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Abstract

The maturing of autonomous driving technology in recent years has led to several pilot
projects and the initial integration of autonomous pods and buses into the public transport
(PT) system. An emerging field of interest is the design of public transport networks oper-
ating autonomous buses and the potential to attract higher levels of travel demand. In this
work a multi-objective optimization and multi-agent simulation framework is developed to
study potential changes in the network design and frequency settings compared to conven-
tional PT systems when autonomous vehicles (AV) systems are deployed on fixed-route
networks. During the optimization process multiple deployment scenarios (network con-
figurations and service frequency) are evaluated and optimized considering the operator
cost, user cost and infrastructure preparation costs of the system. User-focused network
design and operator-focused network design are studied for a real-world urban area in Swe-
den. The results provide insights into the network design and level of service implications
brought about by the deployment of autonomous bus (AB) when those are integrated in
route-based PT systems. We show that the deployment of autonomous buses result with
a network design that increases service ridership. In the context of our case study this
increase is likely to primarily substitute walking.

Keywords Public transport - Automated bus - Network design - Simulation-based multi-
objective optimization

Introduction

The current technological advances in the field of autonomous buses (AB) allow for tests
and operations of AB on public roads. These pilot studies target investigations of user
acceptance and vehicle operation of AB in transport systems. Most pilot studies either
offer last-mile connections from a transportation hub or close a transportation gap between
two stations. When operating AB as a transport mode on fixed routes the operating costs
are expected to reduce by ca. 50% compared to conventional bus operations (Lidestam
et al. 2018). Walters (1982) showed that an operating cost reduction facilitates a shift in
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resource allocation towards higher service frequencies and lower vehicle capacities. With
higher frequencies and smaller vehicles changes in the route network layout are possible.
Eluru and Choudhury (2019) present eight different studies discussing potential impacts of
autonomous vehicles on trip generation, vehicle-miles traveled and other transport related
metrics. All these studies assume demand-responsive autonomous vehicles no line-based
operations. In contrast to these studies, we elaborate more holistically on the impacts of
autonomous vehicles on the combined operator, infrastructure and user costs on fixed-line
services, which deepens the understanding of system level impacts due to AB deploy-
ment. Additionally we can get insights in how the reduction of operator costs in case of AB
deployment effects the level of service for public transport users.

The transit network design and frequency setting problem (TNDFSP) is characterized
as creating an optimal set of public transport bus routes including the service frequency
for each bus route operating in the network. The problem has been subject to extensive
research in the last decades. However, even though vehicle automation has the potential
to greatly impact service design properties, it has not yet been systematically investigated.
In this work, we formulate a variant of the TNDFSP that caters for the characteristics of
AB and hence allows examining the potential impacts of its deployment on service design.
With the deployment of AB additional constraints regarding the connectivity of the bus
lines are required. More specifically every bus stop should be connected in the network
with every other bus, so that all bus stops can be reached by any bus. This property has
not been considered in past TNDFSP formulations. The line-based network characteristics
and the connectivity constraint are motivated twofold. First, the use of a line-based public
transport system is known to most people and has been accepted for a long time and has
important merits in serving the bulk of the travel demand. Second, the legal operation of
autonomous buses in most urban environments is currently bound to certain areas and or
specific roads. The legislative framework does not allow for the deployment of large fleet
sizes in flexible operational environments; hence the line-based mode of operation is seen
as the first practical use case. By adding line-based and connectivity characteristics to the
problem formulation the study investigates near future and transition scenarios from tra-
ditional to autonomous public transport operations. Additionally, the deployment of AB
affects the operational cost structure by reducing the crew cost as well as the infrastructure
cost by increased costs for AB specific road or bus stop enhancements. The impact of both
cost terms on the TNDFSP has not been studied previously. Further, the majority of past
research on TNDFSP requires PT networks to serve every bus stop. In this AB specific
TNDFSP the bus stop position is an output value. Thus, not every potential bus stop in
the area of interest has to be served. This allows for a network design which is simultane-
ously benefiting operator focused designs and serving the demand with a user perspective
in mind.

In this study, we investigate how the network design (number of routes and route align-
ment), the infrastructure (number of bus stops and network length), operating and traveler
costs are affected by changed supply characteristics (service frequency and vehicle capac-
ity) induced by AB. Additionally, the study investigates the impact of changes in supply
provision on user costs and consequently its potential impacts on ridership. Furthermore,
structural differences in user-focused network design and operator-focused network design
are investigated. We solve the TNDFSP using a simulation-based multi-objective optimiza-
tion framework. The created solutions are constrained by the maximum number of routes,
the maximum service frequency and number of bus stops per route. The use of a agent-
based simulation module allows the simulation of walking as a transportation mode. By
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this passengers have the option to board a bus or walk at every bus stop and at every point
in time. This is achieved by additional walking links added to the network design problem.

The remaining of the paper is structured as follows. First, the relevant literature is
reviewed in the '"Literature review" section. Then the methodology of this study is
described in "Methodology". In the "Case study" section the case study is detailed. The
following "Results" section discusses the impact of AB on the network design, differ-
ences between user-focused and operator-focused PT networks and benchmark results.
The remaining of the paper "Discussion and conclusion” critically assesses the results and
concludes about the applicability of the framework. This section closes with an outlook,
sketching directions for potential future studies.

Literature review

This section reviews the relevant literature. First, works one transit network design and fre-
quency setting problems are presented and second studies presenting passenger assignment
models in PT are introduced.

Network design

The strategic public transport planning process can be subdivided into five consecutive
steps (Ceder and Wilson 1986). Step one is network design where demand and supply data
are used to create routes and operation strategies. In the second step, the service frequen-
cies are determined based on the available vehicle fleet, policy constraints, and the created
routes. In the next step, the timetable is developed which results in trip arrival and depar-
ture times for each stop in the network. The fourth step is solving the vehicle scheduling
problem based on schedule constraints, deadheading and work hour times. In the last step,
the crew schedule is created. In the past, studies have proposed solutions for each of the
five steps. Recent developments include the combined solution of multiple steps [see e.g.
Michaelis and Schobel (2009)]. Guihaire and Hao (2008) provide an extensive literature
study about research on transit network design and scheduling. They categories the original
five-step approach by grouping (a) the first and second steps, (b) the second and third steps
and (c) all first three steps together. The resulting problem categories are (a) transit network
design and frequency setting problem (TNDFSP), (b) transit network frequency setting
and scheduling problem (TNSP) and (c) transit network design and scheduling problem
(TNDSP), respectively. In this study, we focus on the first combination, the TNDFSP. The
solution for this problem implies finding a set of routes to serve a given area and their
respective frequencies.

Transit design and transit planning problems are challenging to solve (Guihaire and
Hao 2008). In Magnanti and Wong (1984) the authors state multiple transit network design
problem formulations and elaborate on their complexity. The authors conclude that the
general network design problem is NP-hard and therefore requires certain heuristics to be
solved for large problem instances. Similarly, sub-problems of the general network design
have been proven to be NP-hard, e.g. the uncapacitated budget design Johnson et al. (1978),
the Steiner tree on a graph Garey and Johnson (1979).

Table 1 provides an overview of selected studies that developed and applied heuristics
or meta-heuristics to solve the TNDFSP. For each study, we mention the elements included

@ Springer



Transportation

SIQJSURI) ‘9ZIS 19f

Kouanbany
QOTAIRS ‘PUI/IIB)S
QInoI pue KJIATIOQUUOD

puewap pay

onseau]  Auew 0} Auejy DgV onsunay  ‘Aioedes ‘ASojodoy aynoy 9pou Ioj soneA Areurg  -SHESUN puB W) [SABI], (210?7) Suerf pue 0)oz§
[OIBas nqel/ Vs SIQJSUBI) JO UOT)RZIWIUTIA
onsefou]  Auewr 0] AueA onsSLINOY SSQUIORIIP INOY sorouanbay ‘sanoy “a38I0A00 9OTATOS (8007) Suaz pue oeyyz
puewap
paysnesun pue sjsod
oz18 SOpOU U9IM]eq W) uonerado ‘own 19jsuen (9002)
onseauy QUO 0) AUuBA VS onsunoy 199y ‘Ayoeded ‘soInoy  [9ABI) ‘SOINOI JO JoqUINN  [OUI W) [ARI) JO WINS [YSWYIRIA pUB UB
owr) Sunrem WNWIXeW Junod owm Sunrem
onsefou] QUOo 0) AuB]A VD OUSUNOY  ‘Ayroeded 9[oIyeA ‘soJnoy  Jojsuel) ‘ojqerrea Areurg puE SI9JsueI) Jo wng (£007) A1oqonyeyD
(3509 J03RIadO
juapuadop 0IAIOS Quo 03 Auey ONSLINOY peo] 1o3uasseq sAempeay ‘sajnoy pUR I9sn) dIBJ[oM [BI0], (€002) Te 12 uary)
sasnq
Jo roquinu ‘sioysuery
s1o3uassed 1ojsuen-g
‘I9Jsuen)-1 JoIIp JO
Joquinu ‘puewap pay (200D
onsefou]  Auewt 0) AueJA VD OUSLNOH YIomlau peoy SONOY  -SHESun ‘Own 9[OIYIA-U]  IPIAIAL Pue K}10qoryey)d)
(3509 10jRI2dO
SQUOZ UNIIM SIOFI(] quo 0) AUBJAl VO OUSUNOH 108pnq ‘Ayoede) sKempeay ‘so)noy puE 19sN) 9IBJ[oM [BI0], (1007) Te 10 uaIy)
yjed 1s0110yS WOIf 9ZIs 199
onseou]  Auew o) Auejy ONSLINGH  UONRIAIP ‘YISUQ[ 9noy sarouonbaig ‘sonoy  “s3s00 Josn pue Joierdd  (8661) I[OBIS] PUR I3p)D)
9ZIS 199 sosnq jo (1661)
onsefou]  Auewr 0} KueA ONSLINOY  “I0J0BJ peo[ ‘serouonbory sorouanboiy ‘soJnoy  IoqUINU ‘OwT) [oARI) [B10], Tuessewyey pue feeq
93.I0A0D OTAIOS own
onsefou]  Auew o) Auejy JNSLINOH ‘Kouanbaiy jueisuo) SQINOY  [QAB) ‘SSAUIDAIIP SANOY (0861) IPUBIA
w [oAeI) [€10) ‘SI9T (L961)
onseou]  Auew 03 Auejy JNSLINOH sarouanbaiy ‘sonoy 971S 199  -uassed 30211Ip JO JqUUINN suewees pue upjdwe]
puewdq uroped puewd POUISIN SJUTEIISUOD) SO[qQELIBA UOISIO9(] EINikEele) Ioyny

dSAANL MAIAIOAQ aIjeIa] | 3|qe]

pringer

A s



Transportation

onse[au|

onse[au|

juopuada(g 201AI0§

onserau]

Kuewr 0) Auey uoneuIS pue DV

Kuewr 0) AueAl

VD OUsSLMO

Auew 0) Aue]y| VS pue YO ONSLINSH

Auew 01 AUl DV USLINOY [9A9[-1g

Kyoededs ‘Kyianoou
-uod ‘Kouanbaiy 9014198
J1[OAD “YISUL] AIn0OY

paels 10N

PjeIs 10N

SI9JsueI) “9ZIS 1Y
‘Kyoeded ‘A3o010doy anoy

sarouanbaly ‘saInoy

paels 10N

QuWIT) [QARI) ‘MO OLjel],
Kouanbaiy
QITAIRS ‘PUI/IILIS
9IN0I pue AJIAIIOUUOD
9pou 10j sanfea Kreurg

3

150D 2InjonJserjuy
150D JojeradQ 150D 19s()

SINOY J[OIYIA

pue puewop paysnesun
‘o [9AeI) JO WIng

win) [oARI)

pue sanI[ele} JUIPIOdR
‘suoIssruy Jo wng

Qwiny Sunrem pue
PEOJ J[IIYA [9AI] JOMO]
s1oysuel) :[oAQ[ Joddn

yoeoidde pasodoig

(6107) ‘e 10 sreuuoginog

(8107) "Te 10 [9ssod

(+107) Suerf pue 03z

puewaq

utoyped puewoq POYIOIN

SJUTEIISUOD)

SO[qeLIBA UOISIOd

CIREICTe)

oyny

(ponunuod) | sjqer

pringer

As



Transportation

in the objective function, decision variables and constraints; the solution method and the
demand-related assumptions.

In most studies heuristic algorithms are employed to solve large scale network design
problems. The heuristic approaches include simulated annealing (SA), tabu search, genetic
algorithm (GA) and artificial bee colony optimization (ABC) as well as other more niche
algorithms for specific problems. Most of the variation in the studies lies in the details of
the problem formulation and the size of the investigated network. In Lampkin and Saal-
mans (1967) the authors simultaneously optimize vehicle capacity and travel time of a sin-
gle route network. The demand level is fixed and many-to-many origin-destination demand
scenarios are assumed. The approach optimizes a social welfare objective function char-
acterizing the user cost and operator cost as a monetary value. More sophisticated mod-
els (Zhao and Zeng 2008; Chien et al. 2003; Chakroborty 2003) apply several constraints
regarding the travel experience in the network. Hence the number of transfers, the direct-
ness of the routes and the number of stops on each route are controlled by appropriate con-
straint formulations. Fan and Machemehl (2006) present a simulated annealing algorithm
to solve the TNDFSP. The algorithm objective is the combined cost of user, operator and
unsatisfied demand. The problem is constrained by the maximum route capacity, maximum
fleet size, maximum trip length and maximum number of routes. The authors apply the
framework to a test network consisting of 160 nodes and 418 edges. They conclude that the
results based on SA are converging to lower total cost values compared to applying GA to
this problem. Similarly, Bourbonnais et al. (2019) utilize a GA algorithm to solve TNSFP
using road network data. They optimize the sum of satisfied transit demand, unsatisfied
transit demand and vehicle-hours. The authors show the applicability of their framework
on three cities in Quebec, Canada.

A multi-objective network design formulation is proposed by Possel et al. (2018). The
objectives are based on total emissions, the number of traffic accident fatalities and the
total travel time. The main contribution is the formulation of a bi-level program which
has the minimization of the objectives on the upper level and the passenger assignment
on the lower level. The authors compare the optimization algorithm NSGA-II with sim-
ulated annealing algorithms and show the minor dominance of the NSGA-II. Szeto and
Jiang (2012) discuss the application of an ABC algorithm for the TNDPFSP. The objective
value is computed as the weighted sum of passenger transfers and travel time. The problem
is constrained by the vehicle fleet size. The service frequency is determined by a heuris-
tic considering the maximum available vehicles per route. In a later work Szeto and Jiang
(2014) design a bi-level optimization approach for the network design problem utilizing
a linear program for the frequency assignment as the bottom-level problem and an ABC
approach for the top-level route creation problem. The authors apply their framework to a
small synthetic network as well as the entire public transport network of Winnipeg, Canada
and Tin Shui Wai, China. It is concluded that the ABC algorithm outperforms genetic algo-
rithm for large networks.

To evaluate the user cost for a given network design passengers must be assigned to ser-
vice routes. Existing passenger assignment models can be classified into static and dynamic
models, with deterministic or stochastic and frequency-based assignment (Nguyen and Pal-
lottino 1988; Spiess and Florian 1989; Cepeda et al. 2006) or schedule-based assignment
(Mark D. Hickman and David H. Bernstein 1997; Tong and Wong 1998; Poon et al. 2004).
Liu et al. (2010) give a comprehensive overview of past and ongoing research in transit
assignment models. With static assignment models the demand and supply are assumed
to be constant over the period of analysis, hence within-day changes, e.g. variations in
vehicle crowding and waiting times, cannot be studied (Liu et al. 2010). Additional to
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the analytical approaches for the network design problem, studies integrating simulation
models into the optimization framework have recently been published. Neumann (2014)
proposes a framework consisting of the agent-based simulation software MATSim and a
genetic algorithm to design public transport networks for paratransit vehicle operations.
The network is defined as a set of routes each serving a sequence of stops and each hav-
ing a dedicated start time. The genetic algorithm adjusts the route layout and operation
starting times. The simulation model then computes passengertrip plans and movements
throughout the network. The study replicates reference network operations and improve
the operations in non-profitable public transport corridors. The main limiting factor of the
framework, as stated by the authors, is the limited search space.

Scientific contribution

In a related study by Kim et al. (2019) the authors use a simulation based approach to
evaluate what impact autonomous buses have on the departure times for commuting trips.
In their study the authors did not assume a public transport network but rather taxi-like
operations using AB rather than private vehicles. The authors could show that, in the
autonomous case for many commuters the desired and actual departure time are not the
same. The authors conclude that the additional policy regulations (e.g. dynamic pricing
schemes or travel reservations) must be implemented to make autonomous taxi operations
more popular.

The main contribution of this work is an AB specific network design and frequency
setting problem, which aims to realistically represent passenger decisions and transport
supply. For the analysis of AB systems, it is important to have a realistic and detailed
passenger assignment with which it is possible to identify bottlenecks in passenger flow.
Therefore, a dynamic passenger assignment model with with-in day characteristics is cho-
sen in this study. Through the addition of walking links on the entire network the design
public transport network a realistic competing mode for the bus lines is implemented. The
characteristics of autonomous buses compared to conventional buses are captured by pre-
senting an adjusted operator cost model. Autonomous bus specific infrastructure costs for
dedicated lanes and autonomous bus specific bus stops are assumed. The network design is
also constrained to create connected PT networks in which every AB can reach every bus
stop in the network without human interaction. In contrast to recent work in network design
we formulate the problem as a multi-objective optimization problem to optimize simulta-
neously for user cost, operator cost and infrastructure costs.

In comparison to Neumann (2014) the proposed framework in this work differs in two
ways. First, the user cost is incorporated as an additional objective function component
rather as an additional objective, which means that user and operator interests are directly
competing with each other. Second, the implemented heuristic optimization algorithm
allows for a more efficient optimization of large solution spaces compared to a genetic
algorithm, which allows for larger scenarios and more robust solutions.

Methodology
This section describes the proposed formulation and solution approach for the multi-

objective transit network design and frequency setting problem (TNDSFP) with autono-
mous buses. First, the problem formulation is introduced. Then an overview over the
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different objectives is given. The section closes with the description of the solution
approach employed.

Problem formulation

With the proposed problem formulation the impact of AB on the network design for the
users, operators and authorities of PT systems can be computed. The problem is formulated
as a multi-objective problem where each objective represents one stakeholder. The detailed
formulation is given in the following subsections. To rate different solutions and analyze
the impact of AB the network design is assessed using key performance indicators (KPI),
such as walking times, in-vehicle times, number of transfers, passenger load, number of
bus stops and cycle times of vehicles.

The decision variables of the problem are; (1) number of bus routes, (2) the frequency
of each route and (3) the bus stops served by each route. The design of the network is con-
strained by the maximum number of routes, and the minimum and maximum number of
bus stops per route. To cater for AB specific requirements, the network of bus routes has
to be connected so that each vehicle can reach any bus stop (connected graph) and that
one bus stop is not served twice on the same route (non-cyclic route). This connectivity
constraint is motivated by the assumed AB operations. If a bus is driven autonomously
there should always be the possibility to autonomously drive back to the depot without
any human interaction. Additionally, it should be possible for every bus to reach every
position in the network so that in case of technical failures other buses could compensate.
The infrastructure cost incorporates the fact that AB operations require e.g. dedicated lane
operations and technology enhanced bus stops. The number of bus stops is an output of the
framework. The input values are the road network graph, set of potential bus stops and an
OD matrix.

Network definition

We consider a two-layer network representation to capture the infrastructure constraints
and costs associated with the deployment of AB in addition to the service configuration.
The bottom-level graph represents the physical road network (infrastructure graph). The
nodes in this graph represent the road start- and endpoints and intersections. An edge in the
graph is a road section on which an AB can operate. The top-level graph represents the bus
stop connectivity (service graph). A node in this graph is a bus stop or bus hub. A bus stop
is served by one service route, whereas a bus hub is served by a minimum of two service
routes. An edge in the top-level graph is the shortest path connecting two bus stops, based
on the bottom level graph connecting of these two nodes. We add the number and position
of all potential bus stops in the network are provided as input. A service route is defined as
a sorted list of bus stops in the second level graph. Figure 1 shows the relation between the
two graphs.

Besides the bus routes also walking links are added to the network. Passengers have the
option to walk between every pair of nodes if these nodes are not more than 300m apart.
For rapid transit operations a bus stop distance of minimal 500m is required by the latest
report of the City of Stockholm [see Firth (2012)]. Based on the geographical size of the
studied network and the operation speed of the buses 300m as the threshold distance are
assumed reasonable since only a few bus stops are further apart, hence passenger have the
option to reach nearly every point in the network by foot.
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Service Route 1

/

Service Route 2

Service Graph

Fig. 1 Connection between infrastructure graph, service graph and service routes

Demand formulation

The demand is represented as an origin-destination matrix with a distinct time-depend-
ent passenger arrival rate (pax/h) for each origin-destination pair. The origin and destina-
tion are defined as bus stops in the network. The demand matrix is a required input to the
model. A path is the route or combination of routes a passenger chooses to travel from the
origin bus stop to the destination bus stop. A passenger path can consist of multiple routes
or a combination of a subsection of routes. The connection to a different route is possible at
hubs, at the same stop if both routes stop there or via walking to nearby bus stops. Besides
the option to walk between every pair of nodes passengers have the option to walk their
entire trip.

Objective function

The aim is to minimize three conflicting objectives, namely (1) total user cost, (2) total
operator cost and (3) infrastructure preparation cost. The multi-objective characteristics
allows for a diversified analysis of user-focused and operator-focused network design solu-
tions. The input parameters for the model are listed and described in Table 2. The objective
functions are formulated as follows:
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Table 2 Input parameter for network design framework

Parameter Description Unit

Objective function

;f:d' Unit fixed operating cost SEK/(h-veh)
V;fz; Unit fixed capital cost SEK/(h-veh)

o Unit size-dependent operating cost SEK/(h-pax-veh)
7;51’5 Unit size-dependent capital cost SEK/(h-pax-veh)
K Vehicle capacity Pax/veh
n Reduced fixed unit operating cost -

p Additional fixed unit capital cost -

6 Additional fixed bus stop cost -

0 Additional fixed road infrastructure cost -

Vstop Fixed building costs for one bus stop SEK/stop
Yiink Fixed building costs for 1000-pax-km road SEK/(1000-pax-km)
v Value of time for public transport users SEK/h
Yot Waiting time cost -

Ywa Walking time cost -

Yive In-vehicle time cost -

Y ater Access and egress time cost -

Yer Transfer cost -
Optimization

A Number of bees -

v Number of iterations -

T Number of trails -

User cost The total user cost (c,) is the summation of the total waiting time (1), access
and egress times (t,p and 1, ), transfer penalty (tr,), walking time (1,4,p) and the perceived
in-vehicle time (,,, ,). To account for crowding in buses the travel time per passenger inside
a bus is multiplied with a crowding factor. The resulting time is the perceived in-vehicle time
(#,iv,)- Hence the number of passengers are in direct relation to the perceived in-vehicle time.
The transfer penalty (¢r,) adds additional time to the total travel time of a passenger since a
transfer to a different route/vehicle is perceived as negative by passengers. The waiting time
(1,,,) is the time a passenger spends at a bus stop between alighting and boarding the next bus
and before the initial boarding. The access time (%, ,) is the walking time from an origin to his/
her origin bus stop; and the egress time (7, ,) is defined as the time it takes to walk from the
destination bus station to the final destination. Each component is multiplied with the corre-
sponding cost parameter and then summed over all travelers (Vp € P), where P is the set of all
travelers, to obtain the total user cost (see Eq. 1).

Cu =\ Ywa" Z twa,p + Ve Z tw,p + Yiwe Z tpiv,p t Yater
peP pepP pEP
(H
: Z(tasp +l,,) + Z o )
PEP PEP
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If a bus stop is not served by any route in the solution network or if walking gives a higher
utility than taking PT, passengers can walk to the closest served bus stop or walk to their
final destination. Unsatisfied demand is accounted for through the walking time incurred
when passengers decide the walk their entire trip.

Operator cost The operator cost (c,) is the summation of capital costs (Cepn) and
operating costs (c,,,,) for the vehicle fleet. The minimum required fleet size (n,) can be
estimated using the frequency (f,) and cycle time (¢,) of a bus route (r) (n, =t, - f,/60).
The AB specific operating cost and capital costs formulations are in accordance to the
formulations in Zhang et al. (2019).

The operating cost (c,,,,) is the cost per hour considering the driver and the mainte-
nance costs. In Eq. 2 the formula for conventional buses and AB is shown. The fleet size
per route is multiplied by the summation of the unit fixed and unit size-dependent oper-
ating cost parameter. The vehicle capacity is denoted with k. For AB the unit fixed oper-
ating cost parameter is reduced by # and for conventional bus operations this parameter
is set to zero. The operator cost for the network is achieved by the summation of all
routes.

r L, oper ¢
o= 3 S (=5 ) @
reRr

The capital cost (c,,,) is defined as the fixed price for a vehicle depending on capacity and
vehicle type. In Eq. 3 the formulation for the total capital cost of conventional buses and
AB is shown. The capital cost for one route is the multiplication of fleet size and the unit
fixed/size-dependent capital costs (y), which is summed over all routes to arrive at the total
capital cost. For autonomously operated routes an additional fixed unit capital cost (f) fac-
tor is added and for conventional bus operations this parameter is set to zero.

5,
=y S0 <(1 + B g + Vo * K ) @
reR

Infrastructure cost

The infrastructure cost (c;,4,) considers the building cost of a bus stop and the total
length of the network. The building cost of one bus stop (y,,,) is the fixed cost of build-
ing all stops serviced by at least one bus line. The parameter 6 represents additional bus
stops costs for AB operations, through e.g. larger bus stops and additional fences. In con-
ventional bus scenarios 6 = 0 holds. The cost associated with the length of the network is
computed as the total network length (ZreR l,), where [, is the length of bus route r € R,
multiplied with the road infrastructure building costs (y,,,). This additional cost proportion
0 considers AB specific infrastructure preparations, e.g. road markings and dedicated lanes.
In conventional bus operations 8 = 0. In Eq. 4 s, is the number of bus stops served per
route by the network solution.

Cinfra = Z ((1 + 5)ys‘rop St Vi lr : 9) 4)

rer

Mathematical problem formulation

The multi-objective optimization problem is formulated as follows:
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Ilplgl Q) =c,(F,R), (5)

. tr 'fr cpil cpil oper oper
min 0y = Y, (Pl + v )+ (A =mrs+ 1076 )| o)

rer 60
IIlRiIl Q3 = Z ((1 + 5)yst0p * S+ Vi lr : 0)’ @)
rer
subjectto ™" <f. <f™* Vre&R (min./max. service frequency), (8)
Sppin <8, X Spae VFrER (min./max. stops per route), )
P < |R| < P (min./max. number of routes) (10)

where F =1, ..., fl R| is the set of all line frequencies. R is the set of routes, s, is the number
of bus stops on route r and f, is the service frequency. The input value of potential bus
stops chosen to be large and evenly distributed over the area of interest. The first objective
is representing the user cost, which is calculated based on output extracted from the simu-
lation model. In the simulation module further operational constraints (e.g. vehicle capac-
ity, pick-up and drop-off timing of passengers, bus stop order along a route) are considered.

Solution approach

The TNDFSP is a combinatorial optimization problem. The complexity of the network
design problem grows exponentially with the input dimensions. In (Magnanti and Wong
1984; Farahani et al. 2013) the authors show that the network design problem is NP-hard.
Similar problems such as the widely studied vehicle routing problem (Lenstra and Kan
1981; Toth and Vigo 2002), transport line design (Bussieck 1998) and frequency setting
problem (Michaelis and Schobel 2009), have the same characteristics and have been proven
to be NP-hard, therefore with the exception of very small instances, model applications
need to be solved using heuristic optimization algorithms. The optimization algorithm
for the TNDFSP used in this study is a variant of the multi-objective artificial bee colony
(MOABC) heuristic optimization algorithm as described in Szeto and Jiang (2014); Zou
et al. (2011) and the NSGA-II algorithm which was first proposed by Deb et al. (2002).
This variant allows for the solution of multi-objective problems and includes AB specific
characteristics. In Fig. 2 the overall methodology of this study is presented. The optimiza-
tion problem is framed with the light grey box. The input to the optimization layer is the
initial solution set and the two-level graph, which contains the mapping information of all
bus stops onto the underlying road network. The output of the MOABC is a network design
solution including the sequence of bus stops on each route, frequency settings for each
route and the corresponding objective values. The frequency setting is computed in three
steps (compare 2). First, the solution is simulated using high service frequencies and high
vehicle capacities for each route. After the passenger assignment on this solutions the pas-
senger load of each route is determined. Third, the service frequency for each route is then
determined by computing using the determined passenger load per route and the vehicle
capacity of that route. With the assigned service frequency the PT network is simulated
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and the cost terms computed based on the simulation outputs. Trails represent the number
of network evaluations in the neighborhood of a given solution. If the maximal number
of trails is not met the same PT network is used as the basis for the next iteration. Once
the termination criteria is met the best PT network solutions are stored. If the termination
criteria (maximum number of iterations or hypervolume convergence) are not met and the
maximum number of trails is met, the route with the lowest passenger load is removed
from the network (Fig. 2). The hypervolume for a solution is the volume of a cuboid which
has its two diagonal points as the reference point and the solution vector, respectively. The
reference point was chosen to be the origin and the solution vector is a 3-dimensional vec-
tor where each objective value is one dimension.

Input

The framework requires three different input data sets: the demand as an OD matrix, the
potential bus stop positions, and the road network. The road network is needed to compute
the distances between bus stops and represents the feasible operation network. The OD
matrix allows for a many-to-many travel pattern and specifies the demand in terms of pas-
senger rate per hour.

Artificial bee colony optimization

The ABC algorithm is chosen for its capability to explore and exploit the solution space.
The number of evaluations is not prohibitive in the context of strategic network design
since the computation time is subordinate to the quality of the solution. Its name is inspired
by the behavior of bees trying to find nectar in the proximity of their hive. The concept in
the proposed algorithm is based on the following analogy. Bees spread out in the proxim-
ity of the hive to explore the neighborhood for good quality nectar. If a bee is successful
it flies back to the hive and reports to other bees about the position and the quality of that
food source. In this study, a food source represents a solution to the network design prob-
lem and the quality of that food source is the objective values of the solution. The algo-
rithm defines different types of bees. First, the employed bees explore the available food
sources and report their information. Second, the onlooker bees receive and process the
information from the employed bees. Each onlooker bee decides about the neighborhood
near a reported food source to be explored by the employed bees. As soon as the source is
empty (no better solution can be found) the employed bees change its type into a scout bee.
This bee type searches in the entire harvesting area for new food sources. The algorithm is
initialized with multiple random feasible solutions, while the convergence is assessed by
computing the hypervolume (Auger et al. 2012) at each iteration.

Transferred to the network design problem, the solution space is defined by all feasible
network design configurations (e.g. combination of nodes, links and routes). In this study
one solution is defined as a set of routes and a set of associated frequencies. The routes are
generated using the underlying fully connected bus stop graph (see Fig. 3). A neighbor-
hood solution is defined as a change in a single route in the current solution.

The general ABC algorithm for single-objective problems is adjusted in this work
to cope with the special requirements of multi-objective problems. The different steps
(mutation, fitness computation and ranking of solutions) and type of bees (employed bee,
onlooker bee, and scout bee) should be preserved to maintain the explore, exploit and elit-
ism characteristics of the original ABC algorithm. Figure 4 gives a schematic overview
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