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ABSTRACT
Metamaterials are engineered materials with unusual, unique properties and advanced functionalities that are a direct consequence of their
microarchitecture. While initial properties and functionalities were limited to optics and electromagnetism, many novel categories of meta-
materials that have applications in many different areas of research and practice, including acoustic, mechanics, biomaterials, and thermal
engineering, have appeared in the last decade. This editorial serves as a prelude to the special issue with the same title that presents a number
of selected studies in these directions. In particular, we review some of the most important developments in the design and fabrication of
metamaterials with an emphasis on the more recent categories. We also suggest some directions for future research.

Published under an exclusive license by AIP Publishing https://doi.org/10.1063/5.0144454

I. INTRODUCTION

The last decade has witnessed an explosive growth in the
breadth and depth of the studies aiming to design, simulate,
fabricate, and characterize metamaterials of different kinds. This
unprecedented growth has primarily happened at the intersection
of three major developments that have reinforced each other and
have facilitated the study of metamaterials. First, the design of meta-
materials that was initially limited to optical and electromagnetic
properties has now expanded to mechanical (both quasi-static and
elastodynamic),1,2,183 acoustic,3–5 biomedical,6–10 and thermal11,12

properties. Second, the additive manufacturing (AM) techniques,
which are also referred to as 3D printing techniques, have come
of age during the last decade. In particular, it is now possible
to fabricate functional materials and structures at different length
scales,13–16 from different materials,17–21 and with arbitrarily com-
plex distributions of multiple phases with vastly different mechanical
and physical properties within one single construct.19,22–27 Third,
the development and widespread availability of computational
techniques, including those based on artificial intelligence (AI), as
well as readily available computational capacity in the form of cloud

computing,28,29 distributed computing,30,31 GPU (graphic process-
ing unit) computing,32,33 parallel computing,34,35 and TPU (tensor
processing unit),36,37 has enabled improved canvassing of the space
of possible designs and more powerful approaches to the rational
design of metamaterials.

The current special issue presents a collection of selected arti-
cles from various areas of research within the broad spectrum of
designer materials that are referred to as “metamaterials.” It, there-
fore, features multiple studies employing elements from all the
three above-mentioned trends. In this editorial, we try to focus on
the most important recurrent themes not only in the studies pub-
lished within this special issue but also in the relevant literature,
in general. Electromagnetic and optical metamaterials have been
extensively reviewed in other (recent) papers. Moreover, the guest
editors’ expertise and the topic of the many of the articles pub-
lished in this special issue is non-electromagnetic metamaterials.
This editorial will, therefore, focus on highlighting the most impor-
tant trends seen in the current research into metamaterials that
target properties and functionalities beyond optics and electromag-
netism. We will particularly focus on mechanical and biomedical
metamaterials.
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II. DESIGN
When designing metamaterials, the principal design objective

is to devise small-scale architectures that give rise to a desired set
of large-scale properties. The methods applied for such a design
purpose often rely on physical reasoning, analytical models, and
computational models and are collectively referred to as “rational
design” approaches. In this context, the term “rational” highlights
the contrast with “creative” or “artistic” design approaches that rely
on one’s artistic, creative, and (even) intuitive design capabilities.
In their purest form, rational design approaches aim at solving an
inverse design problem in which the microarchitectures giving rise
to a specific set of physical parameters are sought. However, solv-
ing such inverse design problems is often notoriously difficult. The
vast majority of studies found in the literature, therefore, start off
with a design idea that stems in physical reasoning. Such design
ideas are then supported by parametric studies in which “forward”
computational models are used to relate the designed microarchi-
tectures to the large-scale properties. Starting off from a specific
design idea not only is important for such hybrid approaches but
also is required when trying to solve the actual inverse problem

associated with any specific objective. That is because the space of
all possible microarchitectural designs is too large and complex to
be realistically canvassed by any viable computational method avail-
able today. It is, therefore, important to start off by limiting the
space of possible designs to a specific parametrization of the pos-
sible microarchitectures. To be as minimally restrictive as possible,
such parametrizations require a masterful application of physical
reasoning and an intuitive understanding of the underlying physics
(Fig. 1). This somewhat blurs the boundaries between “rational”
and “intuitive” designs but is a worthy price to pay given the need
to compensate for the inadequacy of computational hardware and
software.

Recently, the application of machine learning techniques has
enabled two other approaches to the design of metamaterials
[Figs. 2(a) and 2(d)]. First, it has become now possible to solve the
inverse design problems with the help of deep learning and other
AI tools.38–44 Second, generative models, such as generative adver-
sarial networks (GANs)45,46 and variational autoencoders (VAEs),47

can now take over some parts of the rational design process by
generating designs that correspond to some given sets of target
properties.48

FIG. 1. Mechanical metamaterials can show unusual properties. As an example, three categories of metamaterials with different values of Poisson’s ratio, ν, are shown
here. This includes dilational behavior with ν = −1 [(a) and (b)], auxetic behavior with ν < 0 [(c) and (d)], and penta-mode properties with ν = 0.5 [(e) and (f)]. Subfigure (b)
is reprinted with permission from Bückmann et al., “On three-dimensional dilational elastic metamaterials,” New J. Phys. 16, 033032 (2014). Copyright 2023 IOP Publishing.
Subfigure (d) is reprinted with permission from Kolken and Zadpoor, “Auxetic mechanical metamaterials,” RSC Adv. 7, 5111–5129 (2017). Copyright 2017 The Royal Society
of Chemistry. Sub-figures (f)-left and (f)-right are, respectively, reprinted with permission from Kadic et al., “On the practicability of pentamode mechanical metamaterials,”
Appl. Phys. Lett. 100, 191901 (2012), and Hedayati et al., “Additively manufactured metallic pentamode meta-materials,” Appl. Phys. Lett. 110, 091905 (2017) with the
permission of AIP Publishing LLC.
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FIG. 2. An example of physics-informed deep learning models (a) that can be used for the rational design of the microarchitectures of mechanical metamaterials.38 An
example of self-folding lattices composed of passive and active materials (b), reprinted with permission from van Manen et al., “Theoretical stiffness limits of 4D printed self-
folding metamaterials,” Commun. Mater. 3, 43 (2022). Copyright 2023 Springer Nature Limited. An example of the applications of mechanical metamaterials in biomedical
engineering for creating meta-biomaterials (c), reprinted with permission from Kolken et al., “Rationally designed meta-implants: A combination of auxetic and conventional
meta-biomaterials,” Mater. Horiz. 5, 28–35 (2018). Copyright 2023 Royal Society of Chemistry. An example of mechanical neural networks (d) that demonstrates the unique
features for learning various mechanical behaviors simultaneously. Sub-figure (d) is reprinted with permission from Lee et al., “Mechanical neural networks: Architected
materials that learn behaviors,” Sci. Rob. 7, eabq7278 (2022) with the permission of AAAS.

It is important to understand what constitutes a microar-
chitecture. Partially motivated by the unavailability of free-form
multi-material (additive) manufacturing technologies, the first
microarchitectural designs of metamaterials were focused on geom-
etry. Even in such single-material constructs, there has usually been
a second phase that constitutes the voids often seen in the design
of architected materials. In such material–void composites,49–52 the
design problem reduces to that of devising a small-scale geometry
that gives rise to the desired properties. Multi-material 3D printing
techniques have, however, become increasingly available during the
last 5–10 years.53–55 It is, therefore, possible nowadays to combine
arbitrarily complex geometries with an arbitrary spatial distribution
of materials with different properties and functionalities. The space
of possible designs has, thus, greatly expanded and now includes
not only the topology and geometry of the individual repetitive unit
cells making up the design but also the exact mechanical and physi-
cal properties of each voxel within the construct19,38,56,57 [Fig. 2(b)].
Computational methods, such as topology optimization, can be used
to design the microarchitecture of both single- and multi-material
metamaterials.53,58,59 However, there are multiple challenges that
need to be addressed to enable the efficient application of such tech-
niques. For example, it is not always feasible to find differentiable
objective functions that can be combined with the available gradient
descent-based topology optimization techniques. Future research
should, therefore, address the above-mentioned challenges to enable
more objective design approaches and the discovery of metamate-
rial concepts that can hardly be conceived through intuition and
physical reasoning alone.

III. MATERIAL
While the properties and functions of metamaterials are, to

a large extent, determined by their microarchitecture, the bulk
material from which they are made also plays an important role in
determining the properties of the metamaterial. In particular, the
bulk material properties may define the boundaries of the enve-
lope of (absolute) properties that can be achieved through various
microarchitectural designs.

Metamaterials made from various material categories, includ-
ing metals,60–64 polymers,65–69 and ceramics,51,70–73 have been
reported in the literature. As the number and complexity of the
materials that can be processed with advanced manufacturing tech-
niques, such as AM, increases, more examples of architected mate-
rials with exotic properties appear in the literature. An interest-
ing application of AM techniques to produce metamaterials with
exceptional constituent properties is the fabrication of polymeric
structures with nanoscale resolution via two-photon polymerization
Direct Laser Writing (2pp-DLW) followed by pyrolysis,51,72,74,75 or
ALD coating and polymer removal by plasma etching.76 The result
is an architected ceramic material with local dimensions at the sub-
micron scale. At this scale, the intrinsic cracks are too small to grow
by brittle fracture and the material locally approaches its theoret-
ical strength (approximately one tenth of its Young’s modulus).77

These size effects can be combined with near optimally stiff and
strong unit-cell architectures to achieve metamaterials with specific
strengths higher than diamond.51

In some cases, the role of the bulk material properties goes
beyond defining the boundaries of what is possible. In fact, some
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FIG. 3. Examples of programmable morphing using active (a) and passive (b) materials. Even more complex geometries can be considered in the design of such active
metamaterials (c). An example of nano-architected ceramics with ultrahigh energy absorption (d). An example of a tensegrity metamaterial with failure-resistant property
(e). Subfigures (a), (b), and (c) are, respectively, reprinted with permission from Lai-Iskandar et al., “Programmable morphing, electroactive porous shape memory polymer
composites with battery-voltage Joule heating stimulated recovery,” APL Mater. 10, 071109 (2022); Zhang and Krushynska, “Programmable shape-morphing of rose-shaped
mechanical metamaterials,” APL Mater. 10, 080701 (2022); and Ashraf et al., “On the computational modeling, additive manufacturing, and testing of tube-networks TPMS-
based graphene lattices and characterizing their multifunctional properties,” APL Mater. 10, 121107 (2022) with the permission of AIP Publishing. Subfigures (d) and (e)
are, respectively, reprinted with permission from Guell Izard et al., “Ultrahigh energy absorption multifunctional spinodal nanoarchitectures,” Small 15, 1903834 (2019), and
Bauer et al., “Tensegrity metamaterials: Toward failure-resistant engineering systems through delocalized deformation,” Adv. Mater. 33, 2005647 (2021). Copyright 2023
John Wiley and Sons, Inc.

metamaterial functionalities may be impossible to realize without
very specific bulk properties. For example, many designs of shape-
shifting metamaterials, such as self-folding origami,78–81 are depen-
dent on the shape memory behavior found in some polymers82,83

and metallic alloys84,85 to program the underlying shape transforma-
tion behavior. Another example is metallic meta-biomaterials86–88

[Fig. 2(c)] that require a specific set of biomedical requirements,
such as biocompatibility, bioactivity, and biodegradability.89–91

Bioactivity and biocompatibility are relatively less challenging to
address. That is because there are metals (e.g., tantalum92) that are
intrinsically highly biocompatible. Moreover, it has been possible to
use traditional surface treatment techniques, such as anodizing93–95

and plasma electrolytic oxidation,96–98 to enhance the bioactiv-
ity of metals and their alloys. Biodegradability is, however, a
relatively new addition to the possibilities offered by metallic
meta-biomaterials.99,100 Most reports related to metal biodegradabil-
ity are limited to Mg,101,102 Zn,103 Fe,104,105 and their alloys. The first
reports of architected meta-biomaterials made from biodegradable
metals have only recently appeared in the literature.87,100,102 This has
to do with the difficulty of processing some biodegradable metals
with currently available AM processes. For example, Mg is highly
inflammable and creates safety concerns, while Zn has a relatively
low evaporation temperature that makes it difficult to process with
direct metal printing techniques.

A final example concerns the integration of electronics into
architected materials such that the structural properties can be
combined with other functionalities, such as sensing, actuation,
and processing.106 The incorporation of electronics into architected
materials requires the ability to print the main structural material
while also distributing the other materials needed for the electronics,

such as conductors and semiconductors. Simultaneous 3D print-
ing of structural, conductive, and semiconductive materials into a
coherent architected construct with arbitrarily complex geometries
remains a major challenge that needs to be addressed in the coming
years.

Regardless of the type of the properties pursued in the design
of metamaterials, a recurrent theme is the need to incorporate
differential material response into a single construct because many
advanced functionalities are dependent on the co-existence of
highly different material properties next to each other and within
the fabric of a single metamaterial construct. Examples include
conductive vs non-conductive vs semiconductive materials for elec-
tronics applications,107,108 magnetic vs non-magnetic properties for
magnetic applications,109–112 soft vs hard materials for creating
simultaneously tough and stiff materials,113–115 and shape-shifting vs
delayed shape-shifting vs passive materials for programming com-
plex (e.g., sequential) shape transformations116–124 (Fig. 3) and phase
transitions.125 Creating this type of differential responses remains
one of the major challenges of AM techniques to be tackled in the
coming years.

IV. FUNCTION
Depending on the type of the metamaterial, the design objec-

tive may be different. Indeed, there has been a gradual shift over the
years from a primarily property-driven approach to a functionality-
driven one. In this context, property refers to the effective properties
of the metamaterial at the macroscale when the size of the meta-
material specimen is large enough as compared to its microarchi-
tecture. The “design for property” approaches generally aim at the
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creation of metamaterials with unusual properties that are not found
in ordinary engineering materials, including the dilational behav-
ior [Fig. 1(a)],126–128 negative Poisson’s ratios [i.e., auxetic behav-
ior, Fig. 1(b)],2,124,129–131 negative stiffness,132–134 negative thermal
expansion,67,71 ultra-high stiffness,15,63,135 directional compliance,136

and penta-mode [i.e., fluid-like, Fig. 1(c)] properties.62,127,137,138

On the other hand of the property–functionality spectrum,
one finds the “design for functionality” paradigm where the
designed metamaterial exhibits functionalities that are gener-
ally observed in devices. The boundary between the material
and device is thereby somewhat blurred. This has given rise to
terms such as “machine matter,”139–142 where the material is the
machine. Examples of such functionalities include shape-morphing
behaviors,143–150 self-folding origami,78,151,152 information storage
(i.e., memory metamaterials),120,153 power transmission and motion
conversion,154 and digital logic in the format of mechanical logic
gates.155,156

There are also design concepts that take an intermediate
position in the spectrum from a material to a device. An exam-
ple of such intermediate concepts from mechanical metamaterials
is strain rate-dependent switching in the properties (e.g., from
auxetic to conventional or the other way around) and functional-
ity (e.g., from clockwise to counterclockwise rotation)23,139,141 of a
metamaterial. Another example from meta-biomaterials is the
hybrid auxetic–non-auxetic meta-implants,6 where a rational dis-
tribution of the Poisson’s ratio is used to enhance the longevity of
orthopedic implants.

The move from property-driven design approaches to
functionality-driven ones is a welcome change in the direction of
this research area because the scope of possible designs is much
broader when dealing with functionalities as opposed to properties,
which are limited both in number and in their possible ranges
due to, among other factors, thermodynamics constraints. Indeed,
there are well-defined theoretical limits for the range of various
properties that could be achieved through the microarchitectural
design of metamaterials. For example, the Poisson’s ratio of
isotropic materials is limited to the specific range [−1, 0.5],157

while the possible ranges of elastic modulus and bulk modulus of
metamaterials are coupled and limited by the Hashin–Shtrikman
bounds.158 As a result of the latter theoretical bound, it is, for
example, theoretically impossible to design metamaterials that
are simultaneously highly auxetic and highly stiff. The envelope
of functionalities that can be realized with metamaterials is, on
the other hand, only dependent on the availability of suitable
materials and (additive) manufacturing techniques. For example,
the availability of AM techniques that could process both stress-
worthy materials (e.g., hard polymers, metals, or composites) and
(semi)conductors would enable the development of metamaterials
with both structural and (distributed) electronic functionalities.
Given the ever-expanding range of materials that can be processed
with (multi-material) AM techniques, it is expected that we will
see many novel functionalities appearing in the literature in the
coming years.

V. FABRICATION
The fabrication of metamaterials can be performed using

several techniques, of which AM is the most important one. That

is because the form-freedom offered by AM techniques is essen-
tial for the creation of the often highly complex microarchitectures
that result from rational design processes and are required for
the realization of unusual properties and advanced functionalities.
AM techniques have been under development for more than three
decades, initially under the names “rapid prototyping” and “3D
printing” and later under the umbrella of “additive manufactur-
ing technologies,” which, according to the American Society for
Testing and Materials (ASTM) classification, consists of seven dif-
ferent categories.159 While the first attempts at “rapid prototyping”
were primarily focused on the fabrication of physical models
without necessarily requiring the use of industrial-grade, stress-
worthy materials, the recent research since the turn of the century
and particularly in the last decade has been focused on the pro-
cessing of stress-worthy materials to create fully functional parts
with complex geometries and high fidelities that are on a par with
industrially made parts.

The recent developments of AM have expanded the length
scales, types, and number of co-printed materials. As far as the
length scales are concerned, it is currently possible to additively
manufacture materials with a few nanometer resolutions using elec-
tron beam induced deposition,160,161 with submicron resolutions
using two photon polymerization,1,162,163 with a few micrometer res-
olutions using variants of stereolithography,71,164,165 with sub-100
micron resolutions using polyjetting57,166 as well as with microse-
lective laser melting,167,168 and with submillimeter resolutions using
a variety of techniques (e.g., selective laser melting169 and elec-
tron beam melting170 for metals; fused deposition modeling171 and
selective laser sintering49 for polymers).

Even though printing with very fine resolutions has become
possible, there are two major obstacles that need to be tackled
in future studies. First, the additive nature of printing processes
means that the fabrication of objects with dimensions that are
a few orders of magnitude larger than the printing resolution
takes a formidably long time. To date, this limitation has been
primarily addressed through the use of indirect AM techniques
where molds,9,17,140,172 (lithography) masks,173,174 or (imprinting)
stamps175–177 are created using AM and are then applied to scale
up the manufacturing of the target devices both in number and
in dimensions [Figures 3(d) and 3(e)]. An emerging approach to
design and fabricate scalable nano-architected materials is the use of
self-assembly approaches (e.g., spinodal decomposition178,179).
While the unit cell topology is somewhat limited by the natu-
ral process, recent studies have shown that spinodal shell-based
metamaterials [Fig. 3(d)] have exceptional mechanical180,181 and
biomechanical182 properties.

The second limitation concerns the limited number of mate-
rials that can be processed with small-scale AM techniques. As a
rule of thumb, AM techniques working with the finest resolutions
can only process a limited number of materials with a relatively lim-
ited range of (mechanical) properties. Once more, indirect AM may
be used to address this limitation to some extent. However, indi-
rect AM techniques have their own limitations, including a lower
degree of design freedom as compared to direct AM techniques. It
is, therefore, important to address both the above-mentioned chal-
lenges more directly and through the development of AM machines
that are specifically designed for scalable manufacturing of metama-
terials (e.g., machines with many laser sources) as well as through
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the development of novel, bespoke materials that could be processed
using ultrahigh resolution AM techniques.

While we discussed the materials used for the fabrication
of metamaterials in Sec. III, the focus of that section as well as
that of much of recent research has been on the application of
AM for the processing of already existing materials. The opti-
mal conditions for the processing of metamaterials are, however,
only achieved when new materials are developed for the specific
AM technique at hand. Future research should, therefore, focus
on the mutual optimization of AM processes and functional mate-
rials to enable a high resolution, high fidelity, and scalable fab-
rication of multi-functional metamaterials, meta-structures, and
meta-devices.

VI. CONCLUSIONS
In summary, the research into metamaterials has been grow-

ing in both breadth and depth over the last decade and it currently
constitutes an important, thriving area of research with a large
community of researchers attracted from different disciplines and
areas of the world. This diversity of topics, research groups, and
researchers is also reflected in the current special issue where a
selected number of studies are presented that cover various types
of properties/functionalities, design techniques, and fabrication
methods. The recent developments in rational design processes,
particularly advanced computational methods (e.g., machine learn-
ing and multi-objective topology optimization), as well as the ever-
increasing availability of highly functional materials for AM and the
coming-of-age of AM techniques themselves are expected to enable
the development of novel types of metamaterials. More specifically,
there is a move from engineering properties to creating multiple
advanced functionalities where the boundary between materials and
devices is blurred.
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