
ÿ

n“1
pyn ´ Epf̂nqq. (6-1)

In a classification task, the model prediction performance can be evaluated by means of the
misclassification rate (MR). The MR can be stated as:

MR “
1
N

N
ÿ

n“1
pyn ´ signpEpf̂nqqq. (6-2)

Here, yn represents a variable that can take the values t´1, 1u as in this research binary
classification problems are considered.

6-1-2 CI and PI quality measure

This research employs a particular PI assessment measure that is used to assess the quality
of a PI. This assessment measure is also used in the K-fold cross-validation which is used for
hyperparameter tuning. The PI assessment criteria does not only provide a measure for the
amount of test inputs that fall within the PI, but also takes into account the width of the PI.

The core characteristic of a PI is the prediction interval coverage probability (PICP) which
is measured by counting the number of observations that are covered by the constructed PI.
The PICP is given as follows:

PICP “
1

Ntest

Ntest
ÿ

n“1
πn where πn “

#

1, yn P rLn, Uns

0, yn R rLn, Uns.
(6-3)

Here, Ntest are the number of samples in the test set and Ln and Un are the lower and
upper bound for the n-th constructed PI. Ln and Un are computed by Epf̂q ´ 2

b

Vpf̂q ` σ2
e

and Epf̂q ` 2
b

Vpf̂q ` σ2
e respectively. Reasonable PIs should give a value that is near or

larger than the confidence level with which the PIs are constructed. However, by increasingly
widening the PIs, the PICP will increase. Hence, the quality of PIs can not only rely on the
PICP as this would result in rewarding wide PIs that are in practice way to conservative and
do not provide a useful uncertainty information. In that regard, the width of PIs should be
taken into account and should be integrated in the uncertainty quantification measure. This
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is realized by the mean prediction Interval width (MPIW) which records to average width of
PIs and can be stated as:

MPIW “
1

Ntest

Ntest
ÿ

n“1
pUn ´ Lnq. (6-4)

The MPIW provides a quality measure for PIs and must be combined with PICP in order to
take both coverage probability and PI width into account. It is desired that this new measure
prioritizes PICP the most as this is the core feature of uncertainty quantification and it is very
undesirable when a relatively low PICP is obtained, as this would mean that the theoretically
obtained PIs are not correct. Incorporating both uncertainty quality assessment measures in
a single measure is realized by the coverage width-based criterion (CWC). The CWC can be
stated as follows:

CWC “ MPIW ` γpPICPqe´ηpPICP´µq (6-5)

where γpPICPq is defined as

γ “

#

0, PICP ě µ

1, PICP ă µ.
(6-6)

In this formulation, both η and µ are hyperparameters. These values have to be chosen in
such a way that a lower coverage probability is penalized desirably. The µ hyperparameter
can be set is set based on the confidence level α with which the constructed PIs are associated.
More specifically, this value can be set to 1 ´ α. When increasing η, the overall penalty of
PICP being lower than µ increases. The main principles that are desired are that the CWC
should be large when PICP ă µ regardless of the width of the PIs that is evaluated by MPIW
and that MPIW should be the dominant factor of the CWC when PICP ą µ.

The same metrics can be adopted for CIs as the PICP, MPIW and CWC for PIs. The only
difference will be to evaluate the confidence interval coverage probability (CICP) by means
of the true function f˚ instead of the test input yn which is done for the PICP in equation
(6-3). Thus, Ln and Un in equation (6-3) and (6-4) are computed by Epf̂nq ´ 2

b

Vpf̂nq

and Epf̂nq ` 2
b

Vpf̂nq for the n-th prediction respectively. The CICP can exactly similar
be stated for confidence intervals in regression tasks, only the evaluation is with respect to
the true underlying function instead of an observation. Therefore, this method can only be
accurately applied in synthetic experiments where the true underlying function is known.

In conclusion, the CWC assessment criteria compromises between informativeness and cor-
rectness with regards to PIs. Informativeness is enforced by the desire for PIs that are as
narrow as possible. However, the narrowness could lead to a decrease in correctness as ob-
servations in the test set fall outside the PIs resulting in a low quality PIs as the coverage
probability decreases. The CWC tries to compromise between the conflicting perspectives:
informativeness and correctness [22].

The CWC assessment measure can similarly stated for a classification task. Here, the CICP
measure for classification is used. The CICP for classification gives the proportion of rightly
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labelled test inputs to all test inputs. Only the predicted probabilities that fall outside the
confidence intervals are taken into account. It is calculated by counting the number of rightly
classified labels outside the CI (RI) and dividing it by the total number of test inputs, given
by both rightly classified labels outside the confidence interval (RI) and the wrongly classified
labels outside the confidence interval (WR).

CICP “
RI

RI ` WR (6-7)

Ideally, the CICP should closely match the nominal confidence level 1 ´ α. For example,
confidence intervals constructed with a 95% confidence level would ideally amount to 95% of
the test inputs being rightly labelled outside the confidence intervals. For classifiers that have
a very low classification rate, the CICP can be above 1 ´ α as there are few or zero wrongly
classified labels outside the CI.

Furthermore, the time it takes for the construction of the PIs and CIs, which is the uncertainty
interval construction execution time, is also recorded for all experiments. This is done in order
to provide a statement on which method could be preferably used when similar performance
is achieved in terms of correctness and informativeness.

6-2 Hyperparameters and K-fold cross-validation

6-2-1 Hyperparameters for regression and classification

In regression tasks, the delta method incorporates a single hyperparameter which is the reg-
ularization hyperparameter λreg. In the delta method for regression tasks, the noise variance
σ̂2

e is estimated, and is therefore is not a hyperparameter. The Bayesian method has two
hyperparameters which are the scaling parameter of the prior covariance ρ and the noise
variance σ̄2. The SBC method incorporates both λreg and ρ. The noise variance σ̂2

e is being
estimated in the SBC method in regression tasks. In contrast, classifications tasks adopt
an extra hyperparameter for the delta method and SBC method. This is because the noise
variance can not be estimated, which is done for regression tasks, because it is assumed that
the binary labels are strictly correct. However, setting the noise variance to zero would indi-
cate zero noise inherent to the data resulting in zero aleatory uncertainty which is generally
not plausible. In order to overcome this, the noise variance is set as a hyperparameter for
the delta and SBC method, which is specified by a bar on top of the noise variance σ̄2

e . For
the Bayesian method, the noise variance was already set as a hyperparameter. To keep the
number of hyperparameters limited, the regularization parameter for the SBC method is set
equal to the regularization parameter as in the delta method.

6-2-2 K-fold cross-validation

For all three methods, the hyperparameters are tuned by means of K-fold cross-validation.
The goal of hyperparameter tuning is to find the optimal values for hyperparameters that
result in the best performance of the model and the quality of the uncertainty quantification
measure on test data. K-fold cross-validation plays a crucial role in this process by providing
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a robust and reliable way to estimate the model’s performance for different hyperparameter
configurations. The basic idea behind K-fold cross-validation is to divide the dataset into
a training set and a test set. In turn, the test set is used to produce k subsets or folds of
approximately equal size. The model is then trained and evaluated k times, with each fold
serving as the test set once and the remaining k ´ 1 folds used as the training data. The two
evaluation criteria that are used are the mean squared error MSE and the coverage width-
based criterion CWC for a regression task and the MR and CWC for a classification task.
MSE and MR are employed in order to evaluate the fit of the model to the data and the
CWC is exploited in order to assess and evaluate the uncertainty quantification part e.i. the
PIs. The K-fold cross-validation procedure is given in Appendix A-1.

Cross-validation delta method For the three proposed uncertainty quantification methods
for the CPD constrained kernel machine, different hyperparameters control the learning pro-
cess. In the conventional CP-ALS with the delta method, the regularization hyperparameter
λreg controls the learning process of the parameters and the shape of the prediction intervals,
since this hyperparameter is included in the delta method. The noise variance σ2

e can be esti-
mated with the expression for σ̂2

e in equation (4-44). The following range for the regularization
hyperparameter is used in the K-fold cross-validation procedure for regression tasks:

λreg P r1´2, 1´3, 1´4, 1´5, 1´6, 1´7, 1´8s.

For classification tasks, the range for λreg is set similar. For the noise variance in classifi-
cation tasks the following range of hyperparameters is chosen in the K-fold cross-validation
procedure:

σ̄2
e P r0.01, 0.1, 0.5, 1, 10, 40, 80, 120s.

Cross-validation Bayesian method In the Bayesian method, two hyperparameters play a
part in the learning process. The first one being the ρ which is contained in the prior covariance
P0

d “ ρI for d “ 1, . . . , D. Hence, the prior for each factor matrix is set as a scaled identity
term. By setting ρ to a relatively higher value, a lower certainty is implied on the prior mean
and a lower value implies higher certainty on the prior mean. The second one being the noise
variance σ̄2. Since the two hyperparameters directly influence the learning process in the
Bayesian method, the shape of the PIs is also directly influenced. The following range for the
scaling prior hyperparameter of the prior is used in the K-fold cross-validation procedure for
regression tasks:

ρ P r1´4, 1´3, 1´2, 1´1, 1, 5, 10, 50, 100s.

Furthermore, the following range for the noise variance hyperparameter is used:

σ̄2
e P r0.001, 0.005, 0.01, 0.05, 0.1, 0.5s.

For classification tasks, the range of the scaling prior hyperparameter is the same as the in
regression with the Bayesian method and the noise variance in the K-fold cross-validation
procedure is set the same as the noise variance as in classification for with the delta method.
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Cross-validation SBC method In the SBC method, conventional CP-ALS is applied first,
in turn, one of the estimated factor matrices is used for a single stochastic factor matrix
update which constitutes this uncertainty quantification method. Hence, λreg and ρ are two
hyperparameters that can be controlled in the procedure. First, the the regularization hyper-
parameter λreg is controls the learning process of the conventional CP-ALS and afterwards ρ
and controls the Bayesian inference step for a single stochastic core. The noise variance σ2

can be estimated in regression tasks with the expression for σ̂2 in equation (4-44). The same
ranges for λreg, ρ and σ̄2

e are used in the cross-validation procedure as in the delta method
and Bayesian method respectively.

6-2-3 Choosing the hyperparameters

In each method the hyperparameters are chosen similarly. That is, the hyperparameters that
produce the minimum mean MSE are collected. More specifically, the hyperparameters that
produce MSE values that are up to a maximum percentage p higher than the minimum MSE
value produced by one set of hyperparameters. Then, across the selected hyperparameter
values, the value with the smallest CWC is chosen to be the hyperparameter in the regular
learning procedure. Similarly, this K-fold cross-validation technique is applied in a classifica-
tion task which employs MR and CWC.

6-2-4 Data preprocessing

In all simulations in this research the data is preprocessed. For regression and classification
tasks, input data preprocessing is the same. Input data is scaled to the range r0, 1s for each
feature in the following way:

Xpdq

scale “
Xpdq ´ minpXpdqq

maxpXpdqq ´ minpXpdqq
. (6-8)

Here, Xpdq

scale is the preprocessed input data for feature d. The corresponding output data y
is also preprocessed. In a regression task, the continuous output values are normalized as
follows,

yscale “
y ´ y

σy
(6-9)

where y and σy are the mean and variance of y respectively. In a classification task, the
binary output labels are set to be -1 and 1.

6-3 Illustrative comparison of uncertainty intervals

6-3-1 Uncertainty quantification on 1-D synthetic data

In this simulation, the three uncertainty quantification methods are tested on one-dimensional
(1-D) data. This is because, 1-D data allows for convenient visualization of the uncertainty
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intervals. The Canonical Polyadic Decomposition (CPD) is a tensor decomposition method
that aims to factorize multi-dimensional data arrays into a sum of simpler components. It
is particularly useful for capturing multi-modal relationships and interactions in data with
multiple modes or dimensions. Therefore, applying the convention or Bayesian Canonical
Polyadic Decomposition Alternating Linear Scheme (CP-ALS) algorithm on 1-D data is not
meaningful as the summation of rank-1 tensors in the CPD would amount to the summation
of vectors. Hence, the 1-D data is lifted to higher order data by utilizing quantized features.

Simulated data from the magic tyre formula [38] is being estimated by the CPD constrained
kernel machine for the 1-D synthetic data experiment. The magic tyre formula is used for the
analysis of tyre behavior in different driving situations. The magic tyre formula is stated as:

fpxn, wq “ w1 sin pw2 arctan pp1 ´ w3qxn ` w3{w4 arctanpw4xnqqq (6-10)

where xn is the measured wheel slip at time n and arbitrary values are chosen for the pa-
rameters to get a desired shape. However, the magic tire formula does not align with the
structural framework of the CPD kernel machine i.e. f˚ R M. Consequently, the actual
data that is used in this experiment is the data that estimates the simulation data of the
magic tyre formula as this data generated by the CPD constrained kernel machine and must
therefore belong to the model structure. Thus, this reference model has the property that it
practically belongs to the model structure f ref P M. Next, the estimation data ytruth, viewed
as the output from the reference model, is considered to be the ground truth in the following
simulation. Thus,

y “ f˚ ` e, e „ N p0, σ2Iq (6-11)

where the true function vector is f˚ “ rf˚px1q f˚px2q . . . f˚pxN qsT “ rf˚
1 f˚

2 . . . f˚
N sT and

e is a realization of random noise in which the samples are uncorrelated. The signal-to-noise
ratio (SNR) is given by:

SNRdB “ 10 log10
||f˚||2

||e||2
(6-12)

and is set to 20dB. The following settings are set exactly equal for the three methods: quan-
tized pure power polynomial features, normally distributed random initialization of the factor
matrices, random permutations in the data, M̂ “ 8, R “ 10, η “ 50, p “ 0.5, µ “ 95, the
number of sweeps is 10, all training data is used for cross-validation and the initialization of
the factor matrices in the CP-ALS and Bayesian CP-ALS is equal. Then, confidence intervals
capture the uncertainty arising from sampling variability or measurement error in the data,
which are the estimation errors, and the CIs are plotted in Figure 6-1 for all three methods.
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Figure 6-1: Regression with confidence intervals for the delta, Bayesian and SBC methods on
1-D synthetic data

In Figure 6-1, the confidence intervals should desirably bound the true underlying model
with about 95% of the time which is approximated by a 2Vpf̂q confidence interval. For all
three methods, this is criteria met. It can be observed that the delta and SBC intervals are
very similar and the Bayesian interval is significantly wider than the delta and SBC intervals.
Furthermore, the same experiment can be repeated for the construction of prediction intervals
for the three methods. Besides the estimation error, the prediction intervals incorporate the
estimated observation noise. The prediction intervals along with the prediction of each method
is plotted in figure 6-2.
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Figure 6-2: Regression with prediction intervals for the delta, Bayesian and SBC methods on
1-D synthetic data

It can be observed that for prediction intervals the difference between the Bayesian method
compared to the delta and SBC method is smaller. Since the standard deviation of the
estimated test inputs is defined as Vpf˚q “ Vpf̂q ` σ2

e , the smaller difference in this example
mainly due to the magnitude of the observation noise compared to the estimation error.

6-3-2 Uncertainty quantification on 1-D dataset

It is valuable to perform an experiment on actual 1-D dataset in order to visualize how the
different methods differ in their uncertainty intervals. The quality of confidence intervals is
hard to assess when constructed for predictions for an actual dataset as the underlying true
function is unknown. However, prediction intervals can be assessed due to their nature in
which test inputs should be bounded. In this regard, prediction intervals will be focused on
in regression tasks. Regression on a climate dataset is performed and prediction intervals
are constructed with each of the three methods. This climate dataset represents the global
land and surface temperature in July from 1850 till 2023 and was downloaded from NOAA
National Centers for Environmental information [37]. In this experiment, N “ 174 and D “ 1
and 70% from the data is allocated to training data and 30% is used for testing. The results
are plotted in figure 6-3.
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Figure 6-3: Regression with prediction intervals for the delta, Bayesian and SBC methods on
1-D climate dataset

Again, the delta method and SBC method show very similar prediction intervals and the
Bayesian method is somewhat more conservative compared to the delta and SBC method.
Besides prediction intervals on the 1-D climate dataset, it is interesting to see what is the
sole contribution of the prediction error variance Vpf̂q. Confidence intervals are only con-
cerned with the prediction error variance. Confidence intervals are constructed with the
delta, Bayesian and SBC method and are plotted in figure 6-4.
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(a) Delta
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(b) Bayesian
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Figure 6-4: Prediction with confidence intervals for the delta, Bayesian and SBC methods on
1-D climate dataset

6-3-3 Confidence intervals for 2-D classification tasks

Confidence intervals can directly be assessed on their quality in classification tasks. The
confidence intervals are interpreted as follows: every point within the two outer bands, the
classifier casts doubt with significance level α on its label. In other words, the classifier
is confident with confidence level 1 ´ α on its label. For a 2Vpf̂q confidence interval, this
significance level α is about 5%. It is important to emphasize how the PICP measure works
in a classification task. A maximum of significance level α of miss-classified test inputs of all
test inputs that fall outside the respective confidence interval would be allowed. Classifiers
with confidence intervals for the three methods are visualized for two classification datasets.
Firstly, the banana dataset (N “ 5300 and D “ 2) is used in figure 6-5.
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(a) Delta (b) Bayesian

(c) SBC

Figure 6-5: Classifier with confidence intervals for the delta, Bayesian and SBC methods on
2-D banana dataset. The dashed lines represent the 95% confidence interval on the classifier.
The solid line represents the classifier. The classifier casts doubt on the labels with confidence
level 95% between the solid line and the dashed lines. The classifier is certain on the labels with
confidence level 95% between the dashed lines.

From this visualization it can be observed that the three different methods produce somewhat
different CIs. More specifically, the CIs differ especially in their coverage of the labels and
their widths, thereby being more conservative or optimistic. A conservative CI is wider
than necessary to ensure a specified level of confidence. On the other hand, optimistic CIs
aim to provide a narrower range, allowing for higher precision but with the possible cost
of underestimating the uncertainty. From Figure 6-5, it can be observed that the Bayesian
method is most optimistic as it provides the widest intervals (most space and highest coverage
between the dashed lines) and as a result covers more labels than the delta and SBC method.
The delta method is most conservative as it provides the narrowest CIs (least space and least
coverage between dashed lines) resulting in less labels being covered compared to Bayesian
and SBC.

Another visualization of the confidence intervals is carried out where the ripley dataset (N “

1250 and D “ 2) is used. The results of this experiment are visualized in figure 6-6.
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(a) Delta (b) Bayesian

(c) SBC

Figure 6-6: Classifier with confidence intervals for the delta, Bayesian and SBC methods on 2-D
ripley dataset. The dashed lines represent the 95% confidence interval on the classifier. The solid
line represents the classifier. The classifier casts doubt on the labels with confidence level 95%
between the solid line and the dashed lines. The classifier is certain on the labels with confidence
level 95% between the dashed lines.

Similar to the banana dataset, it can be observed that the CI constructed with the delta
method is the narrowest (providing the least space between the dashed lines), yielding the
most conservative method. The Bayesian method provides the most optimistic intervals
(providing the most space between the dashed lines). The SBC method is less optimistic
than the Bayesian method and less conservative than the delta method.

6-4 Quantitative assessment of uncertainty quantification on syn-
thetic data

These experiments are conducted in order to quantitatively investigate which method provides
the most accurate uncertainty quantification in terms of correctness and informativeness. In
this experiments with synthetic data, the underlying true function is known. Therefore, CIs
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are focused on as they provide an uncertainty measure that captures the deviation of the
prediction relative to the true function which is caused by estimation error. In this regard,
the CICP and mean confidence Interval width (MCIW) metrics are used.

6-4-1 Experiment settings and hyperparameters

6-4-2 Synthetic 3-D data experiment

Similar to the 1-D synthetic data experiment, data is generated from which is it is known
that assumptions such as the noise variance being Gaussian distributed and independent hold.
Moreover, the assumption that the true system is in the model structure (f˚ P M), holds as
the underlying true function is generated to be data from a CPD constrained kernel machine.
This is done as follows: three factor matrices Wpdq, d “ 1, 2, 3 are constructed by randomly
sampling from a Gaussian distribution with mean zero and a standard deviation of 1. Each
factor matrix is assigned a size of M̂ ˆ R. Arbitrary input data is constructed creating a
regularly spaced grid of input values. Then, data is generated by

f “

´

ZpXp1qqT Wp1q ˚ ZpXp2qqT Wp2q ˚ ZpXp3qqT Wp3q
¯

1R

which is the prediction that is also provided in equation (3-16) for each sample individually
and the norms λ are equal to 1R as the norms are stored in the first factor matrix. Gaussian
distributed noise is added with a SNR of 10 dB. Ultimately, 4000 samples were artificially
constructed, where 70% was used for training and 30% was used for testing. 40% of the
training data was used in the K-fold cross-validation procedure.

Table 6-1: Results 3-D synthetic experiment for the delta method with 95% nominal confidence
level

Run Delta
CICP MCIW CWC MSE Time (s) λreg σ̂2

e

1 1 0.1014 0.1014 0.0969 0.2884 1´4 0.0997
2 0.9425 0.0900 1.5450 0.1048 0.2999 1´3 0.0994
3 0.9650 0.0924 0.0924 0.0963 0.3332 1´4 0.1004
4 0.9925 0.1015 0.1015 0.1029 0.3648 1´4 0.0991
5 0.9663 0.1014 0.1014 0.1077 0.3077 1´4 0.0986
6 0.9100 0.0926 7.4816 0.1057 0.3068 1´3 0.0991
7 0.9588 0.0911 0.0911 0.0946 0.3197 1´3 0.1006
8 0.9563 0.0908 0.0108 0.0912 0.3646 1´3 0.1009
9 0.9788 0.1181 0.1181 0.0944 0.3331 1´6 0.0097
10 0.9363 0.0895 2.0782 0.1042 0.3185 1´3 0.0995

Mean 0.9606 0.0969 1.1802 0.0999 0.3237 N/A 0.0997
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Table 6-2: Results 3-D synthetic experiment for the Bayesian method with 95% nominal confi-
dence level

Run Bayesian
CICP MCIW CWC MSE Time (s) ρ σ̄2

e

1 0.9925 0.1314 0.1314 0.0971 0.3638 0.1 0.1
2 0.9913 0.1300 0.1300 0.1049 0.2851 0.1 0.1
3 0.9713 0.1002 0.1002 0.0962 0.2766 0.01 0.1
4 0.9900 0.1286 0.1286 0.1035 0.2993 0.1 0.1
5 0.9850 0.1318 0.1318 0.1078 0.3165 0.1 0.1
6 0.9713 0.1416 0.1416 0.1058 0.2993 0.1 0.1
7 0.9800 0.1019 0.1019 0.0946 0.3020 0.01 0.1
8 0.9913 0.1469 0.1469 0.0915 0.2785 1 0.1
9 0.9988 0.1308 0.1308 0.0941 0.2791 0.1 0.1
10 0.9813 0.1257 0.1257 0.1039 0.2797 0.1 0.1

Mean 0.9853 0.1269 0.1269 0.0999 0.2980 N/A N/A

Table 6-3: Results 3-D synthetic experiment for the SBC method with 95% nominal confidence
level

Run SBC
CICP MCIW CWC MSE Time (s) λreg ρ σ̂2

e

1 0.9363 0.1035 2.0922 0.0969 0.2495 1´2 50 0.0992
2 0.9800 0.1015 0.1015 0.1048 0.4038 1´2 100 0.0985
3 0.9550 0.1024 0.1024 0.0963 0.2875 1´2 100 0.0995
4 0.9575 0.1033 0.1033 0.1029 0.2622 1´2 100 0.0987
5 0.9388 0.1025 1.8576 0.1077 0.2690 1´2 100 0.0982
6 0.9213 0.1037 4.3139 0.1057 0.2759 1´2 100 0.0981
7 0.9638 0.1006 0.1006 0.0946 0.3205 1´2 100 0.0997
8 0.9550 0.1047 0.1047 0.0912 0.2591 1´2 100 0.0999
9 0.9725 0.1043 0.1043 0.0944 0.2519 1´2 100 0.0997
10 0.9275 0.1014 3.1817 0.1042 0.2747 1´2 100 0.0988

Mean 0.9507 0.1028 1.2062 0.0999 0.2854 N/A N/A 0.0990

From these results it can be observed that the average CICP for both the delta method
(0.9606) and the SBC method (0.9505) matches well with the 95% nominal confidence level
across all runs. On the other hand, the CICP of the Bayesian method (0.9853) is on average
significantly larger with higher variability across the different runs. The coverage of the
Bayesian is essentially too great for what is asked by the nominal confidence level which
does not necessarily mean low quality CIs or PIs. However, higher coverage probability
does generally result in a higher uncertainty interval width based measure, rendering less
informative CIs and PIs. The MCIW is on average considerably higher for the Bayesian
method (0.1269) compared to the delta method (0.0969) and SBC method (0.1028), which are
very similar. As a supplementary point, the mean uncertainty interval construction execution
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time is 0.3237 for the delta method, 0.2980 for the Bayesian method and 0.2854 for the SBC
method.
In this experiment, where the assumptions of Gaussian noise, independence and the true
system being in the model structure, the delta method and SBC method show to be valuable
and convincing uncertainty quantification methods.

6-4-3 Synthetic 8-D data experiment

This experiment is performed in order to provide an extra experiment of the quality of CIs
on synthetically generated data. In this experiment, higher-dimensional synthetic data is
considered, therefore, the Bayesian method will not be involved in the experiment as the
unscented mean and covariance in the Bayesian method scale exponentially in their storage
complexities. Again, the experiment is set up such that the noise variance being Gaussian
distributed and being independent hold. Moreover, the assumption that the true system is in
the model structure (f˚ P M) is guaranteed by generated data directly stemming from the
CPD constrained kernel machine.
First, synthetic input data is generated arbitrarily: two exponential growth functions, three
exponential decay functions, a squared sine function, two quadratic functions, each with
different ranges and the same number of samples (N “ 2000), to construct a dataset with
8 features. Then, 8 random factor matrices are constructed, each with size M̂ ˆ R. where
M̂ “ 20 and R “ 10. Output data is generated with the input data and factor matrices. In
turn, Gaussian distributed noise is added to the output data with SNR “ 10. The constructed
dataset is partitioned in 80% training data and 20% test data. In the K-fold cross-validation
procedure 40% of the training data is used. Furthermore, the nominal confidence level is set
at 95% which is approximated by two standard deviations. The obtained results are stated
in Table 6-4 and 6-5.

Table 6-4: Results 8-D synthetic experiment for the delta method with 95% nominal confidence
level

Run Delta
CICP MCIW CWC MSE Time (s) λreg σ̂2

e

1 1 0.0938 0.0938 0.0983 1.0319 1´2 0.1001
2 0.9375 0.0989 1.9672 0.1048 1.0645 1´3 0.0980
3 0.9650 0.0920 0.0920 0.1042 1.0382 1´2 0.0982
4 0.9175 0.1010 5.1794 0.0995 1.0474 1´3 0.0992
5 0.9700 0.0991 0.0991 0.1038 1.1054 1´4 0.0983
6 0.9463 0.1003 1.3066 0.1028 1.1583 1´3 0.0987
7 0.8975 0.1144 13.9190 0.1015 1.0089 1´6 0.0986
8 0.9625 0.0945 0.0945 0.1132 1.0418 1´2 0.0963
9 0.9663 0.0914 0.0914 0.0984 1.2635 1´2 0.0998
10 0.9750 0.0944 0.0944 0.0982 1.4061 1´2 0.1000

Mean 0.9537 0.0980 2.2937 0.1025 1.1166 N/A 0.0987
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Table 6-5: Results 8-D synthetic experiment for the SBC method with 95% nominal confidence
level

Run SBC
CICP MCIW CWC MSE Time (s) λreg ρ σ̂2

e

1 0.9550 0.1155 0.1155 0.0983 0.7420 1´2 10 0.0996
2 0.9650 0.1300 0.1300 0.1048 0.8326 1´2 100 0.0977
3 0.9538 0.1337 0.1337 0.1042 0.8284 1´2 100 0.0975
4 0.9275 0.1291 3.2093 0.0995 0.9376 1´2 100 0.0988
5 0.9850 0.1285 0.1285 0.1038 0.7528 1´2 50 0.0979
6 0.9375 0.1383 2.0065 0.1028 0.9186 1´6 50 0.0980
7 0.8950 0.1462 15.7889 0.1015 1.0824 1´8 100 0.0980
8 0.9413 0.1307 1.6795 0.1132 1.3671 1´3 100 0.0956
9 0.9275 0.1332 3.2134 0.0984 1.2778 1´2 100 0.0991
10 0.9438 0.1403 1.5071 0.0982 0.7857 1´8 100 0.0993

Mean 0.9431 0.1326 2.7913 0.1025 0.9525 N/A N/A 0.0981

From these results can be concluded that both the delta method and the SBC method are
well able to approximate the 95% nominal confidence level as the average CICP is 0.9537 and
0.9431 for the delta and SBC method respectively. Thereby, from a correctness perspective,
both methods produce accurate CIs. Furthermore, the average MCIW is somewhat higher
for the SBC method (0.1326) compared to the delta method (0.0980). Therefore, the delta
method is able to construct CIs of slightly better quality from an informativeness perspective.
The results from the 3-D synthetic data experiment and the 8-D synthetic data experiment
are in agreement with each other. Additionally, the mean uncertainty interval construction
execution time is 1.1166 for the delta method and 0.9525 for the SBC method.

6-5 Quantitative assessment of uncertainty quantification on datasets

In this section, six experiments are conducted which each provide quantitative results. The
six experiments are collected from the UCI Machine Learning Repository. The experiments
consist of three regression tasks and three binary classification tasks. The exact datasets that
are used with the number of samples N and number of features D are listed in table 6-6.

Table 6-6: Dataset Information

Case Study Dataset Samples Attributes Task
1 Power plant 9568 4 Regression
2 Airfoil 1503 5 Regression
3 Concrete 1030 8 Regression
4 Ripley 1250 2 Classification
5 Banknote 1372 4 Classification
6 Raisin 900 7 Classification
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6-5-1 Experiment settings and hyperparameters

In the experiments, different hyperparameters are set to be equal for the delta, Bayesian
and SBC methods. The hyperparamter p is set at 0.5 for all experiments, which means
that in the K-fold cross-validation procedure only the set of hyperparameters is taken into
account that correspond to a MSE or MR that is 50% above the minimum MSE or MR that is
computed. In this way, the set of hyperparameters that produce high MSE or MR are omitted.
Furthermore, the confidence level µ “ 1 ´ α where α is the significance level, is set to 95%,
yielding α “ 0.05. Furthermore, the hyperparameter η, which determines the dominance of
the penalty term that arises when the PI coverage probability is less than µ, is set to 50.
A value of 50 strikes a certain balance between the penalty arising from the width of the
interval (MPIW) and PICP such that none of the penalty terms becomes way too dominant.
However, a value of 50 will still greatly penalize PIs which have a lower PICP than 50% In
the K-fold cross-validation process, 5 folds are used in each experiment. Furthermore, only
a certain percentage of the entire training set is used for cross-validation. This percentage
differs for each experiment and is chosen mainly on the size of the training dataset. The exact
choices for hyperparameters and other experiment settings are summarized in table 6-7.

Table 6-7: Experiment choices

Case Study M̂ R p µ η K Cross-validation(%) Feature
1 8 10 0.5 0.95 50 5 10 Polynomial
2 4 20 0.5 0.95 50 5 20 Polynomial
3 3 10 0.5 0.95 50 5 60 Polynomial
4 12 10 0.1 0.95 50 5 60 Polynomial
5 6 10 0.1 0.95 50 5 60 Polynomial
6 3 10 0.1 0.95 50 5 100 Polynomial

A notable choice for one of the hyperparameters in table 6-7 is the choice for the dimension
of the feature map M̂ . It would make more sense to increase M̂ as the number of features in
the dataset D increases. However, the Bayesian method becomes infeasible as the covariance
matrix PUT has size ID ˆ ID, which is the covariance matrix of the full weight tensor and
thereby it scales exponentially in the number of features. For example, for a dataset with 8
features, PUT has size 108 ˆ 108 which is not practically feasible for this research. For the
purpose of the analysis of the three methods, M̂ is kept low such that a comparison with the
Bayesian method can still be made.

6-5-2 Results on datasets

In table 6-8, the best CWC (CWCBest) of the 10 runs for each experiment and for each
method is noted. Furthermore, CWCMed and CWCSD are the median CWC and the standard
deviation of the CWC values respectively.
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Table 6-8: CWC metrics for each experiment

Case Delta Bayesian SBC

Study CWCBest CWCMed CWCSD CWCBest CWCMed CWCSD CWCBest CWCMed CWCSD

1 0.9276 0.9304 0.0043 0.9042 1.2665 0.4324 0.9385 0.9492 0.0045
2 1.6513 3.2381 2.6188 2.8639 2.8746 0.0766 1.8613 3.2622 1.7547
3 1.3983 4.6618 8.2224 1.3967 2.9126 0.4821 1.3896 2.9840 2.1301
4 1.0607 1.3735 0.5692 0.6575 1.9477 2.5997 0.6316 1.4674 1.7751
5 0.0674 0.0720 0.0037 0.0925 0.0978 0.0097 0.0408 0.0471 0.0071
6 1.7480 3.4022 3.8523 1.1585 4.1216 3.2383 1.2740 1.6873 2.1514

It can be observed from Table 6-8 that for regression tasks (experiment 1-3), each method
obtains the best CWCBest once. Furthermore, delta method attains the lowest CWCMedian
and CWCSD once and the Bayesian method two times. Also, the results from the delta
method are considerably similar to the results of the SBC method. For the classification
tasks (experiment 4-6), the delta and SBC method method perform best on almost all CWC
metrics for each experiment. Most notable is the SBC method which attains the lowest
CWCBest and CWCMedian twice.

In order to draw conclusions on the proposed methods, it needs to be investigated how the
CWC metrics are composed. The PICP, MPIW, CWC, MSE or MR, time of PI construction
and the hyperparameters for all runs, experiments and methods are presented in Appendix
B.

Power plant In this regression experiment, a few important elements can be observed. The
Bayesian method provides the most competitive CWCBest measure, whereas the delta method
provides the best CWCMed measure. By analyzing the Tables in B-1, it can be observed that
the average empirical PICP, which is 0.9631, 0.9731 and 0.9639 for the delta, Bayesian and
SBC method respectively, matches well with the nominal confidence level of 95 %. This is
because, the average PICP is slightly greater than the nominal confidence level which causes
the CWC to be equal to the MPIW, as the PIs are not penalized for their coverage probability
when PICP ą 1´α. With regards to the MPIW, the methods perform equally well, however,
the MPIW is somewhat more variable across the different runs for the Bayesian method which
is not desirable. The mean MSE of the Bayesian method is only slightly higher compared
to delta and SBC. As a supplementary point, the mean uncertainty interval construction
execution time is 1.1832 for the delta method, 2.0965 for the Bayesian method and 0.9396 for
the SBC method.

Airfoil In this regression experiment, the delta method provides the most competitive CWCBest
measure and the Bayesian method has the best CWCMed and CWCSD measure. Further-
more, the difference between the PICP of the delta method and SBC method compared to
the Bayesian method is significant. The delta method and SBC method produce competitive
PICP measures as the average PICP, 0.9404 and 0.9430 for the delta and SBC method re-
spectively, is close the nominal confidence level. The methods are also similar in their MPIW
measure since the average MPIW of the delta method is 1.8043 and the PIs constructed with
the SBC method are only slightly wider (1.8696). On the other hand, the PIs constructed by
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the Bayesian method are considerably wider resulting in higher average PICP (0.9834) than
the nominal confidence level. In this regard, the Bayesian method constructs conservative
PIs. Also, the MSE for the Bayesian method is slightly higher compared to the other meth-
ods. The meanMSE of the Bayesian method is slightly higher compared to delta and SBC.
In addition, the mean uncertainty interval construction execution time is 0.2772 for the delta
method, 1.0241 for the Bayesian method and 0.1834 for the SBC method.

Concrete In this regression experiment, the SBC method provides the most competitive
CWCBest measure and the Bayesian method has the best CWCMed and CWCSD measure.
Furthermore, the average PICP for the delta method and SBC method is slightly less then
the nominal confidence level of 95 % as the average PICP is 0.9311 and 0.9408 for the delta and
SBC method respectively. Thereby, both methods construct prediction intervals that are on
average slightly too optimistic. On the other hand, the Bayesian PICP are significantly higher
than the nominal confidence level (0.9903). These observations also explain the difference
of the MPIW measure, where the MPIW is significantly greater for the Bayesian method
(2.7664) compared to the average MPIW for the delta method (1.4070) and SBC method
(1.4653). As a result, the Bayesian method is considerably less informative. The meanMSE
of the Bayesian method is slightly higher compared to delta and SBC. In addition, the mean
uncertainty interval construction execution time is 0.0896 for the delta method, 1.3130 for
the Bayesian method and 0.0710 for the SBC method.

For the three regression experiments, it is not possible to plot the predictions with uncertainty
intervals as the datasets contain higher dimensional data (D ą 3). However, the predictions
can be ordered and plotted with their corresponding uncertainty interval. In Figure 6-7,
predictions (full middle lines) are sorted and plotted with PIs (dots) for the three methods in
a single plot for run 1 of the three regression experiments. This Figure gives a visualization
of how the width of the constructed PIs of the three different methods relate to each other.
It can be observed that the Bayesian PIs are generally the widest and the width of the delta
and SBC constructed PIs are notably similar.
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Figure 6-7: Sorted predictions (middle full line) and corresponding prediction intervals (dots
below and above middle line) for run number 1 of the Power plant, Airfoil and Concrete experi-
ments, where blue corresponds to the delta method, green is the Bayesian method and red is the
SBC method. The middle blue line aligns with the red line as the predictions of delta and SBC
equal.

Ripley In this classification experiment, the SBC method provides the most competitive
CWCBest measure and the delta method has the best CWCMed and CWCSD measure. Fur-
thermore, all three methods are able to produce confidence intervals that on average approxi-
mate the nominal confidence level of 95%, which can be concluded by the average CICP which
are 0.9729, 0.9566 and 0.9569 for the delta, Bayesian and SBC method respectively. There-
fore, form a correctness respective, the three methods all produce high quality CIs. From
an informativeness perspective, the average MCIW is smallest for the SBC method (1.1262),
followed by the delta method (1.3404) and Bayesian method (1.8457). In this regard, the
SBC method performs best when taking into account both correctness and informativeness of
the constructed CIs. As a supplementary point, the mean uncertainty interval construction
execution time is 0.0831 for the delta method, 0.0831 for the Bayesian method and 0.0833 for
the SBC method.
Similar to regression tasks, the predictions before taking the signp¨q can be sorted and plotted
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with their corresponding PI. In the plot, the middle full line represents the sorted prediction
of the classifier. The small dots above and below the middle full line are the corresponding
prediction intervals. The horizontal blue dashed line at 0 represents the decision boundary.
In the red region between the two big dots, the classifier casts doubt on the corresponding
label with a confidence level 95%. Likewise, in the green region outside the big dots, the
classifier is certain on the corresponding label with a confidence level of 95%. This type of
plot is constructed for the Ripley, Banknote and Raisin experiments in Figure 6-8, Figure 6-9
and Figure 6-10 respectively.
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Figure 6-8: Sorted predictions (middle full line) and corresponding prediction intervals (dots
below and above middle line) for run number 1 of the Ripley experiment, the classifier casts
doubt with significance level of 5% on the labels of prediction lying between the two big dots (in
red) and is confident with significance level of 5% on the labels of the predictions outside the big
dots (in green).

Banknote In this classification experiment, the SBC method provides the most competitive
CWCBest and CWCMed measure and the delta method has the best CWCSD. Furthermore,
for all three methods the PICP is equal to 1 and the MR is equal to 0. This means that
the algorithm was perfectly able to classify all inputs in the test set. In this regard, it is
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interesting to see which methods scores best on informativeness as the correctness of the PIs
is equal. The average MPIW is narrowest for the SBC method (0.0490), followed by the
delta method (0.0728) and the Bayesian method (0.1021). Hence, the SBC method would
produce the highest quality PIs in such a scenario. In addition, the mean uncertainty interval
construction execution time is 0.0800 for the delta method, 0.1580 for the Bayesian method
and 0.0707 for the SBC method.
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Figure 6-9: Sorted predictions (middle full line) and corresponding prediction intervals (dots
below and above middle line) for run number 1 of the Banknote experiment, the classifier casts
doubt with significance level of 5% on the labels of prediction lying between the two big dots (in
red) and is confident with significance level of 5% on the labels of the predictions outside the big
dots (in green).

Raisin For the final classification experiment, the Bayesian method provides the most com-
petitive CWCBest and the SBCmethod has the best CWCMed and CWCSD. Furthermore, the
delta method and SBC method are well able to approximate the nominal confidence level as
the average CICP of the delta method (0.9542) and the SBC method (0.9698) just above the
nominal confidence level of 95%. The Bayesian method also performs well on correctness but
the average CICP (0.9361) is slightly lower than the nominal confidence level. In terms of
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informativeness, the Bayesian method and the SBC method produce CIs that are on average
about the same width since the average MCIW is 0.9361 and 0.9698 for the Bayesian and
SBC method respectively. The average MCIW of the delta method is considerably wider
(2.8071). Furthermore, When observing the MCIW for each method, it is noticeable that
the measure across the different runs varies considerably. This is especially noticeable for
the delta method. In addition, the mean uncertainty interval construction execution time is
0.0616 for the delta method, 0.3305 for the Bayesian method and 0.0572 for the SBC method.
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Figure 6-10: Sorted predictions (middle full line) and corresponding prediction intervals (dots
below and above middle line) for run number 1 of the Raisin experiment, the classifier casts doubt
with significance level of 5% on the labels of prediction lying between the two big dots (in red)
and is confident with significance level of 5% on the labels of the predictions outside the big dots
(in green).

Based on the observed results, the following conclusions on the quality of the uncertainty
quantification methods can be distilled:

1. The delta, Bayesian and SBC method provide reasonably accurate uncertainty
quantification in terms of correctness and informativeness. The delta method
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and SBC method provide the highest quality uncertainty intervals which are
remarkably similar.

2. Between the delta end SBC method, the delta method is slightly more infor-
mative in regression tasks compared to the SBC method. On the other hand,
the SBC method is slightly more informative in classification tasks.

3. The time it takes to construct uncertainty intervals is generally the highest for
the Bayesian method, followed by the delt and SBC method. This difference
is amplified when the number of features increases.

4. The Bayesian uncertainty intervals are in general relatively conservative.
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Chapter 7

Conclusion and Discussion

In this section the conclusions on the results will be summarized and a discussion will be pro-
vided with respect to the utilized methods and the obtained results. Finally, recommendations
for future research in will be provided.

A caveat in the proposed delta method is the approximation of the Hessian of the regular-
ization term. The Fisher information matrix is used to estimate the uncertainties in the
parameter estimates expressed as the parameter covariance matrix. The Hessian matrix mea-
sures how sensitive the model’s likelihood function is to changes in the model parameters.
Besides uncertainties in the parameters by the data-fitting term, the regularization term also
influences the uncertainties of parameter estimates. Therefore, inclusion of the Hessian of the
regularization term is essential for a more accurate estimation of the parameter uncertainties
in the presence of regularization. Not doing so may lead to overly optimistic parameter uncer-
tainties, as it would not account for the regularization’s influence on the curvature of the cost
function. Ensuring that the parameter covariance matrix properly reflects the combined in-
fluence of the data-fitting term and regularization leads to more reliable parameter estimates.
In this research, as the analytical derivation of the Hessian of the regularization term can
become a cumbersome task, an approximation is used by considering only the block diagonal
terms. It is assumed in this research that the effect of this approximation is insignificant.
Moreover, the cross-validation procedure can determine the influence of the regularization
term by the scaling regularization hyperparameter λreg, therefore, the precise magnitude of
the Hessian of the regularization term is inconsequential.

Furthermore, a major drawback drawback can be identified for the Bayesian method. This
method adopts the unscented transform which produces an approximate mean and covariance
of the full parameter tensor. Thereby, this methods scales exponentially in the number of
features of the data, rendering a storage complexity of OpM̂2Dq. In this way, the Bayesian
method, which adopts the Bayesian Canonical Polyadic Decomposition Alternating Linear
Scheme (CP-ALS) algorithm, is inapplicable for datasets with more features. This issue can
be circumvented by modelling the unscented mean and covariance as a tensor network. This is
done in [34] for the Tensor Train where a rounding procedure takes place when the propagated
sigma points are added in Tensor Train format which increases the ranks of the Tensor Train.
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However, such a procedure, performed by the TT-rounding algorithm, does not exists for the
CPD, thereby rendering this method infeasible for higher-dimensional data.

This research serves as a comparison between uncertainty quantification methods for tensor
network constrained kernel machine, focusing on the CPD constrained kernel machine. The
validation on both actual datasets and synthetic data, where the experiments are set up in
a way that assumptions governing the uncertainty quantification methods hold, has been
important. In this way, the uncertainty quantification methods are assessed on their quality
performance in problems where data may violate assumptions, in the case of real datasets, or
certainly condemn assumptions in the case of synthetic experiments.

7-1 Discussion on the uncertainty quantification performance on
synthetic experiments

The synthetic experiments show favorable results. These experiments were constructed such
that the assumptions governing the different methods were guaranteed to hold. For the pa-
rameter covariance, where the assumptions are listed in 4-2-1 and 4-2-2, it is known that
when such assumptions do not hold, this can generate low-quality uncertainty quantifica-
tion results. For example, heteroscedasticity of the noise variance can generate low-quality
confidence intervals (CIs) [22].

In terms of correctness, which is connected to the coverage probability of the CI (CICP),
the delta and Single Bayesian Core (SBC) method are well able to approximate the nominal
confidence level very closely. On the other hand, the Bayesian method slightly overestimates
the confidence interval coverage probability (CICP) by covering more test points. This does
not necessarily mean that the constructed CIs are faulty, but the overestimation generally
leads to wider uncertainty intervals, which can be classified as conservative. With regards
to informativeness, the delta and SBC method have significantly narrower CIs than the CIs
constructed by the Bayesian method.

Deviations of the Bayesian CIs compared to the delta and SBC constructed CIs mainly result
from two aspects. The first aspect is the way that the factor matrices are computed. The
Bayesian method takes into account a prior mean and covariance on each factor factor matrix,
in addition, the noise variance of the aleatory error term is taken into account as a hyper-
parameter. Bayesian priors encapsulate beliefs or uncertainty about parameters, whereas in
the conventional CP-ALS that is applied in the frequentist delta and SBC method a regu-
larization terms is incorporated that is conceptually similar to a prior in Bayesian statistics.
The concept of a prior in Bayesian statistics has a broader meaning, encompassing beliefs or
information about parameters beyond regularization.

The second aspect is the way that the prediction error variance is computed, which is differ-
ent for all three methods. In the delta method, the prediction error variance is constructed
based on an approximation of the parameter covariance of its parameter estimates which is
computed with the inverse of the Fisher information matrix. This is because a nonlinear least
squares problem is solved where the objective is to minimize the sum of squared residuals,
which is analogous to maximizing the likelihood function. The Fisher information quantifies
how much information the observed data contains about the parameters. The Fisher Infor-
mation matrix is directly related to the second derivative of the log-likelihood function with
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respect to the parameters, which is essentially the Hessian matrix of the log-likelihood. On
the other hand, the Bayesian method computes the unscented covariance with the conditional
parameter covariance of each factor matrix and makes predictions by averaging over all pos-
sible parameter values, weighted by the unscented covariance. The SBC only treats a single
factor matrix as having a probability distribution and makes predictions by first applying a
projection to the posterior distribution of the stochastic factor matrix.

In the 8-D synthetic data experiment where only the delta and SBC methods are compared.
The mean confidence Interval width (MCIW) is slightly narrower for the delta method com-
pared to the SBC method, rendering the delta method most informative as both methods
perform well on correctness by approximating the nominal confidence level closely. Overall,
the different methods to construct uncertainty intervals are based on different philosophical
foundations: frequentist, Bayesian, or a mix of both. However, the methods yield relatively
similar intervals with the Bayesian method being slightly more conservative compared to the
delta and SBC method.

7-2 Discussion on the uncertainty quantification performance on
datasets

The results of experiments on actual datasets are somewhat less straightforward to draw
conclusions upon. A first remark is that the chosen hyperparameters by the cross-validation
procedure can differ a lot across different runs for some experiments. Especially the scaling
hyperparameter for the prior covariance in the Bayesian and SBC method deviates across the
different runs. Hence, both relatively certain and uncertain prior covariance distributions can
lead to similar results in terms of prediction interval coverage probability (PICP) and mean
prediction Interval width (MPIW). Another remark is concerned with the mean squared
error (MSE) and misclassification rate (MR). The MSE and MR are equal for the delta
and SBC method as both methods adopt the conventional CP-ALS algorithm. On the other
hand, the Bayesian method adopts the Bayesian CP-ALS algorithm which produces a mean
and covariance for a factor matrix as opposed to fixed point estimates for the conventional
CP-ALS algorithm. The MSE and MR incurred with predictions from the delta and SBC
compared to the Bayesian method exhibit no significant differences.

On the three regression task experiments, by some small margin of error for experiment 2
and 3, the delta method and SBC method are able to very closely match with the nominal
confidence level. The Bayesian method is also able to cover at least 95% of the test inputs
on average. From an informativeness perspective, it can be concluded that the Bayesian
method often produces wider prediction intervals (PIs), but does not necessarily obtain a
much better PICP while doing so. The delta method and SBC would be preferred over the
Bayesian method in regression tasks do to their competitive performance mainly from an
informativeness point of view. When comparing the constructed uncertainty intervals of the
delta and SBC method, the SBC method provides slightly more informative intervals in the
regression experiments.

On the three classification experiments, all three methods perform well from a correctness
point of view. This is because the average CICP closely matches the nominal confidence level
across all experiments. In the Banknote experiment the CICP is effectively equal to 1 as the
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misclassification rate is zero. From an informative perspective, the Bayesian method provides
(except for experiment 6) the least informative CIs as the average CICP is in general highest
for the Bayesian method. This can also be visually observed from the 2-D classification plots
on the Banana and Ripley dataset. However, a user might still use the Bayesian intervals
when relatively conservative intervals are important for a specific application. Similar to the
regression experiments, the uncertainty intervals for the delta and SBC method are remark-
ably similar but differ in that the delta method provides slightly more informative intervals
in the classification experiments compared to the SBC method.

The most important aspect in this research is the correctness and the informativeness of the
constructed uncertainty measures. However, an additional time for the construction of the
uncertainty measure could also be of importance for a user the proposed methods. Moreover,
the computation time of uncertainty intervals could be decisive factor when the performance
of two methods is relatively similar. The time for CI and PI construction takes longest
in almost all experiments for the Bayesian method, followed by the delta method and the
SBC method is generally the fastest. These observation confirm the theoretically stated
computational complexity of the uncertainty interval construction execution time. Namely,
the computational complexity for construction of the covariance, when the derivatives of the
model with respect to each factor matrix are already obtained, is OppDM̂Rq2N ` pDM̂Rq3q

for the delta method and OppM̂Rq2N `pM̂Rq3q for the SBC method. In addition, computing
the prediction error variance after obtaining the parameter covariance has a computational
complexity of OppDM̂Rq2Ntestq for the delta method ans OppM̂Rq2Ntestq for the SBC method.
As the difference in the complexities remains to be the linear D term, the difference in
the computational time between the methods is little. However, the Bayesian method has
computational complexity of at least OpDRM̂2D`1q for the construction of the unscented
covariance and OpM̂DNtestq for making predictions.

In practice, the computation time of the construction of the uncertainty intervals should
not be the only factor with regards to the overall computation time. This is because, the
K-fold cross-validation procedure is not taken into account in the PI construction time as
the amount of time for this procedure is dependent on the amount of folds and the number
of hyperparameters that participates in the procedure. From this perspective, the Bayesian
method ans SBC method both incorporate two hyperparameters in the K-fold cross-validation
procedure for regression tasks, whereas the delta method uses only one. In addition, the
number different values for a hyperparameter that participate in the K-fold cross-validation
procedure has a significant effect.

An exact comparison between the uncertainty quantification methods for real datasets would
be more explanatory and sophisticated when more information about the particular dataset
is gathered. As such, the proposed methods could be tailored in order to meet the specific
assumptions brought by the dataset. For example, normally distributed and homoscedastic
observation noise are characteristics of the noise incorporated in the data that are assumed by
all three proposed methods. Violating these assumptions by the data could lead to inaccurate
results for the derived uncertainty of the predictions. For example, it could be the case that
assumptions the observation noise inherent to data are violated for the delta method in
experiment 6 as the width of the intervals varies considerably across different runs. In such a
situation, the uncertainty quantification method does not serve as a rigorous experiment in
terms of an accurate comparative analysis with the other methods.
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Furthermore, it is unknown to what degree there are structural model errors in the dataset
experiments. Structural model errors can, for example, arise when there is significant model
misspecification, in the way that the model is unable to fully explain the data. This can be
the case when the true underlying function that describes the data is not part of the model
structure. It has been explained in this research that when there is significant structural
model error, the constructed confidence intervals and prediction intervals are inherently in-
accurate and there is no way to circumvent this issue. It is not appropriate to validate on
the performance of the obtained uncertainty quantification results on actual datasets as it
is unknown to what degree the errors in the prediction for real datasets possess structural
model error.

7-3 Conclusion

In this research, uncertainty quantification for a Canonical Polyadic Decomposition (CPD)
constrained kernel machine model is examined. The particular CPD constrained kernel ma-
chine model studied in this research employs a product feature map with polynomial features.
Uncertainty quantification in this research is concerned with the uncertainty in the predic-
tions which is encapsulated by the prediction error variance. The prediction error variance is
treated as estimation error which is an epistemic source of error as opposed to the observation
noise variance which is a source of aleatory error. Three different uncertainty quantification
methods are proposed and assessed on their ability to provide qualitative uncertainty quan-
tification measures. The main research in this research is:

How to provide uncertainty quantification for tensor network constrained
kernel machine, focusing on the CPD constrained kernel machine, and
which of the investigated methods is most accurate in terms of correct-
ness and informativeness?

The three methods that have been extensively studied in this research are: the delta method,
the Bayesian method and the Single Bayesian Core (SBC) method. The delta method is an
inherently frequentist method that constructs the inverse of the Fisher information in order to
provide a covariance matrix for the estimated model parameters which is done by computing
the Jacobian of the model with respect to each factor matrix evaluated at the estimated
factor matrices by the CP-ALS algorithm. In turn, the gradient vector of the test model with
respect to each factor matrix is computed and evaluated at the estimated factor matrices
in order to provide a way of quantifying the uncertainty in the prediction of the model by
propagating the parameter covariance to the uncertainty in the output of the model. On
the other hand, the Bayesian model is based on a different philosophy where parameters are
viewed as random variables with probability distributions. The Bayesian CP-ALS algorithm
incorporates a prior mean and covariance distribution for each factor matrix and computes
the posterior mean and covariance of each factor matrix. The SBC method combines aspects
from the delta and Bayesian method, as the conventional CP-ALS algorithm is adopted and
uncertainty is quantified by treating a single factor matrix as a Bayesian factor matrix.

The quality of the three uncertainty quantification methods is assessed on two aspects: cor-
rectness and informativeness. Correctness is assessed by evaluating the ability of constructed
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confidence intervals and prediction intervals to cover the underlying true function and the
test inputs respectively. This coverage should approximate the chosen nominal confidence
level. From an informativeness perspective, the constructed uncertainty intervals should be
as narrow as possible, while maintaining accurate coverage.

Experiments have been performed on both synthetically generated data and real datasets. It
is assumed that the structural model error is insignificant, as structural model error would
inherently produce inaccurate uncertainty quantification results. In general, all three meth-
ods provide accurate uncertainty intervals in terms of correctness. The Bayesian intervals
often provide higher coverage than the nominal confidence level which directly reflects on the
informative aspect as the intervals are generally wider than the delta and SBC intervals. A
major drawback of the Bayesian method is its lack of scalability as the size of the unscented
mean and covariance in the Bayesian method scales exponentially. Furthermore, uncertainty
intervals of the delta method are remarkably similar to uncertainty intervals constructed
with the SBC method. Comparing the two, the SBC intervals are on average slightly wider
in regression tasks, whereas the delta intervals are slightly wider in classification tasks.

All three methods could readily be applied in order to provide valuable uncertainty quan-
tification for the CPD constrained kernel machine. The Bayesian method is in general more
conservative than the delta and SBC method. Moreover, the delta and SBC method quantify
the error in the predictions relatively similar in terms of correctness and informativeness.

7-4 Future research

This research has a particular scope on the goal of providing valuable uncertainty quantifi-
cation for tensor network constrained kernel machines. That is, particular choices have been
made in in order to narrow down the problem. For example, the tensor network that is con-
sidered is the CPD, however, it would be interesting to examine how the proposed uncertainty
quantification methods perform when adopting other tensor networks. This would especially
be interesting for tensor networks for which a rounding procedure exists when adding ten-
sor networks, for example the TT-rounding algorithm for Tensor Trains. This is because,
a rounding procedure can circumvent the exponential increase in the unscented mean and
covariance constructed in the the Unscented Transform (UT). In this way, a more compre-
hensive comparative analysis can be provided for the performance of the Bayesian method.
Besides the Bayesian method, it would be interesting to examine the performance of the delta
method and SBC method when adopting other tensor networks.

In this research, the Kernel Ridge Regression (KKR) is studied and polynomial features are
considered. Various other choices choices for the loss function, the regularization term could
be studied to provide a more generalized description of the performance in terms of correctness
and informativeness of the of the proposed uncertainty quantification methods.

Rutger Smeenk Master of Science Thesis



Appendix A

Algorithms

A-1 K-fold cross validation algorithm

Algorithm 2 Hyperparameter Tuning using K-fold Cross Validation
1: procedure HyperparameterTuning(Xtrain, ytrain, K, threshold)
2: Prior hyperparameters ρ Ð rρ1, ρ2, . . . , ρM s

3: Noise hyperparameters σ̄2 Ð rσ̄2
1, σ̄2

2, . . . , σ̄2
P s Split Xtrain into K folds

4: for ρm in ρ do
5: for σ̄2

p in σ̄2 do
6: for i “ 1 to K do
7: Use fold i for test data Xi

test, yi
test and the rest for

8: training data XK´i
train, yK´i

train
9: Train model and obtain prediction intervals

10: Obtain errori from (6-1) in regression and (6-2) in classification
11: Obtain CWCi from (6-3), (6-4), (6-5), (6-6) in regression and (6-7), (6-4),

(6-5), (6-6)
12: in classification
13: end for
14: Mean errormp Ð rerror1, errori, . . . , errorKs

15: Mean errormp Ð rCWC1, CWCi, . . . , CWCKs

16: end for
17: end for
18: if Mean errormp ă p1 ` thresholdq minpMean errorq then
19: The m and p pair are a candidate corresponding to CWC value CWCmp

candidate
20: end if
21: Best ρ and best σ̄2 Ð minpCWCcandidateq

22: return bestAlpha, bestSigma
23: end procedure
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A-2 Bayesian CP-ALS algorithm

Algorithm 3 MATLAB Function: CP-ALS-Bayesian

1: procedure CP ALS(X, y, M, R, α, σ2, number of sweeps)
2: D Ð sizepX, 2q Ź Extract number of features
3:
4: ZW Ð1 Ź Initialization of algorithm
5: Γ Ð 1
6: for d Ð D to 1 do
7: Wpdq

mean Ð randnpM, Rq

8: Wpdq
mean Ð Wpdq

mean{||Wpdq||

9: ZW Ð ZW ˚ ZpXpdqqT Wpdq
mean

10: m0
d Ð vecpWpdq

meanq

11: pP0
dq´1 Ð pαIq´1

12: end for
13:
14: for i Ð 1 to number of sweeps do Ź Sweeping over the factor matrices
15: for d Ð 1 to D do
16: ZWd Ð ZW{pZpXpdqqT Wpdq

meanq

17: C Ð

ˆ

ZpXpdqq d

´

˚D
p“1,p‰d ZpXppqqT Wppq

mean
¯T

˙T

18: Wpdq
cov Ð CT C

σ2 ` pPd
0q´1

19: m0
d Ð vecpWpdq

meanq

20: b Ð
CT y
σ2 ` pPd

0q´1m0
d

21: m`
d Ð solvepWpdq

cov, bq

22: Wmean Ð reshapepm`
d , pM, Rqqq

23: ZW Ð ZWd ˚ pZpXpdqqT Wq

24: Wpdq Ð W
25: end for
26: end for
27: return Wp1q

mean, Wp2q
mean, . . . , WpDq

mean Ź Return mean and covariance of factor matrices
28: and Wp1q

cov, Wp2q
cov, . . . , WpDq

cov
29: end procedure
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A-3 Unscented Transform algorithm

Algorithm 4 MATLAB Function: Unscented Transform (UT)

1: procedure UT(Wp1q
mean, Wp2q

mean, . . . , WpDq
mean, Wp1q

cov, Wp2q
cov, . . . , WpDq

cov )
2: Compute known distribution from factor matrices with 5-9
3: Compute Sigma points with 5-10
4: Propagate sigma points through nonlinear function using 5-11
5: Compute weighting factors with 5-13
6: Estimate the unscented mean and covariance using 5-14
7: return mUT and PUT
8: end procedure
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Appendix B

Results experiments

B-1 Experiment 1

Table B-1: Results case study 1 for the delta method

Run Delta
CICP MPIW CWC MSE Time (s) λreg σ̂2

e

1 0.9645 0.9296 0.9296 0.0535 1.0676 1´4 0.0537
2 0.9707 0.9279 0.9279 0.0567 1.0415 1´4 0.0534
3 0.9687 0.9398 0.9398 0.0566 1.1730 1´3 0.0549
4 0.9634 0.9276 0.9276 0.0594 1.1870 1´4 0.0534
5 0.9592 0.9296 0.9296 0.0629 1.2860 1´3 0.0537
6 0.9603 0.9344 0.9344 0.0615 1.2153 1´3 0.0543
7 0.9551 0.9386 0.9386 0.0597 1.2138 1´3 0.0547
8 0.9519 0.9340 0.9340 0.0623 1.2945 1´3 0.0542
9 0.9645 0.9291 0.9291 0.0558 1.1616 1´4 0.0535
10 0.9728 0.9312 0.9312 0.0546 1.1913 1´4 0.0538

Mean 0.9631 0.9322 0.9322 0.0583 1.1832 N/A 0.0540
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Table B-2: Results case study 1 for the Bayesian method

Run Bayesian
CICP MPIW CWC MSE Time (s) ρ σ̄2

e

1 0.9864 1.2665 1.2665 0.0590 1.9006 1´3 0.1
2 0.9655 0.9098 0.9098 0.0561 2.2064 1 0.05
3 0.9666 0.9103 0.9103 0.0542 1.8652 1 0.05
4 0.9896 1.2665 1.2665 0.0637 2.0929 1´3 0.1
5 0.9530 0.9042 0.9042 0.0619 2.0049 0.1 0.05
6 0.9875 1.2664 1.2664 0.0678 2.2623 1´3 0.1
7 0.9498 0.9113 1.9192 0.0578 2.1045 1 0.05
8 0.9446 0.9058 2.2145 0.0620 2.0374 0.1 0.05
9 0.9948 1.2667 1.2667 0.0595 2.3699 1´3 0.1
10 0.9937 1.2667 1.2667 0.0594 2.1210 1´3 0.1

Mean 0.9731 1.0874 1.3191 0.0602 2.0965 N/A N/A

Table B-3: Results case study 1 for the SBC method

Run SBC
CICP MPIW CWC MSE Time (s) λreg ρ σ̂2

e

1 0.9666 0.9425 0.9425 0.0535 0.9080 1´3 50 0.0549
2 0.9707 0.9491 0.9491 0.0567 0.9513 1´2 1 0.0558
3 0.9687 0.9518 0.9518 0.0566 0.8884 1´2 5 0.0560
4 0.9624 0.9494 0.9494 0.0594 0.9110 1´2 50 0.0557
5 0.9592 0.9385 0.9385 0.0629 1.0362 1´2 0.001 0.0548
6 0.9572 0.9467 0.9467 0.0615 0.8661 1´2 5 0.0554
7 0.9572 0.9503 0.9503 0.0597 0.9685 1´2 1 0.0558
8 0.9561 0.9476 0.9476 0.0623 0.9902 1´2 50 0.0554
9 0.9655 0.9498 0.9498 0.0558 0.9538 1´2 1 0.0559
10 0.9760 0.9542 0.9542 0.0546 0.9228 1´2 5 0.0563

Mean 0.9639 0.9480 0.9480 0.0583 0.9396 N/A N/A N/A
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B-2 Experiment 2

Table B-4: Results case study 2 for the delta method

Run Delta
CICP MPIW CWC MSE Time (s) λreg σ̂2

e

1 0.9404 1.8580 3.4743 0.2362 0.1836 1´2 0.2080
2 0.9338 1.6605 3.9112 0.1969 0.3217 1´3 0.1677
3 0.9470 1.8535 3.0142 0.2336 0.3282 1´2 0.2092
4 0.9536 1.8396 1.8396 0.2267 0.2446 1´2 0.2055
5 0.9404 1.8458 3.4621 0.2651 0.2464 1´2 0.2070
6 0.9205 1.8274 6.1920 0.2486 0.2499 1´2 0.2043
7 0.9536 1.8376 1.8376 0.2180 0.2517 1´2 0.2055
8 0.9603 1.6513 1.6513 0.2196 0.3483 1´3 0.1632
9 0.9470 1.8337 2.9944 0.2488 0.3481 1´2 0.2054
10 0.9073 1.8355 10.2990 0.3606 0.2493 1´2 0.2017

Mean 0.9404 1.8043 3.8676 0.2454 0.2772 N/A 0.1978

Table B-5: Results case study 2 for the Bayesian method

Run Bayesian
CICP MPIW CWC MSE Time (s) ρ σ̄2

e

1 0.9801 2.8808 2.8808 0.3311 1.2937 0.1 0.5
2 0.9801 2.8720 2.8720 0.2481 0.9480 0.1 0.5
3 0.9801 2.8734 2.8734 0.2728 0.9176 0.1 0.5
4 1 2.9663 2.9663 0.2053 0.9157 0.1 0.5
5 0.9735 2.8711 2.8711 0.2985 1.2233 0.1 0.5
6 0.9801 2.8759 2.8759 0.2618 0.8870 0.1 0.5
7 0.9934 3.0196 3.0196 0.1566 1.2898 0.1 0.5
8 0.9868 2.8672 2.8672 0.2744 0.8887 0.1 0.5
9 0.9801 2.8639 2.8639 0.3123 0.9274 0.1 0.5
10 0.9801 3.0768 3.0768 0.4105 0.9494 0.1 0.5

Mean 0.9834 2.9167 2.9167 0.2771 1.0241 N/A N/A
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Table B-6: Results case study 2 for the SBC method

Run SBC
CICP MPIW CWC MSE Time (s) λreg ρ σ̂2

e

1 0.9404 1.8949 3.5112 0.2362 0.2763 1´2 50 0.2085
2 0.9404 1.8656 3.4819 0.1969 0.2425 1´2 50 0.2083
3 0.9470 1.8818 3.0425 0.2336 0.2134 1´2 100 0.2082
4 0.9603 1.8613 1.8613 0.2267 0.1842 1´2 5 0.2068
5 0.9404 1.8838 3.5001 0.2651 0.1855 1´2 10 0.2069
6 0.9272 1.8510 4.9852 0.2486 0.1727 1´2 10 0.2047
7 0.9470 1.8623 3.0230 0.2180 0.2377 1´2 100 0.2043
8 0.9669 1.8751 1.8751 0.2196 0.1721 1´2 100 0.2057
9 0.9470 1.8628 3.0234 0.2488 0.1800 1´2 100 0.2068
10 0.9139 1.8572 7.9349 0.3606 0.1834 1´2 10 0.2011

Mean 0.9430 1.8696 3.6239 0.2454 0.1834 N/A N/A N/A

B-3 Experiment 3

Table B-7: Results case study 3 for the delta method

Run Delta
CICP MPIW CWC MSE Time (s) λreg σ̂2

e

1 0.9126 1.4496 7.9310 0.1683 0.0742 1´2 0.1277
2 0.8835 1.3109 29.1166 0.1576 0.0761 1´4 0.1027
3 0.9709 1.4648 1.4648 0.1720 0.0953 1´2 0.1304
4 0.9223 1.4906 5.4794 0.1171 0.1086 1´2 0.1342
5 0.9612 1.4041 1.4041 0.1779 0.0874 1´3 0.1176
6 0.9612 1.3983 1.3983 0.1382 0.0927 1´3 0.1167
7 0.9126 1.3729 7.8543 0.3088 0.1034 1´3 0.1077
8 0.9320 1.4545 3.9093 0.1866 0.0947 1´2 0.1269
9 0.9320 1.2987 3.7536 0.1570 0.0823 1´5 0.0995
10 0.9223 1.4255 5.4143 0.1749 0.0812 1´2 0.1236

Mean 0.9311 1.4070 6.7726 0.1758 0.0896 N/A 0.1187
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Table B-8: Results case study 3 for the Bayesian method

Run Bayesian
CICP MPIW CWC MSE Time (s) ρ σ̄2

e

1 1 2.9291 2.9291 0.2054 1.3807 5 0.5
2 1 2.9014 2.9014 0.1794 1.4374 1 0.5
3 0.9903 2.8852 2.8852 0.2095 1.3134 1 0.5
4 0.9806 2.9237 2.9237 0.2604 2.2564 1 0.5
5 1 2.9335 2.9335 0.1508 1.2548 1 0.5
6 1 2.9305 2.9305 0.1606 1.4160 1 0.5
7 0.9806 2.8934 2.8934 0.2748 1.2702 1 0.5
8 1 2.9830 2.9830 0.2308 1.2492 5 0.5
9 0.9515 1.3967 1.3967 0.1402 1.2923 50 0.1
10 1 2.8870 2.8870 0.1628 1.2595 1 0.5

Mean 0.9903 2.7664 2.7664 0.1975 1.3130 N/A N/A

Table B-9: Results case study 3 for the SBC method

Run SBC
CICP MPIW CWC MSE Time (s) λreg ρ σ̂2

e

1 0.9126 1.4709 7.9523 0.1683 0.0774 1´2 10 0.1332
2 0.9223 1.4529 5.4417 0.1576 0.0658 1´2 1 0.1281
3 0.9515 1.4717 1.4717 0.1720 0.0731 1´2 5 0.1314
4 0.9612 1.3896 1.3896 0.1171 0.0645 1´3 50 0.1161
5 0.9612 1.4847 1.4847 0.1779 0.0664 1´2 50 0.1328
6 0.9515 1.4796 1.4796 0.1382 0.0754 1´2 50 0.1323
7 0.9320 1.5063 3.9611 0.2088 0.0649 1´2 10 0.1245
8 0.9320 1.4510 3.9058 0.1866 0.0770 1´2 100 0.1263
9 0.9417 1.4770 2.9878 0.1570 0.0777 1´2 0.01 0.1333
10 0.9417 1.4695 2.9802 0.1749 0.0673 1´2 50 0.1307

Mean 0.9408 1.4653 3.3055 0.1758 0.0710 N/A N/A 0.1289
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B-4 Experiment 4

Table B-10: Results case study 4 for the delta method with 95% nominal confidence level

Run Delta
CICP MCIW CWC MR Time (s) λreg σ̄2

e

1 0.9901 1.4022 1.4022 0.0480 0.0654 1´7 10
2 0.9714 1.0607 1.0607 0.0960 0.0967 1´4 10
3 0.9881 1.3448 1.3448 0.0560 0.1242 1´5 10
4 0.9623 1.1670 1.1670 0.1200 0.0865 1´5 10
5 0.9643 1.6171 1.6171 0.0960 0.0775 1´6 10
6 0.9867 1.0937 1.0937 0.1040 0.0727 1´5 10
7 0.9464 1.0301 2.2256 0.1520 0.1022 1´4 10
8 1 1.3409 1.3409 0.1200 0.1022 1´5 10
9 0.9406 1.0912 2.6917 0.0800 0.0713 1´4 10
10 0.9787 2.2564 2.2564 0.0960 0.1136 1´7 10

Mean 0.9729 1.3404 1.6200 0.0936 0.0831 N/A N/A

Table B-11: Results case study 4 for the Bayesian method with 95% nominal confidence level

Run Bayesian
CICP MCIW CWC MR Time (s) ρ σ̄2

e

1 0.9737 0.6575 0.6575 0.0480 0.0622 5 1
2 0.9450 0.6835 1.9705 0.0960 0.0945 5 1
3 0.9839 1.8041 1.8041 0.0560 0.1408 10 10
4 0.9848 2.4241 2.4241 0.1120 0.0622 50 0.1
5 0.9626 0.9228 0.9448 0.0800 0.0658 10 1
6 0.9691 0.9170 0.9170 0.1120 0.0686 10 0.5
7 0.9182 0.6923 5.6005 0.1200 0.0719 50 1
8 0.9231 0.7280 4.5706 0.1280 0.1005 5 1
9 0.9478 0.8100 1.9249 0.0640 0.0773 50 1
10 0.9579 8.7952 8.7952 0.1200 0.0871 50 0.1

Mean 0.9566 1.8457 2.9609 0.0936 0.0831 N/A N/A
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Table B-12: Results case study 4 for the SBC method with 95% nominal confidence level

Run SBC
CICP MCIW CWC MR Time (s) λreg ρ σ̄2

e

1 0.9873 1.5205 1.5205 0.0480 0.1159 1´7 0.001 10
2 0.9865 1.4143 1.4143 0.0960 0.0879 1´4 0.0001 120
3 0.9732 0.9464 0.9464 0.0560 0.0988 1´5 0.01 10
4 0.9412 0.9596 2.5141 0.1200 0.0649 1´5 0.01 10
5 0.9545 0.6316 0.6316 0.0960 0.0657 1´6 0.0001 10
6 0.9155 0.9550 6.5695 0.1040 0.0812 1´5 0.001 10
7 0.9355 1.2998 3.3662 0.1520 0.0704 1´4 0.0001 40
8 0.9773 1.3528 1.3528 0.1200 0.0913 1´5 0.1 10
9 0.9571 0.9300 0.9300 0.0800 0.0879 1´4 0.0001 80
10 0.9412 1.2522 2.8067 0.0960 0.0695 1´7 0.001 10

Mean 0.9569 1.1262 2.2052 0.0936 0.0833 N/A N/A N/A

B-5 Experiment 5

Table B-13: Results case study 5 for the delta method with 95% nominal confidence level

Run Delta
CICP MCIW CWC MR Time (s) λreg σ̄2

e

1 1 0.0703 0.0703 0 0.1135 1´5 0.01
2 1 0.0722 0.0722 0 0.0750 1´5 0.01
3 1 0.0717 0.0717 0 0.0721 1´5 0.01
4 1 0.0714 0.0714 0 0.0779 1´5 0.01
5 1 0.0703 0.0703 0 0.0808 1´5 0.01
6 1 0.0733 0.0733 0 0.0725 1´5 0.01
7 1 0.0807 0.0807 0 0.0702 1´5 0.01
8 1 0.0676 0.0676 0 0.0739 1´5 0.01
9 1 0.0773 0.0773 0 0.0849 1´6 0.01
10 1 0.0732 0.0732 0 0.0797 1´5 0.01

Mean 1 0.0728 0.0728 0 0.0800 N/A N/A
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Table B-14: Results case study 5 for the Bayesian method with 95% nominal confidence level

Run Bayesian
CICP MCIW CWC MR Time (s) ρ σ̄2

e

1 1 0.0963 0.0963 0 0.1582 0.01 0.01
2 1 0.0971 0.0971 0 0.1425 0.01 0.01
3 1 0.0931 0.0931 0 0.1706 0.01 0.01
4 1 0.0986 0.0986 0 0.1453 0.01 0.01
5 1 0.0925 0.0925 0 0.2198 0.01 0.01
6 1 0.1085 0.1085 0 0.1433 0.01 0.01
7 1 0.1131 0.1131 0 0.1475 0.01 0.01
8 1 0.0937 0.0937 0 0.1486 0.01 0.01
9 1 0.1177 0.1177 0 0.1375 0.1 0.01
10 1 0.1135 0.1135 0 0.1664 0.01 0.01

Mean 1 0.1021 0.1021 0 0.1580 N/A N/A

Table B-15: Results case study 5 for the SBC method with 95% nominal confidence level

Run SBC
CICP MCIW CWC MR Time (s) λreg ρ σ̄2

e

1 1 0.0484 0.0484 0 0.1324 1´5 0.0001 0.01
2 1 0.0446 0.0446 0 0.0639 1´5 0.0001 0.01
3 1 0.0408 0.0408 0 0.0554 1´5 0.0001 0.01
4 1 0.0464 0.0464 0 0.0662 1´5 0.0001 0.01
5 1 0.0479 0.0479 0 0.0612 1´5 0.0001 0.01
6 1 0.0464 0.0464 0 0.0610 1´5 0.0001 0.01
7 1 0.0584 0.0584 0 0.0624 1´5 0.001 0.01
8 1 0.0433 0.0433 0 0.0598 1´5 0.0001 0.01
9 1 0.0643 0.0643 0 0.0802 1´6 0.1 0.01
10 1 0.0491 0.0491 0 0.0641 1´5 0.0001 0.01

Mean 1 0.0490 0.0490 0 0.0707 N/A N/A N/A

Rutger Smeenk Master of Science Thesis



B-6 Experiment 6 91

B-6 Experiment 6

Table B-16: Results case study 6 for the delta method with 95% nominal confidence level

Run Delta
CICP MCIW CWC MR Time (s) λreg σ̄2

e

1 1 2.6586 2.6586 0.1000 0.0528 1´2 40
2 0.9767 2.9042 2.9042 0.1444 0.0568 1´2 40
3 0.9583 3.9003 3.9003 0.1556 0.0584 1´2 40
4 0.9615 1.7480 1.7480 0.1333 0.0671 1´3 10
5 0.9412 3.1635 4.7181 0.0889 0.0619 1´3 40
6 0.9714 5.6433 5.6433 0.1333 0.0449 1´5 10
7 0.9600 2.5816 2.5816 0.1556 0.0620 1´2 40
8 0.9091 1.7226 9.4552 0.1444 0.0742 1´4 10
9 0.9636 2.1288 2.1288 0.1333 0.0555 1´4 10
10 0.9000 1.6202 13.8027 0.1556 0.0825 1´3 10

Mean 0.9542 2.8071 4.9541 0.1344 0.0616 N/A N/A

Table B-17: Results case study 6 for the Bayesian method with 95% nominal confidence level

Run Bayesian
CICP MCIW CWC MR Time (s) ρ σ̄2

e

1 0.9643 1.3804 1.3804 0.0889 0.3385 100 1
2 0.9241 1.1930 4.8530 0.1333 0.2867 10 1
3 0.9365 1.3818 3.3451 0.1556 0.4029 10 1
4 0.9688 1.2178 1.2178 0.1222 0.2953 50 1
5 0.9655 1.1585 1.1585 0.0667 0.2865 10 1
6 0.9194 2.0329 6.6616 0.1333 0.2861 100 1
7 0.9474 2.2495 3.3901 0.1111 0.3736 5 10
8 0.9167 1.2871 6.5815 0.1556 0.3914 50 1
9 0.9130 2.2432 8.5892 0.1333 0.3608 5 10
10 0.9054 1.1157 10.4130 0.1556 0.2837 10 1

Mean 0.9361 1.5260 4.7590 0.1256 0.3305 N/A N/A
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Table B-18: Results case study 6 for the SBC method with 95% nominal confidence level

Run SBC
CICP MCIW CWC MR Time (s) λreg ρ σ̄2

e

1 0.9756 1.2740 1.2740 0.1000 0.0556 1´2 0.01 40
2 1 1.3237 1.3237 0.1444 0.0477 1´2 0.01 40
3 0.9545 1.5517 1.5517 0.1556 0.0473 1´2 10 10
4 1 1.6911 1.6911 0.1333 0.0581 1´3 0.01 80
5 0.9808 1.6834 1.6834 0.0889 0.0490 1´3 0.1 40
6 0.9600 2.2128 2.2128 0.1333 0.0494 1´5 0.001 120
7 1 1.8774 1.8774 0.1556 0.0496 1´2 0.1 80
8 0.9474 0.9394 2.0800 0.1444 0.0722 1´4 0.0001 120
9 0.9111 1.4542 8.4439 0.1333 0.0742 1´4 10 10
10 0.9688 1.6528 1.6528 0.1556 0.0690 1´3 0.001 120

Mean 0.9698 1.5661 2.3791 0.1344 0.0572 N/A N/A N/A
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List of Acronyms

AI Artificial intelligence
CP-ALS Canonical Polyadic Decomposition Alternating Linear Scheme
CPD Canonical Polyadic Decomposition
MSE mean squared error
MR misclassification rate
ALS Alternating Linear Scheme
SBC Single Bayesian Core
SNR signal-to-noise ratio
KKR Kernel Ridge Regression
PI prediction interval
CI confidence interval
PICP prediction interval coverage probability
MPIW mean prediction Interval width
CWC coverage width-based criterion
CICP confidence interval coverage probability
MCIW mean confidence Interval width
UT Unscented Transform
WR wrongly classified labels outside the confidence interval
RI rightly classified labels outside the confidence interval

List of Symbols
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Notation Definition
a Scalar
A Matrix
A Tensor
id Index in dimension d of a tensor
Id Size of dimension d of a tensor
Api1, i2, . . . , iDq “ ai1,i2,...,iD Element of a tensor
vecpAq Vectorization of tensor A
b Kronecker product
˚ Hadamard product
d Khatri-Rao product
ÂD

d“1 Sequence of Kronecker products
Ä1

d“D Sequence of Khatri-Rao products
x¨, ¨yF Frobenius inner product
|| ¨ || Frobenius norm
Op¨q Big O notation
X Original input space
H Reproducing Kernel Hilbert Space
L Loss function
λ Norm vector of the CPD
λreg Regularization hyperparameter
R CP-rank
M Dimension of total feature map
M̂ Dimension of each feature map
Rp¨q Regularization term
N Number of samples
D Number of dimensions
I Size of a dimension
R, pR1, . . . , RN q tensor rank R and multilinear rank
x Input vector
X Input matrix
xn Row of input matrix
x

pdq
n Element of input matrix

zdpx
pdq
n q Nonlinear mapping of element x

pdq
n

Zp¨q Tensorized multidimensional feature mapping
z˚ “ zpxn˚q test input in feature space
yn Target value
y Vector of target values
en Random error variable
e Vector of random error variables
σ2

e Noise variance
σ̂2

e Estimated noise variance
σ̄2

e Hyperparameter noise variance
Vpf̂q Prediction error variance
Vpf˚q Estimated test input variance
w Parameter vector

Rutger Smeenk Master of Science Thesis



101

ϕp¨q Multidimensional nonlinear feature map
Φ Matrix of nonlinear feature mappings
∇ Gradient
VN Cost function
pp¨q Probability distribution
N Normal distribution
τ Unscented transform scaling parameter
κ Unscented transform scaling parameter
αUT Unscented transform scaling parameter
∇ Gradient
η Learning-rate parameter
J Jacobian for training samples
g Jacobian for test samples
Cpdq Derivative of the model with respect

to the d-th factor
H Hessian
yscale Scaled outputs
ϵn Error between observation and prediction for sample n
σ2

f Output variance hyperparameter
x˚ Vector of test inputs
ŵ Estimated parameters
w˚ Asymptotic value of the parameter estimate
w0 Model parameters for the true system
wb Bias in the parameters
f˚pxnq Function that describes the true system
Epf̂q Mean vector of predictive distribution
Epf̂nq Mean prediction for the n-th sample
f ref Reference model
fpxn, ŵq Vector of predictions for the n-th sample
ϵnpxn, ŵq Prediction error
Er¨s Asymptotic mean
P Covariance matrix
M Model structure
Iw Fisher information matrix
m0, mN Prior and posterior mean
P0, PN Prior and posterior covariance
xp¨q Sigma points
sp¨q Transformed sigma points
f̂ Taylor series approximation of a nonlinear function
wLS Least squares estimate
wMAP Maximum posterior weight vector
9 Proportional to
ppgdq Prior distribution of TN component
ppy|tgduq Likelihood
pptgdu|yq Posterior joint distribution of TN components
α Significance level
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p Proportion in K-fold cross-validation procedure
µ Confidence level (1-α)
γ First CWC hyperparameter
η Second CWC hyperparameter
ρ Prior covariance scaling hyperparameter
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