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that can estimate the performance of a C-program as a PPN imple-
mented in hardware. Cprof+ improves the set of possible programs
that can be successfully profiled, by increasing the performance estima-
tion accuracy to within 94% of RTL simulations. Using the Compaan
Compiler and the Xilinix Vivado RTL simulator, Cprof+ was verified
against all 29 Polybench Suite benchmarks. The purpose of Cprof+ is
to provide a lightweight and rapid performance estimation tool for PPN
applications. The simulation run-time of Cprof+ shows on average an
execution time of 121 seconds compared to 598 seconds with Vivado
RTL simulations. Cprof+ can also estimate channel sizes of the PPN
interconnect based on execution profiles of the processes. The estimated
channel sizes achieved on average a 77% reduction in communication
memory when compared to Compaan.

The Cprof+ profiler can also aid the designer of PPN applications
by applying automated source-to-source transformations on C-programs
to assist in the design space exploration. These transformations are ap-
plied using an optimization technique based on channel sizes of the
network interconnect. This technique yields on average a 64% increase
in performance of the network latency with a 6x factor increase in hard-
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Abstract

In this thesis, we present Cprof+, an upgraded version of Cprof. Cprof+ is a lightweight
profiling tool for Polyhedral Process Networks (PPN) that can estimate the performance
of a C-program as a PPN implemented in hardware. Cprof+ improves the set of possible
programs that can be successfully profiled, by increasing the performance estimation
accuracy to within 94% of RTL simulations. Using the Compaan Compiler and the
Xilinix Vivado RTL simulator, Cprof+ was verified against all 29 Polybench Suite
benchmarks. The purpose of Cprof+ is to provide a lightweight and rapid performance
estimation tool for PPN applications. The simulation run-time of Cprof+ shows on
average an execution time of 121 seconds compared to 598 seconds with Vivado RTL
simulations. Cprof+ can also estimate channel sizes of the PPN interconnect based on
execution profiles of the processes. The estimated channel sizes achieved on average a
77% reduction in communication memory when compared to Compaan.

The Cprof+ profiler can also aid the designer of PPN applications by applying
automated source-to-source transformations on C-programs to assist in the design space
exploration. These transformations are applied using an optimization technique based
on channel sizes of the network interconnect. This technique yields on average a 64%
increase in performance of the network latency with a 6x factor increase in hardware
resources required.
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Introduction 1
Modern embedded systems often require implementation of complex and data intensive
applications, e.g. applications like object detection[2] and object tracking[3]. Imple-
menting these applications is simplified using High Level Synthesis (HLS) tools. HLS
aims to increase the productivity of the designer by abstracting the hardware design
to high level languages such as C/C++. The C code is then translated to digital hard-
ware. The designer verifies that all requirements are met of the synthesized design
using Register Transfer Level (RTL) and timing simulations. This verification can be
time consuming, taking hours for one simulation[1].

Since a RTL simulation may take hours, the designer needs a tool to give an idea of
the performance of the implementation. A tool known as Cprof+, based on Cprof[4],
is introduced to aid the designer of Polyhedral Process Networks (PPNs). Cprof+ can
estimate the performance of the application as a PPN in hardware. The time required
for performance estimation is significantly less when compared to RTL simulations.

As the performance of a PPN can be estimated rapidly in software, Cprof+ can be
used to explore the design space of an application. Exploring the designs of a program in
software increases the productivity and reduces the risk of design errors. The translation
of programs into hardware, known as HLS involves converting high level specifications
to a hardware implementation that can be mapped to a Field Programmable Gate
Array (FPGA), Multiprocessor System on a Chip (MPSoC) or other platforms. In this
thesis, Compaan[6] is used in the design flow shown in Figure 1.1.

High Level
Specification

System Level
Specification

Synthesis Implementation
FPGA, MPSoC, CPU

Implementation
Performance

Design Flow

Figure 1.1: The traditional Design Flow in High Level Synthesis

The disadvantage of the design flow in Figure 1.1 is that the designer has to perform
synthesis and simulation of the high level specification before a result can be obtained.
This process is often time consuming. The designer only finds out at the end of the
process if the design has meet the performance requirements. If the design does not fit
the requirements, the designer must modify the high level specification and repeat the
process again.

Cprof+ aims to modify the traditional design flow and take an iterative design ap-
proach in the software domain. This approach abstracts the hardware implementation
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and only focuses upon the high level specification. Allowing designers, with no knowl-
edge of hardware, to perform design space exploration. Cprof+ is a profiling tool that
analyses execution behaviour of programs. Figure 1.2 highlights the modified design
flow, showcasing Cprof+ reducing the feedback loop for the designer. The designer can
gain insight early in the implementation phase if a design meets the requirements of
the application.

If the design does not fit the requirements, the designer can modify the C-Code to
increase parallelism in the program until the desired performance requirement is met.
When the designer is satisfied with the result, the design can be committed to the
complete design flow to be implemented in hardware.

High Level
Specification

System Level
Specification

Synthesis Implementation
FPGA, MPSoC, CPU

Design Flow

Cprof+

Implementation
Performance

Software Domain Hardware Domain

Figure 1.2: High Level Synthesis Design Flow with Cprof+

1.1 Problem Statement

The original Cprof allowed for rapid performance estimation of PPNs with high accu-
racy for most benchmarks in the Polybench suite. The profiler exhibited inaccuracies
in estimation for some benchmarks with a maximum 60% underestimation.

The first problem we address in this thesis is whether we can improve the perfor-
mance estimation accuracy of Cprof while maintaining the low simulation run time.
The second problem is with this improved accuracy, can we utilize the profiling infor-
mation to estimate the channel sizes of the network and can we use the channel sizes
to create an automated optimization strategy for the C programs?

2



1.2 Contributions

The main contribution of this thesis is the upgraded profiler that we call Cprof+.
Based on the profiler created by Teijlingen[4] known as Cprof, Cprof+ can estimate the
performance of a program as a PPN with a high accuracy. It has been validated against
29 benchmarks from the Polybench Suite. All benchmarks contain mathematical
kernels that are commonly used in data processing applications. Cprof+ allows for a
more accurate exploration of the design space in a reduced amount of time, helping to
improve the productivity of the designer.

The main contributions of this thesis are as follows:

1. Reduced the maximum performance estimations error from 60% to 6% using 3
methods. (Chapter 4)

(a) Variable functional latency. (Section 4.2.1)

(b) Run-time channel type detection. (Section 4.2.2)

(c) Run-time channel type switching. (Section 4.2.3)

2. Utilized the available execution profile information to estimate channels sizes for
the network. Reducing the memory footprint for communication by 77% when
compared to Compaan. (Chapter 5)

3. Showed the effects of code source-to-source transformations on the design space
and developed an automated optimization strategy. This strategy yielded 64%
performance increase on average. (Chapter 6)

1.3 Thesis Outline

The thesis has the following outline. Chapter 2 will discuss the necessary background
knowledge and definitions required. In Chapter 3, the related work in the field is
proposed and the importance of our solution is highlighted. In Chapter 4, the solution
approach and implementation for correcting the estimation inaccuracy is proposed. In
Chapter 5, the estimation of channel sizes is proposed with the implementation. In
Chapter 6, the code transformations and optimization techniques used by Cprof+ are
discussed. The run-time impact of Cprof+ is compared to the hardware simulations in
Chapter 7. Finally, we draw conclusions and present future work in Chapter 8.
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Background 2
The first comprehensive implementation of the Cprof Profiler was created by Wouter
van Teijlingen as presented in his Master Thesis[4]. Cprof was built upon the con-
cept given by Sven van Haastregt who demonstrated in his doctoral thesis methods of
transformation and profiling of high level specifications for PPNs[1].

In the following sections, the background knowledge required will be outlined. Sec-
tion 2.1 will discuss model of computations (MoCs) and Section 2.1.1 will delve into
the MoC used by Cprof and Cprof+, the Polyhedral Process Network (PPN). Section
2.3 will discuss how a PPN may be derived from a high-level specification. Section 2.2
will discuss the class of programs that will be used. Ending the chapter with Sections
2.4 and 2.5, which will discuss the use of the LLVM/Clang Frontend compiler in Cprof
and Cprof+.

2.1 Models of Computation

There are many models used by designers to help describe a desired behaviour. Process
Networks are often the preferred Model of Computation (MoC) for data-flow programs
[7]. One of the most common is the Kahn Process Network (KPN). The advantage for
process networks is the ability to easily map nodes to Multi Processor System on Chip
(MPSocs) architectures due to the similarity in structure and the ability to illustrate
task level parallelism.

KPNs help to model task level parallelism and explicitly model communication
between nodes within the network[7]. These nodes execute sequential functions where
by information is passed between nodes using unbounded FIFO channels with blocking
read and non-blocking write.

2.1.1 Polyhedral Process Networks

Data-flow and streaming applications such as those used in image/video processing
and mathematical calculations such as matrix multiplication are often simple programs
which repeat a set of functions a bounded number of times. The bounded nature of the
program means often the programs have static control flow with loop bounds known
at compile time.

Similar to KPNs, Polyhedral Process Networks (PPNs) offer to model these types
of applications. PPNs model statements within these programs as processes which
communicate using a point-to-point method, in this case FIFOs. Unlike KPNs, PPNs
have bounded FIFO sizes for communication. In this thesis, we use the following
definition of a PPN as given in the work of Haastregt[1] and Teijlingen[4].
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Control Unit
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Stage

Execution
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a) b)

Figure 2.1: A simple PPN (a) with the structure of the implemented process (b) as found in
Compaan using the LAURA Virtual Processor Model[1]

Definition 2.1.1. Polyhedral Process Network. A polyhedral process network (PPN)
is a directed graph (P , E) where P represent the set of vertices of processes and the set
E represents the set of edges or communication channels between these processes.

Each process p ∈ P is characterized by:

• a set of read arguments that are inputs to the node which read from a communi-
cation channel

• a set of write arguments that are outputs to the node which write to a communi-
cation channel

• a function which executes a task based on the read arguments and outputs to the
write arguments.

Each channel ci ∈ E is characterized by:

• a source process

• a destination process

• a channel type of In-order-memory (IOM) or Out-of-Order memory (OOM)

• a channel size

The name polyhedral is derived from the mathematically description of the func-
tions. Each function is described as a finite set of linear equations that form a poly-
hedral. The polyhedral description models the iterations and the statement relation
between iterations of the function. The mathematical description allows for analysis and
optimization using combinatorial and Integer Linear Programming (ILP) algorithms.

Figure 2.1(a) demonstrates a simple PPN composed of three processes with three
communication channels. Just like a node in a KPN, a process cannot execute till all
tokens on its input ports are present. P2 cannot fire till it has received a token from
P1. P3 cannot fire till it has received a token from both P1 and P2.

When a process within a PPN fires, it is executing an assigned function from the
program. Figure 2.1(b) demonstrates the internal structure of a process used in this
work. There are three main stages to the process:
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• Read(R) stage processes all tokens from on the inputs. If not all inputs have
tokens present, the process blocks.

• Execute(E) stage performs a calculation on the input data and produces an
output.

• Write(W) stage writes the output to a communication channel, a non-blocking
operation.

2.2 Static Affine Nested for Loop Programs

A Static Affine Nested for Loop program (SANFLP) is a program where all statements
are enclosed by one or more loops or if-statements[8]. All parameters within the condi-
tional statement and the loop must be affine, meaning it can be represented by a set of
linear equations with iterators, static program parameters and constants. All indexes
must also be affine and described only by iterators, static program parameters and
constants. The flow of data between statements in a loop must be explicit, no hidden
shared variables. Cprof+ will focus on this subset of programs.

2.3 Deriving Polyhedral Process Networks

Sequential high level specifications such as C code can be used to describe PPNs which
can be implemented in hardware. The translation from C to synthesizable hardware, is
accomplished using the Compaan compiler with the Leiden Architecture Research and
Exploration Tool (LAURA) virtual processor model of processes[9][10]. This model is
highlighted in Figure 2.1(b) with the three distinct stages as well as a control unit to
ensure the network schedule is executed.

The Compaan compiler fully automates the translation of SANFLPs into PPNs.
While the LAURA tool converts PPN specifications to a hardware implementation[11].

for(i=0; i<n;i++){
     a[i] = a[i-1]+a[i+1];
}

Data Flow Analysis Dependency Graph

PPN Description

Channel Type and
Size 

Hardware ModelSynthesizable VHDLFPGA Implementation

Figure 2.2: PPN synthesis process for a High Level Specification

The process starts with data flow analysis of the C code that translates the specifica-
tion into a dependency graph. At this point in the synthesis, channel types and sizes are
not known. The channel type is determined using a method known as linearization[6].
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This process maps the communication type to FIFO channels or reordering channels
depending on the producer/consumer relation between processes. The channel infor-
mation and dependency graphs is used to create a PPN which is taken by the LAURA
compiler to generate an abstract hardware model. The abstract hardware model is
used to create synthesize VHDL that can be implemented on a FPGA.

2.3.1 Basic Calibration

Each process within a PPN can be correctly modelled and analysed using two metrics:
a latency ΛF and initiation rate ΠF . Where ΛF ∈ N+ is the input-to-output delay and
ΠF ∈ N+ is the initiation interval, both are in clock cycles[1].

The value of ΛF represents the time between the start of an execution and the end
of an execution when an output is created. The initiation rate, ΠF , helps to determine
the throughput of the function as it denotes the time between successive starts of two
executions. Figure 2.3 highlights the effect initiation rate has on the throughput of a
function. The initiation rate will be assumed to be ΠF = 1 to enable pipelining of
function executions.

0 1 2 3 4 5 6 7 8 9 10 t 0 1 2 3 4 5 6 7 8 9 10 t11 12

a) b)

Figure 2.3: Executions of a function with ΛF = 3 with (a) ΠF = 1 and (b) ΠF = ΛF

The Compaan/LAURA design flow utilizes a process model as shown in Figure
2.1(b). To model a process in Cprof adhering to the LAURA virtual processor model,
the read latency (ΛR) and the write latency (ΛW ) is also required. In the virtual
processor successive executions can be pipelined given that ΠF < ΛF . Figure 2.4
highlights the pipelined nature of a function with a blocking read example that can
cause a bubble in the execution pipeline of the process.

R E WE E

R E WE E

- - -

Iteration 0

Iteration 1

Time

(Blocking Read) - -Iteration 2

Iteration 2 R E WE E

Figure 2.4: Pipeline of an IP Core with ΛF = 3 and ΠF = 1
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2.3.2 Types of Communications

The modelling of the program functions as processes means the communication chan-
nels between the processes must be defined and classified. During the linearization
process, the shared memory variables described in the programs must be mapped
to 1-dimensional FIFO units. Linearization requires four types of channel types to
accommodate[12].

• In-Order Memory without multiplicity (IOM-) denotes a consumer function which
reads in the same order and quantity as the producer.

• In-Order Memory with multiplicity (IOM+) denotes a consumer function which
reads the tokens in order, but a token can be read multiple times.

• Out-of-Order Memory without multiplicity (OOM-) denotes a consumer function
which reads tokens in an order different from the producer function. Each token
is read once.

• Out-of-Order Memory with multiplicity (OOM+) denotes a consumer function
which reads tokens in an order different from the producer function. Each token
can be read multiple times.

Figure 2.5 demonstrates visually the different types of communication channels in
PPNs. The left iteration domain shows the producer iterations and the right iteration
domain shows that of the consumer. The arrows highlight how the output of the
producer is used in the consumer. The consumer and producer iteration order is shown
with blue arrows.
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Figure 2.5: Types of Communication Channels in a PPN

2.3.3 Iteration Domain and Dependency

Section 2.1.1 shows the functions of a program in a PPN as a set of linear equations
that form a polyhedral. This geometric shape represents the iteration domain of a loop
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and the data dependencies between successive iterations. Listing 2.1 demonstrates a
SANFLP with a 2-dimensional iteration domain. A mathematical description can be
represented in the PPN.

Listing 2.1: Example of a Static Affine Nested For Loop

1 for (i=1; i < N ; i++){
2 for (j=1; j <M ; j++){
3 A [ i ] [ j ] = foo (A [ i ] [ j−1] , A [ i−1] [j ] ) ;
4 }
5 }

The loop translates to a parametrized rational polyhedron as described in Equation
2.1 where p ∈ Qd [8].

P (p) = {x ∈ Qd|Ax ≥ Bp+ b} (2.1)

Where d is the dimension of the iteration domain, in the case of Listing 2.1 d = 2.
With A as an integral mxd matrix, B as an integral mxn matrix and b as an integral
vector of size m [8]. Using Equation 2.1 we can describe the SANFLP mathematically.

P (N,M) =

{(i, j) ∈ Z2}|


1 0
−1 0
0 1
0 −1

(ij
)
≥


0 0
−1 0
0 0
0 −1

(NM
)

+


1
0
1
0


 (2.2)

Equation 2.2 demonstrates the iteration domain of Listing 2.1 can be represented
mathematically. The polyhedral description can be used to analyse and transform
the loops using ILP methods. To perform these transformations and analysis, the
dependency between iterations must also be known and this can be visualized in a
dependency graph as shown in Figure 2.6

j

i

1

2

3

321

Figure 2.6: Dependencies between iterations of Listing 2.1 with N = M = 4

Figure 2.6 demonstrates the dependencies between iterations. The same variable
A[i][j] is being written at the end of one iteration but being read at another, creating
a self dependency.
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2.4 LLVM/Clang

The LLVM and Clang front-end is used to parse the program code to create an Abstract
Syntax Tree (AST). This tree can be traversed efficiently and provide all the information
necessary to model a PPN and instrument the program code.

LLVM stands for Low Level Virtual Machine which is a language independent opti-
mizer and code generator[13]. The goal of LLVM is to build a modular compiler that is
platform independent and that can share components across multiple compilers. This
allows the designer to select the correct components for the task.

Clang on the other hand is a front-end compiler that parses and creates an AST
of the program code. The goal of clang was to develop a front-end that is much more
efficient in terms of performance and memory than the standard open source gcc. Clang
also allows for designers to use components of the tool set. For this work, Cprof utilizes
the AST and Parsing tools of Clang to extract the function and variable information.
Cprof performs source-to-source transformations on the input programs. Clang utilizes
LLVM as back-end to generate the executable[14].

2.5 Cprof

Cprof is an profiler that estimates the performance of a PPN. The profiler can measure
the amount of parallelism in the program without deriving the PPN[1]. The original
profiler was implemented in the Master Thesis work of Wouter van Teijlingen[4]. The
advantage of Cprof is the ability to measure performance of a PPN without deriving it.
The performance estimation requires less time than the RTL simulation. Cprof allows
for multiple modes of simulation, absolute throughput and unbounded throughput.

Definition 2.5.1. Absolute Throughput. All iterations of a statement are mapped
onto a single processing resource with the assumption that an unbounded number of
hardware resources are available.

Definition 2.5.2. Unbounded Throughput. Each iteration of a statement is mapped
onto a dedicated processing resource with the assumption that an unbounded number
of hardware resources are available.

Cprof gives an estimate of the amount of parallelism available. Cprof is also able to
give the maximum degree of parrallelism which is the measure of simultaneous active
processes in the system. While the average degree of parallelism measures the average
number of active process over the execution of the system. The maximum and average
degree of parallelism defines the two extremes of the design space for a PPN.
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for(i=1;i<n;i++){
     A[i] = A[i-1]+A[i];
}
B[n]=0;
for(i=0;i<n-1;i++){
     B[i] = A[i]+B[i+1];
}

forStmt

Stmt

=

A[i] +

A[i-1] A[i]

}

Static Analysis

for(i=1;i<n;i++){
     updateReads(i,i,2);
     updateExecution();
     updateWrites(i,1);     
     A[i] = A[i-1]+A[i];
}

01001001
10110110
11001010
01100100

Dynamic Analysis

Performance Analysis

<funcName>foo</funcName>
<execLength>300</execLength>
<avgPar>10</avgPar>
<maxPar>15</maxPar>

<funcName>bar</funcName>
<execLength>200</execLength>
<avgPar>8</avgPar>
<maxPar>14</maxPar>

<func1>

</func1>

</func0>

<func0>

Optimization

Pe
rf

or
m

an
ce

Design 

i

j

i

j

Figure 2.7: The flow of Cprof Execution on a typical program.

Figure 2.7 demonstrates the steps used in Cprof to profile, analyse and optimize a
SANFLP. Cprof begins with a static analysis by parsing the program as an AST using
the Clang front-end and creates all the necessary objects to represent the variables
and statements within the program as a AST. Using this information, Clang inserts
instrumentation code around the program statements. An executable of the program
is created with this instrumentation and the simulation is run. The results are used
to determine where in the program optimization may occur. The final step is to apply
the optimizations to the program and repeat the process again and determine the
performance gain of the optimizations.

Performance estimation is accomplished using Cprof instrumentation code. The
main two concepts used in Cprof to instrument program code to model PPN is the
ideas of Shadow Variables and Control Variables.

2.5.1 Shadow Variables

In Cprof, each variable v in the program is given a shadow variable $v which holds
the time that variable $v was written. Array variables are handle in a similar way.
A shadow array is created for each variable in the program where each index location
holds the latest write time of that array index. The shadow variable helps to address
the conditional synchronization aspect of PPNs. Conditional synchronization is the
requirement of a process node to have data ready on all inputs before firing. This
means a process may block when reading the inputs if some data is not ready.
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Cprof is able to model a PPN without explicitly modelling process nodes and com-
munication channels of a PPN. Unlike sequential programs, PPNs execute concurrently
and therefore data dependences are crucial for when a process node fires. Cprof only
models flow dependencies as performance in a PPN is only affected by flow depen-
dencies. Shadow variables are able to capture this behaviour, as they store the latest
time-stamp when the variable was written.

2.5.2 Control Variables

Shadow variables are not the only instrumentation needed to estimate the program
performance as a PPN. For each statement s, a control variable C$s is needed to keep
track of the earliest time the statement may execute. The earliest time is determined
by the conditional synchronization, when all inputs are available and the initiation rate
ΠF .

During the read stage, the control variable for C$s is updated with the maximum
value of all the inputs. The statement s can only execute after all the data from its
inputs has been read. Taking the maximum of all the inputs allows for simulating of a
blocking read advancing the statement time to when all data is ready.

2.5.3 Execution Profiles

Cprof stores the execution behaviour statements and of the program. Statement execu-
tion profiles are defined for all three stages in a LAURA process: R$s[t], E$s[t] and
W$s[t] for the read, execute and write stages respectively. For example, E$s[42] = 4,
denotes 4 concurrent executions in the pipeline of the process at t = 42.

Each statement profile is initialized to zero. When an operation is completed for a
statement, the profile is incremented by 1 for the range [ts, tf ), where ts is the start of
the operation and tf = ts + Λ is the statement finish time. With Λ characterizing the
operation latency which can be one of three: read, execute or write depending on the
operation.

The statement execution profile contains information such as the start time of the
process, which is the first non-zero element of the R$s profile. While the finish time
can be found by searching for the last non-zero element of W$s. The maximum number
of concurrent executions can also be found by finding the maximum in E$s.

R$S

E$S

W$S
0 1 2 3 4 5 6 7 8 9 10 11 12

1

1

1 2

1

1 1

2 3

1 1

1

2 1

1

1

1 1 1

1

Time

Figure 2.8: An example of the Read, Execute and Write profile of an arbitrary statement
with ΛF = 3
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The R$s[t], E$s[t] and W$s[t] in Figure 2.8 demonstrate for an arbitrary state-
ment, with ΛF = 3, the sequence of reads, executes and writes over time. For example,
at t = 4 we have the read stage, R$S[4] = 1, denoting the process has 1 active read.
At the same time, has a value of 2, indicating 2 operations are passing through the
pipeline. The execution profile gives an indication of the pipeline fill as the pattern
in Figure 2.8 shows. The pattern shows the first operation at t = 1 with E$S[1] = 1.
t = 2 demonstrates the operation passing through the pipeline as the value is still 1,
E$[2] = 1. Reaching a maximum number of operations in the pipeline at E$S[5] = 3
with the pipeline empty at E$S[8] to indicate no current operations.

The global execution (G$) is another metric that Cprof keeps track of G$ to give an
idea of the global behaviour of the program and the maximum amount of parallelism
available.

G$[k] =

|P |−1∑
i=0

R$i[k] + E$i[k] +W$i[k],

0 ≤ k < max{∀p ∈ P |f(p)}

(2.3)

Where P is the set of all process of the program and f(p) the finish time of a process
p as described in the definition from Haagstregt[1]. The global execution profile, G$,
gives the PPN execution time which is the number of elements in G$ as well as the
maximum and average degree of parallelism.

2.5.4 Summary

1.      for(i=1;i<4;i++){
2. S1:    A[i]=A[i-1]+1;
3.      }
4.      for(i=0;i<3;i++){
5. S2:    B[i]=A[i]+A[i+1];
6.     }
7.     for(i=0;i<4;i++){
8. S3:    C[i] = A[i]+B[i];
9.     }

P1

P2

P3

$A[i]

$A[i]

$B[i]

C$3 = max($A[i], $B[i], C$3)

C$2 = max($A[i], C$2)
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W$3
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Figure 2.9: Overview of the Cprof profiler mechanics, with ΛF = 3 for all processes and
ΛR = ΛW = ΠF = 1
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Figure 2.9 summarizes the general operation of Cprof on a SANFLP. Figure 2.9(a)
shows a simple example of a three loop program that manipulates array variables A,B
and C. The statements in 2.9(a) are modelled as processes in Cprof. As Cprof does
not explicitly model the PPN. The arrow from Figure 2.9(a) to 2.9(b) highlights the
implicit relation between statement S3 and process P3.

The execution of P3 is regulated using the control variable C$3 and the shadow
variables $A and $B which are output arguments of P1 and P2 respectively. Figure
2.9(b) demonstrates the contents of the shadow variables. The process can only execute
at the maximum, i.e. when all data inputs are ready and the processor is ready. Take
for example iteration i = 1 of the loop. The inputs of P3 are $B[1] and $A[1] which
have values of 13 and 4 respectively. The maximum between the two inputs is 13, but
before the process may execute C$3 needs to be checked. The previous iteration i = 0
of P3 started at t = 9 and is ΠF = 1 we find C$3 = 10. The earliest time the process
can fire is at t = 13 given the maximum of A$[1],B$[1] and C$3.

The execution of iteration i = 1 for P3 is reflected in the statement execution profile
in Figure 2.9(c). At t = 13, the read profile of P3 (R$3) shows a value of 1 indicating
there is one active read. The read is followed by the start of an execution at t = 14
indicated by E$3[14] = 1. The progress of the execution can be examined in t = 15
and t = 16 of E$3 as the value is 1 for both times. Indicating 1 active operation in the
pipeline. The write operation can be seen at t = 17 with E$3[17] = 1 indicating the
write stage is writing the output of the process.

The profiles in Figure 2.9(c) also highlight the pipeline ability of the process. Iter-
ation i = 3 of P3 has input variables $A[3] = 12 and $B[3] = 0. The maximum time
on the input variables is 12, but the processor is not ready to fire The control variable,
C$3, is 18 at i = 3. Taking the maximum of the input variables and the control variable
of P3 indicate the iteration i = 3 of S3 can execute at 18. We have R$3[17] = 1 and
R$3[18] = 1 indicating two active reads at t = 17 and t = 18. The consecutive reads
translate to two overlapping operations in the pipeline as shown in Figure 2.9(c) at
t = 19 and t = 20 with values of 2.

All profile information is combined into a global execution profile as Figure 2.9(d)
demonstrates. The global execution profile is the sum of all read, execute and write
profiles of the processes in the PPN as Equation 2.3 Information about the PPN ex-
ecution time and the maximum degree of parallelism can be obtained. Based on the
execution profile, the execution time of the PPN is estimated to be 23 cycles and the
maximum degree of parallelism as 3.
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Related Work 3
The following chapter will delve into the current world of high level specification pro-
filing for a variety of architectures. The state-of-the art use of profiling and transfor-
mations to achieve performance gain in systems will be shown. Section 3.1 will delve
into the HLS frameworks while Section 3.2 will investigate in depth the profilers that
are often used as a part of these frameworks. Section 3.3 will examine the use of PPN
optimization and how it is achieved. Section 3.4 will demonstrate optimizations on
high level specifications. While Section 3.5 will discuss the origin of the Cprof profiler
and Section 3.6 will summarizes the chapter.

3.1 High Level Synthesis

Converting applications from high level languages to a hardware implementation is
not a trivial task. The work by Mazo[15] offers a framework, called MAPS, for such
conversion from C to a MPSoC architecture. The frame work aims at reducing the
productivity gap between high level exploration and low level implementation. The
disadvantage is the MAPS framework supports only the MPSoC architecture and does
not support PPN architectures.

The Daedalus[16] is a framework presented by Nikolov et al. as a system level
design flow tool for mapping sequential code to MPSoC architectures that uses PPN
as a model. The system uses early performance estimations for system-level architec-
tural exploration, to help increase the productivity of the designer. Daedalus show
only a 5% error in performance estimations for a JPEG encoder application. Cprof+
aims to profile sequential programs as well and perform design space exploration with
source-to-source transformations without knowledge of the target architecture. The
disadvantage of the Daedalus framework is that it assumes a MPSoC architecture for
the implementation.

3.2 Profilers

The first step in identifying performance bottlenecks in a system is done by simulation
and profiling. Execution information can often be obtained using profilers that execute
static and dynamic analysis of the application. The following types of profilers exist:
memory, software and hardware profilers.

3.2.1 Memory Profilers

Memory profilers identify regions of programs where there is poor temporal or spatial
locality of the data and offer ways to improve them.
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Cit[17], a gcc-plugin developed in Delft, aims to help parallel programmers by ad-
dressing the space of programs which have non-disjoint concurrent accesses which in-
vokes the need for mutual exclusion. The accesses can be classified as Always Conflict
or May Conflict. Determining the access type can help increase run-time performance
of the program by avoiding the penalty of transactional memory.

StructSlim[18] is another profiler that aims to take advantage of Performance Mon-
itoring Units(PMUs) that are available in most modern processors to sample addresses
and their propagation through the execution pipeline. PMUs help to provide an idea of
how data is accessed. However, it does require some manual instrumentation of source
code and only applies for processors with PMUs.

Both profilers target improvement in the way data is accessed in shared memory
systems. The analysis of memory access in a shared memory space is not required, as
processes in a PPN communication using a point-to-point method. Cprof+ focuses on
memory accesses of point-to-point channels and estimate their size.

3.2.2 Software Profilers

Software profilers examine the affect of programs executed on single or multiple proces-
sor architectures. Gprof[19] is a well known general profiler that monitors routine calls
in software to estimate bottlenecks in a program. The profiler works by creating a call
graph of routines and execution counts by inserting monitoring code into a program.
Gprof is not suited for modelling PPNs.

Valgrind is a profiling framework, described as a Dynamic Binary Instrumentation
framework[20], which injects instrumentation into the target program during run time.
The framework incorporates the concept of shadow values to keep track of a program’s
variable information. Cprof+ utilizes a shadow variables as well to profile the programs
and to keep track of the read and write of processes.

Profilers can also aid the designer in identifying regions of parallelism.
Prospector[21], aims to identify areas of parallelism in a program, that are often missed
by state-of-the-art compilers. The profiler instruments the code to perform loop profil-
ing and data dependency analysis during run-time. Currently, only targeted for MPSoC
architectures, Prospector can be extended to other models such as heterogeneous MP-
SoC and ASIP designs, but no mention for PPN support is given.

Kismet[22] is a profiling tool for identifying areas of parallelism using Hierarchi-
cal Critical Path Analysis (HCPA). The profiler uses HCPA with a target dependent
parallelization planner to devise the optimal parallelization strategy. Kismet is able
to accurately estimate potential areas of speed-up by partitioning the program into
regions and determining a region’s self-parallelism. A similar approach is taken in the
parallel profiler Parkour[23]. Parkour does not look into region partitioning of a pro-
gram, rather a finer grain level of functions and loops. Both profilers do not support
automated optimization of the program code. The profilers simply identify regions of
parallelism for the designer Cprof+ aims to automate the step to allow rapid design
space exploration.

A profiling tool that does employ source code transformations is Kremlin[24]. Krem-
lin detects parallel regions within the program using dynamic execution profile and self
parallelism metrics. The information is used to determine an optimal parallelization
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plan. Kremlin does support automated optimization of the program. However, the
output code is annotated with OpenMP code to facilitate parallelization on MPSoC
architectures requiring systems that support OpenMP directives. Support for source-
to-source transformations is not implemented as it is in Cprof+.

All the profilers have the ability to describe a program’s execution in software and
in some cases give optimized code for a given architecture. For applications were source
code is translated to hardware, such as PPNs implemented using the LAURA model,
a more appropriate profiler is needed.

3.2.3 Hardware Profilers

For a profiler to accurately give performance estimations of the application on a hard-
ware architecture, a basic model is needed. Application Specific Instruction Processors
(ASIPs) are one model that are an example of balancing software and hardware design.

Comet[25], is a design flow tool for creating VHDL models of ASIPs from C code.
The tool uses a custom instruction set simulator (ISS) to profile an intermediate repre-
sentation (IR) that is created from the C description. The IR is optimized a number of
times using profiling data from the ISS, before it is converted to a VHDL model of the
architecture. Comet allows for description of the target architecture, code instructions
and memory hierarchy. It does not allow for descriptions other than ASIP and does
not perform source-to-source transformations as Cprof+ does.

CoEx[26] is a profiler intended to reduce the productivity gap of ASIP DSE, by
allowing for rapid iteration in the software domain. It uses a multi grained profiler
approach by finding program hotspots and then tracing variable histories and memory
accesses within the hotspots to give the designer a better idea for optimization while
leveraging performance costs of basic blocks. The disadvantage is the profiler assumes
an ASIP architecture and does not support others like PPNs.

In the paper of J.F. Eusse et al.[27] pre-architectural performance estimation on
abstract processor models is used to reduce the productivity gap. The estimation is
achieved with static analysis of LLVM-IR combined with a dynamic analysis using the
CoEx[26] profiler to instrument source code producing a semi-static analysis technique.
Currently, the tool is limited to data-path optimizations of ASIPs and does not look
at memory architectures of the custom processors.

TotalProf[28], is a source code profiler that aims to deliver a tool that can esti-
mate performance of a program on many different architectures. The profiler works by
creating a virtual compiler backend in LLVM to emulate the execution on the target
architecture. TotalProf can estimate performance of VLIW, MPSoC and ASIP archi-
tectures with an error rate of 5% to 15%, but support for PPN architectures is not
implemented.

None of the profilers address the need for rapid exploration of PPN designs which
utilize the LAURA model. Most profilers and HLS frameworks target a specific im-
plementation model. Cprof+ aims address the lack of profilers targeted at PPNs and
PPN optimization.
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3.3 Polyhedral Process Network Optimization

To improve the productivity of the designer, tools may be created to reduce DSE or
ease the exploration. These tools require transformations of the source code or the
system description to achieve design exploration.

CLooG[29], a tool used for source-to-polydedra-to-source transformations, can apply
transformations to source code in an analytical manner for PPNs. With speedups of
4.05 in terms of run time as compared to other code generators, CLooG is a useful
tool[29]. However, it does not allow for automated DSE of programs and the inherent
intensive memory usage and time complexity hinder rapid DSE.

Polly[30] attempts to address the issue of Polyhedral transformations by manipulat-
ing the Intermediate Representation (IR) of programs as Polytopes using LLVM. Polly
supports a range of transformations. It does not support source-to-source transforma-
tions, as the transformations are applied only to the the LLVM-IR description and then
converted to an executable.

Loopy[31], performs loop transformations with verification using Polly[30]. It does
not allow for automatic optimization, as the designer must specify the transformations
to be used. The tool only looks at GPP applications and not hardware. Loopy achieved
significant speed up of programs with all the transformation scripts for each program
of the Polybench suite. The disadvantage is the optimization is not automated. The
transformation scripts for all benchmarks were written in one week[31].

So far compile time optimizations of PPNs have been discussed. Runtime optimiza-
tion of a PPN using the process splitting technique has also been proposed. Meloni et
al.[32] propose a runtime profiler that detects when a process can be optimized using
the process splitting method. The detection is achieved using an execution table lo-
cated in shared memory, whereby a helper process is able to scan the table and select
the correct process for splitting. The results demonstrate for the MPJEG case study,
the performance gain was negligible due to the overhead costs of the decision, splitting
and merging phases.

3.4 Optimizing High Level Specifications for Hardware

HLS today is standard practice for many applications due to size and complexity of
the problem. Each modern HLS tool often uses a compiler to generate the HDL. The
compilers use optimizations on the code such as dead code elimination and constant
propagation. Huang et al.[33] present a HLS-directed compiler optimization for FPGA
implementations By investigating different compiler optimization techniques and com-
piler passing directions, Huang et al. were able to present a set of compiler optimiza-
tions that in HLS produce on average 16% performance increase[33]. The paper did
not suggest if the these optimizations can be applied to other hardware architectures,
but it does highlight the importance of source transformations to induce performance
in hardware.

Accelerating kernel loops of programs in reconfigurable hardware at the high-level
language level using Loop Skewing and Loop Unrolling is another problem. The
paper[34] took a look a data dependencies between iterations to determine whether
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to unroll a loop. Determining the unroll factor based on memory accesses and area
estimations as well as comparing estimated software and hardware implementations.

3.5 Cprof

Cprof is a lightweight profiling tool that estimates the performance of a PPN based on
an application source code. The concept was conceived by Haagstregt[1] in his PhD
thesis and suggested the tool for profiler PPNs. The profiler does not explicitly model
the PPN, rather it constructs a simulation based on the statements of a program. The
implementation of the tool was done in the master thesis of Teijlingen[4]. The results of
Cprof demonstrated for most programs in the Polybench Suite, accurate performance
estimations can be achieved. However, for some benchmarks the estimation was up to
60% inaccurate[5].

3.6 Summary and Conclusion

Improving source code for applications is fast under way for MPSoC and ASIP archi-
tectures to enable better designs. Each employing frameworks with a range of profiler
types to minimize the overhead for profiling thereby increasing the productivity of
the designer. Some frameworks even allow for automated DSE to generate optimal
implementations.

Work towards a rapid profiler for programs implemented in a PPN has been achieved
using Cprof. The previous work of Teijlingen[4] gave an efficient profiler that can be
used to help explore the DSE of a PPN rapidly using the Compaan/Laura tool chain.
Inaccuracies and lack of features hinder the ability for widespread use as an early
prototyping tool for hardware PPNs implementations. We present Cprof+ that will
help to reduce the gap of the profiler as a stable and lightweight tool for profiling
PPNs.
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Cprof Validation 4
The ultimate goal for Cprof+ is to provide the designer a tool that can find design points
efficiently to assist in DSE. The design points given by Cprof+ can aid the designer
in finding the optimum design for their application. Finding appropriate design points
in the design space requires Cprof+ to maintain an accurate execution profile of the
network.

With an accurate execution profiles, Cprof+ will be able to estimate the performance
of a network comparable to that of the hardware performance. The Cprof+ performance
estimations will be compared to the RTL simulations of the PPN using the Vivado HLS
Suite to ensure their validity.

4.1 Problem

The master thesis of Teijlingen[4] showed that Cprof estimates the performance of most
Polybench programs accurately. Table 4.1 demonstrates for 22 of the 29 benchmarks in
the Polybench Suite the performance estimations are well within 1% of the RTL simu-
lation values. There are exceptions which include the benchmarks: dynprog, fdtd ampl,
floyd warshall, gemm, lu, reg detect and syr2k. Each exhibit a difference between the
Cprof estimation and RTL simulation ranging from 5% to 60%.

Verification was performed on the benchmarks and the following problems were
identified.

1. Static functional latency. The execute stages of processes in Cprof are mod-
elled as a 3 stage execution pipelines, no matter the complexity of the function
expression implemented.

2. Channel communication type. Process communication channels in Cprof are
not modelled. The communication channel types are not known a priori and no
distinction is made between a IOM and OOM channel.

3. Static channel type. When a process in Cprof is reading an input, the channel
type is always static and does not change during run time. Static channel types
are not guaranteed for Cprof. As Cprof simplifies the communication topology of
the PPN.
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Benchmark Cprof (Cycles) Vivado (Cycles) Difference (%)

adi 5590 5606 0.29
atax 19948 19963 0.075
bicg 1989 719911 0.070

cholesky 90552 91604 1.14
correlation 337392 338579 0.35
covariance 340876 342014 0.33

doitgen 181028 181047 0.010
durbin 10743 10909 1.52

dynprog 187874 253593 25.92
fdtd 2d 2125 2140 0.70

fdtd apml 4412 4609 4.27
floyd warshall 746 2086 64.24

gemm 33762 99251 65.98
gemver 54972 55050 0.14

gramschmidt 4510 4721 4.47
jacobi 1d imper 1031 1045 1.34
jacobi 2d imper 1938 1951 0.67

lu 10743 31571 65.97
ludcmp 122656 122773 0.095

mvt 10649 10724 0.70
mm2 519096 521222 0.41
mm3 627683 631730 0.64

reg detect 3649 4571 20.17
seidel 2d 181228 181242 0.0077

symm 279435 281367 0.69
syrk 508958 508979 0.0041
syr2k 1016878 108038 25.88
trisolv 9497 9518 0.22
trmm 418625 420323 0.40

Table 4.1: Comparison of the original performance estimations of Cprof against Vivado RTL
Simulation results.

4.2 Solution Approach

To solve these 3 problems we propose 3 solutions. The first solution introduces the ca-
pability for variable pipeline depths. The second solution implements a run time check
for channel communication type. The third solution demonstrates dynamic channel
type switching during run time.

4.2.1 Variable Pipeline Depths

The original design of Cprof implements the pipeline depth of a function as a constant.
Where the function latency (ΛF ) for any function is set to 3 cycles with a read latency
(ΛR) and write latency (ΛW ) of 1 cycle. A functional latency of 3 cycles is not the case
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for many functions.

68. #pragma compaan_property pipeline 18
69. void compaan_outlinedproc4(double* tmp0, double tmp1,
70.        double tmp2, double tmp3){
71.        (*tmp0) = (tmp1) + (tmp2) * (tmp3);
72. }

LLVM/Clang

Cprof+151. CprofFunctionCall* CFC4 = CM->get(4);
152. CFC4->setFuncLatency(18);

a)

b)

Figure 4.1: Typical Flow for Pipeline Depth Detection. a) original source code of atax.c b)
instrumented source code of ATAX, atax.c cprof.cpp, with Cprof Instrumentation statements
inserted.

Figure 4.1 demonstrates a function from the atax benchmark with a functional la-
tency of 18 cycles. The functional latency or pipeline depth was calculated by Compaan
using Vivado HLS 2015.4 from Xilinix[5], for each function within the Polybench suite.
The original Cprof did not take the calculated pipeline depths into consideration even
though the infrastructure existed.

For Cprof+ to include the variable pipeline depths, the LLVM/Clang was modified
to include a pragma handler to catch the #pragma compaan_property pipeline on
a function. The pipeline depth is then passed to the CprofFunctionCall object repre-
senting the function call in Cprof+. The function latency is also saved directly to the
instrumented program file as shown in Figure 4.1(b). Cprof+ can adjust firing times
of the node accordingly and simulate the actual execution of the node in the network.
This allows for more accurate measurement of the network performance.

4.2.2 IOM and OOM Communication

Communication between PPN nodes take the form of IOM and OOM with multiplicity
or without. For most cases we can see in Table 4.1 the type of communication is FIFO
based (IOM-) as Cprof modelled single latency reads. Benchmarks like gemm shows
the read latency can have an affect on the performance estimation.

Figure 4.2 shows the PPN for gemm with streaming nodes, ND 2 and ND 3. Both
nodes communicate using Out of Order Memory to ND 7. As the original Cprof cannot
distinguish between communication types, tt assumes a constant cycle cost of 1 cycle
for each read. A read latency of 1 is not the case for Out of Order Memory. By
examining the RTL simulations, generated by the Compaan/LAURA tool, we observe
that it takes 3 cycles to complete a read from an OOM communication type. This is
further support by the HDL description of the OOM.

The HDL description shows the Finite State Machine (FSM) used. It does indeed
have three states and for one complete read it must pass through each state. Hence
the delay of 3 cycles when a token is read from OOM.
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Figure 4.2: The PPN graph of the benchmark GEMM. With OOM edges: ND 3 to ND 7 and
ND 2 to ND 7

Listing 4.1: The Finite State Machine used in the RTL description to handle the read from
an OOM

1 FSM : process ( s_clk , s_rst )
2 variable cntr : natural ;
3 begin if rising_edge ( s_clk ) then

4 if ( s_rst= ’1 ’) then

5 state <= s_idle ;
6 else

7 case ( state ) is

8 when s_idle => if ( read_variable= ’1 ’) then state <= s_load ;
end if ;

9 when s_load => if ( FSL_S_Read= ’1 ’) then state <= s_update ;
end if ;

10 when s_update => state <= s_idle ;
11 when others => state <= s_idle ;
12 end case ;
13 end if ;
14 end if ;
15 end process ;

The next step is to implement this behaviour within Cprof+. This requires the
detection of an OOM channel. OOM detection is not a trivial task because the original
implementation for communicating variable write times between functions in Cprof was
done using Shadow Variables, which act as a simple Look Up Table (LUT). When the
function is executed, the indices are used to check the latest write time of the variable
in the shadow variable. The shadow variable method does allow for modelling of flow
dependencies in a PPN, but it does not have the capability to model the communication
channel type.

To identify the types of communication, we introduce the concept of Lexicographic
Order.
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Definition 4.2.1. Lexicographic Order. An element a is lexicographically less than an
element b if ai < bi for the first dimension i in which the elements differ [1]. Or more
concisely,

a ≺ b ≡
n∨

i=1

(ai < bi ∧
i−1∧
j=1

aj = bj) (4.1)

For example, let a = (1, 2, 1) and b = (1, 2, 2). First, the left most index (i = 0)
is checked and it is found that the element is equal, e.g. 1. Then the middle indexes
(i = 1) are checked and again are found to be equal, e.g. 2. It is only with the last
index (i = 2), do the elements differ. With a3 < b3 we find that a ≺ b.

The idea of lexicographical order is utilized through out the OOM Detection al-
gorithm. A read is checked for OOM using the lexicographical order test on variety
of metrics that are stored within Cprof. Section 4.2.2.1 will explain the infrastructure
needed for the OOM detection algorithm. The algorithm can be partitioned into 3 main
parts. Figure 4.3 shows the control flow of the program with 3 main parts highlighted:
A.1, A.2 and A.3.
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Figure 4.3: The control flow of the OOM detection algorithm
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4.2.2.1 OOM Detection Infrastructure

The original Cprof cannot model channel communication types. Cprof lacked the in-
frastructure to detect an OOM channel. When a variable is read, the channel type can
be determined by maintaining four metrics.

1. Current value of the read iterators. Cprof+ will need to know which iteration the
loop is in to understand if the current read operation is in-order or out-of-order.

2. A variable’s write history. The original Cprof did not maintain a history of variable
write times and write indices. The read order of variables are assumed to traverse
the iteration domain in lexicographical order. The lexicographic order of the read
compared to the current write in the history can be used to determine if a channel
is OOM. If the lexicographical order is negative, read � write, then the read is
OOM.

3. The previous value of the iteration. Keeping track of the previous iteration can
help to determine if the variable is being read in a lexicographic order. If read ≺
readprev then the variable is reading out of order. The result can help to determine
if the channel is indeed out of order.

4. Lower and upper bound of the iteration values. The original Cprof lack the ability
to know during run time, the minimum and maximum values the iterators will
take during the loop execution. Cprof+ is required to know the maximum and
minimum values of the iterators as it can indicate if the loop is beginning or
ending a pattern of reads.

4.2.2.2 A.1 OOM Detection

The first part of the algorithm checks whether we have reached the end of the variable’s
write history. The algorithm works by incrementing the history’s array index and
examining the write at that index. The array index is incremented during each read
operation of the process. If during a read, we find the write history index has reached
the end of the array, it can signal two outcomes. The channel may have multiplicity,
meaning tokens are being read multiple times, or due to parts A.2 and A.3 we have
advanced the write history to the end. In each outcome, the previous iteration’s channel
type is used to classify the current channel type. The assumption is the channel type
will not change, if there are no more tokens to read from the write history.

If the write history has not reached the end, the previous read iterators are used to
check the current read iterators. If the read iterators are equal to the previous, it can
indicate we are reading in order with multiplicity or out-order with multiplicity.

To determine whether it is IOM or OOM, we check if the write history was searched.
The search is carried out by A.2 or A.3 of the algorithm. If the history was not searched,
we maintain the previous channel type. The search could indicate the channel is reading
in IOM or OOM depending on the result of the search. We need to confirm the result
with the write history. If the write iterators match the current read iterators, then it
is IOM. If not, it is OOM.
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4.2.2.3 A.2 OOM Detection

Beginning the loop at the initial iterator value can present a problem for detecting
the channel type. There are cases within the Polybench suite were benchmarks have
variables that do not reach the loop maximum or minimum condition which is caused
by dynamic initial loop conditions.

Listing 4.2: Source Code of Lu. An example of dynamic loop conditions

1 for (i = 0 ; i < _PB_N ; i++) {
2 for (j = 0 ; j < _PB_N ; j++) {
3 proc0 ( &A [ i ] [ j ] , AI [ i ] [ j ] ) ;
4 }
5 }
6 for (k = 0 ; k < _PB_N ; k++) {
7 for (j = k + 1 ; j < _PB_N ; j++) {
8 proc1 ( &A [ k ] [ j ] , A [ k ] [ j ] , A [ k ] [ k ] ) ;
9 }

10 for (i = k + 1 ; i < _PB_N ; i++) {
11 for (j = k + 1 ; j < _PB_N ; j++) {
12 proc2 ( &A [ i ] [ j ] , A [ i ] [ j ] , A [ i ] [ k ] , A [ k ] [ j ] ) ;
13 }
14 }
15 }
16 . . .

Table 4.2: Showing the write and read iterator histories of variable A for lu’s proc2 with
channel types as detected by Cprof+. The first 6 iterations.

Write History Read History (Proc2)

(Proc1) (Proc0) A[i][k] Type A[k][j] Type A[k][j] Type
A[k][j] A[i][j] (Proc) (Proc) (Proc)

(1,0) (0,0) (1,1) IOM(2) (1,0) IOM(2) (0,1) IOM(1)

(1,1) (0,1) (1,2) IOM(2) (1,0) IOM(2) (0,2) IOM(1)

(1,2) (0,2) (2,0) IOM(2) (2,0) OOM(2) (0,0) OOM(1)

(2,0) - (2,1) IOM(2) (2,0) OOM(2) (0,1) OOM(1)

(2,2) - - - - - - -

... - ... ... ... ... ... ...

Table 4.2 shows the first 5 iterations of function proc2 from the benchmark lu
shown in Listing 4.2. The two left columns of the table show the write history of the
variable A as seen from two functions, proc0 and proc1. The right columns of Table
4.2 highlights the read iterations of proc2.

The first read iteration of proc2 has (1, 1) for variable A[k][j]. The lower bound
on the iterator values for A[k][j] is calculated to be (1, 1) as both k and i have initial
loop conditions of 1 for this iteration. The variable A[k][j] is IOM as calculated by
Compaan. If the write history of proc2 were compared to the initial read of A[k][j]
it would be a mismatch. As A[k][j] = (1, 1) and A[k][j] = (1, 0) for proc2 and proc1

respectively. The history of A[k][j] from proc1 will have to be incremented to (1, 1).
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As the read history of A[k][j] of proc2 is in lexicographical order. For subsequent reads
of A[k][j] of proc2 will follow the write history of proc1. This is shown in Table 4.2
with the subsequent reads of A[k][j] described as IOM.

4.2.2.4 A.3 OOM Detection

The third part of the algorithm takes a look that value of the iterators in the write
history to verify the channel type. If the current iterator values are equal to that in
the history, then it must signify we are reading in step with what was written. To
ensure this assumption, the previous read iterator values are checked. The check is
done by examining if the current read is lexicographical positive and offset by 1. This
is accomplished by comparing the previous iteration with the current iteration to see
if the distance between the two are 1. If both conditions are not met, the channel is
classified as OOM.

There are instances where the value of the write history does not match the current
iteration. If the history iterator values are lexicographically greater than the current
iterators, it may mean we are reading in order. Only if the lexicographical read order
is positive and current iteration is ahead of the previous iteration by one. When the
read order is lexicographically negative the channel is classified as an OOM.

For example, take the iterators (i, j) where we assume the minimum and maximum
values of (i, j) to be (0, 0) and (2, 2) respectively. Take the current iteration value as
(2, 0). If the previous iteration value was (1, 0) then the read is lexicographically posi-
tive, but the distance between the two points is greater than one using lexicographical
read order. Meaning the current iteration is not an in order read.

An example of an in order read, is where the current iteration, (2, 0), is both lexi-
cographically positive and succeeds the previous iteration by 1. In this case (1, 1).

The lexicographical read check can also be used when the history iterator values
are lexicographically less than the current iterator values. In this case the history may
be a number of iterator values behind the current read iterator values and needs to be
advanced. If the current iterator values is found within the history, then it is checked
to see if the read order is lexicographical to determine if the channel is IOM or OOM.
If the iterator values are not found, then it is assumed to be OOM as the iterator may
lie in the past.

Listing 4.3: Source Code of GEMM

1 for (i = 0 ; i < N ; i++) {
2 for (j = 0 ; j < N ; j++) {
3 proc1(&A [ i ] [ j ] , IA [ i ] [ j ] ) ;
4 }
5 }
6 for (i = 0 ; i < N ; i++) {
7 for (j = 0 ; j < N ; j++) {
8 proc2(&B [ i ] [ j ] , IB [ i ] [ j ] ) ;
9 }

10 }
11 . . .
12 for (i = 0 ; i < N ; i++) {
13 for (j = 0 ; j < N ; j++) {
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14 proc5 ( &C [ i ] [ j ] , C [ i ] [ j ] , beta ) ;
15 for (k = 0 ; k < N ; ++k ) {
16 proc6(&C1 [ i ] [ j ] , C [ i ] [ j ] , alpha , A [ i ] [ k ] , B [ k ] [ j ] ) ;
17 }
18 }
19 }

Table 4.3: Showing the write and read iterator histories of variables A and B of gemm’s
compaan outlinedproc6 with channel types as detected by Cprof+. The first 12 iterations.

Write History Read History

A B Iteration A[i][k] Atype B[k][[j] Btype

(0,0) (0,0) (0,0,0) (0,0) IOM (0,0) IOM

(0,1) (0,1) (0,0,1) (0,1) IOM (1,0) OOM

(0,2) (0,2) (0,0,2) (0,2) IOM (2,0) OOM

(1,0) (1,0) (0,1,0) (0,0) OOM (0,1) OOM

(1,1) (1,1) (0,1,1) (0,1) OOM (1,1) OOM

(1,2) (1,2) (0,1,2) (0,2) OOM (2,1) OOM

(2,0) (2,0) (0,2,0) (0,0) OOM (0,2) OOM

(2,1) (2,1) (0,2,1) (0,1) OOM (1,2) OOM

(2,2) (2,2) (0,2,2) (0,2) OOM (2,2) OOM

The benchmark gemm highlights the third part of the algorithm. The source code is
given in Listing 4.3. The read iterations of proc6 in gemm are given in Table 4.3. The
variable B[k][j] of proc6 is an example of an out of order channel. The initial iteration
is classified as IOM because the value in the write history of B, (0, 0), matches that of
B[j][k] in proc6. The in-order read does not hold for the next iteration of proc6. The
read value of B is (1, 0), but the value in the history is now (0, 1). The current iterators
are lexicographically greater than the write history and the read is not following the
lexicographic order. The read of iteration (0,0,1) for proc6 is OOM.

4.2.2.5 Summary

Figure 4.3 demonstrates a run time check for detecting if a read is OOM. The accuracy
of the check is not 100% as Tables 4.3 and 4.2 show. The variable B of proc6 in
Table 4.3 is an OOM channel. Cprof+ cannot determine the channel is OOM for the
first iteration because it lacks information on the read and write history creating an
inaccuracy. The inaccuracy can also be seen in Table 4.2 for variable A[k][j] of proc2.
The first two iterations are indeed following the lexicographical read order and the
write history. The error is not correct till the lexicographical read order is broken.

The algorithm may not be 100% accurate, but as the results in Section 4.3 demon-
strate, the run-time check for OOM channels can handle most Polybench benchmarks
to give an accurate estimation of performance.
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4.2.3 Dynamic Channel Type Detection

Detecting the communication type is crucial to achieve a more accurate tool for pro-
filing SANFLPs. Simply assuming that when OOM is detected, that the channel is
consistently OOM is not always true. As explained in Section 5.1.1, Cprof+ cannot
model all the edges present between nodes explicitly. Cprof+ only examines the re-
lations between variables and derives the channels from the write and read profiles,
rather than from a mathematical description of the input and output relation.

Figure 4.4: RTL Simulation of the Floyd Warshall Benchmark. Showcasing the execution of
ND 2 (Compaan Calculation Function) and the IOM and OOM nature by highlighting the
read signals from the self loop edges.

As Figure 4.4 highlights, during the execution of the Floyd Warshall benchmark,
depending from which channel the token is read, it will incur a read penalty due to
a read from an OOM channel. In some instances, there is no read penalty incurred
because two tokens are read in sequence from two different IOM channels. Causing two
operations to execute in sequence as highlight in Figure 4.4

The PPN graph of the Floyd Warshall bechmark in Figure 4.5 demonstrates the
complex nature of the self loops of Node 2. Node 2 has 7 separate self loops when the
variables are read, the self loop that is selected is based on the schedule of the network.
The schedule is derived mathematically. In the case of the Floyd Warshall benchmark,
the iteration domain is divided to accommodate for 7 different access patterns. These
access patterns are manifested as 7 self loops.

Cprof+ can only examine the high-level specification, inferring the communication
channels by examining the relation between variable input and output. Figure 4.6
highlights the function of node 2 with 3 input variables and 1 output variable, all of
the same name. Given this variable information, Cprof+ can only model 3 self loops.
Leading to a model where 4 out of the 7 edges are not recognized. The Cprof+ model
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Figure 4.5: PPN of the Floyd Warshall Benchmark.

1 for (k = 0 ; k < _PB_N ; k++) {
2 for (i = 0 ; i < _PB_N ; i++) {
3 for (j = 0 ; j < _PB_N ; j++) {
4 path [ i ] [ j ] = compaan_calculation ( path [ i ] [ j ] , path [ i ] [ k ] , path

[ k ] [ j ] ) ;
5 }
6 }
7 }

Figure 4.6: Function Description for ND 2 in the KPN of the Floyd Warshall Benchmark

of the PPN for the Floyd Warshall benchmark can be seen as a simplification of the
actual model.

The simplified model can lead to a situation where two tokens are read in Cprof+
in sequence from the same Cprof+ communication channel. When in the true PPN
model, the tokens are being read from two different communication channels that may
have different types. The solution is to have Cprof+ constantly checking during run
time for the communication type.

4.3 Results

The results of the modifications demonstrate a much more accurate estimation of the
actual hardware implementation of the programs in a PPN. Table 4.4 compares the
RTL Vivado simulation results to the estimations given by Cprof+. The maximum
error of the simulation results is now brought to the range of -2.20% to 5.88% for the
Polybench suite of programs. A much more accurate result when compared to the
original simulation results which saw a maximum error of 66% error as shown in Table
4.1. Errors for some benchmarks still exist, e.g. floyd warshall and syr2k show an error
of 4.12% and 5.88% respectively. The source of the errors is further discussed in the
following section.
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Benchmark Cprof (Cycles) Vivado (Cycles) Difference (%)

adi 5590 5606 0.18
atax 19948 19963 0.08
bicg 19897 719911 0.07

cholesky 91500 91604 0.11
correlation 338498 338579 0.02
covariance 341992 342014 0.01

doitgen 181028 181047 0.01
durbin 10803 10909 0.97

dynprog 242398 241801 -0.25
fdtd 2d 2187 2140 -2.2

fdtd apml 4508 4609 2.19
floyd warshall 2000 2086 4.12

gemm 99172 99251 0.08
gemver 55034 55050 0.03

gramschmidt 4746 4721 -0.53
jacobi 1d imper 1031 1045 1.34
jacobi 2d imper 1899 1951 2.67

lu 31364 31571 0.66
ludcmp 123680 122773 -0.74

mvt 10711 10724 0.12
mm2 521142 521204 0.00
mm3 631713 631730 0.00

reg detect 3649 4571 0.52
seidel 2d 181228 181242 0.01

symm 281351 281367 0.01
syrk 508958 508979 0.00
syr2k 1016878 108038 5.88
trisolv 9497 9518 0.22
trmm 418625 420323 0.40

Table 4.4: Comparison of Cprof+ with OOM detection against Vivado RTL Simulation re-
sults.

4.4 Limitations

As Table 4.4 demonstrates for two of the benchmarks, floyd-warshall and syr2k, the
error is still substantial. Section 4.2.2.5 highlights the ability to check for a channel
type during run time can lead to a run in error. Cprof+ cannot detect with little or no
information that a channel is OOM.

The source of the Cprof+ estimation errors can be categorized in two parts.

1. Channel State. As part A.1 of Figure 4.3 demonstrates, when the algorithm
has reached the end of the write history, the previous channel type is used. The
previous channel type may in some cases not match the current channel type.

2. Initial Channel Type. Finding the initial channel type is difficult with no read
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history. As Section 4.2.2.5 demonstrates for some benchmarks a initial error is
encountered due to the lack of information and read pattern. This initial error can
lead to both over and underestimations in the case of OOM or IOM respectively.

Further investigation into the inaccuracies will have to be conducted in order to
obtain a more stable estimation of the PPN. Cprof+ shows that with run time OOM
detection estimations can be signifigantly reduced for benchmarks such as lu which rely
on OOM channels.

The ability to detect channel type is not a trivial one. ILP methods used previously
in Compaan using Multiplicity Test and Reordering Test which are memory intensive
and time consuming[35]. At the current moment, a polynomial technique is employed
to detect types in Compaan using the mapping matrix. The advantage of Cprof+ is
the ability to detect the type just using the execution profiles during run time. The
comparison of run times of Cprof+ vs. Compaan/LAURA design flow is shown in
Chapter 7.
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Channel Sizing using Cprof+ 5
The calculation of channel sizes for communication channels in a PPN is to choose
channel sizes such that a network does not deadlock. Often times heuristics [15]or
simulation runs[36] are used to calculate appropriate channel sizes with varying results.
A deadlock in a PPN occurs when the network cannot progress forward due to one or
more function nodes blocking on a write operation.

One solution is to select arbitrary large channel sizes to ensure that deadlocks do
not occur in the PPN. This approach is inefficient in terms of hardware used, as it
increases memory costs unnecessarily.

In the thesis of Haastregt[1] buffer size computation is performed by PNGen[37].
PNGen takes the global schedule of the network and determines the channel sizes based
on this schedule [1]. The schedule provides a relative order of iteration pairs. Given a
read and write iteration pair with the number of reads so far and the number of writes
before, the size of communication channel can be calculated. The maximum size is
determined by examining all sizes over the whole set of iteration pairs for that channel.

Examining the iteration pairs is not the only approach. When the PPN is non-
parametric, the channel size can be calculated using a symbolic approach by computing
the maximum on a quasi-polynomial. PNGen employs both techniques to find a set of
channel sizes that guarantee a deadlock free schedule. This is done by using a greedy
algorithm for computation of channel size.

Cprof+ utilizes the execution profiles of each function node available to determine
the channel size. A similar approach to that of PNgen.

5.1 Solution Approach

The solution for calculating the sizes of channels is to model the channels explicitly.
Section 5.1.1 explains the explicit definition of communication channels and how they
are implemented in Cprof. Section 5.1.2 will demonstrate the method used to calculate
the channel size based on the write and read history of that channel.

5.1.1 Modelling Communication in Cprof+

The current method of passing variable information between function nodes in Cprof
is done through the Shadow Variables. Similar to a LUT, the table is used to store
the write time of a variable. This method of communication is extremely effective for
performance modelling of the PPN. The original method of modelling does not accom-
modate for channel size estimation. The following section will discuss the CprofFIFO
object, that will be used to represent the communication channels in Cprof+.
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1. for( i = 0; i < n/2; i++){
2.      b[i] = foo(a[i]);
3. }
1. for( i = n/2; i < n; i++){
2.      b[i] = moo(a[i]);
3. }
4. for( i = 0; i < n; i++){
5.      c[i] = work(b[i]);
6. }

a) b)Retr
iev

e b
[i]

Update b[i]

SV Time

$b[0]
$b[1]
$b[2]
$b[3]

3
4
3
4

UUID

0
0
1
1

Figure 5.1: A trivial example highlighting the new information stored at runtime in a Cprof
simulation. That is the UUID of the function call that wrote the variable.

To construct the channels in Cprof+, information on which node wrote the token
needs to be obtained. This is obtained by adding another dimension to the Shadow
Variable, that is the Universally Unique Identifier (UUID) of the writing node. For
example, Figure 5.1 demonstrates the new function of the Shadow Variable. As variable
b[i] is being written to by two different functions we can see that in the Shadow
Variable of b[i] that its is reflected by the different UUIDs. Where UUID 0 and 1
represent functions foo and moo respectively.

Each variable in a function can have multiple sources when read. As Figure 5.1(b)
highlights the Shadow Variable of b[i] has two sources. When modelling b[i] as a
CprofVariable, a list of sources must be stored. The list is a collection of CprofFifo
objects which contain all the information regarding the source. When the variables
are read during simulation, the matching CprofFifo object is updated. The correct
CprofFifo object is selected based on a UUID. When the CprofFifo object does not
exist within the CprofVariable, a new CprofFifo object is created with the UUID.

With a dynamically created list of channels, Cprof+ has the ability to derive the
communication topology during run time. CprofFIFO objects are used to store the
read and write information of that variable and contains all the logic for channel type
identification. Figure 5.2 highlights the data structure of the CprofFIFO object and its
relation with the CprofVariable object. The data structure of the CprofFIFO object
shows the UUID of the writing function as well as the UUID of the reading function
(myUUID).

38



Property Value

Name
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Access Type

Data Type

Declaration
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Write History
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UUID
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...
1. for( i =0; i < n; i++){
2.     CFC2->setUpperBoundValueOfIterators("i",n);
3.     CFC2->setLowerBoundValueOfIterators("i",0);
4.     CFC2->constructIteratorBounds();
5.     CFC2->updateReads(1, i);
6.     CFC2->updateExecution();
7.     CFC2->updateWrites(1, i);
8.      c[i] = work(b[i]);
9. }
...
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Write History

Read History

MaxFiFoSize

Size

1

2

0x020

0x024

4

NULL

UUID

myUUID

a) b) c)

Figure 5.2: Demonstrating the data structures of CprofVariable (b) and those of CprofFifo
(c) used in an instrumented version of the code (a)

5.1.2 Calculating Channel Size

Calculating channel sizes are the next critical step in the implementation. Each
CprofVariable within a CprofFunctionCall contains a list of CprofFifo objects with
its read and write history. Based on this history, the channel size can be calculated
using Algorithm 1.

The size of the channels calculated using Algorithm 1. The calculation is done after
the simulation is complete. Post-simulation analysis is required as some self loops do
not have all the information available at run time to calculate the correct channel size.
As a token in the self loop may be used later in an iteration causing the channel to
exhibit multiplicity. To calculate the amount of iterations till the token is used again
in the self loop requires all iterations to be known.

The calculation of channel sizes can be separated into two separate algorithms.
Section 5.1.2.1 will describe the algorithm used for calculating sizes of channels that do
not contain self loops. Section 5.1.2.2 will deal with the self loop case.

5.1.2.1 Calculating channel size for non self Loops

Algorithm 1 demonstrates the method for calculating the size of channels which do not
contain self loops. The method compares the read and write times of an iteration. Each
iteration is saved to memory during run-time with the write time and read time pair of
that variable. The read times are used to traverse the write history of the CprofFifo.

Line 2 of Algorithm 1 is used to check for multiplicity. Multiplicity is found when
the same write time is found twice within the history. Line 11 gives the condition for
such an instance. If multiplicity is found, Lines 21-40 help to ensure the calculated
channel size does not exceed the maximum calculated size.
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Algorithm 1 Cprof FIFO Sizing

Input: Read and Write History of the Variable
Output: Unsigned Integer of FIFO Size
1: done = false
2: checkWrite = writeHistory[0];
3: for i = 0 To Read History Size do
4: size = 0;
5: read = ReadHistory[i];
6: for j = 0 To Write History Size do
7: write = WriteHistory[j]
8: if write ≤ read then
9: size++

10: end if
11: if !done && write == checkWrite && j != i then
12: done = true
13: end if
14: end for
15: checkWrite = write;
16: size = size - i;
17: if size > maxSize then
18: maxSize = size
19: end if
20: end for
21: if done == true then
22: maxSizeTemp = maxSize
23: if maxFifoSize > 1 then
24: if maxSize < History Size then
25: if maxFifoSize > maxSize then
26: maxSize = size
27: else
28: maxSize = maxSizeTemp
29: end if
30: else
31: maxSize = maxSizeTemp
32: end if
33: else
34: if History Size < maxFifoSize then
35: maxSize = History Size
36: else
37: maxSize = maxFifoSize
38: end if
39: end if
40: end if
41: return maxSize
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Listing 5.1: C code of the function compaan outlinedproc3 of the atax benchmark.

1 . . .
2 for (i = 0 ; i < _PB_NY ; i++) {
3 for (j = 0 ; j < _PB_NX ; j++){
4 compaan_outlinedproc3(&tmp [ i ] , tmp [ i ] , A [ i ] [ j ] , x [ j ] ) ;
5 }
6 }
7 . . .

The maximum channel size is calculated based on the largest iterator value seen and
the dimension of the variable. For example, a variable defined as A[8][8] will have a
maximum channel size of 64 as each iterator dimension is size 8 and it is 2-dimensional.

If the maximum channel size is not reached, the algorithm increments through
each read time (ReadHistory[i]) in the history and compares it with all write times
(WriteHistory). If the write time is less than or equal to read time the size is in-
cremented. To ensure the correct size is calculated, the size is subtracted by the read
index (Line 16). We assumed the values that have been read are not stored any more.

The time complexity of the algorithm is O(nm) where n is the length of the read
history and m the write history. The space complexity is O(1) as the memory require-
ments do not increase given the read and write history.

5.1.2.2 Calculating Self Loop Channel Size

Algorithm 2 gives a method for calculating the channel size of a self loop channel. The
read pattern of the self loop is different to other channels as the data is either read
write after it is written or in a certain number of iterations later.

Line 3 of Algorithm 2 demonstrates when the write and read times of an iteration
for a variable are equal, it indicates the variable is being read as it is being written. As
the variable is being read the iteration after it is written, it will only need a channel size
of 1. The function compaan_outlinedproc3(&tmp[i], tmp[i], A[i][j], x[j]) of
atax demonstrates the direct read after write self dependency. The variable tmp[i] is
read just after it is written. Listing 5.1 shows the C code implementation of atax

When the write time of a variable and the read time do not match, the history of
the self loop is searched. The search of the read history, Lines 6-30, looks for the same
read indices, but later in time. The distance between the two indices determines the
amount of tokens that need to be stored before the current token is used.

If the current token is not found, line 29 will try to calculate a channel size based on
the Algorithm 1. The historyIndex is used to reduce the amount of elements in the
write history array that need to be searched. Start position for each search iteration of
the token is based on the historyIndex which is incremented after each iteration as
shown in Line 4 and 11 of Algorithm 2.

The time complexity of Algorithm 2 is O(nm) where n and m are the read history
size and write history size respectively. The space complexity of the algorithm is O(1)
as no other storage is required.
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Algorithm 2 Cprof Self Loop FIFO Sizing

Input: Read and Write History of the Self Loop
Output: Unsigned Integer of FIFO Size
1: for i=0 to Read History Size do
2: size = maxSize
3: if writeTime[i] == readTime[i] then
4: historyIndex++
5: else
6: sizeBefore = size
7: for j = historyIndex to Write History Size do
8: if WriteIndices[j ] == ReadIndices[i] then
9: if index != j then

10: found = true
11: historyIndex++
12: maxsize = max(size, maxSize)
13: if size > maxSize then
14: size = maxSize return size
15: else
16: size = 1
17: end if
18: end if
19: break
20: else
21: size++
22: if j > Write History Size then
23: size = sizeBefore
24: end if
25: end if
26: end for
27: if !found ∧ historyIndex < ReadWrite History then
28: calculateChannelSizeUsingTime(size, historyIndex)
29: end if
30: end if
31: end for
32: return maxSize

5.1.2.3 Channel Size Calculation Example

proc2

procB

procA

proc3
data_out2data_in2

ED_3
ED_4

ED_1
ED_2

ND_3

ND_2

ND_1

ND_4

Figure 5.3: PPN of example channel size calculation
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Cprof+ calculates the channel sizes using Algorithms 1 and 2. The PPN in Figure
5.3 will illustrate the channel size calculation. Listing 5.2 demonstrates the C code
description of the PPN. The functional latency, ΛF , of proc2 is 3. While procA, procB
and proc3 are given a functional latency of 1.

Listing 5.2: Source Code of an example IP Core

1 // Stream data into the design

2 for (i = 0 ; i < 3 ; i++) {
3 for (j=0; j< 3 ; j++){
4 procA(&a [ i ] [ j ] , data_in2 [ i ] [ j ] ) ;
5 }
6 }
7 // Stream data into the design

8 for (i = 0 ; i < 3 ; i++) {
9 for (j=0; j< 3 ; j++){

10 procB(&b [ i ] [ j ] , data_in2 [ i ] [ j ] ) ;
11 }
12 }
13 for (t=0; t < 3 ; t++){
14 for (i = 0 ; i < 3 ; i++) {
15 for (j = 0 ; j < 3 ; j++){
16 proc2(&a [ i ] [ j ] , a [ i ] [ j ] , b [ j ] [ i ] ) ;
17 }
18 }
19 }
20 for (i = 0 ; i < WIDTH ; i++) {
21 for (j=0; j< WIDTH ; j++){
22 proc3(&data_out2 [ i ] [ j ] , a [ i ] [ j ] ) ;
23 }
24 }

Table 5.1: Communication Channel, ED 2, showing the read and write history of Variable A.

Iteration Write Time Read Time Channel Size

(0,0) 3 3 1

(0,1) 4 4 1

(0,2) 5 5 1

(1,0) 6 6 1

(1,1) 7 7 1

(1,2) 8 8 1

(2,0) 9 9 1

(2,1) 10 10 1

(2,2) 11 11 1

Table 5.1 shows the channel history of ED 2 for variable A in Figure 5.3. The first 9
iterations of proc2 use the variable written by the streaming function procA. The table
shows that the variable is read as soon as it is written. Algorithm 1 yields a channel
size of 1 for all cases. As the variable is read and then never used again, a case of IOM-
communication.
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Table 5.2: Communication Channel, ED 3, showing the read and write history of Variable B
with channel size updated as the algorithm parses the history. Only iterations for t = 0 and
t = 1 are shown.

Iteration Write Time Read Time Channel Size

(0,0) 3 3 3

(1,0) 6 6 12

(2,0) 9 9 21

(0,1) 4 10 24

(1,1) 7 11 27

(2,1) 10 12 27

(0,2) 5 13 27

(1,2) 8 14 27

(2,2) 11 15 27

(0,0) 3 16 27

(1,0) 6 17 27

(2,0) 9 18 27

(0,1) 4 19 27

(1,1) 7 20 27

(2,1) 10 21 27

(0,0) 5 22 27

(1,0) 8 23 27

(2,0) 11 24 27

... ... ... ...

The ED 3 highlights a OOM channel between node 2 and node 3. The channel
sends the variable B and as Table 5.2 shows the calculation of the channel size is not
trivial. Function proc2 is contained within a 3 nested loop. Each loop dimension has
size of 3 and as Table 5.2 demonstrates the calculated channel size is 27. The true
channel size is 9 and this is corrected in Algorithm 1 with lines 21-40. If a read occurs
more than once in the channel history, e.g. iteration (0,0) with 3 at read times 3 and
16, it indicates the channel has multiplicity. The algorithm will correct by setting the
maximum channel size. Variable B has a maximum size of 9 as it is a 2-dimensional
3x3 array.

Table 5.3 highlights the calculation of the channel size for the self loop of proc2,
i.e. ED 1. Algorithm 2 is used. The first iteration (0, 0) calculates a size of 9 as the
write and read times do not match. The read iteration history is search till the next
token (0, 0) is found. The distance between the two tokens in the iteration read history
is 9 and for the first iteration a value of 9 is calculated. The same method is used for
the next rows of Table 5.3. When iteration (0, 0) with read time of 26 is reached, the
algorithm stops incrementing the channel size as the write and read times are equal.
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Table 5.3: Communication Channel, ED 1, showing the read and write history of Self Loop
Variable A with channel size updated as the algorithm parses the history.

Iteration Write Time Read Time Channel Size

(0,0) 13 16 9

(0,1) 14 17 9

(0,2) 15 18 9

(1,0) 16 19 9

(1,1) 17 20 9

(1,2) 18 21 9

(2,0) 19 22 9

(2,1) 20 23 9

(2,2) 21 24 9

(0,0) 26 26 9

(0,1) 27 27 9

(0,2) 28 28 9

(1,0) 29 29 9

(1,1) 30 30 9

(1,2) 31 31 9

(2,0) 32 32 9

(2,1) 33 33 9

(2,2) 34 34 9

5.2 Validation

  <link name="ED_8" from="ND_5OP_1_d1" to="ND_6IP_8" type="iomp">
    <mapping index="i, j" control="" parameter="" matrix="[  1,   0,   0;
                        0,   0,  31]" />
    <obtain matrix="[0, 0, 1, 0; 1, -1, 0, 31; 0, 0, 0, 0]"/>
    <release matrix="[0, 0, 1, -31; 1, -1, 0, 31; 0, 0, 0, 0]"/>
    <property name="name" value="tmp_2(i,31)"/>
    <property name="sizeIsExact" value="false"/>
    <property name="throughput" value="{[1, 1]=32}"/>
    <property name="size" value="{[1, 1]=1024}"/>
  </link>

....

....

Property Value

From

To

Size

4

5

32

Channel
List

a) b)

Figure 5.4: Matching the FIFO description in Cprof+ (a) to that of the KPN in Compaan
(b) for ATAX.

To ensure the channel sizes computed by Cprof+ are correct, the sizes were checked
against the RTL implementation. By mapping the communication channels in Cprof+,
to those in the PPN model used in the Compaan Tool Chain, we can run the RTL
simulations with Cprof+ values. If the channel sizing is done incorrectly, the RTL
simulations will block.

A parsing program was created to check the PPN model of the program against
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the Cprof+ channel sizes calculated. Figure 5.4 demonstrates visually how the Cprof+
value is compared and matched with the corresponding PPN edge in file. Notice, that
the naming of the nodes in Cprof+ is based on 0 and those in the PPN on 1. Cprof+
node values are corrected for this offset.

Algorithm 3 Cprof+ Mapping of Channel Sizes to Compaan PPN File

Input: CprofFunctionCalls C and PPN Graph P
Output: Modified PPN Graph
1: channels← ∅
2: for all c ∈ C do
3: for all v ∈ c do
4: for all f ∈ v do
5: if f /∈ channels then
6: f ∪ channels
7: else
8: updateSize(f, channels)
9: end if

10: end for
11: end for
12: end for
13: for all lines ∈ P do
14: if checkLine(line, ”<link name”) then
15: for all f ∈ channels do
16: if compareNodes(f, line) then
17: incrementLineBySeven(P)
18: replaceStringBetweenWith(”]=”, ”}”, size(f))
19: end if
20: end for
21: end if
22: end forreturn P

Algorithm 3 describes the method of modifying a PPN file with the values calculated
by Cprof+. Figure 5.4(b) shows the file structure of the PPN description for Compaan.
The mapping algorithm works by searching the PPN file for a edge using the marker,
”<link name”. Once a edge has been found, it will search through a compact list
of channel sizes created from Cprof+ to match node names. The edges from Cprof+
and the PPN are matched by checking the strings ”from=...” and ”to=” on the line
containing ”¡link name=”. The matching is done on Line 16 of the mapping algorithm.
The PPN is updated once a match is found by replacing the string contained between
”]=” and ”}” in the line ”<property name=”size””. The mapping process is then
repeated for all channels in the list.

The mapping algorithm has one caveat. As the communication channels for the
PPN were calculated symbolically by Compaan, there exists some instances were there
are multiple channels between nodes. In this case, Cprof+ cannot model all channels
as it creates channels based on the reading and writing of variables. To overcome this
problem, the size calculated by Cprof+ for an edge between two nodes is applied to all
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Figure 5.5: Comparison of ATAX KPNs with (a) original fifo sizes and (b) with Cprof calcu-
lated sizes.
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Figure 5.6: PPN of the dynprog benchmark

channels between the same two nodes in the PPN. In some cases, this leads to a less
optimal solution, as some of the channels do have a smaller size.

The Compaan/LAURA tool chain is executed using the modified PPN with Cprof+
channel sizes. The result of the simulation is saved to a text file which is compared to
the original RTL simulation results.

5.3 Results

Cprof+ yields channel sizes much less than those calculated in the Compaan Tool Chain.
In most cases, a 50% to 96% reduction in the memory footprint was achieved with
Cprof+. While maintaining a deadlock free network. In some cases, the performance
of the resulting network is degraded due to the channel sizes from Cprof+. For example,
in fdtd 2d, dynprog, mm2, mm3 and mvt experience performance degradation due to
the new channel sizes. A closer look at dynprog, shown in Figure 5.6 reveals that the
Cprof+ channel size of ED 8 caused the network to bottleneck. Cprof+ calculates a
channel size of 32. A channel size of 32 for ED 8 causes blocking writes, but a size of 33
does not. The reason for the mismatch in size is unclear as the data available to Cprof+
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indicates a maximum value that can be calculated for the size is 32 for ED 8. Though,
the channel size leads to a deadlock free network, the size inhibits the network to run
at full speed. The results also showed that benchmark fdtd-apml causes a error in a
pipeline of a function with the modified channel sizes. This yielded no result for the
benchmark as shown in Table 5.4. The reason for the error is unclear as the synthesis
and design of the process pipeline is carried out by Compaan/LAURA tool flow.

Case Original Modified Diff(%) Old Mem New Mem FifoSaving(%)

adi 5606 5699 1.6 7056 2185 69.0
atax 19963 19962 0.0 4225 2124 49.7
bicg 19911 19910 0.0 4257 1104 74.1

cholesky 91604 91597 0.0 12130 1252 89.7
correlation 338579 353917 4.3 43270 9127 78.9
covariance 342014 359305 4.8 40034 5712 85.7

doitgen 181047 181043 0.0 12011 1997 83.4
durbin 10909 10876 -0.3 1994 670 66.4

dynprog 253593 286447 11.5 94893 3540 96.3
fdtd 2d 2140 5673 62.3 34891 7467 78.6

fdtd apml 4609 N/A N/A 23623 3401 85.6
floyd warshall 2086 2141 2.6 842 566 32.8

gemm 99251 99244 0.0 35874 3076 91.4
gemver 55050 56970 3.4 5412 2371 56.2

gramschmidt 4721 4713 -0.2 1902 493 74.1
jacobi 1d imper 1045 1043 -0.2 8469 1428 83.1
jacobi 2d imper 1912 1912 0.0 21384 5106 76.1

lu 31571 31568 0.0 49202 5986 87.8
ludcmp 122773 122739 0.0 27249 2769 89.8
mm2 521222 553889 5.9 37956 8163 78.5
mm3 631730 694188 9.0 70755 12284 82.6
mvt 10724 11684 8.2 4226 2069 51.0

reg detect 4571 4568 -0.1 2971 157 94.7
seidel 2d 181242 182981 1.0 24731 25441 -2.9

symm 281367 281364 0.0 57368 6664 88.4
syrk 508979 508971 0.0 36867 3074 91.7
syr2k 1080382 1080382 0.0 12288 5125 58.3
trisolv 9518 9512 -0.1 2737 597 78.2
trmm 420323 435200 3.4 24591 3008 87.8

Table 5.4: Comparison of the original performance estimations of Cprof+ against Vivado
RTL Simulation results.
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5.4 Limitations

The main limitation of the algorithm used to calculate channel sizes in Cprof+, is the
inability for Cprof+ to model every edge explicitly. Compared to the mathematically
PPN description of the network. Cprof+ generates channels based on the write and
read iteration pairs. This method of channel generation, leads to an oversimplification
for some cases.
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Figure 5.7: PPN of the Siedel 2D Benchmark showcasing the diversity in communication
channels

The PPN in Figure 5.7 highlights the high amount of edges between nodes in siedel-
2d. Cprof+ simplifies the edges between ND_1 and ND_2 to 1. A single edge is modelled
due to the single output/input relation between proc0 and proc1. When Cprof+
applies the channel sizes to the PPN, the maximum channel size is used for all edges.
Even when some channels may have a smaller size. As Table 5.4 shows seidel 2d yields
a memory footprint that is larger than the original which leads to a worse solution
when compared to the Greedy Algorithm used in KPNRateMatcher of Compaan.
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Code Transformation and
Optimization 6
Cprof+ can determine the performance for a c-program as a PPN accurately. By
transforming the C-program, we can explore different design points. How to apply
source-to-source transformations to the C-code is crucial for Cprof+ to understand.
Unnecessary code transformations can cause inefficiency in terms of hardware resources
used. The goal is to apply common loop transformations in an intelligent and efficient
manner.

Cprof implemented two types of transformations for finding other design points of an
application. Cprof+ will investigate the transformations and propose a more intelligent
method of finding optimal design points for the designer.

6.1 Types of Transformations

There are many types of code transformations that can be applied to programs to induce
performance increase[38][39]. The transformations may lead to increased hardware use.
The transformations discussed in the following sections include: Modulo Unfolding and
Plane Cutting.

6.1.1 Modulo Unfolding and Plane Cutting

The first transformation technique that was implemented in the original Cprof was
Modulo Unfolding and Plane Cutting. Two code transformation techniques increase
performance by adding hardware resources that can run in parallel by partitioning the
iteration domain over multiple hardware resources.

b) Iteration Domain b) Original Code

1. for( i = 0; i < 4; i++){
2.     for( j = 0; j < 4; j++){
3.         b[i, j] = foo(a[i,j]);
4.     }
5. } 

i

j0 1 2 3

0

1

2

3

Figure 6.1: Example of a simple loop with no dependencies between iterations.
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Figure 6.1 highlights a simple example of a for loop 6.1(b) and its iteration domain
6.1(a). The iteration domain shows, all iterations within the loop are independent to
one another.

b) Iteration Domain b) Modulo Unfolding Code

1. for( i = 0; i < 4; i++){
2.     for( j = 0; j < 4; j++){
3.         if( i % 2 == 0){ 
4.             b[i, j] = foo(a[i,j]);
5.         }
6.         if( i % 2 == 1) {
7.             b[i, j] = foo(a[i,j]);
8.         }
9.     }
10.} 

F1

F2 

i

j

F2

F2

F1

F1

0 1 2 3

0

1

2

3

Figure 6.2: Example of Modulo Unfolding with factor 2.

The first transformation that can be applied to the code in Figure 6.1 is Modulo
Unfolding. Figure 6.2(b) highlights the modified code. The code demonstrates an
unrolling factor of 2 by replacing the function with 2 conditional statements. The
condition of the statements are based on the iterator i. The conditional statements help
to schedule the iteration domain to the correct compute node. The modulo function
(%) is used to execute iterations that have remainder 0 to a single compute node (F1)

and remainder 1 to another (F2). Thereby increasing the throughput of the system as
both compute nodes can execute in parallel.

a) Iteration Domain

i

j

F2

F1

1. for( i = 0; i < 4; i++){
2.     for( j = 0; j < 4; j++){
3.         if( i < 2){ 
4.             b[i, j] = foo(a[i,j]);
5.         } 
6.         else {
7.             b[i, j] = foo(a[i,j]);
8.         }
9.     }
10.} 

F1

F2

b) Plane Cutting Code

0 1 2 3

0

1

2

3

Figure 6.3: Example of Plane Cutting with factor 2.

The same operation can be accomplished with plane cutting in Figure 6.3. Rather
than implement a modulo conditional statement, an equality is added, e.g. i < 2.
Figure 6.3(b) line 3 highlights the equality. The consequence of the equality is the
iteration domain is partitioned into two regions as shown in 6.3(a). One compute node
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(F1) executes the bottom half of the iteration domain and compute node (F2) the top
part. Compute nodes F1 and F2 can execute in parallel.

In this particular case, both loop transformations accomplish the same goal. That
is, they divide the iteration domain to increase parallelism. This division leads to a
better performance. One of the advantages of using the transformations is the lack of
data flow dependency checks. As the transformations do not affect the execution order
of the program. If for example, there were inter iteration dependencies that occurred
across a transformation border, the compute node will simply stall until the data is
ready.

6.1.1.1 Case Study: ATAX

To understand how the transformations affect the performance of a PPN, we conducted
a case study on atax. atax is a matrix transpose and vector multiplication benchmark.
atax was analysed using Cprof and the values were validated with the values generated
by RTL simulations. It was found that for the atax benchmark, values calculated by
Cprof differed at most by 2.65% with those computed by RTL simulations.Table A.1
shows the estimated Cprof+ estimated performance values with the RTL simulation
values.

PC Factor Cprof Vivado RTL

2 10524 10539

4 5812 5827

8 3456 3471

16 2278 2239

Table 6.1: Plane Cutting results for compaan outlineproc3 around iterator j up to a factor
of 16 with Cprof and Compaan comparison.

The case study was conducted using -MINI_DATASET where the values of NX and NY

are set to 32. Figure A.1 in Appedix A demonstrates, the whole DSE can be traversed
by Cprof simply using the Modulo Unfolding code transformation. Teijlingen[4] demon-
strated the bounds of the design space with the absolute and unbounded throughput
calculations. The red lines indicate the absolute and unbounded throughput of the
network. By unfolding a function such as compaan_outlinedproc3, as shown in Fig-
ure 6.6, by a factor of 32. The transformation can induce a performance gain close
to the unbounded throughput. The unbounded throughput case yields a performance
estimation of 1286 cycles. What is more interesting, is that the critical section of the
network is compaan_outlinedproc3 as unfolding or plane cutting other nodes while
leaving compaan_outlinedproc3 will not cause performance gain.
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Figure 6.4: Modulo unfolding results for compaan outlinedproc3 around iterators i and j up
to a factor of 32.

The unrolling of non-critical nodes in the network and their lack of effect is sup-
ported by Table 6.2. The Table demonstrates, no performance gain is achieved
by unrolling compaan_outlinedProc4. The gain is only achieved through unrolling
compaan_outlinedProc3. The reason can be explained through the PPN graph of
atax in the Figure 6.5
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Figure 6.5: The PPN graph of atax
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1 for (i = 0 ; i < _PB_NY ; i++) {
2 for (j = 0 ; j < _PB_NX ; j++){
3 compaan_outlinedproc3(&tmp [ i ] , tmp [ i ] , A [ i ] [ j ] , x [ j ] ) ;
4 }
5 }
6 for (i = 0 ; i < _PB_NX ; i++) {
7 for (j = 0 ; j < _PB_NY ; j++) {
8 compaan_outlinedproc4(&y [ j ] , y [ j ] , A [ i ] [ j ] , tmp [ i ] ) ;
9 }

10 }

Figure 6.6: C code of the ATAX benchmark.

compaan outlinedProc4 compaan outlinedProc3 Cycles

0 8 15608

2 8 15608

4 8 15608

8 8 15608

Table 6.2: Modulo unfolding both compaan outlinedProc3 and compaan outlinedProc4
around iterator j.

The dependency between the two functions can be clearly seen in Figure 6.5.
compaan_outlinedProc4 depends on the output of compaan_outlinedProc3. It must
wait till the whole row calculation is complete before it can begin its execution. Figure
6.6 shows that the variable tmp[i] must wait till compaan_outlinedproc3 has com-
pleted an entire loop of j before it can start execution. Cprof+ will have to incorporate
a method for identifying the correct iterator for optimization. Section 6.2.3 will explain
the method used in Cprof+.

6.1.1.2 Case Study: MM2

The next benchmark we studied using the modulo unfolding and plane cutting trans-
forms was mm2. The mm2 benchmark is a 2-dimensional matrix-matrix multiplication
program. mm2 is an important operation that is often times used in all kinds of appli-
cations. Figure 6.7 shows the PPN graph of mm2.

The previous case study of atax showed that only two nodes affect the performance.
In the case of mm2, those are nodes ND_8 and ND_10. The effect of ND_9 is negligible
even though the latency of the procedure is comparable to ND_8 and ND_10. The size
of the iteration domain for ND_9 is a magnitude smaller than the critical nodes. The
reduced domain size indicates the node executes less than the critical nodes. Potentially
reducing the effect on performance.
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Figure 6.7: PPN Diagram of the MM2 benchmark (a) and the corresponding Function La-
tencies (b)

Both ND_8 and ND_10 are required for maximum performance gain. Completely
unfolding only one of the nodes around any of the 3 iterators: i, j or k leads to a
maximum performance gain of 25% and 1% for ND_8 and ND_10 respectively. This is
demonstrated in Figures A.3 and A.2 of Appendix A.
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Figure 6.8: Modulo unfolding results ND 8 and ND 10 around iterators i, j and k up to a
factor of 32 normalized to the Lowerbound of 838 cycles.

The choice of iterator when unfolding or cutting a loop is an important choice.
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Figure 6.8 demonstrates the effect of the iterator and unfold factor has on the network.
Unfolding around k, for example, results in little performance gains when compared
to i or j. The gain of unfolding around k exceeds i and j once the iterator k is
fully expanded, approaching the unbounded throughput case. Fully unfolding a node
around an iterator causes a large increase in hardware resources required. The cost
effective method would be to unfold with a factor of 2 around loop iterator i or j.
As this transformation would only introduce 2 more processes to the network. For an
approximate 50% performance gain for the network as shown in Figure 6.8.

6.1.2 Effects of Function Latency on Performance Gain with Transforma-
tions

The latency of a function can be important in some cases for the amount of perfor-
mance. The effects on varying function latency are investigated in this Section to
understand the amount of performance gain that can be obtained using the modulo
unfolding transformation. Understanding how functional latency (ΛF ) contributes to
the performance of a network can be useful for Cprof+ when identifying functions to
optimize.
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Figure 6.9: Modulo unfolding results for compaan outlinedproc3 around iterators j with
varying Function Latency (ΛF ) for ATAX.

As identified earlier, the critical process for the atax PPN is the
compaan_outlinedproc3. The function latency was modified to understand how
the effect of the transformation changed. Figure 6.9 shows the amount of performance
gain achieved through unrolling the critical node does not change drastically until the
iterator has been fully unrolled. The effects of different function latencies become
apparent only when fully unrolled. These effects suggests that the latency of the
function or pipeline depth does not affect the amount of performance that can be
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obtained. The difference between function latencies becomes apparent when the
function is full unfolded as the data dependencies between iterations do not exist any
more The results for Figure 6.9 was obtained by unfolding around Iterator j, the most
ineffective iterator as Figure A.1 indicates.
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Figure 6.10: Modulo unfolding results for compaan outlinedproc3 around iterators i with
varying Function Latency (ΛF ) for atax.

Figure 6.10 shows when the function latency for compaan_outlinedproc3 is changed
and the transformation is applied around iterator i. The amount of performance gain
varies with function latency and the factor of unfolding. With a ΛF = 1, the critical
node does not obtain a performance increase after an unroll factor of 4.

As the function latency increases, the amount of performance that can be extracted
from the function also increases. This can be important for selecting critical nodes
within a PPN for optimization. Though the node may be a bottle neck in the network,
a small function latency may indicate that the amount of performance gain available
is small. Even with a small function latency the critical node in ATAX can provide a
1.98x factor performance gain even with an unroll factor of 2. Here the performance
gain factor is calculated using the following equation.

PerformanceGainFactor = (Absolute Throughput Case)/(Unfolded Case) (6.1)

Given that the critical node can obtain gains only with a small unroll factor, can
the effect be reduced by changing the function latency of another node? The node
executing compaan_outlinedproc4 was modified, in order to investigate whether a
large pipeline depth compared to compaan_outlinedproc3 will change the dynamics
of the network.
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(a) Proc3 with ΛF = 1 and Proc4 with ΛF = 8
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(b) Proc3 with ΛF = 1 and Proc4 with ΛF = 36

Figure 6.11: Modulo unrolling Proc4 with varying pipeline depths while having ΛF = 1 for
Proc3 within atax

Figure 6.11 highlights the result the effect functional latency of
compaan_outlinedproc4 on the network. With a functional latency many times
greater than Proc3, no performance gain is obtained by unrolling Proc4. Demonstrat-
ing that the data dependency between Proc3 and Proc4 is crucial for the network and
the amount of performance that can be extracted.

The results demonstrate that the function latency of a node does not indicate nec-
essarily that the node will affect the performance of the network. Selecting a node that
is non-critical and has a large functional latency does not mean a transformation will
cause performance gain. The critical node still is required to obtain performance gains.

6.2 Optimization Techniques

The code transformations that are currently implemented in Cprof allow for quickly
assessing design points as shown in Sections 6.1.1.1 and 6.1.1.2. The next challenge is to
identify functions within a program that will allow for maximum performance gain given
the cost of the transformation. The cost is measured in terms of hardware resources
used. The amount of hardware resources used is measured by counting the number of
processes in the network. The measurement helps to give a first order approximation
of the hardware resources required and the change in resources after a transformation.

Before hardware and performance measurements can be made. Performance metrics
are needed to help classify critical functions in a program. The following Section 6.2.1
will examine the metrics that can be extracted from the execution profile Cprof+
generates for each function call in the program. With these metrics Sections 6.2.2
and 6.2.3 will look at two approaches used in optimization and compare the results.
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Listing 6.1: Excerpt from the XML Cprof Simulation Results of ATAX

1 <name>compaan_outlinedproc4</name>
2 <metr i c s>
3 <s e l fLoop>tmp</ se l fLoop>
4 <rbse>993</ rbse>
5 <rde>31</ rde>
6 <used>17905</ used>
7 <a v a i l>2976</ a v a i l>
8 <p i p e U t i l>85.7478104</ p i p e U t i l>
9 <iAvgPipeUti l>8.41471386</ iAvgPipeUti l>

10 <avgStagesExec>1.51464856</ avgStagesExec>
11 <ExecLength>19888</ExecLength>
12 <StreamFunction>false</ StreamFunction>
13 <U n r o l l I t e r a t o r>i</ U n r o l l I t e r a t o r>
14 <latencyFunc>18</ latencyFunc>
15 <UUID>4</UUID>
16 </ metr i c s>

6.2.1 Function Call Metrics

Cprof+ has the ability to capture a variety of metrics of a function within a program.
The metrics are derived from the execution profiles of the functions, that were imple-
mented in Cprof. The amount of operations in a pipeline and the pipeline utilization
can be determined with the profiles.

Metric Description

selfloop Self Loop Variable Name

rbse Number of reads before a start of execution.
(Pipeline is empty)

rde Number of reads during an execution

used Number of Cycles Executing

avail Number of Cycles Idle

pipeUtil Percentage Pipeline Utilization

iAvgPipeUtil Average Pipeline Fill

avgStagesExec Average Number of Executions in the Pipeline

ExecLength Execution Length of the Node

StreamFunction Input/Ouput Streaming Function

UnrollIterator Iterator Selected for Optimization

latencyFunc Function Latency

UUID Function UUID

Table 6.3: Description of XML Metric Values

Figure 6.1 and Table 6.3 demonstrate the new metrics Cprof+ has incorporates to
measure the function. With metrics rbse and rde, Cprof+ can determine whether
function nodes wait on data to arrive or data arrives during one or more executions.
However, these are not the only metrics gathered by Cprof+. With the ability to
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Listing 6.2: C Code of the function described in atax as seen in Figure 6.1

1 for (j = 0 ; j < _PB_NY ; j++) {
2 compaan_outlinedproc4 ( &tmp [ i ] , tmp [ i ] , A [ i ] [ j ] , x [ j ] ) ;
3 }

Listing 6.3: Input Variable Metrics from the XML Cprof Simulation Results of atax

1 <inputs>
2 <input0>
3 <name>tmp</name>
4 . . .
5 <avgCondSync>9620</avgCondSync>
6 <maxCondSync>19840</maxCondSync>
7 </ input0>
8 <input1>
9 <name>A</name>

10 . . .
11 <avgCondSync>496</avgCondSync>
12 <maxCondSync>992</maxCondSync>
13 </ input1>
14 <input2>
15 <name>x</name>
16 . . .
17 <avgCondSync>9292</avgCondSync>
18 <maxCondSync>19200</maxCondSync>
19 </ input2>
20 </ inputs>

model communication channels as described in Chapter 5, Cprof+ can measure the
conditional synchronization time of a variable to help identify the variables that require
optimization.

Conditional Synchronization time is the measure between the write and read of a
token. Take the function given in Figure 6.2. If the write time of ttmp[1] = 3, tA[1][0] = 4
and tx[1] = 5, then the conditional synchronization for all 3 variables will be 0, 1 and
2 respectively. The conditional synchronization time can be an indicator for functions
to focus on. As the variable with the maximum conditional synchronization could be
optimized to reduce the time the reading function waits. The maximum conditional
synchronization time may not always indicate a variable needs to be optimized. Take
the case of atax and compaan_outlinedproc4.

Figure 6.3 demonstrates the variables all have large conditional synchronization
times. If the optimization strategy was to select the variable with the highest condi-
tional synchronization time and optimize its writing function. Then the variable tmp
would be selected. In this case it is the correct variable to select. The performance
gain will not come from the transforming the writing function, but from the self loop.

The final set of metrics which is saved for a function node is the communication
channel sizes for each variable as calculated in Chapter 5. The channel sizes of the
variables can be useful in identifying the amount of data available. A function can be
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Listing 6.4: Input Variable FIFO Metrics from the XML Cprof Simulation Results of atax

1 <inputs>
2 <input0>
3 <name>tmp</name>
4 <numFifos>2</numFifos>
5 <F i f o s>
6 <Fi fo0>
7 <UUID>3</UUID>
8 <S i z e>31</ S i z e>
9 </ Fi fo0>

10 <Fi fo1>
11 <UUID>4</UUID>
12 <S i z e>1</ S i z e>
13 </ Fi fo1>
14 </ F i f o s>
15 . . .
16 </ input0>
17 <input1>
18 <name>A</name>
19 <numFifos>1</numFifos>
20 <F i f o s>
21 <Fi fo0>
22 <UUID>0</UUID>
23 <S i z e>971</ S i z e>
24 </ Fi fo0>
25 </ F i f o s>
26 . . .
27 </ input1>
28 <input2>
29 <name>x</name>
30 <numFifos>1</numFifos>
31 <F i f o s>
32 <Fi fo0>
33 <UUID>1</UUID>
34 <S i z e>32</ S i z e>
35 </ Fi fo0>
36 </ F i f o s>
37 . . .
38 </ input2>
39 </ inputs>

unrolled given the size of the input channels. Figure 6.4 demonstrates the results of the
channel sizing for atax described in Figure 6.2. The sizes demonstrate variable A[i][j]
has the largest size of 971 due to the fact that the tokens are written long before the
function enters 53rd of the 1024 iterations.

With all of the metrics, Cprof+ can begin to identify relevant and critical function
nodes for optimization. In this work, two approaches were tackled and compared.
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6.2.2 Naive Approach

Cprof+ operates in two modes of operations for simulation. One, running the program
using absolute throughput and the other using unbounded throughput. The two values
give a bound on the maximum benefit in terms of performance.

<name>compaan_outlinedproc4</name>
<metrics>
<selfLoop>tmp</selfLoop>

    <rbse>993</rbse>
<rde>31</rde>
<used>17905</used>
<avail>2976</avail>
<pipeUtil>85.7478104</pipeUtil>
<iAvgPipeUtil>8.41</iAvgPipeUtil>
<avgStagesExec>1.51</avgStagesExec>
<ExecLength>19888</ExecLength>

Bounded Simulation

<name>compaan_outlinedproc4</name>
<metrics>
 <selfLoop>tmp</selfLoop>
 <rbse>1</rbse>
 <rde>0</rde>
 <used>1</used>
 <avail>0</avail>
 <pipeUtil>100</pipeUtil>
 <iAvgPipeUtil>5.56</iAvgPipeUtil>
 <avgStagesExec>1.00</avgStagesExec>
 <ExecLength>18</ExecLength>

Unbounded Simulation

for (j = 0; j < _PB_NY; j++) {
   if(j%2 <= 0){
     compaan_outlinedproc3( &tmp[i],tmp[i],A[i][j],x[j] );

   }
   else{
     compaan_outlinedproc3( &tmp[i],tmp[i],A[i][j],x[j] );

   }
}

Modified C Code

Analyze 
Results

Apply
Optimizations

Run Optimal
Simulation

Figure 6.12: Overview of Cprof Optimization Flow

The self loop of a node is a crucial for regulating the firing of a node [12].Self loops
are the consequence of a data dependency between iterations of the process. The Naive
approach using Cprof+ will use the self loop metric for optimization.

6.2.2.1 Algorithm

The algorithm used to select the functions for optimization is given in Algorithm 4. A
list of functions is identified an iterator and unroll factor must be added. The naive
approach takes the inner loop iterator for the unroll operation and sets the unroll factor
to the maximum for that iterator for a function containing a self loop.

Algorithm 4 Naive Optimization Technique

Input: List of Function Calls S
Output: List of Function Calls to optimize O
1: for all s ∈ S do
2: if s contains Self Loop then
3: setUnfoldIterator(s, iinner)
4: setUnfoldFactor(s, max(iinner))
5: s ∪O
6: end if
7: end for

The Algorithm 4 takes the list of all statements within a program and selects only
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the statements containing self loops. The statements are transformed using modulo
unfolding. The unfold factor is set to the maximum value, max(iinner), for the innermost
iterator,iinner, of the loop. The time complexity of the technique is O(c) where c is the
number of statements in the program. The space complexity is defined to be O(O)
where O is the set of statements selected to be optimized and is a subset of S, defined
as all statements contain in the program.

6.2.2.2 Results
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Figure 6.13: Percentage of possible performance gain achieved using the Naive approach for
optimization

As the results in Figure 6.13 demonstrate, by simply optimizing the functions which
contain a self loop we can reach for most benchmarks the maximum available perfor-
mance gain. However, the unroll factor chosen was the maximum possible value for the
given iterator and as Figure 6.10 demonstrates, unrolling a function around an iterator
by its maximum value can lead to the maximum performance gain regardless of iterator
direction.

One of the disadvantages of this optimization technique is the hardware require-
ments. Since the inner iterator of the loop is expanded to its maximum value, the
number of nodes needed increases dramatically. Take the MINI_DATASET for the Poly-
bench suite which on average takes iterator sizes of 32. Expanding a program and all
the functions containing a self loop can increase hardware usage dramatically.

Therefore, an optimization approach that takes into account the iteration direction
and optimal unrolling factor is ideal for maximizing performance gain while maintaining
low hardware resource requirements.
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6.2.3 Channel Size Approach

Selecting the correct unfolding factor for modulo unfolding or determining when to
use plane cutting can be difficult. The work by Zissulescu-Ianculescu[12] proposed
examining the size of a self loop to increase pipeline utilization. As self dependencies
indicate a data dependency between iterations and cause low pipeline utilization values.
By examining the amount of data available at the input to a process, an unroll factor
can be calculated for that process to unlock the optimal amount of performance.

∆ = min(ChannelSizei), i = 1, .., n (6.2)

FSL =

⌈
∆

ΛF

⌉
(6.3)

Where ∆ is the minimum self loop channel size of a function containing i = 1, .., n self
loops. There are two rules given by Zissulescu-Ianculescu[12] for when to optimize a
function with a self loop.

1. ∆ > ΛF . In this case, modulo unfolding will benefit the network as the minimum
amount of data available on the self loops is greater than the functional latency.
Meaning the pipeline achieves full utilization with data still ready to be processed.
Adding another process to split the domain will help to increase the performance.
The unfolding factor FSL for modulo unfolding functions with self loops is given
by Equation 6.3.

2. ∆ ≤ ΛF . When the minimum self loop size is less than the functional la-
tency, transformations are needed to fill the pipeline with independent data.
As the pipeline of the function can be hindered by a number of blocking read
operations[12]. Techniques to increase the independent data in the pipeline in-
clude loop skewing[39]. The optimization factor for this technique is given as
P = ∆− ΛF . Where P is the number of independent operations to be added.

The original Cprof possessed only two transformation techniques. Cprof+ will em-
ploy the use of channel sizes to estimate an unroll factor that will give optimal balance
between hardware resources and performance using the transformations implemented
by Cprof.

6.2.3.1 Algorithm

Algorithm 5 optimizes a function with a self loops based on the minimum channel
size the self loops. The results of Figure 6.13 demonstrate that for some benchmarks,
optimizing for the self loop does not cause performance gain. To accommodate, lines 13-
21 of Algorithm optimize functions without self loops who are not defined as streaming
functions.

Streaming functions are processes in a network that stream in or out the data to
the network. Listing 6.5 shows an example of a input streaming function from atax.
The implemented expression for this function is (&A)[j][i] = AI[j][i], with a functional
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Algorithm 5 PPN self loop optimization using channel size

Input: List of Function Calls S
Output: List of Function Calls to optimize O
1: for all s ∈ S do
2: if !streamFunction(s) then
3: if s contains Self Loop then
4: ∆← INTMAX

5: for all f ∈ ChannelsSelf do
6: if size(f) < ∆ then
7: ∆ = size(f)
8: end if
9: end for

10: FSL ←
⌈

∆
ΛF

⌉
11: setUnrollFactor(s, FSL)
12: O ← s
13: else
14: ∆stream ← INTmax

15: for all f ∈ Channels do
16: if !streamFunction(f) ∧ size(f) < ∆stream then
17: ∆stream = size(f)
18: end if
19: end for
20: FSL ←

⌈
∆stream

ΛF

⌉
21: setUnrollFactor(s, FSL)
22: O ← s
23: end if
24: end if
25: end for

Listing 6.5: Example of a streaming function from atax

1 for (j = 0 ; j < _PB_NX ; j++) {
2 for (i = 0 ; i < _PB_NY ; i++) {
3 compaan_outlinedproc0(&A [ j ] [ i ] , AI [ j ] [ i ] ) ;
4 }
5 }

latency λF = 1. The streaming functions do not affect the performance of the network
and can be filtered out. Algorithm 5 demonstrates this on line 2.

The channel sizes from streaming functions are disregarded for functions without
self loops. The reason is the streaming functions do not have any dependencies and
run at full capacity. As opposed to other functions which have data dependencies and
input channels. The channels sizes from these functions give a better idea of the unfold
factor that should be used. Equation 6.4 highlights the unfold factor used for functions
without self loops. Where ∆stream is the minimum channel size of all channels that do
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not originate from a streaming function.

FSL =

⌈
∆stream

ΛF

⌉
(6.4)

The functions that do posses a self loop are optimized using the factor calculated
in lines 4-12 of Algorithm 5. Using the Equations of 6.2 and 6.3 an ideal unfold factor
is calculated.

For functions containing both self loops and no self loops, the modulo unfolding
and plane cutting transformations are used. When the unfold factor is greater than 2
the modulo unfolding transformation is used. When the factor is less than the plane
cutting transformation is used. Cprof cannot currently utilize transformations that help
to insert independent data into the pipeline as suggested in Section 6.2.3. In both cases
when ∆ > ΛF and ∆ ≤ ΛF , the modulo unfolding or plane cutting transformations are
used.

6.2.3.2 Results
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Figure 6.14: Percentage of Possible Performance Gain Achieved using Channel Size Technique
compared to Figure 6.13

The results of the optimization using minimum channel size of a function is shown in
Figure 6.14. The graph demonstrates the amount of possible performance achieved
is in some case similar to that of the naive technique. In some cases only 54% of
the possible performance is achieved when compared to the previous technique, e.g.
benchmark atax. The percentage of possible performance is calculated by the equa-
tion, Performance(%) = 100 ∗ (Absolute−Unbounded)/(Absolute−Optimized). For

67



example, atax obtained a value of 10030 cycles using the channel size technique. The
absolute and unbounded cases yielded 19948 and 1286 cycles respectively. Result-
ing in the total amount of possible performance achieved to be Performance(%) =
100 ∗ (19948− 10030)/(19948− 1286) = 54%.

One point to note, for the benchmark gramschmidt, the optimal version has a smaller
execution time in cycles than the unbounded. The optimized version gives a cycle count
of 2275 while the estimated unbounded case gives 3335 cycles. The case of the error
was not studied as the unbounded case is by definition the upper limit on performance.

To compare the performance gains of the two techniques, another metric must be
introduce. To give an idea on the hardware resources, Cprof+ counts the amount of
processes in the network to give a first approximation of hardware costs. Figure 6.15
demonstrates the amount of processes added to the network due to the two different op-
timization techniques. The graph demonstrates for most cases the amount of hardware
added using the channel size optimization technique is less than the naive optimization.
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Figure 6.15: Factor gain of Processes added using Channel Size Technique and Naive Ap-
proach

The benefit of using the minimum channel size of a process for an optimization
factor can be seen in the average cost and performance gain. Figure 6.15 shows this by
demonstrating the Factor Gain of Hardware Resources (FGhw).

FGhw = (# processes in optimized)/(# processes in absolute) (6.5)

On average, using the channel size to estimate a unroll factor yields, a 64% perfor-
mance increase with an average of 5.91x increase in hardware resources when compared
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to the absolute case. While the naive approach utilizes 7.12x more hardware resources
with only 63% performance increase on average.

The selection of the iterator for optimizing is crucial. The naive approach con-
sidered the inner loop index, which in most cases allows for significant performance
gain when optimizing a function with a self loop. The channel size technique selected
the iterator based on the inner iterator of the writing variable. For example, a func-
tion foo(&A[i][j], B[k], A[j][i]), will have the j iterator selected as the write variable
is &A[i][j]. While the naive approach may select the iterator k if this function is
surrounded by three loops, with k as the inner most loop.

Benchmark gemm is an example of the importance of iterator selection for opti-
mization. The hardware resources used in gemm for the channel size approach is 41,
while the naive approach utilizes 39 processes. The performance gain is 98% and 0%
for the channel size and naive approach respectively. Highlighting the importance of
the iterator optimization direction.

6.3 Summary

This chapter presents Cprof+ as a profiler for selecting functions within a program to
optimize. Sections 6.1.1.1 and 6.1.1.2 highlight the correct selection of process nodes
within the network is crucial for obtaining the most performance per hardware resource.
While Section 6.1.2 highlights the importance of data dependencies between nodes for
a PPN. As an arbitrary small or large functional latency does not mitigate the effect
of a crucial node on the network performance, nor does it enhance the effect of a node
that is not on the critical path.

Finally, employing the source-to-source transformations in Section 6.1 demonstrate
that a program can be quickly transformed using modulo unfolding and plane cutting.
The first technique unfolded an iterator to the maximum value that yielded designs
that obtain on average positive performance gains. Using the minimum channel size
of a process to estimate the unroll factor and selecting the inner iterator of the write
variable showed similar performance gains with reduced resource costs.

Both techniques utilized only 4 metrics of the function for selection: function la-
tency, self loop, channel sizes and if the function was a streaming function. Section
6.2.1 demonstrated that a variety of metrics for a function execution can be given.
Further investigation will have to be given to determine which metrics are relevant for
identifying functions to optimize.
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Cprof Simulation Time 7
To allow a designer to quickly evaluate a program implementation, Cprof+ needs to
be efficient and quick. Haastregt[1] compared different types of PPN performance
estimation methods including RTL, SystemC, Mean Cycle Method and Cprof. It was
suggested that Cprof could provided accurate estimations with a small runtime and
effort compared to RTL and SystemC simulations[1].

The following sections demonstrate the run times of Cprof+ and the RTL simulation.
To show that Cprof+ in real cases can indeed provide accurate simulation results within
a short amount of time.

The experiments shown in the following sections have all been run using a Intel
i7 Q720 operating at 1.60Ghz with 8GB of internal memory using a single thread.
The RTL simulator used for comparison was the Xilinx ISE Simulator (ISE) included
in the Webkit Vivado HLS Suite 2015.4 edition. All benchmarks were run using the
MINI_DATASET.

7.1 Cprof Run Times

Table 7.1 demonstrates the various run times of Cprof+ for the different benchmarks of
the Polybench Suite. As suggested, for most benchmarks, the simulation time of Cprof+
is within seconds yielding an accurate performance estimation with little effort.For some
of the benchmarks the small run-time does not hold and there exists large simulation
times, with a maximum of 790 seconds and an average of 122 seconds.

Although it was suggested in the work of Haastregt that Cprof can execute in the
range on seconds when compared to RTL simulations, Table 7.1 suggests that with the
modifications, this is not the case. The discrepancy can be attributed to the feature that
Cprof+ currently has implemented, that is channel size estimation based on execution
profiles. In the original work of Haastregt, Cprof was not intended to calculate channel
sizes of the PPN, but with the available information Cprof+ can. Naturally, this adds
overhead to the instrumentation code that is added to any benchmark and the time
complexity is a function of the variable write history as shown in Section 5.1.2. Thus,
large iteration domains can lead to longer computation time for Cprof+.

This can be clearly seen in the values of the Optimal Simulation that is run using
the technique given in Section 6.2.3. With the increased number of process given to
one function of the program we can see the time to simulate them has decreased. For
example, benchmark gemm in Table 7.1 has an Absolute Throughput simulation time
of 368s while the optimized version has a run-time of 161s. This is attributed to the
fact, that the variable write histories are reduced in size. Therefore, the computational
effort for channel size estimation is reduced as the number of elements to be searched
is reduced. Even though the number of channels sizes to calculate has increased.
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Table 7.1: Simulation Times of Cprof+ in 3 different modes

Cprof Simulation Type Vivado

Benchmark Absolute (s) Unbounded (s) Optimal (s) RTL (s)

adi 3 3 4 666

atax 4 3 3 114

bicg 5 3 4 128

cholesky 15 4 6 181

correlation 72 6 24 419

covariance 66 4 19 185

doitgen 19 4 11 114

durbin 3 3 3 199

dynprog 626 13 43 161

fdtd 2d 7 3 11 160

fdtd apml 9 3 8 11988

floyd warshall 3 2 3 110

gemm 368 8 161 148

gemver 7 3 6 243

gramschmidt 3 2 6 174

jacobi 1d imper 3 3 3 100

jacobi 2d imper 4 3 3 100

lu 13 4 8 105

ludcmp 28 4 13 116

mm2 447 10 47 95

mm3 547 13 64 132

mvt 4 2 2 208

reg detect 3 2 3 155

seidel 2d 11 2 14 242

symm 127 6 28 100

syrk 277 6 29 135

syr2k 790 10 208 251

trisolv 3 2 3 251

trmm 63 5 41 363
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7.2 Comparison with RTL Simulation Times
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Figure 7.1: Comparing Cprof+ and Compaan+RTL Simulation Times for the Polybench
Suite

The comparison of the RTL simulations with Cprof+ was conducted by executing the
complete design flow as described in Figure 2.2. The Compaan/LAURA tool chain was
used to generate a PPN from the benchmark C code and then RTL simulations were
run using the generated RTL description of the PPN. The results of Figure 7.1 demon-
strate that Cprof+ for the most part executes much quicker than the RTL simulations.
With Cprof+ simulations requiring 122s and Vivado RTL simulations requiring 598s
on average to complete. The values of Cprof+ used in Figure 7.1 is an aggregate of the
static analysis, dynamic anaylsis and the compile time of the simulation executable.
Only for benchmarks such as dynprog, gemm, mm2, mm3, syrk and syr2k do we see
Cprof+ executes much slower than the RTL counterpart.

Another interesting experimental point, is that for the benchmark, fdtd apml the
execution time for Cprof+ was 42s while the RTL simulation took 11988s. The bench-
mark was ommitted from Figure 7.1 due to the large range. An odd abnormality, but it
does demonstrate the hardware complexity of the implementation can cause enormous
simulation time.
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Conclusion 8
In this thesis, we present Cprof+. This profiler is capable of simulating polyhedral
process networks without explicitly deriving the PPNs. Cprof+ is designed as tool
that will allow the designer to explore the design space rapidly for a PPN. The PPN
that Cprof+ models, is derived from high-level specifications. The C programs used
to validate Cprof+ and Cprof were the Polybench suite benchmarks. This a collection
of 29 data streaming and matrix transformation programs which contain static control
parts.

The original Cprof showed an accurate performance estimation of the network exe-
cution to within 1%[5], but not for all benchmarks. The performance estimations for
gemm and dynprog showed 65% and 26% underestimation. To correct this inaccuracy,
Cprof+ had to model the Out of Order Memory channel between processes which the
original Cprof did not. The OOM channel in the case of the Compaan/LAURA PPN
description was found to have a longer read latency of 3 cycles instead of 1 cycle. In-
corporating the read latency of an OOM channel in Cprof+ was accomplished with
run time analysis of the read time, write time and the indices history. The results
yield network performance estimations errors of less than 6% for all Polybench Suite
benchmarks. In other words, Cprof+ is able to achieve 94% accuracy in performance
estimations compared to RTL simulations

The accurate performance estimation allows Cprof+ to profile a large set of pro-
grams. The Cprof+ simulation keeps profile of each statement execution including
read, execute and write times. These statement profiles allow for calculation of new
metrics, including the conditional synchronization time and the estimation of channel
sizes between processes. One of the difficulties for PPNs is the ability to calculate
minimum channel sizes while maintaining a deadlock free schedule. Cprof+ profiler
calculates channel sizes that, which not proved to be minimum, are significantly less
than the sizes calculated by Compaan.

With the channel size estimations, Cprof+ is able to perform a novel optimiza-
tion technique. Using the channel sizes as an estimate for the optimization factor of
a function, Cprof+ is able to achieve on average a 64% increase in performance using
modulo unfolding and plane cutting source-to-source transformations. While maintain-
ing an average factor of 6x increase in hardware resources as compared to the absolute
throughput case. A naive optimization technique yielded similar performance gains,
but with 7x factor increase in hardware resources.

The addition of channel size estimation and run-time checks for OOM adds overhead
to the Cprof+ profiling simulation. To ensure Cprof+ maintains reduced simulation
time, the Cprof+ and RTL simulations were compared. The results show that on
average Cprof+ executes within 121 seconds, while RTL simulations yield a time of
598 seconds. This result demonstrates the capability of Cprof+ as a rapid performance
estimation tool for PPN implementations in hardware.

75



8.1 Contributions

The contributions made in this thesis are as follows.

1. A profiler capable of modelling variable functional latency. Cprof+ now
has the ability to model different functional latencies to accurately model the
execution of a process in a PPN.

2. Run time analysis of channel type. To improve the performance estimations
of PPNs with OOM channels, Cprof+ analyses the read and write behaviour to
adjust in run time whether a read incurs an extra latency.

3. Channel size calculation based on simulation profile. Cprof+ can calculate
the channel sizes for a process of the PPN using the read and write profiles of the
process input variables. The size gives a first order approximation of the memory
requirements of the channels of a PPN. These channels can be implemented as
FIFOs or re-ordering buffers.

4. Automated source-to-source optimization technique for assisting in de-
sign space exploration. We have presented an automated method for assisting
the designer in exploring the design space by utilizing the input channel sizes of
a process to estimate an optimization factor. The factor is used to determine
whether to use modulo unfolding or plane cutting transformation techniques.

5. Validation of performance estimation and channel sizes. The results of the
modification were validated using the Compaan/Laura tool chain. The Xilinix Vi-
vado HLS Suite was used to verify the hardware implementation. The simulation
results were then compared to the values computed by Cprof+.

8.2 Future Work

In the following section suggestion for improvement will be given.

Expanding Transformation Tools

Cprof+ maintains two transformation techniques that it can apply to the source code in
order to change the PPN. There exist many more loop transformations that can help in-
crease the performance of the network without incurring additional hardware resources.
These loop transformations include loop skewing, loop interchange and stream multi-
plexing. Chapter D of the appendix gives a detailed background of the transformations.

Investigating Optimal Transformation Techniques

The automated transformation technique given focused only upon two transformations
that are well suited for processes with high pipeline utilization. To perform intelligent
design space exploration a combination of code transformations must be used to in-
crease the amount of data available to the process. The paper of Meijer[38] showed
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performance increases by utilizing a combination of process splitting and process merg-
ing techniques on PPNs for MPSoC applications.

Improving Programming Language Support

Cprof+ supports only programs with statements modelled as functions. Supporting
programs with non-functional call statements allows for larger set of programs that
can be profiled. To increase the set of programs that can be profiled, Cprof+ can be
extended to also support parallel programming languages as other profilers such as
Parwiz[40] do. Supporting parallel languages may also alleviate the demand of Cprof+
to identify parallel regions as the designer can already specify parallel code. Allowing
Cprof+ to give a more accurate estimation of the design space.

Improving Channel Sizing Calculation

Cprof+ currently implements channel sizing calculations post-simulation using arrays
of read and write histories. The memory and performance requirements of storing and
searching the histories to obtain a channel size increase with problem size and network
complexity. Compression techniques and adoption of a run-time size calculation can
aid in reducing the time complexity of Cprof+.
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Appendix A: Modulo
Unfolding and Plane Cutting
Case Studies A
The following sections highlight the results of the case studies on various benchmarks
using Modulo Unfolding and Plane Cutting methods.

A.1 Atax: Cprof and Compaan Results

PC Factor Cprof Vivado RTL

2 10028 10044

4 5068 5086

8 2588 2610

16 1689 1719

32 1689 1735

Table A.1: Plane Cutting results for compaan outlineproc3 around iterator i up to a factor
of 32 with Cprof and Compaan comparison.
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Figure A.1: Comparing Plane Cutting and Modulo Unfolding for compaan outlinedproc3
around iterator j.
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A.2 MM2: Cprof Results
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Figure A.2: Modulo Unfolding for compaan outlinedproc7 around iterators i, j and k with
execution values normalized to the unbounded case of 838 cycles.
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Figure A.3: Modulo Unfolding for compaan outlinedproc9 around iterators i, j and k with
executions values normalized to the unbounded case of 838 cycles.
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A.3 MM2: Function Latency Experiments
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Figure A.4: Modulo Unfolding for compaan outlinedproc9 around iterators i with varying
function latency of Proc7.
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Figure A.5: Modulo Unfolding for compaan outlinedproc9 around iterators j with varying
function latency of Proc7.
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Figure A.6: Modulo Unfolding for compaan outlinedproc9 around iterators k with varying
function latency of Proc7.
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Appendix B: Optimization
Techniques Numerical Results B

Benchmark CS(cycles) CS Nodes Naive(cycles) Nodes Absolute(cycles) Abs Nodes UB(cycles) UB Nodes

adi 3,076 21 5,620 20 5,596 12 1,094 960
atax 10,030 9 1,689 69 19,948 7 1,286 3,200
bicg 9,977 11 1,638 71 19,897 9 646 3,264

cholesky 17,903 97 4,166 71 91,500 9 4,166 36,928
correlation 17,431 141 310,288 297 338,498 19 2,121 41,121
covariance 13,700 75 3,224 133 341,992 9 1,085 38,976

doitgen 1,212 37 1,210 14 181,028 5 209 14,000
durbin 10,755 48 10,743 104 10,803 11 10,712 2,179

dynprog 37,750 40 161,375 25 242,398 7 289 316,522
fdtd 2d 2,119 124 2,649 11 2,187 8 150 10,304

fdtd apml 4,363 180 4,363 65 4,508 37 725 9,331
floyd warshall 638 8 412 10 2,000 3 292 640

gemm 2,115 41 99,110 39 99,172 8 46 37,890
gemver 27,256 20 1,993 140 55,034 16 1,838 4,418

gramschmidt 2,275 45 3,344 30 4,746 9 3,335 1,360
jacobi 1d imper 1,029 22 1,031 5 1,031 5 65 3,491
jacobi 2d imper 1,873 37 1,899 5 1,899 5 19 6,483

lu 2,857 36 2,804 66 31,364 4 1,866 35,840
mvt 9,781 15 1,318 71 10,711 9 326 3,264

reg detect 2,759 51 3,687 25 3,649 7 143 664
seidel 2d 1.38 · 105 14 181,228 3 181,228 3 9,574 2,822

symm 3,001 88 3,001 103 281,351 10 1,510 69,634
syrk 4,486 39 4,486 69 508,958 7 527 36,864
syr2k 4.93 · 105 42 4,998 102 1,016,878 9 1,039 70,656
trisolv 5,854 52 1,909 68 9,497 6 1,909 2,144
trmm 3.12 · 105 6 17,118 36 418,625 5 1,742 35,841
mm2 2,421 74 2,421 104 521,204 11 838 7,168
mm3 3,159 104 3,159 104 631,713 11 646 106,496

ludcmp 28,873 168 15,427 172 123,680 18 13,905 75,010

Table B.1: Numerical Results of the Optimization Techniques with Estimated Execution Time
of the implemented PPNs in cycles. In addition, to amount of node(processes) allocated for
the network

In the above table, the results of the two optimization techniques are given and com-
pared with each other. Note the abbreviation CS stands for the Channel Size technique.
While Absolute and UB represent the Absolute and Unbounded throughput results of
the Cprof PPN execution estimation on each benchmark. The amount of processes or
nodes needed for each network are also given in the adjacent column of each execution
estimation. The number of processes were also estimated from Cprof.
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Appendix C: Polybench Suite C
Benchmark Description

adi Alternating Direction Implicit Solver

atax Matrix Transpose and Vector Multiplication

bicg BiCG Sub Kernel of BiCGStab Linear Solver

cholesky Cholesky Decomposition

correlation Correlation Computation

covariance Covariance Computation

doitgen Multiresultion analysis kernel (MADNESS)

durbin Toeplit System Solver

dynprog Dynamic Programming (2D)

fdtd-2d 2-D Finite Different Time Domain Kernel

fdtd-apml FDTD using Anisotropic Perfectly Matched Layer

gemm Matrix-multiply C=alpha*A*B+beta*C

gemver Vector Multiplication and Matrix Addition

gramschmidt Gram-Schmidt Decomposition

jacobi-1d 1-D Jacobi Stencil Computation

jacobi-2d 2-D Jacobi Stencil Compuation

lu LU Decomposition

ludcmp LU Decomposition

mm2 2 Matrix Multiplication (D=A*B; E=C*D;)

mm3 3 Matrix Multiplication (E=A*B; F=C*D; G=E*F;)

mvt Matrix Vector Product and Transpose

reg-detect 2-D Image Processing

seidel 2-D Seidel Stencil Computation

symm Symmetric Matrix Multiply

syrk Symmetric rank-k Operations

syr2k Symmetric rank-2k Operations

trisolv Triangular Solver

trmm Traingular Matrix Multiply

Table C.1: Polybench Benchmark Suite
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Appendix D: Loop
Transformation Techniques D
Source-to-source transformations are nothing new for loops. Loop distribution, loop
fusion, loop skewing and loop interchange allow for a better traversal of a loop iteration
domain to exploit performance gains. The difficulty is applying these transformations
in a systematic and general manner. One method of applying the transformations gen-
erally is by using unimodular transformations on loops. Unimodular transformations
allows for simple manipulation of loops, but data dependencies between statements can
mean unimodular transformations cannot be used[41].

D.1 Loop Skewing

Loop skewing is a transformation technique that modifies the schedule of a process
by shifting the iterations in order to explicitly exploit the parallelism available. Figure
D.1 demonstrates the transformation visually on a 2-dimensional iteration domain with
dependencies shown with arrows. By skewing the iteration domain in the j direction,
the throughput of the system is increased.

j

i

1

2

3

321 j

i

1

2

3

321 54

Figure D.1: Loop Skew applied to an Iteration Domain

Take for example iterations (1, 2) and (2, 1), both are independent as no depen-
dencies exist between them. Therefore both can be executed in sequence, rather than
utilizing a lexicographical schedule where (1, 2) is executed followed by (1, 3). This
leads to a stall in the pipeline as (1, 3) will have to wait on the output of (1, 2). Thus,
iteration domain can be traversed in a more optimal fashion.

Listing D.1 demonstrates the modified C code in this example which helps to ex-
plicitly state the desired traversal order. The work of Stefanov[39] presents methods
for transforming a loop statement by skewing using a mathematical description of the
statement. With this transformation Compaan is then able to process the modified C
code and implement the modified process[39].

Loop skewing is an important technique to increase the hardware utilization of a
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Listing D.1: Loop Skewed C Code from example in Listing 2.1

1 for (i=2; i < N+3; i++){
2 for (j=max (1 ,i−3) ; j < min (i , 4 ) ; j++){
3 A [ i−j ] [ j ] = foo (A [ i−j ] [ j−1] , A [ i−j−1] [j ] ) ;
4 }
5 }

process. The interest to improve the efficiency of loops is an important factor for sci-
entific programs and image processing application[42]. The data reuse is an important
factor when utilizing all the performance possible in a loop. The work present by Jin et
al. demonstrate a method for General Purpose Processors that improve the temporal
locality of data in a loop for scientific applications[42]. Reducing cache misses by 27%.

The difficulty to find an appropriate skew factor is also challenge as seen in the
work of Loopy[31]. Where the authors manually found the optimal skew factor for the
seidel-2d benchmark of Polybench. However, it must be noted their research dealt only
with GPPs architectures and the findings may not be applicable to a PPN performance.

D.2 Loop Interchange

Loop interchange is another code transformation that can lead to an improved schedule
for the process. Figure D.2 demonstrates a loop interchange on a perfectly nested loop.
A perfectly nested loop is one where all statements are contained within the inner most
loop.

Listing (D.2) Loop Order i,j

1 for (i=0; i < N ; i++){
2 for (j=0; j< N ; j++){
3 A [ i ] [ j ] = A [ i+1] [j−1]+5;
4 }
5 }

Listing (D.3) Loop Order j,i

1 for (j=0; j < N ; j++){
2 for (i=0; i< N ; i++){
3 A [ i ] [ j ] = A [ i+1] [j−1]+5;
4 }
5 }

Figure D.2: Example of Loop Interchange

Perfectly nested loops can be transformed using a unimodular matrix transfor-
mation. A unimodular matrix is one where the determinant is +1 or -1 one. The
mathematical description of the unimodular transformation for loop interchange of a
2-dimensional loop is given as follows.

TI =

[
0 1
1 0

] [
i
j

]
=

[
i′

j′

]
= I ′ (D.1)

Where i′ and j′ are the new iteration vectors of the loop and T the transformation
matrix. This transformation must be done on all iterations points of the loop. In order
for this transformation to be legal, it must pass a dependency test. The test checks
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Listing D.4: Example of a cycle in a PPN

1 for (i=0; i < N ; i++){
2 proc1(&v , v ) ;
3 proc2(&v , v ) ;
4 proc3(&v , v ) ;
5 }

for whether the dependence vectors for each iteration point is lexicographically positive
after the transformation. A dependence vector is defined as follows.

θk =


1 if uk > 0

0 if uk = 0

−1 if uk < 0

(D.2)

Where u = (ip, jp)−(ic, jc) is the distance vector between the producer and consumer
and k ∈ {i, j}. The dependence vector for iteration (1, 2) of variable A can be seen as a
distance vector from (1, 2) to (2, 1). Creating a dependence vector of (1,−1).Applying
transformation T to the dependence vector yields a new dependence vector (−1, 1). The
resulting dependence vector is (1,−1) � (−1, 1) and so it is lexicographically negative.
Applying loop interchange on the loop of Figure D.2 is then deemed illegal.

The example given demonstrates the need for transformation legality as the loop
interchange affects the scanning direction of an iteration domain and so care must be
taken to ensure the dependencies are not affected.

The transformation can be expanded to non-adjacent perfectly nested loops of di-
mension greater than 3 and imperfectly nested loops. In the paper of T. Huang et al.[43]
techniques were given on how to apply the transformation to adjacent and imperfectly
nested loops.

D.3 Stream Multiplexing

The method of PPN optimization in Section 6.2 explained in that in the PhD thesis
of Zissulescu[9] a process in a PPN with a self loop of size less than the functional
latency must be modified to increase the amount of independent iterations. This can
be accomplished using skewing or loop interchange or by adding independent streams
of the same problem.

In the case of a PPN that contains a cycle, overlapping execution may be prevented
due to the cyclic nature of the network. To reduce the idle time of process, independent
data streams can be added, this is known as stream multiplexing.

In the PhD Thesis of Haastregt[1], this transformation was proposed to increase the
throughput of multiple executions of a PPN. By allowing multiple independent data
sets to execute in a pipelined fashion.

The technique is similar to software pipelining where iterations of subsequent loops
are executed in an overlapping pattern. However, in this case the pipelining is occurring
at a task level.
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Listing D.5: Streaming Multiplexing C code Example from Listing D.4

1 for (i=0; i < N ; i++){
2 for (j=0; j<P ; j++){
3 proc1(&v [ j ] , v [ j ] ) ;
4 }
5 for (j=0; j<P ; j++){
6 proc2(&v [ j ] , v [ j ] ) ;
7 }
8 for (j=0; j<P ; j++){
9 proc3(&v [ j ] , v [ j ] ) ;

10 }
11 }

The example in Listing D.4 depicts a PPN of three processes each dependent on
the output of the other. The input of proc2 is dependent on the output of proc1 and
proc3 on proc2. This causes the utilization of the processes pipeline to be low.

P1 P2 P3 P1 P2 P3

a) b)

Figure D.3: (a) PPN of example code in Listing D.4 and (b) stream multiplexed version of
that same code

To increase the utilization, other datasets of v can be added. The throughput of a
single execution of the PPN is not improved, but by considering multiple executions
the throughput has increased.

In the example of Listing D.5, each function statement is enclosed by a loop with
bound P . Where P is the streaming factor. Now variable v is expanded to an array
where each index contains an independent stream of v with P streams.

D.4 Summary

Presented are three loop transformation techniques that may be applied to some process
of the network. Determining when to apply these transformations is a crucial part as
loop interchange and loop skewing is only necessary when accessing the data in the loop
is not optimal due to data dependences. While the transformation known as stream
multiplexing focuses on the execution of a network and helps to increase the throughput
when considering multiple executions.
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