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Preface

As a kid, I was fascinated with all things space, and loved to read books on astronomy
in general and the solar system in particular, especially the ones with detailed figures,
illustrations and charts showing the myriad of celestial bodies and cosmic objects that
our universe possesses. At the time, however, I was often mystified by how the people
writing these books could possibly know all these things. The cutaway views of planets
showing a core, mantle and crust seemed almost magical to me. Surely nobody had ever
actually cut open a planet like that! Now that I understand how we are able to infer
all this knowledge (at least much better than my former 9 year old self), I am not sure
whether I am less amazed or more amazed by what we know and how we know it.

I am very fortunate to have been able to pursue what was once a boyhood dream:
to work in the field of space engineering and planetary science, and contribute to future
solar system missions. Right now, this dissertation seems like the final crowning achieve-
ment on the past four years of hard work, including all its triumphs, eureka-moments,
frustrations and setbacks. However, with any luck it will be quite the opposite, only the
beginning of a career in the planetary sciences.

Despite my boyhood fascination, the education and career path that led me to this
point have been far from direct. After high school, I decided not to pursue education
in space science, but opted to study physics instead. However, I soon realized that,
although very interesting, the subject matter was too theoretical for my tastes, and I
preferred studying material for which it was more readily apparent what the practical
and/or scientific applications would be. As a result, I switched universities and started
studying aerospace engineering in Delft. For most of the B.Sc. curriculum, though, I had
my mind set on a master’s degree in aerodynamics, having been somewhat disillusioned
by the prospects of a career in the space sector, and having been fascinated by the
more mathematically challenging (or so I thought at the time) field of flow dynamics.
However, I serendipitously ended up doing my design synthesis exercise (the aerospace
engineering curriculum’s equivalent of a bachelor’s thesis) on a space-related topic. While
working on this project, I attended my first scientific/engineering conference and realized
that my passion was in space after all. As a result, I decided to enroll for a master’s
degree in space engineering. After having completed my master’s degree, for which I
was very happy to be able to combine work on both aerodynamics and astrodynamics, a
position opened up at the Astrodynamics & Space Missions group in Delft on something

iii



iv Preface

called ’Interplanetary Laser Ranging’. Although I had no idea at the time what this
would entail, I did some background research and decided that the topic would be both
fascinating and very challenging. As a result, I decided to stay in Delft for my Ph.D.
degree, the result of which you are reading now.

Doing research in the field of Interplanetary Laser Ranging (ILR) has been a very
interesting experience, as very little work in this area has been done so far. Nevertheless,
many aspects of ILR are similar to other tracking techniques for both terrestrial and
planetary missions. It has been very stimulating to have been able to investigate the
current states-of-the-art of various fields and condense the relevant material for my
research, applying this material to ILR and extending it where it proved insufficient
for my application. Of course, due to both the width and depth of the work that was
required of me, I am very happy to have had the support from a great many people,
both professionally and personally, in completing this research.

My supervisor Bert has been very enthusiastic from the start of my research and
discussions and comments from him have been very valuable as I started doing profes-
sional research, writing scientific papers, extending my international network, etc. I also
very much appreciate the amount of freedom that he allowed me to have in deciding
the direction and focus of my research over the past few years. Due to the width of the
topics that I have had to cover, I have been very fortunate to have been able to benefit
from the expertise in both laser ranging and orbit determination that is present in our
group, especially from Ron and Pieter, with whom I have had many discussions on my
plans and results, invariably leading to new insight and ideas.

The work for this dissertation was performed in a European Framework Programme
7 (FP7) project called ESPaCE. For any young graduate looking for a research position,
I can very much recommend working within the context of such a project. From day
one, this collaboration meant that I had a broad network of international colleagues,
whose experience and expertise has been crucial in helping me develop myself as a
scientist. The discussions and presentations at project meetings strongly influenced
many aspects of this research, and I was very happy to find myself developing from a
recent graduate trying to keep up, to an active participant as the project progressed
and my expertise grew. To all my ESPaCE colleagues: thank you for all your help in
the project. The most valuable part of the ESPaCE collaboration, however, has been
the in-depth collaboration with Sven Bauer at DLR. His extensive efforts on LRO orbit
determination using one-way laser ranging has been crucial for my understanding of the
(dis)advantages of one-way data. Especially my one-month visit to DLR in 2013 was
very fruitful and I remember it fondly.

My research has been mostly theoretical in nature, relying largely on simulated data
and the analysis of future missions. However, I have been very fortunate to have had
a glimpse into the reality of Satellite Laser Ranging (SLR) early in my research when
visiting the SLR station in Graz, Austria in March 2012. Georg Kirchner and Franz
Koidl were most welcoming and took an exceptional amount of time to answer all the
questions I had about the practicalities of laser ranging, and potential future issues for
interplanetary applications. Furthermore, the laser ranging community as a whole has
been very open in welcoming me at the annual workshops that they organize, and discus-
sions and presentations at these events have been crucial in shaping my understanding
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of the current state-of-the-art and the future direction of the laser ranging community.
To everyone in the SLR community: thank you for all your help.

A substantial part of the time that went into the work presented in this dissertation
has gone into programming the software used to generate my results. When starting my
research, it quickly became clear that existing software packages (at least the ones I had
access to) were unsuitable for the work that I wanted to do, leading me to develop my own
software. I’m very happy that Bert took a chance on me, and allowed me to spend a lot of
time on this before actually starting to generate results. The gamble seems to have paid
off. But even more important in this respect were my colleagues who contributed to the
software development. The code I have used is based on the TU Delft Astrodynamics
Toolbox (Tudat), a software project initiated in 2010 by Kartik Kumar and Jeroen
Melman, two Ph.D. students at the A&S section at the time. Since its inception, this
project has been contributed to by dozens of M.Sc. students. The extensive work in
setting up a sound basis for Tudat, with a strong emphasis on collaborative development
and modular design, greatly facilitated the code that I developed for my research. Also,
the extensive research that especially Kartik has done on software architecture, the
use external libraries, C++ dos and don’ts, etc. has been crucial for this dissertation.
Without everything I learned due to Tudat, I am quite sure that this dissertation would
not be as extensive as it is, nor would I have a versatile software tool at my disposal
now that this dissertation is finished.

Furthermore, my colleagues in Delft have been great to work with. Even if working
on very different topics, discussions with them on a variety of subjects have been most
helpful for my understanding of many things at the edge of, and beyond, my own field of
study. And very importantly, the space bars and other after-work social gatherings have
often been a great break from the occasional stresses and frustrations of research. And of
course, it has been great to have a ’political-correctness-free-zone’ with my office-mate
Bart over the past few years. We have had many good discussions on all things life,
science, the universe and everything, may we continue to have many more!

The main part of this dissertation consists of the journal papers that I have written
during my research. I am very relieved to have been able to write this booklet with these
papers in the middle, sandwiched between a set of introductory chapters and a discus-
sion, instead of the more typical approach of writing a dedicated booklet from scratch
(although I may gotten carried away a bit with the first few chapters). I can recommend
this process to any Ph.D. student starting to write their dissertation. Not only does it
provide additional confidence that the main results are sound (due to the peer review),
it makes the writing of a dissertation much less arduous and repetitive. My co-authors
Bert, Ron, Pieter, Ivan, Sven and Leonid have of course been instrumental in preparing
and finishing these papers, providing timely expertise, thoughts, constructive criticisms,
etc. Also, I am very grateful for the detailed feedback that Bert, Leonid, Pieter and Ron
provided on the draft introductory and discussion chapters of this dissertation. Finally,
I would like to sincerely thank my Ph.D. committee for taking the time to read my
dissertation and for being a part of my defense ceremony. I am especially grateful to
the members coming from outside the Netherlands specifically for my defense.

Although doing a Ph.D. has absorbed much of my time over the past years, and often
preoccupied my mind even when not working, I luckily managed to continue to have a
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life outside of work. To all the friends and family whose company I have enjoyed over
the last few years, thank you for being considerate and for helping me keep my horizons
broader than my work. I am very happy that in my defense ceremony these worlds of
personal and professional life can be combined by having my friends Ben and Daniella
as paranymphs: thank you for sharing this milestone with me. Also, I am grateful to
my parents, who have supported me during my studies, even when I was much more
interested in all other aspects of life besides studying. Somehow in the end it all turned
out fine.

Most of all I would like to thank Patricia, who has supported me through thick and
thin. When I was down and didn’t see an end in sight, you were there to listen to me
and help me see that I had what it takes to finish. When I got great results and my
papers were accepted, you were there to celebrate with me. When I was working long
hours at night or in the weekend, you got my head out of the books and computer and
kept me grounded in real life. But most of all I am just happy to share my life with you.
Thank you for always being there for me.

Delft, the Netherlands, September 2015
Dominic Dirkx



Summary

Accurate determination of the trajectories of planetary spacecraft, as well as ephemerides,
gravity fields, rotational characteristics and shapes of solar system bodies allow models
of these bodies to be constrained. From these models, unique information can be ob-
tained on the formation and evolution of our solar system, and exoplanetary systems by
extrapolation. Furthermore, the observation of solar system dynamics and the propa-
gation of electromagnetic signals between Earth and deep-space missions provides key
information on the manifestation of relativistic effects, providing excellent opportunities
in experimental gravitation.

The precise determination of the dynamics of solar system bodies (both natural and
artificial) has typically been derived from radiometric tracking techniques, which are
obtained by a radio link between Earth-based ground stations, such as those of the
Deep Space Network (DSN), and the space segment (spacecraft or lander). For Earth-
orbiting satellites equipped with retroreflectors, Satellite Laser Ranging (SLR) allows
range measurements with sub-cm precision and accuracy to be obtained, which is several
orders of magnitude more accurate than radiometric range measurements obtained by
the DSN at planetary distances. Also, the use of retroreflectors on the Moon’s surface has
provided Lunar Laser Ranging (LLR) data with an accuracy in the order of centimeters
over a period of decades. However, the use of retroreflector technology is infeasible for
planetary missions, since the reflected signal strength is too low at such distances. To
use laser ranging technology for planetary missions, an active laser system is required
on the space segment, capable of detecting (for a one-way system) or detecting and
transmitting (for a two-way system) short (10-100 ps) laser pulses. The analysis of
this novel technology, termed Interplanetary Laser Ranging (ILR), is the topic of this
dissertation.

In this dissertation, the potential of ILR to improve the science return of interplane-
tary missions is investigated, with a focus on its capability to better address a mission’s
planetary science objectives. To this end, parameter estimation has been executed us-
ing simulated ILR data for selected planetary missions. Furthermore, the influence of a
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viii Summary

number of key sources of measurement and modelling uncertainty have been investigated
in detail, thereby strengthening the development roadmap for ILR.

Implementation of ILR will rely strongly on existing SLR/LLR experience and ground
infrastructure. The development of an active-ranging space segment is also strongly
synergistic with ongoing work in laser time transfer, laser communications and laser
altimetry, and a system combining these functions with ranging may allow expedited
implementation of ILR. A one-way ranging system has been used operationally on the
Lunar Reconaissance Orbiter (LRO) in lunar orbit, while the two-way system has only
been experimentally demonstrated using the altimetry system onboard the MESSEN-
GER spacecraft at a distance of 24 million km, while it was en route to Mercury.

Detailed simulations have been performed for this dissertation to assess the science
return in terms of characteristics of the Martian system (Mars Love numbers, Phobos
librations, Phobos gravity field, etc.) from a single Phobos lander performing ILR to
Earth-based ground stations. Such an experiment is conceptually similar to measure-
ments that were to be performed with the failed Phobos-Grunt mission, which was
to use a radio link between a Phobos lander and Earth-based stations. To differenti-
ate between random (Gaussian) and systematic measurement noise, so-called ’consider
covariance analysis’ has been applied, thereby including the influence of unadjusted sys-
tematic range measurement errors in the estimation. The results indicate that a single
mm of systematic error is typically 1-2 orders of magnitude more influential in the error
budget of the estimated parameters than 1 mm of random measurement noise. The
estimation results show that a Phobos laser ranging mission would be especially strong
for estimating Mars tidal Love numbers and quality factors, as well as Phobos librations
and deformation Love number. However, improvement of models describing Mars and
Phobos interior structure and composition using such data is limited by deficiencies in
other models and measurements, such as an accurate Phobos shape model, and an ac-
curate Mars rotational model as well as seismic and magnetic field measurements. This
shows that the strong improvement in range measurement accuracy facilitated by ILR
must be accompanied by a commensurate improvement in a wider set of models and
measurements to be able to fully exploit the data. The upcoming Insight mission will
be crucial for providing such data on Mars, indicating the inter-mission synergy.

A substantial part of the error budget of ILR will be similar to that of SLR/LLR,
since the ground segment hardware will be very similar, as will data analysis models
for ground station position, Earth rotation and deformation, etc. The errors introduced
by both this hardware and these models are unlikely to be consistently at the sub-mm
level in the near-future, making mm-accurate ILR infeasible. Furthermore, the use of
active space segment hardware, consisting of a laser detector for one-way systems (such
as that used on LRO) or a laser detector and transmitter for two-way systems (as was
used during the MESSENGER experiment) will introduce new sources of measurement
uncertainty.

Conversely, the absence of the retroreflector signature on the laser pulse will allow
for an improved characterization of temporal laser energy density at the receiver, since
the temporal pulse shape is left largely unchanged along the signal path. This makes the
influence of spatial intensity variation relatively stronger in ILR, compared to SLR/LLR.
The influence of atmospheric turbulence on the spatial (and temporal) intensity pattern
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of a laser pulse has been investigated for this dissertation, combining a set of existing
models in a consistent and novel manner. Signal strength variations at the detector
will result in accuracy variations, as the leading edge of a laser pulse with more than
one detectable photon will be preferentially detected. The analysis shows that this
can cause variations of the measurement accuracy at the level of several mm, for the
case of a representative Phobos lander mission. However, this effect can be largely
mitigated by consistently operating at the single-photon signal intensity level at the
detector. Although the required signal strength attenuation will be at the expense of
pulse detection rate (and therefore normal-point precision), the much stronger influence
of accuracy (compared to precision) on estimated parameter quality more than warrants
such an operational mode.

A crucial added source of range measurement error in ILR (compared to SLR/LLR)
is the larger influence of clock noise on the range measurements. This is especially true
for one-way ranging, in which the ground station and space segment clock independently
register transmission and reception time tags, without the means to independently com-
pare the two clocks. In a two-way system, the addition of a downlink allows the clock-
induced error to be limited to that which is accumulated at the ground station during
the two-way light time, and at the space segment during the retransmission time. The
performance of a one- and two-way system has been numerically compared by simulating
clock noise realizations and using the resulting noisy range measurements in parame-
ter estimation for both a lunar orbiter and a Phobos lander. For the estimation from
one-way data, the estimation of clock parameters is included over a variety of clock arcs
to mitigate the influence of clock noise accumulation. The results for the lunar orbiter
show that typical levels of dynamical model uncertainty will limit the capabilities of
both the one- and two-way system to a similar level, as the measurement error is no
longer the dominant source of error for the estimated parameters. Nevertheless, the two-
way data are more amenable for use in improving dynamical models, since remaining
trends in range residuals can be almost entirely attributed to dynamical mismodelling,
with almost negligible observability of clock noise. The simulation results for a Phobos
lander show several orders of magnitude improvement in estimation error when using a
two-way instead of a one-way system. Furthermore, it has been shown from the Phobos
simulations that the estimation of long-periodic effects (with a period much longer than
the clock arc duration) correlates almost fully with clock parameter estimation, making
a one-way system unsuitable for the estimation of such parameters, barring the use of
an exceptionally accurate space-segment clock.

In addition to the inherently stochastic behaviour of clocks, the influence of relativ-
ity on clocks causes their behaviour to deviate from a constant rate. For insufficiently
accurate a priori time ephemerides (due to for instance inaccurate orbital ephemerides,
gravitational parameters, etc.), this error in the clock comparison process may adversely
influence the analysis of one-way range data. Furthermore, when wishing to exploit rela-
tivistic clock behaviour to improve parameter estimation quality, this coupling between
translational and time dynamics must be included. A concurrent space-time estima-
tion procedure has been developed for this dissertation, essentially extending the orbit
determination problem to include proper time behaviour, thereby estimating an initial
four-dimensional state. A 0.1-10 % difference is found between formal estimation er-
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rors obtained in the classical manner and those using our newly developed approach of
coupled initial space-time estimation, using Mars and Mercury landers as test missions.
The change in relevant correlation between the parameters is up to 50 % in extreme
cases, though. The results for these planetary lander missions show that the use of an
iterative update to the time ephemeris during the least squares estimation is sufficiently
accurate for data analysis. However, it is likely that the space-time dynamics coupling
will be more influential when analyzing data from orbiters with highly accurate clocks.

To determine whether ILR has a place in addition to existing tracking methods, the
performance of an ILR system has been compared to that of a radiometric Doppler sys-
tem. Using a simplified model in which the influence of physical parameters is assumed
to be manifested on tracking data in a purely sinusoidal manner, the performance of
laser range and radiometric Doppler measurements has been compared. An accuracy of
3-6 mm has been assumed for the laser range measurements, and a 2 and 10 µm/s for
Doppler data at 1000 s and 60 s integration time, respectively. This analysis shows that
the two data types have similar sensitivity for estimation of parameters with a charac-
teristic period in the range of 0.5-5 hours, with Doppler tracking more suitable for the
estimation of shorter-period signals, and laser ranging more suitable for longer-periodic
signals. This makes the science case for laser ranging especially strong for application in
lander missions, where the short-periodic perturbations in the range measurements are
much weaker, compared to orbiter missions. The poorer sensitivity of laser ranging to
spacecraft for higher degree gravity field coefficients (beyond 2-6 for an orbital period
of 3 hours) will degrade the trajectory reconstruction quality for orbiters around bodies
without an accurate a priori gravity field, compared to Doppler tracking.

The apparent ubiquity of model errors limiting the capabilities of an ILR system
(Phobos shape model, lunar orbit non-conservative force model, space segment time
ephemeris, etc.) is a direct result of the revolutionary accuracy in range measurements
that the system promises to provide. Many current models of planetary environments
have not been developed to a degree where they will be able to fully deal will mm-cm level
range accuracies, though. Achieving this will require novel modelling approaches, as well
as improved measurements by other instruments, to ensure a balanced and synergistic
science return from the payload of next-generation planetary missions.



Samenvatting

Door de accurate bepaling van de zowel de banen van planetaire ruimtevaartuigen, als
de ephemeriden, zwaartekrachtvelden, rotatie-eigenschappen en vormen van de hemel-
lichamen in het zonnestelsel, kunnen modellen van de fysische eigenschappen van deze
lichamen worden gemaakt. Uit deze modellen kan unieke informatie over het ontstaan
en de evolutie van ons zonnestelsel worden afgeleid, en door extrapolatie die van exo-
planetaire systemen. Hiernaast kan de bepaling van de dynamica, en de propagatie van
elektromagnetische straling, in ons zonnestelsel gebruikt worden om cruciale informatie
over de manifestatie van relativistische effecten te verkrijgen, waardoor het uitzonderlijke
kansen biedt voor de experimentele gravitatie.

De precieze bepaling van de dynamica van (natuurlijke en kunstmatige) lichamen in
ons zonnestelsel wordt tot op heden veelal afgeleid uit de analyse van radiometrische
metingen, die verkregen worden met een radioverbinding tussen Aardse stations, zoals
die van het Deep Space Network (DSN), en het ruimtesegment (satelliet of lander). Voor
satellieten met retroreflectoren in een Aardse baan kunnen met Satellite Laser Ranging
(SLR) afstandsmetingen worden verkregen die precies en accuraat zijn tot op het sub-
cm niveau. Hiernaast heeft het gebruik van retroreflectoren op het oppervlak van de
Maan (Lunar Laser Ranging, oftewel LLR) data opgeleverd die accuraat zijn tot op
een aantal centimeter over een periode van decennia. Deze SLR/LLR metingen zijn een
aantal ordes van grootte beter dan de radiometrische afstandsmetingen die met het DSN
worden gemaakt over planetaire afstanden. Het gebruik van retroreflectroren is echter
niet haalbaar voor planetaire missies, omdat de gereflecteerde signaalsterkte te zwak is
op dergelijke afstanden. Om lasertechniek te gebruiken op deze afstanden moet een actief
systeem worden gebruikt op het ruimtesegment, waarmee korte (10-100 ps) laserpulsen
kunnen worden gedetecteerd (voor een éénrichtingssysteem) of gedetecteerd en verstuurd
(voor een tweerichtingssysteem). Dit proefschrift draagt bij aan het analyseren van deze
nieuwe techniek, genaamd Interplanetary Laser Ranging (ILR).

In dit proefschrift wordt de potentie van ILR onderzocht om de wetenschappelijke
resultaten van interplanetaire missies te versterken, met de nadruk op de mogelijkheid
ervan om missiedoelen in de planetaire wetenschappen te behalen. Hiervoor is met
gebruik van gesimuleerde ILR data de schatting van fysische parameters voor een aantal
planetaire missies uitgevoerd. Bovendien is de invloed van een aantal bronnen van meet-
en modelonnauwkeurigheid in detail onderzocht, waardoor de eisen voor de toekomstige
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ontwikkeling van ILR verder zijn verduidelijkt.
De implementatie van een ILR systeem zal sterk afhankelijk zijn van zowel de bestaan-

de ervaring en de Aardse infrastructuur van SLR/LLR. Ook vertoont de ontwikkeling
van actief systemen in de ruimte voor laser afstandsmetingen een sterke synergie met
vooruitgang in laser tijdsoverdracht, laser altimetrie en laser communicatie. Een systeem
dat één of meer van deze functies met afstandsmetingen combineert zou de implementatie
van ILR kunnen versnellen. Tot op heden is alleen een éénrichtingssysteem operationeel
gebruikt, op de Lunar Reconaissance Orbiter (LRO) in een baan om de Maan, terwijl een
tweerichtingssysteem slechts experimenteel is gedemonstreerd met het altimetriesysteem
op het MESSENGER ruimtevaarttuig, op een afstand van 24 miljoen kilometer.

Voor dit proefschrift zijn gedetailleerde simulaties uitgevoerd voor een enkele lan-
der op Phobos die ILR metingen uitvoert naar de Aarde, met het doel de haalbare
wetenschappelijke resultaten te beoordelen in termen van de eigenschappen van het sys-
teem van de planeet Mars (Mars Love getallen, Phobos libraties, Phobos zwaartekrachts-
veld, etc.). Een dergelijke missie lijkt conceptueel op de Phobos-Grunt missie, welke een
radioverbinding tussen een Phobos lander en Aardse stations had moeten gebruiken.
Om een onderscheid te maken tussen willekeurige (Gaussiaans tijdsongecorreleerde) en
systematische ruis, is zogeheten ’consider covariance analysis’ gebruikt, waarmee de
invloed van niet geschatte systematische meetfouten op het algehele schattingsproces
wordt berekend. De resultaten geven aan dat, voor het foutenbudget van de geschatte
parameters, een enkele mm systematische ruis over het algemeen 1 tot 2 ordes van grootte
meer invloed heeft dan 1 mm Gaussiaanse meetfout. De resultaten van de schattingen
tonen aan dat een Phobos Laser Ranging missie vooral sterk zal zijn in het bepalen
van Love getallen en kwaliteitsfactoren van Mars, alsmede de libraties en het defor-
matie Love getal van Phobos. Sterke verbeteringen van modellen die het inwendige van
Mars en Phobos beschrijven worden echter afgehouden door fouten in andere modellen
en metingen, zoals een model van de vorm van Phobos, een accuraat rotatiemodel van
Mars, en seismische en magnetisch veld metingen van Mars. Dit toont aan dat de sterke
verbetering in de kwaliteit van afstandsmetingen die zal worden gefaciliteerd foor ILR
samen zal moeten gaan met verbeteringen in een breder palet aan metingen en modellen
om de data maximaal te kunnen benutten. De Insight missie die binnenkort zal worden
gelanceerd is cruciaal om dergelijke data van Mars te verzamelen, hetgeen de synergie
tussen planetaire missies aangeeft.

Een substantieel gedeelte van het foutenbudget van ILR zal sterk lijken op dat van
SLR/LLR, gezien het feit dat de hardware van het grondsegment van ILR op deze
bestaande technieken zal zijn gebaseerd. Ook zullen modellen voor de positie van het
grondstation, Aardse rotatie, Aardse deformatie etc. (vrijwel) hetzelfde zijn voor de
analyse van ILR en SLR/LLR data. Voor zowel deze hardware en deze modellen is het
onwaarschijnlijk dat ze consistent tot op het sub-mm niveau accuraat zullen zijn in de
nabije toekomst, waardoor ILR metingen met een mm-nauwkeurigheid niet haalbaar
zullen zijn. Het gebruik van actieve hardware op het ruimtesegment, wat uit een de-
tector bestaat voor een éénrichtingssysteem (zoals die op LRO) en uit een detectie- en
transmissiesysteem voor een tweerichtingssysteem (zoals gebruikt tijdens het experiment
met MESSENGER), zal ook nieuwe bronnen van meetonnauwkeurigheid introduceren.

De afwezigheid van de invloed van de retroreflectoren op de laserpulsen zal er echter
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voor zorgen dat het tijdsgedrag van de energiedichtheid van de puls beter bepaald kan
worden bij ILR (vergeleken met SLR/LLR), gezien het feit dat dit tijdsgedrag prak-
tisch onaangetast is door de propagatiemedia. Hierdoor is de invloed van de ruimtelijke
intensiteitsvariatie op de meetkwaliteit, veroorzaakt door bijvoorbeeld atmosferische tur-
bulentie, relatief sterker in ILR dan in SLR/LLR. De invloed van atmosferische turbu-
lentie op het ruimtelijke (en tijds-)gedrag van een laserpuls is voor dit proefschrift on-
derzocht, waarvoor een aantal bestaande modellen in een consistente en nieuwe manier
zijn samengevoegd. De door turbulentie (en geometrie) veroorzaakte variatie van sig-
naalsterkte bij de detector zal zorgen voor variaties in nauwkeurigheid van de metingen,
aangezien de voorkant van de laserpuls met meer dan één foton een grotere kans zal
hebben om gedetecteerd te worden. De analyse toont aan dat dit effect een variatie
in de nauwkeurigheid van de metingen kan veroorzaken op het niveau van een aantal
mm, in het geval van een typische Phobos lander missie. Dit effect kan echter groten-
deels ongedaan worden door consistent met een signaalintensiteit van een enkele foton
bij de detector te werken. De hiervoor benodigde attenuatie van de signaalsterkte zal
ten koste gaan van het aantal gedetecteerde pulsen (en daardoor normal-point pre-
cisie). Echter, zo’n aanpak is wel degelijk aan te raden, gezien de veel sterkere invloed
van nauwkeurigheid (vergelijken met de precisie) van de meting op de kwaliteit van de
geschatte parameters.

Een cruciale nieuwe bron van fouten in ILR (vergeleken met SLR/LLR), is de sterkere
invloed van klokfouten op de afstandsmetingen. Dit is met name het geval voor éénrich-
tingsmetingen, waarin het grondstation en het ruimtesegment onafhankelijk van elkaar
de tijd registreren, zonder een manier om de twee klokken onafhankelijk met elkaar te
vergelijken. In een tweerichtingssysteem zorgt de de toevoeging van de downlink er-
voor dat de fouten die door de klok worden veroorzaakt gelimiteerd zijn tot de fout
die zich op het grondstation opbouwt tijdens de tweerichtings-lichtafstand, en op het
ruimtesegment tijdens de hertransmissietijd. De prestaties van een één- en tweericht-
ingssysteem zijn numeriek vergeleken door realisaties van klokruis te simuleren, en met
de resulterende afstandsmetingen een parameterschatting voor zowel een satelliet in een
baan om de Maan en een lander op Phobos te simuleren. Voor de éénrichtingsdata
wordt de schatting van klokparameters gedurende een verscheidenheid aan arc lengtes
gebruikt om de opbouw van klokruis tegen te gaan. De resultaten voor de satelliet om
de Maan geven aan dat typische onzekerheden in het dynamisch model van deze satelliet
de kwaliteit van de resultaten van één- en tweerichtingsmetingen tot hetzelfde niveau zal
limiteren, doordat de meetfout niet de dominante bron van fouten in de schatting zal zijn.
Desalniettemin zijn de tweerichtingsdata beter geschikt om de dynamische modellen te
verbeteren, aangezien residuen tussen de gemeten en gesimuleerde afstandsmetingen van
dit type bijna geheel aan fouten in het dynamisch model kunnen worden toegeschreven,
met een vrijwel verwaarloosbare invloed van de klokruis. De simulaties voor de Pho-
bos lander geven aan dat een tweerichtingssysteem voor deze missie één tot twee ordes
van grootte beter zal presteren dan een éénrichtingssysteem, in termen van de fout in
de parameterschatting. Bovendien is het aangetoond met de simulaties van de Phobos
lander dat de schatting van lang-periodieke effecten (met een periode veel langer dan de
geschatte klok arc) zeer sterk is gecorreleerd met de schatting van klokparameters, waar-
door een éénrichtingssysteem ongeschikt is voor het bepalen van dergelijke parameters
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(zonder het gebruik van uitermate accurate klokken).
Naast het inherent stochastische gedrag van de klokken, zorgt de invloed van rel-

ativiteit ervoor dat het gedrag van de klokken afwijkt van een constante loopsnel-
heid. Met onvoldoende accurate a priori tijdsephemeriden (bijvoorbeeld door fouten in
baanephemeriden, zwaartekrachtsvelden, etc.) kan dit ervoor zorgen dat de analyse van
de éénrichtingsdata sterk negatief wordt bëınvloed. Bovendien moet de koppeling tussen
tijd- en ruimtegedrag meegenomen worden wanneer relativistische klokeffecten worden
gebruikt om parameterschatting te verbeteren, voor zowel één- en tweerichtingsdata. Er
is voor dit proefschrift een methode voor gelijktijdige ruimte-tijd schatting ontwikkeld,
waarin het baanbepalingsprobleem is uitgebreid om de eigentijd op een bepaald epoch
mee te nemen, en een vier-dimensionale positie wordt geschat. Er is een verschil van
0.1-10 % gevonden in de formele schattingsfout tussen de resultaten met de klassieke en
de nieuw ontwikkelde methode voor de gekoppelde ruimte-tijd schatting, voor het geval
van landers op Mars en Mercurius. De invloed op de relevante correlaties kan echter in
extreme gevallen oplopen tot 50 %. Resultaten van simulaties voor planetaire landers
tonen aan dat een iteratieve update van de tijdsephemeris in een kleinste kwadraten
schatting voldoende is voor accurate data analyse. Wel is het waarschijnlijk dat de
invloed van de ruimte-tijd koppeling sterker zal zijn tijdens de analyse van data voor
satellieten met een zeer accurate klok die in een baan zijn om hemellichamen.

Om te bepalen of laserafstandsbepaling een plek heeft naast bestaande methodes
voor plaatsbepaling van interplanetaire missies, zijn de prestaties van radiometrische
Dopplermetingen en laserafstandsmetingen in dit proefschrift vergeleken. Deze con-
ceptuele analyze is gedaan met behulp van een versimpeld model van de invloed van fysis-
che parameters op de metingen, waarin deze invloed zich op een puur sinusöıdale manier
manifesteert. Er is een 3-6 mm nauwkeurigheid van de afstandsmetingen aangenomen,
en 2 en 10 µm/s over een integratietijd van 1000 s en 60 s, respectievelijk, voor de
Doppler metingen. Deze analyze toont aan dat deze twee soorten data een gelijksoortige
gevoeligheid hebben voor de schatting van parameters met een karakteristieke periode
van 0.5-5 uur, waar Dopplermetingen geschikter zijn voor de schatting van effecten met
een kortere periode, en laser metingen geschikter zijn voor die met een langere periode.
Hierdoor is de ’science case’ van laser metingen vooral sterk voor landers, waar de kort-
periodieke perturbaties veel zwakker zijn (vergeleken met satellieten in een baan om
een hemellichaam). De zwakkere gevoeligheid voor zwaartekrachtsveldcoëfficienten van
lasermetingen naar satellieten zal de kwaliteit van de geschatte baan van een satelliet
die ILR gebruikt i.p.v. Doppler verslechteren voor missies om lichamen zonder een a
priori zwaartekrachtsveld van hoge kwaliteit.

De alom aanwezige invloed van modelfouten die de mogelijkheden van een ILR sys-
tem limiteren (Phobos vorm model, model voor niet-conservatieve krachten in een baan
om de Maan, tijdsephemeris van het ruimtesegment etc.) is een direct gevolg van de rev-
olutionaire kwaliteit van de afstandsmetingen die dit systeem zal bezorgen. Veel huidige
modellen van planetaire omgevingen zijn niet ontwikkeld tot op het punt dat ze metin-
gen met een nauwkeurigheid op het mm-cm niveau kunnen verwerken. Het bereiken
van dit niveau vereist een nieuwe aanpak van modelleren, en het gebruik van verbeterde
metingen van een breed aantal instrumenten, om gebalanceerde, synergetische weten-
schappelijke resultaten te bereiken met de volgende generatie planetaire missies.



CHAPTER 1

Introduction

In the advancement of science, technological and intellectual developments go hand-in-
hand, with theoretical breakthroughs often driven by the inability of prevailing theories
to explain new experimental facts. Examples of such breakthroughs include Kepler’s
laws describing heliocentric planetary motion to explain detailed observations of their
apparent motion (e.g. Hawking, 2003) and Einstein’s theory of special relativity to
explain the observed invariance of the speed of light (Einstein, 1905). As our technology
has allowed us to expand beyond our own planet in the past half century, so have our
capabilities to obtain new experimental information on a wealth of subjects such as
geodesy, climate science and fundamental physics (e.g., Seeber, 2003; Chuvieco, 2008;
Turyshev, 2009). As a result, our understanding of our own planet, the solar system, and
the universe as a whole has been revolutionized. Future theoretical developments will be
greatly facilitated by the development of the next generation of space- and ground-based
instrumentation. The analysis of the application of one such type of instrumentation in
the field of planetary science is the topic of this dissertation.

In the planetary sciences, a combination of state-of-the-art Earth- and space-based
technology is used to improve the characterization of the processes governing the solar
system, aiding our understanding of its formation and evolution, (e.g., de Pater and
Lissauer, 2001; Bertotti et al., 2003b). Furthermore, by using the solar system as our
laboratory, we can use the various moons, planets, asteroids, etc. as elements in an ex-
perimental setup, allowing us to test various laws of physics, and the physical processes
that emerge from them, in a manner that we could not hope to do in terrestrial labora-
tories. By sending spacecraft to the bodies in our solar system, we can add custom-made
components to our ’grand laboratory’. This allows ongoing processes to be measured to
much greater detail than is possible in an astronomical setting, where we are limited to
distant observations. This puts solar system observations in a unique middle ground,
combining the use of in situ instrumentation (as is the case in terrestrial laboratories)
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with the observation of effects at distances, masses etc. much greater than what can be
achieved on Earth, as is the case in astronomical observations.

In this dissertation, we analyze several key aspects of an emerging technology that
could provide significant improvements in such a set of experimental data obtained from
solar system space missions: Interplanetary Laser Ranging (ILR). This technology can
facilitate a strongly improved characterization of the dynamics of both natural and
next-generation artificial bodies in our solar system (Degnan, 2002; Turyshev et al.,
2010). However, its development is partly in its infancy, requiring substantial additional
development and analysis before it can be implemented. This dissertation forms part
of these developments. In this chapter, we put the technology in a historical context in
Section 1.1, followed by a more detailed description for the rationale for investigating
interplanetary laser ranging in Section 1.2. Finally, we discuss the structure of the
subsequent chapters in this dissertation in Section 1.3.

1.1 Historical Background

The start of the space age in the 1950s spurred developments in a wide range of fields
in both science and engineering. For the first time in history, global observations of our
planet were available, facilitating a quantum leap in our ability to measure, model and
understand the Earth. Since that time, observations made by orbiting satellites have
been absolutely crucial in monitoring the state of our planet, allowing changes in weather,
climate, topography and sea level to be measured on a truly global scale, (e.g., Ohring
et al., 2002; Berger et al., 2012). One of the key steps that allowed for the accurate
analysis of space-based observations was the development of technologies and methods
for the precise determination of the positions of artificial satellites (Vetter, 2007), which
could be used for accurate processing of remote-sensing observations. Furthermore,
the reconstruction of the orbital dynamics of spacecraft can be used to obtain science
products in various branches of (Earth) sciences such as geodesy, (e.g., Kaula, 1966), as
it allows for a characterization of the time history of the (gravitational) accelerations
that have acted on the spacecraft.

The observation and estimation of orbits of natural solar system bodies was by no
means a new science at the beginning of the space age, however. Detailed methods for
the determination of orbits of planets, moons, etc. from astrometric observations had
been developed for several centuries (Boyer and Merzbach, 2011). For instance, one of
the first applications of the method of least squares was by Gauss to predict the orbit
of Ceres from a short arc of observations, allowing it to be successfully recovered after
it became observable again following a solar opposition. In an even greater triumph
of dynamical astronomy, the discovery of the planet Neptune in 1846 was a result of
unexplained perturbations that were observed in Uranus’ orbit. These perturbations led
to the postulation of the existence of an eighth planet, which was subsequently found in
an orbit very close to that predicted from the observed Uranian orbital perturbations
(Grosser, 1962). Despite the width and depth of existing methods for the calculation
of (planetary) ephemerides at the start of the space age, the small physical size of
artificial satellites posed a variety of challenges in dynamical modelling. Conversely,
their potential for being purposely designed for a specific (active or passive) method of
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tracking allowed much more accurate orbits to be determined than had been the case
for natural solar system bodies, leading to the development of a number of technologies
(Seeber, 2003), among them Satellite Laser Ranging (SLR).

The ground segment required for SLR consists of systems for generating and trans-
mitting short laser pulses, as well as detecting laser pulses that are reflected back from
a satellite. The space segment must be equipped with retroreflectors that reflect in-
coming laser pulses (from the ground station) back to their source. By measuring their
transmission and reception time, total times-of-flight of these pulses are determined,
which yield (raw) two-way range measurements between the spacecraft and the ground
station (Degnan, 1993). State-of-the-art attainable range accuracy and precision is at
the (sub-)cm level, depending on ground segment hardware quality, as well as the space
segment distance and retroreflector array properties. For SLR operations, a ground sta-
tion must be equipped with a stable detection and timing assembly, and be capable of
transmitting and detecting short laser pulses by direct detection of the reflected pho-
tons. The concept of SLR was first presented in detail by Plotkin (1964), although it
is briefly mentioned in a conceptual manner by Veis (1963). The first successful SLR
measurements were performed at NASA Goddard Space Flight Center (GSFC) to the
Beacon-B satellite in Low Earth Orbit in 1964. These measurements yielded position
determination with several meters accuracy. Compared to microwave radar measure-
ments performed at the time, this was an order of magnitude improvement. By 1967,
four retroreflector-equipped satellites had been launched and an international ranging
campaign was initiated, culminating in the contribution to an improved Earth gravity
field model and station position data. In 1975, the first satellite designed purely for laser
ranging, the French STARLETTE, was launched. In 1976, a new type of laser operated
at GSFC achieved sub-decimeter single-shot precision, a great improvement compared
to that obtained during the first ranging campaign only a decade earlier. In the same
year, the Laser Geodynamics Satellite (LAGEOS) was launched (shown in Fig. 1.1(a)),
which has arguably been the most prolific satellite for laser ranging purposes over the
last decades, (Degnan, 1993; Wood and Appleby, 2004; Plotkin, 2014). The current SLR
ground station network consists of about 40 stations, which track more than 50 different
satellites1.

The coordination of SLR activities falls under the responsibilities of the International
Laser Ranging Service (ILRS), which was formed in 1998 to provide an overarching
organization that can improve cohesion between various SLR stations and activities and
serve as an interface between the SLR community and the science community (Pearlman
et al., 2002; Gurtner et al., 2005). Over the last decades, SLR has been instrumental in
geodetic observations of the Earth and is one of the four main space-geodetic techniques
(along with GNSS, DORIS and VLBI) (Petit et al., 2010). It has contributed to the
determination of (variations of) the Earth’s gravity field and geocenter, measuring plate
motions, improving the terrestrial reference systems, measuring rotational variations of
the Earth, etc. (Exertier et al., 2006; Altamimi et al., 2011). Additionally, owing to its
(nearly) unbiased range measurements, it allows for a crucial form of validation of GNSS-
derived spacecraft orbits, (e.g., Urschl et al., 2005). Furthermore, it has recently been
demonstrated that high-powered SLR systems can be used for highly accurate tracking

1http://ilrs.gsfc.nasa.gov/
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(a) (b)

Figure 1.1: Images of a) LAGEOS (photo: NASA) b) Voyager 1 (illustration: NASA). Note
the prominence of the HGA on the Voyager spacecraft.

of space debris (Kirchner et al., 2013), allowing for range measurements of about 1 m
precision to be obtained for selected large pieces of space debris.

The primary task of the ILRS and the SLR network consists of providing coordinated
and systematic range measurements to satellites (equipped with retroreflectors). An ad-
ditional relatively small but crucial task of the network is Lunar Laser Ranging (LLR),
which uses retroreflectors on the lunar surface in the same manner that SLR uses reflec-
tors on satellites. The concept of deploying retroreflectors on the Moon was proposed
by Alley et al. (1965), which would allow much greater accuracy at much lower laser
power than the proposed passive reflection of laser pulses off the lunar surface (Orszag,
1965). Shortly thereafter, Apollo 11 delivered the first retroreflector to the surface of
the Moon in 1969, allowing LLR to be performed (Faller et al., 1969; Alley et al., 1970).
Four more retroreflector arrays were to follow, two on Apollo 14 and 15 and two French
ones on the Soviet Lunokhod 1 and 2 rovers. Performing LLR is extremely challenging
however, due to the very large distance and SLR/LLR’s inverse quartic dependency of
signal strength on distance (Degnan, 1993). As a result, only very few ground stations
are capable of LLR observations. Additionally, the optical properties of the lunar re-
flectors have degraded over the decades that they have been used (Murphy et al., 2010),
further complicating the ranging activities. Nevertheless, LLR has been of exceptional
value in a variety of scientific fields, from lunar science and geodesy to fundamental
physics, owing to the uniquely long-term and highly accurate range measurements be-
tween Earth and another solar system body (Murphy, 2013). Recently, the Apache Point
Observatory Lunar Laser-ranging Operation (APOLLO) station has been commissioned
(Murphy et al., 2008). The technology of this new station now allows ranging at lunar
distance with an accuracy of several millimeters.

While SLR and LLR were being developed (among others) for use in terrestrial and
lunar applications, respectively, planetary missions relied almost completely on radio-
metric techniques for their orbit determination. In planetary missions, signals transmit-
ted between a high gain antenna (HGA) on the satellite (see Fig. 1.1(b) for an image
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of the Voyager probe, prominently featuring the HGA) and a large radio antenna on
Earth are used for both communication and tracking purposes (Mudgway, 2001). Cur-
rent missions use radio signals at the X-band, and in certain cases Ka-band, of the radio
frequency spectrum, from which higher communications bandwidth and more accurate
tracking observables can be obtained than signals in the lower frequency bands, which
were used in early missions. Improvements in hardware, for instance the use of multi-
wavelength systems (Bertotti et al., 1993), and advances in data analysis techniques
(Iess et al., 2014a) have further improved tracking data and processing accuracy over
the past decades. The reconstruction of the dynamics of spacecraft and planetary lan-
ders has facilitated measurements of e.g., planetary gravity fields, rotational behaviour
and tidal deformations, providing the scientific community with valuable information
from which the interior of these bodies can be inferred (Section 2.2). Additionally the
tracking of planetary missions (including the use of LLR) has resulted in some of the
most successful experimental verifications of general relativity (Section 2.3).

Spacecraft tracking by use of radio signals suffers from a number of inherent limita-
tions in precision and accuracy, though, owing to the relatively long wavelength of the
electromagnetic signals that are used. Although improvements in tracking data quality
are expected from next generation missions (Section 2.1.2), the use of electromagnetic
signals with a shorter wavelength, such as the laser pulses used for SLR and LLR,
could yield two to three orders of magnitude improvement in the accuracy of the range
measurement of planetary missions (Degnan, 2002).

Due to the inverse-quartic signal-strength-to-distance relation of SLR/LLR, this tech-
nology is not feasible for use at planetary distance. Instead, an active laser transponder
is required on the space segment for the implementation of Interplanetary Laser Ranging
(ILR), reducing the signal-strength dependency to inverse square with distance. Such
a transponder contains a detector, timer and laser transmitter. A transponder is re-
quired at both ends of the link for two-way active laser ranging system. Alternatively,
the space segment may contain only a detection system for the implementation of a
one-way system (Degnan, 2002). In 2004, the first such measurements using lasers at
interplanetary distance were achieved with two-way ranging to the MESSENGER space
probe at a distance of 24 million km. This was accomplished by using its altimetry sys-
tem as a space-based laser ranging system (Smith et al., 2006). For the very first time,
this demonstrated the application of laser ranging technology in a planetary mission,
opening the door for obtaining mm-cm precise and accurate range measurements at dis-
tances on the order of an Astronomical Unit (AU) (Degnan, 2002; Turyshev et al., 2010;
Dirkx et al., 2014a). The experiment with MESSENGER, which was an experiment of
opportunity performed with non-dedicated hardware, yielded a distance measurement
with about 20 cm precision. Although the implementation of the technology is only
in its infancy, with the only operational example the one-way laser tracking of the Lu-
nar Reconnaissance Orbiter (LRO) at the Moon (Section 3.3.1), it has the potential to
revolutionize the science return of future planetary missions. In this dissertation, these
scientific contributions will be investigated and some of the key developments that are
needed for its future use are highlighted and discussed.
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1.2 Research Motivation

With some exceptions, such as LLR and the use of altimetry crossovers, orbit deter-
mination of planetary missions (and the science products derived from it) have relied
almost exclusively on the use of radiometric tracking types (Section 2.1.1), obtained us-
ing a combination of (high gain) radio antennas on the spacecraft and large Earth-based
radio dishes, such as those in the Deep Space Network (DSN) (Imbriale, 2002). Despite
the significant scientific advances that have been made and the exceptional tracking ac-
curacy that is achievable by means of radio technology, a number of factors limit future
improvements in its performance. Due to their relatively long wavelength, radio signals
are influenced well beyond a measurable level by propagation media, specifically (non-
dispersive) tropospheres and (dispersive) ionospheres and interplanetary plasma (Asmar
et al., 2005). Although modelling of the media and the use of multi-wavelength systems
can largely mitigate the influence of dispersive media, the influence of the propagation
media can limit the future improvement of the accuracy of radio tracking technology
(Section 2.1.2). Additionally, at radio wavelengths very large transmitting and receiving
systems are required due to the magnitude of the beam divergence angle, with associ-
ated difficulties in power and mass budgets, mechanical stability and operational costs.
Using a shorter wavelength system for the tracking of planetary satellites is limited by
the opacity of Earth’s atmosphere at a wide range of frequencies of electromagnetic
radiation. However, an atmospheric window at optical frequencies, which allows SLR
and LLR to be performed, can be used for both communication and tracking purposes
(Bland-Hawthorn et al., 2002). An issue with the usage of the optical atmospheric trans-
mittance window, however, is that signals at optical wavelengths cannot pass through
clouds, as opposed to radio signals.

A comparison of a 70 m DSN tracking station and the Next Generation SLR (NGSLR)
prototype station is given in Fig. 1.2, showing the dramatic difference in tracking sta-
tion size. Although the 70 m dish is capable of tracking spacecraft well into the outer
solar system, for which the NGSLR station will likely be too small, NGSLR (formerly
named SLR2000) will be able to track most planetary spacecraft (McGarry et al., 2006),
provided that the space segment is equipped with the suitable instrumentation (Section
1.1).

Although the existing SLR/LLR ground segment is well suited for ILR in most re-
gards, the requirements for an active space segment differ drastically from SLR/LLR,
requiring more substantial technology development. However, the required space-based
laser technology has matured in a variety of related applications. Prime examples are
the use of laser altimetry by a variety of planetary missions such as Mars Global Sur-
veyor (MGS), MESSENGER and LRO (Hussmann, 2014), laser time transfer used by
the T2L2 experiment onboard the Jason-2 satellite (Exertier et al., 2010), and laser
communications used on the lunar-orbiting LADEE satellite (Boroson and Robinson,
2013). These developments can facilitate the faster development of laser ranging tech-
nology and operations for interplanetary missions in the near future, by increasing its
Technology Readiness Level (TRL), see Sections 3.3.3-3.3.5.

The seminal article by Degnan (2002) presents the proposed measurement concept
of ILR in detail, along with a preliminary link budget, showing the feasibility of laser
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(a) (b)

Figure 1.2: Images of a) a typical DSN tracking dish (photo: NASA) b) the Next Genera-
tion SLR (NGSLR) station prototype at the NASA Goddard Geophysical and Astronomical
Observatory (photo: NASA).

ranging systems for use in planetary missions, providing accuracy and precision at the
mm-cm level. Successful experiments of two-way ranging by MESSENGER (Smith et al.,
2006) and one-way detection with MGS (Neumann et al., 2008) demonstrated the first
interplanetary laser links. These experiments, however, also showed a variety of oper-
ational difficulties associated with ILR. The first operational usage of an ILR concept
started in 2009 with one-way laser ranging to the Moon-orbiting LRO satellite (Zuber
et al., 2010). Although the distance to LRO is relatively small, the measurement system
employs an active space-based detector for the realization of a one-way laser link. How-
ever, due to the fact that the quality of the radiometric tracking data for LRO was better
than expected, in addition to unforeseen complications with the one-way laser ranging
data analysis, the laser ranging data was not included in operational orbit determina-
tion (Mazarico et al., 2012). Nevertheless, recent development of expertise in analyzing
one-way laser ranging data has led to progress in its use for orbit determination, with
laser-only orbit solutions with a quality similar to those from Doppler and altimetry
crossover data obtained by Mao et al. (2013); Bauer et al. (2014).

A number of mission proposals has emerged during the past decade which have in-
cluded an ILR element (a detailed overview is given in Section 3.3.2). In these proposals,
ILR is included for a variety of reasons, ranging from primary science instrument (Tury-
shev et al., 2010) to supporting orbit determination data (Oberst et al., 2012). Although
preliminary error estimates for range measurement quality are found in literature, (e.g.,
Degnan, 2002; Turyshev et al., 2010), a full characterization of the potential contribu-
tion of ILR to planetary missions using a detailed error budget has not been performed
to date. Additionally, the use of laser ranging in planetary missions has thus far been
proposed largely for the improved testing of general relativity, with little analysis of its
potential benefits for planetary science goals. Therefore, the goal of this dissertation
is twofold. It will address the question of how laser ranging can contribute to achiev-
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ing the goals of planetary science missions, by means of quantitative analyses. Also, it
will address several key uninvestigated sources of range measurement errors and data
analysis shortcomings for ILR. As a result, this dissertation provides vital steps to the
future implementation of laser ranging technology in planetary missions, by showing its
potential for improving a mission’s science return and highlighting some of the main
sources of range measurement errors that are distinct from those in SLR/LLR, allowing
for a better assessment of hardware development required for an ILR mission.

The work that has led to this dissertation was performed in, and funded by, the
European Framework Program 7 (FP7) project called ’European Satellite PArtnership
for Computing Ephemerides’ (ESPaCE) (Thuillot et al., 2011, 2013). The primary aim
of this project is to use a combination of radio science and astrometric observations
to improve the ephemerides of small solar system bodies and artificial planetary satel-
lites. In the context of this project, work is also performed on improving reference
systems of solar system bodies, such as Phobos and Ganymede, as well as analysis of
their rotational behaviour. Additionally, the project includes the investigation of new
technologies for future improvements of planetary ephemerides, where the work which
led to this dissertation was performed within Work Package (WP) 3: Laser Ranging.

The work that we present in this dissertation is based largely on numerical simula-
tions of laser ranging measurements and subsequent orbit determination and parameter
estimation. We opted to develop our own software for this purpose, as discussed in more
detail by Dirkx and Vermeersen (2012, 2014), and have set up a generic orbit determi-
nation and dynamical space mission analysis framework, based on the Tudat software
libraries (Kumar et al., 2012). Our framework is set up in a generic and modular fashion,
facilitating its use for the broad range of ILR-related aspects that we investigate here,
as well as a wide variety of future applications.

1.3 Dissertation Structure

This dissertation addresses the question of whether laser ranging at interplanetary dis-
tance has the potential to improve the science return of space missions in the near future,
with a focus on planetary science objectives. The core of this dissertation is comprised
of Chapters 4-7, each of which contains a journal article in which separate aspects of this
aim are investigated. These articles have been peer-reviewed and published (Chapters
4- 6), or are under review at the time of writing of this dissertation (Chapter 7). These
four chapters consist of an analysis of the potential scientific contributions that ILR
could make to future space missions and contain a quantitative assessment of various
sources of error that could limit the quality of the science products. Aspects related
to hardware-derived range measurement errors, environment-derived measurement er-
rors and current deficiencies in the models for obtaining scientific parameters from laser
range measurements are discussed. To put the contents of these articles into the broader
context of existing planetary missions and tracking types, as well as existing SLR and
LLR activities and technology, two introductory chapters are included in addition to
the current one. In Chapter 2, a description of existing tracking methods for planetary
missions is given, as well as a broad discussion of the scientific results that have and
can be derived from these data, providing theoretical background for Chapters 4-7 and
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detailing the science case for ILR in a general sense. Additionally, we discuss in a qual-
itative manner how including laser ranging measurements could impact the estimation
quality of the various physical parameters from which scientific theories on the interiors
of solar system bodies, theories of gravitation, etc. can be improved. In Chapter 3, we
present the basic operating principle of SLR and LLR and discuss how these technolo-
gies can be extended to interplanetary distance. We address technological developments,
operational challenges and developments in data analysis that will be required for the
succesful implementation of ILR.

Chapter 4 is comprised of an article entitled ’Phobos Laser Ranging: Numerical
Geodesy Experiments for Martian System Science’ (Dirkx et al., 2014a). In this arti-
cle, a detailed analysis of the potential science return from the Phobos Laser Ranging
(PLR) concept, a Phobos lander mission equipped with a two-way laser ranging system
discussed in detail by Turyshev et al. (2010), is presented, in terms of geodetic parame-
ters of Mars, Phobos and Deimos. In this paper, the analysis instead relies on so-called
’consider covariance analysis’, instead of using a bottom-up model for the range errors.
By using this method, the influence of both random uncorrelated (Gaussian) noise and
systematic errors on the range measurements are analyzed. Taking this approach, a
parametric analysis of the science return is given in terms of these two types of error
sources. This work serves as a demonstration of the potential of scientific breakthroughs
that could be facilitated by ILR. Additionally, it shows how different types of errors
propagate into the uncertainties of the science observables, providing the context for
subsequent analyses of specific error sources.

Both Chapter 5 and Chapter 6 deal with the analysis of such error sources on the
quality of ILR science results. In Chapter 5, the article ’Influence of Atmospheric Tur-
bulence on Planetary Transceiver Laser Ranging’ (Dirkx et al., 2014b) is reprinted, in
which the influence of both atmospheric turbulence and finite signal strength and pulse
length on laser range measurement accuracy and precision is discussed. A general the-
oretical development of the problem is given, resulting in a more comprehensive theory
of the influence of turbulence on the spatio-temporal laser pulse intensity distribution
for SLR/LLR/ILR applications than what was heretofore available. The method is il-
lustrated by its application to the PLR concept, providing a quantitative analysis of
the influence of atmospheric turbulence and varying laser signal strength on range mea-
surement quality. Additionally, system design aspects that can be used to mitigate the
influence of these disturbances are discussed.

Subsequently, a comparative analysis of one- and two-way laser ranging is given in
Chapter 6, where the article ’Comparative Analysis of One- and Two-Way Planetary
Laser Ranging Concepts’ (Dirkx et al., 2015a) is reprinted. The primary difference
between the one- and two-way laser ranging concepts is the influence of clock noise on the
laser range measurement error budgets. As such, this chapter contains a detailed analysis
of the relation between clock noise and one- and two-way laser ranging measurements
and ways in which to mitigate this noise source. The analysis is performed for both a
lunar orbiter similar to LRO, and the PLR concept.

In Chapter 7 the article entitled ’Simultaneous Spacetime Dynamics Estimation From
Space Mission Tracking Data’ (Dirkx et al., 2015b) is reprinted, where we investigate a
potential deficiency in data analysis techniques that can become an important contrib-
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utor to the estimation quality of parameters of interest from one-way ILR data, even
in the case of perfect (error-free) data. Specifically, we analyze the inherent relativistic
coupling between time and space dynamics in the estimation procedure, recognizing the
fact that the relativistic influence of estimated parameters on observers’ proper times
could have a measurable impact on data reduction techniques. Beyond the application
to one-way data, our theoretical development can have important consequences for use
in (interplanetary) time transfer and relativistic geodesy. Our dynamical approach in
this chapter differs from that of the rest of this dissertation in that we apply a fully rel-
ativistic model, to consistently represent the gravitational influence of both space and
time dynamics.

In Chapter 8, we provide a cohesive discussion of the results given in Chapters 4-
7. We present the relative contributions of the various sources of uncertainty in the
final science products of a mission employing ILR, as well as methods with which to
mitigate them. Subsequently, we present a conceptual comparison to existing tracking
techniques and discuss the challenges that remain for the successful implementation of
ILR. We summarize the overall conclusions of this dissertation in Chapter 9, where we
also present an outlook to the future of interplanetary laser ranging, regarding both the
developments in both analyses and hardware that are needed, as well as other issues that
will need to be addressed for it to be used in an operational manner in future missions.



CHAPTER 2

Tracking of Planetary Missions

For both Earth-orbiting and planetary missions, a wide range of tracking observables is
typically available from which the orbit of the spacecraft can be reconstructed, either
combined with a dynamical model or in a purely kinematic manner, (e.g., Montenbruck
and Gill, 2000; Seeber, 2003; Tapley et al., 2004). The reconstruction of the trajectory
of a spacecraft is crucial for a variety of reasons. From an operational point of view,
the orbit must be determined and propagated forward in time to optimally plan and
execute maneuvers, schedule science observations, etc. Also, a precise knowledge of the
trajectory is crucial for the processing of data generated by instruments such as cameras,
altimeters and radars. For instance, when processing altimetry data from an orbiter, the
radial orbit error propagates directly onto the derived altitude measurement. Finally,
the determination of the orbit of a spacecraft holds crucial intrinsic value. Specifically, a
state history of the spacecraft can be estimated by adjusting a set of model parameters
to make the observations best fit a parameterized dynamical and observation model.
These parameters can be used to derive properties of the spacecraft’s environment,
both gravitational and non-gravitational. A number of tracking types, both active and
passive, can be used in planetary missions. We give an overview of these techniques and
discuss their relative strengths and weaknesses in Section 2.1, focusing on radiometric
range and range-rate data.

The gravitational accelerations acting on an orbiter offer the unique possibility to
globally measure the gravitational field of a body (and time-variations thereof), from
which constraints on a body’s interior structure can be derived through the determi-
nation of, for instance, gravity field coefficients, rotational variations or Love numbers,
(e.g., Konopliv et al., 2011). In addition to being useful for probing gravity fields, or-
bit reconstruction of (planetary) spacecraft allows for the determination of a variety
of non-gravitational forces, primarily atmospheric drag (for spacecraft orbiting bodies
with an atmosphere), facilitating an in situ determination of atmospheric properties,

11
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(e.g., Mazarico et al., 2008). Additionally, tracking of planetary landers allows the com-
bined measurement of the orbital dynamics, rotational dynamics and tidal deformation
of the target body, of which LLR is a prime example (Williams et al., 2001). Although
tracking of planetary landers does not allow for the direct determination of gravity field
characteristics of the body (barring the use of absolute gravimetry or the exploitation
of relativistic clock effects), they provide highly accurate direct measurements of plan-
etary dynamics that are invaluable in the determination of ephemerides. We discuss
the various observables in planetary sciences that can be obtained by tracking planetary
missions in Section 2.2, including the strengths and weaknesses of various mission and
tracking types for their determination.

In addition to being valuable for achieving planetary science objectives, determina-
tion of the gravitational acceleration acting on a spacecraft or natural solar system body
allows for a wide variety of tests of gravitational physics. Although general relativity
has been a highly successful theory of gravity for almost a century, a number of issues
lead to postulated alternative theories of gravitational physics. Observing the dynamics
of the solar system in general, and the usage of tracking data of planetary missions in
particular, offers unique opportunities to test these theories of gravitation, which we
discuss in Section 2.3.

2.1 Planetary Tracking Data

Tracking data of both artificial and natural solar system bodies can be obtained by a
variety of methods, each with its own challenges, advantages and disadvantages. To
ascertain whether there is a place for laser ranging in addition to existing methods, we
give an overview of existing tracking techniques in Section 2.1.1, where we discuss both
typical radiometric techniques, as well as some more exotic methods. In addition to
active tracking systems used in space missions, we discuss passive methods which are
used for observing solar system bodies, to provide a full and cohesive overview of the
measurements currently used in dynamical astronomy of the solar system. Subsequently,
we discuss the error budgets of typical radiometric tracking techniques in Section 2.1.2,
focussing specifically on the radiometric range and Doppler observations. Finally, we
show in Section 2.1.3 the relative strengths of range and range-rate measurements by
means of a preliminary analysis.

2.1.1 Tracking Types

Radio tracking of spacecraft is typically performed by a set of dedicated Earth-based
ground stations, such as NASA’s DSN or ESA’s ESTRACK system. Orbit determination
for most planetary missions relies largely on radiometric Doppler measurements, which
encodes the time-averaged range-rate of the space segment w.r.t. the ground station.
Essentially, the Doppler observable is obtained by measuring the change in range to
the spacecraft over a certain integration time. Typically, the range-rate measurement is
integrated over a period of about 60 s, (e.g., Iess et al., 2014a). However, both smaller
integration times such as 1-10 s (Lemoine et al., 2013) and larger integration times such
as 1000 s (Iess et al., 2009) may be used. Radio tracking of modern space missions
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is typically done in X-band (∼7-8.5 GHz) or Ka-band (∼32-35 GHz) (Thornton and
Border, 2000), or both simultaneously to account for the influence of the dispersive
propagation media (Bertotti et al., 1993). The Doppler data type is often supplemented
by radiometric range measurements, which is realized by measuring the light time of a
coded radio signal to obtain the direct range between a ground station and the space
segment. We discuss the (comparative) data quality of range and Doppler data in more
detail in Section 2.1.2.

In addition to the range and range-rate observables, an angular position measure-
ment, realized by Very Long Baseline Interferometry (VLBI) techniques, is routinely
used as a supporting radiometric data type. In VLBI, a set of radio telescopes on Earth
is simultaneously used to observe the same radio signal originating from the spacecraft.
After resolving the cycle ambiguity, i.e., determining the total signal propagation time
difference for the different stations, an angular observable may be obtained. The real-
ization of a VLBI angular position observable is made using two similar, but distinct
techniques (Lanyi et al., 2007), which differ primarily in the manner in which they re-
solve the cycle ambiguity. Firstly, the ∆ Differential One-way Ranging (∆DOR) system
uses only one baseline, but requires so-called ’DOR tones’ to be present in the signal,
resulting in a signal bandwidth on the order of 1 MHz. Using the group delay from
the sideband signal, the cycle ambiguity is resolved in ∆DOR (Curkendall and Border,
2013). Alternatively, a phase-referencing VLBI method may be used to resolve the cycle
ambiguity. Using this approach, many (sometimes > 10) ground stations are used, the
combined signals received by which can be cross-correlated, allowing the phase delay to
be used directly to determine the difference in propagation time between the stations
(Duev et al., 2012). By comparing the measurements from the space segment to those
from stable astronomical sources such as quasars, the angular position of the spacecraft
in the background International Celestial Reference Frame (ICRF) is determined. Both
measurement types can yield accuracies at the 1 nrad (≈ 0.2 mas) level, corresponding
to an out-of-plane uncertainty of about 150 m per AU of distance to Earth, although the
phase-referencing method allows for somewhat better data quality than ∆DOR, since
the phase delay can be measured to greater accuracy than the group delay.

When comparing ILR with existing tracking methods (Sections 2.1.3 and 8.2), we
will focus mostly on the comparison with Doppler measurements. Therefore, we require
a mathematical comparison of the two data types. Since a Doppler observable can be
modelled as differenced range measurements, we will first describe the model for the
range observable, followed by the Doppler observable. We will denote the one-way range

observation between station A (transmitter) and station B (receiver) by s
(1)
BA. From the

position functions of these link ends, denoted rA(t) and rB(t), respectively, the one-way
range is calculated as follows:
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where the first formulation is referenced to the transmission time tt, here equal to t1,
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Figure 2.1: Schematic spacetime diagram showing one-dimensional representation one-way
range and range-rate observables between link ends A and B, which have constant but dif-
ferent velocities (adapted from Fig. 2 of Chapter 6).

and the second one to the reception time tr, here equal to t2. That is, for the first
equation, the transmission time t1 is assumed to be known, and the reception time and
resulting range measurement are calculated from this value. For the second equation,

the reception time t2 is assumed known. The term ∆s
(1)
BA denotes range corrections due

to e.g., propagation medium (Sections 2.1.2 and 3.1.4) and relativistic (Section 2.3.2)
effects. The two-way range observable is obtained from the combination of the up-
and downlink of the signal, including a retransmission time/delay time (Section 3.1.2;
Chapter 6).

For a one-way range-rate observable, denoted here as ṡ
(1)
BA, with an integration time

denoted by ∆ti the observable is modelled by (Moyer, 2000):

ṡ
(1)
BA(tr=t4) =

s
(1)
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BA(tr=t2)

∆ti
(2.3)

t2 = t4 −∆ti (2.4)

ṡ
(1)
BA(tt=t3) =

s
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∆ti
(2.5)

t1 = t3 −∆ti (2.6)

where we have reference the observation to the reception and transmission time (both
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Figure 2.2: Schematic representation of spacecraft tracking observables range (left) and range-
rate (right).

of the second range measurement; see Fig. 2.1) in Eqs (2.3) and (2.5), respectively.
A schematic comparison of the range and range-rate observable is given in Fig. 2.2.
Note that the integration time ∆ti at the two link ends will not be equal due to the
relative velocity of A and B (see Fig. 2.1). That is, the t4 − t2 6= t3 − t1, as the same
number of cycles of the electromagnetic signal are stretch/shrunk due to the Doppler
effect. Consequently, the integration time shown in Eq. (2.4) has a different value from
that shown in Eq. (2.6) for a given link.

The Doppler data typically provides the strongest information on the orbit of a space-
craft around a planet, as they are in essence local (differential) measurements. The range
and angular position observables, however, are absolute position measurements and are
currently used largely to determine the position of the orbited planet w.r.t. Earth. This
makes these data types crucial for the improvement of planetary ephemerides, (e.g.,
Fienga et al., 2009; Jones et al., 2015). We discuss these matters in more detail in
Section 2.1.3.

Usually, radiometric tracking is performed in a one- or two-way configuration. For a
one-way system, only the up- or downlink of the signal is used to obtain the range(-rate)
measurement. This setup, however, suffers from the fact that it typically introduces
a large error in the processed observable, as it requires the comparison of the clocks
onboard the ground and the space segment (Moyer, 2000; Asmar et al., 2005). This
difference will be discussed in detail in Chapter 6 for the case of laser ranging systems.
A two-way measurement uses both the up- and downlink of the signal to generate a
measurement. By combining the up- and downlink, the space- and ground-based clocks
no longer need to be compared in an absolute manner, removing a typically dominant
source of error in the one-way measurement.

In radio measurements, the two-way observation is obtained by means of signal re-
transmission on the spacecraft. A radio signal from an Earth-based ground station
is amplified, scaled and retransmitted by a transponder on the space segment. This
retransmitted signal is then observed by the ground station, allowing a two-way mea-
surement from the combined up- and downlink measurement to be obtained. Since the
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Figure 2.3: Schematic representation of two-way (left), three-way (middle) and four-way (right)
data types.

retransmission is not instantaneous, the time delay δtB is typically measured by the
spacecraft and included in the data analysis. The influence of this retransmission delay
on the data analysis is analyzed by (Bertone et al., 2013), who speculate that ignoring
this retransmission delay may be a solution for a long-standing unexplained phenomenon
in spacecraft dynamics: the flyby anomaly (Anderson et al., 2008). The flyby anomaly
is an as-yet unexplained difference between the observed and predicted velocity (at the
mm/s level) of a number of spacecraft in an interplanetary transfer trajectory as they
perform an Earth swingby.

In addition to the one- and two-way range measurement, a so-called three-way mea-
surement is used routinely in spacecraft tracking (Moyer, 2000). The three-way mea-
surement is essentially a two-way measurement in which the transmitting and receiving
ground station are different (Fig. 2.3). Such a setup may be needed for observation
geometry reasons, especially for missions to the outer solar system with very long light
times between the spacecraft and the ground. However, the use of a three-way system
has the complication that it requires the comparison of the two Earth-based systems. As
a result, the systematic errors that will cancel in a two-way system are not immediately
cancelled in a three-way system. Novel calibration methods (Shin et al., 2014) can be
used to attain similar data quality as from two-way data. It should be noted that the
term ’three-way’ is something of a misnomer, since there are still only two signal paths.
In SLR systems, a three-way measurement is termed bistatic (Degnan, 1993).

For more exotic mission geometries, tracking data types with more than two signal
paths can also be used. For instance, the SELENE mission, which consisted of two lunar
orbiters, employed a four-way Doppler tracking technique (Namiki et al., 2009). In this
four-way technique, one of the satellites was used as a relay to the other spacecraft, so
that a total of four signal paths were used in the full up- and downlinks (Fig. 2.3). In
the SELENE mission, the use of the four-way system allowed, for the first time, direct
tracking of a satellite at the far side of the Moon, resulting in a global lunar gravity field
of much higher spatial resolution compared to previous missions (Goossens et al., 2011).

Although the radiometric Doppler measurements, supplemented by range and angu-
lar position observables, are typically the main tracking types used for orbit determina-
tion of planetary missions, a number of additional measurements can be used for their
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trajectory reconstruction. We summarize the ones that are most relevant in the context
of this dissertation here:

• Altimetry crossovers. Missions which use an altimetry system (LRO, MGS, MES-
SENGER, BepiColombo, JUICE, etc.) can use the altimetry measurements to im-
prove their orbit determination by means of crossovers (Hussmann, 2014). Cross-
overs have been used for a number of Earth-orbiting missions and were first applied
in a planetary context for MGS (Rowlands et al., 1999; Neumann et al., 2001),
improving the satellite’s orbit reconstruction quality and the gravity field deter-
mination. The crossover method exploits the fact that multiple altimetry ground
tracks will regularly cross one another. At the crossing point of the ground tracks,
the body-fixed latitude and longitude of the spacecraft will be (approximately)
equal for both ground tracks. The altitude difference at the times at which the
two ground tracks pass the crossover point are deduced from the altimetry mea-
surements, resulting in a differential altitude measurement between crossover times
t1 and t2. A prime example of the use of altimetry crossovers is the orbit deter-
mination of LRO (Mazarico et al., 2012), where an improvement in arc overlaps
by a factor of 3 is obtained in certain mission phases. In addition to allowing for
an improved orbit determination, crossovers may be used to estimate the defor-
mation Love number h2 of the body being orbited (see Section 2.2.3), as done for
the Moon by LRO (Mazarico et al., 2014a). Currently, this is also the primary
method by which JUICE is expected to retrieve the Love number h2 of Ganymede
(Steinbrügge et al., 2014).

• Same beam interferometry. Same beam interferometry (SBI) is a radio tracking
technique that is based on in-beam phase-referencing VLBI, in which the calibra-
tor and target are visible at the same time, (e.g., Fomalont et al., 1999; Cao et al.,
2014). For the planetary tracking application of SBI, two spacecraft at close an-
gular separation are simultaneously tracked by multiple ground stations (Folkner
and Border, 1990), instead of simultaneously tracking a target object and refer-
ence source. This technique can be used to determine the differential range (to
the ground stations) by comparison of the (phase) delays from the two spacecraft,
allowing for a differential range to be obtained directly, as well as a differential
angular separation following cross-correlation. Due to the very small angular sep-
aration between the two targets, the influence of the propagation medium on the
observations is reduced, since only the gradient of the medium’s influence over the
small separation distance of the two beams influences the observable, allowing for
exceptionally accurate differential observations. This technique was demonstrated
by the combined tracking of the Magellan and Pioneer spacecraft at Venus (Border
et al., 1992), where a measurement accuracy in the differenced range of 10 ps over
60 s integration time was achieved. It was used operationally by the SELENE
mission in lunar orbit (Kikuchi et al., 2009), where a sub-ps differential measure-
ment accuracy was demonstrated (also at 60 s integration time). The addition of
the SBI data to the orbit determination resulted in an order of magnitude reduc-
tion in arc overlap difference and an improved lunar gravity field determination
(Goossens et al., 2011). Furthermore, SBI has been used to improve the relative
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positioning of the Change’E 3 rover and lander (Liu et al, 2014). SBI has been
proposed for usage in lunar landers (Bender, 1994; Gregnanin et al., 2012), where
potential differential range measurements with an accuracy of <0.1 mm would
allow exceptional refinement of lunar interior structure models.

• Time transfer. Time transfer is a method by which the clocks of separated ob-
servers may be synchronized (in the relativistic sense of the term) using the trans-
mission and reception of electromagnetic signals, such as laser pulses or radio
signals (Bjerhammar, 1985; Klioner, 1992). In addition to the typical tracking sys-
tems (optical or radio), highly stable clocks are required to perform time transfer.
Although time transfer is not currently used to improve the orbit determination of
spacecraft, the relativistic clock effects (Section 2.3.2), to which the time transfer
observable is sensitive, (e.g., Blanchet et al., 2001), could be exploited to improve
the geodetic (Müller et al., 2008a) and relativistic (Angélil et al., 2014) measure-
ments. We discuss the time transfer method in more detail in Section 3.3.4 in the
context of synergy with active laser ranging systems. Furthermore, the main goal
of Chapter 7 is to develop a method by which time transfer can be incorporated
into the orbit determination and parameter estimation procedures, by recognizing
the fundamental coupling between time and translational dynamics.

Other techniques include the use of accelerometers, (e.g., Flury et al., 2008), optical
landmark tracking (e.g., Konopliv et al., 2002), pulsar timing (e.g., Sheikh et al., 2006),
gravity gradiometry (e.g., Rummel et al., 2011) and autonomous spacecraft navigation
(e.g. Wertz, 1992), which are less relevant in the context of this dissertation.

In addition to the active systems described above, which can be used for tracking
space missions, passive (i.e., requiring no active systems in space) observations of solar
system bodies are used for reconstructing their dynamical behaviour. These data types
are the primary input for ephemeris generation of bodies to which no orbiters have been
flown yet. Additionally, they are important for the determination of ephemerides over
longer time periods, supplementing accurate spacecraft tracking techniques to observa-
tionally constrain ephemerides over a longer time span, more than a century in certain
cases (Jacobson and Lainey, 2014). As such, we briefly present these techniques here, as
their usage is crucial in a complete dynamical characterization of solar system bodies.

• Radar ranging. Radar ranging is a technique that uses very powerful radio signals,
reflected off the target body. The detection of these reflected signals are then used
to infer the range to that body, as well as a number of its physical characteristics,
such as shape and rotational state. Although the measurement accuracy is orders
of magnitude worse than that of spacecraft tracking, on the order of 1 km for
terrestrial planets (Folkner et al., 2009), it does not require any active systems
at the target body. However, just as SLR, radar ranging is limited by an inverse
quartic variation of signal strength with distance. Nevertheless, radar ranges out
to the Galilean moons have been obtained using the Arecibo antenna, with an
accuracy of about 5-15 km (Harmon et al., 1994). A time history of measurements
of the reflected waveform can be used to infer a shape and rotation model of
the target body (Mitchell et al., 1998) by analyzing the changes over time in
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the reflected signal. Additionally, radar ranging can also be used to determine
the instantaneous spin rate and spin axis orientation (Margot et al., 2007). By
measuring the temporal intensity pattern from the reflected signal at multiple
stations, the speckle pattern that the reflecting body imposes on the waveform may
be used to correlate the signal detection at the two stations and obtain independent
and much more accurate information on the rotation of the body than from typical
concurrent analyses of topography and rotation.

• Astrometry. Optical observations of celestial bodies such as planets and moons
(both by Earth- and space-based instruments) can be used to obtain astrometric
measurements of these bodies. An astrometric observation consists of the angu-
lar position (right ascension and declination) of the target body in the sky. This
observation is obtained by measuring the position of the target body w.r.t. the
positions of known stars and resultantly calculating its position, (e.g., Kovalevsky
and Seidelmann, 2004). Although astrometric observations are of relatively low
quality (at best around 0.1 as) compared to VLBI angular position observables
(with sub-mas accuracy), (e.g., Folkner et al., 2014), they can be made with-
out the need for an active transmitter or receiver on the target body, allowing
observations of any sufficiently bright body in the solar system. Usable astro-
metric observations of solar system bodies go back more than a century. Lainey
et al. (2007) used observations as far back as 1877 for ephemeris generation of
the Martian moons, for instance. The GAIA mission, which is still operational as
of the writing of this dissertation, will compile astrometric observations of back-
ground stars to an unprecedented level of accuracy (on the order of several µas
for strong sources), as well as observe small solar system bodies. Both these types
of observations will improve the planetary ephemerides (Fienga, 2012). Firstly,
re-reduction of old photographic plates using the new GAIA catalogue will result
in more accurate astrometric data from these older plates. Secondly, direct astro-
metric observations of around 400,000 small solar system bodies such as asteroids
will provide additional, highly accurate (about 5 mas), observations for the gener-
ation of ephemerides. Historically, optical astrometry has been used as a passive
method for the positioning of early (Earth-orbiting) spacecraft, using scattered
and reflected sunlight from the spacecraft surface (e.g., Veis, 1963). To enhance
the visibility of the spacecraft, the use of stroboscopic beacons on the spacecraft
has been applied. Alternatively, for using optical astrometry at larger (for instance
lunar) distances, the artificial comet concept was used (Shklovskii et al., 1959), in
which a gas was expelled from the spacecraft that greatly enhances the amount of
sunlight that is scattered towards Earth from the (vicinity of) the spacecraft.

Using the measurements obtained by both the active and passive techniques de-
scribed in this section, ephemerides of solar system bodies as well as the trajectories of
spacecraft are estimated. To process the measurements, models for both the dynamical
environment of the bodies (initial state, gravity field coefficient, empirical correction
factors, etc.), and a number of environment- and hardware-related corrections to the
measurements are used (see Section 3.2 for a more elaborate discussion of such correc-
tions for range measurements). By adjusting various parameters in these models, an
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optimum solution of these parameters is computed, which produces a best fit of the
measurements, (e.g., Montenbruck and Gill, 2000; Tapley et al., 2004; Fienga et al.,
2009; Folkner et al., 2014). This process is discussed in some more detail in Section 5 of
Chapter 4.

2.1.2 Radiometric Tracking Data Quality

The potential use of ILR is contingent upon its data being able to provide scientific
results that are complementary or competitive with existing systems. To support the
comparison of ILR data with existing radiometric tracking data, we provide a brief
overview of the main sources of error in these data, as well as near-future potential for
their improvement. Detailed discussions of sources of systematic and random noise for
range and Doppler data are given by Thornton and Border (2000); Asmar et al. (2005);
Iess et al. (2014a).

The typical precisions of radiometric tracking techniques, as quantified by the postfit
estimation residuals, are currently at the level of 0.02-0.1 mm/s at 60 s integration
time for range-rate measurements at X-band (e.g., Thornton and Border, 2000; Marty
et al., 2009; Konopliv et al., 2011; Mazarico et al., 2014b; Iess et al., 2014a) and 0.5-5
m for range measurements (e.g., Thornton and Border, 2000; Kuchynka et al., 2012;
Folkner et al., 2014; Iess et al., 2014a). In addition to the random noise, systematic
errors may be present in the measurements, which are more difficult to quantify in
detail than the random noise. For Doppler measurements, the short-periodic systematic
errors are typically at a negligible level (Iess et al., 2014a), although small low-frequency
systematic errors (periods on the order of 1,000-100,000 s) may be present. Despite the
typical absence of short-periodic error source in Doppler tracking, an anomalous signal
in the Doppler measurements (at 1 s integration time) of MRO is found by Genova et al.
(2015), who obtain an improvement in postfit residual of a factor of 2-3 after filtering
this anomalous behaviour. Whether the source of this error is due to a modelling error or
an inherent noise source in the data remains to be investigated. In contract to Doppler
data, the level of systematic errors are typically quite large for range measurements,
comparable to the random noise at the m level (Thornton and Border, 2000; Iess et al.,
2014a). For situations with a small solar separation angle, this value increases to tens
of meters and above, as the influence of the interplanetary plasma becomes stronger.

The inherent noise sources can be classified as due to ground- and space-segment
hardware instabilities and due to the propagation media. Mechanical instabilities at
both the spacecraft and the ground station, as well as clock noise, decrease the quality
of the measurements, although not at a dominant level for two- and three-way Doppler
tracking (Asmar et al., 2005), where the absolute range bias is not relevant (see Section
2.1.1). For range measurements, however, these effects are important contributors to
the systematic noise level (Thornton and Border, 2000; Iess et al., 2014a). The influ-
ence of the propagation medium is due to interplanetary plasma, the ionosphere and the
troposphere of the Earth (as well as potentially the body being orbited by the space-
craft). The influence of the Earth’s ionosphere can be largely removed by using GPS
measurements of the total electron count (TEC) and mapping this to the line-of-sight
of the interplanetary link (Thornton and Border, 2000). The tropospheric influence can
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be modelled at the 0.01-0.03 mm/s level (at 60 s integration time) using typical current
meteorological measurements at the ground station (Iess et al., 2014a), a value which
can be improved by a factor of about 10 by using additional microwave radiometry mea-
surements at the ground station (Asmar et al., 2005). The influence of interplanetary
plasma can be modelled or estimated during data analysis to reduce its influence on the
data (Moyer, 2000; Verma et al., 2014). The influence of plasma becomes stronger as
the radio signal path passes closer to the Sun, where the plasma density is larger. This
is shown by, (e.g., Iess et al., 2014a; Mazarico et al., 2014b), who find that the signal
quality degrades significantly for solar separation angles smaller than 30-40◦, causing
gaps of high quality data during the orbit determination.

A crucial improvement in radiometric tracking data quality can be obtained by si-
multaneously using multiple wavelengths. Since the dispersive media (interplanetary
plasma and ionosphere, but not the troposphere at radio wavelengths) influence the
propagation of electromagnetic radiation at different wavelengths in a different but pre-
dictable manner, combining observations at multiple wavelengths allows the removal
of the majority of the plasma and ionospheric) noise. This calibration was performed
with ranging measurements at S- and X- band by the Viking landers (Reasenberg et al.,
1979) and Voyager spacecraft (Krisher et al., 1991). Bertotti et al. (1993) proposed the
use of multi-frequency Doppler measurements, as opposed to previous experiments with
dual-frequency range data. This approach was demonstrated using the instrumentation
onboard the Cassini spacecraft (Bertotti et al., 2003) obtaining a Doppler noise level
close to 1 µm/s level in some cases (when scaled to 1000 s integration time) at small
solar separation angles, providing a much improved estimate of the relativistic param-
eter γ (see Section 2.3.3). Unfortunately, the Ka-band transponder on Cassini suffered
a malfunction, preventing plasma noise cancellation on the downlink during the Saturn
phase. The use of multiple wavelengths largely mitigates the issue of tracking at small
solar separation angles, where the data quality of single-frequency systems degrades due
to the larger influence of the Sun’s plasma environment. The combined X- and Ka-
band approach is also to be used on the BepiColombo (Iess et al., 2009), JUICE (Iess
et al., 2013) and Juno (Tommei, et al. 2015) missions, which have tracking data quality
requirements of 0.01 mm/s at 60 s integration time and 3 µm/s at 1000 s integration
time. However, as discussed bove experience with the dual-frequency link on Cassini
has shown data noise levels down to 1 µm/s at 1000 s in some cases, making it likely
that these future missions will be able to go beyond their required 3 µm/s range-rate
requirement. Additionally, upcoming missions such as JUICE and BeliColombo will
employ a wideband ranging system (Iess and Boscagli, 2001), allowing two-way range
measurements with a predicted accuracy of down to 20 cm.

In addition to these inherent measurement errors, analysis of Doppler data using typ-
ical double precision floating-point representation (Goldberg, 1991) introduces substan-
tial so-called numerical noise (Zannoni and Tortora, 2013), since the Doppler observable
is obtained by differencing two large values, where only the small difference between the
range at the start and end of the integration time represents the observable, as shown
in Eqs. (2.3) and (2.3). Furthermore, the representation of time as seconds since J2000
(or some the reference epoch), using a single double-precision variable, will introduce
numerical time biases due to round-off errors (Moyer, 2000). Similar issues arise in the
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simulation and processing of ILR data, where relative range resolution at the 10−14-
10−15 level is required, and extremely accurate time representation is crucial. In our
software used in Chapters 4-7, we apply a time representation with sub-fs resolution and
relative range resolution of ≈ 10−19, translating to a range resolution of 15 nm per AU.

2.1.3 Preliminary Comparison of Tracking Types

In orbit determination of planetary spacecraft, Doppler measurements are typically much
more valuable than the range or angular position measurements, (e.g., Fienga et al.,
2009). This is due to the combination manner in which these observables are generated,
and how their data noise levels differ (Section 2.1.2). In this section, we conceptually
discuss how these two different data types contain different information content on the
behaviour of the spacecraft and the body that it orbits. In Section 8.2, we will elaborate
this discussion with a quantitative comparison of radiometric range and Doppler with
ILR tracking data.

The reason that Doppler data is generally the data type of choice for estimating the
orbits planetary spacecraft becomes clear when comparing the typical noise levels of the
techniques (Section 2.1.2). As can be seen from Eq. (2.3), the range rate measurement is
obtained from the range difference at a time t and time t+∆ti. As a result, a range-rate
measurement with a noise level of 0.05 mm/s over an integration time of 60 s is sensitive
to a range difference of 3 mm (over this period of 60 s), compared to the absolute range
accuracy of 1 m of the direct range measurements.

The large discrepancy between the quality of the two types of observables is due
to the differenced range nature of the Doppler observable. This causes the influence
of systematic range errors to be removed, since they are not manifested in Eq. (2.3).
For range measurements, however, the total range measurement including all its error
sources, is used, resulting in a much larger error budget. It should be understood that
the method by which the range and range-rate measurements are generated is quite
different and a range-rate measurement is not realized by measuring range values at
time t and t − δti. Instead, a range-rate measurement is generated by counting the
number of cycles of the electromagnetic signal over the integration time, resulting in
an observable that can be equivalently modelled by Eqs. (2.3) and (2.5). Therefore,
the range-rate measurement is not obtained directly by differencing two realizations of
a range measurement.

An advantage of the absolute nature of the range (and angular position) measure-
ments, though, is that they can be used to observe effects that are manifested as very
slow variations in range. For instance, a range measurement with a precision of 0.05
mm/s will not be able to properly distinguish a physical effect from the observation
noise that causes changes in range of <0.05 mm/s over the integration time ∆ti. Two
range measurements with a precision of 1 m spread 2 ·105 seconds apart, though, will be
able to observe such an effect with an accuracy of 10%. As a result, range and angular
(VLBI) measurements (which provide an absolute position perpendicular to the line of
sight) are more valuable in determining parameters with long-periodic or slow secular
influences on the observations.

This makes range and VLBI observations very valuable for use in the creation of
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Table 2.1: Examples of relative influence of position and velocity of spacecraft about body and
body about Sun.

Case |rP,I | [m] |rSC,P |[m] µP
µS

[−]
ṙP,I
ṙSC,P

· rSC,P
rP,I

[−]

Mercury (1000 km altitude) 5.80·1010 3.44·106 1.66·10−7 1.12·10−2

Mars (500 km altitude) 2.28·1011 3.89·106 3.21·10−7 1.24·10−4

Jupiter (70,000 km altitude) 7.80·1011 1.40·108 9.53·10−4 7.79·10−5

Saturn (180,000 km altitude) 1.44·1012 1.40·108 2.86·10−4 1.28·10−4

planetary ephemerides (Pitjeva, 2001; Fienga et al., 2009; Jones et al., 2015), as opposed
to the value of Doppler in determining the orbit of the spacecraft around the target body,
as planetary orbits imprint long-periodic effects on the measurements (on the order
of years). Although the range-rate measurement is not insensitive to the spacecraft’s
absolute position in the solar system, since the body P which the satellite orbits will
have a different barycentric velocity if it is at a different point in the solar system
(assuming it to have a roughly circular orbit), the relative influence of the spacecraft’s
state relative to the body P on the range rate will be much greater. Examples of various
other physical parameters q which will be exhibited as slow variations in the range will
be highlighted throughout Sections 2.2 and 2.3, where we discuss the parameters that
are typically estimated from space mission tracking data.

To demonstrate the relative importance of position and velocity in determining the
orbit of a spacecraft and the ephemeris of a planet, we decompose the state of a spacecraft
SC orbiting a solar system body P as follows:

rSC,I = rP,I + rSC,P (2.7)

where the first component of the subscript denotes the body of which the position
r is denoted and the second subscript denotes the origin of the frame in which it is
expressed, where I denotes the inertial (i.e., barycentric) frame. To illustrate the relative
contributions of range and range rate observations, we assume that the body P is in a
circular orbit about the barycenter, and that the spacecraft is in a circular orbit about
the body P , so that their velocity vc w.r.t. the body they orbit becomes:

vc =

√
µ

r
(2.8)

where µ denotes the gravitational parameter of the central body and r denotes the
(assumed constant) distance of the orbiting body from the central body P .

The relative influence of bodycentric and barycentric velocity may be approximated
by:

ṙP,I
ṙSC,P

=

√
µS
µP

√
rSC,P
rP,I

(2.9)

where the subscript S denotes quantities associated with the Sun. As we illustrate with
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several examples in Table 2.1, this will lead to the following for most planetary missions:

ṙP,I
ṙSC,P

rSC,P
rP,I

=

√
µS
µP

(
rSC,P
rP,I

)3/2

� 1 (2.10)

As a result, the relative influence of the spacecraft’s velocity, and resultantly the range-
rate, is more important for determining the state of the spacecraft about the body P
and the relative influence of the spacecraft’s position, and resultantly the range, is more
important for determining the ephemeris of body P about the Sun. Since the period of
the spacecraft orbit is much smaller than the planet’s orbit, the above indicates that (at
least conceptually) the range data are better suited to measuring the global dynamics.
This comparison is quantitatively linked to the relative quality of the range and Doppler
data in Section 8.2. Although we observe a wide range of values of the left hand side
of Eq. (2.10) for the various test cases we show, the values clearly verify our statement
of the inequality. This shows that much more information content encoded in the range
observable comes from the body P than from the spacecraft SC. However, it must
be understood that these values only hold for the assumptions of circular orbiters and
circular planetary orbits. Although the circular planetary orbit assumption is reasonable,
highly eccentric orbits, such as those of Juno or MESSENGER, will have a substantial
impact on the value of the inequality in Eq. (2.10). Nevertheless, the very low values
of its right-hand side shown in Table 2.1 leave ample margin for its validity beyond the
circular spacecraft orbit assumption.

2.2 Science Return: Solar System Bodies

Science products obtained from the tracking of planetary missions have been invaluable
for our understanding of the interiors of the bodies in our solar system, with important
implications for their origin and evolution, (e.g., de Pater and Lissauer, 2001). Future
missions using laser ranging technology will benefit from improved range measurement
accuracy and precision, which may reach values down to 1 mm (Section 1.2), further
improving our understanding of bodies in our solar system (and of exoplanetary systems
by extrapolation). In this dissertation, Chapter 4 gives a detailed analysis of the po-
tential science return from a Phobos lander performing two-way laser ranging to Earth,
providing a simulation demonstration of the potentially revolutionizing influence that
ILR could have on space mission science return.

In this section, we provide an overview of the types of characteristics of solar system
bodies that tracking of planetary missions has provided information on in the past,
and can provide in future missions. We address the various physical phenomena that
are measured and how they relate the science goals of space missions. We relate the
discussion of the various observables to the discussion in Section 2.1.3, indicating the
relative importance of the potential addition of laser ranging technology, compared to
existing data types.

For the determination of the interior structure and composition of a body, the com-
bination of the various geodetic parameters, as well as other measurements (magnetic,
geological, thermodynamical) can be used. By combining the various data sets, the
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best constraints on a wide range of parameters that determine the characteristics of the
body can be obtained, as is done bym e.g., Konopliv et al. (2011) for Mars, Williams
et al. (2014) for the Moon and Baland et al. (2014) for Titan. In this section, we will
focus on describing the physical processes that lead to the various observable geodetic
parameters. Detailed analysis of the relation between these parameters and the interior
structure and evolution of these bodies is outside the scope of this dissertation, though,
and is discussed in more detail by e.g. Murray and Dermott (1999); de Pater and Lis-
sauer (2001); Bertotti et al. (2003b). We discuss the estimation and interpretation of
gravity fields in Section 2.2.1, rotational dynamics in general and librations in particular
in Section 2.2.2 and the effects of tidal deformation on both the shape and gravity field
of a body in Section 2.2.3. Finally, we give an overview of the creation and application
of planetary ephemerides in Section 2.2.4. The contents of this section serve to illustrate
the contribution of tracking of space missions to the planetary science community but
is not an exhaustive survey of planetary interiors.

2.2.1 Gravity Fields

The quintessential product of space geodetic techniques is a body’s (static and time-
variable) gravity field, which is described by the body’s gravitational potential U(r, t).
The gravitational potential U may be calculated from the (matter) density distribution
ρ as follows, (e.g., Torge, 2001)

∇2U(r, t) = 4πGρ(r, t) (2.11)

where G represents Newton’s gravitational constant. This equation is the (differential
form of the) fundamental relation for determining the potential U in the classical limit.
We will show the generalized relativistic version of this law in Section 2.3.1. Gradients
in the gravitational potential cause the main accelerations r̈ of solar system bodies (both
natural and artificial) from:

r̈(r, t) = ∇U(r, t) (2.12)

As a result, reconstructing the dynamics of both solar system bodies and spacecraft
is very well suited to the characterization of the gravitational fields of the bodies in
our solar system. Typically, gravity fields of solar system bodies are represented as a
spherical harmonic expansion of the potential U , (e.g., Kaula, 1966):

U(r, φ, λ) =
GMP

r

∞∑
l=0

(
RP
r

)n ∞∑
m=0

(
C̄nm cos(mλ) + S̄nm sin(mλ)

)
P̄nm(sin(φ)) (2.13)

where MP denotes the total mass of the body, and the mass distribution is quantified
by the normalized spherical harmonic coefficients C̄nm and S̄nm of degree n and order
m. P̄nm denotes the normalized associated Legendre polynomials. The parameters φ
and λ denote the body-fixed latitude and longitude at the point where the gravitational
potential is evaluated, r denotes its distance from the center of body P and RP denotes
the equatorial radius of body P . The series in Eq. (2.13) converges outside the small-
est circumscribing sphere of the body P . A different, but mathematically equivalent
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manner in which to represent Eq. (2.13) is with the use of symmetric trace free (STF)
tensors (Hartmann et al., 1994). The use of this method is rare in most astrodynamics
applications, but prevalent in the field of relativistic celestial mechanics (Kopeikin et al.,
2011).

The spherical harmonic expansion may also be written in terms of the unnormalized
coefficients Cnm and Snm, and unnormalized associated Legendre polynomials Pnm,
where P̄nmC̄nm = PnmCnm and P̄nmS̄nm = PnmSnm, with, (e.g., Montenbruck and
Gill, 2000): {

C̄nm
S̄nm

}
=

√
(n+m)!

(2− δ0m)(2n+ 1)(n−m)!

{
Cnm
Snm

}
(2.14)

where δnm represents the Kronecker delta. In certain situations, the m = 0 coefficients
are represented by Jn, with:

Jn = −Cn0 (2.15)

which are termed the (unnormalized) zonal coefficients.
The spherical harmonic coefficients C̄nm and S̄nm are related to the body’s internal

mass distribution through, (e.g., Lambeck, 1988):{
C̄nm
S̄nm

}
=

1

MP (2l + 1)

y

P

(
r

RP

)n
P̄nm(sin(φ))

{
cos(mλ)
sin(mλ)

}
dV (2.16)

Since the fraction r/RP is always smaller than 1, the higher the degree n of the gravity
field coefficients, the less the coefficients are influenced by the mass distribution of the
deep interior of the body (small r).

Due to the formulation of the spherical harmonic coefficients, the influence of co-
efficients of degree n and order m on the gravitational potential (and resultantly the
acceleration on an orbiting spacecraft) exhibits characteristic wavelengths with a size
of 2πRP /n (north-south) and 2πRP /m (east-west). As a result, the higher degree and
order effects are manifested in planetary tracking data as signals with a shorter period.
Therefore, the local nature of Doppler observables makes this data type much more
suited to the determination of especially the higher degrees and orders of planetary
gravity fields than range measurements (Section 2.1.3). Nevertheless, exceptionally ac-
curate range measurements that are expected from ILR could have a better sensitivity
to gravitational perturbations than current Doppler tracking data, at least for the long
wavelength (low n) coefficients. Resultantly, our brief overview of planetary gravity field
science in this section will be mostly limited to that which relates to the low degrees and
orders, without going into detail on the science return from high degree gravity fields.

For the Earth, a number of dedicated missions such as GRACE and GOCE have
contributed to the determination of Earth’s gravity field to high temporal and spatial
resolution. For the C20 field coefficient estimation, however, SLR data from a number
of geodetic satellites such as LAGEOS I/II continue to provide the best information
(Sośnica, 2014), due to the aliasing of errors in the ocean tide models with gravity field
determination from LEO satellites (Chen and Wilson, 2008) and the near polar orbits
of GRACE/GOCE.
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Table 2.2: Examples of estimated gravity fields of selected solar system bodies, including the
value and (formal) uncertainty of J2 gravity field coefficient; (f) indicates data from flybys;
D/O indicates maximum degree and order of static field.

Body D/O J2 σJ2 Source

Moon 900 (full) 2.0 · 10−4 6.0 · 10−10 GRAIL, Lemoine et al. (2014)
Mercury 50 (full) 5.0 · 10−5 1.5 · 10−9 MESSENGER, Mazarico et al. (2014b)
Phobos J2, C22 1.1 · 10−1 6.7 · 10−3 MeX (f)/astrometry, Jacobson and Lainey (2014)
Mars 110 (full) 2.0 · 10−3 3.1 · 10−11 MGS, Mars Odyssey, MRO, Konopliv et al. (2011)
Jupiter J2-4;6;C, S22 1.5 · 10−2 1 · 10−6 Pioneer/Voyager (f), Campbell and Synnott (1985)
Titan 3 (full) 3.2 · 10−5 5.6·10−7 Cassini (f), Iess et al. (2012)
Ganymede J2,C22 1.3·10−4 2.9·10−6 Galileo (f), Anderson et al. (1996)
Earth 280 (full) 1.1 · 10−3 3.5 · 10−13 15 spacecraft, Mayer-Guerr et al. (2015)

There is a wide range of accuracies to which planetary gravity fields have been
characterized, due to the large variety of mission geometries, tracking types and data
quality that have been obtained for them. This can be seen in Table 2.2, which shows
a summary of state-of-the-art planetary gravity field data. The determination of the
gravity field of the Moon was problematic for a long time, due to the lack of direct
tracking data at the lunar far side. This situation was first remedied by the SELENE
mission, which used a novel four-way radio link (Namiki et al., 2009) to observe the lunar
farside (see Fig. 2.3). Recently, the GRAIL mission, which consisted of two orbiters
with an inter-satellite Ka-band range-rate link flying in a trailing formation, has resulted
in the estimation of the gravity field up to degree and order 900 (Konopliv et al., 2013;
Lemoine et al., 2014) from spacecraft data alone, higher than any other body in the solar
system, including the Earth. For Earth, however, higher-degree gravity field models are
available, such as EGM2008, which is complete up to degree and order 2159 (Pavlis
et al., 2012) and incorporates additional models and data, such as altimetry and surface
gravimetry, to estimate the high degree and order coefficients.

For many bodies for which spacecraft tracking data is used to infer gravity field coeffi-
cients, this data is only from one or several flybys, limiting the degree and order to which
the gravity field can be estimated. Although determinations from flyby missions alone
suffer from limitations in data quantity and coverage, flybys of bodies do not require a
dedicated mission for the body under consideration. Instead, a single space mission may
perform flybys of many different bodies, whereas it typically only has an orbit phase
around a single body. An excellent example of this is the Cassini mission, which has
performed flybys of a number of Saturn’s moons, (e.g., Anderson and Schubert, 2010;
Iess et al., 2012; Iess et al., 2014b). From radio science data gathered during the flybys,
the full degree two gravity field, as well as J3 of Enceladus has been determined (Iess
et al., 2014b). For Titan, the full degree-three gravity field, as well as the k2 Love num-
ber (Section 2.2.3) could be determined from tracking during flybys (Iess et al., 2012),
which provides crucial constraints on its interior structure (Baland et al., 2014).

For the determination of the gravity field of a body in synchronous rotation from
a small number of flybys, such as in the case for the Galilean and major Saturnian
moons, a relation between the J2 and C22 coefficient can be used, which is valid for
a synchronously rotating body in hydrostatic equilibrium, (e.g., Murray and Dermott,
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1999; Bills and Nimmo, 2008):

J2

C22
=

10

3
(2.17)

This equation can be used to reduce the set of estimated parameters during flyby data
analysis. Alternatively, estimation of both J2 and C22 can be used to test the hypothesis
of whether a body is indeed in hydrostatic equilibrium. Eq. (2.17) has been applied
to (partly) differentiated bodies such as the Galilean satellites (Schubert et al., 2004)
and Titan (Iess et al., 2012), as well as (almost) undifferentiated bodies such as Rhea
(Anderson and Schubert, 2010).

The degree two gravity field coefficients typically provide the strongest constraints on
the overall mass distribution of a body, as they are most easily detectable and provide a
quite direct relation to the total (radial) mass distribution, as shown by Eq. (2.16). Since
both the gravity field coefficients and moments of inertia (Section 2.2.2) of a body result
from its integrated interior mass distribution, they are not independent parameters. In
fact, there is a simple relation between the principal moments of inertia and degree
two gravity field coefficients, due to the definition of the gravity field coefficients in Eq.
(2.16) and the inertia tensor given below by Eq. (2.21). This results in (e.g., Lambeck,
1988): (

J2

C22

)
=

1

MPR2
P

(
C − A+B

2
B−A

4

)
(2.18)

where A, B (equatorial) and C (polar) denote the principal three moments of inertia of
the body P (with A ≤ B ≤ C) and MP and RP denote the mass and reference (typically
equatorial) radius of body P , as in Eq. (2.13).

As a result of Eq. (2.18), 240.00a combination of relative moments of inertia (such
as that inferred from rotational characteristics) and degree two gravity field coefficients
can be used to infer the absolute moments of inertia A, B and C, the implications
of which are discussed in Section 2.2.2. The C21 and S21 gravity field coefficients are
typically (close to) zero, as they indicate the deviation between the body pole (principal
axis) and the rotation pole (axis about which body rotates). Similarly, a non-zero S22

gravity field coefficient denotes an offset between the body equatorial x- and y-axes and
the equatorial principal moments of inertia.

As an example of the use of degree two planetary gravity fields, Rivoldini and van
Hoolst (2013) constrain the core size and density of Mercury using a combination of the
J2 and C22 gravity data of Mercury, as obtained from MESSENGER tracking data by
Smith et al. (2012), combined with measurements of its rotational state. However, as
they clearly state, combination with other data (magnetic, tidal, etc.) is required to get
a full characterization of the state and composition of Mercury.

2.2.2 Rotational Dynamics

In addition to characterizing a body’s gravity field from the translational dynamics
of an orbiting satellite, observing or inferring the rotational behaviour of the body
can be used to constrain its interior structure. The rotational dynamics of a body
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is manifested in a number of different types of measurements of planetary missions.
Firstly, tracking data from planetary landers are directly sensitive to (variations in)
the rotation of their target body, as its effects result in a direct geometric effect on
the range measurement (see Section 5.1 of Chapter 4 for details). A prime example of
this is the rotational characterization of the Moon by means of LLR (Williams et al.,
2001). Secondly, since the static gravity field is defined in a body-fixed frame, changes
in the rotation between the body-fixed and inertial frame will result in variations in
the gravitational accelerations acting on an orbiter. An example of this approach is the
determination of Mars’ rotational behaviour from radio-science observations of multiple
Mars orbiters reported by Konopliv et al. (2011). Thirdly, analysis of observations by
an altimetry or imaging system, combined with a sufficiently accurate spacecraft orbit,
can be used to observe variations in the body’s rotation. For examples, the rotational
state of Phobos was constrained by Pasewaldt et al. (2012) by using Mars Express High
Resolution Stereo Camera (HRSC) data.

For bodies such as icy moons, which may have a strongly rotationally decoupled core
and surface, great care must be taken in the combination of these techniques, since lander
tracking and imaging are only sensitive to the shell rotational variations, whereas gravity
field determination is sensitive to rotational variations of the entire body. Rotational
variations are typically manifested as effects at a wide range of time scales, down to the
order of the body’s rotational period, but up to many years (tens of thousands of years
for precession of certain bodies, for instance). However, unlike the influence of (high
degree) gravity field parameters (Section 2.2.1), very short-periodic effects will typically
not be relevant in the analysis of rotational behaviour, making range measurements to
landers well suited to the determination of rotational dynamics. Inferring the rotational
characteristics from orbiter tracking data, however, requires observations of signals with
the same period as the spacecraft orbit, which is typically (much) shorter than one
rotational period of the body. This makes range-rate measurements relatively more
suited than range data for extracting characteristics of a body’s rotational dynamics
from orbiter tracking data.

Various different types of rotational behaviour are observed among the bodies in
the solar system, such as tumbling asteroids, tidally locked moons and planetary rota-
tions consisting of precession, nutation and polar motion. Fundamentally, though, the
rotational dynamics of a completely rigid body is described by Euler’s equation:

d(Iω)

dt
+ ω × (Iω) = Γ (2.19)

where I is the body’s inertia tensor, ω its rotation vector and Γ denotes the sum of
all torques acting on it. By modelling the influence of both the environment and the
body’s interior structure on the torque Γ, as shown by for instance Eq. (2.22), and
measuring the (time-variation of) the rotation vector ω, constraints may be placed on
the body’s moment of inertia tensor I. The situation is complicated by a number of
aspects, though. Firstly, the torque on a body can itself depend on its inertia tensor I, as
shown below in Eq. (2.22), which represents the torque due to the body’s flattened and
elongated shape. Additionally, even for a single monolithic body, both its own rotation
and tidal effects cause it to deform, resulting in time-dependency of the inertia tensor
I, (e.g., Williams et al., 2001).
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For an arbitrary mass distribution, the moment of inertia is obtained from, (e.g.,
Dehant and Mathews, 2015):

I =

∫
V

ρ(r)
(
(r · r)213×3 − r · rT

)
dV (2.20)

where the integral is taken over the complete body with density distribution ρ as a
function of internal position in the body r, and 13×3 denotes the three-dimensional
identity matrix.

Typically, the axes in which Eq. (2.19) is evaluated are chosen such that they align
with the principal axes of the body, eliminating the products of inertia (off-axis terms
of inertia tensor), so that the inertia tensor can be written as:

I =

A 0 0
0 B 0
0 0 C

 (2.21)

where C is the body’s polar moment of inertia and A and B its equatorial moments of
inertia, where A ≤ B ≤ C. The moments of inertia are often normalized by the product
MPR

2
P , see Eq. (2.18). They provide fundamental information on the radial mass

distribution of the body, with large moments of inertia representing bodies with little
or no mass concentrations at the center (0.4 for a uniform mass distribution), whereas
small moments of inertia indicate a large mass concentration at the body’s center (a
core).

The primary torque Γ acting on a body is typically that of central body (approx-
imated as a point mass) acting on the elongated shape of the rotating body under
consideration and is calculated from (e.g., Williams et al., 2001)

Γ =
3µc
r5

r× (Ir) (2.22)

where µc denotes the gravitational parameter of the central body exerting the torque.
Nevertheless, additional torques from third bodies and other extended body effects of
both the central and the rotating body may significantly complicate the expression for
Γ (Bois et al., 1992).

The model of a single rigid body without an atmosphere is valid for certain small
bodies, such as Phobos, allowing their rotational dynamics to be related to its internal
structure with relatively minor complications (Rambaux et al., 2012). However, most
larger bodies in the solar system show a clear radial structure (core, mantle, crust) which
may be (partially) rotationally decoupled from one another in the case of a liquid core or
subsurface ocean. This requires models for the dynamical coupling between the various
layers, such as that given by van Hoolst et al. (2008) for Europa and Williams et al.
(2001) for the Moon, complicating both the setup, solution and inversion of the rotational
equations of motion. Also taking into account coupling between rotational dynamics,
tidal deformation and dissipation, (e.g., Williams et al., 2001; Rambaux et al., 2010;
Williams and Boggs, 2015) results in additional information on the interior structure
being manifested in its rotational dynamics. Furthermore, atmospheric torques, such
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as those described by Richard et al. (2014) for Titan, may complicate the models for
rotational dynamics and the interpretation of its observation even more.

Not only the variations in the rotational behaviour, but also the steady-state rotation
of a body can be used to infer characteristics of the interior structure of solar system
bodies. Determination of the steady-state and long-periodic rotational behaviour can be
constrained to relatively high accuracy with (laser) range measurements, compared to
Doppler tracking (Section 2.1.3). In general, both the orbital pole and rotational pole will
precess about some axis. For tidally damped behaviour, both the orbital and spin pole
will precess about the same axis at the same rate, in a manner that the spin axis, orbit
axis and the axis about which they precess will be coplanar, a condition termed a Cassini
state. In a Cassini state, there is a fixed relation between the inclination i, obliquity
ε, precession rate and the moment of inertia ratios (Peale, 1969). By measuring the
rotational (and orbital) states and assuming a tidally damped configuration, constraints
may be placed on the moments of inertia, (e.g., Bills and Nimmo, 2008). Determination
of the obliquity of Titan from Cassini radio tracking data has led to improved constraints
on its interior structure (Baland et al., 2014). However, a Cassini state represents a mean
equilibrium condition, not taking into account short-periodic perturbations or dissipative
effects that induce time lags, requiring a characterization of the possible deviations of
the rotational behaviour from a Cassini state for a given body, (e.g., Peale, 2006).

The above discussion shows that the rotational dynamics encodes in its steady-state
value, as well as in its temporal variations, a wide variety of influences of a body’s interior
structure. Instead of analyzing the mapping from I to ω directly, a decomposition of the
rotational behaviour into various components is typically performed, to at least partially
decouple the various physical effects influencing the rotation and thereby facilitate the
interpretation of the measurements. For synchronously rotating bodies, such as many of
the moons in our solar system (Earth’s moon, Phobos, Deimos, Galilean moons, Titan,
Enceladus, etc.), the rotation motion is to first approximation described by a once-
per-orbit rotation about its polar axis, with the body’s long axis (i.e. principal axis
of minimum inertia) pointing towards the central body as a result of tidal despinning,
see Section 2.2.3), with the orbital and rotational motion in a Cassini state. Similarly,
bodies may be in a higher-order resonance, such as Mercury (which is in a 3:2 spin-orbit
resonance).

However, the rotation of such bodies will never be exactly synchronous, due to their
(small) orbital eccentricities and inclinations. Assuming that a body rotates exactly
once per orbit, with a constant rotation rate, this will cause the long axis to no longer
point directly to the center of the central body, since the rotation angle γ and the true
anomaly θ will not be equal (except at θ = nπ with integer n). This will cause a torque to
act on the satellite as per Eq. (2.22) and shown schematically in Fig. 2.4. Additionally,
other external perturbations, such as those from other solar system bodies, as well as
effects of the bodies’ interiors, are manifested as deviations of the body’s behaviour
from purely synchronous rotation. These variations are known as librations and are
typically modelled as a frequency decomposition, either obtained (semi-)analytically, or
from analysis of the numerical integration of the equations of motion, (e.g., Williams
et al., 2001; Rambaux et al., 2012).

Librational motion can consist of a combination of free and forced librations. Forced
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librations are due to external torques acting on the body, whereas non-zero free libration
requires an internal excitation mechanism (assuming that the damping time of the free
libration is sufficiently short). Assuming a rigid body (Phobos or other small moons) the
librational motion (in longitude) of a tidally locked body is approximated by the follow-
ing expression (omitting the effect of tidal dissipation), obtained through linearization
of the z-component of Eq. (2.22) (Rambaux et al., 2010):

γ = A0 sin (ω0t+ φ0) +
∑
i

ω2
0Hi

ω2
0 − ω2

i

sin (ωit+ αi) (2.23)

where the summation over i represents all periodic variations in its orbit, with ωi the
frequency of the excitation, ω0 the body’s natural (resonant) frequency and Hi the
forcing amplitude. The resonant frequency can be directly related to the ratio of the
moments of inertia (Chapront-Touze, 1990). Therefore, determination of the libration
amplitudes can be used to determine these ratios (details are provided in Appendix B of
Chapter 4). Combination with gravity field measurements, using Eq. (2.18), can then
be used to determine the absolute values of the moments of inertia of the body. For
small bodies such as Phobos, it is safe to assume that no excitation mechanism is present
and the libration consists purely of that due to external torques. This approach is taken
in the numerical simulations of Le Maistre et al. (2012) and Dirkx et al. (2014a) to
analyze the observability of Phobos’ interior structure from radiometric and laser range
measurements to a Phobos lander, respectively.

For bodies with a more complicated (e.g., radially stratified) structure, the coupling
between the various layers will result in signatures on the rotational variations that can
be used to constrain, for instance, the size and shape of a core or ocean layer. As an
example, the influence of Mercury’s core on its free librational motion is studied by
Veasey and Dumberry (2011). They conclude that although current measurements of
rotational behaviour do not impose strong additional constraints on the core structure,
accurate observations over a period of several years would reveal the influence of the
core in Mercury’s libration to a point where inferences on the core’s size could be made.
This is an excellent example of a very slowly changing physical effect for the detection
of which laser ranging (to a lander) would be ideally suited. To determine whether such
an effect can be distinguished from other effects that are manifested in the tracking data
would require more in-depth simulation and analysis, however.

In cases where the rotational variations of the core are decoupled from those of the
mantle and crust, observations of shell libration may be used to infer a moment of inertia
of the outer layers of a body only (Peale et al., 2002), as is the case for Mercury. Using
measurements of the libration amplitude of Mercury, obtained from Earth-based radar
ranging (Margot et al., 2012) and MESSENGER gravity field information (Smith et al.,
2012), moments of inertia of both the whole planet and its shell were determined, and
used by Rivoldini and van Hoolst (2013) to constrain the structure and composition of
Mercury.
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Figure 2.4: Schematic representation of the direction of the torque (red) exerted by a central
body (blue) on an oblate body in synchronous rotation (grey). Indicated are the true anomaly
θ and body rotation angle γ at one position in the orbit. Note that the rotating body’s long axis
points towards the empty focus of its orbital ellipse in the case of pure synchronous rotation
(Murray and Dermott, 1999).

2.2.3 Tidal Deformation

Gradients of external gravitational potentials inside solar system bodies induce stress
fields that cause tidal deformation of these bodies. The magnitude, as well as the spa-
tial and temporal pattern, of the resulting deformation are dependent on the body’s
structure, composition and rheology. As a result, the measurement of this deformation
can be used to infer visco-elastic characteristics of the body’s interior. Tidal deforma-
tions manifest themselves in (variations of) the shape, gravity field and rotation (Section
2.2.2) of solar system bodies, which can be measured by means of a variety of methods.
In this section we give an overview of the physical effects of tidal deformation, providing
examples from previous and upcoming observations and discussing the potential use of
ILR for improved future determination of tidal characteristics.

Tidal variations of a body’s gravity field are determined by the external potential
of the body causing the deformation, denoted U ′(r), and the tidal Love numbers knm
of the deformed body, first introduced by Love (1911), albeit without the n and m
subscripts, which represent the degree and order of the spherical harmonic expansion,
respectively, (e.g., Munk and MacDonald, 1975; Petit et al., 2010). It are these Love
numbers which contain the information relating the body’s interior to the tidally-induced
gravity field variations, and therefore encode the physical information that we wish to
extract from the observations. Typically variations in knm with m at a given n are
small, so that often a lumped coefficient kn is used. For the general case, Love numbers
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kn are complex numbers, where the typically small imaginary part quantifies the tidal
lag of the deformation, resulting in tidal dissipation, (e.g. Williams and Boggs, 2015),
to be discussed in more detail later in this section. The value of the Love number can
also be dependent on the period of the forcing frequency of the tide, although typically
relatively weakly so.

The induced gravitational potential of spherical harmonic degree and order n and
m, denoted δUnm, due to the external tidal potential of a body j, denoted U ′(j)(r),
follows from the following, approximating the perturber as a point mass (Munk and
MacDonald, 1975):

U ′(j)(r) =

∞∑
n=2

n∑
m=0

U ′(j)nm (r) (2.24)

δUnm(r) = knmU
′(j)
nm (r) (2.25)

where U ′(r) was expanded into a spherical harmonic series (decomposed into U
′(j)
nm )

about the origin of the body P in Eq. (2.24).
The influence of tidal deformation on the gravity field can be obtained by explicit

expansion of Eq. (2.25), resulting into the following after combination with Eq. (2.13),
(e.g., Petit et al., 2010):

∆C̄nm − i∆S̄nm =
knm

2n+ 1

∑
j

µj
µP

(
RP
rj

)n+1

P̄nm (sinφj) e
−imλj (2.26)

where the symbols used are the same as in Eq. (2.13) and the summation in j runs over
all bodies that raise a tide on the body P (the Sun and the Moon on Earth; the Sun,
Phobos and Deimos on Mars, etc.).

The degree two Love number k2 represents the total variation of the degree two grav-
ity field of the deformed body, see Eq. (2.25) and is typically the primary tidal parameter
of interest in planetary missions, as it has by far the largest effect on the gravity field
variations, with kn � k2 for n > 2 in most cases. This degree two deformation results in
two tidal bulges along the vector from the deformed body and the perturbing body (one
on each side of the body, see Fig. 2.5). However, deviations from spherical symmetry
can cause small variations between the degree two Love numbers of orders 0 through 2
(Bills et al., 2005). Separate estimation of k20, k21 and k22 requires exceptional track-
ing accuracy, though, as their values are typically very similar and distinguishing the
specific signals of the small influence of k20 and k21 from the primary influence of k22 is
challenging (Yoder et al., 2003; Konopliv et al., 2011). Love numbers of degree higher
than two also require highly accurate measurements, due to the typically very small
value of the degree three Love numbers and the small degree three disturbing potential
(compared to the degree two effect). However, estimates for the Moon are available
from the GRAIL mission (Williams et al., 2014), providing unique input to constrain
lunar structure models. Higher-degree Love numbers can be used to further refine inte-
rior structure models by providing an additional independent parameter. For instance,
Wahr et al. (2013) propose the potential determination of ice shell thickness variations
on Europa and Ganymede through determination of higher-degree tidal deformation.
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Table 2.3: Examples of estimated k2 Love numbers for selected solar system bodies. Value for
Moon is averaged over m = 0, 1, 2

Body k2 σk2 Source

Moon 0.0241 2.2·10−4 (realistic) GRAIL, Williams et al. (2014)
Mercury 0.451 0.014 (preliminary), 0.1 (realistic) MESSENGER, Mazarico et al. (2014b)
Mars 0.12 0.004 (formal), 0.01 (realistic) MGS, Mars Odyssey, Marty et al. (2009)
Titan 0.637 0.112 (formal) Cassini (flybys), Iess et al. (2012)

Tidal effects can be separated into a permanent tide and a time-varying tide. For
synchronously rotating bodies, the permanent tide is quite large, compared to the time-
varying part, since the body-fixed latitude and longitude of the central body (φ and λ
in Eq. (2.26)) are constant to first-order approximation. Specifically, for the measure-
ment of the time-variability of tidal effects on synchronously rotating bodies, it are only
deviations from the synchronous rotation due to orbital eccentricity (see Fig. 2.4 for
schematic representation) and inclination, as well as librations, which result in time-
varying gravity field and shape variations. As a result, the measurement of periodic
tidal effects on these bodies is more difficult than on non-synchronously rotating bodies.
The effect of the permanent tide on the shape of a synchronously rotating body is ap-
proximated by Eq. (2.17) for bodies in hydrostatic equilibrium, representing the shape
that the body takes when exposed to (approximately) the same tidal potential over long
time periods.

Since the measurement of tidal Love numbers is essentially part of the determina-
tion of the global gravity field of a body (omitting the possibility of planetary surface
gravimeters), Doppler measurements are well suited for its determination. However,
since it is typically only the very low degree term(s) which is(are) estimated, laser range
measurements may offer competitive performance, depending on the specific situation
(period and amplitude of the variation). In addition to being measurable through the
dynamics of an orbiting spacecraft, the k2 Love number also influences the rotational
dynamics of a body (see Section 2.2.2; discussion by Williams et al. (2001) for the case
of the Moon and van Hoolst et al. (2012) for Mercury). Resultantly, k2 can be obtained
from measurements of rotational dynamics, making range measurements to a suitably
located lander valuable for determining it (e.g., LLR). By combining rotational dynam-
ics measurements and orbiter dynamics tracking (LLR and GRAIL data for the Moon),
complementary observation techniques can be used to improve the estimation of a body’s
interior structure, as well as provide independent determinations of the same parameter.

Tidal Love numbers place unique constraints on the interior structures of bodies.
Static gravity field and rotational parameters are primarily related to the internal mass
distribution of a body (although a variety of additional effects influence rotational vari-
ations; Section 2.2.2). The Love numbers, however, are mainly determined by the elas-
ticity and viscosity profile of a body making it very useful in distinguishing between
solid and liquid layers, such as a core or subsurface ocean. The effect of k2 on the orbits
of spacecraft is much more subtle than that of the static gravity field (comparing σJ2
in Table 2.2 to σk2 in Table 2.3 clearly shows that σJ2/J2 � σk2/k2). Nevertheless,
tidal Love numbers play a crucial role in constraining the interior structure of bodies
for which estimates are available, as they provide information on the body’s material
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properties that cannot be resolved using gravity or rotational measurements. It can be
seen from Table 2.3 that the value of the k2 Love number varies by more than an order
of magnitude for different bodies, which is indicative of their very different structure, for
instance the very small value for the Moon, indicating a high rigidity, and the large value
for Titan, which is indicative of a subsurface ocean. For the Earth, the nominal value of
the k2 Love number ios about 0.3, with the frequency-dependence for the various forcing
frequencies given by Petit et al. (2010).

In addition to its influence on a body’s gravity field, tidal deformation also has a
direct influence on shape of a body and therefore the location of landers, an effect which
is typically quantified by the hnm and lnm Love numbers. The lnm parameters are
also termed the Shida number. These parameters quantify the radial and tangential
displacement of a surface point in response to a disturbing tidal potential as follows,
(e.g., Munk and MacDonald, 1975; Petit et al., 2010):

ur(r) =
hnmU

′
nm(r)

g
(2.27)

ut(r) =
lnm
g
∇tU ′nm(r) (2.28)

where g is the local gravitational acceleration, ∇t denotes the gradient operator along
the surface of the body ad U ′nm(r) is defined in Eq. (2.24). Just as with the knm
Love numbers, the degree two term has by far the greatest influence and typically the
variations of the deformation Love numbers over an order m are neglected. The h2 and
l2 Love numbers can be determined by means of tracking of a lander, or altimetry data
analysis. An advantage of using altimetry data is that the coverage is typically (near-
)global (assuming a polar satellite orbit), so that non-homogeneous deformation can be
measured and local behaviour will not be spuriously extrapolated to global scales, as
may occur for analysis from lander data (Mazarico et al., 2014a). The determination of
the l2 Love numbers is usually especially difficult, since its value is typically very small.

As with rotational variations (Section 2.2.2), a wide range of different tidal behaviour
is observed throughout the solar system. Relating Love numbers to constraints on
the interior structure typically requires extensive modelling of the structure of that
specific body. Analytical formulations are, however, available for the simplest cases
of incompressible homogeneous elastic bodies, (e.g., Lambeck, 1988). However, the
presence of a radial stratified structure, especially the presence of fluid layers, can have
a dramatic influence on a body’s Love numbers, making such an approximation only
valid in the simplest of cases. Typically, relating Love number estimates to interior
structure constraints is done numerically by calculating the Love numbers for a range
of interior structure models to obtain a range of models that are consistent with the
observations, (e.g., Rivoldini et al., 2011; van Hoolst et al., 2013; Williams et al., 2014).
In addition to complicating the interpretation of the Love number estimates, the use of
this approach is contingent upon using a model for the body’s properties that correctly
represents it, albeit in a simplified manner. For bodies with a subsurface ocean such as
Europa or Titan, however, an elegant analytical theory is available which exploits the
fact that the surfaces of these worlds can be modelled as a thin membrane floating on an
ocean, largely decoupling the deformation of the crust from that of the mantle (Beuthe,
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Figure 2.5: Schematic representation (in a frame fixed to body A) of the physical effect causing
secular tidal acceleration of body P due to a tide raised on visco-elastic body A in case of bodies
below synchronous orbit. Left: tide-generating body P at time t, with tidal forces shown acting
on the unperturbed shape of body A. Right: Deformed body A at time t + ∆t, due to the
perturbing potential of body P at time t. The additional acceleration at a lag angle δ due to
the upper tidal bulge is shown as ∆ẍt (not to scale).

2015). Using this theory for the determination of k2 does require the manual input of a
parameter describing the influence of the sub-ocean interior, though.

Due to the visco-elastic response of the deformed body, the tidal bulge raised by a
perturber will never be exactly at the sub-perturber point. Instead, there will be a time
lag between the occurrence of the disturbing potential and the tidal response (in the
approximate form of a tidal bulge, see Fig. 2.5). This effect is typically quantified by a
quality factor Q, defined as, (e.g., Khan et al., 2004):

Q =
|k2|

Im(k2)
(2.29)

where typically the degee and order n and m of the quality factor are omitted, implicitly
assuming that the degree two (order-independent) quality factor is denoted. The time
lag in the raising of the tidal bulge is directly related to the quality factor through
(Lainey et al., 2007):

∆t =
T sin−1(Q−1)

2π
(2.30)

where T is the orbital period. For a perturber whose orbit is below the stationary orbit
(so that the orbital period of a body is smaller than the rotation rate of the body it is
orbiting), this causes the tidal bulge to be behind the sub-perturber point, whereas for
a body above a stationary orbit, the bulge will be in front of the sub-perturber point,
causing a secular along-track deceleration and acceleration, respectively. This effect has
important implications for the evolution of planetary systems, since the secular effect will
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result in long-term secular changes in orbital distance (Mignard, 1981). By measuring
these secular effects through the use of long time series of observations, the k2/Q ratio
of the moons can be determined. Examples of this usage of ephemerides for measuring
tidal interactions are given by (Lainey et al., 2007; Jacobson, 2010) for Phobos-Mars
and (Lainey et al., 2009) for Io-Jupiter.

As with the Love numbers, the value of the quality factor is not only related to
a body’s internal structure, but also to the frequency of the tidal forcing. Various
methods exist for modelling this frequency dependency, an overview of which is given
by Efroimsky and Lainey (2007). They propose a power-law for Q as follows:

Q ∼ χη (2.31)

where χ is the tidal frequency, and the exponent η, which is typically between 0.2
and 0.4. Determination of the parameter η for a certain body can be related to its
rheology. However, in addition to allowing additional constraints on a body’s interior,
determination of the frequency-dependence of Q is important for modelling the evolution
of planetary systems, as shown for the Martian system by Efroimsky and Williams
(2009). Since Phobos’ orbit shrinks over time due to the tidal lag angle, the frequency
of its tidal interaction with Mars changes in time, resulting in a change in Q. Since Q
in turn directly influences the secular deceleration of Mars’ orbit, propagating Phobos’
orbit either forward or backward in time for a long duration requires an accurate model
for Q(χ).

In addition to tidal dissipation, differential rotation of two internal layers can result
in dissipation. For instance, dissipation between a fluid outer core and a solid mantle
was observed on the Moon through its influence on LLR and GRAIL data (Williams
et al., 2001; Williams and Boggs, 2015), specifically by detailed analysis of their influence
on lunar rotational variations (see Section 2.2.2). The detection and separation of this
effects was facilitated by both the long time-span and exceptional accuracy of the LLR
dataset, highlighting the importance of such measurements.

2.2.4 Planetary Ephemerides

Ephemerides are models for the time histories of position and velocity of celestial bod-
ies. Spacecraft tracking data provides crucially accurate input for the improvement of
planetary ephemerides, where especially the absolute measurements (Section 2.1.3) of
range (Pitjeva, 2001; Fienga et al., 2009) and angular position (Jones et al., 2015) are
important for reducing their uncertainty. To constrain the ephemerides over long time
periods, as well as for the calculation of ephemerides of bodies for which few or no
spacecraft tracking data is available, radar ranging and astrometric data provide crucial
input (Section 2.1.1).

Currently, there are three main research institutes producing solar system ephemeri-
des. The Jet Propulsion Laboratory (JPL) in the US produces the Developmental
Ephemerides (DE) e.g Folkner et al. (2009, 2014). The Institute for Celestial Me-
chanics and the Calculation of Ephemerides (IMCCE) in France produces the INPOP
ephemerides (Fienga et al., 2009; Verma et al., 2013) and the Institute of Applied As-
tronomy (IAA) in Russia produces the EPM ephemerides, (e.g., Pitjeva, 2013). The
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independent generation of these ephemerides, using different (but similar) models and
data sets allows for an intercomparison, which can be used to estimate the (true) uncer-
tainty of the ephemerides.

The main dynamical model of planetary ephemerides are the Einstein-Infeld-Hoffman
equations derived by Einstein et al. (1938), parametrized by post-Newtonian parameters
(see Section 2.3.1), as given by e.g., Moyer (2000). These equations are the first post-
Newtonian approximation for the gravitational interaction between a set of N point
masses. By imposing that the solar system is an isolated system, the solar system
barycenter is kept fixed, allowing for the combined ephemeris generation of the set of
bodies under consideration (provided sufficiently accurate data is available to decorre-
late their signatures). In recent planetary ephemerides, the states and masses of many
(> 300) asteroids are estimated in addition to those of the main planets (with suit-
able a priori constraints), to reduce the influence of unmodelled asteroid gravity on the
ephemerides of the planets, which can be an important source of error, especially for
Earth and Mars (Standish and Fienga, 2002). To further reduce the influence of mis-
modelled asteroids, a ring or annulus model is used, which approximates the remaining
asteroids by a homogeneous mass distribution throughout the asteroid belt (Kuchynka
et al., 2010). During the generation of solar system ephemerides, not only the state
of a set of bodies in the solar system is estimated. A large set of additional physical
parameters, such as body gravitational parameters, relativistic parameters (see Section
2.3.3), gravity field coefficients (for instance solar J2) and rotational characteristics (for
instance lunar rotation properties derived from LLR) are estimated. The parameters
that are estimated during the generation of ephemerides are typically those that are
manifested over large distance (gravitational parameters of solar system bodies, solar
J2, post-Newtonian parameters), or those that have relevance for the correct processing
of specific sets of highly accurate data, most notably physical parameters of the Moon
that are required for the correct analysis of LLR data.

In addition to the analysis of parameters estimated during the creation of an epheme-
ris, there have been various studies in dynamical astronomy at solar system scales from
existing ephemerides. For instance, by analyzing the precession of perihelia of solar
system planets, Iorio (2014) was able to place strong constraints on the possible distance
and mass of a ’Planet X’. Similarly, such analyses of planetary precessions can be used
for a variety of experiments in gravitational physics, as will be discussed in Section
2.3.3. The errors in planetary ephemerides may diverge outside of the domain where
accurate tracking observables are available, as shown for, for instance, the case of Mars
by Folkner et al. (2009). This effect is indicative of mismodelling in the dynamics and
data processing, resulting in errors in the estimation. Specifically, it indicates that
the estimation has converged to a certain parameter set that minimizes the residuals
during the observation period, where this parameter does not necessarilly reflect the
physically optimal solution. Recently, it was shown by Verma et al. (2013) that including
estimation of solar plasma coefficients improves extrapolation capabilities, indicating an
improved correspondence between modelled and actual physical effects in the resulting
ephemerides.
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2.3 Science Return: Gravitational Physics

In addition to its application to planetary science objectives (Section 2.2), planetary
tracking data (Section 2.1) are also used for experimental tests in fundamental physics.
Primarily, these tests are in the field of gravitational physics for which the currently
prevailing theoretical description is general relativity (GR). However, a number of issues,
such as the ongoing development of a quantum theory of gravity and the search for
dark matter and dark energy (or physical theories leading to equivalent observations),
has spurned the development of a variety of alternative theories of gravitation, (e.g.,
Turyshev, 2009; Capozziello and de Laurentis, 2011; Will, 2014). Some of these theories
yield predictions that are testable, or have free parameters that can be constrained,
from the analysis of space mission tracking data, both from Earth orbiters and planetary
missions.

We first give a broad theoretical overview of relativity and alternative theories of
gravitation in Section 2.3.1, in support of the discussion in subsequent sections. In Sec-
tion 2.3.2, we discuss the physical effects that relativity has on space mission tracking
data analysis, in terms of deviations from Newtonian theory. Finally, we provide an
overview of current and future progress in applying space mission tracking data in ex-
perimental gravitation in Section 2.3.3. This forms an important rationale for the work
described in this dissertation, as applications in gravitational physics have typically been
the primary reason for the inclusion of ILR in mission proposals (Section 3.3.1). We
largely defer mathematical details of gravitational physics and its effects on space mis-
sions to Chapter 7, where we discuss in detail a proposed new method for the relativistic
analysis of range data. Note that the notation we use in this Section is in line with that
given in Section 2 of Chapter 7.

Although planetary tracking could be used for experiments in fundamental physics
outside the realm of gravitational physics, (e.g., Damour and Donoghue, 2011), we focus
here on GR and its theoretical alternatives, as it is science return in this field for which
planetary tracking in general and ILR in particular will be most valuable.

2.3.1 Theories of Gravitation

GR is one of the foundations of modern physics, describing the macroscopic framework
for the behaviour of physical systems by giving a mathematical description of the back-
ground space-time, and its physical interaction with matter and energy (e.g., Misner
et al., 1973). GR grew out of efforts to extend the theory of special relativity to sys-
tems including gravitational interaction (e.g., Sauer, 2004).Two cornerstones of GR are
the principle of relativity and the strong equivalence principle, (e.g., Kopeikin et al.,
2011). The relativity principle states that physical behaviour is locally governed by
special relativity. The strong equivalence principle states that the outcome of any local
experiment (both gravitational and non-gravitational) is independent of the velocity and
position of the test apparatus, and of the time at which the experiment is performed.
Also, it encompasses the weak equivalence principle, extending it to massive bodies, so
that inertial and gravitational mass of any body are equal, regardless of its structure,
composition or size (Will, 2014). These postulates lead to the formulation of GR, pro-
viding a theoretical description of the interaction of matter and the gravitational field.
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GR describes the manner in which matter causes gravity, generalizing Eq. (2.11), and
prescribes how the motion of any body (irrespective of whether it is massless, is a point
mass, or has some arbitrary mass distribution) under the influence of gravity can be
determined, generalizing Newton’s law of gravity in Eq. (2.12). Motion under the influ-
ence of gravity alone is determined directly from the geometry of the four-dimensional
space-time manifold, comprising a single time dimension and three space dimensions.
Instead of being flat, as is the case in Newtonian mechanics (3-dimensionally flat) and
special relativity (4-dimensionally flat), space-time geometry is curved in GR. This ge-
ometry is characterized by the metric tensor gµν . Determining the motion of a body
(and in general the transport of any vectorial or tensorial quantity) requires the affine
connection Γσµν on the manifold to be additionally specified, (e.g., Kopeikin et al., 2011).
Under the assumptions of GR however, Γσµν can be directly derived from gµν (and its
first space derivatives).

The metric gµν can be determined from the stress-energy-momentum tensor Tµν ,
which describes the distribution of energy (which includes mass), momentum and stress.
The equations relating the gµν to Tµν are the Einstein field equations, first formulated
by Einstein (1915b). They read (omitting the putative contribution of the cosmological
constant), as follows in modern formulation (e.g., Misner et al., 1973):

Gµν =
8πG

c4
Tµν (2.32)

where the Einstein tensor Gµν can be expressed as a coupled, non-linear combination
of the first and second derivatives of the metric (we omit the explicit formulation here).
Therefore, the field equations are a second-order set of coupled, non-linear, partial dif-
ferential equations for gµν in terms of Tµν . They are a generalization of the classical
formulation of Eq. (2.11). In fact, a free constant that remains in deriving the Einstein
equations is obtained from requiring that the equation reduces to its Newtonian coun-
terpart in the limit case (Kopeikin et al., 2011). Due to the complicated nature in which
gµν is related to Tµν , as given by Eq. (2.32), only very few exact solutions are known.
Examples are the Schwarzschild and Kerr metric, first obtained by Schwarzschild (1916)
and Kerr (1963), which describe the gravitational field of a point mass with and without
angular momentum, respectively. Analytical approximations for gµν can be found in
some more general cases, such as the post-Newtonian metric of gravitationally inter-
acting bodies, including the effect of spin and mass multipoles given by Damour et al.
(1991). This metric is applicable for most solar system situations (at least at the current
level of measurement and model accuracy), and is recommended by the International
Astronomical Union (IAU) (Soffel et al., 2003). A second order expansion (including
parameterized deviations from GR, see below) is given by Minazzoli and Chauvineau
(2009), with a general higher order formulation given by Kopeikin et al. (2011). An
explicit formulation of gµν and Γσµν , applicable for most solar system situations, is given
in Appendices A and B of Chapter 7, respectively.

In the physical interpretation of GR, gravity can no longer be thought of as a force
in the classical sense, but as an inherent effect that the shape of space-time has on the
motion of particles and bodies moving in it. From the metric, the motion of particles
and extended bodies can be determined. The motion of point particles which are only
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affected by gravity follows geodesics on the manifold, which are calculated from, (e.g.,
Misner et al., 1973):

∂2xµ

∂τ2
= −Γµαβ

∂xα

∂τ

∂xβ

∂τ
(2.33)

These geodesics can be thought of as generalizations of straight lines in curved space-
time. Both the propagation of massive bodies and massless particles (photons) may be
derived from this equation.

The interaction of matter and the gravitational field, as expressed by the Einstein
field equations in Eq. (2.32), can be derived from a variational principle requiring
that the variation of the so-called Einstein-Hilbert action S, first formulated by Hilbert
(1915), of the interaction between matter and gravity of the physical system under
consideration is minimized. Although the theoretical aspects of field theory that lead to
this formulation are well beyond the scope of this dissertation, many alternative theories
of gravity (Section 2.3.2) that are testable by space mission tracking data (Section 2.3.3)
rely on a modification of the action. Therefore, it is instructive to provide it here
explicitly, (e.g., Kopeikin et al., 2011):

S =

∫ (
c4

8πG
R+ LM

)(√
−g
)
d4x (2.34)

where g is the determinant of the metric tensor and R the Ricci scalar (which is the
only invariant scalar that can be obtained from linear combinations of the metric and its
first and second partial derivatives). LM is the matter Lagrangian (or more formally the
Lagrangian density), which is related to Tµν and gµν . A modification of this formulation
of the action S will result in modification of the field equations and therefore result
in a different gµν for a given Tµν . Examples of such modifications include replacing R
with an arbitrary function of R (termed f(R) gravity), adding additional fields (scalar,
vector and/or tensor fields), or introducing an additional (so-called non-minimal) cou-
pling between the matter Lagrangian and the field variables, (e.g., Capozziello and de
Laurentis, 2011; Will, 2014).

Various alternative formulations of the action S lead to changes in the metric that
can be described in terms of the Parameterized Post-Newtonian (PPN) framework (Will,
1981), which is a first-order slow-motion (v � c), weak-field (|gµν − ηµν | � 1) approx-
imation of metric theories of gravity, where ηµν denotes the Minkowski metric. The
field equations of the PPN framework are parameterized by 10 parameters, which take
on different values in different theories of gravitation. By varying the parameters, the
contribution of various physical effects to the metric is modified. As a result, estimat-
ing the value of these parameters allows us to distinguish between various theories of
gravitation.

The full set of PPN parameters were first given by Will and Nordtvedt (1972), and
described in extensive detail by Will (1981). The PPN parameters include the so-called
Eddington parameters γ and β, first introduced by Eddington (1923), which determine
the amount of space-curvature caused by unit rest mass and the degree of non-linearity
for gravity superposition, respectively. Additionally, the PPN framework includes pa-
rameters describing potential preferred-frame effects (α1-α3), preferred location effects
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(ξ) and potential violations of energy-momentum conservation (ζ1-ζ4). An overview of
a variety of alternative theories of gravitation that can be described in the PPN frame-
work, and how their free parameters relate to the PPN parameters, is given by Will
(2014). The Eddington parameters are both equal to unity in GR, with all other param-
eters equal to zero. The dependence of the metric gµν on γ and β is shown explicitly in
Appendix A of Chapter 7. For higher order expansions of the metric, additional coeffi-
cients can be added. For the second order post-Newtonian metric of the solar system, a
Post-PPN (PPPN or 2PN) parameter δ can be included for the 2PN contribution on the
space-space (i.e., gij , with i, j = 1, 2, 3) terms of the metric. However, depending on the
underlying theory, such additional parameters may not be independent from the original
PPN set (Minazzoli, 2012) and can be constrained by the original PPN parameters.

Despite its broad applicability, a variety of postulated theories of gravitation result in
modifications of the gravitational interaction that are not covered by the PPN framework
(or its higher order extensions) (Hees et al., 2014d). Effects due to the theoretical
Yukawa-interaction, for instance, are not covered by the framework. Instead of modifying
the relation between the metric and the potentials, as is the case in the PPN formalism, it
proposes a modification of the basic Newtonian potential in Eq. (2.13) that GR reduces
to in the limit case, due to the existence of a fifth fundamental force of nature. This
potential has (in the limiting case of a point mass) the following form, (e.g., Merkowitz,
2010):

U =
µ

r

(
1 + α exp

(
− r
λ

))
(2.35)

so that an additional potential of a certain strength α is present, which drops off with
characteristic length λ.

An additional alternative theory of gravitation in which the form of the potential is
modified is Modified Newtonian Dynamics (MOND). MOND provides a description of
the gravitational interaction which aims to explain the observations currently attributed
to the postulated presence of dark matter. In MOND, the strong equivalence principle is
violated, as the dynamics of an isolated system (for instance the solar system) depends
not only on gradients of the external potential (as is the case in Newtonian and Ein-
steinian gravity), but also on the absolute value of the potential itself, a phenomenon
termed the external field effect (EFE). This theory results in a modified dynamics in the
solar system, due to the EFE of the mass of the Milky Way (Blanchet and Novak, 2011).
Other parameterized extensions of gravity that have been and could be constrained by
space mission tracking data are the Post-Einsteinian Gravity (PEG), in which the Ein-
stein field equations in Eq. (2.32) are modified by replacing the gravitational constant
G by a set of response functions (Jaekel and Reynaud, 2005) and Standard Model Ex-
tension (SME), a field theory aiming to unify quantum theory and GR, which allows for
Lorentz symmetry breaking beyond that expressed by the PPN framework (Bailey and
Kostelecký, 2006).

An alternative formulation of GR stems from the fact that the use of Γµαβ as the
affine connection of the manifold is not a unique choice in its derivation. Alternatively,
one can also choose to include a torsion component Tµαβ in the connection. In fact,

choosing the theory of gravitation to be curvature-free (Γµαβ = 0), instead of torsion-
free (as is the case in GR), allows for an equivalent description of the gravitational
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interaction (on macroscopic scales), in so-called teleparallel gravity (Aldrovandi and
Pereira, 2013). Although this description of gravity is equivalent to GR, a broader
spectrum of gravitational theories is obtained when including variations for the coupling
between torsion and matter. This class of alternatives, termed f(T ) theories of gravity,
is conceptually similar to f(R) theories of gravity.

2.3.2 Influence of Gravitation on Planetary Tracking Data

The influence of relativistic effects on space mission tracking data must be included at
several stages in the reduction and analysis process, (e.g., Moyer, 2000; Soffel et al., 2003;
Kopeikin et al., 2011; Hees et al., 2014b). Besides being required for a correct interpre-
tation of the data for non-relativistic objectives, these effects may be exploited to test
various aspects of gravitational physics, improving the experimental verification of GR
or potentially confirming post-Einsteinian theories. In this section, we give a conceptual
overview of the relativistic effects on space mission tracking and its data analysis, while
we discuss specific applications of these effects for experimental gravitational physics in
Section 2.3.3. We distinguish between three different kinds of relativistic effects, each
of which must be accounted for in a distinct manner: the influence on translational
dynamics, the influence on time dynamics and the influence on electromagnetic signal
propagation. We address the first two of these effects in more mathematical detail in
Chapter 7. Although relativistic effects also influence rotational dynamics of massive
bodies (Damour et al., 1993), these effects are beyond the scope of our applications in
planetary missions.

The relativistic equations of motion in Eq. (2.33) differ from the Newtonian ones
at the c−2 level. This results in a difference in acceleration at the 10−8 m·s−2 level
for spacecraft in Low Earth Orbit (LEO). The relativistic effects on the translational
dynamics may be included by adding a number of corrections to Newtonian theory, which
is the approach typically taken for the orbit propagation of spacecraft, (e.g., Damour
et al., 1994; Petit et al., 2010). When propagating the orbit of a spacecraft about a solar
system body, the correction becomes the following, when approximating this body as a
point mass with angular momentum:

∆r̈ =
µP
c2r3

((
2(β + γ)

µP
r
− γṙ · ṙ

)
r + 2(1 + γ)(r · ṙ)ṙ

)
+ ...

...+ (1 + γ)
µP
c2r3

(
3

r2
(r× ṙ) (r · JP ) + (ṙ× JP )

)
− ... (2.36)

...− (1 + 2γ)
µS
c2R3

((
Ṙ×R

)
× ṙ
)

where r denotes the position vector from the central body center to the spacecraft, JP
denotes the angular momentum vector of the central body (per unit mass), R denotes
the distance from the central body w.r.t. the Sun, µP and µS denote the gravitational
parameters of the central body and the Sun, respectively and β and γ denote the Ed-
dington parameters (Section 2.3.1). The first term is the rcorrection term due to the
different gravitational influence of a stationary point mass in GR (Schwarzschild met-
ric, see Section 2.3.1), compared to the Newtonian case. The second term is due to
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the rotation of the Earth and is termed the frame-dragging, or Lense-Thirring effect,
first identified by Lense and Thirring (1918). The final term is called the de Sitter (or
geodetic) precession term, first identified by de Sitter (1916). It originates from the
fact that the kinematically non-rotating (where the background stars are fixed) and dy-
namically non-rotating frames (the frame attached to a freely falling observer) (Klioner,
1993) following the trajectory of the Earth undergo a mutual precession as a result of
the relativistic effects.

In general, the contributions depending on stationary mass can be termed gravito-
electric, whereas the contribution depending on the body’s angular momentum can be
termed the gravitomagnetic term. This terminology stems from the similarity between
Maxwell’s equations of electromagnetism and the linearization of the Einstein field equa-
tions (see Eq. (2.32)) in a flat spacetime background (Clark and Tucker, 2000), where
we can distinguish between different physical effects from static charges (or masses) and
moving charges (rotating mass or mass in translational motion). An additional gravit-
omagnetic effect which is not manifested in Eq. (2.36) is the dependence of the relative
velocity on a body’s gravitational influence on a third body (Murphy et al., 2007), i.e.,
arising from a translational mass current. However, the magnitude of such terms is
frame-dependent and should be interpreted with caution (Kopeikin, 2007).

Instead of adding correction terms to the classical gravitational equation of motion,
fully relativistic equations of motion may be used, where the acceleration is calculated
directly from the metric gµν and the connection Γσµν (see Eq. (2.33) and Chapter 7).
Such an approach allows for a much more condensed formulation of the governing equa-
tions, as can be seen from Eq. (2.36), which represents a first-order correction for a
simple test case. By comparison, the full expansion of first-order corrections to the
Newtonian equations of motion, with arbitrary mass and multipole moments, can be-
come extremely complex, (e.g., Kopeikin et al., 2011; Xie and Kopeikin, 2014), making
their implementation both cumbersome, error-prone and untransparent.

For extended bodies such as moons and planets, local gradients of external potentials
cause a difference between the worldline (i.e the curve describing the motion of its center
of mass) of a body and a geodesic, as given by Eq. (2.33) (Kopejkin, 1988), introducing
an additional term Qµ. Additionally, non-gravitational forces Aµ may act on the body
to an observable degree, resulting in the following full equation of motion:

∂2xµ

∂τ2
= −Γµαβ

∂xα

∂τ

∂xβ

∂τ
+Qµ +Aµ (2.37)

Extensive discussion on the formulation of Qµ is given by Kopeikin and Vlasov (2004).
Since the non-gravitational component Aµ is typically quite small (Xie and Kopeikin,
2014), the difference between it and the acceleration as measured by an accelerometer
will typically be very small (relative difference on the order of v2/c2 and U/c2).

As shown in Section 2.1, a range observable (and therefore also the range-rate mea-
surement, due to its realization by means of difference ranges) is obtained from the
reception and transmission time t of an electromagnetic signal, where t is typically a
global time such as Dynamical Barycentric Time (TDB) or Coordinate Barycentric Time
(TCB) (Klioner, 2008). However, the observing stations register a proper time τ , which
must be converted to t to form the range observable. Both the local strength of the
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gravitational field and the velocity of the observer influence the rate of proper time
w.r.t. global time, (e.g., Soffel et al., 2003):

τ̇ =

√
−gµν

ẋµẋν

c2
(2.38)

where τ̇ = 1 in the classical, non-relativistic.
As a result of Eq. (2.38), a variety of physical parameters, both classical and (post-)

relativistic, influences the proper time rate. During data analysis, the conversion be-
tween global and proper time is typically performed by an a priori integration of the
proper time equation, such as that produced by (Irwin and Fukushima, 1999; Fienga
et al., 2009). Primarily, it has been the relativistic effects on translational dynamics and
electromagnetic signal propagation that have been used in solar system experimental
gravitation. However, the use of time dynamics to probe the gravitational environment
is gaining traction with the development of ever more accurate clocks, as will be dis-
cussed in Section 2.3.3. We present a unified description of parameter estimation of
space and time dynamics in Chapter 7.

Relativistic effects cause a deviation in both the path of an electromagnetic signal
and its apparent propagation speed (due to time dilation), resulting in a relativistic light
time correction in Eq. (2.1). Like the relativistic effects on translational dynamics, its
influence on signal propagation may be included either by the application of correction
terms, or the full relativistic determination of the null geodesic. The largest influence
in solar system situations is the delay due to a stationary mass monopole, typically the
Sun. The use of this effect in experimental relativity was first proposed by Shapiro
(1964) end eponymously termed the Shapiro time delay. It is this correction that is
routinely applied for radiometric tracking (Moyer, 2000). For a link between observers
A and B, this correction becomes the following (in harmonic coordinates):

∆tBA =
µ(γ + 1)

c3
ln

(
rA + rB +RAB
rA + rB −RAB

)
(2.39)

where rA and rB are the distance from body’s A and B, respectively, to the perturbing
mass monopole, and RAB is the distance between the two observers. Eq. (2.39) is only
dependent on the PPN parameter γ, the parameter β only enters the correction at the
second order (G2/c5) (Richter and Matzner, 1983). This distinct influence of these two
parameters has been crucial in obtaining independent estimates of them (Section 2.3.3).
In addition to the result shown in Eq. (2.39), analytical results have been found for a
number of simplified, but typical, cases, such as the first- and second-order relativistic
effects due to a stationary point mass (Richter and Matzner, 1983), the influence of
a body’s angular momentum (Kopeikin and Mashhoon, 2002) and general multipole
moments (Kopeikin, 1997). Although such analytical equations are typically sufficient
to calculate the light time between two observers, it will be highly advantageous in
the application of ILR to have higher order effects included in the models, if only to
verify that they may be neglected for a given situation. An analytical expansion up to
second order for solar system situations is derived by Minazzoli and Chauvineau (2011),
which is quite elaborate and suffers from similar practical issues as direct expansions for
translational equations of motion discussed earlier in this section.
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The relativistic light time correction can have a much more complicated structure in
ILR than in either SLR or LLR. For existing laser ranging systems, light time corrections
due to the static part of the Earth, Sun and Moon are taken into account, with other
extended body or gravitomagnetic effects on the light time below the observable level of
accuracy. For ILR, however, a much broader range of signal paths is possible, including
those that pass much closer by the Sun or the giant planets. The J2 gravity field
coefficients of Saturn and Jupiter are quite high, at around 1.5·10−2 (Guillot, 1999),
compared to the values shown for selected other bodies in Table 2.2. Consequently,
Minazzoli and Chauvineau (2011) estimate relativistic mass multipole range corrections
of up to 100 due to the J2 coefficient of both planets (for light-ray paths grazing the
planets). Also, the angular momentum of the Sun may influence the light time to an
observable level for signal paths with a small solar separation angle, as deduced from
relations given by (e.g., Kopeikin and Mashhoon, 2002).

A general framework from which the light-time correction (as well as frequency shift
and light-ray bending) may be obtained is the Time Transfer Formalism (TTF) (Linet
and Teyssandier, 2002; Le Poncin-Lafitte et al., 2004; Teyssandier and Le Poncin-Lafitte,
2008) . In this framework, the relativistic corrections to electromagnetic signal propaga-
tion may be obtained at nth post-Minkowskian (expansion into powers of G) order from
integrals taken along the straight line connecting the transmission and reception event.
For instance, the first post-Minkowskian correction follows from (Teyssandier and Le
Poncin-Lafitte, 2008):

∆t(1) =
TAB

2

∫ 1

0

(
g00

(1) − 2N i
ABg

0i
(1) +N i

ABN
j
ABg

ij
(1)

)
z−(λ)

dλ (2.40)

where gαβ(1) denotes the first post-Minkowskian term of the metric, N i
AB denotes the

vector from transmitter to receiver and z−(λ) is the parameterized straight line between
them (0 < λ < 1). The higher-order corrections depend on both the higher-order terms
of the metric and the spatial derivatives of the lower-order light time correction terms,
thereby including the relativistic influence of light ray curvature on the light time. This
formalism allows for the use of an arbitrary metric description and may be used to
include, for instance, the effect of the (non-linear) motion of celestial bodies (Hees et al.,
2014a) or a spin/mass multipole body (with a constant velocity) (Soffel and Han, 2015)
and is extremely valuable for a general description of light propagation and validation
of other (numerical) methods (Bertone et al., 2014). The use of this framework could be
a powerful tool in the future analysis of laser ranging data, as it may be implemented
in a largely general fashion, allowing a rigorous and consistent analysis of a variety of
first- and higher-order effects that may become relevant in ILR.

In addition to requiring the relativistic corrections to the light time between two
points in a global frame, the position and velocity of the observers in this frame must be
known, requiring accurate relativistic conversions between local (body-centered GCRS-
like and/or topocentric) frames. These conversions are more complicated than their
Newtonian counterparts, requiring conversions of positions, velocities and times between
the frames, which depend on their mutual velocities and gravitational potentials. The
mathematical procedure for these conversions is described in detail by (e.g., Klioner,
1993; Kopeikin and Vlasov, 2004; Turyshev et al., 2013).
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2.3.3 Experimental Gravitation on Solar System Scales

In this section, we give an overview of some of the contributions that space mission
tracking has made to experimental gravitational physics. By using the solar system as
a natural laboratory, reconstructing the dynamics of planets and moons can provide
some of the best tests of GR. The prime advantage of the use of solar system bodies
over more distant astronomical objects stems from the fact that we can observe their
dynamics with much higher accuracy, especially due to the possibility of active tracking
of space missions. However, in a relativistic sense the dynamics of the solar system falls
into the weak-field, slow-motion regime, so that deviations of measurable physical effects
from Newtonian gravity are quite small. For instance, at 1 AU from the Sun, |gµν−ηµν |
is only at the 10−8 m·s−2 level. As a result, to observe potential deviations from GR,
small deviations from a small effect are to be observed, highlighting the challenge of
their detection. Nevertheless, some of the strongest experimental confirmations of GR
come from solar system experiments, including those performed using SLR and LLR
(Turyshev, 2009; Will, 2014).

Although LLR and planetary tracking data provide the bulk of dynamical space-
based tests of relativity, SLR has yielded a number of contributions to experimental
relativity (Nordtvedt, 2001; Lucchesi and Peron, 2014). The Lense-Thirring effect (term
dependent on J in Eq. (2.36)) was first determined experimentally (to within 5%) by
long time-series data analysis of the LAGEOS I/II satellites (Ciufolini and Pavlis, 2004).
A novel linear combination of the precessions of the two satellites was used to largely
cancel the influence of uncertainties in the Earth’s gravity field. However, the accuracy
of this estimate has been hotly debated in a long series of scientific papers, (e.g., Iorio,
2005; Ciufolini et al., 2009). Nevertheless, the LAser RElativity Satellite (LARES)
spacecraft, a passive SLR satellite, was launched in 2012 with the explicitly goal of
improving SLR’s measurement of gravitomagnetism to better than 1% (Paolozzi and
Ciufolini, 2013). In addition to the detection of gravitomagnetism, SLR has for instance
contributed to constraining a Yukawa interaction, shown in Eq. (2.35), at Earth-orbit
scales (Lucchesi and Peron, 2014).

Due to the combination of almost undetectably low non-conservative forces acting on
the Moon, and the long time-series of exceptionally accurate range data, LLR has been
one of the most prolific sources of experimental tests of relativity, (e.g., Williams et al.,
2006; Müller et al., 2008b; Merkowitz, 2010). For instance, it has been used to constrain
the time-variation of the gravitational constant (Müller et al., 2007), put constraints on
the SME class of alternatives to GR (Battat et al., 2007), constrain a Yukawa interaction
at the length scale of the lunar orbit (Müller et al., 2008a), constrain preferred frame
effects through estimation of PPN parameter α1 (Müller et al., 1996) and provide one
of the most stringent tests of the strong equivalence principle (Williams et al., 2009;
Müller et al., 2012) (discussed below). A test of GR using a combination of LLR data
and interior structure models of the Moon is given by Bartlett and van Buren (1986),
who constrain the ζ3 PPN parameter by noting that ζ3 6= 0 would result in an observable
effect in the dynamics of the Moon due to its asymmetric internal mass distribution.
The proposed use of active laser transponders on the Moon (Section 3.3.2), allowing
LLR to be supplemented by ILR techniques, could allow for more accurate and more
dense observations of lunar dynamics to be obtained, further strengthening the science
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return of LLR.
As mentioned in Section 2.3.1, the main parameters of interest in the PPN framework

are γ and β, as they take on a value different from that of GR in many alternative
theories of gravity, while the other parameters only exhibit deviations in a more limited
set of alternatives (Will, 2014). In the analysis of LLR, a combined parameter ηN (the
Nordtvedt parameter) is typically estimated. Assuming all other PPN parameters take
on their GR value, ηN is expressed by (Dickey et al., 1994):

ηN = 4β − γ − 3 (2.41)

Deviations of ηN from 0 signify a violation of the equivalence principle, which would
manifest itself in the lunar orbit if the difference in mass between the Earth and the
Moon would result in a different gravitational interaction with the Sun. The Nordtvedt
parameter can be directly related to a difference in inertial mass MI and gravitational
mass MG as (Nordtvedt, 1988):

MG

MI
− 1 = ηN

UG
Mc2

(2.42)

where UG denotes the gravitational self-energy of the body. That is, in the case of
a violation of the strong equivalence principle, the Moon and the Earth would sense
a Sun of a different mass, resulting in a small influence on the Lunar orbit. Current
uncertainties in estimates of ηN are at the level of 3 - 5 · 10−4 (Williams et al., 2009;
Müller et al., 2012), with the nominal value consistent with the GR-predicted ηN = 0.

Estimating uncorrelated values for the PPN parameters β and γ from orbital motions
alone is troublesome, as shown by Eq. (2.36). However, the relativistic light time
correction is dependent on only γ at the level of c−3, shown in Eq. (2.39). Therefore, γ
and β can be well separated by including analysis of solar conjunction experiments, where
the light time correction, and resultantly the influence of γ, is largest. Such experiments
have been performed by the Cassini spacecraft (before its Ka-band transponder failed)
from which γ was determined with an uncertainty of 2.3 · 10−5 (Bertotti et al., 2003),
with a nominal value of γ = 1. The influence of γ on the bending of signal path was used
by Lambert and Le Poncin-Lafitte (2009) to estimate γ from VLBI observations, but
their estimation failed to improve upon the result obtained from Cassini data. Results
from astrometric data obtained by the GAIA satellite, however, are expected to improve
the estimation of γ by one or two orders of magnitude (Mignard, 2002).

Both γ and β are estimated in the analysis of planetary ephemerides (Verma et al.,
2014; Folkner et al., 2014), using a combination of orbital dynamics and light-time cor-
rection effects, where the use of data from the recent MESSENGER mission has greatly
improved the accuracy of the orbital model of Mercury. Due to Mercury’s proximity to
the Sun, and its relatively eccentric orbit (e ≈ 0.2), its dynamics are exceptionally well
suited to constrain relativistic effects on orbital dynamics. A detailed analysis of the
realistic error budget of the PPN parameter estimation in the INPOP ephemerides is
presented by Fienga et al. (2014), who consider the influence of mutual variations in Ġ,
J2�, β and γ and obtained a 1σ-error bound of 5·10−5 and 7 · 10−5 for γ and β, respec-
tively. Fig. 2.6 shows a summary of the current uncertainty in β and γ. Although LLR
has long been the dominant source of experimental constraint on β (combined with
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Figure 2.6: Current uncertainties on PPN parameters β and γ, updated from Turyshev and
Williams (2007).

determination of γ from a Cassini(-like) experiment), the improvements in planetary
ephemerides are providing ever more accurate experimental tests of GR. Future tests
of relativity using interplanetary laser ranging promise to increase the accuracy of the
measurements by orders of magnitude more (see Section 3.3.1), both from reconstruction
of orbital dynamics and mm-level measurement of relativistic light-time corrections.

Postfit analysis of planetary ephemerides (see Section 2.2.4), specifically the analysis
of orbital precessions of the planets, has been used to constrain a variety of theoretical
alternatives to GR. For the INPOP2010 ephemeris, Fienga et al. (2011) provide esti-
mates for the magnitude and uncertainty of the remaining freedom in the precessions
of the perihelia and the longitude of the orbital node, obtained by means of a sensi-
tivity analysis. A similar approach is taken by Pitjev and Pitjeva (2013), who provide
values for precessions in the perihelion of the planets, as obtained from the EPM2011
ephemeris. The uncertainty in these precessions are currently at the order of 0.15 to 1.5
mas/century for planets for which accurate ephemerides are available.

The effect of a variety of theoretical extensions to relativity (Section 2.3.1) on the
orbital precession can be used to confirm or refute such theories, or to constrain the
possible ranges of free parameters in such theories. For instance, (Iorio and Saridakis,
2012) constrain the strength of an f(T ) extension of gravitational physics, in which
higher-order dependency on the torsion scalar T modifies the free space Lagrangian in
Eq. (2.34), by calculating the orbital precessions due to such extensions. Similarly,
by fitting remaining precessions in the EPM ephemeris, solar system dark matter dis-
tribution is constrained by Pitjev and Pitjeva (2013). Theoretical alternatives to both
dark matter (MOND) and dark energy (galileon-induced potential) are constrained using
this approach of using solar system dynamics by Blanchet and Novak (2011) and Iorio
(2012b), respectively, who derive equations relating these putative effects on pericenter
precessions.

However, the use of such postfit analyses are less reliable than estimates where the
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parameters are fit concurrently with the observations. Firstly, this is due to the fact that
during ephemerides generation unmodelled physical effects will be absorbed (partially)
into the estimation of other parameters, such as the solar J2, due to correlations of this
signal with those that are to be fit. Additionally, postfit orbital precessions can result
from the combination of any number of physical effects, making it difficult to attribute
them to single specific effects. The reason for the nearly ubiquitous occurrence of such
correlations are that, due to the near-circular, near-coplanar orbits of the planets, the
various effects manifest themselves as very similar influences on the periapsis precessions
ω̇. For instance, the precessions due to the first-order gravito-electric effect, Lense-
Thirring effect and solar J2, (e.g., Pireaux and Rozelot, 2003; Ciufolini and Pavlis,
2004) are given by:

ω̇PN =
(2γ − β + 2)µS
a(1− e2)c2

n (2.43)

ω̇LT = − 6GJS cos i

c2a3(1− e2)3/2
(2.44)

ω̇J
2� = −3

2

J2,SR
2
S

(a(1− e2))
2n
(
3 sin2 i− 1

)
(2.45)

where a, e, i and n represent the semi-major axis, eccentricity, inclination and mean
motion of the planet under consideration, respectively, and the subscript S denotes
properties of the Sun, with RS the Sun’s equatorial radius (other symbols are as in
Eq. (2.36)). For Mercury, where these precessions will be largest, the values of ω̇PN ,
ω̇LT and ω̇J

2� are approximately 43 as/century, 3.2 mas/century and 25 mas/century,

respectively. The first order post-Newtonian precession, given by Eq. (2.43), of the
planet Mercury was used by Einstein (1915a) as an experimental verification of general
relativity.

The complications arising from these similar effects (in behaviour, not magnitude)
are recognized by Iorio (2012a), who use the residual orbital precession of Mercury
in planetary ephemerides to obtain a solar angular momentum that is incompatible
with estimates from helioseismology by a factor of 2, begging the question whether
this estimate is reliable. However, it is noted there that the incompatibility is likely
due to the fact that the influence of the Sun’s angular momentum has been absorbed
into for instance the value of the solar J2 or PPN parameters, showing the weakness
inherent in the postfit analysis approach. Similarly, both the INPOP2010 and EPM2011
ephemerides are used by Deng and Xie (2015) to constrain a class of f(R) extension to
general relativity, where they consider the correlations with other parameters such as
J2,S in their analysis. However, not all such parameters that are estimated will show
a strong correlation with the existing parameter set. For instance, Hees et al. (2014c)
use Cassini tracking data to constrain the MOND-induced EFE, the effect of which is
modulated by the preferential direction towards the galactic center, giving it a signature
on solar system dynamics that is distinct from effects due to the mass or rotation of the
Sun.

Including additional physical effects and parameters directly into the generation of
future ephemerides would facilitate an improved consistency between the estimated pa-
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rameters, when compared to the postfit analysis approach. Crucially, it would provide
insight into the correlations between the various parameters. For instance, Müller and
Biskupek (2007) find a correlation of 0.97 between Ġ/G and the tidal lag angle of the
Moon. Although this information on the correlation between the estimated parame-
ters is important for a realistic interpretation of the results, it is not obtained from a
postfit analysis. However, the inclusion of too many parameters in the estimation, in
the absence of sufficiently accurate and diverse data, results in (nearly) fully correlated
parameters and an ill-posed estimation problem. Therefore, improvement of planetary
ephemerides that would be facilitated by the use of highly accurate ILR measurements
would result in both an improved accuracy of parameters currently estimated directly, as
well as allow for the inclusion of additional parameters into the estimation. As a result,
it would allow for improved and more reliable constraints on possible post-relativistic
gravitational effects.

Although the majority of experimental tests of gravitational physics on solar system
scales have been performed by exploiting the relativistic influence on the translational
dynamics, exploitation of the relativistic effect on signal propagation (Section 2.3.2)
has provided crucial information, especially on the paramater γ (see above). In addi-
tion to the translational dynamics and light-time experiments, the relativistic influence
on clock rates may be exploited to test general relativity. With the advent of highly
accurate clocks and time transfer techniques, such experiments are now entering the
domain where they can contribute to provide state-of-the-art information on the valid-
ity of GR or one of the various alternative theories (Angélil et al., 2014; Schärer et al.,
2014). Mayrhofer and Pail (2012) propose to exploit the relativistic frequency shift in
electromagnetic signals to improve the gravity field recovery capabilities of an Earth
orbiter. We present a novel manner in which to robustly assess the science return from
coupled relativistic translational and time dynamics effects in Chapter 7. Nevertheless,
relativistic clock effects are typically very small and their exploitation to a degree where
they are competitive with other tests will be challenging. For instance, Deng and Xie
(2013a,b) investigate effects of f(T ) gravity and a Yukawa potential, respectively, on
an interplanetary time transfer link, and show that the effects of both these types of
modifications to GR will be very difficult to detect, with translational dynamics likely
providing (much) stronger information.

In addition to performing solar-system-scale experimental gravitation by means of
exploiting the observable effects discussed in Section 2.3.2, space-based gravitational
wave observatories, such as the proposed LISA (Danzmann et al., 2003), ASTROD-
II/ASTROD-GW (Ni, 2008, 2013) and DECIGO (Kawamura et al., 2006) missions could
provide new types of experimental information on relativity and cosmology. Further-
more, the influence of gravitational waves on frequency shift of Doppler data of planetary
missions (Armstrong et al., 2003) and GPS data (Aoyama et al., 2014) has been used to
place constraints on the background gravitational wave level. Using these existing radio
links provide model-independent constraints on low-frequency gravitational wave ampli-
tudes (10−6-10−1 Hz), but their accuracy is not competitive with dedicated gravitational
wave detection missions. The measurement principle behind these dedicated missions
fundamentally different from SLR/LLR/ILR, in that it uses interferometry between a
local laser source and the incoming laser signal from other space segments, as opposed
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to direct detections of incoming photons. As such, detailed discussion of such missions
is beyond the scope of this dissertation both in terms of measurement technology and
primary science goals. Furthermore, orbit determination requirements for such missions
are relatively loose, with the requirement on relative position between the space seg-
ments of 100 m (Hechler and Folkner, 2003). Therefore, typical tracking techniques will
be sufficient for the operation of such missions, without need to investigate the potential
addition of an ILR system.
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CHAPTER 3

Laser Ranging

Satellite and Lunar Laser Ranging (SLR and LLR, respectively) have been developed for
over 50 years and have long been mature techniques (Section 1.1), with well-developed
technologies (Degnan, 1985, 1993; Pearlman et al., 2002; Gurtner et al., 2005) and a clear
contribution to the science objectives and the operational products of various Earth-
orbiting spacecraft (Seeber, 2003; Urschl et al., 2005; Exertier et al., 2006; Turyshev
and Williams, 2007; Müller et al., 2007; Altamimi et al., 2011; Sośnica et al., 2015).
The implementation of laser ranging to interplanetary distances, however, is still in
its infancy with only a few experiments at greater-than-lunar distances successfully
performed. Nevertheless, we expect that the much greater attainable accuracy of laser
ranging, compared to radiometric range (Section 2.1.1), will allow Interplanetary Laser
Ranging (ILR) to be a strongly supplementary, complementary and in some cases even
competitive technique for future planetary missions (Section 1.2).

Future development and implementation of ILR will depend strongly on existing
technologies, as well as on future developments in SLR/LLR and related fields. Since
our goal in this dissertation is to analyze the potential for the scientific use of ILR,
it is crucial to have a detailed understanding of the relevant aspects of the current
state-of-the-art of SLR/LLR, extrapolating this to the interplanetary situation where
possible, which is the goal of the present chapter. First, we discuss the general principle
of laser ranging in Section 3.1, including details on the propagation of the laser pulse
and associated aspects of the measurement technology. Subsequently, we discuss the
primary error sources in both the measurement and analysis of laser ranging data in
Section 3.2. Finally, we give an overview of the current and proposed implementations
of ILR and related technologies in Section 3.3.

55



56 Laser Ranging

3.1 Physical Aspects of Laser Ranging

In this section, we give an overview of the various techniques and models that are
applied in SLR/LLR, subsequently extrapolating them to the context of interplanetary
applications. First, we give an overview of the measurement principle of laser ranging
systems in Section 3.1.1. Subsequently, we discuss the manner in which laser ranging
systems can be used in interplanetary applications in Section 3.1.2. Having provided the
general concept by which the SLR/LLR/ILR observations are attained, we address the
various concepts required to model the laser link in Sections 3.1.3, 3.1.4 and 3.1.5, where
we describe the free-space propagation, atmospheric propagation and the calculation of
a laser ranging link budget, respectively. Finally, we give an overview of the various
hardware systems that are used in laser ranging applications in Section 3.1.6, setting
the stage for a discussion and analysis of the technological readiness and limiting factors
of ILR (Chapter 8).

3.1.1 Measurement Principle

The technology of SLR is based on the transmission and detection of short (typically
10-100 ps) laser pulses by ground stations. These transmitted laser pulses reflect off
dedicated retroreflectors placed on Earth-orbiting satellites and the lunar surface (Sec-
tion 1.1), and return to the ground station to be detected, allowing a two-way range
measurement to be obtained (see Fig. 2.3 for a schematic representation) (e.g., Degnan,
1993).

By time-tagging the transmission and reception times (tt and tr) of the laser pulse,
a two-way range measurement s(tt) (where we have referenced the observation to the
transmission time; see Section 2.1.1) is obtained. The error-free two-way free-space
range measurement follows from:

s(tt) = c (tr − tt) (3.1)

where c denotes the speed of light. This measurement of the two-way range is then used
in the orbit determination process, where Eq. (2.1) or (2.2) is used (for both the up-
and downlink) to reproduce the measured range values.

By adjusting various parameters in the dynamical model of the spacecraft (and the
Earth in ILR) and the observation model, such as the spacecraft’s initial state, ground
station position and characteristics or the various physical parameters discussed in Sec-
tions 2.2 and 2.3, a best estimate of the estimated parameters is obtained by, for in-
stance, minimizing the (weighted) squared difference between the modelled and mea-
sured ranges. This results in an estimate of the parameters. However, due to errors ∆tt
and ∆tr in the timing of the transmission and detection times, as well as a variety of
other error sources (Section 3.2.1), the range measurement quality is degraded. As a
result, the imperfect realizations t̃t are t̃r (instead of the ideal tt and tr), are measured:

t̃t = tt + ∆tt (3.2)

t̃r = tr + ∆tr (3.3)
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The resulting raw realization of the range measurement, which we denote s̃ subsequently
becomes:

s̃(t̃t) = c(t̃r − t̃t) (3.4)

s̃(t̃t) = s(tt) + εs (3.5)

where εs is the lumped range error, including errors in the timing of the signal, the
influence of the pulse’s shape, and the finite pulse length. From Eq. (3.4), it can be
seen that constant errors in signal timing tt and tr will drop out off the two-way range
measurement, making it insensitive to absolute timing errors. Nevertheless, a time bias
∆t can adversely influence the orbit determination process. For instance, an error in
reference time of 10 µs will result in the modelled reflection time at the satellite to be
shifted by a similar amount. For a LEO spacecraft, with a speed of approximately 8
km/s, this results in an along-track position difference of about 8 cm, larger than the
accuracy of state-of-the-art SLR systems (Section 3.2.1).

A variety of effects at the ground station and on the space segment contribute to εs.
Calibration of SLR systems is routinely carried out at the ground stations, (e.g., Kirchner
and Koidl, 2014), allowing part of its contribution to εs to be resolved and corrected for
before delivering the data (see Sections 3.1.6 and 3.2.1 for details on hardware used in
SLR and its contribution to εs, respectively). We denote this in situ determination of
the range bias as ε̂s. This results in the following measurement that is used in the orbit
determination, denoted ŝ(tt):

ŝ(t̃t) = s̃(t̃t)− ε̂s (3.6)

= s(tt) + (εs − ε̂s) (3.7)

so that the remaining range error is the difference between the true and a priori esti-
mated value of εs.

The correction term εs in Eq. (3.4) is distinct from the ∆s terms in Eqs (2.1) and
(2.2). Specifically, the correction εs is applied to convert the measured two-way range to
a best estimate of the true two-way range, whereas the ∆s terms are corrections that are
applied to convert the modelled ideal free-space Cartesian two-way range to the mod-
elled true range (which includes relativistic and atmospheric propagation corrections).
However, ∆s may contain additional (estimated) corrections to the range measurement,
which can capture errors that are not or imperfectly removed by ε̂s, such as clock errors
(Bauer et al., 2013) or unresolved range biases, (e.g., Coulot et al., 2007; Angermann
and Müller, 2009). In SLR and LLR, corrections also need to be applied for the influ-
ence of the retroreflectors. The reflection point on the space segment is generally not
the center of mass (Otsubo and Appleby, 2003), with the exception of the experimental
BLITS retroreflector satellite, (Kucharski et al., 2011)). Therefore, an offset needs to
be added to the range measurement. Additionally, since the reflected pulse may consist
of the reflections from multiple reflectors (depending on the retroreflector array con-
figuration), the reflected signal consists of a convolution of the pulses reflected off all
reflectors. Resultantly, a signal-strength dependent range correction must be applied,
which also depends on the ground station characteristics and the target’s elevation angle
(see Section 3.2.1).
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Ideally, the measurement ŝ(t̃t) represents the two-way range between a reference
point fixed to the ground station rgs(t) and the center-of-mass of the satellite rsc(t).
However, errors both in the range measurement itself and the models used to process
the measurement (including those for rgs(t) and rsc(t)) limit the attainable accuracy
of both the range measurements (Section 3.2.1) and the data products that may be
obtained from them (Section 3.2.2).

3.1.2 Interplanetary Ranging Concepts

In ILR, the use of retroreflectors is no longer feasible due to the large distances involved
and the technology’s inverse quartic dependency of receiver signal strength with distance
(Section 3.1.5). To overcome this, an active system must be used on the space segment,
the use of which changes the signal strength dependency to inverse square with distance.

Three different types of active laser ranging systems (sometimes termed transponder
laser ranging) can be distinguished for use in planetary missions (Degnan, 2002; Birn-
baum et al., 2010). These concepts are shown schematically in Fig. 3.1a)-3.1c), with a
schematic diagram of the laser range up- and downlink shown in Fig. 3.2. Below, we
summarize these concepts:

• One-way laser ranging. A laser pulse is transmitted from a ground station and de-
tected by a (satellite-based) receiver. The pulse transmission time t̃t at the ground
station and reception time at the space segment t̃r are then used to determine the
one-way range from Eq. (3.4). An important issue with this method is that
the transmission and reception times are measured by different, unsynchronized,
clocks. As a result, offsets and rate differences between transmitter and receiver
clocks will introduce an error in the range determination. This error may be miti-
gated either by the use of an exceptionally high-quality clocks, or the inclusion of
the estimation of clock parameters. A detailed analysis of this aspect of the error
budget of a one-way laser ranging system is given in Chapter 6. Relatedly, the
rate difference between proper and coordinate time (Section 2.3.2) becomes much
more important in the correct reduction of one-way range data, as we discuss in
more detail in Chapter 7.

• Two-way echo laser ranging. In echo laser ranging, the space segment transmits a
laser pulse back to the ground station upon reception of a laser pulse. Using a two-
way method largely negates the clock offset problem of one-way systems. However,
an echo system is incapable of operating in a high noise environment (Section
3.1.5), since each detection (be it signal or noise) will cause the transmission of
a laser pulse back to Earth (Degnan, 2002). To mitigate this issue, the detection
threshold must either be set very high, requiring high laser power at the receiver
(with associated issues of multi-photon detection, see Section 3.2.1), or one must
accept longer outages due to the signal being overwhelmed by noise. The two-way
echo system is used in radio tracking systems (Thornton and Border, 2000), where
there is a more benign noise environment, as the Sun’s output in radio wavelengths
is much smaller than that in optical frequencies.
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Figure 3.1: Schematic representations of laser ranging concepts, based on figure by Birnbaum
et al. (2010). Thick lines indicate signals to trigger the transmission of a laser pulse. a) One-way
laser ranging b) Two-way echo laser ranging c) Two-way asynchronous laser ranging.

• Two-way asynchronous laser ranging. In an asynchronous two-way laser ranging
concept, both the space and ground segment fire laser pulses towards one another
independently (Degnan, 2002). This negates the problem that occurs in the echo
laser ranging concept, where laser pulses are sent in response to a noise signal.
By pairing a range measurement from the up- and down-link, a two-way range
measurement is obtained (Birnbaum et al., 2010), which suffers from neither the
large clock error issue of a one-way system, nor the strong noise sensitivity of the
echo system.

For the one-way system, a one-way range s(1)(t) is measured, in which tt = t1 and
tr = t2 in Eq. (3.6). For the two-way systems, it is the two-way range s(2)(t) that
is measured, with tt = t1 and tr = t4 in Eq. (3.6). For active two-way ranging, the
difference between uplink reception time t2 and downlink transmission time t3, denoted
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Figure 3.2: Schematic spacetime diagram showing one-dimensional representation of up- and
downlink one-way ranges between stations a ground station and space segment (both moving
with constant velocity). Adapted from Fig. 2 in Chapter 6.

by δt and termed the retransmission delay in an echo system, is measured by the space
segment as:

δt = t3 − t2 (3.8)

For typical SLR/LLR operations, the δt term is absorbed into the retroreflector signa-
ture, ( e.g., Otsubo and Appleby, 2003). For the two-way transponder concepts, the
times t2 and t3 are measured and δt is included in the observation model directly. More
details on the mathematical formulation of the one- and two-way range observations are
given in Section 3.2 of Chapter 6.

For an echo system, the retransmission time will typically be very small, with δt�
1 s. For an asynchronous system, however, its magnitude will be on the order of the
pulse detection frequency of either the ground or space segment (whichever is larger),
this value can be anywhere from � 1 s to the order of minutes, depending on system
and link characteristics. In a situation where much more up- than downlink one-way
ranges are obtained (due to an asymmetric link budget), the asynchronous system can
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Figure 3.3: Graph indicating the excellent fit between the jitter in transmission and detection
time of the laser pulses during the MESSENGER experiment (Neumann et al., 2008).

operate asynchronously not only in an operational sense, but it also in the data analysis
process. For instance, a single downlink one-way range t4 − t3 may be paired with a
number of uplink one-way ranges t2 − t1 to obtain a number of asynchronous two-way
ranges. In doing so, each of the uplink one-way ranges is used, without the clock noise
polluting the range measurement at the level that it would for one-way measurements.

Of the above three concepts, two-way asynchronous laser ranging has been the
method of choice in most interplanetary laser ranging mission proposals (Section 3.3.1),
at least from a science return point of view, as it has neither the clock synchronization
problem of a one-way system, nor the sensitivity to high noise levels of the echo system.
However, a one-way system is simpler to operate and potentially cheaper to build and
fly, since it does not require a laser generation and transmission system (but does have
more stringent requirements on clock stability). A notable example of a one-way system
is the LRO spacecraft, for which one-way laser ranging is employed to support precise
orbit determination (Section 3.3.1). The absence of a two-way laser ranging capability
on LRO was due to mission scheduling constraints, however, not technical requirements
(Degnan, 2008). An interesting commonality shared between these three transponder
laser ranging systems is that they can all be used to perform laser time transfer (Section
3.3.4) without modifications to the operating principle, since electromagnetic signals
are exchanged and accurately time-tagged by different observers. We discuss the use of
time transfer, specifically the relativistic clock effects that manifest themselves in the
measurements, in Chapter 7.

An important difference between the asynchronous two-way and reflector laser rang-
ing used in SLR/LLR, is that reflection techniques typically have no ambiguity as to
which detected pulse corresponds to which transmitted pulse. For space segments with
sufficiently accurate state predictions, as is the case for LRO, this a priori informa-
tion can be used to pair the transmitted and received laser pulses with a high degree
of confidence (Bauer et al., 2013). If the dynamics of the space segment is not (yet)
well characterized, though, pairing a detected pulse at one transponder to a transmitted
pulse at the other transponder can become a non-trivial task. A number of different
approaches can be taken to overcome this potential measurement ambiguity. In the
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laboratory experiment by Chen et al. (2011) a coded sequence was sent between the two
link ends, serving to anchor the pairing between the pulses at one point in the exper-
iment, which can then be extrapolated to subsequent pulses. Alternatively, the entire
ranging campaign can be done by a coded sequence. Pulsed laser systems, however,
tend to be better suited to operate at a constant pulse frequency. For the ranging ex-
periment to the MESSENGER spacecraft (Section 3.3.1) (Smith et al., 2006), inherent
pulse transmission time jitter was used as a coding for the signal (Neumann et al., 2008).
This jitter was on the order of 100 ns, which is well above the time resolution of the
detection systems, allowing this random jitter to be employed as the coded sequence.
The correlation of the detected and transmitted pulses is shown in Fig. 3.3. In this
figure, the excellent correspondence between the transmitted and detected jitter pattern
can be seen. Also, a clear difference between the jitter amplitude can be distinguished
between the up- and downlinks, due to the different characteristics of the ground- and
space-segment laser systems. When employing a jitter matching technique, a number of
system characteristics must be taken into account. Specifically, pulse arrival and trans-
mission time must be measurable to much greater accuracy than the mean jitter in the
transmission time. Similarly, the pulse length must be (much) shorter than this jitter, in
order to ensure that the transmission jitter pattern can be resolved from random noise.

3.1.3 Free Space Propagation

SLR systems use laser pulses which have a spatial (in the direction perpendicular to the
direction of signal propagation) intensity profile that closely approximates a Gaussian
shape (Degnan, 1993), omitting the effects of aperture diffraction (Klein and Degnan,
1974). The spatial signal intensity I of a Gaussian beam in the far field can be described
by the following (Siegman, 1986):

I(r, z) = I0

(
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w(z)

)2

exp

(
−2

r2

w(z)2

)
(3.9)
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√
1 +

(
λz

πw2
0

)2

≈ λz

πw0
(3.10)

where the approximation holds if the final term in Eq (3.10) is much larger than 1
(far-field approximation).

Here, λ is the wavelength of the laser pulse and I0 is the signal intensity at the waist
(defined as z=0 here; approximately equal to the transmission system position when
z � 1). The laser spot size is denoted by w(z), with the beam waist radius denoted as
w0 and the off-axis distance r. The off-axis angle θ is defined as follows for small angles:

θ = w(z)/z) ≈ λ

πw0
(3.11)

The beam-divergence half-angle (denoted θ1/2), which is the angle θ at which the inten-
sity in Eq. (3.9) drops to 1/e2 of its on-axis value, is determined from Eq. (3.10) to be

Section 3.1.3 has been adapted from Section 2.1 of Chapter 5, and is included here as required
background information for subsequent sections of this chapter.
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Figure 3.4: Schematic representation of Gaussian beam profile, with a wavefront in the farfield
regime indicated in red (with associated local τ variable, where τ = 0 on the wavefront by
definition).
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Figure 3.5: Representations of laser pulse intensity as a function of off-axis distance r and
propagation direction time offset τ . a) Pulse intensity indicated as shading. b) Intensity profiles
for selected constant r. c) Intensity profiles for selected constant τ . Note that the different
multipliers for the intensity at r = ±w(z) and τ = ±tHM is due to the different formulations
of Eqs. (3.9) and (3.13) and the use of tHM instead of σt in this figure.
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the following in the far-field:

θ1/2 ≈
λ

πw0
(3.12)

The half-angle is typically around 50-75 µrad (≈ 10-15′′) for SLR systems (Degnan,
1993). A schematic representation of a Gaussian beam profile is shown in Fig. 3.4.

For a laser pulse used in SLR, the temporal profile can also be well approximated by
a Gaussian shape (Degnan, 1993). This Gaussian shape is not significantly influenced
by atmospheric turbulence (Fante, 1975; Degnan, 1993), except for pulse lengths on the
order of picoseconds and shorter. To describe the spatiotemporal intensity pattern of
the pulse Ip, we introduce a time τ , which is defined to be zero at the pulse center and
obtain:

Ip(r, z, τ) = I(r, z) exp

(
− τ2

2σ2
t

)
(3.13)

where σt is the pulse-length standard deviation, related to the pulse full-width half-
maximum (FWHM) tHM (tHM = 2

√
2 ln 2σt), which is typically used to quantify SLR

systems (Murphy, 2001).
To illustrate the behaviour of the intensity of a Gaussian pulse, we schematically

show the signal intensity as a function of both r and τ in Fig 3.5a). Also, we plot
the signal intensity of cutaways at constant r and constant τ in Figs. 3.5b) and 3.5c),
respectively.

3.1.4 Media Propagation

Since the laser beam propagates through the terrestrial atmosphere (and potentially
the atmosphere of another celestial body, e.g., Mars), atmospheric influence on the
propagation of the beam must be considered in both the design of the system and during
the analysis of laser ranging data. In fact, accounting for atmospheric delays is one of the
main challenges in precise laser ranging measurement analysis (Degnan, 1993; Exertier
et al., 2006). The influence of the atmosphere on the laser pulse can be divided into a
deterministic contribution and a stochastic contribution due to atmospheric turbulence.

The deterministic contribution is due to the influence of a medium’s refractive index
on the propagation velocity of an electromagnetic signal. Secondarily, gradients in the
refractive index n of the atmosphere cause a bending of the signal path. Both these
effects cause a delay in a laser pulse’s arrival time, which may be quantified by the range
correction ∆satm (atmospheric contribution to ∆s in Eqs. (2.1) and (2.2)), (e.g., Hulley
and Pavlis, 2007):

∆satm =

∫
ray

(n− 1)ds+

(∫
ray

ds−
∫
vac

ds

)
(3.14)

where ds either runs along the vacuum propagation path or the curved atmospheric
propagation path (depending on the integral subscript). The total delay is dominated
by the first term, called the excess path delay, which is about 2.5 m at zenith. The term
in brackets, called the geometric delay, is typically very small, reaching values of 2 cm
at very small elevation angles (10◦).



Physical Aspects of Laser Ranging 65

Turbulence in the atmosphere influences laser pulse propagation, since it causes tem-
perature fluctuations that, in turn, cause slight variations in the refractive index n
(Andrews and Phillips, 2005). This causes variations in both the travel time and the
light intensity at the receiver. In effect, the atmosphere behaves as a series of lenses of
stochastic strength and size. We present a detailed analysis of the influence of atmo-
spheric turbulence on laser ranging in Chapter 5.

Both the deterministic and the stochastic influences cause changes in the beam in-
tensity pattern and its travel time. Especially the travel time is crucial for the data
processing of ranging measurements, whereas the influence on the beam intensity is im-
portant for determining the expected performance of a system (Section 3.1.5). Also, the
analysis of beam intensity variations due to atmospheric effects influences the system
performance both due to varying signal attenuation and the resulting changes in the
detection time Probability Distribution Function (PDF) (Section 3.2.1; Chapter 5).

A first approximation that can be made when modelling the influence of an atmo-
sphere on laser pulse propagation is to assume that it consists of spherical shell layers,
i.e., that there is no latitudinal and longitudinal influence on its state. One such model
given by Marini and Murray Jr. (1973) has typically been used until recently for the
analysis of SLR/LLR data. Although relatively simple, the model has an uncertainty
of only about 1 cm in zenith and several cm for low elevations (Schwartz, 1990; Seeber,
2003). For the application of this method, the only required meteorological data are
pressure, temperature and water vapour pressure at the ground station, at signal trans-
mission and reception times. New models for both the delay’s dependence on zenith
angle (Mendes et al., 2002) and the zenith delay itself (Mendes and Pavlis, 2004) have
been developed. The combination of these models is the current standard for atmo-
spheric ranges corrections in SLR/LLR data reduction (Petit et al., 2010). Errors due
to mismodelled atmospheric propagation correction are estimated to be around 4-6 mm
(Exertier et al., 2006).

A new method to calculate the atmospheric correction to laser ranging measurements
was proposed by Hulley and Pavlis (2007), who use a ray-tracing method and global
meteorological information for the numerical calculation of an atmospheric correction
from Eq. (3.14). By using this method, horizontal gradients in the refractive index
n are included, which were neglected in previous models. The influence of horizontal
gradients is especially strong at low elevations, but is also dependent on station location,
time of year, time of day, azimuth angle, etc. The mean influence of horizontal gradients
at 10◦ elevation is at several mm, whereas the standard deviation is at a level of 5-
10 mm for typical cases, decreasing by a factor of roughly 3 at 20◦ elevation. These
values indicate the need for the inclusion of the horizontal refractivity gradients for
mm-accuracy laser ranging (SLR, LLR and ILR). Such horizontal gradients become less
important for small zenith angles, where the propagation is close to vertical. For zenith
signal propagation, though, the model of Mendes and Pavlis (2004) shows a difference
with ray tracing solutions that is at the 1 mm level. This shows the desirability of
ranging near 90◦ elevation angles, so as to reduce the error in atmospheric correction
modelling. However, as discussed in Section 3.2.2, this is often not an option for ILR
mission scenarios.

A method that has been proposed to correct for the atmospheric delay is multi-
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wavelength (also termed multi-color) laser ranging (Abshire and Gardner, 1985). Since
the troposphere is dispersive at optical wavelengths, the atmospheric delay of a laser
beam is wavelength-dependent. Therefore, multiple wavelengths could be used simul-
taneously to allow for a very accurate characterization of the delay. This approach is
conceptually similar to the use of multi-wavelength radio tracking of planetary satellites
(Bertotti et al., 2003). However, the application for atmospheric correction has not yet
reached maturity, since a range precision on the order of 50 µm is required to detect the
difference atmospheric influence at two typical SLR frequencies (Wijaya and Brunner,
2011), which is well beyond current state of the art of SLR (Section 3.2.1).

For ILR, the effect of the interplanetary medium and the solar atmosphere needs
to be assessed. For radio tracking, these media limit the attainable accuracy at small
solar separation angles (Section 2.1.2). No data specifically on the influence of this
medium on optical pulse propagation has been found. However, measurements for the
influence of solar wind on the time delay of radio signals have been performed with
the Mariner 6 and 7 probes (Muhleman et al., 1977), as well as the Viking spacecraft
(Muhleman and Anderson, 1981). Muhleman and Anderson (1981) find a relation for
(n− 1) that is linearly dependent on electron density and inverse squared-dependent on
signal frequency, valid for frequencies larger than 1 GHz and solar impact parameters
larger than two solar radii. The signal frequency requirement clearly holds for laser
pulses, where f > 100 THz. Measurements indicate that for an S-band signal (2.2
GHz), the influence of the interplanetary electron density on signal propagation time
is in the order 10 µs (3 km signal propagation distance in vacuum) for a solar impact
parameter of 2Rs. Since the delay is dominated by the particle environment near the
Sun, this values is largely independent of the distance between the Earth and the target,
and instead depends on the solar impact parameter of the signal path. For an optical
pulse (with a frequency more than 105 times that of an S-band signal), the S-band delay
of 10 µs scales to well below measurable effects, validating the assumption of negligible
influence of interplanetary medium on laser pulse propagation.

3.1.5 Link Budget

Laser pulse detection in SLR is performed by means of direct detection of the arrival
time of one or several photons of a laser pulse (Section 3.1.6). The number of photons Np
per pulse that can trigger the detector can be determined from the radar link equation,
as adapted from (Degnan, 1993):

Np = ηq

(
ET

λ

hc

)
ηtGt(θ)σ

m−1
cs

(
1

4πR2

)m
ArηrT

m
a (3.15)

where ηq is the quantum efficiency of the detector, ET the energy of the transmitted
laser pulse, λ the laser wavelength, which is typically 532 nm, ηt the transmission op-
tics efficiency, Gt the transmitter gain as a function of off-axis pointing angle θ, σcs
the satellite optical cross-section, R the range to the target, Ar the effective telescope
receiver area, ηr the receiver optics efficiency and Ta is the one-way transmissivity of
the atmospheric propagation path. The value of m is 2 for reflection systems (such as
SLR and LLR) and 1 for one-way ranging systems (such as the up- or downlink in a
transponder system).
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The dependence of the transmitter gain on the off-axis angle θ in Eq. (3.15) may
be obtained by the approximation of the Gaussian pulse shape (Section 3.1.3). Under
this assumption, the gain can be seen to decrease with θ as exp(−2θ2/θ2

1/2), see Eqs.

(3.9) and (3.12), as illustrated in Fig. 3.5. However, the far-field gain is also influenced
by atmospheric turbulence, which is discussed in detail in Chapter 5. For a typical link
budget and assuming single-photon detection, a general rule of thumb for the pointing
requirement σθ of the system is σθ < θ1/2.

In addition to photon flux from the laser pulse, noise photons from the environment
can also trigger the detector. The noise environment in laser ranging operations can be
especially punishing, as the range of operating wavelengths (typical values are 532 and
1064 nm) coincides with the peak of the Sun’s radiation output (883 nm). To mitigate
the influence of environmental noise, a number of filtering methods are used in SLR,
which drastically reduce the noise rate:

• Spectral filtering. Only light of a very limited spectral bandwidth is allowed
through a physical filter placed in the reception optical path. Due to the strong
monochromaticity of laser light, the spectral filter can be set to a very narrow
bandwidth without loss of signal. The spectral bandwidth is typically ∼ 0.1-1 nm,
(e.g., Degnan, 1994; Seeber, 2003). The size of the spectral bandwidth is limited by
the fact that the wavelength bandwidth of the photons in the laser pulse increases
for shorter laser pulses due to dispersion.

• Temporal filtering. A good initial estimate of the target location is required to
acquire a return signal in SLR, due to the very small beam divergence angle of the
laser (Section 3.1.3). This initial position is calculated from available ephemerides
and used for initial pointing. Consequently, the time interval during which the
return signal is expected can be determined. The detector is only active during
these time intervals, preventing it from picking up noise during the intervening
time, an approach termed range gating. Typical range gate durations are 0.1 to
10 µs (Seeber, 2003), dependent on the accuracy of the a priori orbit predictions
of the target.

• Spatial filtering. Since an initial position estimate of the target is available, the
direction from which return photons are expected can be predicted. This yields a
solid angle range over which the returns will occur. As such, the direction of the
telescope, as well as the solid angle over which light is allowed directly onto the
detector, can be set to a limited range.

In addition to environmental noise, the detector itself will have a certain dark noise
level, which is the number of spurious detection signals per unit time that the detector
produces, even in the absence of external stimuli. For instance, the space-grade SPAD
detector (see Section 3.1.6) presented by Prochazka et al. (2007) has a dark noise rate of
about 1 kHz at 0◦ C, increasing by about one order of magnitude per 30 K temperature
increase.

In interplanetary laser ranging, the noise photon rate can be much larger than in
typical SLR/LLR situations, due to the fact that the receivers are pointed (almost)
directly at the Earth or at a target body, such as a moon or planet (for the space-
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Figure 3.6: Representation of Sun avoidance angle at Earth and target body, denoted αsep and
αspe

Table 3.1: Fraction of days per synodic period with visibility of given target, for given limits
on Sun separation angles from both Earth and target planet

(a) Equal limits on αsep and αspe

Target body 10◦ 5◦ 2◦ 1◦

Mercury 0.70 0.87 0.96 0.99
Moon 0.89 0.96 0.99 1.00
Mars 0.83 0.91 0.97 0.98
Jupiter 0.29 0.70 0.88 0.94
Saturn 0.00 0.41 0.79 0.90
Uranus 0.00 0.00 0.54 0.79
Neptune 0.00 0.00 0.00 0.65

(b) Varying limit on αspe; limit on αsep fixed to
10◦

Target body 10◦ 5◦ 2◦ 1◦

Mercury 0.70 0.70 0.70 0.70
Moon 0.89 0.93 0.94 0.95
Mars 0.83 0.90 0.91 0.91
Jupiter 0.29 0.70 0.88 0.91
Saturn 0.00 0.41 0.79 0.89
Uranus 0.00 0.00 0.54 0.79
Neptune 0.00 0.00 0.00 0.65

and ground-segment, respectively). Since planets reflect solar radiation (albedo) and
produce their own blackbody radiation, they are sources of noise photons (Degnan,
2002). Additionally, during daylight ranging operations atmospherically scattered light
will become an important source of noise photons. Due to the geometry of ILR, ranging
will only be possible during daylight for extended periods of time. In fact, for missions
closer to the Sun than the Earth, the target will only be visible in daylight. The problem
of increased noise rate may be further exacerbated by the fact that temporal filtering
can no longer be applied in all cases, due to the asynchronous nature of the typical
application, where the signal has to have been acquired before the detection system can
start to operate in phase with the transmitted system, allowing temporal filtering to be
used. This acquisition is further complicated by the long light time, so that it cannot
be immediately verified whether transmitted pulses are detected or not.
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An additional source of noise which is very important for ILR is stray light. Stray
light occurs due to light outside the direct field of view of the instrument being scattered
onto the detector. This can be from intrinsic scattering, due to reflected light from
parts of the structure and optics, or contaminated optics (Roberts, 2010). Although the
intensity of stray light will, in general cases of laser ranging, be quite low compared to
that of other noise sources, it can become very high when the telescope is pointing near
the Sun. The problem of stray light is exacerbated by the fact that it is notoriously
hard to model robustly (Hemmati, 2006). Reduction of stray light can be achieved by a
number of design options, such as baffles, field stops and stringent optical surface quality
requirements. Most ILR concepts have targets near the plane of the ecliptic, so the Sun
avoidance angles αsep and αspe for the ground and space segments (sep and spe is
short for Sun-Earth-Planet and Sun-Planet-Earth, respectively), shown in Fig. 3.6, will
become very small once every synodic period of the Earth and the target. This means
that for a certain portion of the mission, ranging will be impossible (as is also the case
for radio ranging). For gravitational physics experiments, maintaining the link as close
to conjunction as possible is crucial (Section 2.3.2), as this increases the gravitational
influence of the Sun on the laser pulse propagation. Typical values of limiting angles
that are proposed for dedicated systems, in which substantial design effort has been
made to reduce stray light, are 3◦ (Roberts, 2010) or 2◦ (Hemmati, 2006). For their
analyses of science return from Mars and Phobos landers performing ILR, Chandler
et al. (2005) and Turyshev et al. (2010) investigate a range of Sun avoidance angle
limits of 0.5◦-15◦ and 2◦-2◦, respectively. For outer planet ranging, the angle remains
low throughout the synodic period, making stray light rejection especially important for
missions to these planets. We present the visibility fraction of a number of targets for a
range of limits on the separation angles in Table 3.1 to highlight and quantify the issue
of stray light rejection. To generate the numbers in this table, we have simulated the
αspe and αsep angles over a full synodic period between Earth and the target planet,
and subsequently calculated the number of days in the synodic period where there was
a possibility of performing ranging without violating the indicated Sun avoidance angle
constraints. It can clearly be seen that for ranging to the outer planets, exceptional
stray light rejection (Sun avoidance angles of < 2◦ for ranging to Uranus and Neptune)
will be required, making the implementation of ILR in such missions technologically
challenging.

In typical SLR situations, the signal return rate will be sufficiently large for noise
photons to only rarely be spuriously identified as signal photons. In certain situations,
however, for instance in LLR, the signal-to-noise ratio can become very low. A method
to extract measurement data in these cases is described by Abbot et al. (1973) and
Ricklefs and Shelus (1992). The method is based on the fact that background noise
will approximately obey Poisson statistics, while laser ranging returns will not, since
the arrival times of subsequent pulses are very strongly temporally correlated. Low
signal-to-noise situations may occur in a number of situations in ILR, especially for
laser ranging at extreme distance, or ranging at small solar separation angles.
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Figure 3.7: Illustration showing global distribution of ILRS stations (NASA/ILRS). Stations
routinely performing LLR (as of 2014) shown in red (Murphy, 2014). Note the latitudinal and
longitudinal heterogeneity in station distribution.

3.1.6 Hardware Systems

Precise, accurate and stable time tagging of laser pulse transmission and reception is
crucial for the minimization of errors in the range measurement, as shown by Eq. (3.4).
In this section, we give an overview of the hardware that is used to obtain such measure-
ments in SLR/LLR, extrapolating this to ILR where possible. The error sources induced
by hardware imperfections are discussed in more detail in Section 3.2.1. Although we are
not concerned with the detailed workings of the hardware of either the space or ground
segment here, it is crucial to have an overall understanding of the various subsystems
involved in the realization of laser ranging measurements. Specifically, we are concerned
with how their properties influence the realization of the (interplanetary) range mea-
surements, as hardware-induced effects are an important contributor to the error budget
of laser ranging measurements, (e.g., Exertier et al., 2006). Therefore, we discuss the
various components of an SLR system here, in preparation for our discussion of error
budgets in Section 3.2. The ground segment for ILR will likely be made up largely of
existing ILRS stations, the global distribution of which is shown in Fig. 3.7. It can
clearly be seen that the global distribution is far from homogeneous, especially for LLR.
For ILR, this may have significant consequences beyond those in SLR/LLR, as discussed
in Section 3.2.2.

A block diagram of the system for both pulse transmission and detection is shown in
Fig. 3.8. We will discuss the main characteristics of the key elements (in the context of
this dissertation) of existing hardware in SLR/LLR. These elements are the following:

• Laser generation and transmission system. The laser pulse generator produces a
pulsed laser signal, that is passed through the transmission optics to the telescope,
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Figure 3.8: Diagrams showing: (left) Up- and downlink of two-way laser operations between
an Earth-based and a planetary transponder (both in blue), including atmospheric distortion
on both bodies; (right) Transponder subsystems relevant for laser pulse time tagging.

where it is transmitted to the target. The laser medium used in many modern
laser ranging systems produces laser light at a fundamental wavelength of 1064 nm,
which is typically frequency-doubled to produce a wavelength of 532 nm (green
light). Other parameters of the laser system that have significant influence on
system performance are the pulse repetition rate, pulse length and pulse energy.
The pulse repetition rate has typically been in the order of 10 Hz in SLR/LLR
systems. In the past decade, however, a number of laser ranging stations have
started operating at 1-2 kHz frequencies, (e.g., Kirchner and Koidl, 2004), which
has a number of key advantages. Most notably for ILR, it allows the system to
more easily operate at the single-photon signal intensity level, without excessive
data volume loss and associated precision reduction (Section 3.2.1). Pulse lengths
in the order of 10-100 ps are typically used, with shortening of the pulse length
limited to about 10 ps by atmospheric dispersion (Chapter 5). SLR systems may
use pulse energies ranging from values on the order of 0.1-1 mJ (for kHz systems),
to the order of 1-100 mJ for typical SLR stations, and some LLR stations operating
at pulse energies around 1 J 1. The influence of detected laser pulse energy on the
stability and accuracy of the range measurement is discussed in Section 3.2.1.

• Detector. The detector is the device that triggers an electronic signal upon the
transmission or reception of a laser pulse. For the transmission, a dedicated start
detector is used, which is directly linked to the transmission optics to register
the transmission time of a laser pulse. The stop detector, which is separate from

1http://ilrs.gsfc.nasa.gov/SLV2/network/QueryILRSLogs.action
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the start detector, is triggered when one or more reflected photons (depending
on the detector settings and efficiency) of the transmitted pulse successfully im-
pact the detector. In SLR, two different types of detectors are used: Single Pho-
ton Avalanche Diodes (SPAD) and Photo-Multiplier Tubes (PMT), (e.g., Wood
and Appleby, 2004). The two systems are currently about evenly represented
in the ILRS network (Otsubo et al., 2015), with the PMT system preferred by
US-managed stations. Although the SPAD is better suited to consistent single-
photon operation (Wood and Appleby, 2004), a complication with the system is
that its rise time (the time between photon impact and electronic signal trigger)
is dependent on the number of photons that triggers the system. This requires a
compensation (Compensated SPAD, or C-SPAD) of the detector output, to take
into account this signal-strength dependence (Kirchner et al., 1998). A difficulty of
such a compensation is that it is dependent on the received temporal pulse shape,
and therefore on the target that is ranged to (due to the retroreflector signature),
as discussed by Otsubo and Appleby (2003). However, the temporal pulse shapes
in ILR are very stable, due to the absence of retroreflectors, allowing for easier
compensation.

• Clock. The system clock is typically a stable frequency standard which is used
to keep the current time at the station. In SLR, the need for a stable clock at
the station is twofold. Firstly, any clock instability over the two-way light time
propagates directly into the error budget of the measurements (Section 3.2.1).
Additionally, any time tag error of the range measurement introduces a time bias
into the range measurement processing (Section 3.1.1). An overview of modern
frequency standards used in space geodetic stations (including SLR/LLR) is given
by Soffel and Langhans (2013). For one-way ILR systems, the clock noise (see
Section 3.2.1 and Chapter 6 for some more details on typical noise levels) can
accumulate over long time periods, becoming the dominant source of measurement
error by orders of magnitude. Additional discussion on near-future developments
of space-based clocks, which will be crucial for ILR, are discussed in Chapter 6.

• Timer. The timer creates the time tag, based on the current time provided by
the clock and the detection signal from the (start or stop) detector, (e.g., Kalisz,
2004). The time between the transmission of the laser pulse and the reception of
the reflected photons is the primary raw observable of laser ranging. Consequently,
precise, accurate and stable timing is a crucial element in the determination of high-
quality range measurements. Two classes of systems may be used for determining
the time of flight of photons: Time Interval Units (TIUs) and event timers. In
a TIU, the time difference between two events is measured explicitly, whereas in
an event timer, the times of separate events are measured, their time difference
being obtained in post-processing. The former of these is not suitable for use
in high-repetition rate ranging systems (Iqbal et al., 2008) or ILR systems. This
excludes stations using TIUs from participating in ILR operations. However, state-
of-the-art ILRS stations are now mostly using event timers, a trend that will likely
continue into the future. We will discuss some key properties (including typical
uncertainty levels) of event timers in Section 3.2.1.
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In summary, the detector generates an electrical signal upon the transmission or
reception of a laser pulse, which is sent to the event timer to be time tagged. The
system clock provides a stable reference time, typically by the production of a signal
with (nearly) constant frequency and amplitude. The clock continuously sends the
reference time signal to the timer. The event timer then uses the signal from the clock
to time tag the signals it receives from the detector.

In addition to the hardware components used in the transmission and detection as-
sembly, an accurate pointing system is required for both the ground and space segments.
The beam divergence angle in ILR and SLR will be similar, with 50 µrad a typical value
for the divergence half angle (Section 3.1.3). Such a divergence half angle propagates
into a laser beam spot size radius of 7,500 km at a distance of 1 AU. For the link budget
of the Phobos Laser Ranging (PLR) mission presented by Turyshev et al. (2010), the
corresponding uplink laser power at the Phobos lander is about 40 aW/m2, resulting in
about 10 photons per second reaching the detection telescope.

As a result of the large laser spot size at the target, it will be feasible for the pulses
transmitted by the space segment to be simultaneously received by ground stations
across the world, in part mitigating the issue of cloud coverage, since the downlink is
not limited to a single station. Although the pointing systems of the current ILRS
network are sufficiently accurate for ILR, the long time until target acquisition in ILR
complicates the planning of the ranging campaign. In SLR, it can be nearly immediately
verified whether a transmitted pulse was successfully reflected off the target spacecraft,
or whether a pointing bias or target prediction error must be compensated for. In
ILR, however, the ranging may have to be done completely without any feedback (as
is the case for LRO one-way ranging), where the laser pulses are transmitted, without
any verification during the ranging pass as to whether they were received by the space
segment or not. In ILR operations, for instance, a dedicated station or stations could
be used for the initial signal acquisition (with feedback from the space segment), which
subsequently relay this information to the ’normal’ SLR stations involved in the ranging
campaign. For the downlink, the ground segment must point its receiving telescope to
the target position, based on the a priori orbit prediction. To facilitate the acquisition
of the space segment signal, it would be advisable for the stations involved to collaborate
in real time (during a tracking pass) to update the prediction’s range bias, time bias
and pointing data as efficiently as possible.

An additional issue related to the pointing operations in ILR is that the transmitter
will require a so-called point-ahead (Degnan, 2002), where the system is pointed to
the predicted target position at some later time, due to the relatively long light-time
of the signal. However, in many ILRS stations, the transmitter and receiver telescopes
cannot be independently pointed, either requiring a large receiver field-of-view or a large
transmitter beam divergence angle.

Due to the asynchronous nature of a typical two-way ILR system (Section 3.1.2),
the space segment requires hardware that fulfills the same functions as those shown in
Fig. 3.8 and described above. However, whereas SLR technology has matured over
the past decades, the active space-based systems that are required for ILR have not
nearly seen as much development. Nevertheless, experience with, and developments
for, laser communications, time transfer and altimetry systems (Sections 3.3.3 - 3.3.5,
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respectively), which share many system requirements with ILR systems, have facilitated
the maturation of much of the required hardware. A recent development in technology
that is crucial for ILR is the European Laser Transfer (ELT) project (Schreiber et al.,
2009b), which is a laser time transfer system that is to be used on the ISS in conjunction
with the Atomic Clock Ensemble in Space (ACES) project (see Section 3.3.4 for more
details on these projects). Although the distance to ground stations will be exceptionally
small for ELT, the requirement for single-photon detection is met by using extreme signal
attenuation, using neutral density filters on the space segment to reduce the energy by
about 5 orders of magnitude. The high incident laser energy will allow the ELT system
to operate at a very wide acceptable angle (field of view) of 120◦, essentially operating
without any spatial filtering. Similar approaches may be beneficial for reducing the
pointing requirement on the space segment of a (one-way) ILR system.

3.2 Error Sources

To characterize the error budget of ILR measurements and the products obtained from
them, we can distinguish errors in two different steps of the process. Firstly, inaccuracies
in the measurement technology result in a difference between the true range value s(t) at
a given time t, represented by Eq. (3.1), and its calibrated realization ŝ(t), represented
by Eq. (3.6). We discuss the various sources of this type of error in Section 3.2.1.
Secondly, even in the limit of a perfect measurement (ŝ → s), errors in the models to
evaluate Eq. (2.1) or (2.2) during the data analysis will result in errors in the final
science products. We give an overview of the primary contributors to this error source
in Section 3.2.2.

For the design of missions employing ILR, a characterization of both these types of
error sources is crucial. Firstly, it is important that data analysis models are developed
to a sufficient level that they can make full use of the data that are obtained by a
mission employing ILR. Relatedly, possible inherent limitations in data analysis models
limit the degree to which improvements in range measurement accuracy will lead to
improved science products, which must be taken into account when setting up instrument
requirements. Additionally, the various possible mission and system concepts should be
traded off with sufficient knowledge on their error sources, both to facilitate an optimum
system design and drive design efforts to focus on reducing the dominating sources of
uncertainty. In Chapters 5-7 we investigate three crucial and previously unquantified
sources of both types of errors. In Chapter 8, we provide a synthesis of these chapters,
combining our results on the expected ILR error budget and comparing the attainable
science return with that from traditional tracking types.

3.2.1 Range Measurement Uncertainty

Ideally, a range measurement is an exact representation of the (one- or two-way) light
time between two moving reference points (Section 3.1.1). In practice, however, a variety
of effects cause deviations from these ideal measurements, resulting in a range measure-
ment error εs. Although part of this error can be removed by ground station system
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Accurate and precise Not accurate and precise

Accurate and not precise Not accurate and not precise

Figure 3.9: Schematic representation of difference between accuracy and precision. The four
plots show two-dimensional measurements (blue) on the same, arbitrary, scale. Truth value
indicated in red.

calibration (and space segment calibration in ILR), resulting in an estimate of the range
error, denoted ε̂s (see Eq. (3.6)), uncertainty from various sources remain.

Part of this uncertainty is a result of the inherently stochastic manner in which the
range is measured, due to the finite size and energy of a laser pulse. Also, hardware
imperfections contribute significantly to the error budget. These uncertainties can be
divided into random noise (precision) and systematic errors (accuracy). Note that we
use the convention in which accuracy represents only the systematic error, in which the
mean random noise is removed, as opposed to the convention in which accuracy repre-
sents the total measurement error, including the random noise. We show a schematic
representation of the difference between the two concepts in Fig. 3.9. In addition to ran-
dom noise and systematic errors, the time-variation of the systematic errors (stability)
is an important characteristic of the laser ranging measurement, as it it is a key factor
for how well systematic errors can be identified and removed.

Laser pulse detection typically occurs in a regime where only a single, or very few,
photons from a transmitted laser pulse actually fall onto the detector. Certain detectors
can be set to a certain threshold, so that it triggers a detection signal upon the detection
of the N th photon (instead of being triggered by the first photon). Ideally, an electrical
signal will be sent to the timer upon the detection of this N th photon of a laser pulse. In
Chapter 5, we provide explicit Probability and Cumulative Distribution Functions for
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the ideal (no errors as a result of hardware imperfections) detection time as a function of
N and Np, where N is the detector photon threshold and Np is the number of photons
from a laser pulse that could trigger the detector, see Eq. (3.15). Due to the finite length
of the laser pulse, there is an inherent range measurement random uncertainty, since one
can only statistically describe which photon(s) in the laser pulse were detected. This
effect limits the single-shot precision that can be attained with a laser ranging system.
For a purely Gaussian pulse detected at the single-photon intensity level, this single-
shot precision is at the level of σt, see Eq. (3.13). The integrated range precision
of N measurements improves as approximately 1/

√
N , converging to detection at the

pulse center (for the single-photon detection case, where only one photon from the laser
pulse reaches the detection system, so that Np = 1 in Eq. (3.15)). The precision of the
combined measurement over N pulses (normal points) is limited by time-correlated error
sources, though, such as optical turbulence (Chapter 5) and short-term instrumental
instability. However, such uncertainties only become relevant well below the 1 mm level
for state-of-the-art SLR systems, (e.g., Blazej et al., 2011), allowing sub-mm normal
point precision (but not accuracy) to be routinely achieved.

For cases where more than one detectable photon reaches the detector, the mean
pulse detection time will not be equal to the pulse center arrival time at the detec-
tor, since photons in the leading edge of the pulse are preferentially detected (Section
2.2 of Chapter 5). Therefore, detections at such signal strength can result in a biased
range measurement if this effect is not properly corrected for. At such multi-photon
signal detection intensity levels, time-variations in the received signal strength will re-
sult in variations of this range bias, reducing the stability of the range measurement.
Variations in received signal intensity can be the result of any of a number of causes,
including instabilities in the transmission hardware, variabilities in atmospheric condi-
tions at the ground stations, changes in target elevation at the ground station (resulting
in a longer atmospheric propagation path and a resultantly greater attenuation) and
errors in pointing. To ensure detection at the single-photon level, the signal strength
can be attenuated (either at the transmitter or receiver) to a level where Np = 1 is
practically ensured. Such an approach, however, will be at the expense of a reduced
pulse detection probability and it is therefore advantageous to use a system operating
at a high pulse repetition rate (kHz) for such a situation, where a sufficient data volume
can be obtained even in cases where only a (very) small fraction of pulses is detected.
Alternatively, a multi-array detector can be used, which allows multiple single-photon
detections from a single laser pulse (Murphy et al., 2002), as was also proposed for the
Phobos Laser Ranging concept (Turyshev et al., 2010).

The temporal shape of the laser pulse is typically well described by a Gaussian shape
(Section 3.1.3). In SLR/LLR, the retroreflector signature causes significant distortion
of this temporal shape (Otsubo and Appleby, 2003). However, this is not the case for
ILR. Also, atmospheric effects do not significantly influence the laser pulse temporal en-
ergy distribution for pulses in the typical pulse energy and pulse length regime of SLR.
As a result, the temporal pulse shape at transmission and detection are approximately
the same in ILR (Section 3.1.3). The true generated pulse shape will differ from the
Gaussian, though, but a transmission system measurement can be used to character-
ize these deviations, which will remain approximately constant throughout the pulse’s



Error Sources 77

propagation. As a result, the stability of ILR data may be better than that of SLR
(no time-varying accuracies due to time-variations in pulse-shape), as it is much easier
to characterize the received pulse temporal intensity distribution, with resulting advan-
tages for data analysis. This is discussed by Kucharski et al. (2011) for analysis of the
BLITS SLR satellite, which uses a novel signature-free reflector system.

In addition to the inherently stochastic nature of laser range measurements by direct
detection of photon(s) from a finite laser pulse, various sources of error in the measure-
ment hardware (Section 3.1.6) degrade the realization of the range measurement from its
ideal value. For ILR, the hardware-derived error sources are similar to those of SLR, sum-
marized by (e.g., Exertier et al., 2006). However, an important difference between the
two stems from the fact that part of the active hardware is on the space segment in ILR.
For such systems, there is much less experience in the development and use of the various
components of the laser ranging system, requiring the development and characterization
of dedicated new hardware. Also, the possibility of in-operation system characterization
and modification is much more limited than for ground stations. Nevertheless, there
have been important developments in the fields of laser time transfer (Section 3.3.3),
laser communications (Section 3.3.4) and laser altimetry (Section 3.3.5), all of which use
hardware systems with similar characteristics and requirements. Development of these
systems, and the characterization of their properties relating to a range measurement
error budget, is invaluable in the estimation of near-term ILR hardware-induced errors.
However, the application of laser pulse transmission over planetary distances has only
been proven a small number of times (Section 3.3.1), and never operationally.

To estimate the inaccuracies in both ground and space segment hardware for ILR,
we rely on the extrapolation of existing ground stations and space-based systems. For
the characterization of the space segment, we rely strongly on the development of the
space-grade single-photon detection system developed for ELT, an overview of the char-
acterization of which is given by Prochazka et al. (2012). We will give a summary of
the expected error magnitude of the various hardware-induced measurement uncertain-
ties, discussing both the ground and space segments. Specifically, inaccuracies in the
following aspects result in a range measurement of degraded quality.

• Detection time errors. Inaccuracies in both the start and stop detection time di-
rectly propagate into the determination of tt and tr, as they result in an incorrectly
timed signal being sent to the timer. Since a different detector is used for the signal
transmission and reception, these errors will not automatically cancel out (even in
perfectly stable, but inaccurate, detectors). This is especially true in ILR, where
the start and stop detector are located far apart and cannot be calibrated inde-
pendently of the measurements themselves. The time between a photon triggering
the detector and the generation of the electrical signal being sent to the event
timer can be quite large (> 1 ns), and can depend on a variety of parameters, such
as the signal strength and noise level. Nevertheless, this delay can be character-
ized to very high accuracy. The error budget given by Exertier et al. (2006) gives
values of several mm uncertainty for both the start and stop detector (with stop
detector errors somewhat smaller). New detectors showing sub-ps stability (Kodet
and Prochazka, 2012) and jitter at the 10 ps level (Prochazka et al., 2011) have
been developed for the ELT project, providing confidence that space-based pho-
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ton detectors are capable of operating at the same level of uncertainty as current
ground-based systems.

• Event timer. In a laser ranging station, a single event timer is typically used for
timing both signal reception and detection. Various types of event timers have
been used in SLR stations. A typical SLR event timer is the ’Riga event timer’. A
recent version of this system is described by Artyukh et al. (2010) and has sub-mm
resolution. Recently, development of a new type of event timer, based on a Surface
Acoustic Wave (SAW) is reported by Panek and Prochazka (2007); Panek et al.
(2010); Prochazka et al. (2011c). They demonstrate a timer with sub-ps precision
and a stability of several fs over a period of minutes to hours. The use of this
technology allows the event timer to have an almost negligible contribution to the
range measurement accuracy error budget.

• Clock noise. The system clock ideally generates a signal directly in keeping with
the local proper time τ . In actuality, however, it will produce a noisy signal
τ̃ , representing an imperfect realization of the local proper time. For two-way
systems, the clocks only need to be accurate over short periods of time (two-way
light time), whereas a one-way range system requires clocks to be stable over longer
time periods at both ends of the link (see Chapter 6 for an extensive discussion).
For example, for LEO, lunar and planetary targets, which have light times on the
order of 1 ms, 1 s and 1000 s, respectively, a clock with a relative stability of 10−14

(over these light times), will induce two-way range errors of 3 nm, 3 µm and 3
mm, respectively. A stability of about 10−15 over the typical ILR light time of
1000 s is achievable by H-masers (Soffel and Langhans, 2013), providing sub-mm
clock-induced range noise.

• System calibration errors. Delays in various components of the electrical and opti-
cal system of the detection assembly, as well as systematic biases in various parts
of the system must be accurately characterized to realize a high quality range
measurement. In a typical SLR system, the range to a reference calibration target
(for instance attached to the telescope) at a known distance is periodically mea-
sured. This allows part of the systematic errors to be removed from the range
measurement (Section 3.1.1). Kirchner and Koidl (2014) show that ground station
calibration consistency on short time scales is at the several ps level, corresponding
well to the laser beam propagation length uncertainty of 3 ps given by Prochazka
et al. (2012). Similarly, Exertier et al. (2006) give state-of-the-art systematic uncer-
tainties of 1 mm in both electronic and mechanical range uncertainties. However,
a ground-target calibration will not fully reproduce the situation of ranging to
space-based targets (for instance due to very different signal strength levels) and
will therefore not fully be able to capture the hardware induced systematic range
measurement errors.

Based upon these considerations, the two dominant sources of range error will stem
from the detection delay instabilities and system calibration uncertainties. Combined
instabilities in these systems can reach values at the several mm level. However, this
requires that all participating ILRS stations will have clocks that are sufficiently stable
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over the two-way light time, which will significantly reduce the number of participating
stations. Since the majority of the stations in the network does not have a frequency
standard of H-maser quality, we can expect clock-induced range errors at the several
mm level for such stations.

Although no data from existing ILR missions can be used to set up a measurement
error budget, full two-way links have been demonstrated on laboratory scales by Chen
et al. (2011); Chen et al. (2013). They use ultrashort (4 and 5 ps) laser pulses in a
two-way setup over a distance of about 1.0 m, varying the distance by about 8 cm
during the experiment. They obtain range measurement errors below the 0.2 mm level
(averaged over 1000 measurements). Similarly, recent laboratory experiments performed
by Blazej et al. (2014) have shown time transfer with an accuracy of 3 ps (≈ 1 mm)
using two representative ground segment hardware packages. These experiments show
the capabilities of laboratory-scale experiments with well-controlled hardware, indicating
the potential for (sub-)mm range accuracy (at least from a hardware point-of-view).
However, practical aspects related to system calibration over longer periods of time,
comparison of distinct SLR and space segment systems, environmental instabilities,
etc. may make this infeasible in near-term ILR operations. Also, as we discuss in
Section 3.2.2, inaccuracies in the hardware error budgets must be accompanied by similar
improvements in data analysis models to bring total ILR error budgets down to the (sub-
)mm level.

3.2.2 Data Analysis Model Errors

Even in the case of perfect range measurements, the final science products (orbits, gravity
fields, rotational parameters, etc.; see Sections 2.2 and 2.3) will not be error-free, due to
inaccuracies in the models used to map the observations to the estimated parameters.
In orbit determination, parameters are estimated by modelling their influence on the
observables, described by Eqs. (2.1) and (2.2) for range measurements, and subsequently
finding a set of estimated parameter values that minimizes the (weighted) difference
between the modelled and measured observations (Montenbruck and Gill, 2000; Tapley
et al., 2004), see Section 5.1 of Chapter 4 for additional details. Resultantly, errors in
modelling the range observable can lead to degraded science products, as the estimator
uses these imperfect models to minimize the difference between measured and modelled
observables. This can result in a signal of a parameter p1 being partly misattributed to
a parameter p2, skewing the estimation of both parameters. Also, it can limit the model
from fully fitting the trend in the measurement residuals to the parameterized model,
preventing the data from being fully exploited.

From Eqs. (2.1) and (2.2), it can be seen that errors in the state function of either
link end rA(t) and rB(t), as well as errors in the range corrections ∆sBA, may degrade
the fidelity of the model used to produce computed range measurements. For SLR and
LLR, the errors in the various components of the range calculation primarily stem from
the following issues:

• Ground station position errors. A model for the (time-dependent) position of
the ground station reference point in the Geocentric Celestial Reference System
(GCRS) is used to model a range measurement. This model consists of a position
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in an Earth-fixed frame as a function of time and a rotation from this frame to
the GCRS. The position of the reference point of the ground station is typically
given in the International Terrestrial Reference Frame (ITRF) (Altamimi et al.,
2011), and is defined by a position at epoch and a linear velocity. This reference
frame is generated from a combined analysis of data from the four main space
geodetic techniques (SLR, VLBI, DORIS, GNSS, see Section 1.1), where stations
with multiple measurement systems (local ties) are crucial for merging the various
techniques. The transformation from ITRS to GCRS consists of precession, nuta-
tion and polar motion, which are a combination of theoretical predicted rotations,
combined with small measured corrections (Petit et al., 2010). Additionally, for
some SLR stations, the measurement reference point is offset from the station’s
ITRF position by a constant value, a so-called eccentricity. Inaccuracies in each
of these models limit the accuracy of the ground station position function at the
sub-cm level (Altamimi et al., 2011; Rothacher et al., 2011). Also, inaccuracies
of Earth deformation models, both tidal and non-tidal, can limit the accuracy of
ground station positions. For instance, such inaccuracies can reach several mm due
to errors in the ocean and atmospheric tide models (Sośnica et al., 2013). Each
of these errors directly enter Eq. (2.1) as rA(t) or rB(t) (depending on whether
the ground station acts as transmitter or receiver), limiting the accuracy of the
ground station position function to the several mm level.

• Space segment dynamics. The dynamics of the space segment is typically esti-
mated from the laser ranging data, requiring a (parameterized) dynamical model.
The characterization of the dynamics of the space segment can be a limiting factor
in the attainable quality of science products of SLR. Typically, inaccuracies in the
modelling of non-conservative forces (radiation pressure, anisotropic reradiation,
etc.), as well as (time-varying) gravity will accumulate over sufficiently long times,
requiring the estimation of empirical accelerations and scaling parameters. Also,
it requires the cutting of the state estimation of the spacecraft into short segments
(arcs), (e.g., Seeber, 2003), which are typically in the order of days to weeks for
geodetic SLR satellites (Sośnica, 2014). This increase in the number of estimated
parameters, and the reduction of the length of the state arcs, lead to increased cor-
relations between the estimated parameters and a potentially reduced sensitivity
to the physical parameters of interest. In certain cases, such as the passive LARES
SLR satellite (Ciufolini et al., 2012), the design of the mission and the spacecraft
can inherently limit the influence of non-conservative forces, but such an approach
is typically hindered by the requirement for large solar panels, antennas, etc. on
(planetary) spacecraft. Alternatively, the use of accelerometers, (e.g., Flury et al.,
2008) or a full drag-free system, (e.g., Kundt, 1974; Theil, 2008) can decrease the
influence of non-conservative forces acting on a spacecraft.

• Tropospheric correction errors. As discussed in more detail in Section 3.1.4, at-
mospheric propagation causes both deterministic and stochastic variations in laser
pulse time of flight. Accuracy degradations at the order of 5-8 mm are estimated
by Exertier et al. (2006), which can be reduced to the (several) mm level using ray
tracing models. Atmospheric propagation model errors may be absorbed by the
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(frequent) estimation of range biases, but this can be at the expense of estimation
quality of other physical parameters.

The above issues will remain present in missions employing ILR. However, the dis-
tinct nature of planetary missions requires some additional considerations on how these
aspects influence the error budgets. For instance, the space-segment orbit propagation
can no longer be done in an Earth-centered frame (as is the case for SLR), and must
instead be performed in, for instance, a barycentric frame. As a result, uncertainties in
the a priori Earth ephemeris will enter the error budget of the ground station position
model. This can introduce a substantial additional source of error, since the ephemeris
of the Earth is several orders of magnitude less accurate than ILR measurements are
expected to be. Estimates for the uncertainty in planetary ephemerides can be obtained
by comparing differently generated ephemerides from similar data sets (Section 2.2.4).
By comparing the INPOP10a and DE421 ephemerides, (Fienga et al., 2011) obtain dif-
ferences for the position of the Earth-Moon Barycenter (EMB) at the level of several
meters (in the period where accurate tracking data are available), at the same order of
magnitude of the quality of radiometric range data that is currently available. However,
as discussed in Section 2.2.4, laser ranging will facilitate a substantial improvement in
planetary ephemerides, including that of the Earth, partly mitigating this source of er-
ror in the data analysis. However, it does indicate that the Earth’s ephemeris must be
estimated during ILR data analysis (in addition to the dynamics of the space segment)
to prevent its a priori errors to reduce the analysis quality.

For the highly accurate dynamical modelling that will be required for ILR, vari-
ous relativistic effects on the dynamics will become relevant, as discussed by Xie and
Kopeikin (2010) for next-generation LLR measurements, complicating the dynamical
models. Additionally, the gravitational influence of the asteroid belt will complicate the
accurate long-term dynamical modelling of (inner) solar system bodies, (e.g., Fienga
et al., 2009; Folkner et al., 2009). We discuss these issues in some more detail in Section
8.1.3.

Tropospheric models used to correct laser ranging measurements are the same for
SLR and ILR and therefore at the sub-cm, but not the mm-level (Section 3.1.4). Since
inaccuracies in tropospheric delay modelling increase with decreasing elevation angle (as
the atmospheric path becomes longer), ranging close to zenith is preferred to minimize
this source of modelling error. In ILR, however, this poses a unique challenge due to the
typical geometry of such missions. With some notable exceptions such as the Ulysses
mission (Wenzel et al., 1992), all interplanetary missions are performed very close to
the plane of the ecliptic, as this is where most targets of interest are located. However,
targets near the ecliptic will be visible in a limited range of elevation angles at most
SLR stations. Additionally, the range of visible angles from a given ground station to a
given target will vary with a period of roughly one synodic period. Due to the strong
concentration of SLR stations at mid-latitudes (see Fig. 3.7), with only few stations
near the equator, there will be a ’seasonal’ signature in the accuracy of ILR missions.
This variation in accuracy would be on the order of expected uncertainty variations in
atmospheric range corrections over a range of elevation angles, amounting to several
mm for elevation angles of 20◦ and lower (Hulley and Pavlis, 2007). To illustrate the
variation in elevation angle, we show the daily maximum elevation angle of Mars as seen
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Figure 3.10: Target geometry for Graz-Mars laser link showing both daily maximum target
elevation angle at Graz and number of hours per day with suitable target elevation angle
(> 10◦).

from Graz (see Fig. 3.7) SLR station in Fig 3.10. There, it can be seen that for a period
of about 300 days, the local elevation angle will stay below 25◦ at all times, a value
which will be similar for most stations in Europe.

To mitigate the atmospheric influence, it is proposed by Hurd et al. (2006) to place
the Earth-based transponder for an interplanetary communications link in Earth orbit.
This would put the atmospheric influence on the short Earth-orbit-to-Earth link and
mitigate the atmospheric influence on the long range link. For tracking purposes, how-
ever, this approach will most likely be of limited value, since the problem of atmospheric
propagation (as well as issues with orbiter modelling of the Earth-orbiting spacecraft)
would now be placed on the orbit determination of this relay satellite, propagating onto
the error of the interplanetary target. It would allow the influence of seasonal variations
in maximum elevation angle to be mitigated, though.

In addition to the direct errors in the calculation of a range observable, any model
inaccuracies in determining the range partial derivative ∂s/∂q for a certain parame-
ter q will limit the attainable accuracy for the estimation of this parameter q. Such
limitations can be caused by imperfect geophysical modelling incomplete or inaccurate
parameterization of a model, etc. A typical example of this phenomenon in SLR is
the mismodelled dynamics of the space segment discussed above. This aspect of the
uncertainty in data processing results in a general, but crucial, issue in the analysis of
ILR data, since planetary targets and their environments are typically characterized to
a much lower degree than the terrestrial environment. As a result, estimation model
inaccuracies could be an important issue when processing ILR data. The impact that
this will have on the quality of the data analysis will differ per mission, but a characteri-
zation of this source of error is crucial during mission definition. We discuss these issues
in more detail in Chapter 4 for a Phobos lander and in more general terms in Section
8.1.3.
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3.3 Current Status of Interplanetary Application

ILR has not yet been used as a tracking method for (inter)planetary missions. However,
substantial effort has gone into the development of the concept. Additionally, progress
in a number of related fields has improved its technological readiness. We discuss such
developments in this section. First, we give an overview of current activities using ILR
systems in Section 3.3.1, discussing experimental and operational implementations of
laser ranging. In Section 3.3.2 we provide an overview of mission proposals that have
included an ILR element, highlighting the improved science return that is expected from
its inclusion. In addition to applications for range determination by direct detection of
laser pulses, pulsed lasers can be used in space for a variety of applications in planetary
space missions. A number of these applications in current and upcoming mission share
many system characteristics with ranging systems, potentially making them strongly
synergistic, from a development, implementation and operations point of view. These
applications are: laser communications (Section 3.3.3), laser time transfer (Section 3.3.4)
and laser altimetry (Section 3.3.5). We give an overview of the past, current and fu-
ture implementations of these technologies, with a focus on interplanetary applications
and possible synergies with ILR. We only discuss systems employing direct detection of
pulsed lasers, omitting any discussion of the fundamentally different technology of laser
interferometry, such as that proposed for use on the Laser Interferometer Space An-
tenna (LISA) mission (Danzmann et al., 2003) or the follow-on to the GRACE mission
(Turyshev et al., 2014).

3.3.1 Experimental and Operational Status of ILR

The concept of ILR dates back to the 1980s (Zuber, 2006). Further development of the
concept, and serious consideration of its implementation in the laser ranging community
was initiated further by Degnan (1996); Degnan et al. (1998). Due to the emergence of
this field, transponder applications of laser ranging systems, most notably time transfer
and ILR, are now coordinated by a dedicated working group of the ILRS. Addition-
ally, workshops organized by the ILRS have routinely included presentations on various
aspects of the technology since the initial work of Degnan (1996). However, the ex-
perimental implementation of the technology in space missions has only been achieved
relatively recently. To date, three experiments involving the detection of laser pulses at
larger-than-lunar distances have been performed:

• Laser pulses sent to the Galileo spacecraft, en-route to Jupiter, were detected by
the spacecraft’s camera at a distance of 6 million km during the Galileo Optical
Experiment (GOPEX) (Wilson et al., 1993). Although this experiment did not
allow any range measurement to be obtained, as the received pulses were not
accurately time-tagged, it was the first demonstration of pointing of a laser system
at such distances, and validated existing models on the expected performance of
such a link.

• A two-way asynchronous laser link was established with the MESSENGER space-
craft en-route to Mercury using its Mercury Laser Altimeter (MLA) instrument,
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at a distance of 24 million km (Smith et al., 2006). This experiment represents the
first interplanetary two-way laser ranging experiment. Analysis of the data showed
a formal range uncertainty of 20 cm. This experiment demonstrated the feasibility
of the technique despite the lack of purpose-designed ILR hardware, such as pre-
cise laser signal acquisition and tracking capabilities (Degnan, 2008). Attempts
prior to the succesful experiment with MESSENGER were foiled by scheduling
problems, weather issues at the ground sites, and the spacecraft going into safe
mode days before the scheduled experiment (Zuber, 2006).

• In 2005, laser pulses from Earth were detected by the laser altimeter instrument
onboard the Mars Global Surveyor (MGS) (Abshire et al., 2006; Neumann et al.,
2008). No two-way link was possible for MGS, due to failure of the altimeter os-
cillator and the resulting inability to fire the laser. However, the (crude) detection
timing of the pulses from Earth allowed a clock offset of MGS to be determined
with a precision of about 10 ms.

All of these were experiments of opportunity, however, facilitated by the chance avail-
ability of deep space laser and/or receiver hardware. As such, the space segments were
by no means optimized for ILR operations in any of these cases, nor was the ground
segment experienced in performing them.

In addition to these laser ranging efforts over larger-than-lunar distances, one-way
laser ranging was used for the tracking of LRO (Zuber et al., 2010) until late 2014, when
funding for the experiment was discontinued. For LRO, orbit uncertainty is one of the
main sources of error for the topographic model and geodetic grid that are produced
with data from its Lunar Orbiter Laser Altimeter (LOLA) instrument, (Smith et al.,
2010). One-way laser ranging was added to the LRO spacecraft to improve its orbit
determination, with a number of ILRS stations serving as transmitters and LOLA as
receiver. The altimeter was designed to time both reflected altimetry signals from the
lunar surface and laser signals from Earth. Earth ranging was facilitated by using a fiber
optic cable connecting the Earth-pointing High-Gain Antenna (HGA) to the altimeter
assembly. To measure the laser pulse transmitted from Earth, a 5 ms range gate was
opened for terrestrial signal reception prior to the lunar surface range return gate. Using
this method, data with a precision of about 10 cm were obtained (Bauer et al., 2013),
limited by the design of the altimetry system. The accuracy of the data is degraded,
however, by the one-way nature of the data and the resulting accumulation of instabilities
in the clocks of both the ground stations and the spacecraft (Section 3.1; Chapter 6).
Complications in the analysis of the removal of clock noise from the one-way data (Bauer
et al., 2013), combined with the unexpectedly high quality of the (radio) Doppler data,
resulted in laser ranging not being included in the operational orbit determination of
LRO (Mazarico et al., 2010). Recent progress in one-way data processing and estimation
strategies, however, have led to laser ranging-only orbits that are of comparable quality
to those produced by combining radiometric and altimetry crossover data (Bauer et al.,
2014; Mao et al., 2013).

In addition to the routine one-way range observations, several experiments using
two-way laser ranging between ILRS stations and LRO have been performed (Sun et al.,
2014), representing an additional demonstration of the two-way asynchronous concept
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Figure 3.11: Figure showing the capabilities of emulating interplanetary asynchronous laser
ranging signal strength by colocated laser ranging to retroreflectors, reproduced from (Degnan,
2006). Minimum and maximum distances to solar system bodies shown in red, interplanetary
distance that can be emulated with representative SLR/LLR targets shown in blue. Circular
equatorial, Sun-centered (Earth-centered for the Moon) orbits assumed for determining mini-
mum and maximum distance from Earth to other solar system bodies.

beyond that of the MESSENGER spacecraft (although not quite at interplanetary dis-
tances). By performing Earth-scans over the area of the target ground station, the
far-field diffraction pattern of the altimeter system could be measured directly, allowing
for a better calibration of the data from LOLA. Also, this experiment allowed a pointing
error in the altimetry system to be identified. This shows the added operational value of
(occasional) two-way ranging using an altimetry system, which goes beyond a potential
improvement in orbit determination that is obtained from the ILR data.

Performing real ILR experiments requires the rare availability of a deep-space-based
pulsed laser system. However, as discussed in Section 3.2.1, laboratory experiments of
ILR systems have been performed (Chen et al., 2013; Blazej et al., 2014), achieving (sub-
)mm accuracy. An intermediate type of experimental implementation can be achieved
with existing SLR infrastructure, which goes beyond laboratory tests, but does not re-
quire an interplanetary space segment. Specifically, emulation of asynchronous two-way
laser ranging can be performed using two co-located laser ranging sites, by having both
sites perform SLR measurements of the same target simultaneously at different wave-
lengths (Degnan, 2006), thereby simulating an interplanetary link. Due to the inverse
quartic signal strength dependency that is inherent in reflector laser ranging (Section
3.1.5), such an experiment simulates the received energy level of an asynchronous two-
way system at far greater distances, see Fig. 3.11. Note that the distance that can
be emulated is not only dependent on satellite distance, but also the satellite reflection
properties (cross-section σcs), as shown by Eq. (3.15). Using LAGEOS, ILR distances
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of almost up to 1 AU can be emulated. A two-way emulation experiment via LAGEOS
was peformed at the Wettzell SLR station, where the transponder link at conditions
equivalent to a 0.44 AU distance for ILR (Schreiber et al., 2009a) were succesfully
demonstrated. Although this type of emulation allows expertise in the operation and
analysis of a two-way asynchronous link to be obtained, they do not fully simulate the
true interplanetary ranging conditions. For instance, it does not properly simulate the
long pulse time-of-flight and non-linear relative dynamics of the ground station and tar-
get in that time, typically requiring a bistatic receiver/transmitter setup (Degnan, 2002).
Also, the error budget of these measurements is essentially that of an SLR measurement,
not an ILR measurement (Section 3.2.1).

3.3.2 Proposed Missions Employing ILR

Despite the lack of complete maturity of one- and two-way laser ranging over interplan-
etary distances, there have been a number of mission proposals utilizing ILR. Here, we
give an overview of representative efforts in this direction.

Currently, the longest distance over which laser ranging has been performed is to the
retroreflectors on the Moon, at a distance of about 400,000 km. Due to the low signal
return of lunar reflectors only very few laser ranging stations, with poor geographic
coverage, are capable of performing LLR (see Fig. 3.7). Although the recent start of
operations of the APOLLO LLR system (Murphy et al., 2008) has substantially improved
the quality and quantity of LLR data, it will remain sparse into the foreseeable future. As
an additional source of lunar range data with mm-cm accuracy, it is proposed by Müller
et al. (2009) to let future lunar landers deploy active laser systems on the Moon. Active
laser transponders on the Moon can be used to improve the existing science return of
LLR (see Sections 2.2 and 2.3.3) and serve as a stepping stone for implementation of the
technology at larger distances, such as Mars (Merkowitz et al., 2007). General analyses
for the science return of a Mars lander performing ILR are presented by Chandler et al.
(2005) and Turyshev and Williams (2007), who analyse its potential for gravitational
physics, as derived from improved planetary ephemerides.

A laser ranging mission to Phobos is analyzed and described in detail by Turyshev
et al. (2010), and analyzed further here in Chapter 4. The primary objective of the
mission is the accurate determination of PPN parameters, the time dependency of the
gravitational constant and constraining a long-distance Yukawa potential (Section 2.3.1).
Additionally, the mission would provide valuable data on the orbital and rotational
motion of Phobos and the related science products described in Section 2.2 (see Chapter
4 for quantitative analysis). For the selection of Phobos as the location of the space
segment, a trade-off was made for different target locations, namely Mercury, Mars,
Martian moons and an asteroid. Phobos was deemed the optimal choice, as it has no
atmosphere, a much more benign thermal environment than Mercury, and a superior
conjunction occurrence compared to asteroids. A schematic representation of the mission
concept is shown in Fig. 3.12. A similar ILR mission to the asteroid Icarus is described
by Luo et al. (2009), with the goal of using laser ranging for accurate positioning of the
asteroid and associated determination of relativistic parameters.

An additional proposed mission concept to the Martian system that includes an ILR
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Figure 3.12: Schematic representation of PLR concept with laser transponders on Earth and
Phobos surface, from Turyshev et al. (2010).

element is the GETEMME mission proposal (Oberst et al., 2012). For this mission, a
spacecraft is to be sent to the Martian system for detailed study of the Martian satellites
Phobos and Deimos. Part of the mission calls for the placement of laser retroreflectors on
both moons, which can be used by the spacecraft for laser ranging, essentially achieving
SLR inside the Martian system. Additionally, the spacecraft is to perform asynchronous
laser ranging to Earth. Combined with data from onboard accelerometers, exceptional
improvements in ephemerides, gravitational physics parameters and geodetic observables
of the Martian system can be obtained. Further upcoming analysis of laser retroreflectors
for planetary missions is discussed by Dell’Agnello (2014), who proposes the use of
retroreflectors on landers (similar to the GETEMME proposal) on a variety of solar
system bodies, including Galilean and Saturnian moons. These reflectors would then be
ranged to by an orbiting spacecraft, allowing improved accuracy compared to altimetry
measurements (although only locally).

The possibility of including a one-way laser link on the Solar System Odyssey concept
is discussed by Christophe et al. (2009). This mission has the primary goal of probing
the behaviour of gravitational effects in the outer solar system, motivated by the then-
unexplained Pioneer anomaly (Turyshev and Toth, 2010). The inclusion of the laser link
mostly benefits an increase in accuracy for the determination of the PPN parameter
γ (Section 2.3.1) from occultation experiments. The laser link for this experiment is
envisioned to be one-way, based on the Télémétrie InterPlanétaire Optique (TIPO)
project, which is a proposed interplanetary extension of the T2L2 project (see Section
3.3.4).

A mission purely designed for fundamental physics objectives is the Laser Astromet-
ric Test of Relativity (LATOR) (Turyshev et al., 2004). Specifically, it is designed to
measure the curvature of spacetime to unprecedented accuracy and thereby test GR. It
is to use two spacecraft that perform laser ranging to each other, as well as to the ISS.
On the ISS, telescopes are to be placed at either end, forming a 100 m baseline optical
interferometer. The first incarnation of the LATOR concept was reported by Yu et al.
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(1994), which had the interferometric segment of the mission on the surface of the Earth.
A covariance analysis of the measurements that are to be performed by this mission was
given by Plowman and Hellings (2006), where the attainability of the science goals of
LATOR is reaffirmed, with one caveat. For the estimation of the PPN parameter γ,
the solar impact parameter (the closest distance between the laser pulse path and the
Sun) must be accurately known. They find that the value of this parameter can be
measured to higher accuracy by means of drag-free control of the two spacecraft than
when using the nominal setup of laser ranging between the two spacecraft. A mission
with some similarities to LATOR is proposed by Ashby and Bender (2008). It is to
measure the Shapiro time delay (Section 2.3.2) between two drag-free satellites, one in
an orbit similar to those in the LATOR concept, and one at the Earth-Sun L1 point.

In addition to the application of the laser link in conjunction experiments, where the
influence of gravitation is manifested directly on the light time (as is done in the LATOR
concept), laser ranging is well suited to reconstruct (long-period) spacecraft dynamics,
and thereby constrain physical parameters (as is done in for instance the PLR concept).
Such an approach is also proposed by Iorio (2013), who discusses the design of a mission
with a spacecraft in a highly elliptical drag-free heliocentric orbit, which is to perform
laser ranging to Earth. Due to the eccentric orbit, various relativistic effects can be
decorrelated much better than from planetary ephemerides (Section 2.3.3), allowing the
characteristics of the gravity field of the Sun (classical and relativistic) to be probed to
improved accuracy.

A set of space missions with the name Astrodynamical Space Test of Relativity (AS-
TROD) has been proposed by Ni et al. (1997); Ni (2008); Appourchaux et al. (2009);
Ni (2013). The proposed missions consist of drag-free spacecraft performing ranging
operations, both using an ILR system and using an interferometric system to mea-
sure extremely accurate range variations, to other spacecraft in the constellation and/or
Earth-based stations. An interferometric system allows changes in the range between
two link ends to be measured to an accuracy orders of magnitude greater than is the case
in ILR, but does not allow absolute range measurements to be obtained. The first pro-
posed ASTROD mission, termed ASTROD-I, is to have a single spacecraft performing
ranging to Earth using an ILR system. This mission has science goals similar to that of
the PLR and LATOR mission, focussing on gravitational physics observables(γ, β, Ġ/G,
etc.). Secondary objectives include the improved characterization of solar system dy-
namics and mass distribution. The followup missions ASTROD-II, ASTROD-GW and
Super-ASTROD are to consist of multiple spacecraft, performing interferometric ranging
(possibly combined with ILR) to one another, allowing the measurement of gravitational
waves, in a similar manner as is to be done by the LISA mission concept (Danzmann
et al., 2003). Such missions are beyond the scope of this dissertation, however. Addi-
tionally, these advanced ASTROD concepts will be able to measure oscillations of the
solar shape by time-variations of its gravitational field, as well as an independent de-
termination of its angular momentum through the Lense-Thirring effect (Section 2.3.2)
providing a unique probe of the solar deep interior.



Current Status of Interplanetary Application 89

3.3.3 Laser Communications

A technology strongly related to that of interplanetary laser ranging is optical deep-
space communications (Hemmati, 2006), in which the exchange of laser pulses (using
direct detection) is used to transfer data. Due to the low frequency of radio bands
when compared to optical wavelengths, the data rate that can be achieved with optical
communications systems using a system of a given size can be much greater, with similar
advantages and disadvantages w.r.t. the use of a radiometric system as is the case for
laser ranging (Section 1.2).

To achieve a high data rate in laser communications, multiple bits of information per
single received laser pulse must be attained. A typical encoding to achieve this scheme
is the (M -ary) Pulse Position Modulation (PPM) scheme (Hemmati, 2006). By dividing
a given time slot into M different disjoint intervals and transmitting a pulse into only
a single one of these intervals, k bits of information can be transferred where M = 2k.
Laser communications at larger-than-geostationary distance was first demonstrated by
the lunar orbiter LADEE, which included a laser communications system. It demon-
strated a data downlink with a data rate of > 500 Mbps using a transmitted pulse power
of 0.25 W (Boroson et al., 2014). Additionally, the laser communications system on the
LADEE spacecraft demonstrated two-way light time measurements with an accuracy of
200 ps, corresponding to about 6 cm two-way range accuracy. These data were obtained
automatically in post-processing during communications operations, without the need
for additional explicit considerations on ranging operations.

Despite the synergy between the two technologies, the requirements on the two show
some important differences. Firstly, ultra-precise timing of pulse arrival is not as crucial
for laser communications as it is for ILR (Section 3.2.1). That is, with the use of a PPM
system, the detection time uncertainty of a laser pulse is only relevant to the point where
it is sufficiently accurate to robustly distinguish between detection in different bins.
Detection timing improvements in ILR, however, directly improve the quality of the
range measurement (to the point where detection timing errors stop being a significant
error source, Section 3.2.1). Secondly, the successful detection of a large fraction of the
transmitted laser pulses is important for communications operations, whereas the pulse
detection probability is much less crucial in ranging operations. Although the use of an
error-correcting scheme can allow for data reconstruction in the case where a part of the
pulses remains undetected in a communications link, this will only work robustly down
to a certain fraction of missed pulses (depending on the correction scheme). For laser
ranging operations, however, even an exceptionally small detected pulse fraction (< 1%)
can be used to generate useful measurement data. In SLR, this is especially true for a
kHz pulse repetition rate system, where many pulses may be lost while retaining a data
volume that is comparable to that of a typical SLR system. As a result, single-photon
detection is not desirable for a communications system, while pointing requirements
become much more stringent, with accuracies down to (sub-)µrad level, (e.g., Lee et al.,
2001; Mohan et al., 2014), which is more than an order of magnitude more stringent
than typical laser ranging operations. An additional difference between the ranging and
communications systems stems from the asymmetry of the link, since communications
typically require a downlink with a much higher data volume. Similarly driven by the
need for high data rates, communications systems require very high pulse repetition
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frequencies, since data rate scales linearly with the number of received pulses, whereas
SLR systems typically operate at kHz frequencies at most.

Despite the different system requirements on optical ranging and communications
systems, a combined system was already proposed by Folkner and Finger (1990). Recent
developments in both communications and ranging applications of laser technology have
led to more mature proposals of combined systems (Hemmati et al., 2009; Wolf et al.,
2009; Hemmati, 2011). Such systems would have more stringent requirements than
either system separately, but by combining both functions into a single instrument (as is
currently done with radio systems), the total added value of the system on the spacecraft
can be greatly increased with a relatively small increase in cost.

In addition to synergy in the implementation of the technology, research in the field of
optical communications over interplanetary distances is of greater volume and detail in
a number of aspects than it is for ranging applications. One of the areas where a wealth
of research has been done for communications is in the field of pointing, acquisition and
tracking, which is highly important for communications purposes, due to the small beam
width and requirement for limited link outages, (e.g., Alexander et al., 1999; Lee et al.,
2001; Hemmati, 2006; Mohan et al., 2014). Relatedly, there has been extensive analysis
of the influence of atmospheric turbulence on link outages of a laser communications
system, which our development and discussion in Chapter 5 rely heavily upon.

The synergy between communications and ranging systems is further shown by the
experiments in laser communications that have been performed using SLR systems. The
SLR station in Graz used their kHz system to transmit data over a 4 km distance (Kirch-
ner et al., 2011), proving the capability of their system to concurrently perform ranging
and (low data-rate) communications operations. The NGSLR station demonstrated the
use of an SLR system to transmit data to the LRO satellite in lunar orbit (Sun et al.,
2013), using PPM on the one-way laser uplink to the spacecraft (Section 3.3.1). Ad-
ditionally, a station design adapted from the SLR2000 (now called NGSLR) for laser
communications is shown by Degnan et al. (2004) to be possible with a relatively low
investment in terms of cost and required technological development.

Although truly interplanetary laser communications have not been achieved so far
(with the LADEE satellite in lunar orbit being the most distant optical communications
target to date), technology demonstration was planned for the Mars Telecommunications
Orbiter, (Franklin et al., 2004), which was cancelled in 2005. However, extensive research
and technology development has gone into the preparation for this mission, (e.g., Ortiz
et al., 2000; Khatri et al., 2004). Implementation of laser communications to Earth orbit,
as for instance proposed for the next generation of Tracking and Data Relay Satellites
(Edwards and Israel, 2014), will continue to increase the maturity of the technology,
facilitating its inclusion on planetary missions. Also, the potential use of cubesatellites
and microsatellites at interplanetary distances (Klesh and Castillo-Rogez, 2012) may
greatly benefit from the use of optical communications and tracking (Staehle et al.,
2011), so as to prevent the use of a heavy and power-consuming radio system, although
at the expense of much more stringent pointing requirements.
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3.3.4 Laser Time Transfer

In addition to applications in ranging and communications, a (laser) link between two
distant stations can be used to synchronize the clocks of these stations, (e.g., Klioner,
1992; Blanchet et al., 2001). Such a clock synchronization has interesting applications
in experimental relativity (Section 2.3.3), as it allows the proper time rates of two
observers, described by Eq. (2.38), to be compared to very high accuracy, facilitating
the exploitation of relativistic clock effects for parameter estimation. With the use
of highly accurate clocks, time transfer may be used to measure accurate positions of
ground stations, contribute to gravity field determination by space missions, (e.g., Müller
et al., 2008a; Mayrhofer and Pail, 2012) and improve measurements of relativistic effects
(Section 2.3.3).

A laser time transfer system requires a laser pulse transmitter on Earth and a receiver
on the space segment in a one- or two-way setup, in an identical manner as a laser ranging
setup (Section 3.1.2). When both clocks perfectly reproduce their local proper time, and
the dynamics of both ends of the link is perfectly known, the proper time rates of the two
observers may be compared to within the laser pulse time-tagging accuracy and precision.
However, the degrading influence of clock noise on one-way ranging (Chapter 6) is the
same for one-way time transfer, making a two-way link highly desirable, which allows
for a strong decoupling of signals from the clock and the state dynamics, although state
errors may still propagate into the estimated clock behaviour (Chapter 7). However,
even in the case of two-way time transfer, this does not allow relativistic clock effects
and clock noise to be distinguished. Therefore, to analyze the long-term behaviour of a
clock, even when using two-way data, a highly accurate clock is required. The analysis
of the coupling between relativistic clock effects and translational dynamics is the topic
of the work described in Chapter 7, where the mathematical details of a time-transfer
link are discussed. In addition to ground-to-space time transfer, ground-to-ground time
transfer may be performed when multiple ground stations are used for time transfer to
the same space segment, (e.g., Exertier et al., 2014). When these ground stations are
operating simultaneously, common-view time transfer can be performed, in which the
accumulation of clock noise at the ground stations and space segment is minimal (as is the
case for two-way ranging). An example for common-view time transfer is shown by Mao
et al. (2014), who use one-way data to the LRO spacecraft. In non-common-view time
transfer, the ground stations perform time transfer to the same space segment in non-
overlapping arcs (for instance because of the lack of simultaneous visibility conditions),
causing integrated clock noise to degrade the quality of the time transfer.

For terrestrial satellites, the two-way link may be realized by the placement of retrore-
flectors on the space segment, using the same laser pulse for an active one-way uplink,
as well as a standard SLR two-way range measurement. For planetary missions, though,
a two-way link must be realized by means of an active two-way system (Section 3.1.2).
Unlike laser communications and laser altimetry, which impose different requirements
on the system in a number of key aspects, the system requirements for a laser time
transfer and active laser ranging system are largely equal. An important exception is
the long-term stability of the space-based clock, which is relevant for time transfer, but
not for two-way ranging. In fact, time transfer is a free by-product of both one- and
two-way planetary laser ranging.
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For a one-way setup, the consideration of the clock behaviour (both in terms of
relativistic effects and hardware stability) of both clocks is crucial for a correct analysis
of the laser ranging data (Chapters 6 and 7). For a two-way link, the inclusion of a time
transfer component need not be considered during the data analysis, as the clock effects
do not accumulate in the observations (Section 3.1.2). However, time-transfer data
can be extracted from a two-way link by using the up- and/or downlinks separately in
addition to the full two-way observable. Doing so introduces a coupling between the
clock behaviour analysis and the state dynamics, though, since an uncertainty in the
clock’s position translates into an uncertainty in its proper time behaviour. Duchayne
et al. (2009) conclude, however, that this effect is small for time transfer to typical
Earth-orbiting space segments and will not adversely influence the analysis of the data
from the ACES project (see below).

The first laser time transfer link was achieved by the LAser Synchronization from
Stationary Orbit (LASSO) experiment (Fridelance and Veillet, 1995). LASSO achieved
a precision of the time transfer between stations in Texas and France of better than
100 ps. Currently, laser time transfer using the T2L2 experiment onboard the JASON-2
satellite is ongoing, with a number of participating ILRS stations forming the ground
segment of the experiment (Exertier et al., 2010). For ground-to-space time transfer, a
stability at the ps-level was achieved over integration times of 75 s, at an accuracy of <
100 ps. Data analysis of the T2L2 time-transfer campaigns has yielded both common-
view and non-common-view time transfer data. For the common-view time transfer
using two systems slaved to the same reference clock (H-maser at the Grasse station) a
stability in the order of 10 ps over a single pass was obtained (Exertier et al., 2010).

Another notable time transfer effort is the laser time package on the Chinese Bei-
dou satellites (Prochazka and Yang, 2009; Meng et al., 2013), which represents the first
demonstration of laser time transfer to navigation satellites. The potential benefit of
laser time transfer to navigation satellites is discussed by Prochazka et al. (2011b), with
a specific focus on the Galileo constellation. The use of hydrogen masers onboard the
Galileo satellites will mitigate the main source of error that is present in the T2L2
experiment (clock noise), thereby facilitating substantially improved time transfer qual-
ity. Earth-to-space time transfer also has important applications for VLBI operations,
especially space-VLBI, in which (at least) one of the telescopes is in space (typically
Earth-orbiting), since the accurate signal correlation requires both accurate characteri-
zations of the orbit of the spacecraft, as well as its clock (HirabayashiEtAl, 1998).

A major upcoming advancement in the accuracy of laser time transfer will be achieved
with the Atomic Clock Ensemble in Space (ACES) project (Cacciapuoti et al., 2007)
which will contain both a cesium standard atomic clock and a hydrogen maser, and
is currently planned for launch to the ISS in 2016. By combining the stability of the
two clocks, a very accurate short- and long-term in-space clock assembly is realized.
This clock assembly will be combined with both a two-way radio time transfer (Delva
et al., 2012) and laser time transfer: the European Laser Time Transfer (ELT) system
(Schreiber et al., 2009b), for space-to-ground and ground-to-ground time transfer. In
addition to its applicability for, among others, precise measurement of the gravitational
redshift, it will demonstrate the use of highly stable clocks in space. Such clocks are
crucial for accurate interplanetary laser ranging, especially the implementation of one-
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way systems, as discussed in Chapter 6. Development of the ELT system has resulted in
a space-qualified ultra-short laser pulse detection package with high accuracy, precision
and stability, with important implications for the future implementation of ILR (Section
3.1.6).

3.3.5 Laser Altimetry

In addition to ranging to retroreflectors, spaceborne pulsed lasers can be used effectively
for ranging directly between a spacecraft and the surface of a planet, moon, asteroid,
etc. by the use of laser altimetry. In laser altimetry, laser pulses are directed to the
surface of a body and the reflected pulse is detected by the altimeter. The reflected pulse
intensity, temporal pulse shape and arrival time then provide information on the target
body’s surface albedo (at the laser wavelength), mean surface roughness and distance
between surface and spacecraft, respectively (Gardner, 1982; Hussmann, 2014).

Among the applications of laser technology discussed in this section (altimetry, time
transfer, communications), laser altimetry has the longest history, having been imple-
mented in over a dozen planetary missions since the 1970s (Hussmann, 2014), first im-
plemented in the Apollo program (Sjogren and Wollenhaupt, 1973). Resultantly, laser
altimetry has led to many developments in space-based lasers which are crucial for the
future implementation of ILR. In fact, each of the experiments in transponder laser
ranging at interplanetary distances so far (see Section 3.3.1) was performed using an
altimeter system.

A complication for the combined use of laser altimetry and two-way ranging with
the same system, however, are the different pointing requirements of the two systems.
Specifically, the altimetry system needs to point the laser towards the surface body,
whereas the ranging system requires Earth-pointing operation. Although the system
could be used in an alternating mode, this would complicate mission operations. Al-
ternatively, as demonstrated by the LRO spacecraft, the combined use of an altimetry
and one-way ranging system can be achieved by connecting the detector assembly to
the HGA by means of a fiber-optic cable (Zuber et al., 2010). Such an approach can
complicate the systems engineering of a spacecraft, however, since it creates a hardware
connection between two otherwise unrelated instruments.

As is the case with a laser communications system (Section 3.3.3), there are some dis-
crepancies between altimetry and ranging system hardware requirements. In an altime-
try system, the signal return rate is expected to be in the strong multi-photon regime,
facilitating the reconstruction of the pulse shape. Although this need not be a prob-
lem for ranging operations, which will typically need to function into the single-photon
regime, the system needs to be capable of providing sufficiently accurate detections in
both regimes. Additionally, the pulse-shape distortion by the surface diminishes the
accuracy with which an absolute altimetry measurement can be achieved. Therefore,
a laser altimeter system is typically not designed for a precision of better than 10 cm,
which is about 2 orders of magnitude worse than what is desirable for ranging appli-
cations. However, even with such a system, future spacecraft carrying laser altimetry
systems, such as the BELA instrument on BepiColombo (Thomas et al., 2007) and the
GALA instrument on JUICE (Grasset et al., 2013), may facilitate further experiments
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in asynchronous laser ranging, allowing greater operational experience to be gained and
demonstrating the use of the technology over multi-AU distances. Additionally, Earth-
ranging with an altimetry system can be used for calibration of the onboard clock of the
spacecraft and the far-field diffraction pattern of the laser (Section 3.3.1).



CHAPTER 4

Paper I - Science Return from a Phobos Lander

“We can learn about nature in increments [. . . ]. Physical reality does not have
to be understood all at once. Thank you, nature.”

– Anthony Zee, Fearful Symmetry (Revised edition), (Princeton University Press, 2007)
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Abstract Laser ranging is emerging as a technology for use over (inter)planetary dis-
tances, having the advantage of high (mm-cm) precision and accuracy and low mass
and power consumption. We have performed numerical simulations to assess the sci-
ence return in terms of geodetic observables of a hypothetical Phobos lander performing
active two-way laser ranging with Earth-based stations. We focus our analysis on the
estimation of Phobos and Mars gravitational, tidal and rotational parameters. We ex-
plicitly include systematic error sources in addition to uncorrelated random observation
errors. This is achieved through the use of consider covariance parameters, specifically
the ground station position and observation biases. Uncertainties for the consider pa-
rameters are set at 5 mm and at 1 mm for the Gaussian uncorrelated observation noise
(for an observation integration time of 60 s). We perform the analysis for a mission
duration up to 5 years.

It is shown that a Phobos Laser Ranging (PLR) can contribute to a better under-
standing of the Martian system, opening the possibility for improved determination of
a variety of physical parameters of Mars and Phobos. The simulations show that the
mission concept is especially suited for estimating Mars tidal deformation parameters,
estimating degree 2 Love numbers with absolute uncertainties at the 10−2 to 10−4 level
after 1 and 4 years, respectively and providing separate estimates for the Martian qual-
ity factors at Sun and Phobos-forced frequencies. The estimation of Phobos libration
amplitudes and gravity field coefficients provides an estimate of Phobos’ relative equa-
torial and polar moments of inertia with an absolute uncertainty of 10−4 and 10−7,
respectively, after 1 year. The observation of Phobos tidal deformation will be able to
differentiate between a rubble pile and monolithic interior within 2 years.

For all parameters, systematic errors have a much stronger influence (per unit un-
certainty) than the uncorrelated Gaussian observation noise. This indicates the need
for the inclusion of systematic errors in simulation studies and special attention to the
mitigation of these errors in mission and system design.

1 Introduction

Although there have been various proposed and launched missions targeting Phobos,
no in situ measurements of it have been performed yet. A number of missions to do
so are under investigation such as the Phobos Reconnaissance and International Mars
Exploration (PRIME) mission (Lee et al., 2008) consisting of a Phobos lander and orbiter
and the Phobos Laser Ranging (PLR) mission (Turyshev et al., 2010), a mission focussed
on performing direct-to-Earth laser ranging measurements. Current investigations of

(a): Delft University of Technology, The Netherlands
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Phobos employ direct observations by spacecraft such as Mars Express (Witasse et al.,
2014), as well as Earth-based tracking of past and current Mars orbiters and astrometric
observations (Jacobson and Lainey, 2014; Pascu et al., 2014).

In addition to in situ investigations, tracking of a Phobos lander would allow for
the direct observation of Phobos libration and deformation (Le Maistre et al., 2013).
Modelling of Phobos interior and orbital evolution constrained by available data has
not provided an undisputed answer on its origin (Rosenblatt, 2011), making further
investigation relevant not only for our understanding of the moon itself, but planetary
system evolution in general. Additionally, Phobos can be used as a drag-free Mars
orbiter, allowing potentially improved estimation of Mars physical parameters through
tracking of a lander.

Numerical simulations of tracking of spacecraft around and/or landers on Mars,
using various mission architectures (i.e. direct-to-Earth, lander-orbiter, etc.) have been
performed, for instance focussing on the estimation of Martian rotational parameters
and their relation to its interior structure (Yseboodt et al., 2002; Dehant et al., 2009; Le
Maistre et al., 2013) and the seasonal gravity field signal (Karatekin et al., 2005). These
studies largely rely on the use of classical radiometric tracking methods, although work
on new orbit determination methods, such as altimetry crossover (Rosat et al., 2008)
and same-beam interferometry (Yseboodt et al., 2012) is also ongoing. Simulations of
physical parameter determinations from the combination of Doppler and star tracking
observations by a Phobos lander were conducted by Le Maistre et al. (2013), with the
goal of constraining Phobos’ interior through measurement of its physical librations and
tidal deformation.

As an alternative to radiometric methods, interplanetary laser ranging (ILR) is under
development as a high-precision tracking technique (mm- to cm-level range) for use on
planetary missions, (Degnan, 2002). A number of recent mission concepts use this
technology, such as the PLR mission (Turyshev et al., 2010), and the Gravity, Einsteins
Theory, and Exploration of the Martian Moons Environment (GETEMME) Martian
system spacecraft mission (Oberst et al., 2012). The former of these is a Phobos lander
that is to perform mm-precise laser range measurements to Earth with the goal of testing
general relativity to unprecedented accuracy.

Here, we analyze the capabilities of a Phobos lander similar to the PLR concept to
estimate physical parameters of Mars and Phobos. Due to the high range measurement
accuracy, as well as the extremely low non-conservative forces acting on Phobos, it
is anticipated that significant improvements in their estimation uncertainties can be
achieved. From simulated range measurements, we estimate the tidal Love numbers of
Mars, as well as the tidal lag at the frequencies of the three main tide-raising bodies.
From these parameters, models for the interior structure of Mars can be constrained, in
a similar fashion as is now done with tracking data from Martian orbiters (Yoder et al.,
2003; Konopliv et al., 2006; Marty et al., 2009; Konopliv et al., 2011).

For Phobos, we simulate the estimation of the libration amplitudes, which are now
constrained to only ∼ 0.15◦ (Willner et al., 2010), and are related to its relative mo-
ments of inertia. We also simulate the estimation of Phobos’ degree-two gravity field
coefficients, the combination of which with the relative moments of inertia can be used to
determine Phobos’ absolute moments of inertia. Additionally, we investigate the estima-
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tion of the tidal deformation of Phobos (which is currently unobserved) from simulated
tracking data, placing further constraints on models for its interior structure by differen-
tiating between a monolithic and rubble pile structure. The composition of Phobos will
provide insight into its origin as well as its orbital evolution, through both long-term
propagation of its orbital dynamics and by comparing it to expected compositions from
various Phobos origin scenarios.

We first present an overview of the technology and operations of ILR in Section
2, where we also discuss the current state of the technology in terms of experimental
implementations and provide some details on the PLR mission concept. Subsequently,
the models for the dynamics of Phobos and the observations are presented in Section 3.
We discuss the relevance and observation signatures of the estimated geodetic parameters
in Section 4 and the estimation procedure in Section 5. The estimation results are
discussed in Sections 6 and 7 for Mars and Phobos geodetic parameters, respectively.
Finally, we present the main conclusions in Section 8.

2 Planetary Laser Ranging

Satellite Laser Ranging (SLR) is a space-geodetic technique that is used to directly mea-
sure distances from ground stations to Earth-orbiting satellites, e.g. (Pearlman et al.,
2002). It is, along with Global Navigation Satellite Systems (GNSS), Very Long Baseline
Interferometry (VLBI) and Doppler Orbitography and Radiopositioning Integrated by
Satellite (DORIS), one of the fundamental space-geodetic techniques used in the cre-
ation of terrestrial reference frames, e.g. (Altamimi et al., 2011). It has been used for a
variety of applications in Earth sciences, summarized by Exertier et al. (2006), such as
the determination of Earth rotational parameters, the determination of the behaviour
of the geocenter and the estimation of low degree and order terms of the Earth’s gravity
field. Similarly, data from Lunar Laser Ranging (LLR) has been used in the creation
of dm-level ephemerides of the Moon (Folkner et al., 2009) and estimation of the lunar
libration amplitudes and tidal deformation, leading to an increased understanding of
its interior structure (Williams et al., 2006). Additionally, both SLR and LLR have
been used in a number of space-based tests of relativity, summarized by Turyshev and
Williams (2007).

In this section, the extension of SLR and LLR to interplanetary distances is discussed.
Firstly, a general overview of the technique is presented in Section 2.1, followed by its
current status of implementation and experimentation in Section 2.2, and its specific
conceived implementation for the current study in Section 2.3.

2.1 Overview

The technology of SLR and LLR is based on the reflection of short laser pulses (typically
about 10-1000 ps), transmitted from Earth-based stations, by space-based retroreflec-
tors. By measuring the round-trip travel time of the laser pulse and applying corrections
for relativistic, tropospheric and hardware effects, the distance to the target can be de-
termined to sub-cm accuracy (Degnan, 1993). Due to the use of retroreflectors, the
received laser power falls off with R−4, where R is the distance from the ground station
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to the target. This aspect puts the Moon near the limit of its feasibility. However, by
using active laser transmitters and detectors at both ends of the link (i.e. replacing
the reflector by an active laser transceiver), the range dependency becomes R−2, allow-
ing sufficient power to be retained when ranging over interplanetary distances (Degnan,
2002).

Also, due to the absence of retroreflectors in such a two-way active configuration, the
uncertainty associated with the signature imposed on the laser pulses by reflectors (Ot-
subo and Appleby, 2003) is absent in ILR. This could potentially increase the attainable
measurement accuracy compared to SLR, since the received pulse shape can be predicted
better. However, this comes at the expense of the use of active space-based systems (laser
transmitter, detector, optics, pointing system, clock), which complicates both the design
and operations of the space segment. Additionally, new types of hardware-induced error
sources such as those resulting from the instabilities of the spacecraft clock and optical
detector, which are absent in reflector ranging, are introduced.

Using a laser ranging architecture with active systems at both ends of the link, one-,
two- and three-way (i.e. two-way with different ground stations) interplanetary laser
links can be established. In a one-way link, the space segment is typically equipped
with only a receiver, which is used to detect laser pulses transmitted from Earth-based
ground stations. The transmitted and received signals are then matched and a range
measurement is generated. However, since the two measurements are performed by
different clocks, the relative behaviour of the two clocks during the entire mission needs
to be either known from other independent sources or estimated.

In a two- and three-way laser ranging system, laser pulses are typically fired and
detected independently from one another by both ends of the link (Degnan, 2002), a
technique termed asynchronous ranging. To match transmitted to received laser pulses,
the laser pulse transmission time uncertainty (also termed jitter) inherent in transmitters
is employed, by matching the jitter pattern as recorded at both ends of the link (Neu-
mann et al., 2008). Alternatively, active pulse position modulation can be used to create
a pseudo-random code on the laser pulse transmission times, allowing the matching of
transmitted and received shots (Chen et al., 2013).

By matching the received and transmitted laser pulses, a two-way range measurement
is effectively emulated, plus a time delay between reception and transmission by the space
segment. In this case, synchronization of the spacecraft and ground clock is not needed
(Degnan, 2002). Therefore, in such a setup, the stability of the spacecraft clock does not
need to be of the same order as that of the ground station clock (Birnbaum et al., 2010).
By pairing up- and downlink range measurements, only the time between successive
receptions and transmissions at the spacecraft needs to be accurately measured, whereas
the ground-based clock needs to be stable over the sum of the paired up- and down-link
times.

Previous analyses of the attainable two-way ILR accuracy estimate that it is at the
mm- to cm-level (Degnan, 2002; Turyshev et al., 2010), similar to that of concepts using
retroreflectors (Degnan, 1993; Exertier et al., 2006). In addition to the spacecraft clock,
highly stable detectors and short laser-pulse transmitters will be needed, with require-
ments more stringent than for current space-based laser systems, such as altimeters.
For instance, the accuracy of the Lunar Reconnaissance Orbiter (LRO) one-way laser
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ranging system (see next section) is limited to about 10 cm due to hardware limita-
tions. However, ILR system requirements are within current technological capabilities
(Degnan, 2008).

2.2 Current status

A one-way laser tracking approach is used in the operations of LRO, using its laser
altimeter hardware (Zuber et al., 2010). However, the one-way range concept suffers
from the fact that time tags from two different clocks need to be combined, degrading
the performance. To characterize the behaviour of the spacecraft clock, concurrent
estimation of state and clock parameters is required, which is challenging by using laser
ranging data alone due to strong correlations between the two sets of parameters (Bauer
et al., 2013). Due to these complications, the laser ranging data was not used for
orbit determination of LRO (Mazarico et al., 2012), and only radiometric and altimeter
crossover observables were used instead. However, later efforts have shown the feasibility
of estimating LRO orbits (of a quality comparable to that derived from Doppler data)
using one-way laser ranging data only (Mao et al., 2013).

A two-way laser link was demonstrated by the MESSENGER spacecraft, at a distance
of 24 million km (Smith et al., 2006). The short (single pass) experiment of opportunity
yielded a formal error (see Section 5) of 20 cm in range, using the non-dedicated laser
altimeter hardware onboard the spacecraft. A one-way laser detection experiment from
Earth to the Mars Global Surveyor (MGS) laser altimeter detector was performed at
∼80 million km distance (Abshire et al., 2006). Although no two-way ranging link could
be established due to partial failure of the MGS hardware, it demonstrated the feasibility
of long-distance laser pointing and reception.

Previous in-flight experiments for ILR were performed using altimeter systems. How-
ever, in addition to altimetry systems, the use of laser communications on the Lunar
Atmosphere and Dust Environment Explorer (LADEE) satellite (Boroson and Robin-
son, 2013) and the laser communications demonstration that was planned on the now-
cancelled Mars Telecom Orbiter (Boroson et al., 2005) indicate an emerging application
of lasers for interplanetary communications purposes. Research in this field, as well as
the potential combination with ranging, is ongoing (Hemmati et al., 2009; Hemmati,
2011). The combination of ranging and communication activities has the advantage
that both require Earth-pointing operations, as opposed to altimetry which requires
nadir pointing operations.

A two-way architecture was simulated at the Wettzell SLR station by using two
collocated laser systems ranging to the same target at different wavelengths, effectively
emulating an interplanetary laser link (Schreiber et al., 2009a). This system used the
reflector technology, so that the total received signal strength was similar to what would
be expected for planetary laser ranging. A two-way asynchronous laser ranging system
was demonstrated in the laboratory over a distance of about 1 m by Chen et al. (2013),
who obtained a measurement accuracy at the 0.1 mm level.
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2.3 Phobos Laser Ranging Concept

A mission proposal for placing a laser transceiver on Phobos with the primary objective
of testing general relativity was described by Turyshev et al. (2010). There, the perfor-
mance of the system for retrieving relativistic parameters, such as the time-dependency
of the gravitational constant Ġ/G and the Parametric Post-Newtonian (PPN) parame-
ters β and γ was analyzed. In addition to the relativistic observables, mm-level ranging
to Phobos would allow for the observation of a variety of physical quantities of both
Phobos and Mars, the analysis of which is the focus of the current paper. For a laser
link from Earth to Phobos, the distance between the terminals is roughly between 55 M
and 400 M km. The design of the laser lander included a 40 kg laser payload system,
requiring 50 W of power for operations. We use a similar concept for simulating laser
ranging measurements for the purpose of estimating geodetic parameters of Mars and
Phobos, and use the analysis of Turyshev et al. (2010) for modelling the range precision
(see Section 3.3).

Due to the extremely small non-conservative accelerations acting on Phobos (see Sec-
tion 3.1), compared to a Mars orbiter, it can be seen as a drag-free system orbiting Mars.
Therefore, mismodelling of surface forces (primarily radiation pressure and atmospheric
drag) will have a negligible influence on quality of the analysis results (see Section 3.1).
This is in stark contrast to the tracking data analysis of artificial (planetary) orbiters,
where these contributions can dominate the error budget (Konopliv et al., 2006; Marty
et al., 2009; Konopliv et al., 2011). This long-term predictability of Phobos’ orbit makes
it ideally suited for estimating properties of the gravitational fields of Mars and Phobos,
such as their spherical harmonic coefficients and tidal variability. Additionally, track-
ing to a Phobos lander will allow the direct observation of the moon’s librations and
deformation.

3 Simulation models

To assess the capabilities of a PLR concept, simulated two-way (asynchronous) laser
measurements are generated, which are subsequently used as input to an orbit deter-
mination and parameter estimation model. From this, formal errors of and correlations
between the estimated parameters as a function of time are obtained.

The estimation software numerically integrates the equations of motion and varia-
tional equations, the result of which is used to simulate observations and the partial
derivatives of the observations w.r.t. the estimated parameters. These values are then
used as input for the estimation process, which uses the same models as the simulations
from which the measurements were generated. The influence of and mitigation strategy
for the fact that the estimation and truth models used here are equal are discussed in
Section 5.3. A software packaged (Dirkx and Vermeersen, 2013) based on the Tudat
astrodynamics toolbox (Kumar et al., 2012) is used to perform all simulations.

The models used for to the dynamics, environment and observations are presented
and discussed in Sections 3.1, 3.2 and 3.3, respectively.



Simulation models 103

3.1 Dynamical models

For the dynamical simulations, the equations of motion of Phobos are numerically in-
tegrated using a variable step size RKF7(8) integrator (Montenbruck and Gill, 2000),
yielding the state (position and velocity) of Phobos as a function of time xp(t). Con-
currently with the equations of motion, the variational equations are integrated by ana-
lytically calculating and combining the partial derivatives of the acceleration w.r.t. the
state and the estimated parameters, yielding the state transition matrix Φ(t, t0) and
sensitivity matrix S(t) (Montenbruck and Gill, 2000). The vector of estimated parame-
ters is here denoted as p, which is divided into initial state parameters x0 and remaining
(environmental) parameters pe as:

p =

(
x0

pe

)
(1)

from which the state transition and sensitivity matrices may be expressed as:

Φ(t, t0) =
∂x(t)

∂x0
; S(t) =

∂x(t)

∂pe
(2)

which are used for the setup of the observation partials, as will be discussed in Section
3.3.

For calculating the trajectory, the following accelerations on Phobos are included in
the simulations:

• Mutual gravitational attraction between Phobos and Mars. The gravity fields are
expressed as spherical harmonics series, with the Mars field expanded to degree and
order 12 and the Phobos field expanded to degree and order 2. The gravitational
acceleration is modelled as follows, after Lainey et al. (2001):

r̈p = − (µm + µp)

(
rp
r3
p

−∇pUp̄m̂ +∇mUm̄p̂
)

(3)

where µ denotes a gravitational parameter, U a gravitational potential, r a posi-
tion vector in a Mars-centered inertial (MCI) frame and the m and p subscripts
denote quantities associated with Mars and Phobos, respectively. The bar and
hat notation on the potential subscripts denote the point mass and extended body
contributions, respectively. See Lainey et al. (2001) for a more extensive discussion
of this model. The models from which the (time-dependent) spherical harmonic
coefficients of Mars and Phobos are derived are presented and discussed in Section
3.2.

• Third-body attraction due to the Sun, Deimos, Earth’s Moon and all planets.
All third bodies are considered as point masses. Although the influence of the
Sun’s J2 coefficient is expected to be observable in the dynamics of Phobos, as
shown by Turyshev et al. (2010), we do not include it here, as we will not include
their estimation parameters. Similarly, the influence of relativistic effects on the
dynamics is omitted. The influence on the estimation results was concluded to be
negligible by investigating results from a full simulation including these effects.
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Solar radiation pressure on Phobos, although at the limit of observability at ∼ 10−13

m/s2, as calculated for a spherical Phobos from Montenbruck and Gill (2000), is not
included in the dynamical model. A verification run including this acceleration was
performed, and it was concluded that it has a negligible influence on the estimation
results.

3.2 Environment models

In this section, the models that have been used for the characteristics of Mars, Phobos
and third bodies will be discussed.

The static spherical harmonics gravity field of Mars that is used was derived by
Lemoine et al. (2008). Gravity field variations due to seasonal ice and atmosphere mass
distribution, with the theoretical model from Sanchez et al. (2006), are used for the zonal
spherical harmonic coefficients J̄i(= −C̄i0) of degree i = 1...8, modelling the changes as
a combination of trigonometric terms with integer number of cycles per Martian year.

Tidal variations of Mars’ gravity field due to Phobos, Deimos and the Sun are in-
cluded for degrees two and three. The spherical harmonic coefficients of Mars are mod-
ified directly as follows (Petit et al., 2010):

∆C̄n,m(t)− i∆S̄n,m(t) =
knm

2n+ 1

∑
j

µj
µm

(
Req

rj(t̃n,j)

)n+1

· ...

... · P̄nm
(

sinφ
(m)
j (t̃n,j)

)
e−imλ

(m)
j (t̃n,j) (4)

t̃n,j = t−∆tn,j (5)

where C̄n,m and S̄n,m are the cosine and sine coefficients of the spherical harmonic
gravity field expansion, Req the equatorial radius of Mars, knm the Love number at

degree and order n and m, and φ
(m)
j and λ

(m)
j the Mars-fixed latitude and longitude,

respectively, of body j. The time delay ∆tn,j of the tide of order n raised by body
j is due to the viscoelastic response of Mars. From this equation, the tidal influence
on Phobos’ acceleration is calculated through Eq. (3). A discussion on the influence
of Phobos’ orbit and geophysical implication of models for Mars tides is presented in
Section 4.3. The Mars rotation model by Konopliv et al. (2006) is used.

For Phobos, the gravity field values for C20 and C22 as estimated by Lainey et al.
(2007) are used, with other terms nominally set to zero. The rationale for this will be
discussed in Section 7.1. The gravity field of Phobos is modelled as being static, since its
variations are not expected to produce observable effects given the present measurement
accuracies.

We use the Phobos libration model by Rambaux et al. (2012), who numerically
integrate its rotational equations of motion, using Lainey’s ephemeris solution, and
perform a frequency decomposition of the results. We use this libration model, cast
in the form of Le Maistre et al. (2013), with additional terms from Rambaux (2013).
The model decomposes the rotation into three Euler angles α, δ and W (right ascension,
declination and longitude of prime meridian, respectively), from which the rotation
matrix from J2000 (Moyer, 2000) to the Phobos-fixed frame, denoted RP/I , is derived
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as follows:
RP/I = Rz(W )Rx(π/2− δ)Rz(π/2 + α) (6)

The libration contribution to each Euler angle is calculated from the following, with γ
used a placeholder notation for any one of the three Euler angles:

∆γ(t) =
∑
j

γcTj cos

(
2π

Tj
t

)
+ γsTj sin

(
2π

Tj
t

)
(7)

where Tj denotes the period of the jth term and γcTj and γsTj denote the amplitudes

of the cosine and sine contribution of the jth term, respectively. In addition to these
trigonometric terms, we use the constant and linear terms for the three angles, as well
as the quadratic term in W , taken from Seidelmann et al. (2002).

The degree-two Phobos deformation due to the tidal potential of Mars is included
by calculating the resulting Phobos-fixed position change of a surface point ∆rp(t) from
the first-order equation from Petit et al. (2010):

∆rp(t) = h2

∑
j

µjR
4
eq

µpr3
j

r̂p
(

3 (r̂j r̂
p)− 1

2

)
(8)

where Req is Phobos’ reference (mean equatorial) radius, rj is the vector from the
center of Phobos to the body causing tidal deformation (in a Phobos-fixed frame), and
rp is the Phobos-fixed point where the deformation is to be modelled. However, since
Phobos is tidally locked, the majority of this deformation will be constant and cannot
be separated from the nominal lander position by a time history of range measurements.
Consequently, the measurable deformation of Phobos is described by the following:

∆rpmeas(t) = ∆rp(t)−∆rp(t) (9)

where the overbar denotes the average value over the complete simulation time and
∆rp(t) is evaluated from Eq. (8).

For all third-body effects, we use the ephemeris and gravitational parameters of the
DE421 planetary ephemeris (Folkner et al., 2009).

3.3 Observation simulations

Range observations between Earth-based stations and the Phobos-based lander will be
simulated using the result of the numerical integrations of the equations of motion de-
scribed in Section 3.1 and the Phobos rotation and deformation models described in
Section 3.2. The states of the stations involved in the observation are evaluated in a
barycentric frame, with axes oriented along J2000. From this, the light time equation(s)
are solved (Moyer, 2000) and range corrections, such as troposphere and relativistic
effects are applied.

For the Earth-based stations, a set of 8 SLR stations is selected, the combination of
which gives relatively good global coverage. The approximate position of these stations is

2http://ilrs.gsfc.nasa.gov/
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Table 1: Used SLR ground stations and their approximate geodetic positions2

Station name altitude [m] latitude [deg] longitude [deg]

Graz 495 47.07 15.49
McDonald Observatory 2006 30.68 255.98
Yarragadee 244 -29.05 115.35
Hartebeesthoek 1406 -25.89 27.69
Koganei 114 35.71 139.49
Greenbelt 19 39.02 238.18
Arequipa 2489 -16.47 288.51
Matera 537 40.65 16.70

given in Table 1. In the simulations, their positions are taken from the ITRF2008 (Petit
et al., 2010). It should be stressed that these stations were chosen as a representative set
of tracking station positions and do not represent the required or expected set of stations
for the mission, nor do their current systems necessarily reflect required capabilities for
ILR. Ground station feasibility and selection would depend on the up- and downlink
budget and derived system requirements. The Phobos lander will be assumed to be
situated on a tri-axial ellipsoid, with axes as given by Willner et al. (2010). The nominal
location of the lander is the same as used by Le Maistre et al. (2013): at a latitude of 14◦

and a longitude of 224◦, which was the approximate position the planned Phobos-Grunt
landing site.

Processed laser range observations are typically published as normal points (Degnan,
1993), which are a statistical average from a set of single-shot measurements. We take
a similar approach in our simulation to prevent the calculation and processing of an
excessive number of observations. We use the following settings for generating range
measurements:

• Each ground station performs one 30 minute observation arc per day.

• During each 30 minute arc, a single normal point observation is generated per 60
s.

• Each normal point has a precision σobs of 1 mm, generated independently from a
Gaussian distribution with zero mean and σobs standard deviation.

The measurement integration time of 60 s and precision of 1 mm for the observations were
taken from Turyshev et al. (2010). We omit here the influence of weather conditions,
day/night ranging and other system outage events, instead assuming tracking passes
from the given 8 stations each day. The influence of the precise choice of ground stations
that perform the tracking is expected to be of limited influence, though, assuming a
similar global distribution of stations.

All observations are subject to a number of constraints. For each ground station, the
first opportunity each day for a contiguous 30 minute arc (or maximum arc duration if no
30 minute arc is feasible) is identified and measurements are simulated. The constraints
are the following:



Mars and Phobos physical parameters 107

• No observation is possible in case of link occultation by the Moon or Mars.

• No observation is possible for solar separation angles ≤ 5◦. This constraint is
imposed to prevent inclusion of observations for which the stray light would be
too intense to separate the signal from the noise photons.

• Local elevation angle both at the lander and at the ground station must be ≥ 10◦.

The first and third constraint will result in short periods in which no observations are
possible, whereas the solar separation angle constraint will result in a longer observation
outage. For relativistic observables, the estimation precision can be very sensitive to
the precise constraint function value of the separation angle, (Turyshev et al., 2010).
For our estimated parameters, however, there is no direct dependence on the laser pulse
trajectory’s solar impact parameter. However, the duration of the link outage could be
influential in the estimation of certain parameters. Here, we set the Sun separation angle
at 5◦, which is a conservative lower bound (Hemmati, 2006; Turyshev et al., 2010). A
detailed analysis of mission geometry parameters on interplanetary laser ranging analysis
will be presented in future work.

4 Mars and Phobos physical parameters

In this section, we give an overview of the relevance of the geodetic parameters of which
the estimation is simulated, in terms of understanding the behaviour of the Martian
system. Also, matters relating to their signatures on the range data are discussed where
applicable. First, the static gravity fields are discussed in Section 4.1, followed by
the relation between Mars’ precession rate and its moments of inertia in Section 4.2.
Subsequently, matters related to Martian tides (i.e. Love numbers and quality factors)
are discussed in Section 4.3, followed by an overview of Phobos librations and moments
of inertia in Sections 4.4 and 4.5, respectively. Finally, Phobos tides are discussed in
Section 4.6.

4.1 Static gravity fields

Although the orbit of Phobos is near-equatorial and near-circular, it will be possible
to retrieve low-degree static coefficients of the gravity field of Mars and Phobos. How-
ever, since only tracking to a single target in a (nearly) constant orbit is considered, the
full spherical harmonic gravity field cannot be estimated (Yoder et al., 2003; Karatekin
et al., 2005), since even- and odd-degree zonal coefficients cannot be decoupled. Instead,
lumped even- and odd-degree zonal coefficients are obtained. However, by combining
tracking data to Phobos with that to other Mars orbiters, the parameters can be de-
coupled, although at an uncertainty partially limited by the tracking of the spacecraft.
Here, we limit ourselves to the analysis of tracking data from a Phobos lander only.

As with the estimation of the Martian gravity field, it will not be possible to decouple
the even and odd gravity field coefficients of Phobos, due to the symmetry of Eq. (3) in
the p and m subscripts.
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The lumped even- and odd-degree zonal gravity field coefficients are primarilly due
to the J̄2 and J̄3 terms, respectively. The influence of higher order terms is quantified in
Appendix A. For the Mars gravity field estimation, the degree four and five terms both
contribute roughly 0.4 times the primary term to the even and odd lumped coefficients,
respectively. For the Phobos even lumped coefficient, the contribution is only at the
5 · 10−10 level.

From the degree-two spherical harmonic coefficients, relative values of principal mo-
ments of inertia can be obtained. However, for determining the absolute moments of
inertia, additional information is required. For Mars, the rotational precession rate is
used here (see Section 4.2). For Phobos, the libration amplitudes are used (see Section
4.4).

4.2 Mars moments of inertia

By combining the gravity field coefficients estimation with that of the rotational pre-
cession rate of Mars ψ̇m, its polar moment of inertia can be calculated. Currently, the
dominant error term in the calculation of the absolute polar moment of inertia is the
uncertainty in ψ̇m (Konopliv et al., 2011). The uncertainty in the normalized polar
moment of inertia C/(MmR

2
eq), which we denote as C ′ follows from:

σC′ =
C ′

ψ̇m
σψ̇m (10)

An improvement in the determination of Mars’ polar moment of inertia will also result in
an improvement of the determination of its mean moment of inertia through combination
with other degree-two spherical harmonic gravity coefficients.

For a spherically symmetric Mars interior model, it is the mean moment of inertia
that can best be used to constrain its radial mass profile (Khan and Connolly, 2008),
putting limits on the density and size of the core and mantle. However, additional
constraints will be required to be able to properly distinguish between different core
compositions, such as Love numbers (see Section 4.3) and other properties of Mars to
which a Phobos lander is not sensitive (see Section 6.3).

4.3 Mars tides

As described in Section 3.1, tidal bulges are raised on Mars by other bodies, influencing
the dynamics of Phobos due to their influence on the Martian gravity field, described
by Eq. (4). Due to Mars’ viscoelastic response, the tide raised by Phobos is slightly
behind the Martian sub-Phobos point, since Phobos is below areostationary orbit and
its orbital period is therefore shorter than Mars’ rotational period. As a result, a secular
effect on the orbital longitude of Phobos is observed.

The tidal lag can be quantified by the quality factor Q, a measure for the dissipation
of tidal energy (at a given frequency and degree), which is related to the tidal time lag
∆t, see Eqs. (4) and (5), as follows:

∆t =
T sin−1 (1/Q)

2π
(11)
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where T is the period of the tide (i.e. the synodic period of one Martian day and one
orbit of the tide-raising body).

The additional acceleration exerted on Phobos due its own degree-two tidal bulge is
calculated from (Lainey et al., 2007):

∆r̈p =
3k2,MµpR

5
M

r8

(
r + ∆t

(
2r (r · v)

r2
(r×ΩM + v)

))
(12)

where the term multiplied by ∆t causes the secular perturbation in longitude. Combi-
naton with Eq. (11) indicates that the secular effect is approximately proportional to
k2/Q. Higher-order tidal deformation of Mars, i.e. due to k3, k4, ... will also produce
additional secular accelerations on Phobos’ longitude, which could be obtained explic-
itly by generalizing Eq. (12). Here, Eq. (12) is not evaluated directly, but is included
indirectly by evaluating Eq. (3) using Eq. (4) for the variations in Mars’ potential.

An overview of published estimates of Q is given by Jacobson and Lainey (2014).
The smallest uncertainty of Q is obtained by Jacobson (2010) at 0.2. However, since
the Q estimations from different sources do not coincide to within their error margins,
we assume an a priori uncertainty of 1.

The tides of the Sun and Deimos do not cause a secular precession in the longitude
of the node of Phobos. Instead, they only cause periodic variations. Currently, the
separated Sun- and Deimos-raised tides’ tidal lags are unobserved from dynamics of
Mars orbiters.

The interior structure of Mars can be parameterized by a variety of models, an
extensive overview of which is given by Rivoldini (2012), who uses the current value of
k2, among others, to constrain the Martian interior. Tidal Love numbers are related
to the body’s density and elasticity profiles. As a result, they are a strong indicator
of the existence, size, composition and current state of the Martian core (Yoder et al.,
2003; Rivoldini et al., 2011; Dehant et al., 2011). A possible estimation of k3 by the
PLR mission will provide further information on the Martian interior, as indicated by
the numerical examples of Konopliv et al. (2011).

Current estimates of the value of Mars’ k2 from tracking data of Mars orbiters differ
substantially, well outside their published error ranges, as summarized by (Konopliv
et al., 2011). One the reasons for these differences can be attributed to spacecraft
surface force mismodelling and estimation. Also a lack of (or imprecise) corrections for
the atmospheric tides on Mars degrade the estimation of k2. The first of these aspects
is mitigated for a Phobos lander, due to the negligible non-conservative forces acting
on it (see Section 3.1). The second, however, will require improved modelling, as well
as in situ atmospheric observations from current and future Mars landers. Finally, by
estimating a lumped value for k2 instead of the Love numbers per order (i.e. k20, k21

and k22 separately), which is a typical approach, different spacecraft will experience a
different effective degree-two Love number, so that different combinations of tracking
data, or differently weighted data, could produce slightly different estimates even in the
ideal case of absence of any mismodelling. This effect is mitigated here by estimating
separate Love numbers for each degree (see Section 5.2).

In principle, both the Love numbers and the quality factors can be dependent on the
frequency of the raised tide. A variety of models for determining the tidal frequency-
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dependence of Q exist, an overview of which is given by Efroimsky and Lainey (2007).
The frequency-dependent quality factor behaviour can be used as a measure for the
rheology of the body. An extensive discussion on the implications of the frequency
dependence of Q for the Martian system evolution is given by Efroimsky and Williams
(2009).

We model only the quality factors as being frequency dependent, since their frequency
dependence is expected to be much stronger than that of the Love numbers (Efroimsky
and Lainey, 2007) and no evidence for the frequency dependence of the Martian Love
numbers has been found (Konopliv et al., 2011). Also, Bills et al. (2005) conclude that
for the expected Martian viscosity range, the Love numbers will be ”quite independent”
from the tide-forcing frequency.

4.4 Phobos librations

Due to the non-symmetric shape and mass distribution of Phobos and its eccentric orbit
around Mars, its physical rotation exhibits librations. The behaviour of these librations
can be related to Phobos’ internal mass distribution, as discussed in Section 4.5.

The primary libration of Phobos, a once-per-orbit term in longitude, is the only
presently observed libration of Phobos. It has been determined independently from
both photometric data and dynamical simulations by Willner et al. (2010) and Jacobson
(2010), respectively. The two estimates agree within their respective error margins, with
the smaller uncertainty that of Willner et al. (2010), at ±0.14 degrees.

The Phobos libration model used here is the one generated by Rambaux et al. (2012)
(see Section 3.2), which includes librations in both longitude and latitude (which are so
far unobserved). Although our estimation will be precise to a level that is beyond the
truncation amplitude of the libration model, we restrict ourselves to the given frequency
decomposition, but will discuss the results in a general manner in Section 7.3, indicating
the influence of observed and potential correlations. To mitigate the influence of the
existence of unmodelled libration modes in the mission’s data analysis, a frequency
decomposition of observed residuals could be used to both recognize unmodelled libration
terms and potentially identify model errors of the libration model, as discussed by Le
Maistre et al. (2013). Alternatively, the rotational and translational equations of motion
could be used concurrently, estimating not the libration amplitudes, but the initial
rotational state, the dynamics of which would be derived from its inertia tensor and
forcing torques.

4.5 Phobos moments of inertia

The amplitudes and phases of the librations are related to its mass distribution through
its moments of inertia and gravity field (Borderies and Yoder, 1990; Rambaux et al.,
2012). Therefore, measuring the amplitudes of these librations will, combined with the
degree-two spherical harmonic coefficient estimation, allow the improved estimation of
Phobos’ structure and composition through their relation with the inertia tensor.

Interior structure models of Phobos, constrained by current observational data, show
that it possesses a substantial fraction of voids and/or ice (Andert et al., 2010; Rosen-
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blatt, 2011). These voids will be manifested in both its response to external forcing
torques and its tidal deformation.

The list of amplitudes of the librations, given in Appendix C, can be seen to be a
combination of long-period motions, with periods &1 year, and those with short-period
motions, with periods .1 day. Only the latter category contains useful information on
Phobos’ interior, as its response at these frequencies is mainly influenced by its inertia
tensor (Rambaux et al., 2012). The long-period librations are forced by Mars’ long-
period and secular rotation variations and their estimation is not strongly related to
Phobos’ moments of inertia. This can be seen from the following first-order equation
(neglecting higher-order feedback effects), which relates a forcing amplitude Γf at fre-
quency ωf to a libration amplitude γf (using the notation of Eq. (7)) through the proper
mode of the given libration angle νγ (Le Maistre et al., 2013):

γf =
ν2
γ

ν2
γ − ω2

f

Γf (13)

which shows that the influence of νγ goes to zero as ωf � νγ . Also, it shows that, in
the first-order approximation, the libration amplitude goes to infinity as the forcing and
proper-mode frequencies approach one another.

The libration amplitudes can be directly related to Phobos’ relative moments of
inertia, denoted by:

ζ =
C −B
A

β =
C −A
B

γ =
B −A
C

(14)

where A, B and C are Phobos’ absolute moments of inertia, in ascending order of
magnitude. The relation between (uncertainties in) Phobos’ libration amplitudes and
its proper modes and subsequently between the proper modes and the relative moments
of inertia are discussed in Appendix B. The longitude libration directly constrains the
γ ratio, whereas the other two libration components jointly constrain the ζ and β ratios.

4.6 Phobos tides

The Martian tidal potential causes Phobos to undergo deformation, as discussed in Sec-
tion 3.2. As a result, periodic variations in the Phobos lander positions may be observed
in the range measurements. In our model, the deformation of Phobos is quantified by
its second-degree deformation Love number h2, as shown by Eq. (8).

Currently, no direct measurement of this parameter is available, but constraints can
be placed on it by Phobos interior modelling. An analysis of the observability of h2 Love
number by Doppler tracking was done by Le Maistre et al. (2013). They show that a
sufficiently precise estimation of the parameter would allow for differentiation between
a rubble pile or monolithic structure of Phobos, as well as estimating its mean rigidity,
putting constraints on Phobos’ origin (Rosenblatt, 2011).

In addition to the magnitude of the deformation, the time lag of the raised tide
may be observed, in a similar fashion as the observed Mars tide (see Section 4.3) The
quality factor of Phobos is related to its orbital evolution, and is therefore related to the
investigation of theories of its formation and origin scenarios, (Mignard, 1981).
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5 Parameter estimation

Observations are generated using the models described in Section 3 over a mission dura-
tion of 5 years. By taking a long mission duration, we analyze the potential added value
of an extended mission for each of the science observables (detailed in Section 5.2).

The simulated data is used as input for a weighted batch least squares estimation.
In this process, Gaussian noise with standard deviation σobs is used to determine the
measurement weight wi,i = 1/σ2

obs, where wi,i denotes entry i on the diagonal of the
weight matrixW . Also, we use a diagonal a priori covariance matrix P (a.pr.) to regularize
the inversion problem. The regularization is required in the initial phase of the mission,
where only few observations with very little geometric diversity are available. The a
priori parameter values are based on their current best estimates. Since the PLR mission
is expected to provide strong improvements in most parameters (see Sections 6 and 7),
the influence of the regularization diminishes as the mission begins to return substantial
parameter improvements. The complete covariance matrix P is then obtained from
Montenbruck and Gill (2000):

P−1 =
(
P (a.pr.)

)−1

+
(
P (0)

)−1

(15)

P (0) =
(
HT
p WHp

)−1
(16)

where Hp is the matrix of partials of the observations w.r.t. the estimated parameters
and P (0) is the covariance matrix without the a priori contribution.

In Section 5.1, the setup of the partial derivatives that make up the matrix Hp is
discussed. Subsequently, in Section 5.2 the list of estimated parameters is given and
discussed. Finally, a discussion on the use of consider covariance is given in Section 5.3.
Consider covariance is used to analyze the influence of systematic errors, which are not
directly included in the observation models presented in Section 3.3.

5.1 Observation partials

The partial derivatives of the observations w.r.t. the parameter vector, from which Hp is
constructed, are calculated from the state transition and sensitivity matrices (see Section
3.1) as follows, where h denotes a single observation:

∂h

∂p
=
∑
j

∂h
∂x

(tj)

∣∣∣∣∣
p=const.

∂x

∂p
(tj)

+
∂h

∂p

∣∣∣∣∣
x=const.

(17)

∂x(t)

∂p
=

(
Φ(t, t0) S(t)

0npe×6nb Inpe×npe

)
(18)

where npe is the size of the vector pe in Eq. (1) and nb is the number of bodies
for which the initial state is estimated. The summation takes place over all times
associated with the observation (reception, transmission, etc.) and x here denotes the
vector of all numerically integrated states (in this case only Phobos). The Jacobians in
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the summation are evaluated at different times allow for any possible significant changes
in their values between the start (typically transmission) and end (typically reception)
of the observation.

It can be seen that the influence of a model parameter on the observation partial
is twofold. Firstly, the influence of the state of Phobos on the observation is included,
which is mapped to the influence of the parameter by the Jacobian matrix ∂x(t)/∂p,
effectively coupling the dynamics of the body to the estimation of the parameter. In
the second term of Eq. (17), the direct influence on the observation is included, which
represents the influence that is independent of changes in the estimated bodies’ states.

When estimating the libration amplitudes, both contributions to the observation
partial in Eq. (17) are non-zero. The direct contribution follows from a different inertial
lander position due to a change in libration amplitude, and is the one used by Le Maistre
et al. (2013). The contribution from the dynamic coupling is due to the different latitude
and longitude of the sub-Phobos point on Mars, as expressed in a Phobos-fixed frame,
resulting in a different acceleration as evaluated from Eq. (3). This contribution was
used by Jacobson (2010) when creating an ephemeris of Phobos and estimating the
primary libration amplitude in longitude. Since we integrate the equations of motion
of Phobos and estimate its initial state, this contribution is also present in our problem
definition. The consequences of this will be discussed in Section 7.1.

5.2 Estimated parameters

Here, we list and discuss the set of parameters that will be estimated from the simu-
lated observations. The complete set of estimated parameters, as well as their a priori
covariance, is presented in Table 2.

Firstly, the initial state of Phobos is estimated, from which a Phobos ephemeris is
obtained through the state transition matrix Φ(t, t0). Since many of the estimated pa-
rameters are obtained from their influence on the dynamics of Phobos (first term in Eq.
(17)), it is important to combine the state and parameter uncertainty to obtain realis-
tic error and correlation estimates. Additionally, separating the dynamical and direct
signals (e.g. from librations) in the observations can be important for the estimation
procedure. Le Maistre et al. (2013) show that the attainable true error of the estimated
libration amplitudes is severely degraded by an imprecise Phobos ephemeris, especially
at the libration frequencies that are resonant with the orbital period. Due to the highly
accurate nature of the measurements that are to be obtained from ILR, it is unlikely
that a sufficiently precise ephemeris of Phobos will be available from data gathered by
(a) previous mission(s). Additionally, the ephemeris accuracy can degrade significantly
when it is used outside the time window of the data used to generate it, as is shown for
Mars by Folkner et al. (2009). Consequently, the concurrent estimation of the Phobos
orbit with its physical parameters is deemed necessary.

Phobos libration amplitudes, both sine and cosine terms, see Eq. (7), are estimated
for all terms listed in Appendix C, increasing the constraints on the relative moments
of inertia of Phobos, and providing insight on its internal mass distribution. Combined
with the C̄p2,0 and C̄p2,2 gravity field coefficients, which are both estimated, we will be able
to determine the absolute moments of inertia to greatly improved accuracy (see Section
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Table 2: List of estimated parameters with a priori standard deviation

Parameter name symbol a priori st. dev. par. size

Phobos initial position r0,p 103 m 3
Phobos initial velocity v0,p 1 m/s 3
Phobos degree 2 spherical harmonic zonal coefficient C̄p2,0 0.2 1

Phobos degree 2, order 2 spherical harmonic coefficient C̄p2,2 0.2 1

Phobos degree 2 deformation Love number h2 0.1 1
Phobos prime meridian libration amplitudes WC

Ti
,WS

Ti
0.1 deg 30

Phobos right ascension libration amplitudes αCTi , α
S
Ti

0.1 deg 18

Phobos declination libration amplitudes δCTi , δ
S
Ti

0.1 deg 18

Phobos gravitational parameter µp 1000 m3/s2 1
Deimos gravitational parameter µd 1000 m3/s2 1
Lander position (in Phobos-fixed frame) rpL 103 m 3
Mars degree 2 quality factor (Phobos tide frequency) Qp 1 1
Mars degree 2 quality factor (Sun tide frequency) Qs 20 1
Mars degree 2 quality factor (Deimos tide frequency) Qd 20 1
Mars degree 2 love numbers (per order) k2,0..2 0.1 3
Mars degree 3 love number (constant) k3 0.1 1
Mars degree 2 spherical harmonic coefficients

(
C̄, S̄

)m
2,0..2

10−10 3

Mars degree 3 spherical harmonic coefficients
(
C̄, S̄

)m
3,0..3

10−10 4

Mars rotational precession ψ̇M 10 mas/year 1

7.3). Additionally, we estimate Phobos’ h2 Love number to model its tidal deformation,
providing constraints on the rigidity of the body.

We also include the gravitational parameters of both Phobos and Deimos in our
estimation. Although neither will introduce a particularly strong signal on Phobos’
orbit, their high uncertainties mean that a PLR mission may provide improvements in
their uncertainties.

For Mars, the main geodetic observables are its moments of inertia, tidal Love num-
bers and bulk composition (Rivoldini et al., 2011). We only address the first two of these
observables in our simulations, since the limiting factor in the estimation of the bulk
density is the uncertainty of its volume, which cannot be constrained by a geodetic Pho-
bos mission, requiring a surface mapping mission instead. We estimate the degree-two
and three tidal Love numbers, at separate orders for degree two, providing constraints on
the internal elasticity and density profile of Mars. Typical Mars interior models assume
a spherical symmetry with core, mantle and crust layers, for which thickness, composi-
tion and temperature profiles may be varied (Yoder and Standish, 1997; Rivoldini et al.,
2011; Konopliv et al., 2011). Minor deviations from this symmetry could be observed
from variations in Love numbers of a given degree but different orders (Bills et al., 2005).

Additionally, quality factors Q of degree two of Mars will provide constraints on its
internal dissipation and rheology models. We estimate quality factors at the forcing
frequencies of the three primary tide raising bodies: the two Martian satellites and the
Sun.

Although the inertial position of a Phobos lander will be moderately sensitive to
Mars’ rotational variations through the spherical harmonic gravity influence of Mars,
estimation results will not be as precise as results from current and future Mars landers,
for which the influence of Martian rotational variations is both more direct and stronger.
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Of the Martian rotational parameters, we only estimate the Mars rotational precession
ψ̇m, since the orbital stability of a Phobos lander could make the effect from this sec-
ular term observable beyond present uncertainties. From this precession rate, we can
derive Mars’ (polar) moment of inertia, making it directly applicable to Mars geodetic
studies. Although the Martian gravity field has been estimated to very high precision,
e.g. (Marty et al., 2009), the long-term stability of Phobos may provide improvements.
However, its relatively high orbit (compared to Mars-orbiting spacecraft), will make it
sensitive to only the lower degree gravity field coefficients. Therefore, we estimate the
spherical harmonic coefficients of Mars’ static gravity field at degree and order two and
three. We set their a priori uncertainties at 10−10, about one order of magnitude above
the uncertainties of the gravity field model that is used, to take into account possible
discrepancies between the published formal and true errors (see next section).

5.3 Consider covariance

The formal errors of the estimated parameters are obtained from the square root of the
terms on the diagonal of the covariance matrix, obtained from Eq. (15). When pro-
cessing tracking data to planetary satellites, the true error (which is then unknown) is
typically roughly one order of magnitude larger than the formal error (Konopliv et al.,
2006; Marty et al., 2009; Konopliv et al., 2011; Lemoine et al., 2013), due to differ-
ences between the estimation model and the actual dynamical and observation model.
The deviations of the real observation noise power spectrum from the ideal Gaussian
noise model that is typically assumed causes further deviations between the truth and
estimation model.

In simulation studies, this difference can be introduced artificially by imposing a
difference between the truth and estimation model. By then perturbing the estimated
parameters and analyzing how well the simulated estimation procedure retrieves the
values of the truth model, this influence can be assessed. However, this process can be
time-consuming when using a batch estimator, especially in the case where a body state
is estimated, since this requires re-integration of the equations of motion (and potentially
variational equations) for each iteration. Also, in such an approach, the obtained true
error is only a single realization from the stochastic distribution describing it.

Alternatively, the uncertainties in the estimation model may be included by us-
ing consider covariance analysis (Montenbruck and Gill, 2000; Tapley et al., 2004). In
consider covariance analysis, a number of extra parameters is added to the estimation
procedure, which are not themselves estimated, but the uncertainty of which is included
when determining the covariance matrix. By taking this approach, a number of param-
eters are treated as random variables, of which the realization is constant throughout
the simulation. This is distinct from treating the observations themselves as random
variables, as in this case a new independent realization of a (Gaussian) random variable
is taken for each observation, resulting in the formal error decreasing with increasing
number of observations N as approximately 1/

√
N .

The consider parameters are included by adding a term to the covariance matrix,
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resulting in the consider covariance matrix P 0,c. It is calculated from the following:

P (0,c) = P (0) +
(
P (0)HT

p W
) (
HcCH

T
c

) (
P (0)HT

p W
)T

(19)

where Hc is the matrix of partials of the observations w.r.t. the consider parameters
and C is the assumed covariance matrix of the consider parameters.

For the case where all observations have the same weight in the estimation, the con-
tribution to the covariance matrix from the consider parameters is completely decoupled.
This results in the following covariance matrix P c, when substituting Eq. (16) for P (0)

and reincluding the a priori covariance contribution:

(P c)
−1

=
(
P (a.pr.)

)−1

+
(
P (0) + ∆P c

)−1

(20)

∆P c =
(
HT
p Hp

)−1 (
HT
p Hc

)
C
(
HT
c Hp

) (
HpH

T
p

)−1
(21)

As a result, when the contribution from P (0) is much larger than the contribution from
P (a.pr.), the contribution to the total formal error from the nominal and consider co-
variance contribution can be obtained by adding the two components. This allows for a
direct analysis of the influence of changing the consider covariance values that are used.

An example of the use of consider parameters is to include the effect of observation
biases, as done by Jacobson (2010) for determining the uncertainty of their Phobos
ephemeris.

We include two sets of consider parameters in the analysis. Firstly, we impose a range
bias for each combination of ground station and Phobos lander. In doing so, uncertainties
in the estimation model due to systematic range measurement errors are taken into
account, such as laser system, clock and detector biases and instabilities. Secondly,
we include the Earth-based ground station positions as consider parameters, since the
current ITRF (ITRF2008), including all tidal and non-tidal position corrections, is not
accurate to well below the mm-level measurement precision (Zumberge et al., 2009).
Additionally, Earth ephemerides are not at the required level of accuracy for range
data processing at the mm-level. A PLR mission would likely provide improvements
of the Earth ephemeris, but we omit estimation of the Earth state here, since such a
process would entail the combination of tracking data from many past, current and
future missions and is beyond the scope of this work.

The need for precise ground station positions in planetary exploration was discussed
by Zumberge et al. (2009) in the context of current and future radiometric observables.
Error budgets for radiometric tracking techniques are given by Iess et al. (2014a), who
show that solar plasma and wet tropospheric influences are typically the dominant error
sources. For laser ranging, however, environmental error sources are expected to be of
similar magnitude as for SLR and LLR, i.e. in the order of mm. As such, the errors due
to the ground and space segment become relatively much more influential in the error
budget, making the use of the applied consider parameters more relevant.

To mitigate the systematic uncertainties in real tracking data analysis, empirical
corrections, such as range biases or time biases are often included in the estimation in
an arc-wise manner (i.e. per day, per orbit, etc.). Taking this into account, we nominally
use a 5 mm uncertainty for both sets of parameters, which represents an estimate for the
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true uncertainty that would remain after estimation of arc-wise empirical parameters.
Hereby, we avoid the need for bottom-up models for the systematic uncertainties and
uncorrected effects, instead lumping all of these effects ino the 5 mm uncertainty. The
bottom-up analysis of ILR measurement precision and accuracy will be investigated in
future work. The assumption of 5 mm uncertainty is loosely based on the SLR error
budget given by Exertier et al. (2006), modified to take into account the fact that our 5
mm is after a possible step including empirical parameter estimation, the usage of active
systems on both ends of the link, no retroreflector signature and moderate improvement
in tropospheric correction modelling.

To validate our approach using consider parameters, we have performed estimations
without them, instead applying a difference between the truth and estimation model
which is equivalent to the consider parameters (i.e. 5 mm difference for ground station
position and observation bias). We have then perturbed the estimated parameters and
let the software estimate their values, resulting in values for the true errors. It was found
that the results for the two cases are in good agreement, with no large outliers identified,
and it was indeed found that a relatively scatter in true errors exists when using slightly
different simulation settings or parameter perturbations, as indicated previously.

6 Results and Discussion: Mars interior

In this section, we first present our results on estimation of the Mars gravity field and
rotational parameters in Section 6.1, from which the uncertainty in Mars’ polar moment
of inertia can be deduced, followed by the results on the estimation of tidal parameters
(i.e. Love numbers and quality factors) in Section 6.2. Finally, we give a qualitative
discussion of the synergy of Phobos laser measurements with data derived from current
and future Mars missions, specifically landers, such as the Interior Exploration using
Seismic Investigations, Geodesy and Heat Transport (InSight) mission3, in Section 6.3.

6.1 Mars gravity field & rotation

The results of the estimation of the static values of the degree-two and -three spherical
harmonic coefficients are shown in Fig. 1. Compared to the present uncertainties of
these parameters, which are of order ∼ 10−11, it can be seen that the improvement in
the zonal coefficients is marginal with the systematic uncertainty at the level of 5 mm.
The improvement for the C̄2,0 coefficient requires about three years of observation time
and improvement in C̄3,0 requires about 1.5 years. Due to Phobos’ near-equatorial orbit,
the signal of the degree-three term is relatively large when compared to the degree-two
term, resulting in the faster decrease of the odd term uncertainty.

It can be seen that the systematic uncertainties result in a flattening out of the error
with time, providing little additional information after a certain mission time. This
effect is especially visible for the C̄3,0 estimation, which levels out after about 2 years.
After 5 years, the difference between the solutions with and without systematic errors is
about a factor of 50. Since the contribution from the consider parameters scales linearly

3http://insight.jpl.nasa.gov/
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Figure 1: Estimation result of lumped Mars even and odd static gravity field coefficients. Blue:
without consider parameters. Red: with consider parameters.
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Figure 2: Estimation result of Mars precession rate. Blue: without consider parameters. Red:
with consider parameters.
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with the consider covariance values (see Section 5.3), the errors in C̄2,0 and C̄3,0 after
5 years of observation increases by about 4·10−13 and 6·10−13 per mm of systematic
error, respectively. These two points indicate the need for the reduction or mitigation
of systematic errors, especially for long-duration missions. Also, they highlight the need
for their inclusion in simulation studies to prevent overly optimistic results (i.e. blue
curve results as opposed to red curve results in Fig. 1) from being obtained.

For the Mars gravity field that was used, the uncertainty in the non-zonal gravity
field coefficients (i.e. m 6= 0) are roughly two to four times lower than for the zonal
terms. As a result, the estimation yields uncertainties which are comparable to their
current respective uncertainties, even after a long mission duration. Therefore we do
not present the estimation results explicitly, since they will provide little or no science
return from the mission. As discussed in Section 4.1, there is a strong influence (about
40 % of the main terms) of the higher degree coefficients in the estimation of the J̄2

and J̄3 due to the lumping. Therefore, substantial improvements of the static Martian
gravity field from the PLR mission will require a combination with other missions. In
such a combination, the added value from this mission is its unusual orbital plane for a
gravity field estimation mission (i.e. equatorial and relatively high orbit) and long-term
stability.

The correlations between the gravity field coefficients themselves, as well as their
correlations with other parameters, generally remain very low (<0.4). Several moderate
correlations (up to 0.7) of the coefficients with libration amplitudes are obtained, all of
which can be related to the specific geometry of the spherical harmonic component and
Phobos’ revisit time of the related effect.

The estimation results of the precession rate of Mars are shown in Fig. 2. Roughly 1.5
years of tracking are required for the estimation to reach the a priori uncertainty of 10
mas/year with the applied systematic errors. This improves to about 0.1 mas/year after
about 3 years, highlighting the strength of the Phobos orbital stability in the parameter
estimation. Since the uncertainties in ψ̇m and Mars moment of inertia scale linearly, as
shown by Eq. (10) this would constitute a two orders of magnitude improvement in their
determination. Due to the nature of the effect of Mars’ precession, the estimation does
not show strong signs of levelling out at a constant uncertainty, as was the case for the
gravity field coefficients. Therefore, as opposed to other, periodic, rotational parameters
of Mars, a Phobos lander would be useful for estimating the rotational precession rate of
Mars. Substantial improvements will require long mission durations, though (more than
2 years for more than an order of magnitude improvement). Improvements in Earth
ephemeris and terrestrial reference frames, as well as reduction of systematic range
errors, will allow a reduced mission time to achieve similar estimation results. Synergies
of a Phobos lander with a Mars lander, which would be better suited to estimating Mars
rotational parameters in general, are described in Section 6.3.

6.2 Mars tides

The result of the estimation of the quality factors of Mars is shown in Fig 3. It can
be seen from the solid line that the quality factor at the frequency of the Phobos orbit
is estimated well beyond the current level of uncertainty of about 1, with a precision
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Figure 3: Estimation result of Mars quality factors at forcing frequencies. Blue: without
consider parameters. Red: with consider parameters.
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Figure 4: Estimation result of Mars tidal Love numbers. Blue: without consider parameters.
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of < 0.1 after 1 year and < 0.01 after 2 years. The improvement of the solution for
a longer mission duration is damped by the inclusion of the consider parameters, with
only moderate improvement for a mission duration > 2 years, as was also found in the
previous section. The added estimation error due to 1-mm uncertainty increases from 4
times more influential than the random observation noise after 2 years to 15 times after
5 years. This highlights the strong need to include systematic measurement errors in
simulation studies, especially for a mission with a longer duration or a very large set of
observations. Nevertheless, the 5-mm consider parameter uncertainty allows for in an
orders of magnitude improvement in the uncertainty of the value of Qp.

The Sun-raised tide delay can be seen from the dotted line in Fig. 3 to require a
longer observation time to be determined below the a priori uncertainty of 20, unless
the systematic errors are kept very low. The observability of this parameter is derived
from the long-term stability of Phobos’ orbit, where the long-term observation of the
periodic effect of the Sun’s tidal bulge can be decoupled from other periodic effects. The
final uncertainty, which is at the level of about 1 after 3 years will provide an improved
observational constraint for Mars interior models.

It can be seen from the dashed lines in Fig. 3 that the delay of the tide raised by
Deimos is not observable beyond the level of the a priori values with the PLR mission.
Even without the consider parameters, which result in an increase in uncertainty as
systematic errors go into the Qd estimation, no meaningful improvement is observed
w.r.t. the a priori uncertainty. Including the consider parameters causes an increase in
the formal uncertainty with time, due to their addition in Eq. (20), as systematic errors
are mistaken for a Deimos tide signal.

Very low correlations are found between the quality factors at different frequencies.
However, a relatively high correlation (0.85) is observed between the quality factor at
the Phobos frequency and the degree-two Love number, the origin of which can be seen
from Eqs. (11) and (12), which shows that the main portion of the acceleration due
to the tidal dissipation involves the ratio of k2 and Q. The slight decorrelation of the
two parameters results from the non-Q dependent term in the equation, which causes
periodic variations due to k2 that are not influenced by Q.

Since the quality factors themselves are uncorrelated, the results from PLR would
for the first time allow for the analysis of the difference of tidal dissipation in Mars
at different forcing frequencies. However, since only two data points on the Q-f curve
can be determined using the proposed system (since the Deimos-raised tide delay is
unobservable), we cannot test the validity of a specific functional dependency. Assuming
the validity of a specific model, though, we can place constraints on their parameters, the
precision of which will be limited by the uncertainty in Qs and the observed difference
between Qs and Qp. Nevertheless, the two available data points, especially the strong
constraint on Qp, will provide important information on Mars’ internal dissipation due
to its two strongest tide-raising bodies.

The results of the tidal Love number estimation are shown in Fig. 4. It can be
seen that the results that include the consider parameters estimate the Love numbers
roughly at the 10−2-10−3 level after 1.5 years of observation time, down to roughly
10−4-10−5 after 5 years of operation; levels comparable to those obtained for the Moon
by the GRAIL mission (Lemoine et al., 2013). However, it must be noted that at these
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levels of precision, the tidal model used here will most likely not be sufficient anymore,
since possible frequency-dependence and other deviations from our model of the Love
numbers may become observable. As such, the number of estimated parameters will
increase, also increasing the potential for correlations between them. This problem may
be mitigated by the combination with tracking data from future Mars orbiters, though.

The estimation of k22 yields the smallest uncertainties, as shown by the dotted lines
in Fig. 4, with an uncertainty below 10−3 after 1 year, reducing to 10−4 and 10−5

after 2 and 4 years, respectively, compared to current formal uncertainties which are
at the 10−2 level. This was to be expected, since the tidal bulge causing the secular
acceleration is largely caused by the tidal change in Mars’ C̄22 value, as quantified by
its k22 Love number.

Although the k21 value of Mars seems to converge to very small uncertainty here,
better than that of k20, these simulations do not take into account any variations in the
C̄21 and S̄21 coefficients of Mars due to polar motion. Such variations could manifest
similarly to variations due to k21 and concurrent estimation of these parameters could
yield strong correlations or, alternatively, true errors could be much higher than formal
errors when leaving the polar motion model fixed. It was also noted by Yoder et al.
(2003) that when performing estimation from orbiter tracking data, Mars’ k20 could be
decoupled from its k22, albeit at much lower precision than is expected from the PLR
mission, whereas the estimation of k21 proved unstable. However, Mars rotation model
uncertainty would benefit greatly from future landers with improved tracking precision,
as well as novel mission architectures involving multiple landers and/or orbiters, as
described in Section 6.3. With such improved Mars rotation models, the signals due
to Mars’ rotational variations and its gravity field variations could be better decoupled
than with only tracking data from a Mars orbiter (Phobos in this case).

The uncertainty in k3 can be seen from Fig. 4 to be 2 ·10−3 after 1 year, reducing to
10−4 after 4 years, whereas there is currently no estimate of this parameter that is derived
from observations. Nominal values of k3 obtained from Mars interior models are about
0.05 (Konopliv et al., 2011). The estimated values represent a relative error of less than
2 and 0.2%, after 1 and 4 years, respectively. This would provide additional constraints
on the Mars interior that are now completely absent. However, the estimated values for
k22 and k3 are almost fully correlated (correlation coefficient of about 0.99), indicating
that the influence of the two parameters on Phobos’ orbit cannot be decoupled. Even
though a priori constraints on their uncertainties are applied, the estimation results are
orders of magnitude better than these values, so that the influence of the a priori terms
diminishes with increasing mission time. This makes the current estimates for their
uncertainties too optimistic and provides only a combined estimate from the secular
effect of Love numbers at all degrees on Phobos’ orbit, i.e. the summation of the
effect of Eq. (12) with its higher-order generalizations. This was also noted by Lainey
et al. (2007) in the generation of Phobos ephemerides. Although it is not possible to
decouple the two effects in the current mission architecture, Mars interior models could
still be constrained by a combined effective Love number, including the degree three
(and possibly higher) contributions not through an independent value, but instead as
a lumped coefficient. Tracking to other spacecraft could be used to decouple the Love
numbers, at least to the measurement precision of such missions.
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6.3 Synergy with Mars lander missions

An extensive study on the influence of Mars interior models on its geodetic observables
has been performed by Rivoldini (2012), who conclude that, even with exact determi-
nations of the geodetic observables, substantial errors would remain on Mars’ interior
structure and composition models, since the chemical composition will not be sufficiently
constrained. Rivoldini (2012) also analyzes the influence of seismic and electromagnetic
sounding data of Mars and concludes that these observations would be highly comple-
mentary to geodetic observables. Also, improved Mars rotation models, for which a Mars
lander would be better suited than a Phobos lander, would allow for a better modelling
of Mars’ gravitational influence on Phobos, which will be required for making optimal
use of the data from a PLR mission.

An analysis of the science return of a single Mars lander mission that includes seis-
mometry, heat flow measurements and magnetic field observations was done by Dehant
et al. (2012). They show that interior structure model parameters will be further con-
strained by these non-geodetic observations. These types of observations are expected
from the InSight mission, for which Mars surface operations are expected to commence
in 2016. Alternatively, by using a network of landers, such as in the NetLander mission
concept (Dehant et al., 2004), multiple data points can be used to obtain heat flow and
magnetic data. Additionally, the use of multiple stations will improve the science return
from the seismometry.

Further constraints on Mars interior structure and composition, as well as its seasonal
atmospheric and ice mass cycles, can be obtained by observations of its rotational varia-
tions. Nutation resonances of the inner core (Defraigne et al., 2003), which will manifest
themselves in the Mars rotational variations, can directly provide constraints on core
size, flattening and moments of inertia. Also, variations in Mars rotational parameters
due to seasonal mass redistribution would provide additional constraints on the dynam-
ics of its CO2 cycle, especially when combined with gravity field and altimetry data.
We do not estimate these parameters here, as a (dedicated) Mars lander will be much
better suited to perform these observations. Analysis of the performance of Doppler
tracking systems, both Martian landers and combinations of landers and orbiters has
been performed by Yseboodt et al. (2002), Dehant et al. (2009) and Le Maistre et al.
(2013).

In summary, although a Phobos lander will be able to provide strongly improved esti-
mates of Martian geodetic observables, especially for Love numbers and quality factors,
their interpretation and relation to the Martian interior structure and composition will
require additional, independent and improved measurements on Mars rotation, seismic
activity, heat flow and magnetic field. This indicates that highly accurate measurements
of a specific type can only be used to their full potential when combining them with
next generation of measurements of different kinds, such as those expected from the
InSight mission. This would prevent the situation where a science bottleneck is created,
in which the interpretation of a precise data set is hampered by large uncertainties on
parameters to which the existing observations are largely insensitive.
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7 Results and Discussion: Phobos interior

Here, we first discuss the coupling between the rotational and translational state of Pho-
bos, and the influence of our modelling approach on the estimation procedure in Section
7.1. Subsequently, we discuss the results of the estimation of the gravity field coefficients,
libration amplitudes, moments of inertia and tidal deformation in Sections 7.2, 7.3, 7.4
and 7.5, respectively. Little to no improvement in Phobos’ and Deimos’ gravitational
parameters are obtained from the estimation and we therefore do not present the results
explicitly in this Section.

7.1 Coupling between rotational and translational state

The libration model of Phobos used here was generated by numerical integration of its
rotational equations of motion by Rambaux et al. (2012) using the Phobos ephemeris of
Lainey et al. (2007) (see Section 3.2). We use the same Phobos ephemeris and settings
(i.e. Phobos gravity field) as initial input to our numerical integration, resulting in a
numerically integrated ephemeris very close to that on which the generation of the rota-
tional model was based. If different integration settings are used without adapting the
rotation model, a severe inconsistency can be introduced in the model, since the Phobos
rotation may no longer be tidally locked (omitting the deviations due to librations).
This would result in the term in Eq (3) from Phobos’ gravity field expansion to cause
additional secular terms in Phobos’ motion, creating a very different signature on the
range measurements.

However, the small influence of changes in the orbit on the rotation (and subsequent
higher-order effects) is neglected in our model. That is, when estimating the parameters,
we do not update the rotational ephemeris by reintegrating the rotational equations of
motion and subsequently analyzing the effect of the new rotation model on the orbit.
Also, no direct contribution of the rotational equations of motion to the partials from Eq.
(17) is used, aside from those arising from the direct partials in the libration amplitudes.
Therefore, the model will include a higher-order inconsistency, since spin-orbit coupling
is not accounted for at all levels. Although the influence on the observations themselves
is expected to be small, as the resulting deviations from the rotation model of Rambaux
et al. (2012) will be small, the influence on the partial derivatives, and therefore on
the results of the simulation study, could be significant. Here, we choose to keep our
dynamical and estimation models consistent with one another in the sense that the
coupling in Eq. (17) of translational and rotational state will be omitted in both.

To test the influence of this assumption, we performed the full estimation both with
and without the partials due to the dynamical coupling of the Phobos libration ampli-
tudes with the spherical harmonic acceleration. This investigation indicated relatively
low differences between the estimations for the two cases, with a number of notable
exceptions. Exceptions are the long period librations in W and δ, the Phobos C̄2,2 and
the Phobos lander position. The uncertainties of both the aforementioned libration am-
plitudes and the ground station position decrease by several orders of magnitude. The
reason for this is that when including the dynamical coupling in the calculation of the
partial derivatives, the effect of a different ground station position can be decoupled
from that of a different lander position. This apparent influence, however, is due to the
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Figure 5: Estimation result of Phobos’ static even-order degree-two gravity field coefficient.
Blue: without consider parameters. Red: with consider parameters.

fact that the nominal orientation of Phobos is not estimated, so that the orientation
with no libration is assumed to be known perfectly. Since this is not the case, especially
since in reality (as is shown from the results in Section 7.3) a (very) long-period libration
may look strongly like a different Phobos orientation, this does not indicate a strong
influence of the dynamical partial coupling. Similarly, the signal of the C̄2,2 coefficient
on Phobos’ orbit will be mismodelled, since its influence on the spin-orbit coupling is
not fully included. When discussing the results of Phobos’ gravity field coefficient esti-
mation (Section 7.2), we present the results with and without the dynamical coupling
and discuss their differences.

When omitting the affected parameters, the mean ratio of the formal errors for the
cases with and without the dynamical coupling in the partials of all parameters after 2
years is 0.97, with a standard deviation of 0.2 and no clear outliers. This indicates a
relatively small differences between the two models and verifies the applicability of the
equations that are used, at least for the present mission concept study.

7.2 Phobos gravity field

As discussed in Section 3.1, the orbit of Phobos will be sensitive to its own spherical
harmonic coefficients, allowing for the estimation of Phobos’ gravity field coefficients
from observation of its orbital dynamics.

As discussed in Section 7.1, we present the estimation of C̄2,2 with and without the
dynamical coupling in the partials and will be conservative in our comparison of the
results. As will be discussed in Section 7.4, either the C̄2,0 or the C̄2,2 coefficient will
be required to constrain the absolute moments of inertia of Phobos, combined with
the results of the libration amplitudes estimation. Related to this, the values of the
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two gravity field coefficients constrain the mass distribution of Phobos in terms of the
flattening and elongation (w.r.t. a symmetrical and spherical distribution). For instance,
by comparing the values to those of a homogeneous composition, mass concentrations
and voids can be identified.

The results of the estimation of Phobos’ gravity field coefficients are shown in Fig.
5. It can be seen that the estimation of the C̄2,0 is several orders of magnitude weaker
than that of the C̄2,2 term. The strong estimation of this term is due to the direct
effect of that the libration has on its orbital signal. Due to the primary longitude

libration at the orbital period, the Phobos-fixed longitude of Mars φ
(p)
m will undergo

periodic variations. Since the influence of the C̄2,2 term is proportional to sin
(

2φ
(p)
m

)
,

as obtained when writing out Eq. (3) this will cause a clear signal of the coefficient in
the orbital dynamics. The estimation of the zonal term is not modulated as strongly,
though, since the short-period librations in α and δ are of a much smaller amplitude
(see Appendix C).

It can be seen from the results with and without dynamical coupling shown in Fig. 5
that including the dynamic coupling has a negative effect on the estimation of the C̄2,2

coefficient for mission durations greater than 2 years. with up to two orders of magnitude
increase in its uncertainty after 5 years. This effect was found to be caused by additional
correlations that are present in the coupled case, between the C̄2,2 and once-per-orbit
longitude libration, as well as with the C̄2,0 coefficient, with both correlations around
0.85. Since this correlation is expected to be present in the actual data, due to the
similar signals of the parameters in the coupled case, we will use the more conservative
asymptotic uncertainty of 10−9 for the C̄2,2 coefficient in our subsequent discussion of
the moment of inertia determination in Section 7.4.

As discussed in Section 4.1, the C̄4,0 term will contribute about 5.0 ·10−10 as strongly
to the uncertainty of the degree two zonal term as does the C̄2,0 term itself. To quantify
its influence further, we estimate the range of plausible values for C̄4,0 from the relations
for a homogeneous triaxial ellipsoid, (Balmino, 1994), from where we derive that in such
a case C̄4,0 ≈ (9/7)C̄2

2,0 ≈ 0.03 using the shape model of Willner et al. (2010). Taking
a wide uncertainty margin for this coefficient, its nominal uncertainty is assumed to be
σC̄4,0

= 0.05. It is concluded that the influence of the degree four term is negligible,

since its influence on the estimation of C̄2,0will be orders of magnitude lower than the
uncertainty that is estimated for C̄2,0.

7.3 Phobos librations

The result of the estimation of the total amplitude (i.e. uncertainty of sine and cosine
term propagated onto uncertainty in total amplitude) of the librational amplitudes is
shown in Fig. 6, separately for each libration angle and for the results with and without
consider parameters, respectively. It can be seen from panels (c) and (e), as well as
(d) and (f), that the estimation errors of the α- and δ-libration amplitudes behave very
similarly, as was to be expected since their frequency decompositions are identical and
both angles will impose similar signals on the range observables. There is also a rough
distinction between three categories of librations in the librations in these two angles,
indicated by different colors in the panels of Fig. 6. For the W -libration, results for



Results and Discussion: Phobos interior 127

0 1 2 3 4 5

10
−8

10
−6

10
−4

10
−2

10
0

Mission time [years]

P
h

o
b

o
s
 W

−
lib

ra
ti
o

n
 a

m
p

lit
u

d
e

 f
o

rm
a

l 
e

rr
o

r[
d

e
g

]

(a)

0 1 2 3 4 5

10
−8

10
−6

10
−4

10
−2

10
0

Mission time [years]

P
h

o
b

o
s
 W

−
lib

ra
ti
o

n
 a

m
p

lit
u

d
e

 c
o

n
s
id

e
r 

e
rr

o
r[

d
e

g
]

(b)

0 1 2 3 4 5
10

−8

10
−6

10
−4

10
−2

10
0

Mission time [years]

P
h
o
b
o
s
 α

−
lib

ra
ti
o
n
 a

m
p
lit

u
d
e
 f
o
rm

a
l 
e
rr

o
r[

d
e
g
]

(c)

0 1 2 3 4 5
10

−8

10
−6

10
−4

10
−2

10
0

Mission time [years]

P
h
o
b
o
s
 α

−
lib

ra
ti
o
n
 a

m
p
lit

u
d
e
 c

o
n
s
id

e
r 

e
rr

o
r[

d
e
g
]

(d)

0 1 2 3 4 5
10

−8

10
−6

10
−4

10
−2

10
0

Mission time [years]

P
h
o
b
o
s
 δ

−
lib

ra
ti
o
n
 a

m
p
lit

u
d
e
 f
o
rm

a
l 
e
rr

o
r[

d
e
g
]

(e)

0 1 2 3 4 5
10

−8

10
−6

10
−4

10
−2

10
0

Mission time [years]

P
h
o
b
o
s
 δ

−
lib

ra
ti
o
n
 a

m
p
lit

u
d
e
 c

o
n
s
id

e
r 

e
rr

o
r[

d
e
g
]

(f)

 

 

0.2313 days
0.2316 days
0.5116 days
0.5133 days

 

 

0.8430 days
0.8474 days

 

 

0.1595 days
0.2314 days
0.3190 days
0.5127 days

 

 

343.5 days
413.1 days
686.0 days
826.2 days

 

 

4318 days
9343 days

Figure 6: Formal errors of libration amplitudes, without (left) and with (right) taking into
account consider parameters of: librations in W (top), librations in α (middle), librations in δ
(bottom)
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which are shown in panels (a) and (c) there is a greater spread between the estimation
results, although there is still a clustering of a number of modes, some of them in the
same groups as the other two libration angles.

The origins of the several categories of librations are due to several causes. Firstly,
there are frequencies at which a libration in each of the three components is present (see
Appendix C), shown in blue and red in Fig. 6. All short-period δ- and α-librations
exhibit this behaviour. The four modes shown in blue have mutual correlations of up to
0.999, whereas the remaining two have correlations of around 0.9. This indicates that a
change in one of these parameters may be compensated by an equal change in one of the
other parameters and that no robust minimum of the residuals is found in parameter
space. The strong correlation is explained by to the fact that in principle these three
components, estimated by a total of six parameters, represent a decomposition of a sin-
gle libration mode about an axis defined by the relative amplitudes of the libration in
the three angles. In reality, this mode is defined by the (unit) axis in inertial space about
which the rotation takes place, its phase, its frequency and its amplitude. Assuming its
frequency to be predetermined, the libration mode has four degrees of freedom, instead
of the six that are provided by the model that is used. However, the total uncertainty
in the estimation of the libration mode is determined by the (overdetermined) combina-
tion of the uncertainties of the six components. We have performed reduced simulations
which have shown, however, that strong correlations (∼ 0.97) still exist when removing
two of the six degrees of freedom for these modes, indicating that the observation and
estimation method that is used is not well suited for the determination of the rota-
tion axis of the libration in addition to its amplitude and phase. A combination with
other measurements (star tracker, Doppler, VLBI) could provide strong independent
constraints for decoupling them, though.

Four out of these six libration-mode amplitudes show especially strong correlations,
with a reduction in precision up to a factor of 10 compared to the other two modes.
Neither of these libration modes correlate strongly with any other parameter ruling
out the possibility that their correlation is due to a mutual correlation with a third
parameter. Instead, the correlation originates from the relative forcing frequencies of
the two sets of modes. Since the observed variation in the range signal is composed of the
various sinusoidal signals from the libration frequencies, as well as the nearly sinusoidal
once-per-orbit signal, the complete signal will exhibit behaviour in frequencies that arise
from the superposition of these signals. For any combination of two signals, the summed
signal exhibits periodic behaviour in frequencies both half the sum and half the difference
of the two original frequencies. For the two sets of frequencies with the high correlation,
the sum of their relative forcing frequencies is half the orbital frequency. This results
in the fact that these two modes and orbital frequency cannot be properly decoupled.
Very weak decoupling is achieved, since Phobos’ orbit is not perfectly circular, so that
its orbital eccentricity and orbital perturbations cause slight variations from the precise
sinusoidal signal that would be exhibited if Phobos were to have a perfectly circular
Kepler orbit. This relation of the libration frequencies with the orbital frequencies is
due to the once-per-orbit forcing of Phobos’ rotation, which results in this frequency
occurring in the libration frequency decomposition. In principle, the correlation could
be mitigated by adding star tracker measurements to the mission and data processing
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Figure 7: Uncertainty in Phobos relative moments of inertia, as derived from libration amplitude
estimation. Blue: without consider parameters. Red: with consider parameters.

scheme, since these measurements will be insensitive to any signals from the orbital
motion.

It can be seen from Fig. 6(b) that the very long-period librations in W (magenta)
are not well identified, taking about 2.5 years to be estimated at the a priori level
of 0.1 degree, when using consider parameters. Additionally, the two modes are almost
completely correlated. Their correlation with most other parameters is almost negligible,
though, with the exceptions of the ground station position, for which a single component
correlates at the > 0.9 level. The reason for this correlation and the poor estimation
quality of the very long period librations is that at the time scales of the observations,
a change in the amplitudes of these libration modes will provide a signal very similar
to a slight constant offset in Phobos’ orientation. As a result, the correlation with the
Phobos-fixed state of the lander with these librations is very strong, since a constant
rotation offset cannot be distinguished from a constant Phobos-fixed position offset.
Since these long-period amplitudes provide little information on Phobos’ interior, shown
by Eq. (13), the direct influence of their rather poor precision is not directly influential
for the mission’s science return.

Although the influence of the consider parameters is clearly present in the libration
amplitude estimation when comparing Figs. 6(a), (c) and (e) with Figs. 6(b), (d) and
(f) , their influence is not as pronounced as with some other parameters, increasing
the uncertainty after 5 years by about a factor of 20 for most parameters. The libra-
tion modes which cross-correlate due to the superposition with the orbital signal are
estimated at around 10−4 after 2 years and around 10−5 after 5 years, with the other
short-period components having uncertainties 5-10 times lower. The influence of the
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consider parameters on the estimation of the long-period librations is roughly an order
of magnitude stronger than on the short-period ones, since their signal on the range
measurements is more similar to the additional signal from the systematic errors.

7.4 Phobos moments of inertia

We now analyze the propagation of the uncertainty in libration amplitudes to uncertainty
in moments of inertia. Using the methods discussed in Appendix B, we determine the
libration modes which most strongly constrain the uncertainty of the proper modes as
a function of time. Subsequently, we propagate this onto an uncertainty in the relative
moments of inertia.

Fig. 7 shows the uncertainty in the relative moments of inertia as a function of
time. It can clearly be seen that the determination of the γ moment of inertia ratio is
consistently about two orders of magnitude more precise than the ζ and β ratios. This
is due to the higher precision of the longitude librations, which determine the γ ratio,
as was discussed previously. The precision that is reached on the moments of inertia
will allow for the determination of the degree of heterogeneity of Phobos’ interior. For
instance, local unsymmetrical voids or other mass anomalies will be manifested in the
relative moment of inertia values.

Determination of the absolute moment of inertia uncertainty must take into account
the uncertainty in the C̄2,2 coefficient determined in the previous section. It was found
that for the entire mission duration, the relative moment of inertia uncertainty is the
dominant error term, although narrowly for the C-term, with σC ≈ 20σγ and σA ≈
σB ≈ 10σζ + 10σβ , as derived from Le Maistre et al. (2013).

However, the comparison of modelled and measured internal Phobos composition will
still be limited by the uncertainty of Phobos’ exact volume and shape, which cannot be
improved using the PLR mission. Currently, the volume of Phobos has an uncertainty
of 60 km3, which is roughly 1% of its total volume, when using the control point network
of Willner et al. (2010), propagating onto a 2% uncertainty in the modelled moments of
inertia of a homogeneous Phobos (Le Maistre et al., 2013). However, deviations from
homogeneity beyond this level, as well as mass or void concentrations, can be strongly
constrained by the estimation of Phobos’ libration amplitudes.

Similarly to the results for the Mars interior, this indicates that the highly precise ILR
measurements will need to be combined with high-precision measurements from other
next-generation space missions in order to make full use of the data that is obtained
(see Section 6.3).

7.5 Phobos tides

The estimation results of Phobos’ h2 Love number are shown in Fig. 8. The estimation
without any systematic errors reaches ≤ 10−7 after 5 years, corresponding to about
10−2 mm surface displacement. This is clearly an overly optimistic estimation with
mm-precise measurements, showing the need of the consider parameters (or another
approach) for obtaining a realistic determination of the tracking system performance.

However, it can be seen that the h2 estimation converges to the ∼ 0.5 · 10−5 level,
with little improvement after 2 years of observation time. Although these results will
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Figure 8: Estimation result of Phobos h2 Love number. Blue: without consider parameters.
Red: with consider parameters.

most likely still be optimistic, due to the simple tidal deformation model used (i.e. no
latitudinal dependency, no frequency-dependence), the expected lower h2 values for a
rubble-pile Phobos are at the 10−4 level (Le Maistre et al., 2013). As a result, a Phobos
laser ranging mission will likely be able to distinguish between a Phobos rubble-pile and
a monolithic Phobos after about two years of observation time. Additionally, in the
case of a rubble pile Phobos, the mean rigidity can be well constrained. By making this
distinction, it will be possible to constrain origin theories of Phobos. Additionally, it
will provide new insights into its evolution, for instance whether the Stickney impact
resulted in compression or fracturization of the Phobos interior.

Although we do not include the Phobos quality factor in our estimation, we can
approximate the level of precision that could be attained from σh2

as follows (Le Maistre
et al., 2013):

σQ
Q
≈ Qσh2

h2
(22)

Assuming Q = 100 and h = 10−4 (rigid rubble pile), the precision of Q will be at the 5%
level. For h2 = 10−3, representing a relatively loose rubble pile however, the uncertainty
would be at the level of 50 %, i.e. at the limit of observability of the mission.

8 Conclusions

We have performed an analysis of the estimation of physical parameters of Mars and
Phobos from simulated laser tracking data from Earth-based stations to a Phobos lander.
We find that very strong constraints on Phobos librations and degree-two gravity field
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coefficients can be determined, resulting in an estimate of its relative moments of inertia
at the 10−8 level for γ and the 3 · 10−6 level for ζ and β after 2 years of operation.
These values can be directly related to estimates of the absolute moments of inertia
which have an uncertainty of one order of magnitude more for C, B and A, respectively.
The contribution of the error in Phobos gravity field coefficients is found to be small,
due to the strong constraints on C̄2,2. However, laser tracking cannot fully decouple
all libration modes due to the combined orbit and rotation signal, resulting in high
correlations between modes which combine to form signals at the orbital frequency. A
combination of laser and star tracker measurements would allow for a much improved
decorrelation, though. Additionally, Phobos laser tracking can provide constraints of
Phobos h2 to the 10−4 level after 2 years, from which a Phobos rubble pile or monolithic
structure can be derived. Comparison of mission results with Phobos interior models
are limited by the Phobos shape model uncertainty, though, which is currently at the
60 km3.

Although a Phobos lander is only moderately sensitive to the Mars static gravity
field, when compared to results from current Mars orbiters, its orbital stability will
allow a strongly improved estimation of both Love numbers and quality factors of Mars.
The mission architecture and tracking allows for separate determination of degree-two
Love numbers of different orders. The Love numbers at different orders at degree two
can be distinguished to the 10−2-10−3 level after 2 years. However, due to the combined
effect of degree-two and higher-order Love numbers on the orbit of Phobos, the Love
numbers at different degrees cannot be decoupled. Mars quality factors at degree two
can be decoupled for the Sun- and Phobos-forced frequency. The delay of the Sun-raised
tide takes several years to be decoupled from the systematic errors, though, requiring 3
years to attain an uncertainty in Qs on the order of 1. The uncertainty in Qp reaches
0.01 after 2 years. The effect of the Deimos raised tidal lag is unobservable from the
Phobos orbiter, though, preventing the testing of a specific functional form relating
quality factor to forcing frequency.

We find a substantial difference between results based on simulated data with Gaus-
sian noise only and with additional systematic errors. Due to the very precise nature
of the laser ranging measurements, both observational biases and errors resulting from
ground station position and calibration mismodelling are much more influential than
what is typically the case for planetary tracking data analysis. We find that the in-
clusion of systematic errors has a strong damping effect on the decrease of the formal
estimation error with time, especially for parameters estimated from periodic effects.
Only moderate improvement in parameter uncertainties is obtained after 2-3 years for
most parameters. This indicates that, firstly, the reduction or mitigation of systematic
errors due to ground station errors will be crucial for future planetary laser ranging
mission. Secondly, it shows the need to include them in simulation studies, to prevent
averaging out of Gaussian noise from providing overly optimistic simulation results.

Since a Phobos lander is relatively insensitive to Martian rotational variations, com-
bined data analysis of a Phobos and Mars lander would provide strong synergy for
investigations relating to the Martian interior, as well as precise modelling of Phobos’
dynamics. Additionally, non-geodetic observables of Mars, such as those expected from
the InSight mission, as well as in situ investigations of Phobos, would allow for stronger
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constraints on composition of both Mars and Phobos. This, as well as the limiting
influence of Phobos’ control point network uncertainty in comparing modelled and mea-
sured Phobos interior parameters, shows the need for combining the highly precise laser
tracking data with other future high precision measurement types, in both geodetic and
non-geodetic studies.
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Appendix A Lumped gravity field coefficients

The lumped odd and even degree zonal gravity field coefficients are obtained from the
following, in the approximation of a negligible Phobos inclination, derived from (Yoder
et al., 2003) for normalized coefficients:
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which is valid for determining the lumped contribution of both Mars’ and Phobos’ higher-
order coefficients. Substituting the relevant values for Mars, the following is obtained:

J̄m,even ≈ J̄2 − 0.440J̄4 − 0.121J̄6 (25)

J̄m,odd ≈ J̄3 − 0.411J̄5 + 0.1102J̄7 (26)

Indicating that uncertainties in the even and odd coefficients are dominated by the
degree two and three terms, respectively. However, the contribution of the degree 4
and 5 terms are relatively high at approximately 40 % for the even and odd lumped
coefficients, respectively.

For Phobos, the contribution to the uncertainty of the lumped even coefficients is
given by:

J̄p,even ≈ J̄2 − 5 · 10−10J̄4 (27)

indicating that the degree two term of Phobos can be separated much better than of
Mars. No estimate from tracking data or astrometry is available for the degree 4 term,
however.
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Appendix B Propagating libration to moment of in-
ertia uncertainty

From the first-order equation of Le Maistre et al. (2013) the uncertainty of each proper-
mode frequency is related to the uncertainty of the libration amplitude as follows, rear-
ranged to eliminate the dependency on the forcing amplitude:

σνγ =

(
ν2
γ − ω2

f

)
νγ

2γfω2
f

σγf (28)

The possibility of a resonance scenario between the forcing frequency and a proper
mode of Phobos was analyzed by Rambaux et al. (2012) and Le Maistre et al. (2013),
who conclude that although such a near resonance is possible, current estimates of both
the proper modes and the libration frequencies are not precise enough to confirm it.
Here, we will take the conservative approach and assume that no strong resonance effect
is present, i.e. we use the libration amplitudes in Appendix C and do not modify them
to include possible resonance influences.

The three proper modes of Phobos in longitude τ (corresponding to the W -libration)
and latitude L and wobble w (the combination of which corresponds to the combination
of α- and δ-librations) are related to the relative moments of inertia by Chapront-Touze
(1990), using the values of Willner et al. (2010):

ντ = n
√

3γ ≈ 12.2710 rad/day (29)

νL = n

√
(1 + 3β + ζβ) +

√
∆

2
≈ 27.2611 rad/day (30)

νw = n

√
(1 + 3β + ζβ)−

√
∆

2
≈ 7.4960 rad/day (31)

∆ = (1 + 3β + ζβ)
2 − 16ζβ (32)

where n is Phobos’ orbital mean motion. Combining these with Eq. (28), the uncer-
tainty in the librations can be propagated to the uncertainty in the proper modes and
subsequently the relative moments of inertia.

Appendix C Phobos Libration Model

Here, we present the properties of the Phobos libration model that was used, generated
by Rambaux et al. (2012), in the form used by Le Maistre et al. (2013), with additional
terms from Rambaux (2013). The W , α and δ librations are given in Tables 3, 4 and 5,
respectively.
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Table 3: Properties of W -libration model used

Period [days] amplitude [deg] phase [deg]

0.159516532 0.008682472 108.561
0.231441305 0.005572086 -170.232
0.231647101 0.012518333 -3.058
0.231311789 0.036838974 -47.878
0.319033063 1.099772003 -80.729
0.511653125 0.008180492 -107.311
0.512714439 0.016728058 32.580
0.513296618 0.023916017 -62.498
0.842971242 0.013266486 72.474
0.847441653 0.007862241 116.542
343.483974132 0.006352317 -64.610
413.104129098 0.022824629 111.037
826.207787440 1.427215165 100.518
4318.089673086 0.003817638 -118.818
9343.15863465 0.008515915 -77.828

Table 4: Properties of α-libration model used

Period [days] amplitude [deg] phase [deg]

0.231311789 0.046199156 132.122
0.231647101 0.015699050 176.942
0.511653125 0.010259016 72.689
0.513296620 0.029993200 117.520
0.842971241 0.016637720 -107.525
0.847441653 0.009859994 -63.458
413.103416583 0.022230019 -68.808
686.968929820 0.010681281 69.229
826.209308358 1.788289331 -79.521

Table 5: Properties of δ-libration model used

Period [days] amplitude [deg] phase [deg]

0.231311789 0.027872555 42.124
0.231647101 0.009471291 86.939
0.511653125 0.006189403 -17.310
0.513296620 0.018094661 27.507
0.847441653 0.005947216 26.620
0.842971248 0.010102656 -18.968
413.099581308 0.006714172 20.832
686.960360505 0.006652784 151.580
826.209789759 1.078116694 10.728
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CHAPTER 5

Paper II - Atmospheric Turbulence

“I am an old man now, and when I die and go to heaven there are two matters
on which I hope for enlightenment. One is quantum electrodynamics, and the
other is the turbulent motion of fluids. And about the former I am rather
optimistic.”

– Horace Lamb, An address to the British Association for the Advancement of Science,
(1932)
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Abstract
In this paper we investigate the influence of atmospheric turbulence on the performance
of the uplink of a planetary transceiver laser ranging system using a single photon de-
tector. We numerically combine the influence of turbulence in the mean intensity profile
variations, scintillation, beam-wander induced pointing errors and stochastic time-of-
flight variations, using the Hufnagel-Valley turbulence profile to model the ground tur-
bulence behaviour. We map the intensity variations due to turbulence to variations in
the probability distribution of the arrival time of the 1st photon in a laser pulse, which
influences the range measurement error probability distribution. The turbulence models
are applied to assess the influence on single-pass range accuracy and precision statistics,
as well as the parameter estimation quality of a Phobos Laser Ranging (PLR) mission.

The difference in range measurement error between weak and strong turbulence is
3-4 mm in a PLR concept. This indicates that turbulence is a potentially important
contributor to the error budget of interplanetary laser ranging missions, which aim at
mm-level accuracy and precision. The single-shot precision is weakly influenced by tur-
bulence, but strong turbulence is found to cause a strong decrease in detected pulse
fraction, reducing normal point precision. We show that a trade-off between range accu-
racy and precision must be made when selecting laser system parameters, considerations
for which are influenced by atmospheric turbulence effects. By consistently operating at
the single-photon signal strength level, accuracy variations can be largely removed, at
the expense of normal point precision, due to the reduced detection probability. We per-
form parameter estimation of Phobos initial state and observation biases using simulated
measurements with and without turbulence, using a daily periodic turbulence strength
model. We show that the parameter estimation quality is degraded significantly below
that of the turbulence-free case only in the presence of strong turbulence. This shows the
existence of a limit of ground turbulence strength below which its influence on parameter
estimation becomes negligible.

1 Introduction

The influence of atmospheric turbulence on the performance of free-space communica-
tions systems, both terrestrial and Earth-space, has been a topic of active study in recent
years. Analyses of the influence of turbulence-induced scintillation and beam wander
on link characteristics such as bit rate and signal fades have been performed by e.g.
Andrews et al. (2000); Hemmati (2006); Farid and Hranilovic (2007); Sandalidis (2011).

(a): Delft University of Technology, The Netherlands
(b): Czech Technical University in Prague, Czech Republic
(c): DLR Berlin, Germany
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For optical ranging systems, specifically in the field of Satellite Laser Ranging (SLR),
the influence of turbulence-induced stochastic time-of-flight variations has been studied
by Kral et al. (2005), who verified the validity of the model derived by Gardner (1976)
from measurements at the Graz SLR station.

The influence of scintillation on the performance of SLR systems has received more
limited attention. The combined influence of scintillation in weak turbulence and retrore-
flectors on return signal intensity was modelled and measured by Bufton et al. (1977);
Bufton (1977). Attenuation of mean signal return strength due to turbulence was studied
by e.g. Churnside (1993); Degnan (1993); Yaoheng and Hesheng (2003). However, the
statistical influence of (time-dependent) turbulence-induced signal-intensity variations
on system performance has not been quantified in detail to date.

The fundamental difference between quantifying the influence of turbulence on laser
ranging and optical communications is that the exact photon detection time directly
influences a range measurement, whereas in optical communications a small error in
photon detection time will typically have no effect on the channel performance (Hem-
mati, 2006). In communications systems, however, a high probability of pulse detection
is required to ensure a robust communications channel. In laser ranging systems, the
signal return rate may be much lower for the system to still function at a level of per-
formance where it can meet its requirements. This is especially clear in Lunar Laser
Ranging (LLR), where stations typically receive returns from very few pulses and operate
in a very low signal-to-noise regime (Jefferys and Ries, 1997). Nevertheless, substantial
science return is obtained from LLR measurements (Williams et al., 2006).

One- and two-way active transceiver laser ranging systems (Degnan, 2002; Birnbaum
et al., 2010; Zuber et al., 2010; Chen et al., 2013) are an emerging technology that is
based on existing SLR and LLR technology, modified with an active space segment to
allow larger distances to be covered. These technologies have the potential to deliver
mm-precise measurements over interplanetary distances, extending the technology of
SLR and LLR to Interplanetary Laser Ranging (ILR). The increased range precision and
accuracy that can be obtained, compared to current radiometric systems, are expected
to yield order(s) of magnitude improvements in the estimation of science parameters
related to, for instance, gravitational physics (Turyshev et al., 2010) and planetary inte-
riors (Dirkx et al., 2014a). Also, ILR systems could be combined with long-distance laser
communications systems (Hemmati et al., 2009; Hemmati, 2011), such as the laser com-
munications system demonstrated at lunar distances by the LADEE satellite (Boroson
and Robinson, 2013).

The measurement error budget breakdown of ILR systems will be different from that
of SLR and LLR. For instance, the satellite signature effect on the laser pulse (Otsubo
and Appleby, 2003), which is the primary cause of changes in a pulse’s temporal shape in
SLR, is absent in ILR. For this reason, small intensity fluctuations (such as those caused
by turbulence) could play a larger role in the detection-time statistics, uncertainties in
which are no longer dominated by retroreflector signature uncertainties. Also, space
segment hardware will introduce new sources of errors, such as clock inaccuracies and
detector uncertainties (Prochazka et al., 2007). The role of optical turbulence in ILR has
not yet been assessed. Quantification of the various error sources of ILR will be crucial in
setting up system requirements during conceptual mission design, as well as for assessing
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the potential science return from missions using this technology. As opposed to SLR,
where ranging data is freely and widely available, no such data exists for ILR, so that
we are forced to rely on simulated data for performing analyses of the expected system
performance.

In this paper, we investigate the influence of optical turbulence on the range precision
and accuracy of the uplink of an ILR system (i.e. Earth-to-space). We limit ourselves
to the uplink of the system for several reasons. Firstly, aperture averaging is expected to
reduce the scintillation effects for the downlink (Degnan, 1993). Secondly, the far-field
(as opposed to near-field) turbulence in the case of the downlink cause effects such as
beam wander and beam spread to be (nearly) absent.

We simulate laser pulse propagation, including the effects of turbulence, as well
as pulse detection times. We map the (turbulence-induced) variations in intensity to
variations in the probability distribution of the photon detection times. From these, we
statistically quantify the influence of turbulence on the achievable performance of such
a system under a variety of atmospheric turbulence conditions, and assess the influence
of the non-Gaussian range errors on the orbit determination process.

We use a representative planetary laser ranging system for our simulations, specifi-
cally a Phobos lander equipped with a laser transceiver system. The system uses a single
photon detector and our analysis in this paper will be restricted to such systems. How-
ever, we do not consider a detector array (as is done in the PLR concept), but instead
use a single detector element in our simulations. We only consider the receiver system
since only the uplink is analyzed here. The feasibility of such a Phobos Laser Ranging
(PLR) system was investigated by Turyshev et al. (2010), who performed a preliminary
design and analyzed the capabilities of such a system to estimate gravitational-physics
parameters. Subsequently, Dirkx et al. (2014a) investigated the potential of such a mis-
sion to estimate physical parameters of Mars and Phobos such as moments of inertia and
Love numbers. In both these studies, the noise level was quantified by a 1 mm precision
averaged over a 1 minute interval. Dirkx et al. (2014a) additionally included systematic
errors in their analysis by the use of consider-covariance analysis, distinguishing between
the influence of degraded accuracy and precision of the range measurements. There, it is
shown that mm-level accuracy uncertainties have an order-of-magnitude higher influence
on the estimation than a similar level of uncertainty in (Gaussian) precision. This result
indicates that it is crucial to analyze the various error sources in ILR to gain a complete
understanding of the potential science return and bottlenecks of this technology.

This paper is structured as follows. We present the models used for the propagation
and detection of laser pulses in Section 2 and the influence of turbulence on the pulse
intensity variations in Section 3. We simulate the influence of ground turbulence strength
on the range measurement errors and parameter estimation procedure and present the
results in Sections 4 and 5, respectively. We present our conclusions in Section 6. We
present a derivation of a far-field criterion for the Ryotv variance (which described weak-
turbulence scintillation statistics) in Appendix A and present and discuss the behaviour
of the two integrals given by Eqs. (22) and (25), which are crucial for linking ground
turbulence strength to turbuelt effects on the detection statistics, in Appendix B.
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2 Laser pulse detection

In this section, we summarize the models used for simulating the laser pulses used in
SLR and ILR and discuss the statistics of variations in its detection time as a func-
tion of received signal intensity. First, in Section 2.1, we briefly review and define our
nomenclature for the propagation of a Gaussian laser pulse. Subsequently, we discuss
the statistics for single-photon detection in a laser pulse which has a Gaussian intensity
pattern in the direction of signal propagation (also termed a temporally Gaussian pulse)
in Section 2.2.

2.1 Laser pulse model

SLR systems use laser pulses which have, to close approximation, a Gaussian spatial
(i.e. in the direction perpendicular to the direction of signal propagation) beam profile
(Degnan, 1993).

For the spatial signal intensity I of a Gaussian beam (Siegman, 1986), we use the
following notation:

I(r, z) = I0

(
w0

w(z)

)2

exp

(
−2

r2

w(z)2

)
(1)

w(z) = w0

√
1 +

(
λz

πw2
0

)2

≈ λz

πw0
(2)

where λ is the wavelength of the laser pulse and I0 is the signal intensity at the waist
(defined as z = 0 here). The laser spot size is denoted by w(z), with the beam waist
radius denoted as w0 and the off-axis distance r. The approximation in Eq. (2) is valid
for Gaussian beam far-field conditions:

z � πw2
0

λ
=
kw2

0

2
(3)

In the far field, the beam-divergence half-angle θFF follows from Eqs. (1) and (2) as:

θFF =
λ

πw0
=

2

kw0
(4)

for which 50-75 µrad (≈ 10-15′′) are typical values for SLR systems (Degnan, 1993).
In the context of optical turbulence models, input plane parameters Θ0 and Λ0 and

output plane parameters Θ and Λ are often used to quantify the state of a Gaussian
beam, defined by the following for a beam with its waist at z = 0, (Andrews et al.,
2006):

Θ0 = 1 Λ0 =
2z

kw2
0

(5)

Θ =
Θ0

Λ2
0 + Θ2

0

Λ =
Λ0

Λ2
0 + Θ2

0

(6)
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Here, the Θ and Λ parameters are measures for the relative strength of refraction and
diffraction, respectively (Andrews and Phillips, 2005). Under the far-field conditions
given by Eq. (3), it follows that Λ0 ≈ w(z)/w0, which is simply the beam expansion
factor, a result of diffraction. Additionally, for the far field approximation, the relation
Λ ≈ 1/Λ0 will hold.

For a laser pulse used in SLR, the temporal profile can also be well approximated by
a Gaussian shape (Degnan, 1993). This Gaussian shape is not significantly influenced
by atmospheric turbulence (Fante, 1975; Degnan, 1993), except for pulse lengths on the
order of picoseconds or shorter. Below these pulse lengths, atmospheric dispersion causes
the pulse to spread as it propagates through the atmosphere. Therefore, the Gaussian
temporal shape is assumed to remain fixed throughout the path of the pulse in ILR, as
opposed to SLR, where it is disturbed by the reflection from a (set of) retroreflectors
(Otsubo and Appleby, 2003), except when using the novel Blitz-type ball reflectors
(Kucharski et al., 2011). For a pulse transmission time (i.e. pulse center at z = 0) at
t = 0, a time τ is introduced by defining:

τ = t− z

ceff
(7)

where ceff represents the mean propagation speed of the laser pulse over its trajectory,
which may include an atmosphere where its speed is less than c. The value of τ is always
zero at the pulse center. This transformed time parameter is used here to define the
pulse intensity in the z-direction in terms of the intensity at the pulse center as follows:

Ip(r, z, τ) = I(r, z) exp

(
− τ2

2σ2
t

)
(8)

where σt is the pulse-length standard deviation, related to the pulse full-width half-
maximum (FWHM) tHM , which is typically used to quantify SLR systems, (Murphy,
2001):

tHM = 2
√

2 ln 2σt (9)

In addition to the effects of turbulence, which we describe in Section 3, we take
into account a number of additional environmental effects modulating the pulse inten-
sity. Firstly, we include atmospheric attenuation using the models presented by Degnan
(1993). Using this method, we map zenith transmittance Ta to non-zero zenith angles
ζ. Secondly, the optical efficiency of the transmitter and receiver telescope receiver
telescope ηt and ηr, as well as the detector quantum efficiency ηq cause a variation in
detected signal strength between subsequent pulses. We discuss the combination of these
effects with our turbulence models in Section 3.6.

2.2 Detection statistics

In this study, we consider only laser ranging systems operating with a single photon
detection systems such as Single Photon Avalanche Diodes (SPADs), which register the
arrival of a single photon and the detection of this photon is time-tagged. Detection
at the single-photon level is preferred for a number of reasons in SLR, (Otsubo and
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Appleby, 2003; Degnan, 2001; Prochazka et al., 2004), such as the superior performance
of detectors at the single photon level. We assume a negligible environmental noise
regime, so that all detected photons are from the transmitted laser pulses. Due to the
finite length of the laser pulses, the detection time of the photon will be different from
that of the pulse center, as will be discussed in this section.

The detection time Probability Distribution Function (PDF) of the first photon in

a temporally Gaussian pulse, denoted PDF p
(1)
first(τ), was derived by Murphy (2001).

From this, we derive an explicit form of the Cumulative Distribution Function (CDF)

P
(1)
first(τ):

p
(1)
first(τ) =

N√
2πσt

e
− τ2

2σ2t

(
1

2
− 1

2
erf

(
τ√
2σ

))N−1

(10)

P
(1)
first(τ) =

∫ τ

−∞
p

(1)
first(τ̄)dτ̄ = 1−

1− erf
(

τ√
2σt

)
2

N

(11)

erf(x) =
2√
π

∫ x

0

et
2

dt (12)

where erf(x) denotes the standard error function (Abramowitz and Stegun, 1964) and
N is the number of detectable photons (i.e. the number of photons that are incident on
the detector and which could potentially be the photon that triggers the system). This
PDF is plotted in blue in Fig. 1 for a number of values of N , where it can be seen that,
for increasing N , the peak of the PDF is shifted and its shape becomes skewed.

Under turbulence-free conditions and no signal attenuation along the beam path,
the value of N is obtained from evaluating Eq. (8) at the detector position to obtain
the irradiance I(t). In Eqs. (10) and (11), the influence of atmospheric turbulence
is manifested in its stochastic influence on the signal intensity I (discussed in Section
3) and resultantly the number of photons N , so that N will itself become a random
variable.

The result of N itself being a random variable on the pulse detection time is shown
in Fig. 1, where the PDF for the detection time of the first photon is shown for the
case where N is a random variable with a uniform integer distribution in the [1,4] range
(values chosen for illustrative purposes). In this case, the resulting PDF can be seen as
the average PDF when combining the PDFs for N = 1, 2, 3, 4 from Eq. (10). It can
clearly be seen that the deviation from the Gaussian shape increases compared to the
constant N case. Additionally, the time-dependence of the turbulence conditions will
cause the PDF to also be time-dependent.

To illustrate the magnitude of the mean detection time error as a function of N , the
expectation value of τ from Eq. (10) is plotted in Fig. 2. In this figure, it can be seen
that a small change in N (i.e. increase or decrease of 1) causes an especially high change
in the expectation value of τ for low photon number N = 1, 2, 3, 4, with changes on the
order of the pulse length standard deviation.

To quantify the influence of turbulence, we require a mapping from I(t) to N . As-
suming that the signal intensity varies negligibly over the detector with radius rd, i.e.
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Figure 1: Examples of first photon detection statistics PDF, with τ = 0 indicating detection of
photon at the pulse center, Eq. (10). Blue: for N = 1, 2, 5, 10, for PDFs with peaks from right
to left, respectively. Red: PDF in Eq. (10) with N a random variable, modelled as a uniformly
distributed integer in the [1,4] range.
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Figure 2: Expectation value for the first photon detection time error, Eq. (10), as a function
of N .

rd � w(z), the power on the detector P (t) is calculated to be I(t)Ad, with Ad the
detector area. The total received energy Up,r is obtained by integrating the result over
the temporal pulse shape from Eq. (8):

Up,r(r, z) = Ad

∫ ∞
−∞

Ip(r, z, τ)dτ = I(r, z)Adσt
√

2π (13)

The energy of a single photon Eph at the given wavelength is determined from:

Eph =
hc

λ
(14)

Consequently, the mean expected number of detectable photons, 〈N〉, follows from:

〈N〉 =
Up,r
Eph

(15)
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To generate an (integer) value N for the number of detectable photons, we use Poisson
statistics. The probability mass function (PMF) for the number of photons N that reach
the detector plane is described by the following:

fN (N) =
〈N〉N

N !
e−〈N〉 (16)

As a result, even for very low energy levels, with 〈N〉 � 1, detection will not always
occur at the single photon level, since P (N > 1) 6= 0. For instance, for 〈N〉 = 0.1,
it follows that P (N = 2) ≈ 0.005. As a result, even for an average detectable energy
equal to that contained by 1/10th of a photon, 2 photons will still be detected for ≈0.5
% of all pulses (on average), compared to 1 photon in ≈9 % and 0 photons in ≈90
% of all pulses. One way in which to mitigate the multi-photon detections is to use a
multi-element photon detector, such as that used at the APOLLO LLR station (Murphy,
2013). When using a multi-element detector, the multiple photons may be detected by
separate elements. In such a system, the detection statistics discussed in this section do
not apply to the detector as a whole, but to each element separately. The influence of
this on photon detection statistics is discussed further by Murphy (2001).

3 Optical turbulence

In the presence of turbulence, the spatial intensity profile of the laser pulse will be
stochastically altered due to a number of physical effects, discussed extensively by An-
drews and Phillips (2005).

We seek to statistically quantify the influence of turbulence on the signal intensity
and pulse delay at a given value of the off-axis distance r and propagation distance
z and map these results to statistics for the pulse detection error. To achieve this, we
require a model for the atmospheric turbulence strength, specifically the refractive index
structure constant C2

n, along the beam path. This model is discussed in Section 3.1. We
subsequently present the theoretical discussion of the statistics of turbulence-induced
signal strength variations. We present the models of turbulence on the mean (time-
averaged) irradiance pattern 〈I(r, z)〉 in Section 3.2. We present models for the statistical
deviations of signal strength from this mean pattern in Section 3.3. Specifically, we
describe the model we use for the scintillation index σ2

I and turbulence-induced pointing
error ∆θ. A model for the direct influence of turbulence on the laser pulse time-of-
flight is presented in Section 3.4. The probability distribution functions for the various
stochastic aspects of the turbulence-induced variations in are given in Section 3.5.

In Section 3.6, we summarize our numerical procedure for combining the various
turbulence models and generating range error statistics. Finally, the expected influence
of the various turbulence effects on laser range measurement accuracy and precision are
qualitatively discussed in Section 3.7.

3.1 Refractive index structure constant

The local strength of the atmospheric turbulence can be quantified by the refractive index
structure constant C2

n, which is a measure for the turbulence-induced spatial variation
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of the atmosphere’s refractive index. A wide variety of models for this quantity with
altitude, location and time exist (Tunick, 2002). One of the most widely used models in
the current context is the Hufnagel-Valley (HV) model (Beland, 1993), as it is relatively
simple and provides reasonably accurate results (Andrews and Phillips, 2005), which is
well suited for a conceptual study such as this one.

It requires the ground turbulence level of an exponentially decaying term, which we
denote as C2

n(0), and the mean high-altitude wind velocity u as input to generate a profile
with altitude h as follows:

C2
n(h) = 0.00594

( u
27

)2 (
10−5h

)10
exp

(
− h

1000

)
+ ...

...+ 2.7 · 10−16 exp

(
− h

1500

)
+ C2

n(0) exp

(
− h

100

)
(17)

u =

√
1

15 · 103

∫ 20·103

5·103

V 2
u (h)dh (18)

with Vu(h) the wind velocity as a function of altitude h. Typical values for C2
n(0) and u

are 1.7·10−14 m−2/3 and 21 m/s, respectively, for which the above is termed the HV5/7

model (Andrews and Phillips, 2005). However, local values of the parameters can vary
strongly, depending on location, time of day and time of year, by orders of magnitude
in the case of the C2

n(0) (Walters and Kunkel, 1981; Tunick, 2002).

We expect that it will be especially the time-dependence of C2
n that will influence the

performance of the ranging system, due to the fact that a constant bias estimation will
not be able to fully compensate for it, as opposed to constant turbulence conditions (see
Section 3.7). The HV model allows for variations of the ground-level structure constant
C2
n(0) and rms wind speed u in the atmosphere to include time-dependent turbulence

strength effects in the analysis (see Section 5).
A limitation of the HV model is that it works best for atmospheric profiles starting

at sea level (h = 0). Although it may be applied for ground station locations above
sea level, the expected errors on the turbulence profile will increase, due to the strong
decrease in the influence of the term modulated by C2

n(0). Kral et al. (2004) compared
measured values for the coherence length with those obtained from the HV model for
a station at an altitude of 2332 m, arriving at an error of 30%. However, it must be
stressed that it is not our goal here to make precise turbulence predictions. Instead, it is
our goal to statistically map a range of turbulence strength statistics to a range of range
error statistics, to assess the expected influence of turbulence on (planetary) laser links.
Nevertheless, since we wish to investigate the influence of the C2

n(0) term in Sections 4.1

and 5, we only use stations near sea-level and replace h/100 with (h−h0)/100 in Eq. 17
to include strong observed variability in ground turbulence levels, also for h 6= 0. When
using the models presented in this paper to make precise predictions of the influence of
turbulence on SLR/ILR links, a more precise model for C2

n with position, altitude and
time should be used.
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3.2 Mean irradiance

The mean irradiance profile (i.e. the intensity pattern for a static link as averaged over
time) for a Gaussian beam is influenced by both beam wander and beam spread in the
presence of atmospheric turbulence (Andrews et al., 2006). Beam wander causes the
center (i.e. point of maximum intensity) of the beam to move around in the detection
plane (Section 3.3). Beam spread increases the instantaneous beam divergence beyond
its nominal divergence angle. These effects are known to limit the attainable focusing
of the laser pulse in SLR (Degnan, 1993). Both effects contribute to a long-term (i.e.
averaged over longer periods of time) mean irradiance profile that can in many cases be
closely approximated by replacing w(z) by the long-term spot size wlt(z) in Eq. (1),
(Andrews et al., 2006), so that:

〈I(r, z)〉 = I(r, z)|w(z)→wlt(z) (19)

with the following model for wlt(z) :

wlt(z) = w(z)

(
1 + 25/2

(
w0

r0

)5/3
)3/5

(20)

where r0 is Fried’s parameter, or the atmospheric coherence diameter. This quantity
is a measure for the strength of optical turbulence and quantifies the distance over
which turbulence-induced wavefront errors accumulate (Andrews and Phillips, 2005).
From this equation, it can be seen that the long term spot size has different asymptotic
behaviour for w0/r0 � 1 and w0/r0 � 1. For very small w0/r0, the influence of
turbulence on the mean irradiance pattern becomes negligible and wlt(z) reduced to
w(z). For very large w0/r0, however, wlt(z) ∼ w0/r0. with r0 effectively acting like a
diffractive parameter broadening the beam. In essence, atmospheric turbulence acts as
a stochastic lens, the time-averaged effect of which we quantify by beam spread.

The quantity r0 is determined from the following Andrews and Phillips (2005):

r0 =
(
0.423µu0k

2 sec ζ
)−3/5

(21)

µu0 ≈
∫ H

h0

C2
n(h)dh (22)

where k is the signal’s circular wavenumber (i.e. 2π/λ), H is the altitude of the ob-
server, h0 the altitude of the transmitter and ζ is the zenith angle of the target at the
ground station, so that z = H sec ζ. For the the HV5/7 model (Section 3.1), which

represents typical turbulence conditions, r0 = 0.0533 m and µu0 = 2.2 · 10−12 m−2/3.
The approximation for µu0 holds when hmax � H, with hmax the maximum altitude
at which atmospheric turbulence contributes non-negligibly to µu0. The value of hmax
can be safely assumed to be 50 km, when inspecting Eq. (17), from which it can be
seen that all terms contribute negligibly to C2

n(h) at such an altitude. The behaviour of
µu0 for a wide range of model parameter for the Hufnagel-Valey model (Section 3.1) is
presented in Appendix B.
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Although the modified Gaussian irradiance profile is a good approximation for most
cases, large deviations may occur for relatively large values of r, as shown for the case
of collimated beams by Recolons et al. (2007), where numerical turbulence simulations
show large deviations in the tails of the Gaussian distribution, with far higher values
of 〈I〉 than predicted by Eq. (1), with w(z) = wlt(z) from Eq. (20). However, these
deviations only become pronounced for very large off-axis distances, with r > 3-5wlt.
As an example, at 1 AU, the turbulence-free spot-size of a typical system is on the order
of 5000 km. Such large off-axis distances are expected to occur only very rarely in ILR,
due to the quality of target position predictions, as shown by the accuracy of modern
planetary and spacecraft ephemerides e.g. (Fienga et al., 2009; Folkner et al., 2009).
Also at such large values of r the signal strength is unlikely to be sufficient for a photon
detection, with or without turbulence.

3.3 Irradiance variations

In this section, we present models for the parameters describing the statistical deviations
of the intensity pattern from the mean pattern discussed in the previous section. We
first present our model for the scintillation index and subsequently present the model
for pointing errors induced by turbulence (beam wander).

The scintillation index σ2
I is a key parameter in describing the statistics of optical

turbulence. It is defined as follows:

σ2
I (z, r) =

〈
I2(r, z)

〉
〈I(r, z)〉2

− 1 (23)

and is a measure for the expected level of fluctuations of the signal intensity from the
mean pattern described by Eq. (19).

The statistical theory for the influence of weak turbulence on the propagation of
Gaussian beams is well-developed. Under such conditions, (i.e. σ2

I � 1), the on-axis
scintillation index σ2

I (z, r = 0) is well approximated by the Rytov variance, denoted by
σ2
B (Andrews and Phillips, 2005):

σ2
B = 8.7µu1k

7/6z5/6 sec(ζ) (24)

µu1 = Re

(∫ h=H

h=h0

C2
n(ξ)

(
ξ5/6

(
Λξ + i(1− Θ̄ξ)

)5/6 − Λ5/6ξ5/3
)
dξ

)
(25)

ξ = 1− h

H
(26)

with Θ and Λ from Eq. (6). The behaviour of µu1 for a wide range of model parameter
for the Hufnagel-Valey model (Section 3.1) is presented in Appendix B.

To extend the scintillation model presented above to strong turbulence conditions,
the extended Rytov theory will be used, which was developed by (Andrews et al., 1999,
2000). In this theory, the index of refraction is split into two components, one due to
small scale turbulence eddies and one due to large scale turbulence eddies. In weak
turbulence, all eddies fall into either of these two categories. In strong turbulence,
however, there is a region of ’medium-sized’ eddies which do not contribute substantially
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to the scintillation. In order to incorporate these concepts into the calculation of σ2
I ,

heuristic spatial filter functions are introduced, which limit the eddy sized which are
included in the derivation of the scintillation conditions. Using this theory, the on-axis
scintillation index is calculated from:

σ2
ln x =

0.49σ2
B(

1 + 0.56 (1 + Θ)σ
12/5
B

)7/6
(27)

σ2
ln y =

0.51σ2
B(

1 + 0.69σ
12/5
B

)5/6
(28)

σ2
I = exp

(
σ2

ln x + σ2
ln y

)
− 1 (29)

where σ2
ln x and σ2

ln y are the contributions to the (logarithm of the) scintillation index

σ2
I due to the large- and small-scale turbulent atmospheric eddies, respectively. It can

be seen from Eqs. (27)-(29) that under weak turbulence conditions (i.e. σ2
B → 0),

the scintillation index tends to σ2
B . For strong turbulence σ2

I converges to ∼ 1, instead
of increasing without bound, as is the case for σ2

B . The above method shows close
coincidence with results obtained by numerical optics methods (Andrews et al., 2000,
2007) for both terrestrial and space-uplink scenarios, and can be used for a conceptual
analysis of scintillation strength.

In Appendix A, it is shown that in the far-field the condition Θ = 0 may be assumed
to evaluate the integral in Eq. (25). In this context, the far-field is defined as follows,
assuming the HV turbulence profile:

z �
(
kw2

0

2

)2
1

100
(30)

which can be seen to be distinct from Eq. (3). For typical SLR values of λ = 532 nm,
w0 = 1 cm, (obtained from Eq. (4) with a relatively large θFF=150 µrad) this condition
imposes a far-field distance of only about 3.5 km. For planetary laser ranging systems,
the Θ = 0 assumption will still be valid for all realistic values of w0 and typical values of
k, reducing the dependency of the scintillation index on wavelength, distance and waist
radius to a single combined parameter Λ · z. However, due to the 4th power dependency
of Eq. (30) on w0, the far-field condition is not necessarily valid for all systems and
(LEO) SLR targets.

In addition to the scintillation index for the on-axis conditions calculated from Eqs.
(27)-(29), the off-axis scintillation, i.e. for r 6= 0, requires an additional modification.
Although we assume ideal pointing of the system hardware in our study, we do include
pointing errors induced by turbulence. Specifically, beam wander has an influence on
the intensity fluctuation statistics by causing an effective (off-axis) pointing jitter (Baker
and Benson, 2004). Here, we adopt the method to account for these effects that was
proposed by Andrews et al. (2006) and applied by e.g. Sandalidis (2011) in the context
of optical communication channel performance.

It is a semi-empirical theory for including the influence of the beam-wander effect. It
is derived using similar approach as the derivation of Eqs. (27)-(29) by Andrews et al.
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(1999), splitting the turbulent eddies into small and large scales and thereby splitting the
effects of beam wander and beam spread. A filter function is used to limit the calculation
of beam wander to the influence of eddies of the beam size and larger (Andrews et al.,
2006). The method can be used to either modify the scintillation index directly or
alternatively to separately model the influence of beam wander as a stochastic pointing
error, as will be discussed further in Section 3.5.

Using the theory developed by Andrews et al. (1999), the equation for the effective
pointing error variance σ2

pe becomes, for a slant uplink path

〈
r2
c

〉
= 0.54z2

(
λ

2w0

)2(
2w0

r0

) 5
3

(31)

σ2
pe =

〈
r2
c

〉1−

 C2
r

(
w0

r0

)2

1 + C2
r

(
w0

r0

)2


1
6

 (32)

where
〈
r2
c

〉
is the mean large-scale beam wander magnitude and Cr is an empirical

constant set to ≈ π in the simulations by Andrews et al. (2006). For moderate turbulence
strength (w0/r0 = 1), λ = 532 nm and w0 = 5 cm,

〈
r2
c

〉
/z ≈ 12.5 rad.

From the above relations, the additional on- and off-axis scintillation index contri-
bution becomes the following:

∆σ2
I (z, r) = 5.95z2

(
2w0

r0

)5/3

·

((
θpe
W

)2

+

(
θr − θpe
W

)2

U(θr − θpe)

)
(33)

where θ is the off-axis pointing error (θpe ≈ σpe/z; θr ≈ r/z) and U denotes the Heaviside
function. When setting θpe = 0 this equation reduces to the off-axis scintillation index
contribution in the absence of beam wander (Andrews et al., 2006). In addition to this
signal intensity variation due to r 6= 0, an increase in r will decrease the mean irradiance
〈I〉 in Eq. (19).

For our numerical simulations, we separate the random variable for the beam-wander
induced pointing error ∆θ from I, combining them geometrically in our model by the
stochastic influence of ∆θ on r and resultantly on I and σ2

I through Eqs. (19) and (33),
respectively. The variance of ∆θ, denoted σ2

p, is derived using the relations given by
Titterton (1973) and the term γ used by Andrews et al. (2007), assuming a Gaussian
distribution of pointing errors:

σ2
p =

w(z)2

2z2γ
(34)

γ =

√
1 +

σ2
I + 1

∆σ2
I

− 1 (35)

By taking this approach we retain more flexibility in our models, since it allows us to
combine the beam-wander induced pointing error with an arbitrary pointing error due
to for instance hardware errors, etc.
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As discussed by Andrews et al. (2006), the far-field beam profile, which we seek to
statistically model, can be characterized as a function of w0/r0, with the asymptotic
regimes w0/r0 � 1, w0/r0 ∼ 1 and w0/r0 � 1. The numerical simulations show that
the model that we also apply here is applicable for conceptual studies throughout these
regimes. For saturated turbulence, w0/r0 � 1 and the beam breaks up into a number of
smaller spots, an effect termed speckle. Although our models cannot generate a speckle
pattern at a given point in time, it can provide a statistical description of the signal
intensity through the combined use of the scintillation and beam wander models.

3.4 Time-of-flight variations

In addition to the intensity variations, for which models have been presented in the pre-
vious section, atmospheric turbulence has a direct influence on the range measurement
statistics by causing time-of-flight variations of the laser pulses. These variations are
due to the stochastic variations of the atmospheric index of refraction, which lead to
variations in the pulse propagation speed. A theoretical model for this behaviour was
derived by Gardner (1976):

σ2
t = 26.3L

5/3
0

∫ L

0

C2
n(ξ)dξ ≈ 26.3L

5/3
0 sec ζ

∫ H

h0

C2
n(h)dh (36)

≈ 26.3L
5/3
0 sec ζµu0 (37)

where L0 is the outer scale of the turbulence, i.e. the maximum size of the turbulent
eddies. The second approximation in the integral is valid when neglecting latitude and
longitude dependencies of C2

n and making the approximation in Eq. (22). The above
relation was verified at the Graz SLR station (Kral et al., 2005), who related the integral
to atmospheric seeing conditions and fitted a value for L0 of roughly 30 m, which we
consistently use in our simulations. For the HV5/7 turbulence model (Section 3.1), this
results in σt ≈ 0.13 mm for zenith transmission and σt ≈ 0.25 mm for a 15◦ elevation
angle.

3.5 Probability distributions

To describe the statistical influence of turbulence on a laser ranging system, a PDF for
the variations of the intensity I(r, z), as well as the time-of-arrival fluctuations discussed
in Section 3.4, are required.

The intensity fluctuation PDF must take into account both scintillation and beam
wander. For scintillation, the lognormal model is known to be a good approximation
for weak turbulence and is often applied in conceptual studies (Degnan, 1993; Andrews
et al., 2007). However, it fails to model scintillation under moderate or strong turbulence
conditions. The gamma and gamma-gamma distributions are shown by Al-Habash et al.
(2001); Andrews et al. (2007) to closely model scintillation across all intensity scales.
Here, we use the gamma distribution, as it has an analytically tractable CDF and inverse
CDF (i.e. cumulative probability as a function of random variable value), facilitating
its use in numerical simulation studies. The expression for the PDF of the intensity I
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becomes:

fI(I) =
1

Γ(m)I

(
mI

〈I〉

)m
exp

(
mI

〈I〉

)
(38)

m = σ−2
I (39)

where Γ(m) represents the standard Gamma function. The above equation represents a
gamma-distributed random variable I with shape factor m and scale factor 〈I〉 /m.

For the inclusion of the beam-wander induced pointing error, we take an approach
that is conceptually similar to modulating the gamma-distributed scintillations with
additional variations due to beam-wander induced pointing errors that is taken by (An-
drews et al., 2007). They model the pointing errors as a beta distribution modulating
the intensity fluctuations. This is derived from the assumption of mutually independent
random pointing errors in two independent pointing directions under the condition of
r � w (Titterton, 1973). We choose to model the pointing errors as separate PDFs:
independent Gaussian distributions, with zero mean and variance from Eq. (34). The re-
alizations of the random variables are combined numerically in our simulations, allowing
more flexibility in including other effects into the model.

3.6 Model synthesis

In this section, we will give a stepwise overview of our numerical procedure to combine
the models presented in the previous sections to generate range measurement statistics.

• Calculate from a given pulse transmission time the measurement geometry for an
ideal link, calculating the ideal reception time and the state of both the receiver
and transmitter at reception and transmission time, respectively, e.g. (Moyer,
2000). From the geometry we obtain the link distance z and zenith angle ζ.

• Evaluate the model for σ2
p in Eq. (34). Use σ2

P to generate realizations of the
Gaussian PDFs for the two pointing errors (Section 3.5), from which we obtain an
off-axis target distance r.

• Calculate 〈I(r, z)〉 from Eqs. (1) and (19) by evaluating wlt(z) from Eq. (20) and
using the system parameters and current values of r and z. We use zenith angle
ζ and atmospheric transmittance (Ta = 0.7), as well as the transmission system
efficiency ηt, to modulate signal intensity through the appropriate decrease in I0
(see Section 2.1).

• Evaluate the model for the scintillation index σ2
I from Eq. (29).

• Generate a realization of the intensity at the receiver from the Gamma distribution
in Eq. (39) using σ2

I and 〈I(r, z)〉.

• From the total intensity at the detector and the receiving telescope diameter,
obtain the total energy that is incident on the detector using Eq. (13). Generate
a realization of the ideal number of detectable photons Nid (i.e. with detection
efficiency of 1) from the Poisson distribution in Eq. (16).
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• Use the binomial distribution with Nid possibly detectable photons with equal and
independent possibility of detection ηrηq to determine number of detected photons
N , where ηr is the receiver optical efficiency and ηq is the detector quantum effi-
ciency.

• From N and the pulse length σt, generate a realization of the pulse detection time
error from the distribution with CDF given by Eq. (11); add stochastic time of
flight variation using Gaussian distribution and variance from Eq. (37).

The primary output of this procedure is the pulse measurement time error τ , discussed
in Section 2.2. However, we also use the intermediate quantities of the calculation to
analyze the results in Sections 4 and 5.

3.7 Turbulent effects on range accuracy and precision

To simulate the influence of turbulence on laser range measurements, we generate range
errors ∆s(= cτ) numerically and investigate their statistical distribution as a function of
turbulence strength. Thereby, we combine the various influences of optical turbulence on
N in Eq. (10), as discussed in Section 3.6, and quantify their influence on range accuracy
and precision. In this section, we qualitatively discuss the expected effects of atmospheric
turbulence on the accuracy and precision, in preparation for the interpretation of the
simulation results presented in Sections 4 and 5.

As discussed in Section 2.2, the mean range error can be directly related to the
mean number of detectable photons per pulse N in Eq. (10). Specifically, for larger N ,
larger mean range biases will be present in the observations, shown explicitly in Fig.
2. However, higher mean values of N will also imply fewer pulses for which N ≤ 0,
in the presence of signal strength variations due to (among others) turbulence, i.e.
higher numbers of detected pulses. Since the normal point precision improves with

√
Nd

(Sinclair, 1997), where Nd is the number of detections used for generating a single normal
point, high mean values of N will generally result in a higher normal point precision.
Therefore, higher signal strength will result in a higher normal point precision, but
lower accuracy. The decrease in accuracy can be mitigated by including an observation
bias in the parameter estimation process (Section 5.1). When the PDF describing the
statistical behaviour of N varies in time, however, an observation bias will only remove
the time-averaged value of the mean turbulence-induced error and a time-varying range
bias will remain in the simulated observations.

Time-dependent signal strength variations are present even in the absence of turbu-
lence, due to varying atmospheric attenuation with both time and zenith angle, varying
target distance and hardware inaccuracies.

Scintillation and beam wander will statistically cause a larger variation in pulse
detection energy and a smaller number of detection events, thereby reducing the data
quantity and reducing the normal point precision over a given time interval. However, for
a given turbulence strength, the mean range error will also decrease, but time-variations
in turbulence strength will result in time-varying range inaccuracies.

Finally, turbulence causes direct laser pulse time-of-flight variations, discussed in
Section 3.4. This influence will consistently reduce the precision of the range measure-
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Table 1: Nominal parameters for Earth-Phobos laser link.

λ Up,t tFWHM θFF rd ηq · ηr
532 nm 1.0 mJ 50 ps 25 µrad 0.25 m 0.12

ments, without reducing the number of measurements, thereby requiring averaging of
more measurements to reach a given normal point precision.

4 Results: range measurement statistics

In this section, the simulation results for the influence of atmospheric turbulence on
the range measurements statistics of a representative mission and system are presented
and discussed. We investigate the influence of time-invariant turbulence on the range
accuracy and precision statistics over a single pass for a broad range of HV model
parameter values C2

n(0) and u (see Eq. (17)).
In Section 4.1, we outline our simulation scenario and setup, discussing the mission

parameters that we use. Subsequently, we discuss the influence of turbulence on the
measurement accuracy and precision in Sections 4.2 and 4.3, respectively. Finally, the
effect of variation of laser system settings on the influence of atmospheric turbulence
and the associated considerations for link design trade-offs are presented in Section 4.4.

4.1 Simulation parameters

We use the uplink of the Phobos Laser Ranging (PLR) system of Turyshev et al. (2010)
as the test case for our analysis, and use similar system parameters as nominal input
to our simulations, shown here in Table 1. Here Up,t denotes the transmitted pulse
energy, which includes the transmission efficiency ηt. This system is representative for
systems nominally operating in the low multi-photon regime. For closer targets, such as
the Moon or lunar orbiters, the unattenuated signal strength will be in the high multi-
photon regime, leading to less variation in mean range error (see Fig. 2). For systems
nominally operating in the single-photon regime, there will be little variation in range
accuracy, but extremely large degradations in normal point precision may occur (see
Section 3.7). We choose to analyze a system of intermediate signal strength (nominally
operating at the low multi-photon levels), as such systems are not overdesigned from
a system power point-of-view, while retaining a comfortable margin of allowable signal
strength degradation. Also, simulations of such a system provide us with insight into
both the degradation in system accuracy due to pulses with multiple detectable photons,
which will occur under weak turbulence strength conditions, as well as normal point
precision degradation due to a reduction in the number of detections, which will occur
under strong turbulence conditions (see Section 3.7).

For the situation without turbulence, several factors modulate the pulse detection
statistics (see Section 3.6). Changes in target distance change the energy at the detector,
thereby modifying the value of the number of detected photons N , see Eq. (10). Simi-
larly, a changing zenith angle causes variations in detectable energy through changes in



156 Paper II - Atmospheric Turbulence

Table 2: Nominal measurement statistics for turbulence-free Earth-Phobos laser link.

∆s σ∆s Detected fraction N σN

-4.93 mm 5.66 mm 94.35 % 3.09 1.87

atmospheric attenuation. Finally, our statistical modelling of detection system efficiency
causes pulse-per-pulse variations in N .

We investigate a broad range of values for C2
n(0), with 0 m/s ≤ u ≤ 50 m/s and

2.0 · 10−16 m−2/3 ≤ C2
n(0) ≤ 10−11 m−2/3. It should be noted that the > 10−12 m−2/3

turbulence case represents rather extreme turbulence conditions. Such large ground
turbulence values are only expected at daytime. Measurements of ground turbulence
strength are given by Walters and Kunkel (1981), who report a mean mid-day ground
turbulence value of 7.7·10−13 m−2/3. However, unlike in SLR, daytime ranging cannot
be avoided in ILR, since the interplanetary observation geometry changes very slowly in
time, with the synodic period of Earth and the target body.

In Sections 4.2-4.4, we present results for measurements made during a single day
by the station Yarragadee, located in Australia, with a pulse repetition frequency of
5 Hz. The simulations are made for an entire pass a range of zenith angles of 0◦-75◦,
so the results include the averaged effects of varying zenith angle on signal strength
intensity. During the measurements, Phobos is at a distance of about 120 million km
(≈ 0.8 AU) from Earth. For the case without turbulence, which we use as a benchmark,
the simulation results are summarized in Table 2, which shows the standard deviation
and mean value of the range error and number of detected photons. Note that we use
the term ’detected pulse fraction’ for the fraction of total pulses for which the number
of detected photons N > 0. In the SLR community, the equivalent term for the two-way
ranging is ’return rate’. However, since there is no return in our one-way observable, we
choose to use the detected pulse fraction term instead.

4.2 Range accuracy

The results for the mean range errors (i.e. accuracy) as a function of the HV parameters
C2
n(0) and u (Section 3.1) are shown in Fig. 3. It can be seen that the range error is mostly

influenced by the ground turbulence term C2
n(0) and much less by the high-altitude wind

speed u, indicating a weak dependence of accuracy on µu1 and therefore the scintillation
index σ2

I (Appendix B). This is clear when comparing Fig. 3 to Figs. A.1(a) and A.1(b),
where a much stronger resemblance to Fig. A.1(a) than Fig. A.1(b) is observed. When
interpreting Fig. 3, it must be stressed that the high turbulence conditions, which lead to
a mean ∆s of approximately zero, does not represent a better result than those at weaker
turbulence conditions. The estimation of range biases, including those resulting from
turbulence are typically estimated during data processing. However, time-variabilities of
range biases may be difficult to remove during data analysis and can degrade estimation
performance, as will be discussed in Section 5.

For strong turbulence conditions, the mean range error reaches values of nearly 0
mm, as shown in Fig. 3. This indicates that nearly all detections occur for cases where
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Figure 3: Results for mean range error for nominal mission scenario and varying turbulence
conditions.
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Figure 4: Results for mean range error for nominal mission scenario and varying ground tur-
bulence strength and zenith angle.

only a single photon reaches the detector. However, it is interesting to note that even
for very low energy levels, detections still occur for which ∆s 6= 0, so where N > 1. This
is due to the Poisson statistics describing the ideal distribution of N , shown in Eq. 16.
The results shown here reinforce the discussion in Section 2.2, showing that true single
photon signal strength is not achieved, even for 〈N〉 � 1.

The lack of smoothness in the plot at large C2
n(0) is due to the very small number

of detected pulses under these strong turbulence conditions. The small number of data
points used to numerically calculate the mean of the range error causes deviations from
the ideal mean range error. For the low values of C2

n(0), the number of pulse detection
is substantially higher, leading to a more robust determination of the mean range error.

The mean value of the range error can be seen in Fig. 3 to vary over a range of
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roughly 3-4 mm between low (< 10−15 m−2/3) and high (> 10−12 m−2/3) C2
n(0), with

very little variation due to variations in u. The larger range error for weak turbulence
conditions is due to the higher average value of N in these cases, leading to a detection
earlier in the laser pulse (Sections 2.2 and 3.7). The observed range error variations
between weak and strong turbulence conditions are well above the sub-mm level that
are desired for interplanetary laser ranging. This indicates that time variations in the
ground turbulence strength at even the moderate variation of 10−15−10−13 m−2/3 could
cause a noticeable degradation of ILR system performance, which we will investigate
further with simulated parameter estimation in Section 5.

The reduction in signal strength at the receiver (i.e. smaller value of N) due to
large C2

n(0) is primarily a result of the strong increase in pointing error ∆θ for large µu0.
Both the mean value and standard deviation of the pointing error grow above values
of 100 µrad (= 4θFF , see Table 1) for C2

n(0) > 10−12 m−2/3. This reduces the signal

intensity and number of detectable photons due to reduction of the ratio r/w(z) in Eq.
(1). Mitigation strategies for pointing-error induced signal strength reduction will be
discussed in Section 4.4. Since the beam-wander induced variations are the dominant
source of strong accuracy variations, our approach of analyzing only the uplink of the
two-way laser ranging system is a valid one for this conceptual analysis, since beam
wander is not present in the downlink.

The results shown thus far have been generated by averaging over an entire pass, with
the zenith angle ζ between 0 and 75 degrees. Now, we will discuss the influence of the
zenith angle on the accuracy by generating range statistics at at various separate zenith
angles ζ. Since it was shown (see Fig. 3) that the accuracy depends only very slightly
on u, we calculate the mean range accuracy as a function of C2

n(0) and ζ only, omitting

the influence of u (which we set at a constant 20 m/s). The results are shown in Fig. 4.
Although these results are quantitatively dependent on the zenith transmittance, which
we set to 0.7, it allows us to gain general qualitative insight into the dependency of the
angle on the influence of turbulence. For low elevation angles (high zenith angles), the
values of |∆s| become smaller, as was expected since the signal attenuation reduces the
number of detectable photons. The complete range of mean errors increases somewhat,
since the effect of zenith angle is no longer averaged out over the entire pass. Also,
for any zenith angle, the total variation in range error between low and high ground
turbulence is larger than 1 mm. The influence of varying pass zenith angle, including
time-correlation of the zenith-angle repeat period and periodicity of the C2

n(0) variations,
will be discussed in Section 5.3.

4.3 Range precision

The standard deviation of the pulse detection times (i.e. precision) as a function of
turbulence strength is shown in Fig. 5(a). This standard deviation represents the vari-
ability in pulse detection time about the pulse center time (Section 2.2) and represents
the precision of the range measurement from a single pulse, termed the single shot pre-
cision. For the nominal pulse length of 50 ps FWHM used here (Table 1), the impact of
turbulence on the precision of the measurements is relatively small. We find a variation
of about 1-1.5 mm single-shot precision between weak and strong turbulence conditions,
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Figure 5: Results for nominal mission scenario and varying turbulence conditions of a) standard
deviation of range error and b) number of detected pulses.

compared to a turbulence-free value of about 5.6 mm single-shot precision (Table 2).
The behaviour of the range precision with turbulence parameters in Fig. 5(a) exhibits

a moderately stronger dependence on u than the range accuracy (see Fig. 3). This is
due to the influence of scintillation on the range precision, which is determined by the
strongly u-dependent µu0 integral (Appendix B). However, for larger values of C2

n(0),
the variations in range measurement precision are no longer noticeably dependent on
u, and are physically dominated by the strong variations in pointing angle error ∆θ, as
was the case for the range accuracy.

Although the influence on single-shot precision is quite small, a very strong decrease
in the detected pulse fraction is observed between weak and strong turbulence, as shown
in Fig. 5(b). This decrease is due to the large turbulence-induced pointing error in strong
turbulence. As a result, although the single-shot precision is left largely unaffected by
turbulence, the normal point precision for a given time interval decreases, or alternatively
the time to reach a certain normal point precision increases, because fewer pulses are
detected per unit time (Section 3.7). Note that the behaviour of the detected pulse
fraction in Fig. 5(b) does not show the erratic behaviour of Fig. 5(a), since it includes
fewer effects causing variability, measuring only whether N > 0, not the precise range
error.

As with the range accuracy, we also show the influence of the zenith angle on the
precision statistics in Fig. 6, again omitting the u dependency. Although the total range
of values for the single shot precision in the figure increases somewhat, when comparing
it to Fig. 5(a), variations in single-shot precision for realistic turbulence values remain
quite low.

Although the single-shot precision is only weakly influenced by turbulence for our
nominal pulse characteristics, this is not the case for shorter pulse lengths. For such
systems, the influence of turbulence on the range precision can become a more impor-
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Figure 6: Results for standard deviation of range error for nominal mission scenario and varying
ground turbulence strength and zenith angle.
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tant contributor to the single-shot error budget, limiting the added value of shortening
the laser pulse. This is illustrated in Fig. 7, where the single-shot precision is shown
for various turbulence conditions as a function of pulse length. There, it is clear that
in the case of strong turbulence, the system is limited to about 1 mm single-shot pre-
cision, independent of the pulse length. However, the influence of dispersion on the
propagation of these ultrashort laser pulses is not included here. Since a shorter laser
pulse has a broader spectrum, the atmospheric photon propagation velocity variation
with wavelength limits the practical decrease of pulse lengths to the several ps-level
Degnan (1993). The (relative) influence of dispersion on ILR system performance under
a variety of conditions will be investigated in future research. Nevertheless, the results
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shown here indicate that, even in the absence of dispersion, for instance through active
compensation (Lee et al., 2011), the influence of turbulence will limit the added value
of shortening laser pulses.

4.4 Laser pulse parameter influence

The large pointing error variations under strong turbulence conditions were shown to
be the major contributor to variations in range accuracy, range precision and detected
photon fraction in Sections 4.2 and 4.3, respectively. Therefore, we will investigate the
possibilities of mitigating this influence through variations of the laser pulse parameters.

The strong variations in range accuracy between small and large C2
n(0) that are

observed in Fig. 3 may be mitigated by increasing the beam divergence angle. An
increased beam divergence angle will result in lower variations of r/w(z) in Eq. (1) for
given varying turbulence-induced pointing angle errors ∆θ. However, for a given laser
pulse energy level and nominal turbulence-free operating conditions, this will also reduce
the pulse intensity at the detector, thereby reducing the pulse detection probability.

The variation of mean range error with beam divergence angle (using the nominal
pulse energy of 1 mJ) is shown for a number of representative turbulence cases in Fig.
8(a). The decrease in range error difference between small and large beam divergence
angles can clearly be observed. The difference is firstly caused by a decrease in the
influence of a given pointing error caused by strong turbulence. Secondly, increasing the
beam divergence angle without increasing the pulse energy will decrease the intensity
at r = 0. As a result, there will be a decreased intensity at the detector under nominal
and weak turbulence conditions, reducing the value of N and therefore the mean range
error. The influence of varying the beam divergence angle on the number of registered
detections is shown in Fig 9(a), which shows a strong drop-off in detected pulse fraction
for larger beam divergence angles.

The behaviour in Fig. 9(a) shows (although weakly due to the log-scale plot) that for
weak turbulence conditions (solid blue and red lines), the detected pulse fractions have
a maximum in the 10-20 µrad range. This is due to the fact that for smaller beams, the
pointing error becomes larger than the far field divergence angle to the point where it
will decrease the number of detected pulses. This behaviour is not observed for stronger
turbulence conditions, since beam spread (Section 3.2) limits the beam divergence angle
that is actually achieved and the actual beam divergence angle becomes dominated by
the w0/r0 term in Eq. (20).

From these figures, it is clear that a trade-off between reduced mean error varia-
tions (i.e. improved accuracy) and number of detections (i.e. improved normal point
precision) must be made when selecting the divergence angle, and that considerations
of turbulence must be taken into account for this. For small (smaller than 20 µrad)
divergence angles, there is little to no increase in the number of detections, whereas for
large (larger than 100 µrad) divergence angles, there is little reduction in mean error
variation and a strong decrease in detections. These results indicate an optimal range
of turbulence-limited beam divergence angles for the given mission and system.

In addition to increasing the divergence angle, the pulse energy may be reduced
to mitigate the range error variations by directly reducing the number of detectable
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Figure 8: Mean range error for various turbulence conditions; variations with a) laser divergence
angle and b) pulse energy. Color-coded for u, blue: 1 m/s, red: 21 m/s, black 45 m/s; Linestyle-
coded for C2

n(0), solid: 10−16 m−2/3, dashed: 1.7·10−14 m−2/3, dotted: 10−12 m−2/3.
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Figure 9: Fraction of detected laser pulses for various turbulence conditions; variations with a)
laser divergence angle and b) pulse energy. Color-coded for u, blue: 1 m/s, red: 21 m/s, black
45 m/s; Linestyle-coded for C2

n(0), solid: 10−16 m−2/3, dashed: 1.7·10−14 m−2/3, dotted: 10−12

m−2/3.

photons and thereby the variation f the detected pulse intensity. Unlike increasing the
divergence angle, it will not mitigate the fundamental reason for the strong variations
in the number of detected photons per pulse N , i.e. the relative influence of the strong
pointing errors at high values of C2

n(0). Instead, by decreasing the value of N under
all conditions, the mean range error is decreased. This decrease is at the expense of a
reduction in detection probability for weaker turbulence conditions, where the detection
probability is quite high for our nominal scenario, degrading the normal point precision.
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The effect of varying pulse energy on the mean range error and detected pulse frac-
tions is shown in Figs. 8(b) and 9(b), respectively. The erratic behaviour for low pulse
energy in the figures is again caused by the fact that only very few detections occur in
these cases, causing the statistical averaging to exhibit non-smooth behaviour. In the
limiting case of very low pulse energy, N ≤ 1 under all conditions and the mean range
error will reduce to zero in all conditions. For our link conditions, it can be seen in Fig.
8(b) that for a pulse energy of less than 0.1 mJ, the mean error variation are sub-mm
at all turbulence conditions, at the expense of a factor of about 5 decrease in pulse
detection probability, as shown in Fig. 9(b). For an increase in pulse energy to around
10 mJ, the number of detections tends to the limiting value (detection of all pulses),
with an associated mean error variation of more than 1 cm. These results of conflicting
requirements for high accuracy and precision again highlight the influence of turbulence
on the trade-off that must be made when selecting system parameters.

The trade-off consideration in the selection of system parameters is strongly influ-
enced by the pulse repetition frequency of the transmitter. For a high repetition (i.e.
kHz) laser ranging system, e.g. Kirchner and Koidl (2004), the system typically operates
in a low pulse energy regime, for which relatively many pulses go unobserved. However,
due to the large number of transmitted pulses, the total data yield is still sufficient to
generate a normal point of sufficient precision within a short period of time. Therefore,
such systems will more easily be able to successfully operate under conditions with a
low mean value of N under a wide variety of turbulence conditions. In fact, it is shown
by Degnan (2001) that distributing a given amount of power over a larger number of
pulses of lower energy will result in more pulse detections, although at lower values
of N , thereby improving both accuracy and precision. However, currently only a lim-
ited number of SLR stations are capable of operating at kHz repetition rates, whereas
changes of pulse energy and divergence angles can be achieved in many of the existing
SLR systems. Although the use of kHz systems may increase in coming years, it is likely
that ILR missions will still use numerous low repetition rate systems. Similarly, the
use of multi-element detectors, discussed in Section 2.2, can mitigate the influence of
multiple detectable photons by providing the capability to separately detect different
photons from the same pulse.

In reality, noise photons and dark noise will be detected in addition to the signal pho-
tons, which need to be filtered when processing the detections (Degnan, 1993). However,
at extremely low signal detection levels, noise signals may overwhelm the signal to a point
where the two can no longer be separated, providing a certain lower bound to feasible
mean signal strength at the target. This will limit the applicability of reduction in pulse
energy/increase in pulse frequency.

5 Results: parameter estimation influence

Having presented the influence of turbulence on the range accuracy and precision for
a single pass of a representative interplanetary laser ranging system in the previous
section, we will now present the influence of turbulence on the parameter estimation
capabilities of such a mission. Our goal here is to illustrate the influence of turbulence
with a specific mission test case and qualitatively discuss the expected influence of
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turbulence on parameter estimation in general cases. In Section 5.1, we outline our
estimation scenario and time-varying turbulence model. In Section 5.2 we present the
estimation results with and without turbulence and discuss the influence of turbulence
on the quality of the results. Finally, we discuss the influence of mission geometry on
the effect of turbulence in Section 5.3.

5.1 Simulation settings

As in the previous section, we use the PLR system for our simulations, using the system
parameters given in Table 1. We apply the same dynamical model for Phobos, observa-
tion model and estimation procedure as Dirkx et al. (2014a), using the same software
package (Dirkx and Vermeersen, 2013), based on the Tudat library (Kumar et al., 2012).
We use the same 8 SLR stations, each operating at a pulse repetition rate of 5 Hz, and a
15◦ elevation angle cutoff. Each station performs a single 15-minute continuous ranging
arc per day, randomly generated from the viable time intervals each day. Instead of the
full estimated parameter vector used by Dirkx et al. (2014a), we only analyze the esti-
mation of the state of Phobos and range biases, and do not include so-called ’consider
parameters’. We take this approach as our goal here is only to obtain insight into the
influence of turbulence on the performance of a typical interplanetary laser ranging mis-
sion, not to fully reanalyze the PLR mission. Biases will be important in this context to
remove the mean effect of multi-photon detections (see Section 3.7). As discussed in Sec-
tion 4.1, turbulence-free observations will still suffer from signal intensity variations due
to changing observation geometry, so that our (per-station constant) estimated biases
will not be able to fully remove the non-physical range signals from the measurements,
neither in the turbulent nor turbulence-free case.

We use an arc length of 1 month for our estimation of both the state of Phobos
and the observation biases, using a different observation bias for each station. We do
not make the arc duration for the biases shorter, as this was found to lead to excessive
correlations between the biases and the state. Estimating the biases over very long time
periods, however, will reduce their capability to absorb the variations in range error due
to slowly varying influences, such as the distance between the ground station and the
target and possible (small) seasonal effects on Earth.

As a validation, we perform the estimation with perfect measurements, i.e. only
limited by numerical precision, which results in sub-mm estimation errors for the initial
Phobos state. To achieve this, we employ extended numerical precision (Goldberg, 1991)
in our software, corresponding to a resolution of <0.02 µm at 1 AU. In doing so, we
prevent numerical errors from being the limiting factor in software performance, which
can be a concern for modern interplanetary orbit determination when using double
precision floating point representations (Zannoni and Tortora, 2013).

To include the time-variability of the turbulence conditions, we set up a conceptual
model for the variation of the Hufnagel-Valley (HV) parameters (Section 3.1). We note
from data in e.g. Sadot and Kopeika (1992); Tunick (2002) that the largest variations in
C2
n occur with a daily period. Therefore, we assume only variations with a daily period

in the HV parameters. Although this model neglects any shorter- or longer-period
variations, our goal here is to assess the expected influence of optical turbulence on
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Table 3: Summary of mean and standard deviation of true and formal errors of estimations, all
values in mm.

Formal True

Simulation case σx σy σx σy x̄ ȳ

No turbulence, bias estimation 4.9 0.5 87.8 11.9 21.6 -6.4
No turbulence, no bias estimation 3.3 0.4 59.4 8.8 202.0 -22.1

Nominal turbulence, bias estimation 6.2 0.7 86.1 12.0 21.1 -6.9
Strong turbulence, bias estimation 9.5 1.0 114.3 16.1 14.3 -9.7

planetary laser ranging links in a general sense, not to provide a quantitatively accurate
prediction for a specific station or link.

We use two cases, one for moderate maximum and one for strong maximum turbu-
lence, in which, respectively:

• 10−15 m−2/3 < C2
n(0) < 10−13 m−2/3; 5 m/s < u < 25 m/s.

• 10−15 m−2/3 < C2
n(0) < 10−12 m−2/3; 5 m/s < u < 45 m/s.

with a sinusoidal behaviour where the phase is determined by the local solar time. In
addition to these two cases, we also use two cases without turbulence for reference
purposes, one with and one without the estimation of range biases, for a total of four
simulation cases.

We simulate range measurements for each of these four cases, randomly perturb the
initial state of Phobos and use the simulated measurements to estimate its original value,
as well as the range biases. We compare the results of the estimation with the real value
of the initial Phobos state and compare the true and formal errors of the estimation. The
true error is defined as the difference between the parameter value in our truth model
(which was used to simulate the laser range measurements) and the parameter value
produced by the estimation procedure. The formal error is obtained directly from the
covariance matrix (Montenbruck and Gill, 2000). We perform 250 simulations for each
case to generate an empirical statistical distribution of the true estimation error and
compare it to the formal estimation error that is obtained from the covariance matrix.
We use the single shot pulse standard deviation σ to set up the (constant) measurement
weight as σ−2 for each observation in the estimation.

5.2 Estimation errors

The main results for the four simulation cases are summarized in Table 3, where the mean
and standard deviation of the true estimation errors of the position of Phobos are shown,
as calculated from 250 simulation runs, along with the formal errors obtained from the
least squares estimation. Our coordinate frame is the (inertial) Ecliptic J2000 frame,
representing the J2000 frame (Vallado and McClain, 2001), reoriented by a constant
rotation about its x-axis, so that the xy-plane coincides with the ecliptic. Results
on the z-position are omitted from this table due to the strong correlation with the x-
component, as described below. We present the results in terms of Cartesian coordinates.
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Figure 10: Scatter plot with true errors obtained from simulations without turbulence, formal
error ellipse shown in blue, empirical error ellipse in red, mean value of true errors indicated by
red dot; variations with a) with range bias estimation and b) without range bias estimation.
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Figure 11: Scatter plot with true errors obtained from simulations with turbulence, formal error
ellipse shown in blue, empirical error ellipse in red, mean value of true errors indicated by red
dot; variations with a) moderate turbulence and b) strong turbulence.

For all cases, the standard deviation of the observation residual converges to the 5
mm level, which is roughly the pulse length standard deviation (Section 4.3), indicating
that the estimator has removed the trends in the residuals by adjusting the estimated
parameters. However, comparing the 5 mm residual level to the true accuracy and
precision values in Table 3 (x̄, ȳ and σx, σy, respectively), it can be seen that the true
estimation error is much larger than the mean range residual after estimation. This is
due to the correlations between the estimated parameters, both between the elements of
the initial state and between the initial state and the observation biases. This correlation
causes the estimation procedure to have too much freedom in minimizing the residuals
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by adjusting parameters, thereby leading to true estimation errors that are much larger
than the residuals. This problem of near-singular behaviour in the normal equations
of orbit determination for planetary satellites is inherent in its unfavorable observation
geometry, as discussed in detail by Bonanno and Milani (2002).

We find that the correlation coefficients between the x- and z-components of the
initial position are> 0.99, indicating that these parameters cannot be properly estimated
independently from a 1-month arc, but only a weighted combination of the two can
be realistically obtained. We will present the estimation errors only in the xy-plane,
omitting the z-component, but noting that we find σz ≈ 2σx.

The formal and true error ellipses for the simulations without turbulence are shown
in Fig. 10, with and without the estimation of a bias. It is clear that the true error is
at least an order of magnitude larger than the formal error in both cases, as can also
be seen in Table 3. This is the result of non-Gaussianity and time-correlation of the
true error distribution, which should be understood to be distinct from the parameter
correlations discussed earlier. In reality, the differences between the truth and estimation
models will result in additional differences between the two errors. However, we keep
the dynamical and observation models equal in both cases, to focus on the influence of
the non-Gaussian observation errors.

Although the true error ellipse is smaller for the estimation without bias estimation
(Fig. 10(b)) than in the case with bias estimation (Fig. 10(a)), the mean estimation
error is quite large, at more than 25 cm total, since the observation biases are absorbed
and amplified, as also found by Dirkx et al. (2014a), into an erroneous estimation of the
initial state. When including the biases, the mean total error reduces, but at the expense
of an increase in the size of the error ellipse, induced by the correlations between the
biases and the initial state. Nevertheless, these results show that even in the absence of
turbulence the inclusion of a bias, either a priori or through estimation, is important to
prevent observation errors from being interpreted as signals from physical parameters.

The error ellipses for two turbulence cases are shown in Fig. 11. In these figures,
the relative difference of the true and formal errors is slightly smaller than for the case
without turbulence, which is to be expected, since observations are on average made
at a lower signal intensity level and will therefore more closely resemble a Gaussian
distribution (Section 2.2). The increased size of the formal error ellipse, when compared
to the nominal case, is due to the reduction in number of detected pulses. Therefore,
the determination of a formal to true error correction factor that is typically applied in
the interpretation of interplanetary orbit determination results, e.g. (Marty et al., 2009;
Konopliv et al., 2011), should include turbulence effects for ILR data.

Although the results for nominal turbulence conditions shown in Fig. 11(a) indicate
a slightly larger spread of estimation errors than for the case without turbulence depicted
in Fig. 10(a), the differences remain relatively small. The majority of the estimation
errors are caused by the detection time errors inherent in the geometry and hardware
characteristics of the mission, i.e. those already present in turbulence-free conditions.
Also, the correlations between parameters degrades the solution to a level where small
variations in range accuracy due to turbulence are not dominant true error sources in the
estimation. This indicates that, despite the range accuracy variations which were found
in Section 4, turbulence will not be a significant contributor to the estimation error
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budget of this scenario for the case where C2
n(0) <10−13 m−2/3 and u <25 m/s. Firstly,

this is due to the fact that non-turbulent effects cause the detection statistics to be
non-Gaussian (multi-photon detections) and time-dependent (atmospheric attenuation
variations with zenith angle). Additionally, due to strong correlations between the repeat
period of the target visibility and the turbulence cycle, potential turbulence-induced
effects are moderated, as will be discussed in Section 5.3.

The results of our second case, where the maximum HV parameters are increased,
are shown in Fig. 11(b). It can be seen that the spread of the solutions has noticeably
increased due to the stronger turbulence, which leads to both fewer measurements and
larger accuracy variations. This can also clearly be seen in Table 3, which shows increases
up to 50 % in the true error standard deviations compared to moderate turbulence. The
strong increase in the relative strength of turbulence due to the increase in the maximum
HV model parameters cannot be directly associated with a similarly strong change in
range accuracy (Section 4.2). In fact, the change in single pass range accuracy in Fig.
3 is similar when moving from 10−14 to 10−13 as when moving from 10−13 to 10−12.
However, the full range in possible ground turbulence strengths is not influential for many
ground stations, as will be discussed in more detail in Section 5.3. In essence, although
large range accuracy variations are possible, also in the moderate turbulence case, they
will occur only on a very irregular basis and the average turbulence strength variations
that are influential for the range variations will be accordingly smaller, corresponding
on average to the cases of lower C2

n(0) in Fig. 3, where there is less variation of range
error with HV parameters.

We also see in Fig. 11 that the formal error ellipse of Phobos’ initial position is larger
due to the reduction in the number of detections. When inspecting the error ellipse, it
is clear that it is less flattened in the stronger turbulence case. This indicates a lower
correlation between the x- and y-component that is obtained for the true errors. The
reason for this is that, due to the larger range error variations, the estimation needs to
compensate for additional fluctuations in the apparent dynamics of Phobos, inducing a
non-physical error.

These results indicate that, for the mission analyzed here, turbulence-induced errors
will, for C2

n(0) ≤ 10−13 m−2/3 and u < 25 m/s, be of minor concern compared to inherent
sources. However, a substantial increase is observed when increasing the maximum
ground-level turbulence to 10−12 m−2/3. Although these ranges will not hold for all
mission and system designs, it indicates the existence of turbulence strength values
below which the estimation procedure is not significantly influenced by turbulence. The
range of turbulence parameters at which their effects must be taken into account can be
varied by changing the mission and system parameters, including ground station location
selection. As such, it can again be seen that it can be important to analyze turbulence-
induced errors during the system design and include these effects during the design
trade-off, thereby potentially modifying it in such a manner that its influence is only a
minor contributor to the science return error budget. As discussed in Section 4.4, kHz
repetition rate SLR systems can operate at signal levels where the occurrence of multiple
detectable photons is much less frequent, providing such systems with a clear advantage
of mitigating the influence of signal strength variations on parameter estimation quality.
Similarly, multi-element detectors can mitigate the influence of detection at energies for
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Table 4: Range error statistics per station per pass for the two turbulence estimation cases.

Nominal turbulence Strong turbulence

Station ζmin [deg] ζmax [deg] ∆s [mm] σ∆s [mm] ∆max [mm] ∆s [mm] σ∆s [mm] ∆max [mm]

1 8.3 70.3 -2.9 6.1 4.0 -2.4 6.3 5.2
2 71.3 74.7 -1.8 6.3 1.6 -1.3 6.4 2.1
3 63.4 74.3 -1.7 6.3 2.5 -0.7 6.4 2.4
4 0.2 62.4 -4.8 5.9 4.6 -3.6 6.1 6.1
5 60.0 74.0 -1.4 6.4 1.2 -0.4 6.5 0.9
6 65.2 72.5 -2.4 6.3 1.8 -1.8 6.3 2.2
7 55.0 74.6 -2.0 6.3 2.1 -0.7 6.4 1.8
8 4.3 74.4 -2.9 6.2 2.8 -1.3 6.4 3.5

which the number of detectable photons is > 1 by allowing the separate photons to be
detected by separate elements.

The case which is tested here is one where the laser pulse detections will regularly
occur at the multi-photon level, causing turbulence-induced variations in mean true
range error with time, as discussed in Section 4.2. Although there is also a clear increase
in the formal error due to the reduction in the number of detections, this effect is not
dominant in the change in estimation error. However, for other mission and system
parameters, the detections may be inherently single-photon, in which case the range
errors will be largely unbiased. In such cases, turbulence will result in fewer photon
detections, degrading the system performance directly by a reduction of precision, as
discussed in Section 4.3.

5.3 Ground station geometry

In the previous section, it was shown that the turbulence-induced range error becomes
a significant contributor to the total estimation error budget from a certain turbulence
variation amplitude onward. However, this effect proved difficult to relate to the single
pass range accuracy variations shown in Section 4.2. In this section, we will analyze
and discuss the influence of the specific measurement geometry of each ground station
to elucidate the estimation error behaviour.

The measurement statistics per station for the two turbulence cases are shown in
Table 4, including the difference in range error between the pass with the largest and
that with the smallest mean range error of a single station, denoted here as:

∆max = (max−min)
(
∆spass

)
(40)

This difference is an indicator of the pass-to-pass range error variations. It is these range
error variations that cause fluctuations in the range measurement error that cannot be
fully absorbed by the bias estimation. For each station, the range of zenith angles at
which observations are made is also shown.

It can be seen from Table 4 that the zenith angle range can be very limited for some
stations. This is due to the time of year and the mission type that is analyzed. For
stations measuring in (mid-)winter, the angle between the vector from the geocenter to
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the stations and the ecliptic can become quite large ≈ 23.5◦ + |φ|, with φ the station
latitude. As a result, these stations cannot observe targets near the plane of the ecliptic
at small zenith angles during part of the year. Relatively few SLR stations are located
on the equator and the vast majority of interplanetary missions are performed near the
plane of the ecliptic. Therefore, the small ranges of zenith angles that we get for a
number of stations are rather common for planetary laser tracking.

For the turbulence-free case, zenith angle variations are an important source of sig-
nal strength variations, due to their influence on the atmospheric attenuation, whereas
turbulence is not directly influenced by the zenith angle. However, when comparing the
maximum range error difference between passes in nominal and strong turbulence in Ta-
ble 4, an effect of station zenith angle range on the influence of turbulence is observed.
Specifically, for stations that can only observe at a small range of zenith angles, the
increase in maximum pass range error difference is relatively small, at about 0.5 mm.
For stations with a full zenith angle range, this difference can be larger than 1 mm. The
cause for this lies in the visibility conditions. For the stations which observe Phobos at
large zenith angles, there will be a relatively short time interval every day where Phobos
is at a sufficiently small zenith angle to be observed, leading to a nearly daily period of
observations. However, since the turbulence strength variation cycle is also daily, the
majority of the variations in turbulence strength goes unobserved. That is, the stations
with small elevation angle ranges will only experience small differences in turbulence-
induced measurement statistics variations. For the stations which observe Phobos at a
larger variety of zenith angles, the times of day when observations are made are not as
restrictive. In essence, the measurement geometry automatically induces a moderation
of signal strength variation. However, in reality effects such as atmospheric attenua-
tion variations and non-daily turbulence variations will also result in signal intensity
variations that are not modelled here.

6 Conclusions

We have presented the results of simulations to analyze the influence of atmospheric
turbulence on the performance of planetary laser ranging systems, using a Phobos Laser
Ranging mission as representative test case. We have taken mean intensity profile vari-
ations, scintillation, beam-wander induced pointing errors and stochastic time-of-flight
variations into account. Using the Hufnagel-Valley turbulence profile model, we calcu-
lated the influence of turbulence on range accuracy and precision as well as parameter
estimation performance.

We find that for our mission test case, turbulence-induced signal strength variations
cause a variation in range error of 3-4 mm between weak and strong turbulence condi-
tions. Nearly all strong accuracy variations are due to variations in ground turbulence
strength C2

n(0), with little to no influence of the mean wind velocity. The magnitude
of the turbulence-induced variations are at a level where they could be a significant
contributor to an ILR error budget, which aims at sub-mm range accuracy. Influence of
turbulence on single-shot precision is relatively small, at about 1 mm increase, compared
to a nominal value of 5.6 mm. However, strong turbulence conditions cause a strong
decrease in the detected pulse fraction, reducing the number of pulses that can be used
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to generate a normal point.
The primary contributor to turbulence-induced accuracy and detected pulse fraction

variations is found to be the turbulence-induced pointing error. We have analyzed the
influence of increasing the divergence and decreasing the pulse energy to mitigate the
variations, leading to an increase in accuracy and a decrease in normal point preci-
sion. This indicates the influence of turbulence on the trade-off process of ILR system
and mission design, which is strongly influenced by the pulse repetition rates that are
available at the ground station. When operating at the single-photon detection energy
across all turbulence scales, accuracy variations tend to zero, at the expense of a strong
reduction in pulse detection probability. Such an approach would be feasible for kHz
laser ranging systems. However, due to the Poisson statistics that govern the number of
detected photons, multi-photon detections will even occasionally occur for cases of very
low detectable energy levels. The use of a multi-element photon detector would allow
for a mitigation of the influence of pulses at a higher than single-photon energy level by
spreading the multiple photons over different detector elements.

We have performed the parameter estimation of the PLR mission, estimating Phobos’
initial state and a bias for each ground station, under no-turbulence conditions, moderate
turbulence conditions and strong turbulence conditions. We find that the difference in
true estimation error increases only weakly when including moderate turbulence for the
simulated observations. This indicates that it is not a leading contributor to the error
budget in such cases. For strong turbulence, however, we find that the true estimation
error increases by up to 50 %. This indicates that the influence of turbulence cannot
be neglected from a certain turbulence strength onwards, which we have quantified for
the PLR mission. However, the precise turbulence strength at which the contributions
become significant varies strongly with mission and system parameters.
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Appendix A Far-field criterion

In this Appendix, we give a derivation of the conditions under which the contributions
of a non-zero Θ to the integral µu1 in Eq. (25) becomes negligible. The dependence of
the integral on the target distance is indirect through the dependence on z of Λ and Θ.

In the far-field, Λ � 1, Θ � 1 and Θ/Λ � 1, indicating that Θ tends to zero more
quickly than Λ. For Θ = 0, Eq. (25) correctly predicts the turbulence in the far field.
However, for Λ = 0, the integral evaluates to a constant for all w0, which is inconsistent
with the full results. Therefore, we conclude that we must derive conditions under which
the Θ = 0 assumption is valid when evaluating Eq. (25).

To derive the far-field condition, we note from the functional form of the integral that
for the case where the influence of Θ becomes small there is very little coupling between
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the influences of Λ and Θ on µu1. Therefore, the condition under which µu1(Λ,Θ)
has a negligible contribution of Θ will be approximately equal to that under which
µu1(Λ = 0,Θ) has a negligible contribution of Θ. Therefore, we set Λ = 0 in Eq. (25)
and derive a condition where the near field effects of this reduced integral are negligible.
For far-field conditions, the Rytov variance σ2

B reduces to a value that is independent
of both z and w0, so we expect (see Eq. 24):

µu1 ∼ z−5/6 (41)

The term µu1 from Eq. (25), expressed using Eq. (26), may be written as a combination
of terms of the following form, assuming the HV C2

n profile from Eq. (17):

µu1 = <(i5/6)

∫ ∞
0

AhM exp

(
−h
Ch

)
(1− (1−Θ)ξ)

5/6
dh (42)

= <(i5/6)

∫ ∞
0

AhM exp

(
−h
Ch

)
Θ5/6

(
1− 1−Θ

Θ

h

H

)5/6

dh (43)

= <(i5/6)Θ5/6 ΘH

1−Θ

∫ ∞
0

Ah′M exp

(
−h′

Ch

ΘH

1−Θ

)
· ...

... · (1− h′)5/6
dh′ (44)

The integral in Eq. (44) is an expression for the confluent hypergeometric function
of the second kind, denoted U(a; c; z), Abramowitz and Stegun (1964), so that:

µu1 = A<(i5/6)Θ5/6 ΘH

1−Θ
U

(
M + 1; 17/6 +M ;

ΘH

Ch(1−Θ)

)
(45)

The function U(a; c; z) has the following asymptotic behaviour:

U(a; c; z) ∼ Γ(c− 1)

Γ(a)
z1−c +O

(
zc−2

)
, z � 1 (46)

Assuming the dominant influence of Eq. (17) on determining the far-field criterion
is the ground-level turbulence (M = 0), the following is obtained:

µu1 ∼ Θ5/6

(
ΘH

Ch(1−Θ)

)−5/6

(47)

∼ H−5/6 ∼ z−5/6 (48)

which is the expected asymptotic behaviour of Eq. (41).
Now, an algebraic criterion can be derived for the region in the w0-h plane where

the contribution to µu1 of the non-zero value of Θ is non-negligible. To this end, we set:

ΘH

Ch(1−Θ)
� 1 (49)

which can be reduced to the following approximate condition by applying Eqs. (5) and
(6):

z �
(
kw2

0

2

)2
1

Ch
(50)

which is the far-field criterion that is sought.
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Figure 1: Behaviour of µu0 and µu1 integrals over a range of HV model parameters. (Note
that µu0 and µu1 have been non-dimensionalized by division with 1 m−2/3 before taking the
logarithm).

Appendix B Turbulence profile parameter integrals

Using the models presented in this paper, the influence of turbulence strength on the
laser range measurement error statistics for given link parameters is determined by the
integrals µu0 and µu1 from Eqs. (22) and (25). Here, we investigate the behaviour of
these two integrals with the parameters of the HV model: u and C2

n(0) (see Eq. 17).
The behaviour of the integrals is plotted in Fig. 1, where it must be noted that even for
vanishing C2

n(0) and u, the turbulence profile is non-vanishing due to the second term in

Eq. (17), which is independent of the model parameters.
In Fig. A.1(a), it can be seen that µu0 exhibits a much stronger variation with C2

n(0)

than with u for moderate to strong ground turbulence (C2
n(0) > 10−14). The parameter

µu0 is used to determine the beam-wander induced pointing errors (see Section 3.3)
and stochastic time-of-flight variations (see Section 3.4), indicating that under strong
turbulence conditions these parameters will have little to no dependence on the vertical
wind profile.

In Fig. A.1(b) the variation in µu1, from which the scintillation index is derived (see
Section 3.3), is shown for a range of HV parameters. It can be seen that the dependence
on u is dominant for moderate to small C2

n(0). The dependence on C2
n(0) only becomes

important for C2
n(0) > 10−13, i.e. in strong ground turbulence conditions.
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CHAPTER 6

Paper III - One- and Two-way Laser Ranging

[T]here was gravity, friction and inertia. The physical world was one vast,
tangled obstacle course of pointless, arbitrary restrictions.

– Greg Egan, Diaspora, (Millennium,1997)
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Abstract
We numerically investigate the performance of one- and two-way active planetary

laser ranging systems. We simulate range measurement errors for both types of systems,
using clock error time histories generated from Allan variance profiles. We use two test
cases: a lunar polar orbiter and a Phobos lander. In the Phobos lander simulations, we
include the estimation of Phobos librations and C̄2,2 gravity field coefficient. For the
lunar orbiter, we include an empirical force-error model in our truth model. We include
the estimation of clock parameters over a variety of arc lengths for one-way range data
analysis and use a variety of state arc durations for the lunar orbiter simulations. For
the lunar orbiter, performance of the one- and two-way system is similar for sufficiently
short clock arcs. This indicates that dynamical-model error, not clock noise, is the
dominant source of estimation uncertainty. However, correlations between the clock
and state parameters cause an exchange between clock and state signal for the one-
way system, making these results less robust. The results for the Phobos lander show
superior estimation accuracy of the two-way system. However, knowledge of Phobos’
interior mass distribution from both the one- or two-way system would currently be
limited to the same level by inaccuracies in our knowledge of Phobos’ volume. Both
the lunar orbiter and Phobos lander simulations show that the use of two-way planetary
laser ranging should be accompanied by improvements in associated measurements and
models to allow this data type to be exploited to its full potential.

1 Introduction

The determination of the orbits of interplanetary satellites is traditionally done using
radiometric tracking techniques (Moyer, 2000; Thornton and Border, 2000; Asmar et al.,
2005), in which radio signals, typically in S-, X- and/or Ka-band are transmitted from a
ground station to the space segment, (and/or vice versa). The primary observable used
in planetary spacecraft orbit determination is typically a Doppler measurement, which
represents a differenced range rate, i.e. the change in range, integrated over a certain
time, ranging from 1 s e.g. (Mazarico et al., 2012) to more than 1000 s e.g. (Iess et al.,
2009). Doppler data may be supplemented by range measurements (typical accuracy
about 1 m) obtained from a coded radio signal or by ∆DOR (Thornton and Border,
2000) or VLBI (Duev et al., 2012) observations, both of which are angular observables
generated by the concurrent observation of the same radiosignals by a (global) set of
radio telescopes. Analysis of the tracking data of interplanetary spacecraft and landers

(a): Delft University of Technology, The Netherlands
(b): DLR Berlin, Germany



178 Paper III - One- and Two-way Laser Ranging

has contributed greatly to achieving the scientific objectives of planetary missions, for
instance for deducing gravity fields and their temporal variations (Marty et al., 2009;
Lemoine et al., 2014), as well as for measuring rotational variations of solar system
bodies (Kuchynka et al., 2014) and experimental gravitational physics (Will, 2014).

The use of laser ranging has been proposed for use over interplanetary distances
(Degnan, 2002), extending the use of Satellite Laser Ranging (SLR) and Lunar Laser
Ranging (LLR) to Interplanetary Laser Ranging (ILR). This will potentially allow an
orders-of-magnitude improvement in the accuracy and precision of interplanetary range
measurements (compared to traditional radiometric tracking data). Single shot measure-
ment accuracy could potentially be at the order of several mm for ILR, with attainable
single shot precision at or below the mm-level attainable for moderate integration times
of one minute (Turyshev et al., 2010). However, the use of reflectors in SLR and LLR
is not feasible at planetary distances due to the inverse fourth-power dependency of re-
ceived signal strength with distance (Degnan, 1993). Instead, an active space segment is
required, reducing the signal-strength dependency to inverse square with distance. In a
one-way laser range system, only a receiving system is required on the spacecraft and the
observable is directly obtained from the uplink light-time. For two-way systems, a trans-
mitter is additionally needed on the space segment, which is used to (asynchronously)
fire laser pulses to the ground station(s) (Degnan, 2002; Dirkx et al., 2014a). Using
such a0 system, the two-way range observable is realized through pairing of the up- and
downlink light-times (Birnbaum et al., 2010).

The primary difference in error budget between the one- and two-way systems stems
from the different influence of clock noise on the observables. For the one-way system,
clock noise in both the transmitting and the receiving system accumulates over time,
in a similar manner that dynamical model errors accumulate in spacecraft orbit deter-
mination. For two-way range systems, this clock noise accumulation only occurs over a
limited time, specifically the two-way light-time for the ground station clock noise and
the retransmission time for the space segment clock noise.

One-way laser ranging has been used for tracking the Lunar Reconnaissance Orbiter
(LRO) spacecraft (Zuber et al., 2010), which used a novel link between receiver optics
mounted on the high-gain antenna and its laser altimeter. However, orbit determination
of LRO was initially performed using classical radio tracking and altimeter crossovers
only, due to the difficulties in processing the one-way laser ranging measurements, as
well as the unexpectedly high quality of the radio -science data (Mazarico et al., 2012).
Recent progress in including the laser ranging data into LRO orbit determination, as well
as efforts to produce laser-only orbits, have shown the feasibility of using this data type
for producing high-quality spacecraft trajectories (Mao et al., 2013; Bauer et al., 2014).
The concept of two-way laser ranging has been demonstrated by the MESSENGER
spacecraft en route to Mercury (Smith et al., 2006) using its laser altimeter system to
both detect laser pulses from Earth and transmit pulses to a ground station from a
distance of 24M km.

The use of two-way laser ranging has been proposed for ultra-precise tracking in a
number of mission concepts, such as Phobos Laser Ranging (PLR) (Turyshev et al.,
2010) and GETEMME (Oberst et al., 2012). Analyses of the attainable parameter
estimation quality of the PLR mission for relativistic parameters (Turyshev et al., 2010)
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and geophysical parameters of the Martian system (Dirkx et al., 2014a) indicate that
substantial gains in science return can be made by using this technology, compared to
results from radiometric methods.

However, detailed analyses of the error budgets of ILR systems have not been per-
formed to date, whereas such analyses are crucial for understanding the limitations in
its applicability, the required technology development for its implementation and its
expected science return. Due to the absence of retroreflectors in ILR, and the inclu-
sion of active space segment hardware, the relative contributions of the various sources
of range errors will be different than for SLR and LLR. Although mm-level precision
over one minute integration-times (Turyshev et al., 2010) are likely feasible, attaining a
measurement accuracy at this level will prove to be more difficult. For instance, (Dirkx
et al., 2014b) showed that atmospheric turbulence and variable detection energy can
already result in accuracy degradations of several mm. It has been shown by Dirkx
et al. (2014a) that systematic range errors (accuracy degradation) at or even well below
the mm-level can result in a much reduced attainable estimation accuracy, compared to
perfectly accurate mm-precise range measurements. That is, range measurements with
0 mm precision and 1 mm systematic error will result in substantially larger estima-
tion uncertainties than measurements with 1 mm precision and 0 mm systematic error.
This difference between attainable true error and formal error is well acknowledged in
literature on tracking data processing of current planetary missions e.g. (Marty et al.,
2009). To obtain realistic insight into the potential of planetary laser ranging systems,
it is crucial to properly include non-Gaussian errors in both observation models and
dynamical models.

In this paper, we investigate the influence of signal timing errors on the performance
of both one- and two-way laser ranging systems by quantifying the mapping of uncer-
tainties in the clock stability to parameter estimation accuracy. Using these results,
we compare the performance of one- and two-way laser ranging systems, for which the
primary difference is in how clock errors accumulate in the range measurements. For our
simulations we use both a lunar orbiter and a Phobos lander as test cases. In Section 2,
we present models for simulating the timing of the transmission and reception of laser
pulses, with a specific emphasis on modelling the influence of stochastic clock noise.
Methods for modelling and measuring one- and two-way range measurements are given
in Section 3. The settings and assumptions for our simulations of both the lunar orbiter
and the Phobos lander are presented in Section 4, and results for the performance of
both the one- and two-way range systems are presented in Sections 5 and 6 for the
lunar orbiter and the Phobos lander, respectively. Finally, Section 7 will summarize the
main conclusions of this study. Mathematical details of the method we use to generate
coloured noise time series are provided in Appendix A.

2 Signal timing

Both one- and two-way range measurements are obtained directly from time tags of
signal transmission and reception on the space and ground segments. By processing
and combining these time tags, the observables are formed, as will be described in more
detail in Section 3.2. Here, we will discuss the model we use for the clocks registering the
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time tags, from which we can (statistically) quantify the difference between actual and
observed measurement times and observables. First, we briefly review the conversion
between observable (proper) time and global (coordinate) time in Section 2.1. Subse-
quently, we present the models we use to quantify clock errors in Section 2.2 and our
method to generate stochastic clock noise in Section 2.3. Finally, we discuss the use of
estimated arc-wise clock parameters to mitigate clock noise in Section 2.4.

2.1 Time scales

The clocks carried by the observers ideally register their local proper time, which is the
relativistic concept of time experienced by an observer. The rate at which an observer’s
proper time passes, compared to a global (coordinate) time is different for observers at
different relative potentials and velocities due to relativistic effects e.g. (Soffel et al.,
2003; Kopeikin et al., 2011).

For generating range observables, measured proper times need to be converted to
a global time scale, such as Dynamical Barycentric Time (TDB) or Barycentric Coor-
dinate Time (TCB), which are independent variables in which planetary ephemerides
are typically expressed e.g. (Moyer, 2000; Fienga et al., 2009). It should be noted that
although TDB is typically used as a global time, it is not a coordinate time, leading to
a rescaling of for instance gravitational parameters. The full ramifications of this are
discussed in detail by (Klioner, 2008). The conversion from proper time to global time
may be performed by precalculated time ephemerides, such as those given by Irwin and
Fukushima (1999) or by integration of the proper time equation (Soffel et al., 2003). In
this paper, we will assume that the conversion from proper time τ to global time t is
known to sufficient accuracy so that its uncertainties contributes only negligibly to the
timing error budget.

2.2 Clock model

An ideal clock measures the elapsed local proper time τ since some reference proper
time epoch τ0. However, all clocks suffer from instabilities, desynchronizations, etc.. As
such, it actually registers a measured proper time τ̃ , which differs from the ideal time
measurement as follows:

τ̃ = τ + ∆τ (1)

= τ + ∆τs + ∆τd (2)

where we have distinguished between stochastic and deterministic errors, ∆τs and ∆τd,
respectively.

The stochastic error term ∆τs consists of oscillator variability which is inherently
stochastic and cannot be removed by calibration.We will discuss the models for the
stochastic clock noise in Section 2.3. In this context, we consider deterministic terms to
be those errors that could, in principle, be removed by calibration of the clock output.

Here, we model the deterministic clock errors as a polynomial series from of 2nd
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order, i.e.:

∆τd =

2∑
i=0

∆τ
(i)
d (τ − τ0)

i
(3)

representing the combination of clock bias ∆τ
(0)
d , drift ∆τ

(1)
d (frequency bias) and aging

∆τ
(2)
d (frequency drift). This is an approach that is typically taken for data processing

of one-way laser ranging data to the LRO satellite (Mao et al., 2013; Bauer et al., 2013).
Similar clock error parameterizations are also used in clock calibration during GNSS
data analysis e.g. (Huang and Zhang, 2012). However, clock parameter estimation for
one-way planetary laser ranging missions differs from GNSS clock estimation in a number
of crucial points. Firstly, the data volume for laser ranging systems is much lower and
less isotropic than for GNSS. Secondly, the measurement geometry of planetary missions
is much less favorable than for Earth orbiters, complicating the orbit estimation process.
Thirdly, complementary orbit determination data types of comparable accuracy will not
be available in planetary missions using laser ranging, since ILR is expected to provide
range measurements that are order(s) of magnitude more accurate than existing tracking
techniques (Section 1).

For the inclusion of laser ranging data in the LRO orbit determination process (Mao
et al., 2013), ground station and satellite clock parameters are included in the estimated
parameter set. Typical values for the drift and aging of the LRO clock are 7·10−8 s/s
and 1 · 10−16 s/s2, respectively, translating into line-of-sight velocity and acceleration
biases of 21 m/s and 3·10−8 m/s2, respectively. In particular the value of the direct
drift-induced effect is orders of magnitude beyond the required accuracy of the LRO
orbit, necessitating the removal of these clock errors from the range data.

2.3 Stochastic noise generation

As discussed in the previous section, oscillator behaviour includes a stochastic term ∆τs,
see Eq. (2). In this study, we aim to analyze the influence of (stochastic) clock noise
on the estimation performance of one- and two-way ILR missions. To achieve this, we
generate realizations of the stochastic processes governing this error source, which we
subsequently use to create realizations of the range-measurement time-history. The clock
noise shows time-correlated behaviour, so that we cannot simply generate independent
realizations of a single random-number distribution. In this section, we present our
models for generating time-correlated clock noise.

An oscillator provides an output signal that is used to keep time. The amplitude
A(τ) of this signal can be modelled as follows (Barnes et al., 1971):

A(τ) = A0 sin (ω0τ + φ0 + ∆φ(τ)) (4)

ω0 = 2πν0 (5)

where ν0 represents the mean (ideal) oscillator frequency, A0 the amplitude of the signal
and ∆φ(τ) the phase variations. Since small variations of the nominal amplitude A0

do not influence the time measurements, we do not include its variability in our model.
We choose to include all uncertainties in the phase variations ∆φ(τ), so that frequency
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variations ∆ν(τ) are included as integrated phase errors. The error in registered time
of the oscillator then follows from:

∆τ(τ) =
∆φ(τ)

2πν0
(6)

Therefore, to simulate stochastic clock noise, we must generate realizations of the
stochastic process describing the phase variations ∆φ(t).

The behaviour of the stochastic clock error is typically quantified by its so-called
Allan variance (Allan, 1966; Asmar et al., 2005), denoted as σ2

y(T ), where T denotes a
time interval. Alternatively, the Allan deviation σy(T ) may be provided. It is a measure
for the stability of the reference frequency ν (i.e. the extent to which it deviates from
ν0) over a time interval T . Taking two subsequent time intervals n and n + 1 of equal
length, the Allan variance of a quantity y (here the oscillator relative frequency error)
is defined statistically as (Allan, 1966):

y =
ν

ν0
− 1 (7)

σ2
y(T ) =

〈
(ȳn+1 − ȳn)

2
〉

2
(8)

Examples of Allan variance profiles for deep-space clocks are given by (Prestage and
Weaver, 2007) and discussed in some more detail in Section 4.3.

Given an Allan variance profile, we must generate a realization of the stochastic
process describing the clock errors. To achieve this, we use the method of Timmer and
Koenig (1995) to generate a time-correlated set of data from a given power spectrum.
Using this method, a discretized frequency-domain realization of the stochastic process
is created from its power spectrum, which is then converted to the time domain to obtain
the required data set. A summary of the method is presented in Appendix A.

To apply this method for the simulation of a clock error time history, we require a
mapping from the Allan variance σ2

y(T ), which is usually provided, to the phase noise
power spectrum S2

x(f) of the phase variations. The Allan variance can typically be
approximated by the following polynomial relation:

σ2
y(T ) =

1∑
µ=−2

h(µ)Tµ (9)

where the coefficients h(µ) represent the strength of each term Tµ at an integration time
of 1 s. The Allan variance is related to the phase noise power spectrum by the following
integral (Riley, 2008):

σ2
y(T ) =

8

T 2

∫ ∞
0

S2
x(f) sin4 (πTf) df (10)

From this integral equation, the following solution can be derived for the phase noise
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Figure 1: Example of using polynomial clock parameter estimation for removing stochastic
clock noise. Black: full error profile, Blue: 1 clock arc, Red: four clock arcs, Cyan: 7 clock arcs,
Green: 28 clock arcs. a) Stochastic error profile with estimated clock profiles. b) Remaining
clock error after removal of estimated error.

power spectrum, for µ > −2 (Riley, 2008):

S2
x(f) = K(β)fβ (11)

β = −µ− 3 (12)

h(µ) =
8K(β)

πβ+1

∫ ∞
0

(f ′)β sin(f ′)4df ′ (f ′ = πf ′T ) (13)

where the above integral has analytical solutions for the typical values µ = −1, 0, 1.
For µ = −2, the integral has infinite power at high frequencies, causing the integral
to diverge. To solve this issue, a (transformed) cutoff frequency fH is substituted for
the integral upper bound above which no power is contained in the phase fluctuations.
Analytical results for the mappings from K(β) to h(µ) for typical integer β are given by
(Riley, 2008).

2.4 Clock error estimation

During the processing of one-way laser ranging data, the deterministic clock parameters
of the space segment (and participating ground stations) may be estimated during the
orbit determination process (Bauer et al., 2013). This approach is preferred to a poste-
riori clock calibration, where post-fit residuals are attributed to clock errors, since this
would obfuscate any correlations between clock parameters and other estimated param-
eters. As a result, a clock error may be interpreted as a physical signal, resulting in a
biased estimation.

However, the estimation of clock parameters may also be used to reduce the influence
of stochastic clock errors, in a similar manner that empirical accelerations are often used
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in orbit determination to remove errors in the state dynamics model. Similar to the
estimation of empirical force parameters, the clock parameters can be estimated over
short consecutive arcs instead of one global arc. An example of this is shown in Fig.
1. In this figure, the ideal estimation of a bias, drift and aging over a number of arc
durations is used to approximate a stochastic clock error.

It can be seen in Fig. 1 that reducing the arc duration reduces the total remaining
clock error, since more parameters are available to remove the clock noise signal. How-
ever, when concurrently estimating additional (state, physical, etc.) parameters, this
may lead to strong correlations, so that the clock parameters absorb part of the physical
signal that is to be observed (or vice versa).

3 Planetary tracking models

In this section, we will review the models linking the dynamics of celestial bodies and
spacecraft to the range observables. The inherent difference between one- and two-way
range measurements will be discussed. More details for these models are provided by
Moyer (2000).

First, we present the models used to simulate range measurements in Section 3.1.
Subsequently, we discuss how signal transmission and reception time tags are used to
set up range measurements in Section 3.2.

3.1 Range simulation models

In Fig. 2, we show a schematic space-time diagram for two observers, representing a
ground (A) and space (B) segment. Signals are transmitted by the ground segment and
received by the space segment (uplink) and vice versa (downlink). By combining the
signal timing measurements at both link ends, the range observations are generated.

We will denote the one-way range observation between station A (transmitter) and

station B (receiver), by s
(1)
BA. From the position functions xA(t) and xB(t), the one-way

range is calculated as follows:

s
(1)
BA(tt=t1) =

∣∣∣∣∣xB
(
t1 +

s
(1)
BA

c

)
− xA (t1)

∣∣∣∣∣+ ∆s
(1)
BA(t1, t2) (14)

s
(1)
BA(tr=t2) =

∣∣∣∣∣xB (t2)− xA

(
t2 −

s
(1)
BA

c

)∣∣∣∣∣+ ∆s
(1)
BA(t1, t2) (15)

where the first formulation is referenced to the transmission time tt, here equal to t1,

and the second to the reception time tr, here equal to t2 (see Fig. 2). The term ∆s
(1)
BA

denotes range corrections due to e.g. atmospheric and relativistic effects.
The two-way range observation between the same link ends A and B is denoted here

as s
(2)
BA, where link end B now functions as a reflector/retransmitter. It is calculated

by the combined one-way ranges for the up- and downlinks, referenced to either the
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Figure 2: Schematic spacetime diagram showing one-dimensional representation of up- and
downlink one-way ranges between stations A and B (both moving with constant velocity).

transmission time t1 or reception time t4:

s
(2)
BA(tt=t1) = s

(1)
BA(tt=t1) + s

(1)
AB(tt=t3) + cδtB (16)

t3 = t1 +
s

(1)
BA(tt=t1)

c
+ δtB (17)

s
(2)
BA(tr=t4) = s

(1)
AB(tr=t4) + s

(1)
BA(tr=t2) + cδtB (18)

t2 = t4 −
s

(1)
AB(tr=t4)

c
− δtB (19)

where δtB represents the delay between the reception and retransmission of the signal
at station B obtained from:

δtB = t3 − t2 (20)

A two-way range measurement can be realized in a number of manners. The dif-
ferences between these types are in the determination and application of the term δtB .
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For planetary laser ranging systems, the preferred two-way range mode is asynchronous
operation (Degnan, 2002). In such a setup, both the space and ground segments inde-
pendently fire pulses towards one another. That is, the detection of the pulses happens

independently of their transmission. In doing so, one-way ranges s
(1)
AB and s

(1)
BA are gen-

erated. By combining two one-way ranges, including the time between a reception and
a transmission δtB a two-way range is obtained (Birnbaum et al., 2010). Since the range
measurement is asynchronous, δtB may be negative, as it does not represent a phys-
ical retransmission time delay. It should be noted that any two one-way ranges may
be paired, allowing the selection of the order of magnitude of δtB in the data analysis
(within bounds of the available data).

3.2 Range observation models

In Section 3.1, the models for simulating range observables were presented. In this
section, we will describe the models used to generate range observables from the signal
reception and transmission time tags τ̃ (Section 2.2) at the various link ends.

For the one-way range shown schematically in Fig. 2, the measured time tags are
combined as follows to determine the observable:

s
(1)
BA = c (t2 − t1) + ∆s

(1)
BA(t1, t2) (21)

ti = ti (τi (τ̃i)) (22)

The second equation indicates that the measured proper times τ̃ are first converted to
the estimate of true proper time (Section 2.4) and subsequently converted to coordinate
time.

We will assume for the purposes of our discussion in this section that the proper-to-
global time t conversion is error-free (see Section 2.1). For terrestrial clocks, the rate
difference between TCB t and τ is at the order of 10−8, with additional terms orders of
magnitude smaller (Kaplan, 2005). Therefore, to simplify our discussion in this section,
we will assume that a global time t̃ is measured, the error of t is assumed to follow
directly from Eq. (2) when replacing τ with t. In doing so, we ignore the conversion
errors from proper to global time, as well as the variation in the measurement error ∆t
due to the time-variability of the conversion. Omitting this effect in our discussion wil
allow us to more clearly show the influence of the clock error behaviour on the error
budgets of one- and two-way range measurements. In our simulations, we do include the
full proper-to-global time conversion models (Section 2.1).

Using this simplification, we obtain the following for the one-way range measurement

s̃
(1)
BA from the signal transmitted at t1 (omitting the ∆s

(1)
BA(t1, t2) term):

s̃
(1)
BA = c

(
t̃2 − t̃1

)
+ ε

s
(1)
BA

(23)

= c (t2 − t1 + ∆tB(t2)−∆tA(t1)) + ε
s
(1)
BA

(24)

= s
(1)
BA + c (∆tB(t2)−∆tA(t1)) + ε

s
(1)
BA

(25)

where ∆tj(ti) represents the time measurement error at station j, evaluated at global
time ti and εQ represents the non-clock-induced measurement errors of observable Q.
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For the one-way range measurements, these are due to finite pulse lengths, electronics
instabilities, signal strength variations etc. Similarly, the two-way range measurement
is derived from:

s̃
(2)
BA = c

(
t̃4 − t̃1

)
+ ε

s
(2)
BA

(26)

= s̃
(1)
BA + s̃

(1)
AB + c

(
t̃3 − t̃2

)
+ ε

s
(2)
BA

(27)

= s
(2)
BA + c (∆tA(t4)−∆tA(t1))− c (∆tB(t3)−∆tB(t2)) + ε

s
(2)
BA

(28)

ε
s
(2)
BA

= ε
s
(1)
BA

+ ε
s
(1)
AB

(29)

Comparing Eqs. (25) and (28), it can be seen that the error term for the one-way
range measurement is the difference between the absolute range errors at the transmitter
and receiver (at t1 and t2 respectively). For the two-way range measurement, however,
only the timing error accumulated over a time t4− t1 at the transmitter and time t3− t2
at the retransmitter affect the measurement. As a result, clock errors of station A are

integrated over time s
(2)
BA/c, and those of station B over time δtB . For the one-way range

measurement the clock error terms will accumulate as time increases.

4 Simulation settings

In this section, we summarize the models and settings used in our simulations of the
performance of one- and two-way ILR systems. First, we summarize our simulated
missions (a lunar polar orbiter and a Phobos lander) and provide the rationale for their
use in our simulations in Section 4.1. In Section 4.2, we summarize the models we
use for the propagation of the dynamics of the lunar orbiter and Phobos. Also, we
discuss the manner in which we simulate range measurements and their error profiles.
Subsequently, we provide details on the characteristics of the clocks we assume for our
test case missions in Section 4.3. In Section 4.4, we discuss the set of Phobos physical
characteristics that we include in our estimation. Finally, we discuss the manner in
which we generate a force error profile for our lunar orbiter simulation in Section 4.5.

4.1 Mission test cases

To assess the relative performance of one- and two-way laser ranging systems, we per-
form simulations for two distinct types of interplanetary missions. We analyze the
performance of a lunar polar orbiter equipped with a laser ranging system over a pe-
riod of 1 month and that of a Phobos lander equipped with a laser ranging system
over a period of 1 year. We choose a relatively short period of 1 month for the lunar
orbiter, since neither the state nor the clock is estimated over a longer duration than
this (Section 5), and the 1 month orbital period of the Moon about the Earth allows us
to sample the full range of observational geometries. For the Phobos lander, we select
the longer period of 1 year, to exploit the orbital predictability of Phobos (i.e., lack of
strong non-conservative forces). Also, it was found by Dirkx et al. (2014a) that this
period of laser range tracking to a Phobos lander allows for the significant improvement
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in estimation quality of the primary scientific parameters of interest (Section 4.4). For
the lunar orbiter, we assume orbital characteristics similar to LRO (mean lunar altitude
≈ 50 km, eccentricity ≈ 0, inclination approx 90◦). For the Phobos mission, we assume
the same nominal lander position as Dirkx et al. (2014a).

These two missions differ in several key aspects. Firstly, orbit determination of
a lunar orbiter suffers from mismodelled non-gravitational accelerations, necessitating
the inclusion of the estimation of empirical force model parameters for optimal orbit
reconstruction. The dynamics of Phobos, on the other hand, is hardly affected by
non-gravitational forces and the Martian gravitational environment is exceptionally well
mapped. Due to the force mismodelling of a lunar orbiter, the estimation of the space-
craft’s state must be divided into distinct arcs. For the Phobos dynamics estimation,
however, a single state arc can be used for the entire mission. The second important
difference between the two missions is in the rationale for performing the Precise Orbit
Determination (POD). In the case of the lunar orbiter, the only physical parameter (in
addition to empirical force parameters; see Section 4.5) we estimate is the initial state
of the spacecraft (per arc). We do not estimate physical parameters of the Moon, since
we assume no improvement will be obtained compared to the recent GRAIL results e.g.
(Lemoine et al., 2014; Konopliv et al., 2013). The requirement for the POD of the lu-
nar orbiter instead stems from the required precise data processing of altimeter, camera
data, etc., as is the case for LRO. For a Phobos lander, the primary scientific products
of the orbit determination are the physical parameters of Phobos and Mars, which are
included in the POD process (Section 4.4).

4.2 Observation and dynamical models

In this section, we give an overview of the models that we use for the dynamics of
the lunar orbiter and Phobos, as well as the models for the realizations of the range
observations.

We propagate the dynamics of the lunar orbiter using a lunar gravity field expanded
to degree and order 15, third-body perturbations from the Earth, Sun and all planets,
as well as a cannonball radiation pressure model. As will be discussed in more detail in
Section 4.5, we also include an empirical model for mismodelled non-conservative forces.
Although this model will be insufficient for POD of a low-flying lunar orbiter (which
will require a much higher-order gravity field model and better non-conservative force
model), the model will capture the overall dynamical behaviour of the satellite, which
is the requirement for this simulation work. For the numerical integration of the orbit
of Phobos, we use the same models as Dirkx et al. (2014a).

We use six ground stations in our simulations and assume that each ground station
will, if geometrically feasible (assumed elevation angle cutoff of 15◦; Sun avoidance angle
cutoff of 5◦; occultations by Moon and Mars taken into account, see Dirkx et al. (2014a))
perform one tracking session lasting 20 minutes once every 8 hours in the case of the
lunar orbiter and once every day for the Phobos lander.

For the simulations of the Phobos lander, we use a received pulse frequency of 0.4
Hz at the space segment and 0.1 Hz at the ground segment (in the case of two-way
simulations). That is, we conservatively assume that a pulse transmitted from the
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ground segment is detected once every 2.5 s (on average) by the space segment and
a pulse transmitted by the space segment is detected once every 10 s (on average) by
the ground segment. For the lunar orbiter, we assume a 1 Hz reception frequency at
both the receiver and the transmitter, based on values obtained from LRO one-way laser
ranging (Bauer et al., 2013).

To obtain the two-way ranges from the simulated set of up- and downlink one-way
ranges, we pair ranges resulting in the smallest values of |δtB | (Section 3.1). We apply
small (mean 10%) random deviations from these pulse frequencies to ensure a continuous
range of values of δtB .

We generate clock error realizations using the approach described in Section 3.2 and
the clock settings given in Section 4.3 and use these directly to generate the influence of
clock errors on the range measurements. For both the up- and downlink of the system,
we assume a 25 ps (≈7.5 mm) standard deviation single-shot Gaussian uncertainty in the
range measurement as an approximate realization of the terms ε

s
(1)
BA

and ε
s
(1)
AB

(Section

3.2), to capture the effects of e.g finite pulse lengths.

4.3 Clock settings

To define the influence of clock errors on the range measurements, we require a definition
of the Allan variance (or deviation) of the clocks of both the space segment and the
ground segment. Although we expect the influence of the space segment’s clock to be
dominant in the error budget of one-way range measurement, the ground station clock’s

influence may be significant for the Phobos lander, since δtB � s
(2)
BA (Section 3.2).

For one-way range measurements, especially the long-term stability of the (space)
clock is important for quantifying the range measurement errors over the longer inte-
gration times of days, and even months in the case of the Phobos mission. We do not
select a specific existing clock Allan variance for our simulations here, but instead base
our Allan variance profiles on a combination of existing clocks and those of space clocks
that are currently under development (Cacciapuoti and Salomon, 2011; Ely et al., 2014),
conservatively extrapolating the near-term potential of a clock selected and developed
specifically for one-way laser ranging missions.

An overview of the Allan deviations of a number of (deep) space clocks is given by
Prestage and Weaver (2007). Typical deep-space Ultra-Stable Oscillators (USOs), such
as that used by the Cassini mission, have their best Allan variance at an integration
time of 10-100 s, increasing with

√
τ afterwards (µ=1 in Eq. (9)), the use of which here

would result in excessive range errors over longer integration times. The Rubidium clocks
onboard the GPS block II satellites show much better stability over longer integration
times than the Cassini USO does, making a clock of similar capabilities more suitable
for one-way laser ranging missions. The highly stable Deep Space Atomic Clock (DSAC)
is under development specifically for enabling the use of one-way (radio) ranging over
interplanetary distances. However, it has not been tested in space. Also, a highly stable
clock will be placed onboard the International Space Station (ISS) in the Atomic Clock
Ensemble in Space (ACES) project (Cacciapuoti and Salomon, 2011).

For our simulations of the lunar orbiter, we select a clock with intermediate stability
(see Fig. 3), with a stability somewhat worse than that demonstrated by GNSS satellite
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Figure 3: Allan deviations we use for lunar orbiter (blue) and Phobos lander (red) clock simu-
lations. Also shown for reference are the Cassini USO (green), GPS Block 2 (magenta), DSAC
(black) (Prestage and Weaver (2007)) and the PHARAO (cyan) (Cacciapuoti and Salomon,
2011) clocks.

clocks (Prestage and Weaver, 2007; Montenbruck et al., 2012). A higher medium-to-long
term (τ > 1000s) stability is used than is the case for, for instance, Cassini. We do not
use clocks of the same high stability as GNSS satellites since we assume that less power
and mass will be available for the clock on a lunar orbiter. For longer integration times,
the Allan variance we use for the lunar orbiter is superior to that currently being used
on LRO, for which ground-measured values are σy(τ) ≈ 10−13 for 10 s < τ < 103 s,
rising to σy(τ) ≈ 2 ·10−13 at τ = 104 s (Cash et al., 2008). As such, our assumed system
represents a meaningful, yet realistic, improvement over existing lunar one-way ranging.

For our Phobos simulation, we use a clock of higher stability than for the lunar or-
biter simulations, since the clock will be the crucial instrument for fulfilling the scientific
objectives and longer integration times are required than for the lunar orbiter. Also,
the use of Phobos as a geodetic observatory is beneficial due to its long-term orbital
predictability (compared to artificial satellites), (Dirkx et al., 2014a), warranting addi-
tional expenditure on a long-term stable clock. We select a clock with an Allan variance
of a factor 10 better than for the lunar orbiter, shown in Fig. 3. For small integration
times, its Allan variance is equal to that of the DSAC clock, but we assume less favorable
slopes (i.e., exponent µ in Eq. (9)) for τ > 103 s, using an Allan variance profile which
is roughly similar to that in the GPS Block II satellites for τ > 104 s.

We present the estimation results using the one-way laser ranging measurements in
Sections 5 and 6, where we also estimate polynomial clock errors (Section 2.4) for a
variety of arc lengths. When doing so, the Allan variance at integration times on the
order of the arc length and longer do not play a role in the range measurement errors.
As a result, the random walk frequency noise (for which σy(τ) ∼

√
τ , see Fig. 3) that

is dominant for large values of τ will not be relevant for clock arcs smaller than ∼ 12
days. Since we find that an optimal clock arc length is � 106 s for all our simulation
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cases, the precise clock profile for long integration times does not significantly influence
the results for the laser ranging system performance.

From the selected Allan deviations σy(T )and our selected range of values of δtB (1 s
for the lunar orbiter, 2.5 s for the Phobos lander, see Section 4.2), we can see that the
contribution of the clock to the range error profile of the two-way range measurements
will be quite small. For the lunar orbiter, the Allan deviation σy(τ) at an integration
time of 1 s is

√
10 · 10−12, which leads to a range error of about 1 mm. For the Phobos

lander, the Allan deviation σy(τ) at an integration time of 2.5 s is 2 · 10−13, which leads

to a range error of about 0.2 mm. For the Phobos lander s
(2)
BA/c � δtB , whereas for

the lunar orbiter s
(2)
BA/c ≈ δtB . Since the ground station clocks will be substantially

better than that of the space segment, we omit the influence of the ground clock for
the lunar orbiter. For the Phobos lander, however, we include a realization of the
ground station clock noise, for which we assume an Allan deviation a factor 10 better
than the Phobos ground station clock. Since the two-way light-time will be on the
order of 1000 s, the ground station-clock induced range error due to the Allan deviation
σy(τ = 1000s) = 1 · 10−15 is around 0.3 mm.

4.4 Esimated Phobos Characteristics

A detailed discussion of the physical parameter estimation from two-way laser ranging
data of a Phobos lander is given by Dirkx et al. (2014a). In our simulations here, we
use a truncated set of their estimated parameters, since it is not our goal to completely
reanalyze the Phobos lander mission performance, but instead to investigate the com-
parative performance of one- and two-way range systems. Therefore, we only estimate
the primary geophysical characteristics of Phobos that are obtainable from the data, as
presented by Dirkx et al. (2014a). Specifically, we estimate Phobos’ C̄2,2 gravity field
coefficient, its primary libration amplitude in longitude, as well as several additional
(short-period) libration amplitudes in the Euler angles longitude W , right ascension α
and declination δ selected from the model of Rambaux et al. (2012), cast in the form of
Le Maistre et al. (2013). From a combination of the libration amplitudes and C̄2,2 of
Phobos, its absolute moments of inertia can be obtained, from which crucial information
on Phobos’ interior structure and evolution can be derived (Rosenblatt, 2011).

We estimate a limited set of representative libration amplitudes, since it was found
by Dirkx et al. (2014a) that there are groups of fully correlated amplitudes that cannot
be decoupled by ranging measurements alone. Therefore, we focus on estimating a set
of libration parameters that can be independently estimated, implicitly assuming addi-
tional observations capable of discerning between translational and rotational motion,
such as star trackers.

The components, frequencies and nominal amplitudes of our estimated librations are
given in Table 1. The libration contribution to each Euler angle is calculated from the
following, with γ used as a placeholder notation for any one of the three Euler angles
(Dirkx et al., 2014a):

∆γ(t) =
∑
j

γcTj cos

(
2π

Tj
t

)
+ γsTj sin

(
2π

Tj
t

)
(30)
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Table 1: List of estimated libration components from the model of Rambaux et al. (2012)
included in the estimation.

Euler angle Period [days] Amplitude [deg]

W (Longitude) T1 = 0.3190 1.0998
W (Longitude) T2 = 0.5127 0.0167
α (Right ascension) T3 = 0.2313 0.0462
α (Right ascension) T4 = 0.8430 0.0166
δ (Declination) T3 = 0.2313 0.0279
δ (Declination) T4 = 0.8430 0.0101

where Tj denotes the period of the jth term and γcTj and γsTj denote the amplitudes of

the cosine and sine contributions of the jth term, respectively.
We estimate the C̄2,2 gravity field coefficient of Phobos, as it has a stronger influence

on the orbit of Phobos than C̄2,0 or its higher-order gravity field coefficients. We omit
any estimation of Mars’ physical parameters, or other parameters that are not well
observed after only one year. However, we do include the estimation of the Phobos-fixed
position of the lander (denoted xL) in our estimation.

4.5 Lunar orbiter force error model

The gravitational environment of the Moon has been mapped to very high accuracy,
due to the gravity field solutions generated from data obtained by the GRAIL mission
(Lemoine et al., 2014; Konopliv et al., 2013). However, since a variety of imperfectly
modelled non-conservative forces (direct and reflected solar radiation pressure, moon
IR, thermal reradiation, etc.) act on a lunar orbiter, dynamical model errors will be an
important source of state estimation errors, especially for longer arcs.

To include the difference between the truth and estimation model in our simulations,
we employ an empirical model for the acceleration mismodelling. The model consists
of once-per-revolution and constant accelerations in radial, along- and cross-track direc-
tions, as well as independent white noise power spectrum acceleration models in these
three directions. Although we do not expect this model to be a fully valid representation
of the true force model power spectrum, it is sufficient for the purposes of this study,
where the primary goal is the inclusion of a realistic mean magnitude of acceleration
errors.

To set up our error models, we use the results of Mazarico et al. (2013), who present
arc overlap errors for LRO orbit determination with 2.5 day arcs using the GRAIL
gravity fields. For the nominal mission, they arrive at ∼ 8 m along- and cross-track,
and ∼0.6 m radial overlap error. Additionally, we use information of Mazarico et al.
(2012) regarding the magnitude of the estimated LRO along-track empirical accelerations
(∼ 5·10−10 m/s2). We conservatively set the magnitude of the deterministic empirical
accelerations to 10−9 m/s2 in each direction. These values lead to orbit errors below
those reported by Mazarico et al. (2013), except for the along-track direction. However,
since we include along-track empirical accelerations in our estimation, these large orbital
differences can be removed in the orbit determination. In addition to the constant
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and once-per-revolution signals, we set the (frequency-independent) power spectrum
magnitude for the three independent directions to values which result in ∼10 m total
orbit error in along- and cross-track and ∼ 1 m total orbit error in radial direction after
2.5 days of propagation.

Typically, errors in the dynamical model are handled in the estimation by including
empirical force parameters, such as solar radiation pressure scaling factors and empirical
accelerations, on an arc-wise basis. Here, we include the estimation of a radiation
pressure scaling coefficient and a constant, as well as a once-per-revolution sine and
cosine empirical acceleration in along-track direction. The estimation of along-track-
only empirical accelerations is also done in the simulation study of LRO presented by
Rowlands et al. (2009), who conclude that estimation of these components results in the
best orbit solutions. The estimation of a constant along-track acceleration is also used
in the orbit determination of the Lunar Prospector (Mazarico et al., 2010) and LRO
(Mazarico et al., 2012).

5 Lunar Orbiter Results

In this section, we present the results of the lunar orbiter tracking simulations. The
models used in the simulations have been discussed in Section 4. Our goal is to deter-
mine the influence of clock noise on the performance of one- and two-way laser ranging
systems, and how the performance of these systems compares to one another. To remove
accumulated clock noise from the one-way range observations, we include the estimation
of clock parameters on a per-arc basis (Section 2.4). We perform the estimation for
a range of values of the number of state arcs Ns and clock arcs Nc, which we do not
impose as being equal to one another. By exploring a range of values of Ns and Nc, we
investigate the influence of data processing strategies on the quality of the estimation.
Our full simulation spans a 28 day duration. All our numerical results are based on a
Monte Carlo analysis with 25 independent simulations using different realizations of the
observer clock noise processes.

We start by presenting the results of the simulations where there is no error in the
dynamical model used during the estimation in Section 5.1. Subsequently, we analyze
the performance of the simulations where an error in the dynamical model is included
(Section 4.5), the influence of which we attempt to mitigate by means of the estimation
of a radiation pressure coefficient Cr and along-track empirical acceleration ae,c on a
per-state-arc basis. The results of these simulations are presented in Sections 5.2, 5.3
and 5.4, where the position estimation accuracy, removal of stochastic clock noise and
comparison of one- and two-way systems are discussed, respectively.

5.1 Preliminary analysis: no dynamics errors

In this section, we present results of the lunar orbiter one-way laser tracking simulations
without dynamical model errors. In these simulations, the only uncertainties in the
estimation model are the result of the clock noise and Gaussian observation noise (see
Section 4.2). The estimation results are shown in Fig. 4, where the mean position error
over the one-month period is shown for all combinations of Nc and Ns in Fig. 4(a). We
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Figure 4: Estimation results for lunar orbiter one-way range observations as a function of
number of state arcs and clock arcs, without errors in estimation dynamical model a) Mean
position error over full 28-day period b) Observation residual after estimation convergence c)
Residual clock noise. Circular dots denote data point for which results were generated by means
of Monte Carlo analysis (N = 25).

obtain the mean position error by taking the root sum sqaure of the difference between
the true state history x(t) and the estimated state history x̂(t) every 30 s and averaging
the result over the full one month period. The observation residual after convergence
is shown in Fig. 4(b) and the clock-induced observation error in Fig. 4(c). By clock-
induced observation error ∆sc, we denote the remaining clock error after removal of the
estimated clock behaviour ∆t̂d, averaged over all observations, so:

∆sc(t) = c
(
∆td(t) + ∆ts(t)−∆t̂d(t)

)
(31)

where we fit a set of polynomials (the estimation clock noise ∆t̂d) to the combined
deterministic and stochastic clock noise, as discussed in Section 2.4.
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It can be seen in Fig. 4(a) that for most of the range of the number of clock and state
arcs (Nc and Ns, respectively), both an increase in Nc and a decrease in Ns leads to an
improvement in estimation quality. The decrease in clock arc length (increase in Nc)
allows for a better fit of the clock parameters to the stochastic clock noise error profile,
as was discussed in Section 2.4 and illustrated in Fig. 1. For the simulations presented
here (without dynamical model errors), an increase in state arc length (decrease in Ns)
improves the results, since the estimation model could theoretically perfectly reproduce
the original state history and no shorter arcs are needed to absorb dynamical model
errors. In principle, the estimator can obtain the same (perfect) orbit for any value of
Ns. Nevertheless, increasing the number of state arcs leads to additional freedom for
the estimator to fit signals in the observation into the state dynamics without significant
changes in the residuals, increasing the spread of the estimated solution.

A number of data points in Fig. 4(a) show clear deviations from the overall trend,
however. Most notably, the data points at (Ns=4, Nc=2) and (Ns=4, Nc=4) show a
strong increase in estimation error w.r.t. this trend. This behaviour is not observed
in the post-fit residuals (Fig. 4(b)). This is a clear indicator that correlations between
the clock and state estimation have a stronger influence on the estimation at these data
points, and clock signal is absorbed by state estimation and vice versa. The clock-
induced errors for Ns=4 shown in Fig. 4(c) clearly behave in a similar manner as the
position estimation error in Fig. 4(a), indicating that clock signal is interpreted as state
signal and vice versa.

The reason that the correlations between clock and state parameters result in a
much stronger degradation of estimation quality for the aberrant data points is due the
combination of a number of factors. Firstly, in the case of two and four clock arcs, the
four state arc estimation is essentially cut into two and four completely separated and
decorrelated arcs, respectively. For the Ns = 7 case, by contrast, concurrent clock arcs
for Nc = 2, 4 are patched together by the state arcs, since Ns and Nc are then not integer
multiples of one another. Having non-coinciding state and clock arcs allows the perfect
state model knowledge to be optimally exploited. That is, since the dynamical model has
no imperfections in this set of simulations, connecting multiple state arcs by overlapping
clock arcs connects the full 28-day period in the estimation procedure. Secondly, for a
small number of clock arcs, the clock estimation model is a relatively poor representation
of the actual clock behaviour (Fig. 1), since much of the short-period errors cannot be
properly captured by the patched polynomial approach. For cases with higher Ns, there
is more freedom in the state estimation, so that the estimation freedom in the clock
estimation becomes lower relative to the estimation freedom in the state, preventing an
excessive interchange of clock and state errors. That is, the correspondence between the
true correlation and modelled correlation between clock and state behaviour is better
for large Ns and small Nc than it is for small Ns and small Nc, leading to estimation
results that show a better correspondence to reality. Therefore, the relative attribution
of residual signal in the range observations becomes skewed towards clock parameters
when both Nc and Ns are small, contributing to the occurrence of the peaks in Figs.
4(a) and 4(c).

We have also performed simulations of the lunar mission orbit determination without
dynamical model errors using two-way laser ranging measurements. The results of these
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Figure 5: Estimation results for lunar orbiter one-way range observations as a function of
number of state arcs and clock arcs, with errors in estimation dynamical model a) Mean position
error over full 28-day period (dotted line indicates results for two-way system, for which Nc=0)
b) Observation residual after estimation convergence c) Residual clock noise. Circular dots
denote data point for which results were generated by means of Monte Carlo analysis (N = 25).

simulations show a mean position error on the order of several cm for all Ns. The
extremely high quality of the resulting orbits is to be expected, since measurement errors,
both the Gaussian components and the time-correlated components, are at the mm- to
cm-level in these simulations and there is no buildup of either clock error or dynamical
model errors, allowing an extremely good reconstruction of the orbit from these data.
It should be stressed, though, that these results do not represent the expected physical
performance of the two-way system, since dynamical model errors will degrade the real
solution, as will be discussed in the next section.
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5.2 Orbit reconstruction accuracy

We now investigate the influence of the addition of dynamical model errors on the
estimation, starting with the capabilities of the estimator to reconstruct the orbit of the
spacecraft. Compared to the preliminary results discussed in Section 5.1, the results
we present here and in the subsequent sections (5.3 and 5.4) do include the dynamical
model errors discussed in Section 4.5 as well as the estimation of a once-per-state-arc
radiation pressure coefficient Cr and along-track empirical acceleration ae,c (constant,
sine and cosine once-per-orbit terms).

The results for the position error, averaged over the full 28-day period, are shown
in Fig. 5(a) as a function of the number of state arcs Ns and clock arcs Nc. Each
data point has again been obtained from 25 numerical simulations with independent
realizations of the stochastic clock error. In this figure, both the one- and two-way
range results are shown. In this section we will focus on the one-way results. The
comparative performance of the one- and two-way systems will be discussed in Section
5.4.

Several clear differences are observed between Figs. 4 and 5. Firstly, the improvement
of the solution with increasing Nc is much smaller for the simulation that includes
dynamical model errors (Fig. 5), an effect which is observed in the mean position error,
the residual and the remaining clock errors. Also, little to no substantial improvement
is observed for the position error results in Fig. 5(a) when Nc > 14 (for Ns = 4, 28)
and Nc > 28 (for Ns = 7, 14). The solutions shown in Fig. 4(a), however, continue to
improve up until Nc = 56. This effect is a combination of two aspects. Firstly, it shows
that force model errors cannot be fully absorbed into the empirical force parameters,
resulting in residual unmodelled state behaviour. Secondly, it indicates that the two
sources of imperfectly modelled error sources that we include here (stochastic clock
noise and dynamical model imperfections) cannot be properly distinguished from one
another beyond a certain point.

In Fig. 5(a), an improvement in estimation quality with increasing number of state
arcs is generally observed, the inverse result from what was observed in the case without
dynamical model errors in Section 5.1. This is due to the accumulation of dynamical
model errors, which occurs more strongly for longer state arcs. We observe behaviour
in Fig. 5(a) that differs from the general trend, for Nc ≤ 7 and Ns = 4, however,
where superior performance is observed compared to the Ns = 7 case, as opposed to the
expected increase in performance with increased Ns.

The reason for this aberrant behaviour is the following. In Fig. 5(a), the total
position error over the entire 28-day period is plotted, which is our measure of quality
of the estimated trajectory. The estimator does not produce this quantity directly,
however, but produces estimates of the initial state, empirical force parameters and clock
parameters. The estimates of the initial state and empirical force parameters are used
to determine the actual reconstructed orbit, which we then compare to the (known) true
orbit to produce Fig. 5(a). The empirical force parameters are correlated with both the
initial state and the clock parameters, although differently for the various combinations
of Nc and Ns. For our results, the correlations between empirical parameters and initial
states are of little concern for the quality of the results, since we are not interested in
either of these individual sets of parameters themselves, but instead in the resulting
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trajectory of the spacecraft. Since it is this trajectory that is relevant for the quality
of the results, estimation errors in both the initial state and empirical acceleration that
are such that they largely cancel one another in the resulting trajectory will not lead
to a lower quality solution. However, it is important for the quality of the results that
range variations that are induced by the orbital dynamics are properly distinguished
from those that are induced by the clock noise. The specific behaviour of the mapping
from estimated parameters to mean position error are the primary cause of the observed
aberrant behaviour at Nc ≤ 7 and Ns = 7. We find that the initial state estimation
error is actually larger for Ns = 4 than for Ns = 7, but this error propagates differently
for the different state arc lengths, resulting in the observed behaviour. This behaviour
is a result of the specific dynamics used here and not a general result. It does highlight,
however, the sensitivity of the estimation performance to the specific characteristics of
the problem under consideration.

Comparing Figs. 4(a) and 5(a), it can be seen that for small Nc and Ns = 14, 28,
the position error is actually larger for the case without dynamical model errors (Fig.
4(a)) than for the estimation that includes such an error model (Fig. 5(a)). This result
is quite counter-intuitive, since it seems as though the introduction of additional error
sources has actually improved the solution. This effect is also observed in the clock-
induced range errors, indicating that the improved state estimation is accompanied by
an improvement in clock parameter estimation and therefore, a reduction in clock signal
being interpreted as state signal and vice versa. This shows that there is a decreased
exchange between clock and state behaviour estimation for large Ns and small Nc when
including the dynamical model parameter estimation. This exchange between clock
and state signal was the key aspect degrading the results of the no-dynamics error
simulations (Section 5.1). With the additional empirical force parameter estimation,
there are mutual (strong) correlations between the clock, initial state and empirical
force parameters. The added correlation with the empirical force parameters causes
more of the observational signal to be interpreted as state, instead of clock, behaviour.
That is, adding the estimation of empirical accelerations drives the estimator to put
more of the residual signal into state dynamics (combined initial state and empirical
force parameters). This mitigates the effect of the poor clock modelling that occurs for
small Nc, which was highlighted in Section 5.1. The performance of the clock parameter
estimation will be discussed further in Section 5.3.

Due to the use of the empirical forces as additional estimated parameters, which pro-
vide additional freedom in adjusting the spacecraft state, the estimation quality during
the periods of poor orbital observability is further degraded. We define poor observability
as conditions where the orbital plane of the lunar orbiter is approximately perpendic-
ular to the vector from Earth to the orbiter. In these cases, the orbital reconstruction
from range data is more difficult, both with and without the empirical force estimation.
However, the addition of the Cr and ae,c estimation results in even greater variability of
the estimated orbit, with little change in residuals during periods of poor observational
geometry. This effect is manifested in the estimation of the empirical force parameter for
Ns = 14 and especially Ns = 28, where isolated state arcs of largely poor geometry occur
twice in one month. During the state arcs with such geometry, we see a sharp increase
in both the mean and standard deviation of the estimated values of Cr and ae,c when
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Figure 6: Mean and standard deviation of Cr estimation (true value = 1.2) for Ns = 28 and
Nc = 14 (averaged from 25 independent simulations).

going from a state arc with good geometry to one with bad geometry. This is illustrated
in Fig. 6, where the per-state-arc results of both the mean and standard deviation of
Cr are given for a representative (Nc, Ns) data point. The associated increase in mean
position error is less pronounced, at about a factor of 2-4 for Ns = 28. This effect of poor
geometry is not clearly manifested in Fig. 5(a), since the durations of poor geometry
comprise only relatively short periods (about 4 days out of 28), so that the mean error,
as averaged over the full month, is not very influential. Nevertheless, when requiring a
consistent quality of the orbiter state, longer state arcs should be used during periods
of poor observational geometry. The resulting quality of the orbit in these periods will
still be degraded compared to that of periods of good geometry, though, since the use
of longer state arcs will result in a larger accumulation of unmodelled force errors.

5.3 Clock parameter estimation

Comparing Figs. 4(c) and 5(c) it is clear that there are substantial differences in the
capabilities of the estimation to accurately characterize the stochastic clock noise with
and without the inclusion of dynamical model errors. For the simulations without er-
rors in the dynamical model (Fig. 4(c)), increasing the number of clock arcs continues
to improve the removal of clock noise for our full range of Nc, as is the case for the
state estimation. For 56 clock arcs, the majority of the clock error is removed from the
observations, with a remaining r.m.s. clock error better than 0.5 m. The residual clock
error decreases for a decreasing number of state arcs Ns, as expected (Section 5.1). For
the results shown in Fig. 5(c), which do include the dynamical model error and empir-
ical parameter estimation, though, little improvement in clock parameter estimation is
observed for Nc > 14. Also, the values of the remaining clock-induced error at large
Nc depend on the number of state arcs in a more erratic manner than is the case in
Fig. 4(c). Additionally, the residual clock error is an order of magnitude larger than
in the simulations without dynamical model errors. The cause for these differences is
twofold. Firstly, due to the quasi-random nature of the empirical force model, there will
be a non-zero part of the dynamical model error which cannot be properly absorbed by
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the estimated Cr and ae,c parameters, but which can be (incorrectly) absorbed by clock
parameters. This effect is not due to correlations between the estimated parameters,
but instead a result of the true dynamical model having a different influence on the
range measurement than that which is modelled during the estimation. Essentially, the
difference between the true correlation between state and clock noise and the modelled
correlation causes a relative misidentification of the residual signal. Secondly, the in-
creased number of estimated parameters for the case with Cr and ae,c estimation causes
additional degrees of freedom for the estimator which cause a degradation in the quality
of the results for large Nc due to the additional correlations between the parameters. For
small Nc, where clock arcs are quite long and the capabilities of the clock parameters to
properly absorb stochastic clock noise is quite poor, this improves the degree to which
the estimator can distinguish between clock and state signal (Section 5.2). For large Nc,
however, this effect degrades the identification of clock noise, since the clock would in
principle also be capable of removing a substantial portion of state-error induced range
residual.

5.4 One- and two-way comparison

Finally, we come to the comparison of the performance of the one- and two-way laser
ranging systems for the lunar orbiter mission. The mean position estimation error of the
two-way system (in which no clock parameter estimation is performed) is shown by the
dotted lines in Fig. 5(a). Comparing the two-way range to the one-way range results in
this figure, it can be seen that the two-way range simulations mostly produce slightly
better results than the one-way range simulations. The magnitude of the difference is
quite small, with the one-way solution even slightly better for Ns = 7. This indicates
that the clock-induced range errors are not the primary source of error in the parameter
estimation, and the influence of errors in the dynamical model are dominant instead.
Nevertheless, for the one-way range simulations to reach an estimation quality that is
similar to the two-way system, clock parameters must be estimated over sufficiently
short arcs (. 1 day) to remove sufficient clock-induced range errors.

Although our simulations here are only for a specific mission and system test case,
they indicate that in an environment with even a reasonably low force model uncertainty
(the lunar gravity field is exceptionally well mapped), the added value of a two-way sys-
tem over a one-way system may be marginal, since for our assumed clock stability and
dynamical model errors it is the dynamics error, not the clock-induced error, which dom-
inates the position estimation error budget. However, it must be noted that, depending
on the type of (non-conservative) forces that dominate the dynamics error budget, a
two-way system can improve the force modelling much better than a one-way system,
since small unmodelled dynamical signatures can be extracted from the two-way ob-
servation residuals more easily. For the one-way system, the correlations between clock
and state parameters will limit the capability to properly identify unmodelled dynamical
effects, since such effects may be interpreted as clock noise instead. This problem may
be partially mitigated by applying a priori constraint to the clock parameter estimation,
based upon the expected stability of the clock.

An additional important advantage of the two-way system over its one-way counter-
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part is the better robustness and reliability of the estimation results. As discussed in
Section 5.2 and 5.3, the addition of the clock parameter estimation in the data processing
of the one-way data results in clock and state signal potentially being misinterpreted in
the estimation. This behaviour is hard to quantify properly without detailed numerical
simulations, as shown by the sometimes erratic and unexpected results of the one-way
range simulations discussed here. The behaviour of the two-way range simulations,
however, is unaffected by correlations between clock and state parameters. Also, the
quantitative influence of a clock noise realization on one-way system performance that
occurs for a given time interval is a stochastic quantity, for which the data points we
show in Figs. 4 and 5 are the average from 25 realizations (with the standard deviation
similar to the average in all cases, i.e. no observed outliers). As a result, to meet a
given positioning requirement over the entire mission, a more stringent mean position-
ing requirement is needed for the one-way than for the two-way system. However, the
predictability of the estimation quality is still dependent on the force model error profile
for both the one- and two-way system results.

6 Phobos Lander Results

We now present the results for the Phobos lander one- and two-way laser tracking
simulations. The settings for the observation and dynamical models are summarized in
Section 4.2; the estimated parameter set is discussed in Section 4.4. The Allan variance
we use for simulating clock noise is shown by the red curve in Fig. 3. In Sections 6.1
and 6.2 we discuss the behaviour of the results for the one- and two-way laser ranging
simulations, respectively. In Section 6.3, the implications of the estimation accuracy of
the libration amplitudes and Phobos’ C̄2,2 gravity field coefficient for our knowledge of
Phobos’ interior are discussed, including a discussion of the comparative science return
from a one- and two-way laser ranging mission. In Section 6.4, the estimation quality
of long-periodic effects is discussed

6.1 One-way ranging simulations

The estimation error of Phobos’ position, as obtained from one-way range measurements,
averaged over the entire one-year arc, is shown in Fig. 7(a) as a function of the number
of estimated clock arcs Nc. From this figure, it can be seen that the estimation error
initially decreases with increasing number of clock arcs, a result of the estimation having
more possibilities to remove clock noise from the measurements, similar to the results
discussed in Section 5. However, for large number of clock arcs, the position error again
increases, albeit slightly. Also, we find that the formal initial position estimation error
increases continuously as Nc increases, since the formal error does not take into account
the improvement in the estimated clock profile’s capability to correctly represent the
true clock behaviour. The true error increase we observe for Nc > 100 in Fig. 7(a) is
not accompanied by an increase in estimation residual, which indicates that the increase
in position error is due to the dynamical signal being absorbed by other parameters, in
this case the increasing number of clock parameters. Resultantly, there is a limit in how
well clock errors can be removed from the range error profiles before the correlations
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Figure 7: Plot of the estimation error as a function of number of clock estimation arcs of a)
Phobos position, averaged over full one year arc b) Phobos C̄2,2 gravity field coefficient c)
Phobos libration amplitudes (see Table 1).

between clock parameters and other parameters begin to degrade the position estimates.
For our clock noise profile, this effect limits the position estimation accuracy of Phobos
to about 30 cm.

The estimation results of the libration components is shown in Fig. 7(c). The mean
total libration amplitude error has been plotted, as derived from its estimated sine and
cosine component errors, γSTj and γCTj , see Eq. (30). An initially very strong trend of
improved estimation accuracy with increasing Nc is observed for most libration compo-
nents in Fig. 7(c). The primary libration longitude amplitude estimation (W libration
with period T1), however, shows anomalous behaviour when compared to the other com-
ponents, having a much less steep slope with increasing Nc and a comparatively small
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uncertainty at low Nc. The reason is that this component is by far the most strongly
coupled to the orbital dynamics, since its amplitude is largest by several orders of mag-
nitudes (see Table 1). Therefore, it modulates the influence of Phobos’ degree 2 gravity
field much more strongly than the smaller librations. As a result, its estimation shows
a large correlation with both the initial state components and C̄2,2. These correlations
range from 0.94 to 0.96 with C̄2,2 and 0.99 to 0.995 with the initial state, when varying
the number of clock arcs from 4 to 104. For the other libration components, the or-
bital signal is not dominant when determining the partial derivative of the observation
w.r.t. the parameter. As a result, their estimation is largely determined by the direct
observation partial, i.e. the change in range due to the different instantaneous rotation
matrix from a Phobos-fixed to an inertial frame, as discussed in more detail by Dirkx
et al. (2014a). The fact that the primary libration amplitude is strongly coupled to the
orbital dynamics results in an increase in time of the partial derivatives of the range
w.r.t. this libration, as its signature on the orbit accumulates. For the remaining libra-
tion components these partial derivatives are largely periodic, since their behaviour is
largely the result of geometry, not orbital dynamics. As a result, these libration ampli-
tudes are more sensitive to the presence of clock noise in the observations. The reason
for this is that the total fraction of the clock error that can be removed is limited by
the correlations between clock parameters and the remaining parameters. There will
always be some remaining (trend-free) clock errors, a part of which can be interpreted
as a libration signal without a meaningful increase in observation residual.

We observe a clear distinction between the estimation quality of the δ- and α−libra-
tions in Fig. 7(c), with the α- librations estimated to about three times greater accuracy.
This effect is due to the geometry of the problem, which causes a unit change in am-
plitude of the α-librations to have a larger signature on the range measurements than
the same unit change in amplitude of δ-libration does. The comparative accuracy of the
right ascension and declination libration amplitudes conflicts with the results presented
by Dirkx et al. (2014a), where the α- and δ-libration estimation results are almost equal.
This conflict is due to the removal of the correlations between these components that
results from reducing the estimated parameter set, as discussed in Section 4.4.

As is the case with the primary longitudinal libration, the estimation of Phobos’
C̄2,2 shows much weaker improvement in accuracy with increasing number of clock arcs
than the small libration amplitudes, as shown in Fig. 7(b). We again observe the small
degradation of solution accuracy at Nc > 100, due to the stonger correlations between
state, and resultantly C̄2,2, and clock parameters. The implications of the libration
amplitude and C̄2,2 estimation quality for improving the knowledge of Phobos’ interior
will be discussed in Section 6.3.

6.2 Two-way ranging simulations

The estimation results for the simulation of the Phobos lander tracking using two-way
ranging are shown in Table 2, where the mean absolute estimation error of each of
the parameters is given. Also given is the mean observation residual after estimator
convergence, which can be seen to be close to the single-shot Gaussian measurement
error (1.5 cm), indicating that the time-correlated errors are not of strong influence
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Table 2: List of estimated parameter errors for Phobos two-way range simulations; mean ob-
servation residual = 2.28 cm

Parameter Rms estimation error

|xP,0| 0.0266 m
|ẋP,0| 5.5·10−6 m/s
C̄P2,2 5.14·10−9

WT1 1.36·10−5 deg
WT2 1.90·10−6 deg
αT3 5.35·10−6 deg
αT4 1.04·10−6 deg
δT3 2.59·10−5 deg
δT4 2.47·10−5 deg
|xL| 0.497 m

in the estimation. This was expected from the discussion in Section 3.2, due to the
combination of small retransmission time δtB (see Eqs. (16) and (18)) and highly stable
ground clock. It should be noted that the results shown here (as well as in the previous
section) are contingent upon highly accurate gravitational models of Phobos’ orbit, both
classical and relativistic.

The mean position estimation error of the two-way system can be seen in Table 2
to be on the order of the observation residual. For an estimation problem with purely
white noise and completely uncorrelated parameters, one would expect the estimation

error to reduce with N
−1/2
obs , where Nobs is the number of observations, which would

have resulted in an initial position estimation error that is orders of magnitude smaller
than the observation residual (as shown by the formal errors given by Dirkx et al.
(2014a)). One reason for the lack of such behaviour is the clock noise, which causes
a time-correlated component in the observation errors, limiting the reduction of the
estimation error with the number of observations. For the space- and ground-clocks
used here, though, the combined clock error induced by the stochastic clock errors is at
most 0.5-1 mm (Section 4.3), with values several times smaller for short Earth-Phobos
distances and, to a lesser degree here, a shorter retransmission delay. Although this time-
correlated error imposes a limit beyond which our least-squares approach cannot filter
out observational noise, the small clock-induced error indicates that strong correlations
between the estimated parameters additionally degrade the results. Inspection of the
correlation matrix indeed shows large correlation between initial state components, as
well as the primary libration amplitude and C̄2,2 (Section 6.1), so that these parameters
may be varied substantially without affecting the observation residual. Nevertheless,
the mean initial position error is, at several cm, orders of magnitude more precise than
current Phobos ephemerides e.g. Lainey et al. (2007). However, the attainability of this
value is contingent upon the highly precise mapping of the (time-varying) gravitational
environment of Phobos. Although estimating Mars gravity field components is shown
by Dirkx et al. (2014a) to be feasible using a Phobos lander, they conclude that (next-
generation) Mars-orbiting spacecraft are more suitable for characterizing the static part
of Mars’ gravity field.
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Comparing the estimation accuracy of the libration components for the two-way
system (Table 2) to those obtained with the one-way system (Fig. 7(c)), there is again a
clear difference between the behaviour of the primary libration component WT1

and the
other, smaller, libration components. Specifically, the estimation quality improvement
for the small libration amplitudes is much greater than for the primary libration when
going from a one- to a two-way system. This indicates that the small libration amplitudes
are much more sensitive to the presence of clock noise than the larger libration, as was
already hypothesized in Section 6.1. The estimation accuracy of C̄2,2 is relatively close
to that which can be obtained from the one-way system (a factor two), as seen when
comparing Table 2 and Fig. 7(b) . We will discuss the comparative implications for
improved Phobos interior structure knowledge in Section 6.3.

6.3 Phobos physical parameters

In Sections 6.1 and 6.2, the estimation accuracy for Phobos physical characteristics,
specifically its C̄22 gravity field coefficient and selected libration amplitudes, has been
presented for one- and two-way ranging systems, respectively. In this section, we will
discuss the implications that these estimation accuracies have for the improvements of
models of Phobos’ internal structure, allowing us to assess the influence that the choice
of laser ranging system type has on mission science return.

The combination of libration and degree-two gravity field estimation can be used
to determine Phobos’ principal moments of inertia, as discussed by e.g. Le Maistre
et al. (2013); Dirkx et al. (2014a). A total libration amplitude estimate γ̂f is derived
from the estimates of the sine and cosine components (see Eq. (30)). The libration
amplitude estimates (combined with their frequencies ωf ) are used to obtain estimates
of the proper mode frequencies ν̂γ about Phobos’ three principal moments of inertia A,
B and C, where A and B denote the equatorial components and C the polar moment
of inertia.

From the proper mode frequencies, its relative moments of inertia are obtained, from
which estimates of the absolute moments of inertia are obtained through combination
with either C̄2,2 or C̄2,0. It was found by Dirkx et al. (2014a) that laser ranging to a
Phobos lander is better able to estimate C̄2,2. The combination of C̄2,2 and longitude
libration constrain C, whereas C̄2,2 and the combined estimated of the δ- and α-librations
jointly constrain A and B.

A libration amplitude uncertainty σγf propagates to proper mode frequency σνγ
(about the same axis) as follows (Dirkx et al., 2014a):

σνγ =

(
ν2
γ − ω2

f

)
νγ

2γfω2
f

σγf (32)

so that the ratio σγf /γf determines the proper mode uncertainty. As a result, to de-
termine the C moment of inertia, the primary libration amplitude (WT1

) provides the
strongest constraints, since its total amplitude is about two orders of magnitude larger
than the other librations. Similarly, the small amplitudes of the α- and δ-librations (see
Table 2) cause the estimation uncertainty of A and B to be several orders of magnitude
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higher than that of C. The discrepancy between the accuracy of the equatorial and
polar moment of inertia becomes even greater for the one-way range system, where the
small libration amplitudes are estimated to a relatively poorer accuracy than that of the
primary libration. Comparing Fig. 7 and Table 2, it seems that the science return from
the two-way range system would be substantially greater than for the one-way system,
since the constraints on Phobos’ moments of inertia would be much weaker for a one-way
system, especially so for the equatorial moments of inertia.

However, as highlighted by both Le Maistre et al. (2013) and Dirkx et al. (2014a),
geophysical interpretation of improved estimated of Phobos’ moments of inertia at the
level discussed here is currently limited by uncertainty in Phobos’ volume. To compare
estimated values of Phobos’ moments of inertia to values that are obtained from models
of Phobos interior structure with various degrees and types of heterogeneities, such as is
done by Rosenblatt (2011), an accurate shape model of Phobos is needed. However, the
currently best estimate for Phobos’ volume (Willner et al., 2014) has an uncertainty of 35
km3, which translates into a homogeneous moment of inertia error on the order of ≈1 %.
As such, both the one- and two-way range systems are capable of providing geophysical
parameter estimates, but they cannot be used to their fullest potential in analyzing
Phobos’ interior structure without improved Phobos shape models. Additionally, it
highlights that, although the one-way range estimation is clearly inferior to the two-way
range system’s performance in terms of estimated parameter accuracy, both systems may
result in similar science return for Phobos interior, unless strong improved estimates of
additional physical parameters are made available through the use of synergistic next-
generation missions and instrumentation.

6.4 Long-period signal identification

We did not include the estimation of the long-period librations of Phobos in our simu-
lations, since the results presented by Dirkx et al. (2014a) indicate that they will not be
observable for the short 1-year mission we analyze here. Also they have little relevance
for analyzing Phobos’ internal mass distribution (Rambaux et al., 2012).

Additionally, we find that such long-period signals are impossible to decorrelate from
clock parameters in the case of one-way ranging data analysis, making them intrinsically
unobservable for these systems. The reason for this correlation is that the piecewise poly-
nomials can very closely represent a long-period sinusoidal signal, allowing much freedom
to interchange long-periodic signal for suitable modifications of the clock parameters.
Since no clock parameters are estimated during the analysis of the two-way data, the
two-way range system does not suffer from this issue.

Although we do not estimate the long-periodic librations, the lander’s position is
included in our parameter set. The Phobos-fixed component of the lander position per-
pendicular to the plane of the ecliptic imprints a signal on the range measurements that
is mostly periodic, with a period determined by the observation geometry. As a result,
we observe very large errors (up to 500 m) in the position estimation of the lander from
one-way range measurements for low number of clock arcs, as shown in Fig. 8. For
shorter clock arcs, the estimation accuracy reduces to ∼ 20 m, compared to ∼ 0.3 m for
the ecliptic-in plane component. Although the precise (<20 m) lander position holds
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Figure 8: Plot of the estimation error in the out-of-plane (approximately perpendicular to
ecliptic) and in-plane position of the Phobos-fixed lander position. One-way results shows as a
function of Nc; dashed lines show 2-way results.

little intrinsic scientific value, an accurate positioning could be advantageous for the im-
provement of control point networks, when combined with surface observations by both
the lander itself, as well as additional (quasi-orbiting) spacecraft. More importantly,
though, the strong correlation with the clock parameters makes it difficult to perform a
detailed analysis of the clock behaviour, since it is effectively impossible to decorrelate
the signal of the ground station position (and all other long-period signals in general)
from that of the clock. Although the estimation of the ground station position when
using the two-way system is also substantially worse than that of Phobos’ orbit itself
(see Table 2), this is instead the result of the inherent geometric difficulty of estimating
its out-of-plane component, also without the added complication of the clock parameter
estimation.

The influence of this deficiency in the capabilities of the one-way system does not
result in substantial degradation of the mission’s science return in this particular case.
However, a long-period sinusoidal signal may hold crucial information for parameter esti-
mation in other cases. For instance, a once-per-year (relativistic) signal in the dynamics
of planets cannot be properly exploited by a one-way system. This again indicates the
need for critical evaluation of comparative performance of one- and two-way systems in
mission design selection.

7 Conclusions

We have simulated one- and two-way laser ranging measurements for both a lunar po-
lar orbiter and a Phobos lander and have used these synthetic measurements as input
for orbit determination and parameter estimation. By doing so, we have quantified
the influence of clock noise on one-way laser ranging performance and compared the
performance of both types of laser ranging systems.

For the lunar orbiter, we find that the one- and two-way laser ranging systems provide
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similar mean position estimation errors, at about 5 m for a 1 day state arc duration and
a clock arc duration of less than one day (for the one-way system). This result is due
to the fact that the dynamical model errors, and not the observation errors, are the
dominant source of error in the estimation. Nevertheless, the two-way system has the
advantage of being more robust, since it is not influenced by the specific vagaries of
the spacecraft clock. We find such effects in the one-way data analysis, manifested as a
number of deviations from the expected trend of the results with number of clock arcs
Nc and number of state arcs Ns. Additionally, the absence of the clock parameters in
the estimation procedure both simplifies the data analysis and allows for better force
model improvement. In conclusion, although the use of a two-way laser ranging system
has a number of definite advantages compared to the one-way system, dynamical model
errors prevent the full utilization of both data types. This has stronger consequences for
the more accurate two-way system.

Our simulations of the Phobos lander tracking show large differences between the
one- and two-way laser ranging system’s performance. The correlations between clock
and state parameters result in an optimal clock arc length of about one week for our
one-year simulation period, for which a mean Phobos position estimation error of 0.3 m
is obtained. The two-way system results in a mean position estimation error of 2.5 cm.
These results are contingent upon highly accurate dynamical models of Phobos, though.
We find that the estimation of small libration amplitudes, which are largely decoupled
from Phobos’ dynamics, are much more sensitive to the presence of clock noise in the one-
way range measurements. This is due to the purely periodic influence that they have on
the range measurements. The strong correlations between clock parameters and physical
parameters that are manifested in the range measurements as long-periodic trend-free
signals (such as the out-of-plane component of the ground station position) prevent
an accurate estimation of either of these sets of parameters from one-way ranging data.
However, for the case of a Phobos lander, for which the science return from tracking data
would largely stem from improved estimates on Phobos’ interior and evolution, geodetic
parameter estimates (such as libration amplitudes and gravity field coefficients) must
be mapped to a space of Phobos interior compositions. In this mapping, the dominant
error source at the levels of accuracy that we get for both the one- and two-way systems
is Phobos’ volume error, not the uncertainty in our estimated parameters. This shows
that, although the parameter estimates of a Phobos lander utilizing a two-way system
are of higher quality than those of a one-way system, the mission’s science return (in
terms of Phobos origin and evolution) need not be of higher quality as well

The two missions that we have analyzed differ in a number of key aspects. Neverthe-
less, it is interesting to note that the general conclusion that we draw on the comparative
performance of the one- and two-way systems is similar. Specifically, although the two-
way system has the potential to facilitate superior mission performance, as was to be
expected, this potential cannot be fully exploited due to the uncertainties in other mod-
els used to process the tracking data. For the lunar orbiter, the limiting factor is the
dynamical model errors, whereas the Phobos volume uncertainty dominates the Phobos
lander mission’s performance. To make full use of the two-way data, the final parameter
estimation error induced by measurement uncertainty should be at the same order as
that of other error sources. To achieve this, a variety of models used in the tracking
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analysis of planetary missions must be improved. This will require the use of synergistic
next-generation instrumentation, improving not only the tracking data accuracy, but
all relevant scientific measurements (ground-based, space-based and in situ) which are
required to obtain a balanced error budget of scientific quantities obtained from future
planetary missions.
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Appendix A Coloured noise signal generation

We use a coloured noise power spectral density for both the unmodelled segment of the
non-gravitational accelerations and the stochastic errors of the oscillator signal. Here,
we present the model used to generate a coloured noise signal in time domain from its
power spectral density, based on (Timmer and Koenig, 1995).

Starting from the power spectral density of a quantity x, denoted S2
x(ω), or its

amplitude spectral density Sx(ω), we generate a realization of the signal in frequency
domain, using the following relation for the continuous Fourier transform of f(t), denoted
F (ω):

F (ω) = K

(
N
(

0,
1

2
S2
x(ω)

)
+ iN

(
0,

1

2
S2
x(ω)

))
(33)

where K is a normalization constant depending on the convention of the Fourier trans-
form that is used and N (µ, σ2) denotes a univariate Gaussian random number with
mean µ and variance σ2.

To generate the discrete realizations f(tk) in time domain, we first discretize the
power spectrum into nf equisized bins of size ∆ω. We denote the power in each bin

as (Sx)
2
i . Approximating the power across each bin to be constant at the value of its

midpoint, we obtain:

(Sx)
2
i ≈ S

2
x

(
ωi +

∆ω

2

)
∆ω (34)

Subsequently, we set up its discrete Fourier transform Fn = F (ωn) of the time domain
realization fk = f(tk) from the discretized power spectrum. Our convention for DFT
and IDFT are the following:

Fn =

N−1∑
k=0

fk exp

(
−in2πk

N

)
(35)

fk =
1

N

N−1∑
k=0

Fn exp

(
ik2πn

N

)
(36)

so that K = N in Eq. (33).
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Since our time domain realization fk has no complex part, the following condition is
imposed on the components Fn:

FN−n = F ∗n (37)

where the asterisk denotes complex conjugation. Additionally, since we assume zero
power at zero frequency, i.e. the time-average of the realization in time domain will
tend to zero as t tends to infinity, we set:

F0 = FN = 0 (38)

Assuming N to be odd, we must calculate nf − 1 = (N + 1)/2 − 1 values for Fn
from the discretized power spectral density. However, we note that due to Eq. (37), the
power in a single bin i is spread out over two values of Fn, so that we introduce the

halved power
(
S̃x

)2

n
= (Sx)

2
n /2

We then directly obtain the discrete Fourier transform of our realization in time
domain from:

Fn = N

(
N
(

0,
1

2

(
S̃x

)2

n

)
+ iN

(
0,

1

2

(
S̃x

)2

n

))
(39)

By evaluating the discretized power spectral density and generating realizations of the
Gaussian random variables, we generate a frequency domain realization Fn. By using a
Fast Fourier Transform (FFT) of Fn, we obtain our realization fk.



CHAPTER 7

Paper IV - Coupled Relativistic Dynamical Effects

“Our ultimate analysis of space leads us not to a here and a there, but to
an extension such as that which relates here and there. To put the conclusion
rather crudely - space is not a lot of points close together; it is a lot of distances
interlocked.”

– Sir Arthur Stanley Eddington, The Mathematical Theory of Relativity (Cambridge
University Press, 1923)
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Abstract
Many physical parameters that can be estimated from space mission tracking data,

e.g., classical gravity field parameters, planetary ephemerides, Parametrized Post-Newto-
nian (PPN) parameters, etc., influence both the translational dynamics and proper time
rate of observers. The different proper time rates of observers cause a variability of
the time transfer observable beyond that caused by their translational (and rotational)
dynamics. With the near-future implementation of interplanetary laser ranging, these
effects will become increasingly important, possibly requiring a re-evaluation of common
data analysis practice of using a priori time ephemerides. In this article, we present a
framework for the simultaneous estimation of initial translational state and initial proper
time to facilitate robust tracking data analysis from next generation space missions car-
rying highly accurate clocks and tracking equipment.

We perform a covariance analysis using our proposed method with simulated laser
data from Earth-based stations to both a Mars and Mercury lander. For the Mars
lander simulations, 4 years of tracking data results in a difference in results between
our simultaneous estimation and classical analysis techniques (with an a priori time
ephemeris) of around 0.1 % in formal errors and correlation coefficients. For a Mercury
lander this rises to around 1% for a 1-month mission and 10 % for a 4-year mission.
We find by means of Monte Carlo simulation that using an a priori time ephemeris of
representative accuracy to process highly accurate laser time transfer data will result in
estimation errors that are orders of magnitude above the formal error.

1 Introduction

The accurate processing and interpretation of data from modern (interplanetary) space
missions requires the consideration of a number of physical effects induced by general
relativity. Firstly, spacecraft tracking observations such as range, range rate and astro-
metric measurements are influenced by relativistic effects well above their measurement
accuracy, e.g. (Klioner, 2003; Moyer, 2000; Hees et al., 2014b) due to for instance the
Shapiro time delay. Secondly, the equations of motion in general relativity differ from
their Newtonian counterparts, influencing the dynamics of spacecraft and celestial bod-
ies, e.g. (Brumberg, 1991; Damour et al., 1994; Kopeikin et al., 2011). Finally, the
influence of time dilation must be included when comparing the clock rates of different
observers e.g. (Soffel et al., 2003; Müller et al., 2008a).

Due to the effects of gravitation on the these aspects of space mission data process-
ing, these data can be used to test general relativity by comparing the observed effects

(a): Delft University of Technology, The Netherlands
(b): Joint Institute for VLBI in Europe, The Netherlands



214 Paper IV - Coupled Relativistic Dynamical Effects

with those predicted by it and certain alternative theories of gravity (e.g. Turyshev,
2009; Hees et al., 2012; Will, 2014). A near-future improvement in tracking data quality
that will require the use of more sophisticated relativistic data analysis is interplan-
etary laser ranging. This technology could be used for orbit determination and time
transfer over solar system distances to unprecedented accuracy, at the 1 mm to 1 cm
level (Degnan, 2002; Turyshev et al., 2010; Dirkx et al., 2014a), compared to a typical
current radiometric range measurement accuracy of 1 m (Thornton and Border, 2000)
and near-future radiometric range accuracy of 20 cm (Iess et al., 2014a). A variety of
missions using this technology has been proposed e.g. (Samain, 2002; Turyshev et al.,
2004; Christophe et al., 2009; Wolf et al., 2009; Turyshev et al., 2010; Oberst et al.,
2012), opening up new possibilities in experimental relativity, requiring highly precise
modelling of relativistic effects. Also, to properly estimate non-relativistic parameters
from measurements made by such missions (Dirkx et al., 2014a), relativistic effects well
below the mm-level should be modelled correctly and consistently. Especially in the
case of one-way (interplanetary) laser ranging and time transfer, which should employ
a highly precise clock at the space segment for optimal usage (Bauer et al., 2013; Dirkx
et al., 2015a), detailed relativistic modelling of clocks in the solar system will be re-
quired, as one cannot use this data to directly decouple the signature of translational
dynamics and clock effects.

The introduction of next-generation highly precise space-based clocks, combined with
time-transfer techniques, e.g. (Bjerhammar, 1985; Klioner, 1992; Petit and Wolf, 1994;
Blanchet et al., 2001; Müller et al., 2008a) will allow relativistic clock effects to be used for
improving both geodetic measurements and experimental tests of general relativity, as is
planned for the ACES mission (Delva et al., 2012). Such projects will build on experience
with past and current time transfer experiments such as T2L2 (Exertier et al., 2010), in
which time transfer from Earth to the Jason 2 satellite was achieved. The exploitation
of relativistic clock effects was analyzed by e.g. (Angélil et al., 2014; Schärer et al.,
2014), specifically for time transfer to Earth-orbiting satellites, who conclude that an
improvement in the determination of PPN parameters β and γ is possible with this
approach.

Complicating the time transfer data analysis, however, is the fact that it is contingent
upon accurate knowledge of the state history of the transmitter and receiver, since an
error in these states will propagate into an error in proper time rate. For instance, it is
found by Delva et al. (2015) that orbital errors of the Galileao GNSS satellites clearly
manifest itself in the use of these satellites’ clocks for experimental verification of the
gravitational redshift, albeit for short integration times. It was found by Duchayne et al.
(2009), though, that the influence of orbital errors on the achievable accuracy of time
transfer is acceptably small for the case of the ACES project, validating the decoupling
of time and state dynamics estimation for that project.

However, this decoupling of translational and time dynamics may no longer be valid
for certain future missions, especially when using the same data types for orbit deter-
mination and time transfer. As opposed to current tracking systems, this will be the
case for missions employing interplanetary laser ranging. In such cases, the exploitation
of space-based clocks for testing general relativity will require the ability to distinguish
the influence of orbital errors and relativistic clock effects in a robust manner. Here, we
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propose a novel general analysis framework in which the estimation of both translational
dynamics and proper time dynamics are simultaneously performed, along with the esti-
mation of physical parameters of interest. To achieve this, we extend the typical orbit
determination procedure (e.g., Montenbruck and Gill, 2000), performing it in a fully
relativistic setting, taking into account the fundamental physical reality that an object’s
behaviour in time and space are intimately coupled. In doing so, we extend the classical
orbit determination approach (with only translational dynamics estimation) to include
the estimation of an observer’s initial proper time in addition to its initial translational
state. As such, we include the coupling between an observer’s translational and time
dynamics into the estimation, allowing the coupling between the two to be identified
and exploited in tracking data analysis.

Such a concurrent estimation will allow for a more robust analysis of time transfer
data, preventing signal from relativistic clock effects to be interpreted as translational
dynamics or vice versa. Similarly, it will allow a direct quantification of the correlation
between the signal of translational and time dynamics, which is key in interpreting the
estimation results (e.g. Iorio, 2012b; Verma et al., 2014; Fienga et al., 2014; Deng and
Xie, 2015).

Our motivation for this work is to analyze the importance of these effects for missions
using interplanetary laser ranging as a primary tracking system. However, our approach
can be applied equally well to Earth-orbiting missions in which relativistic clock effects
become relevant (Müller et al., 2008a). Our approach may be used in the same framework
as that of Mayrhofer and Pail (2012), who propose to use post-Newtonian effects to
enhance range rate data analysis, and four-dimensional positioning systems e.g. (Delva
et al., 2011).

We apply our framework to two interplanetary missions: the tracking of a lander
on Mars and on Mercury. The goal of our simulations is to demonstrate the applica-
tion of our proposed methodology, not to provide a detailed analysis of the scientific
performance of such mission, as is done by e.g. Hees et al. (2012) for a range of mis-
sions and relativistic parameters. We investigate whether relativistic clock effects are
manifested in planetary mission range/time transfer data at a sufficient level such that
the concurrent analysis of relativistic time and translational dynamics effects is required
when processing one-way range data, or wishing to exploit relativistic clock effects for
improved science return from two-way data. That is, the goal of our test case missions
is to investigate whether a priori or a posteriori relativistic clock calibration is a feasi-
ble approach in these cases, or whether they unduly bias the parameter estimation and
the combined four-dimensional state estimation is required. Conversely, we investigate
whether the physical signal encoded in clock-rate variations leads to a significant change
in the estimation quality of a number of physical parameters. In doing so, we further
analyze the error budgets of future interplanetary laser ranging missions.

We start by reviewing the relevant details of relativistic celestial mechanics, time
dynamics and the formulation of the time-transfer observable in Section 2. Our new
derivation of the extended variational equations and the partial derivatives of the time-
transfer observable, including the coupling between translational and time dynamics, is
given in Section 3. The results of this section comprise the key novel theoretical aspects
of this paper. We demonstrate our methodology with numerical simulations of both a
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Mars and a Mercury lander in Section 4, followed by our overall conclusions in Section
5. The metric and Christoffel symbols we use in our simulations are given explicitly in
Appendix A and Appendix B, respectively. We provide a brief overview of least squares
orbit determination and parameter estimation in Appendix C.

2 Dynamics and observable modelling

In this section, we define our notation and conventions in Section 2.1 and review the
required models for the translational dynamics, time dynamics and range/time transfer
observable in a relativistic setting in Sections 2.2, 2.3 and 2.4, respectively.

2.1 Notation and conventions

We will use the (−+ ++) metric signature, the Einstein summation convention and use
Latin indices i, j, k = 1, 2, 3 to denote space indices and Greek indices µ, ν, σ = 0, 1, 2, 3
to denote space-time indices (with 0 the time index). A subscript of ,µ will denote partial
differentiation w.r.t. xµ.

We will often appeal to the post-Newtonian assumption of slow-motion (v � c) and
weak fields (|gµν − ηµν | � 1), since our application of orbit determination is limited to
solar system situations. As a result, the metric gµν can be written in terms of the metric
perturbation hµν as follows (Kopeikin et al., 2011):

gµν = ηµν + hµν (1)

with ηµν the Minkowski metric. We perform our analysis in the Barycentric Celestial
Reference System (BCRS), which is kinematically non-rotating, as its orientation is
fixed w.r.t. distant objects (e.g., quasars), so that the entries of hµν are of order 1/c2

or smaller (Kopeikin and Vlasov, 2004).
A metric to be used for the solar system up to first post-Newtonian order is recom-

mended by the IAU and discussed by Soffel et al. (2003). The development of a metric
of scalar-tensor gravity in the solar system has been a topic of active investigation, with
an expansion up to second post-Newtonian order given by (Minazzoli and Chauvineau,
2011) and a general expansion to higher order by (Kopeikin et al., 2011). Here, we
will use the first-order metric, parameterized with PPN parameters, which we provide
explicitly in Appendix A. However, we stress that our approach laid out in Section 3 is
not limited to this particular choice of metric, or even to metric theories of gravity.

2.2 Relativistic celestial mechanics

In this section we will review the concepts and equations of celestial mechanics in a
relativistic framework necessary for our subsequent discussion of relativistic orbit deter-
mination. Further extensive discussion of relativistic celestial mechanics can be found
in e.g. Brumberg (1972); Soffel (1989); Brumberg (1991); Kopeikin and Vlasov (2004);
Kopeikin et al. (2011).
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The general four-dimensional equation of motion of a point mass is the following:

d2xµ

dτ2
= −Γµαβ

dxα

dτ

dxβ

dτ
+Aµ (2)

Γµαβ =
1

2
gµν (gνα,β + gνβ,α − gαβ,ν) (3)

where xµ denotes the four-position {ct, x, y, z}, τ denotes the proper time of an observer
co-moving with the test body, Γµαβ denotes the Christoffel symbols of the metric connec-
tion and Aµ denotes the four-acceleration which encodes the non-gravitational forces.
Note that in certain alternative theories of gravity, the assumptions that the connection
contains no torsion (Γµαβ = Γµβα) and no non-metricity (∇αgµν = 0) will no longer hold,
resulting in a modification of Eqs. (2) and (3) (Kopeikin et al., 2011). The inclusion of
such terms would result in a modification of the equations of motion, light propagation,
etc. that we use and derive in this section. However, it would not change the general
methodology that is derived in Section 3

We will omit the presence of non-gravitational forces in the remainder of this paper
and instead focus on trajectories purely described by gravitation, neglecting Aµ in Eq.
(2), obtaining the following (e.g., Misner et al., 1973):

d2xµ

dτ2
= −Γµαβ

dxα

dτ

dxβ

dτ
(4)

In doing so, we focus on describing our general methodology in a clear and transparent
manner. Our framework is easily extended to cases where Aµ is not negligible, though.
Neglecting Aµ is valid for larger solar system bodies such as planets and major moons (at
current modelling and measurement accuracy). For artificial satellites and smaller bodies
such as asteroids and comets, non-gravitational forces are an important contributor to
the dynamics, though.

We note that, in general, the centers of mass of extended bodies will not obey the
geodesic equation exactly due to the interaction of the structure of the body with external
potentials (Kopejkin, 1988). However, the correction to the equations of motion are at
the c−2 level (Soffel et al., 2003; Kopeikin and Vlasov, 2004) and we neglect them in the
current presentation. Their inclusion would be similar to the inclusion of the Aµ term.

The equations of motion given by Eq. (4) may be written in terms of a coordinate
time t (such as Barycentric Coordinate Time TCB) instead of proper time τ . This yields
equations of motion expressed in a time scale more closely related to that typically used
in orbit propagation and determination e.g. (Kopeikin et al., 2011):

ẍi = −Γiαβ ẋ
αẋβ +

1

c
Γ0
αβ ẋ

αẋβ ẋi (5)

= −c2Γi00 − 2cΓi0j ẋj − Γijkẋ
j ẋk + ẋi · ...

... ·
(
cΓ0

00 + 2Γ0
0j ẋ

j +
1

c
Γ0
jkẋ

j ẋk
)

(6)

where the overdot denotes a derivative w.r.t. coordinate time t. The first term in Eq. (6)
reduces to Newton’s law of gravitation in the first Post-Newtonian limit (i.e. expanding
Γi00 to terms of c−2).
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In numerical ephemerides of solar system bodies, the independent variable is typically
Dynamical Barycentric Time (TDB), which is a scaled version of Barycentric Coordinate
Time (TCB) and not a coordinate time itself. TCB is the coordinate time of a frame
centered on the Solar system barycenter, omitting the influence of all gravitating bodies.
Detailed discussion of the influences of the transformation between the two various
time scales is given by Brumberg and Kopejkin (1990); Klioner (2008). Recent INPOP
ephemerides (Fienga et al., 2009) have been published with both TCB and TDB as
independent variable, as well as associated TCG-TCB time ephemerides (where TCG is
the Geocentric Coordinate Time). In the remainder of this paper, we will assume that
the independent variable t is the coordinate time TCB.

2.3 Proper time dynamics

Eq. (4) describes the evolution of the four-velocity of an observer, with the first equation
(µ = 0) describing the evolution of the time component and the other three equations
(µ = 1, 2, 3) describing the translational dynamics. The norm of the four-velocity is
constant by definition, e.g. (Misner et al., 1973), a condition that can be expressed as
the following condition on the proper time rate:

dτ

dt
=

√
−gµν

ẋµẋν

c2
(7)

The post-Newtonian expansion for solar system situations of this equation is given ex-
plicitly by e.g. Soffel et al. (2003). Here, we will not restrict ourselves to a specific
metric, keeping our formulation as general as possible. However, since our development
is in the framework of solar system experiments, we do expand Eq. (7) using the metric
perturbation in Eq. (1), obtaining the following:

dτ

dt
=

√
1− v2

c2
− hµν

ẋµẋν

c2
= 1 +O(c−2) (8)

Since the leading-order difference between proper time rate and coordinate time rate is
at the c−2 level, we will propagate the proper time difference ∆τ :

∆τ = τ − t (9)

To evaluate the derivative w.r.t. t of Eq. (9) using Eq. (8), we expand it using a Taylor-
series, thereby canceling the terms of O(1), preventing rounding errors from limiting
the precision of our results. The order of this expansion may be chosen such that the
error that it introduces is below numerical precision, ensuring that it does not influence
numerical results. For a first order expansion:

d∆τ

dt
= −1

2

(
v2

c2
+ hµν

ẋµẋν

c2

)
(10)

By numerically integrating Eqs. (6) and (10), we obtain a numerical solution for the
space-time behaviour of a given observer. This is equivalent to the approach taken in
generation of the INPOP ephemerides (Fienga et al., 2009).
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2.4 Time-transfer observable

To include time dynamics in our estimation procedure, we require measurements of
the relative proper time rates of separated clocks. Observations of the proper time
difference between two observers may be realized by time transfer. In this section, we
summarize the models we use for simulating time-transfer observables, with extensive
details provided by e.g. (Klioner, 1992; Petit and Wolf, 1994; Blanchet et al., 2001).

We consider two clocks between which time transfer is performed by means of elec-
tromagnetic signal transmission, such as a laser pulse. The signal is transmitted by the
transmitter (station A) at the proper time τ (A)(t1) at coordinate time t1 and received
by the receiver (station B) at its proper time τ (B)(t2), at coordinate time t2 (Blanchet

et al., 2001). In the following, we shall denote τ (x)(ti) as τ
(x)
i . The time-transfer ob-

servable hτ is then the difference between the two proper times, e.g., (Duchayne et al.,
2009):

h(1)
τ = τ

(B)
2 − τ (A)

1 (11)

The proper time rate, given by Eq. (7), will differ between the observers A and B,

causing variability of the observable h
(1)
τ beyond that caused by the translational (and

rotational) dynamics of the receiver and transmitter that is observed in the one-way
range observable.

For conventional range (rate) observables, the observation is referenced to the coor-
dinate time at either the receiver or the transmitter (Moyer, 2000). However, since the
information contained in the conversions from proper time to coordinate time is to be

included in the analysis, we change this approach to reference the observation h
(1)
τ to one

of the proper times, not the coordinate times, (Hees et al., 2012). Consequently, when

modelling the h
(1)
τ observable, we reproduce τ

(B)
2 from a fixed τ

(A)
1 or vice versa. Our

derivation here will show the case where the transmission proper time τ
(A)
1 is fixed. How-

ever, due to the symmetry of the governing equations, the inverse result (i.e., keeping
reception proper time fixed) may be obtained equivalently.

To model the time-transfer observable, we require three steps. First, we convert
the transmission proper time to transmission coordinate time, using the result of the
(numerical) integration of Eq. (7) for ∆τA. Second, models for the positions of the
transmitter and receiver (denoted xA and xB , respectively) are used to calculate the
(coordinate) light time T21 = t2 − t1 between the two as follows:

T21(t1) =
|xB(t1 + T21)− xA(t1)|

c
+ ∆T21 (t1, t2,x1,x2) (12)

where the ∆T21 term denotes light time corrections due to atmospheric and relativistic
effects (Seeber, 2003; Moyer, 2000). Eq. (12) is implicit, requiring an iterative solution
strategy (Moyer, 2000). To complete the time-transfer observable, we can calculate the
reception proper time from the reception coordinate time, using the integration result
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of Eq. (7) for ∆τB . Summarizing, the time-transfer observable is modelled by:

h(1)
τ (τ

(A)
1 ) = τ

(B)
2 − τ (A)

1 (13)

t1 = t1(τ
(A)
1 ) (14)

t2 = t1 + T21 (t1; xt(t),xr(t)) (15)

τ
(B)
2 = τ

(B)
2 (t2) (16)

The step in Eq. (15) is the relation for a one-way range observable, which is given by

cT21. The observable h
(1)
τ may be related to the one-way light time as:

h(1)
τ = T21(t1(τ

(A)
1 ))−

∫ t1

t0

d∆τ (A)

dt
dt+

∫ t2

t0

d∆τ (B)

dt
dt (17)

so that the integrated value of ∆τ at both the transmitter and receiver influences the
observable.

When using both an up- and downlink one-way range measurement to construct
a two-way observable, for instance using an asynchronous active laser ranging system
(Degnan, 2002; Birnbaum et al., 2010), the influence of relativistic clock effects is sub-
stantially reduced, in the same manner that the influence of clock noise at both link ends
is substantially reduced (Dirkx et al., 2015a). The downlink of a two-way measurement
from the space segment to the ground station consists of a signal transmitted by the
space segment at coordinate time t3, where t3 = t2 + δt, with δt typically at most on the
order of seconds. This signal is then received by the ground station at coordinate time
t4. The raw two-way light time, as measured by the ground station, then becomes:

h(2)
τ = τ

(A)
4 − τ (A)

1 (18)

= T21(t1(τ
(A)
1 )) + T43(t3) +

∫ t4

t1

d∆τ (A)

dt
dt+ δt (19)

t3 = t1(τ
(A)
1 ) + T21(t1(τ

(A)
1 )) + δt (20)

Since the retransmission time at the space segment is small, the influence of the proper

time rate of the space segment on h
(2)
τ is almost completely removed. However, the

conversion from h
(2)
τ to the two-way coordinate light time t4 − t1 remains sensitive to

the difference in rates between t and τ (A), but only as integrated over t4 − t1. Com-
paring Eqs. (17) and (19), it is clear that the one-way observable is sensitive to clock
effects accumulated over long periods of time, whereas the two-way observable is largely
insensitive to relativistic clock variations.

Nevertheless, since an (asynchronous) two-way observable simply consists of two one-
way observables, it can be used to exploit relativistic clock effects during the estimation
by including one or both of the one-way time transfer observables separately to the
estimation

Since our purpose in this work is to present a model for the space-time dynamics esti-
mation, we do not provide detailed models for relativistic effects on the ∆T21 component
of time transfer. Such models have been developed for a variety of contexts and applica-
tions e.g. (Klioner, 1992; Kopeikin and Schäfer, 1999; Linet and Teyssandier, 2002), but
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their inclusion does not alter the formulation of our estimation framework. Recently, a
formalism of Time Transfer Function (TTF) models for relativistic influence on electro-
magnetic signal propagation (including light time corrections) has been developed (Le
Poncin-Lafitte et al., 2004; Teyssandier and Le Poncin-Lafitte, 2008) and applied by e.g.
Hees et al. (2012), based on the post-Minkowskian expansion of Synge’s world function.
This approach does not require the integration of the null geodesic equation and can be
used to set up a framework for the relativistic influence on light time, provided that a
global post-Minkowskian metric to sufficient order can be defined.

3 Coupled space-time estimation

In this section, we present our proposed coupled space-time dynamics estimation pro-
cedure, and show how to apply it to the analysis of time-transfer data. We reiterate
that this approach may become important for near-future situations where the same
data are used for the estimation of the translational dynamics and the characteriza-
tion of relativistic clock effects. We start by briefly outlining the problem in Section
3.1. Subsequently, we derive variational equations for the coupled estimation in Section
3.2 and the complete partial derivatives of the time transfer observables in Section 3.3.
For reference purposes, we describe the details of orbit determination and parameter
estimation using a least squares algorithm in Appendix C.

3.1 Proper time estimation

To estimate the orbit of a celestial body or artificial satellite in a dynamical manner
from tracking data, the initial state of that body is adjusted so as to result in a min-
imum (weighted) residual w.r.t. the measurements (e.g. Montenbruck and Gill, 2000).
Additionally, parameters that influence the force models and/or observation models may
be concurrently estimated.

By extending this approach to the coupled space-time dynamics case, we include the
estimation of the initial proper time difference(s) of one or more observers w.r.t. some
reference (coordinate) time ∆τ , see Eq. (9). When processing time-transfer observables
(see Eq. (11)), proper time rates of both the transmitter and receiver are required.

By using the proper time differential equation Eq. (7), an initial proper time differ-
ence ∆τ0 = τ(t0)− t0 can be mapped to a time difference at any later epoch. The value
of ∆τ0 can then be estimated by minimizing the residuals between the modelled and
measured value of the proper time difference through the variation of ∆τ0, as well as
any other parameters that influence the solution of ∆τ(t) in the same manner as is done
in translational orbit determination, e.g. (Montenbruck and Gill, 2000). By doing so,
the conventional data processing of space geodesy techniques is extended to the field of
relativistic geodesy, since the influence of gravity fields on the space-time trajectory of an
observer is now considered. Crucially, the adjustment of the time behaviour estimation
is done concurrently with that of the translational state behaviour, allowing correlations
between the two to be identified and preventing a misidentification of a signal of time
behaviour as translational behaviour, or vice versa.
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3.2 Relativistic variational equations

We derive a set of equations to dynamically estimate the initial state of N bodies and
the proper time differences of M observers. We denote the translational state of a single
body n as yn = (xn; ẋn), with xn the current position of body n, and ẋn its velocity).
The concatenated vector of all states is denoted as Y, so that Y = (y1; ...; yN ). The con-
catenated vector of all proper time differences is denoted T, so that T = (∆τ1; ...; ∆τM ).
Finally, we construct our full state vector X as follows:

X =

(
Y
T

)
=



y1

...
yN
τ1
...
τM


(21)

Our goal in this section is to derive equations for determining the (linearized) change in
X, due to a change in its initial value X(t0), denoted X0, and a change in the model
parameter vector p. This is in contrast to the typical approach to orbit determination
and time transfer, where the adjustment of Y0 to the data is performed using an a priori
T0.

In orbit determination, these changes are encoded in the state transition matrix
Φ(t; t0) and sensitivity matrix S(t) (Montenbruck and Gill, 2000). Extending these
matrices to our case using Eq. (21) as a state vector, we obtain the following.

Φ(t; t0) =
∂X(t)

∂X0
=

(
∂Y(t)
∂Y0

∂Y(t)
∂T0

∂T(t)
∂Y0

∂T(t)
∂T0

)
(22)

S(t) =
∂X(t)

∂p
=

(
∂Y(t)
∂p
∂T(t)
∂p

)
(23)

These partial derivatives denote the change in the state that would occur if an initial
state or model parameter is changed.

The first-order differential equation for the case of the estimation of the position and
velocity of a single body is given by (Montenbruck and Gill, 2000). Here, we generalize
their result to the estimation of N body states and M observer proper times. This
results in the following formulation for the variational equations:

d

dt
(Φ (t; t0) , S (t)) =

(
∂Ẏ(t)
∂Y

∂Ẏ(t)
∂T

∂Ṫ(t)
∂Y

∂Ṫ(t)
∂T

)
(Φ (t, t0) , S (t)) + ...

...+

(
06N×(6N+M)

∂Ẏ(t)
∂p

0M×(6N+M)
∂ ˙T(t)
∂p

)
(24)

= A(X, Ẋ, t) (Φ (t, t0) , S (t)) +B(X, Ẋ, t) (25)

Φ(t0, t0) = 1(6N+M)×(6N+M) (26)

S(t0) = 0(6N+M)×NP (27)
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where NP denotes the length of the estimated parameter vector p.
There is no explicit dependency of Ẏ on any of the observer’s specific proper times

T, only on the coordinate time t. Similarly, the metric in the global coordinates does not
depend explicitly on the proper time of a specific observer (Appendix A), so that there
is also no explicit dependency of Ṫ on T. As a result the matrix A(X, Ẋ, t) reduces to:

A(X, Ẋ, t) =

(
∂Ẏ(t)
∂Y 0
∂Ṫ(t)
∂Y 0

)
(28)

An adjustment in T0 will only result in a change in T(t), not of Y(t). However, an
adjustment of Y0 influences both Y(t) and T(t), introducing the space-time-dynamics
coupling into the estimation.

The expression for the top-left matrix block of A(X, Ẋ, t), i.e. the position and
velocity derivatives w.r.t. the positions and velocities, is composed of the blocks of the
state derivative of body m w.r.t. the state of body n as follows:

∂Ẏm(t)

∂Yn(t)
=

(
03×3 δmn13×3
∂ẍm
∂xn

∂ẍm
∂ẋn

)
(29)

To evaluate the components of the variational equations, the partial derivatives of
the accelerations and proper time rate w.r.t. the full parameter vector q(= (X0; p))
must be evaluated. For the equations of motion in the form of Eq. (5), this results in
the following general formulation:

∂ẍi

∂q
= −

∂Γiαβ
∂q

ẋαẋβ +
1

c

∂Γ0
αβ

∂q
ẋαẋβ ẋi − 2Γiαβ

∂ẋα

∂q
ẋβ + ...

...+
1

c
Γ0
αβ

(
ẋαẋβ

∂ẋi

∂q
+ 2

∂ẋα

∂q
ẋβ ẋi

)
(30)

where the symmetry of the Christoffel symbols in the indices αβ has been exploited.
Note that since x0 = ct, ẋ0 = c and ẍ0 = 0 (except in more exotic cases where variations
of the vacuum speed of light c are allowed).

Estimation of the initial proper time difference requires the calculation of the proper
time rate dτ/dt w.r.t. position, velocity and model parameter vector. The partial
derivatives of τ̇ w.r.t. an arbitrary parameter q are derived from Eq. (7) to be:

∂τ̇

∂q
=

1

2τ̇

(
∂gµν
∂q

ẋµẋν + 2gµν ẋ
µ ∂ẋ

µ

∂q

)
(31)

The partial derivatives of the Christoffel symbols, required for the evaluation of
Eq. (30), may be obtained numerically or analytically, either directly or from partial
derivatives of the metric tensor (perturbations) from Eq. (3) through:

∂Γµαβ
∂q

=
1

2

(
−∂h

µν

∂q
(hνα,β + hνβ,α − hαβ,ν) + ...

...+ gµν
(
∂hνα,β
∂q

+
∂hνβ,α
∂q

− ∂hαβ,ν
∂q

))
(32)
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so that the variational equations may be evaluated analytically or numerically from only
(first and second) derivatives of the metric (perturbation), in addition to the current
state Y(t).

3.3 Time-transfer observable partials

To incorporate the time-transfer observables into the orbit determination, we require the

partial derivatives of the h
(1)
τ observables, given in Eq. (11), w.r.t. the current proper

times vector T, the current state vector X and the model parameters p. Denoting (an
arbitrary combination of entries of) these vectors by q, we require the following:

∂h
(1)
τ

∂q
=
∂τ

(B)
2

∂q
− ∂τ

(A)
1

∂q
(33)

As discussed in Section 2.4, we reference the time transfer to either the transmission or
reception proper time, fixing its value in our model and using it to reproduce the second
value and set up our time-transfer observable. Here, we will again show the case where

we reference the observation to the transmission time, so that h
(1)
τ = h

(1)
τ (τ

(A)
1 ), with

a fixed τ
(A)
1 , making the second term on the right-hand side of Eq. (33) equal to zero.

The first term on the right-hand side we derive to be:

∂τ
(B)
2

∂q
= τ̇

(B)
2

∂t2
∂q

+
∂τ

(B)
2

∂q
|t2=const (34)

= τ̇
(B)
2

∂t2
∂q

+
∂∆τ

(B)
2

∂q
(35)

where the first term on the right-hand side represents the change in reception proper
time due to a change in reception coordinate time, and the second term represents the
inherent change in the receiver proper time, i.e. the direct influence on the integrated
result of Eq. (10). The reception coordinate time partial is expanded as follows from
Eq. (15):

∂t2
∂q

=
∂t1
∂q

+
∂T21

∂q
+
∂T21

∂t

∂t1
∂q

(36)

which is equivalent to the one-way range partial as given by e.g. Moyer (2000). The
partial derivative of the transmission coordinate time ti is obtained from Eq. (9), since

τ
(A)
1 is kept fixed:

∂t1
∂q

= −∂∆τ
(A)
1

∂q
(37)

Combining these results yields:

∂h
(1)
τ

∂q
|
τ
(A)
1 =const.

=
∂∆τ

(B)
2

∂q
− ∂∆τ

(A)
1

∂q

(
1 + Ṫ21

)
τ̇

(B)
2 +

∂T21

∂q
τ̇

(B)
2 (38)
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The final term of this equation, ∂T21

∂q , is the one-way range partial, as expanded explicitly

by e.g. Moyer (2000). The first two terms on the right-hand side are the (scaled) terms
of the extended state transition matrix, as obtained by (numerical) integration of Eq.
(24). It is these terms which our derivation has shown need to be added to the estimation
to exploit the coupling between the space and time dynamics in the estimation process.

As a result of the formulation of Eq. (38) and the independence of Ẋ on T, the
partial derivatives of the observations w.r.t. the initial proper times behave largely as
those of range biases. Deviations from unity of the partial derivatives ∂h

∂T instead follow

from the (1 + Ṫ21)τ̇r term in Eq. (38).
Eq. (38) may be used to determine the direct part of the sensitivity to p or the

sensitivity to the current space-time state Y. To compute the total sensitivity to Y0

and p, the state transition and sensitivity matrices that are obtained by (numerical)
integration of Eq. (24) are used and the full partial derivatives of the observable w.r.t.
the estimated quantities are calculated from:

∂h(t)

∂X0
=

∂h

∂X
Φ(t, t0) (39)

∂h(t)

∂p
=
∂h

∂p
|X=const. +

∂h

∂X
S(t) (40)

These partial derivatives are calculated for each of the observations, from which the
least squares parameter adjustment can be performed, as discussed in more detail in
Appendix C.

4 Test cases: Mars and Mercury lander

We illustrate the methodology we have described in Section 3 with numerical simulations
of Mars and Mercury lander missions performing laser ranging and time transfer to
Earth. Our simulations here are not an in-depth analysis of the estimation performance,
as is performed by (e.g. Turyshev et al., 2010; Hees et al., 2012). They are included
here to show the potential influence of the relativistic clock effects on the estimation
procedure for representative planetary lander concepts using planetary laser ranging.
We analyze both Mars and Mercury lander missions to assess the influence of the depth
of the space segment inside the gravity well of the Sun. Simulations of tracking data to
planetary landers have been performed for a wide variety of mission and tracking data
types, e.g. (Turyshev et al., 2010; Dehant et al., 2011; Dirkx et al., 2014a). Also, models
and analyses of time transfer at interplanetary distances have been performed by e.g.
(Degnan, 2002; Nelson, 2011; Pan and Xie, 2015). However, none of these simulations
have included the coupled translational dynamics and relativistic clock effects. It is the
goal of the present paper to present the influence of this coupling. For an Earth-orbiting
mission, though, a sensitivity analysis of this coupling was performed by (Duchayne
et al., 2009), using an approach different from the one derived here.

In Section 4.1 we discuss the settings of our simulations. Subsequently, we present a
covariance analysis of the performance of both lander missions in Section 4.2, considering
both the cases with and without the space-time dynamics coupling. Finally, we compare
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the inclusion of proper time in the estimation with the influence of a priori and iterative
a posteriori clock (re)calibration in Section 4.3.

4.1 Simulation settings

The settings for our simulation are the following. During one year of operations, we
simulate one 30-minute arc of tracking data per day from four Earth-based International
Laser Ranging Service (ILRS) stations (Pearlman et al., 2002) each. From this simulated
data, we estimate the following parameters using a least-squares approach (Appendix
C):

• PPN parameters β and γ. Nominal values equal to 1 in general relativity.

• Solar J2 gravity field coefficient J2� (quadrupole moment). Nominal value ≈
2.2 · 10−7 (Mecheri et al., 2004).

• Mars/Mercury initial translational state yM,0, nominal values taken from DE430
ephemeris (Folkner et al., 2014).

• Initial proper time difference between space segment and each Earth station i,
denoted ∆τSC(t0)−∆τ (E,i)(t0).

• Mars/Mercury-fixed lander position r
(M)
L (both placed equatorially).

The first three sets of parameters (β, γ, J2� and yM,0) influence both the translational
and the time dynamics of the observers.

To decorrelate the PPN parameter γ from the other parameters, its influence on the
light time is crucial. Although we do not derive relativistic light-time corrections directly
from the metric (see Section 2.4), we include the Sun’s first-order effect (in harmonic
coordinates) as (Moyer, 2000):

∆T21 =
µS(γ + 1)

c3
ln

(
rA + rB +RAB
rA + rB −RAB

)
(41)

The influence of the solar J2 on light time is very small (Minazzoli and Chauvineau,
2011), owing to the very small solar flattening and we do not include it in the light time
calculations. Similarly, since β enters the light time correction at second post-Newtonian
order (Richter and Matzner, 1983), we omit its influence on the light time.

In our simulations, we use simulated data of an uplink one-way time-transfer ob-
servable only. When exploiting relativistic clock effects over a long duration from a
time-series of two-way observables, the inclusion of relativistic clock effects into the esti-
mation would be done by considering separately one or both of the one-way observable
that make up the two-way measurement (Section 2.4).

We do not estimate clock parameters, as is done by Dirkx et al. (2015a), as we assume
that the systems are equipped with highly accurate clocks for which the stochastic clock
noise is minimal. Nevertheless, it should be understood that the detection of especially
long-periodic signals requires highly stable clocks. To be able to observe a clock effect

which manifests itself as a 1 cm change in c · h(1)
τ over a period of 1 day requires an
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Allan deviation of about 4 · 10−16 over such an integration time, which is about a factor
of 2 better than that of the proposed deep space atomic clock (DSAC) (Prestage and
Weaver, 2007). For a similar 1-cm change over a period of 1 year, an Allan deviation
of the clock of 10−18 over a similar period is required, which may be facilitated in the
future by optical clocks e.g., (Bloom et al., 2014).

Summarizing, our simulations are performed as follows:

• The translational and time dynamics for each observer is concurrently numerically
integrated using Eqs. (5) and (10), with the full metric and associated Christoffel
symbols given in Appendix A. We include the point-mass potential of the Earth
and Mars/Mercury and the Sun’s gravity field including its J2 term. The first
partial derivatives of the metric, which are required for evaluating Eqs. (3), are
obtained through the partial derivatives of the scalar and vector potentials given
in Appendix B.

• From the simulated space-time dynamics, we use Eq. (11) to simulate the observ-
ables between the space segment and a number of Earth-based ground stations.
We simulate range measurements from four ILRS ground stations to a lander over
a period of 4 years. In total we use ≈ 7.5·104 range measurements from each
ground station, with these observations constrained by a 15◦ minimum elevation
angle and a 5◦ Sun avoidance angle.

• We numerically integrate the state transition and sensitivity matrices using Eq.
(24) over the same period as the space-time dynamics. We obtain the partial
derivatives of the Christoffel symbols, which are required for evaluating Eqs. (32),
by means of numerical differentiation.

• Using Eq. (38), we calculate the direct contribution of the partial derivatives
of the observations w.r.t. the estimated parameters. Subsequently, we use the
numerically integrated Φ(t, t0) and S(t) matrices to calculate the complete partial
derivative of each observation w.r.t. each of the estimated parameters with Eqs.
(39) and (40).

• From the partial derivatives of the observations, we set up the information matrix
H, from which we calculate the covariance matrix (see Appendix C).

For the Mercury lander, we evaluate two different mission lengths. Since Mercury’s
rotation is in a 3:2 resonance with its orbit, a Mercury lander experiences periods of
complete darkness and intense sunlight. Therefore, a four-year Mercury lander mission
is highly challenging with current technological and budgetary constraints. A 30-day
mission, however, would be easier to realize, as it is possible to keep the lander under the
same illumination conditions for this amount of time while retaining constant visibility
to the Earth. Nevertheless, the depth of Mercury in the Sun’s gravity well makes
it an attractive test case for exploiting relativistic effects. Since our primary goal in
this section is to get a broad overview of the potential effect of space-time dynamics
coupling on range data inversion, we will analyze both a 30-day and a 4-year mission,
acknowledging the technological difficulties associated with a 4-year mission.
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4.2 Covariance analysis results

We perform a covariance analysis to investigate the effect of the addition of the ∆τ
terms in Eq. (38), as well as the addition of the estimation of ∆τSC(t0)−∆τE,i(t0) on
the formal error and correlation statistics (Appendix C). We present the results of the
covariance analyses of the Mars and Mercury lander estimations with the settings defined
in Section 4.1. Implicitly, we assume that our truth and estimation models are equal,
and that our observations have errors that are identically and independently distributed
with a zero-mean Gaussian distribution, omitting the influence of time-correlated (clock)
noise on the measurements.

We compare the estimation where we take into account the proper times estima-
tion with the estimation where we use the classical (no initial proper time estimation)
approach, but add the estimation of range biases. As discussed in Section 3.3, the be-
haviour of the observation partials w.r.t. the biases will be similar to that of the initial
proper times. The estimation of range biases is typically done in he analysis of satellite
laser ranging (SLR) data analysis, although usually over shorter arcs. In our analysis
where we include the estimation of the proper time differences, any existing range biases
will be absorbed by the proper time difference estimation, so we do not explicitly include
the range bias estimation in those simulations. Note that this will perturb the estimated
values of the initial proper time values from their true values. However, since none of
the estimated parameters is directly sensitive to this, it will not weaken the parameter
estimation.

The formal error that we obtain will be more optimistic than the true error that will
be obtained from real data, e.g. (Marty et al., 2009; Konopliv et al., 2011; Dirkx et al.,
2014a). However, by comparing the formal error with and without the contribution of
the space-time coupling terms, we identify the sensitivity of the solution to the presence
of these terms. Furthermore, our covariance analysis will produce the change in the
correlations between the estimation of the parameters due to the inclusion of the space-
time coupling. A realistic assessment of the correlation between estimated parameters is
crucial when interpreting the results of an estimation from tracking data, as it quantifies
how well parameters can be determined in an independent manner. This issue has
been crucial in interpreting the physical significance of post-fit residuals in planetary
ephemerides (e.g., Iorio, 2012b; Verma et al., 2014), where the signature of the influence
of the Sun’s J2 and angular momentum are strongly correlated with, for instance, the
signature of alternative theories of gravity (Deng and Xie, 2015).

The changes in the entries of this correlation matrix between the time transfer simu-
lations and range simulations will be presented relative to one minus the absolute value
of the original (range-only) correlation matrix Cr, so:

∆Cij =
|(Ct)ij | − |(Cr)ij |

1− |(Cr)ij |
) (42)

where we implicitly set ∆Cii to 0 and Ct denotes the correlation matrix of the time
transfer simulations that include the proper time difference estimation. In this compar-
ison criterion, we divide by 1− |(Cr)ij | instead of |(Cr)ij |, since it is not only important
to ascertain the absolute changes in the correlation values, but especially its influence
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Table 1: Change in formal errors (in %) between estimation from range data to landers with
estimated initial proper time difference and estimated bias.

Mars Mercury Mercury
(4-years) (1 month) (4-years)

r0 -0.0138 -3.51 2.56
v0 -0.158 -2.31 6.31
γ 0.0480 2.93 -9.65
β -0.236 -3.68 15.3
J2,� -0.255 -3.29 9.93
rL 0.0125 -1.75 3.27

in the ability of the estimation to decouple two parameters. That is, a change in cor-
relation of 0.01 is crucial if it changes from 0.99 to 1.0 (or vice versa) since it makes
the difference between being completely unable and slightly able to decouple the two
parameters. Conversely, it is if it changes from 0 to 0.01 (or vice versa) largely irrele-
vant since the parameters remain almost completely decoupled. Therefore, the practical
change in information on the estimation of the two parameters is much greater in the
first case (0.99 to 1.0) than in the second case (0 to 0.01).

The formal error differences of the estimated parameters with and without the use of
the initial proper time difference estimation are shown in Table 1. For the Mars lander, it
can clearly be seen that none of the formal errors are significantly affected by the addition
of the initial proper time difference estimation, with all relative differences smaller than
1%. The relative difference between (the modulus of) the correlation matrices of the
classical and relativistic estimation is shown in Fig. 1. For the Mars simulation, the
difference between the correlation matrices of the two estimations is marginal, as shown
in Fig. 7.1(a), with differences around and well below the 1% level. Although these
differences are larger than for the formal error, it still signifies the extremely limited
influence of the addition of the relativistic clock effects on the estimation.

The difference in formal error statistics for both the short- and long-duration Mercury
lander mission is also given in Table 1. Even for the short Mercury mission, the influence
of the space-time dynamics coupling on the formal error statistics is more than an order
of magnitude larger than for the Mars lander. For the 4-year Mercury mission, the formal
error of β changes by 15 %. The formal estimation errors of γ and J2,� both change by
about 10 %. These values show that also for a long-duration mission relatively deep in the
gravity well of the Sun, the differences in formal error will be limited. Nevertheless, the
observed differences at the 10 % level may warrant the use of the combined initial space-
time dynamics estimation, but depend on the degree and manner in which non-Gaussian
observation uncertainties and model errors propagate into the estimation error budget.
In Section 4.3, we will investigate how excluding the initial proper time difference from
the estimation influences the estimation procedure, when using one-way data.

We show the difference in the correlation matrices for the Mercury mission, as quan-
tified by ∆C from Eq. (42) in Figs. 7.1(b) and 7.1(c) for the 30-day and 4-year Mercury
mission, respectively. As can be seen when comparing these figures to Table 1, the max-
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Figure 1: Relative difference ∆C between correlation matrices (omitting bias entries) of es-
timation incorporating initial proper time estimation and bias-only estimation, defined in Eq.
(42) a) 4-year Mars mission b) 1-month Mercury mission c) 4-year Mercury mission.

imum values of ∆C are substantially larger than the changes in the formal error (as
was the case for the Mars mission simulations), by a factor of about three for both the
30-day and 4-year mission. This difference is due to the 1 − (Cr)ij term in Eq. (42),
which causes larger relative changes for correlations which are closer to 1 (or -1). For
the 4-year mission, relatively large relative changes of up to 0.5 and down to -0.25 are
observed, where positive values can be seen from Eq. (42) to signify cases where the
time transfer simulations have larger absolute correlations and negative values signify
those of the classical range simulations, without proper time estimation, are larger. The
largest relative change in correlation occurs between β and J2,� for the 4-year mission,
where we observe a change in correlation coefficient from -0.74 to -0.87. This shows
that the actual correlation between the signals of these two parameters is significantly
larger than that which is obtained from the classical approach (without proper time es-
timation). This shows that, if the space-time dynamics coupling is omitted in the data
analysis process, the correlation between the two parameters that one obtains from the
estimation will be substantially more optimistic than the true correlation between the
signals from these parameters.

The differences between ∂h
(1)
τ /∂q and ∂T21/∂q are at a similar level as the differences

in the formal errors shown in Table 1, indicating that the addition of the time transfer
to the one-way range observable changes the sensitivity to the estimation by about 0.1
and 10 % for the 4-year Mars and Mercury landers, respectively. This does not imply
that the relativistic clock effects are too weak to be of use for parameter estimation.
It instead shows that when using the same data (laser range in these simulations) for
orbit determination and time transfer, the resulting orbital accuracy will put stronger
constraints on the parameters of interest than the relativistic clock effects. However, this
may not be the case for missions where time transfer is only sporadically performed, and
orbit determination is also performed using other data types such as Doppler tracking. In
these cases, the time-transfer observable may be relatively more accurate than the orbital
accuracy, potentially increasing the relative strength of the time-transfer observables in
the estimation. Also, highly accurate clocks carried by orbiting spacecraft can be used for
long-arc comparison of ground- and space-based clocks, whereas their orbits are typically
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estimated over relatively short arcs (hours to days) to prevent the accumulation of (non-
conservative) force model errors. As such, the longer duration over which the proper time
behaviour could potentially be estimated (depending on the clock’s stability), compared
to the duration over which the state behaviour can be estimated, may increase the
relative importance of the inclusion of the proper time into the estimation, as it could
possibly be used to better decorrelate long-periodic and secular effects.

4.3 Influence of a priori and a posteriori calibration

Having analyzed the influence of the space-time dynamics coupling on the estimation’s
formal errors in Section 4.2, we now investigate by direct numerical simulation the
influence of omitting this coupling and performing a priori or iterative a posteriori
clock calibration. To do so, we perform the estimation using the simulation settings
defined in Section 4.1 and the estimation algorithm given in Appendix C. We estimate
a range bias in addition to the physical parameters listed in Section 4.1, as discussed
in Section 4.2. We perturb the parameters at their current level of uncertainty and use
an iterative least-squares method to estimate the parameters. We perform three sets of
simulations for both the Mars and Mercury mission:

1. Estimation in which the true t(τ) conversion for each observer is known perfectly.

2. Estimation in which a t(τ) conversion is recomputed following each iteration of
the estimation (a posteriori clock calibration).

3. Estimation in which a t(τ) conversion based upon the a priori parameter estimate
is used.

From these simulations, we will be able to determine the parameter estimation error
that is made due to mismodelled relativistic clock effects, when using the typical orbit
determination method.

We find no difference in our results for the 1-month Mercury lander mission between
the three cases, due to the fact that the estimation errors of even the ideal case are
larger than the initial perturbation in the parameter set. That is, for the short Mercury
mission, the tracking data inversion does not result in an improved parameter estimation
compared to the a priori uncertainty.

For both the Mars and Mercury 4-year tracking simulations, the resulting uncertain-
ties for 100 simulations are shown in Figs. 2 and 3, respectively. The error clouds of
both initial position of Mars/Mercury and the parameters γ, β and J2,� are shown. In
these figures, the projections of these clouds onto the three planes are also shown. We
note that our results for γ for the 4-year Mars simulation are similar to the estimation
results obtained by Turyshev et al. (2010) (error of 1.4 ·10−7 after 3 years; 7.9 ·10−8 after
6 years), who perform simulations of laser ranging to Phobos. Our results for β and
J2 are about an order of magnitude more optimistic, most likely due to our smaller set
of estimated parameters and resultantly reduced correlations. However, our goal here
is not to provide highly accurate absolute estimates for attainable estimation accuracy,
but to compare different data analysis techniques.
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Figure 2: Estimation errors obtained from numerical simulations for 4-year Mars mission.
Panels show estimation error clouds for ideal t(τ) conversion, iterated t(τ) conversion and
unupdated a priori t(τ) conversion. Projections of estimations errors onto the three subplanes
are also shown, coloured by error in J2,� (top) and initial z-position (bottom).
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Figure 3: Estimation errors obtained from numerical simulations for 4-year Mercury mission.
Panels show estimation error clouds for ideal t(τ) conversion, iterated t(τ) conversion and
unupdated a priori t(τ) conversion. Projections of estimations errors onto the three subplanes
are also shown, coloured by error in J2,� (top) and initial z-position (bottom).
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We observe orders of magnitude differences between cases 2 and case 3. That is,
the errors in the a priori t(τ) conversion are sufficiently large to drive the estimation
to erroneous results. This influence was not observed in the previous section, where the
truth and estimation model were assumed to be equal. This indicates that the use of a
priori time ephemerides, for instance those of (Irwin and Fukushima, 1999; Fienga et al.,
2009), for the data analysis of planetary laser ranging missions can result in substantial
degradations of the estimation quality. In general, this will be true if the a priori orbital
and parameter uncertainty is much greater than the range measurement uncertainty. It
must be noted, however, that the simulations shown here are performed using purely
Gaussian noise on the observations. As a result, the estimation accuracy shown here
for cases 1 and 2 is substantially better than will be obtainable from real tracking data,
which will include time-correlated and non-Gaussian noise. Differences between true
and formal errors for interplanetary (radiometric) tracking data inversion are typically
around a factor 5-10 (e.g. Marty et al., 2009; Konopliv et al., 2011).

The difference between cases 1 and 2 is insignificant for the 4-year Mars mission.
This is consistent with the fact that we found formal error differences at the 0.1 %
level in Section 4.2. For the 4-year Mercury mission, we find small but statistically
significant differences between the error distributions of cases 1 and 2, with around 10 %
degradation in estimation error for case 2, compared to case 1. Again, this is consistent
with the results presented in the previous section, which showed differences in formal
errors of around 5−10 % for simulations with and without the inclusion of the coupling.

5 Conclusions

We have successfully derived an estimation framework with which the influence of rel-
ativistic clock effects on (interplanetary) range and time transfer data analysis can be
included on an equal footing with relativistic influence on translational dynamics, with
the main theoretical results of our development being Eqs. (24) and (38), which are
extended versions of the classical equations used in orbit determination. This approach
allows for consistent data processing of high accuracy one-way range data that is ex-
pected from future interplanetary laser ranging missions. Similarly, it will allow for
a robust analysis of combined two-way range and time transfer data, creating a solid
framework to simultaneously extract physical signals from time and space dynamics.

We have simulated data to a Mars and Mercury lander and used the simulated data
for a covariance analysis, assessing the possibilities to use these data for the determi-
nation of γ, β and J2�. We analyze the use of both range measurements (including
the estimation of range biases) and time transfer (including the estimation of an initial
proper time difference). The inclusion of the estimation of the proper time difference
between Earth stations and a Mars lander has a negligible influence on both the correla-
tions between the estimated parameters and their formal errors, with differences in the
formal errors of around 0.1 % observed. For a Mercury lander this formal error difference
rises to 1% for a 1-month mission and 10 % for a 4-year mission. However, we find a
significantly greater relevant degree of change in the correlation matrix (as quantified
by ∆C) than for the formal errors, which can be of importance for the interpretation
of the robustness of the results, as well as any statistical analysis of postfit residuals.
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These results indicate that the influence of our estimated parameter set on the trans-
lational dynamics is (much) stronger than on the proper time rate. For spacecraft state
estimation, where the translational state is typically determined over short arcs, a highly
stable clock may allow substantially modified parameter estimation quality.

We have shown by direct numerical simulation that using an a priori time ephemeris
with sufficiently low accuracy, can result in orders of magnitude degradation of the true
error distribution compared to the formal errors. Recomputing the proper-to-coordinate
time conversion for each observer after each iteration of the least-squares estimation
results in a degradation similar to the changes observed in the formal errors.
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Appendix A Solar system metric

We use the post-Newtonian solar system metric in harmonic gauge given by Soffel et al.
(2003), parametrized by the PPN parameters γ and β, as given by e.g. (Minazzoli and
Chauvineau, 2009):

h00(x, t) = 2
w(x, t)

c2
− 2β

w(x, t)2

c4
+O(c−5) (43)

h0i(x, t) = − (γ + 1)
wi(x, t)

c3
+O(c−4) (44)

hij(x, t) = 2γ
w(x, t)

c2
δij +O(c−3) (45)

where w and wi denote the scalar and vector potentials. These potentials are calculated
from (Soffel et al., 2003):

w(x, t) =
∑
A

wA(x, t) (46)

wA(x, t) = (wA)0 (x, t) + ∆A(x, t)/c2 (47)

∆A(x, t) =
µA
rA

(
−2v2

A + w̄A +
(vA · rA)2

2r2
A

+
aA · rA

2

)
(48)

wi(x, t) =
∑
A

wiA(x, t) (49)

wiA(x, t) =
G (SA × rA)

i

2r3
A

+ wA(x, t)viA (50)
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where xA, vA, aA, µA denote the barycentric position, velocity and acceleration and
the gravitational parameter, respectively, of body A. The vector rA denotes the vector
from body A to the point x where the metric is evaluated. The external potential w̄A
represents the potential at xA, due to all other bodies. The nominal potential (wA)0

may be approximated by the non-relativistic spherical harmonic gravitational potential
of body A (Soffel et al., 2003), as given by e.g. Montenbruck and Gill (2000):

(wA)0 (x, t) =
µA
rA

∞∑
l=0

l∑
m=0

(
Req,A
rA

)l
· ...

... ·
(
C̄lm cos(mλA) + S̄lm sin(mλA)

)
P̄lm(sin(φA)) (51)

where Req,A denotes the equatorial radius of body A, C̄lm and S̄lm denote the normalized
spherical harmonic coefficients of its gravity field, P̄lm denotes the associated Legendre
polynomial of degree l and order m, and φA and λA denote the body-fixed latitude and
longitude, respectively, at the point where the potential is evaluated.

We note that each term in the equation for ∆A/c
2 contains either v2

S/c
2, rkSa

k
S/c

2,
µA/(c

2r) or smaller terms, where A 6= S and S denotes properties of the Sun. Since
all of these terms are sufficiently small due to the small velocity and acceleration of
the Sun, or the weak mass monopoles of the planets are small and only enter into the
final metric at the second Post-Newtonian order (∆A/c

4), we set ∆A to zero in our
simulations. Additionally, we omit the angular momentum term SA if wiA in Eq. (50),
thereby neglecting the Lense-Thirring effect.

Appendix B Christoffel symbols

Here, we provide direct expressions for the Christoffel symbols of the metric given by
Eqs. (43)-(45). We set ε = 1/c and use general derivation given by Kopeikin et al.
(2011). We deviate from their notation in that ,0 denotes partial differentiation w.r.t.
ct, not t. We note that we have no tems of O(ε) in h0i, no terms of O(ε4) in hij and
that the O(ε2) term in hij is diagonal, which results in the following (where we omit the
(x, t) evaluation point for brevity):

Γ0
00 = −ε2w,0 +O(ε4) (52)

Γ0
0i = −ε2w,i +O(ε3) (53)

Γi00 = −ε2w,i − 2ε3(γ + 1)wi,0 + 2ε4(γ + β)w · w,i +O(ε5) (54)

Γi0k = ε2γδikw,0 − ε3(γ + 1)(wi,k − wk,i) +O(ε4) (55)

Γ0
ik = ε2γδikw,0 + ε3(γ + 1)(wi,k + wk,i) +O(ε4) (56)

Γijk = ε2γ (δijw,k + δikw,j − δjkw,i) +O(ε3) (57)
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The partial derivatives of wi are given explicitly by:

wi,0 =
∑
A

(
wAa

i
A

c
+ wA,0v

i
A

)
(58)

wi,j =
∑
A

wA,jv
i
A (59)

where each element of the term viA,j equals 0 if the observer position is independent of
body A (i.e. if it is not located on body A).

We note that the w,j terms in the above are equal to the Newtonian gravitational
acceleration at position xj due to a gravitational potential w. We calculate the w,0 term
as follows for a point mass:

wA,0 = wA,i
viA
c

(60)

For bodies with mass multipoles, the rotation of these bodies cause the metric to be
non-static even in the case that all bodies have zero translational velocity, since the
rotation of the bodies will cause variability of the potential at a given evaluation point.
For this case, the scalar potential time derivative has the additional term:

∆wA,0 =
1

c

∂wA
∂rA

(R(I/A))(Ṙ(A/I))rA (61)

where rA is evaluated in the global frame I (not corotating with body A). R(B/C)

denotes the rotation matrix from frame C to frame B.

Appendix C Least-Squares Orbit Determination

In this Appendix, we provide a brief overview of batch-least-squares orbit determination
and parameter estimation from space mission tracking data (e.g. Montenbruck and Gill,
2000). Let h denote the set of modelled observations used as input to the estimation
and q the set of parameters that is to be estimated. The design matrix H is then formed
by computing:

H =
∂h

∂q
(62)

Now, let ∆h denote the residual between the modelled and measured values of the
observations h, the correction to the set of estimated parameters, denoted ∆q follows
from:

∆q = K
(
HTW∆h

)
(63)

K =
(
HTWH

)−1
(64)

where W is the weight matrix of the observations, which is typically set as a diagonal
matrix with Wii = σ−2

h,i , where σh,i denotes the uncertainty of observation i. Using the
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parameter correction ∆q, the relevant dynamics is recomputed, from which updated
modelled observation values are recomputed. This iterative process is continued until
some convergence criterion is reached, such as the relative change in observation residual
between subsequent iterations reaching some tolerance ε.

In the above, K denotes the covariance matrix, from which the formal errors σq,i of
the estimated parameters are computed as:

σq,i =
√
Kii (65)

The entries correlation matrix C are then computed from:

Cij =
Kij

σiσj
(66)

The covariance analysis is based on the formal errors and correlations, which denote the
potential sensitivity of the obseravtions to the estimation parameters and the capability
of the estimation to decouple the signatures of the various parameters.
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CHAPTER 8

Synthesis and Discussion

In Chapter 2, we presented the science rationale behind the implementation of Interplan-
etary Laser Ranging (ILR), followed by the current state-of-the-art of SLR technology
in Chapter 3, extrapolating this to near-future implementation of ILR where possible.
Based on the considerations presented there, we analyzed various aspects of the science
return, data analysis strategies, environmental error sources and hardware error sources
in Chapters 4-7. These chapters form the main scientific contributions of the work pre-
sented in this dissertation. In this chapter, we synthesize and discuss the information
in the previous chapters, with the objective of addressing the research goals defined in
Chapter 1.

Our presentation here is split into two sections. First, we present a synthesis of the
various error sources of ILR, addressing uncertainties in the full data processing and
analysis chain, from measurement to interpretation, in Section 8.1. Subsequently, we
use the synthesized estimate of a near-future ILR mission’s error budget to compare the
capabilities of a Doppler tracking system with that from an ILR system in Section 8.2.
Resultantly, we discuss the types of missions and science goals for which an ILR system
will be complementary or competitive, compared to existing tracking techniques.

8.1 Measurements and Data Analysis for ILR

As discussed in Section 3.2, a variety of error sources in both the laser range mea-
surements themselves, as well as inaccuracies in the models used to process these mea-
surements to obtain scientific parameters of interest, limit the performance of an ILR
system. In Chapters 4-7 we have investigated a number of these error sources, as well as
the potential influence that they can have on ILR data analysis quality. In this section,
we provide a synthesis of both the known error sources discussed in Section 3.2, as well

239
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as the new aspects that we investigated in this dissertation.
To provide context for the importance of the various types of errors we start by dis-

cussing, in a general sense, the influence of uncorrelated, time-correlated and systematic
errors in Section 8.1.1. Subsequently, we discuss in detail the various specific sources
of both measurement and modelling uncertainty that limit the performance of an ILR
system and the quality of the resulting science products. To structure this discussion,
we present them in the order in which they occur in the measurement and analysis
process, shown schematically in Fig. 8.1. First, we discuss in Section 8.1.2 the errors
in the measurements themselves. We address the various sources of differences between
the true and measured transmission and reception times of the pulse centroids, as well
as the resulting influence on the measured range ŝ (see Section 3.1.1). We consider the
following errors:

• Errors due to the inherently stochastic nature of range measurements by direct
detection of photons from a laser pulse (Section 3.2.1 and Chapter 5).

• Error due to detection and transmission system instabilities (Section 3.2.1).

• Errors due to clock noise (Chapter 6).

Subsequently, we discuss in Section 8.1.3 the errors in the data analysis, distinguishing
the following steps:

• Errors due to inaccuracies in a priori models that are not adjusted during the
estimation (Section 3.2.2 and Chapter 7).

• Errors in the estimation models, i.e., mismodelled influence of a parameter q on
an observable h (Chapters 6, 7).

Finally, we discuss in Section 8.1.4 the limitations in the interpretation of the estimated
parameters and the resulting impact on the design of future missions with an ILR com-
ponent, distinguishing two limitations:

• Limitations in the available analysis models (Chapter 4) to use the estimated
parameters to address the scientific objectives of a mission.

• The uncertainty in the true estimation error of the estimated parameters. A lack
of knowledge of the true uncertainty of the physical parameters that are estimated
limits the degree to which they can be robustly interpreted (Chapters 4-7).

8.1.1 Influence of Temporal Behaviour of Errors

Before describing in more detail the various sources of uncertainty in the science prod-
ucts that can be obtained from ILR (Sections 8.1.2-8.1.4), we discuss different types of
temporal behaviour of error sources, and how they impact the analysis process. Thereby,
we provide context for the relevance of the discussion in subsequent sections.

One of the simplest distribution for measurement and/or estimation errors is that
of identically and independently distributed (IID) Gaussian errors, (e.g., Tapley et al.,
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Measurements Parameter estimation Interpretation

Time tags
τt,k, τr,k

Range ob-
servables hi

Estimated
Parameter
values qj

Science
objectives

Laser pulses

Figure 8.1: Block diagram showing top-level data flow from measurements (pulse transmission
and reception time tags τt and τr) to estimation and interpretation. Note the iterative estima-
tion, in which the pre-processing of the time tags into the observables is reperformed after each
update of the estimated parameters.

2004). For laser ranging measurement precision, the IID assumption is valid to very
close approximation for data from a single station during a single pass, at least when
operating in the single-photon signal intensity regime (Section 3.2.1). As a result, the
combined precision of N consecutive measurements scales as 1/

√
N down to values of

� 1 mm (Section 3.2.1). By removing the trend in the measurement residuals, the
measurement precision can be accurately determined, as it only represents the scatter
of the measurements about their running average, without any reference to the ideal
measurement. Although this indicates the stability of a range measurement system over
short time intervals, it is not a correct indicator for the stability of the systematic error
over longer durations, nor does it provide information on the degree to which range
measurement systematics from various stations compare to one another. The accuracy
of a measurement is much more difficult to quantify, as it represents the mean difference
w.r.t. the ideal (error-free) measurement values. Systematic errors can be partially re-
moved by comparing time series of data with those from other techniques, as done by
e.g., Urschl et al. (2005), who validate GNSS derived orbits using SLR data. Such an
approach is not feasible for ILR, however, since no such complementary tracking type is
available capable of validating ILR-derived orbits at the required level of accuracy. Al-
ternatively, systematic errors can be assessed by comparing tracking data from multiple
(colocated) stations, (e.g., Noomen, 2001), or by performing internal system calibra-
tion, (e.g., Kirchner and Koidl, 2014). A time-correlated source of measurement errors
(such as clock noise, see Chapter 6) is more difficult to quantify in an a priori manner,
though. In the subsequent sections, we discuss a number of such measurement errors,
presenting how they are expected to affect ILR measurements in a statistical sense.

For the estimation, a probability distribution of the measurement errors must be
(implicitly) assumed, (e.g., Tapley et al., 2004). In a least-squares estimation with
a diagonal weight matrix, which is the typical approach in (interplanetary) spacecraft
tracking data analysis, (e.g., Moyer, 2000; Konopliv et al., 2011; Lemoine et al., 2013;
Mazarico et al., 2014b), the underlying assumption is that all measurements are inde-
pendently distributed by a Gaussian distribution with zero mean. In fact, a weighted
least squares estimator is the best linear unbiased estimator for data with such error
properties, as a specific case of the Gauss-Markov theorem, (e.g., Zyskind and Martin,
1969). Under this assumption, the formal estimation uncertainty goes down as 1/

√
N
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(where N is the number of observations), for constant sensitivity of the observations to
the estimated parameters (Section 8.1.4). As a result, the formal error that is obtained
from a least-squares estimation is typically too optimistic, as it assumes error properties
of the measurements that are too benign, neglecting any time correlation (Section 2.1.3;
Chapters 5 and 6). The influence of time-correlated errors with increasing data volume
and coverage can also decrease, but the manner in which it does so is dependent on
how well the estimator can decorrelate the signature of such errors from the expected
signature of a particular estimated parameter (discussed in more detail in Section 8.1.3).

For the complete analysis of the influence of time-correlated errors, a bottom-up
model of the behaviour of the various error sources would be required (Dirkx and Ver-
meersen, 2013). However, for a more conceptual analysis we can make this analysis more
tractable by assuming that the time-correlation of the errors is that of a systematic er-
ror. A systematic error has a specific type of time-correlation, since for an error σ(t),
the time correlation of σ at times t1 and t2 is such that σ(t1) = σ(t2) (for all t1 and
t2). Under this assumption, we can make a general first-order comparison between the
influence of Gaussian uncorrelated and time-correlated noise. We have performed this
combined analysis of the influence of random and systematic errors (as a specific case
of general time-correlated errors) by using consider-covariance analysis (Bierman, 1977;
Tapley et al., 2004). In applying this method, we include a constant uncertainty in a
set of parameters that are not adjusted in the least squares estimation. This method is
used in the context of space mission tracking data analysis by, e.g., Cheng et al. (1989);
Wu et al. (2001); Jacobson (2009); Konopliv et al. (2011) for Earth gravity field tem-
poral variation estimation from SLR data, simulations of a Europa orbiter, ephemeris
generation of the main Neptunian satellites and tracking data analysis from the Mars
Reconaissance Orbiter (MRO), respectively. In Chapter 4, we applied this method by
imposing systematic errors on the range biases for a Phobos lander mission, thereby
capturing the true influence of systematic measurement errors without the need for a
detailed bottom-up error model.

Our results showed, for the case of a Phobos lander performing ILR, that the influ-
ence of random (Gaussian and uncorrelated) and systematic range measurement errors
propagate into the error budget of the estimated parameters in a dramatically different
fashion. Specifically, we found that the influence on the error budget of the estimated
parameters of 1 mm Gaussian uncorrelated range measurement noise is 1-2 orders of
magnitude less than the 1 mm systematic range error. That is, for perfectly accurate
range measurements with a purely Gaussian observation noise of 1 mm amplitude, and
no estimation model errors or uncertainties, the estimation results have an uncertainty
that is 1-2 orders of magnitude better than the estimation results from perfectly precise
measurements with a consistent 1 mm range error. Although our analysis in Chapter
4 does not quantify directly the influence of an arbitrary time-correlated measurement
error, it is indicative of the strong influence of non-Gaussian errors, motivating the
detailed investigation of these types of errors in ILR.

The results of the consider-covariance analysis in Chapter 4 show the need to correctly
characterize and mitigate systematic error sources, and time-correlated error sources by
extension. In Chapters 5-7, we have investigated a variety of such error sources, both in
the measurements and in the models used to process the measurements. However, the
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results shown in Chapter 4 also indicate that there is little need to improve the precision
of laser ranging measurements, which could be achieved by for instance moving to higher
pulse repetition frequencies or shorter pulse lengths. Based upon the results shown here,
however, even a tenfold increase in pulse length would not degrade the estimation quality
as long as systematic errors are not also substantially reduced. This benefits the potential
combination of a laser ranging system with either a communications or altimetry system
(Sections 3.3.3 and 3.3.5, respectively), where the pulse lengths are typically longer than
in typical SLR operations.

8.1.2 Measurement Errors

As discussed in Section 3.2.1, measurement errors can occur both due to the inherently
stochastic nature of laser ranging detection, as well as due to the influence of imper-
fect measurement equipment. As discussed in Section 8.1.1, (single-shot) measurement
precision will likely not be a limiting factor in ILR data analysis. Instead, the various
sources of systematic or otherwise time-correlated errors dominate the influence of the
measurement errors on the quality of the final products. Resultantly, we focus our dis-
cussion in this section on these types of error sources, providing only limited further
discussion on the precision of ILR measurements.

We start by discussing the influence of inherent stochasticity of laser ranging mea-
surements. Both the finite pulse length in a laser ranging measurement and the influence
of atmospheric turbulence contribute to the stochastic behaviour of the measurement
precision and accuracy of the measurement. As discussed in Section 3.2.1, variations in
measurement accuracy will result from variations in the number of photons in a laser
pulse that can be detected (as a result of variations in pulse detectable energy), as
calculated from Eq. (3.15). The potential problem of such time-correlated accuracy
variations was the prime rationale behind the theoretical development of turbulence-
induced signal-strength variations presented in Chapter 5. In our work presented there,
we synthesized various existing models for the influence of turbulence on the propaga-
tion of laser pulses, forming a coherent description for the far-field intensity variations
as a function of turbulence strength, combining the influence of a number of stochastic
effects, including the inherent (turbulence-independent) effect of the finite pulse length.
Our simulations included a constant atmospheric transmittance, but a varying zenith
angle, thereby including an additional (physically deterministic) source of signal strength
variations, in addition to that caused by atmospheric turbulence. The results showed
that accuracy variations of up to 5 mm could occur in a representative laser ranging
system, caused by signal-strength variations due to changes in both zenith angle and
turbulence strength.

Further analysis indicated, however, that the total turbulence-induced accuracy vari-
ations may be reduced due to the observational geometry of planetary missions. Specif-
ically, there will be a part of the year that the time interval during the day and zenith
angles at which ranging can be performed will not change much, at least for stations
at higher (absolute) latitudes, as is also shown in Fig. 3.10. During such periods, the
day-to-day signal strength (and as a result accuracy) variations will be reduced, making
the range measurement error more stable on short-medium timescales. Our simulations
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in Chapter 5 showed that this effect reduces the accuracy variations to about 1.5-3 mm
(depending on turbulence strength) for stations with limited elevation angle possibili-
ties. Although this effect may improve the stability of the range measurements in the
medium term of weeks-months (for parts of the year with a limited ranging window
per day), it can cause problems for the long-term stability of the range measurements.
Specifically, it could cause a periodic signal in the range measurement with an ampli-
tude of several mm and a repeat time of approximately one synodic period of Earth
and the target. Since the absolute range between Earth and the target will vary with a
similar period as the visibility conditions, the estimation of ephemerides (Section 2.2.4)
could be degraded by such an effect, as a periodic signal of several mm due to periodic
range measurement errors (and tropospheric correction errors, Section 3.1.4) may be
interpreted by the estimator as a signal due to the dynamics of both the Earth and the
target body.

The influence of variable detection energy on the measurement accuracy variability,
be it caused by turbulence, varying path absorption, transmitted pulse-energy instabil-
ities, etc., may be (nearly) completely mitigated by a number of approaches. Primarily,
as also discussed in Section 3.2.1 and Chapter 5, the use of a system by which detection
at the single-photon level is ensured will allow signal strength variations to be completely
inconsequential for the accuracy of the measurement, facilitating the realization of an un-
biased measurement. This is in contrast to single-photon detection in SLR/LLR, where
the received signal temporal profile consists of the convolution of the (ideally Gaussian)
transmitted pulse shape and the transfer function of the retroreflector, requiring a model
for the transfer function (Section 3.2.1). Since this transfer function can be dependent on
polarization, pulse reflection orientation, system temperature, dust cover (in the case of
lunar reflectors), etc., (e.g., Arnold, 1979; Otsubo and Appleby, 2003; Degnan, 2012), it
is exceptionally challenging to obtain mm-accurate range measurements from a retrore-
flector target, even in the case of perfect measurement equipment and single-photon
detection. For systems operating in the kHz pulse repetition frequency regime, though,
pulse returns from individual reflectors can be distinguished for certain targets (e.g.,
Kucharski et al., 2010), partly mitigating the effect. In ILR, though, the detected pulse
temporal intensity distribution is nearly the same as the transmitted (Gaussian) pulse
shape, allowing the measured photons to be statistically referenced to the pulse centroid
without the need for such a retroreflector model. Operation at the single-photon level is
at the expense of integrated measurement precision, though, as a result of a decreased
pulse detection probability. However, since the results in Chapter 4 unambiguously show
that systematic errors are much more influential than (Gaussian) measurement precision,
a reduction of a measurement precision will be more than outweighed by an improvement
in accuracy (Section 8.1.1). Also, detection at the single-photon level can be achieved
in low (but not single) photon detection energy regimes by using a multi-array detector,
such as that used by the APOLLO LLR station (Chapter 5). In a multi-array system,
multiple photons from a single laser pulse trigger separate detectors, and are separately
time tagged, effectively removing the multi-photon measurement accuracy degradation.

However, even for detection of pulse transmission and reception at the exact pulse
centers, the realizations of the range measurements are degraded by imperfections in
the measurement hardware. As discussed in more detail in Section 3.2.1, many of the
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hardware-induced quality degradations will be similar in ILR and SLR, although ILR
suffers from a lower TRL due to the use of active space-based systems that have not been
previously applied for use in interplanetary ranging applications. Nevertheless, devel-
opments in laser communications time transfer and altimetry (Sections 3.3.3, 3.3.4 and
3.3.5, resprectively) have shown the feasibility of the required subsystems, although not
necessarily in the context of a planetary mission. This will allow ILR to be implemented
in the near-future, from a space-segment systems design point-of-view. There have been
extensive analyses of both SLR systems and existing space-based laser detectors for
shorter-distance applications (altimetry, time transfer, communications), which we have
summarized in Section 3.2.1. The measurement errors presented there are largely repre-
sentative of what is to be expected for ILR (with the notable exception of the influence
of clock noise). Resultantly, hardware-induced accuracy variations can be expected to
be at the several mm-level. However, laboratory experiments have shown sub-mm range
accuracies, but calibration issues due to the difficulties in comparing the hardware char-
acteristics of the various ground and space segment(s) involved will make it difficult to
achieve such a quality in (the first generation of) ILR systems. Moreover, limitations in
analysis models will be at the several-mm level (Section 8.1.3), so that improvements in
measurement accuracy will not necessarily immediately result in substantially improved
science products.

A crucial difference in the error budget of an ILR system (compared to that from
systems used for sub-planetary distances) stems from the influence of the clock noise,
especially for a one-way range system. In Chapter 6, we analyzed this error source in
detail, providing a quantitative comparison of one- and two-way laser ranging data. In
that chapter, we developed a generic analysis framework for these data types and applied
these models to the analysis of two missions employing ILR (Phobos lander and lunar
orbiter). In doing so, we quantified the influence of clock noise on both the measurement
errors and the estimation process. For two-way systems, moderate requirements on
the space-segment clock and reasonably accurate ground station clocks (≈ 10−15 Allan
deviation over two-way light time, see Section 2.3 of Chapter 6) cause instabilities in
the range accuracy at the sub-mm level (barring missions to the outer solar system with
exceptionally large light-times). Due to the small retransmission time δt at the space
segment in setting up a two-way measurement, the clock of the space segment only needs
to be stable at the level of better than 3 · 10−12 or 3 · 10−13 over an integration time of
1s or 10 s, respectively, to cause a sub-mm error in the range measurements, which is
within the level of accuracy of state-of-the-art systems. In a one-way system, however,
the accumulation of clock noise can cause errors in the raw range observations of tens to
hundreds of meters, depending on arc length and clock quality. The mitigation of clock
noise is typically done in the orbit determination process, by the inclusion of additional
estimated clock. We discuss this approach, and associated difficulties in data analysis,
in more detail in Section 8.1.3.

Summarizing, variations in pulse energy at the detector (due to a variety of physical
causes) can cause variations in measurement accuracy at the level of several mm (Chapter
5). However, consistent operation at single-photon detection energy levels (or few-photon
detection energy levels when using a detector array) can largely mitigate this error
source. However, hardware imperfections, as they are deduced from current SLR and
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space-based laser transmitter and detector systems, will likely remain at the several mm
level in the near future (although improvements have been demonstrated at laboratory
scales), preventing consistent mm-accurate ILR from being achieved (Section 3.2.1).
Furthermore, the influence of clock noise can cause accuracy degradations of many orders
of magnitude in the use of one-way ranging data (Chapter 6), provided that this is not
corrected for during the estimation process (Section 8.1.3).

8.1.3 Estimation Model Errors

As discussed in Section 3.2.2, even in the case of perfectly accurate range measurements,
the estimated parameters will not be error-free, due to errors in models used during the
post-processing and estimation process.

We distinguish two types of errors that occur in this stage of the data analysis
process: those in a priori models that are not adjusted during the estimation and those
in the models used to adjust the estimated parameters. We have presented a number
of errors in a priori models for the analysis of both SLR and ILR data in Section 3.2.2.
Two of these error sources in SLR will transfer directly to ILR: the uncertainty of the
ground station position (in GCRS) and the uncertainty in the tropospheric correction.
In the near future, both of these sources of error will likely be at the level of several mm,
assuming moderate improvements in both (Section 3.2.2). Both these effects are unlikely
to be at the sub-mm level in the near future, making mm-accurate ILR data infeasible,
even in the case of perfect measurement equipment and further analysis models.

Additionally, the dynamical modelling of both Earth and the space segment will not
be accurate to the measurement accuracy, over the periods of time that the dynamics
is integrated (in most cases). This issue is especially strong for spacecraft dynamical
modelling, due to the much stronger influence of non-conservative forces (Section 3.2.2;
Chapter 6). For the dynamics of natural solar system bodies, however, barycentric
dynamical modelling at the mm- or cm-level will require a degree of characterization of
the mass distribution in the solar system that is currently not available, when considering
the level of model error in current planetary ephemerides (see Sections 2.2.4 and 3.2.2).
This is now also apparent in the analysis of accurate LLR data from the APOLLO station
(Section 1.1), which yields close to mm-precise (normal point) range measurements, as
opposed to the current cm-level dynamical model accuracy (Murphy, 2013).

For the dynamical modelling of planetary orbits, it is especially the uncertainty in
mass distribution of the asteroid belt may limit the accuracy of the dynamical model
(Standish and Fienga, 2002), although the estimation of additional parameters (facil-
itated by ILR data) will substantially improve the quality of planetary ephemerides.
Crucially, the influence of long-periodic perturbations by other solar system bodies will
show only limited correlations with many other physical parameters that are estimated,
especially those with a short period (on the order of one rotation of the target body,
as opposed to one synodic period), as their characteristic periods will be quite distinct.
Still, these combined uncertainties will cause a ’background noise’ in the dynamical
model that will limit the accuracy to which especially planetary ephemerides (Section
2.2.4) and related parameters with a long-periodic signal can be estimated (Section
2.3.3).
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Nevertheless, a substantial improvement in ephemeris accuracy will be attainable
from the implementation of laser ranging measurements. For instance, our results in
Chapters 4 and 6 show that the accuracy of the Phobos ephemeris could be at the cm-
level in the absence of dynamical model errors. As discussed in Section 2.2.4, the current
uncertainty of planetary ephemerides is roughly at the same order of magnitude as the
accuracy of the range data used as input for these ephemerides (although somewhat
larger). However, this rule of thumb will likely no longer be valid in the initial analysis
of ILR data. As we discussed in Section 3.2.2, the processing of ILR will require a re-
estimation of the ephemerides of all solar system bodies involved in the measurements,
including the Earth, since the a priori ephemeris of the Earth will be too inaccurate
by several orders of magnitude to fully exploit the data. Due to the scarcity of ILR
data when it will be first implemented, there will be an additional imbalance of several
orders of magnitude between the measurements used for the generation of various solar
system bodies. For instance, when analyzing ILR data from an Earth-Mars link in
the future, we will have mm-level range measurements for Earth and Mars, m-level
(radiometric) range measurements for other solar system bodies with orbiters similar
to recent, current and near-term missions (such as Venus Express, MESSENGER and
Juno) and km-level range measurements to bodies where little or no data from active
tracking techniques is available. Due to the dynamical coupling between the bodies in
the solar system, uncertainties in the dynamics of many bodies will degrade the fidelity
of the dynamical modelling of the bodies between which an ILR link is set up, for which
mismodelled asteroid mass distribution is a prime example. However, the inverse of the
problem is also true: due to the dynamical coupling, ILR data will be able to improve
the dynamical models beyond those of the bodies which are directly involved in the laser
link. Considering the current accuracy of planetary ephemerides (several meters in best
cases, see Section 3.2.2), we estimate that at least dm-level planetary ephemerides will
likely be attainable from ILR data, representing a substantial improvement to current
state of the art. An accurate quantitative assessment of the improvements in planetary
ephemerides from ILR data, in the presence of dynamical model errors, remains to be
performed, though.

Our analysis of the orbit determination of a lunar orbiter in Chapter 6 included an
empirical model for the uncertainty in the non-conservative forces, which is representa-
tive of the uncertainty in dynamical modelling of planetary spacecraft. Our simulations
showed that uncertainties in this model, not the measurement uncertainty of either
the one- or two-way range measurements, limit the attainable orbit accuracy of the
lunar mission (to about 5 m r.m.s. when estimating clock and state parameters over
sufficiently short clock arcs). However, the use of two-way range data will allow the
dynamical models to be improved substantially, improving the attainable orbital accu-
racy. The use of one-way data is limited in this respect, though, since it is not possible
to separate dynamical model errors and clock-induced measurement errors in a model-
independent manner (Chapter 6). The issue of spacecraft dynamical modelling is much
more influential in the dynamical reconstruction of planetary spacecraft orbits than it
is for terrestrial orbits for two reasons. Firstly, the tracking data coverage for plane-
tary spacecraft is typically much sparser than for terrestrial spacecraft, where coverage
may be (near-)continuous and may include multiple complementary techniques (GNSS,
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SLR, DORIS). As a result, empirical accelerations can be estimated with much higher
frequency without causing ill-posedness in the inversion. As an example, Montenbruck
et al. (2005) find that the quality of the orbit determination of the GRACE-B spacecraft
is best when estimating empirical accelerations (piecewise constant for three orthogonal
components) every 600 s. By comparison, Mazarico et al. (2012) use a single constant
empirical acceleration component estimated every 2.5 days in the orbit determination of
LRO. Secondly, the measurement geometry of planetary spacecraft is quite unfavorable,
as all observations are made from almost the same direction (Earth), as shown in detail
by Bonanno and Milani (2002). Although the addition of angular observables, such as
VLBI observations, can partly mitigate this issue, the limited linear accuracy of these
observations (about 4 orders of magnitude difference per AU target distance compared
to ILR, see Section 2.1.1) makes this contribution of limited value for characterizing the
short-term (hours-days) dynamics of spacecraft (Section 2.1.3).

In addition to mismodelling of the dynamics of both the space segment and the Earth,
the influence of clock noise (Section 8.1.2) must be mitigated during the estimation
process, at least for data from a one-way ranging system, by the estimation of clock
corrections (Chapter 6). This approach of correcting for a measurement error is distinct
from calibrations for e.g., tropospheric effects, relativistic effects, or on-site measured
system biases, which are applied a priori (potentially in an iterative manner during the
estimation, as is done for case 2 in Section 5.3 of Chapter 7). Similar to estimated
range biases, the clock parameters are included to obtain a best estimate of the range
measurement errors (potentially with the use of a priori constraints, as is done by Bauer
et al. (2014)). Conceptually, this approach is akin to the use of empirical accelerations
in spacecraft orbit determination to remove mismodelled dynamics errors.

In general, the degree to which such empirical parameters, including the clock pa-
rameters we are concerned with here, can improve the quality of the estimation is depen-
dent on a number of factors (Chapter 6). Firstly, such models depend on a particular
parameterization of the correction to the range measurement, which will only be an
approximation of the true behaviour of the error source (clock noise) that is to be re-
moved. Therefore, even for an optimal estimation of the clock parameters, remaining
clock noise will continue to pollute the measurements (as shown clearly in Section 2.4
of Chapter 6). Secondly, correlations between the additional clock parameters and the
physical parameters that are to be estimated can reduce the quality of the final esti-
mation products. Furthermore, the modelled correlation may be different from the true
correlation between the clock noise and the signal of the estimated physical parameters,
resulting in a skewed estimation.

We found that the difference between the true and modelled effect of clock noise
is especially strong for longer clock arcs, where the stochastic clock noise is modelled
as relatively smooth in time, as opposed to the inherently erratic clock behaviour. As
a result, not only do the correlations between clock and state parameters reduce the
quality of the results, a substantial difference between the modelled and true correlation
between the state and clock resulted in further estimation errors. These additional errors
were caused by the estimator over-attributing range signal to clock noise. The effect
of this mismodelled correlation between clock and state signal is difficult to quantify
in a general manner, as it depends strongly on the behaviour of the dynamics and
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the specific realization of the clock noise, requiring the use of the kind of numerical
simulations that we performed. Nevertheless, such simulations will only be able to
provide statistical information on the influence of clock noise and require an accurate
statistical characterization of the clock noise (in terms of Allan variance, power spectrum,
or related quantities). As we concluded in Chapter 6, this lack of robustness in one-
way laser ranging data will require a measurement system that is overdesigned for most
cases, if a certain positioning requirement is to be met during the mission, since the
positioning must be sufficiently accurate even in the worst likely relative behaviour of
clock noise and dynamics.

As mentioned above, the addition of clock correction parameters can degrade the
estimation quality of the physical parameters, since excessive correlations can cause
physical signals to be absorbed by these extra parameters. For our simulations of ranging
to a lunar orbiter (in which we estimate no geophysical parameters), we found that the
inclusion of a sufficient number of clock arcs could continue to reduce the influence of the
clock noise down to several decimeters for 12 hour clock arcs (assuming no mismodelled
dynamics). For the simulation of the Phobos lander, however, which includes a larger set
of estimated parameters, correlations between clock parameters and other parameters,
especially those which are manifested as long-periodic signals, limited the degree to
which clock arcs can be shortened to obtain an improved parameter estimate. This
shows clearly that the option to add more clock parameters to reduce the influence of
stochastic clock noise diminishes for larger sets of estimated parameters. Furthermore,
we found that long-periodic effects cannot be properly estimated with one-way range
data, as clock parameters correlate almost fully with such parameters.

In addition to the clock noise due to hardware imperfections, we analyzed a previously
unconsidered source of clock model error in Chapter 7, specifically errors in the conver-
sions from proper time to coordinate time. The setup of a range measurement typically
requires the transmission and reception coordinate times (or a related time scale such as
TDB), see Section 3.1.1. However, the ground station clocks register a noisy realization
of the local proper time, which differs in rate from this coordinate time in a manner
dependent upon a variety of classical and relativistic parameters. When using two-way
measurements (especially in the short-range SLR), these errors in proper-to-coordinate
time conversion will not propagate into a substantial range error, for the same reason
that clock noise does not accumulate for a two-way system. For a one-way range system,
however, we showed that errors in the proper-to-coordinate time conversion (if they are
not adjusted during the estimation) will result in an orders-of-magnitude discrepancy
between the true and formal errors of the estimated parameters. Fundamentally, the
cause of this is that the a priori uncertainty of planetary ephemerides (and other pa-
rameters which influence proper time rates such as gravitational parameters) is orders
of magnitude worse than the measurement uncertainty of ILR.

In summary, existing model errors in tropospheric correction and ground station
positioning will limit ILR data modelling to the several mm level (Section 3.2.2). Ad-
ditionally, dynamical model errors of both the space segment and the Earth will limit
the accuracy to which the data can be interpreted, although this is of limited influence
in the estimation of short-periodic effects (Section 3.2.2; Chapter 6). However, it is fair
to assume that the use of ILR measurements will substantially improve the accuracy
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of planetary ephemerides (for target bodies to which laser ranging is performed). For
spacecraft dynamics, however, the dynamical mismodelling is especially troublesome,
as a result of the non-conservative forces acting on them. However, the use of two-way
data could be used to improve these dynamical models, as opposed to one-way range, for
which the detanglement of clock noise and dynamical model errors is not straightforward
(Chapter 6). Furthermore, the use of one-way data is limited by the influence of both
clock noise and mismodelled proper-to-coordinate time conversions (although the latter
may be largely mitigated by iterative updates in the estimation), as shown in Chapters
6 and 7. Clock parameters may be estimated during data inversion, but this can be
at the expense of the estimation quality of other physical parameters, especially those
with a period much longer than the duration of the clock arcs, which will correlate very
strongly. As a result, one-way ranging (except when using systems with exceptionally
stable clocks that do not require the frequent removal of clock noise) is not suitable for
the determination of parameters which are manifested as long-periodic effects.

8.1.4 Limitations in Interpretation of Estimated Parameters

In Sections 8.1.2 and 8.1.3 we have discussed a number of sources of error that are
expected to influence the uncertainty of ILR measurements and data analysis. Although
the consistently 1 mm accurate range measurements will likely not be feasible in the
near future, a combined accuracy of 3-6 mm total error in measurements and models
will likely be feasible for a two-way range system. As a result, highly accurate estimates
of (geophysical, relativistic, etc.) scientific parameters of interest can be obtained from
such missions (as shown most elaborately here in Chapter 4). As discussed in Sections
2.2 and 2.3, though, estimated quantities such as ephemerides, Love numbers, gravity
field coefficients and rotational parameters are not the final science products of space
missions. Instead, these parameters can be used to constrain physical characteristics
and relatedly the origin and evolution scenarios of celestial bodies.

To fully characterize the science return of space missions, it must be determined
how the parameters that have been estimated from the (tracking) data can be used to
address the science objectives of the mission. For planetary science objectives, this will
require a mapping from these measured quantities to physical characteristics describing
a body’s interior structure, composition, etc., as is done by for instance Rivoldini et al.
(2011) for Mars, Baland et al. (2014) for Titan and Williams et al. (2014) for the Moon.
Uncertainties in this mapping may limit the capabilities of a mission to complete its
scientific objectives. Additionally, science requirements typically specify an accuracy
to which the final scientific parameters are to be determined, requiring robust proof
that this accuracy can be (before the mission) and has been (following data analysis)
attained. To achieve this, a determination of the uncertainties in the various steps of
the analysis process is needed.

For the case of the Phobos lander we investigated in Chapter 4, the quantitative anal-
ysis did not include any errors in the models used during the estimation (see Section
3.2.2). As a result, our truth model and estimation model were assumed to be equal
(although with an imposed uncertainty in range biases). Nevertheless, our results in
that chapter (and again in Chapter 6) highlighted a crucial limitation of the laser rang-
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Figure 8.2: Visualization of the Phobos digital terrain model created by Willner et al. (2014),
indicating the level of detail that is currently available for the Phobos shape models (volume
uncertainty of about 0.6 %).

ing data, which was previously recognized for the case of Doppler tracking of a Phobos
lander by Le Maistre et al. (2013). Specifically, it showed that even in the case where
the models used to map the range measurements to the orbital dynamics, rotational
dynamics and tidal deformation are free of any errors, the mission’s science return can
still be limited by uncertainties in models used to further process the estimated param-
eters. Specifically, the estimated libration amplitudes and gravity field coefficients can
be used to determine Phobos’ moments of inertia and thereby constrain the presence of
internal heterogeneities such as voids or ice enclosures, allowing Phobos’ origins to be
constrained. It is shown by Rosenblatt et al. (2011) that the gravity field and primary
libration amplitude (and therefore its moments of inertia) may differ only very slightly
from the homogeneous case, making accurate determinations of these quantities crucial
for characterizing Phobos’ interior composition. However, Phobos’ shape also enters into
the mapping from estimated gravity field and libration to moments of inertia, and for our
extremely accurate measurements to Phobos and resultant high quality parameter esti-
mation, it is the shape model uncertainty that limits the knowledge on Phobos’ interior
structure, not the parameters that are estimated from the tracking data. To illustrate
this fact, we show the best current shape model of Phobos in Fig. 8.2 to indicate the
level of detail of the best current shape model, which has an inaccuracy of about 0.6 %,
(Willner et al., 2014). We have discussed a similar situation for the analysis of highly
accurate geodetic parameter estimation of Mars in Section 6.3 of Chapter 4.

This issue is by no means unique to Phobos or Mars and will be a challenge for
any mission employing ILR. In fact, the limitation in estimation quality due to the
non-conservative force model uncertainty of the lunar orbiter discussed in Chapter 6 is
essentially a similar issue, in which the local environment models, as well as spacecraft
models, are insufficiently developed to make full use of the data. Furthermore, the
dramatic influence of the error in the proper-to-coordinate time conversion we presented
in Chapter 7 also stems from the insufficiently characterized dynamics of solar system
bodies. Fundamentally, the reason that these issues appear to occur ubiquitously for ILR
data analysis is that current models of solar system bodies and environments (except
perhaps the Earth and the Moon) are not at the level where they can predict effects at
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the same level of accuracy as the range measurements (mm-cm). There are two root
causes for this. Firstly, parameters that are required for analyzing the data and achieving
the scientific objectives, but which cannot be estimated from tracking data (such as the
volume of Phobos) may be of insufficient accuracy due to the lack of sufficiently high
quality data from other scientific instruments. Secondly, as highlighted especially for
the case of rotational behaviour in Section 2.2.2, body-specific models must often be
developed to describe the behaviour of various planets, moons, etc. For many bodies,
such models are not yet developed to a level where they would be sufficient to facilitate
the data analysis for an ILR mission to its fullest, even if there is no fundamental
limitation in developing these models. For the Moon, the development of such models
has been strongly driven by the long history of LLR, (e.g., Williams et al., 2001).
Although such models are typically developed over the course of the design of a mission,
it is important to investigate the feasibility of setting up sufficiently accurate models
without any accurate a priori or complementary measurements.

For the interpretation of scientific results, robust knowledge of the uncertainty of the
estimated parameters is important. For instance, an uncertainty in a k2 Love number
or libration amplitude may propagate directly into an uncertainty on the thickness (and
existence) of a subsurface ocean or ice shell, (e.g., van Hoolst et al., 2013). Similarly,
a sufficiently accurate estimate of the moment of inertia may be used to determine
whether a body is (partly) differentiated or not (e.g., Schubert et al., 2004). In gen-
eral, the combined uncertainties of the various geodetic and non-geodetic parameters
will propagate into uncertainties of the parameterized interior of a body, such as layer
thicknesses or phase and fraction of a certain compositional element. Generally, only a
limited number of parameters is estimated, whereas the interior of a body may be pa-
rameterized by many more values, resulting in a (strongly) underdetermined problem.
For the numerical simulations we performed in this dissertation, the truth model is (ei-
ther deterministically or stochastically) known, allowing us to quantify the influence of
the various physical range measurement errors and modelling errors. In the analysis of
actual data, however, the influence of these errors will remain unconsidered during the
analysis if their existence is not known. As shown in each of the Chapters 4-7, the formal
error provides uncertainties that can be orders of magnitude too optimistic, making the
consideration of other error sources crucial, for instance by the use of consider-covariance
analysis.

The fact that formal errors represent estimates of the uncertainty that are far too
optimistic, as discussed in Section 8.1.1 is well known for planetary tracking data anal-
ysis, (e.g., Konopliv et al., 2006; Marty et al., 2009; Andert et al., 2010; Dehant et al.,
2011; Mazarico et al., 2014b). In our work, this is made especially clear in the estimation
results of the h2 Love number and libration amplitudes of Phobos that are presented in
Chapter 4. Since the influence of these parameters is mostly a result of geometry, not
orbital dynamics (with the exception of the primary libration amplitude), their estima-
tion uncertainty can be directly related to a range uncertainty. For the Love number
and libration amplitude uncertainties, using the formal error as an indicator of their esti-
mation quality results in systematic range measurement uncertainties at the 10-100 µm
level. This level of uncertainty is clearly far too optimistic. When adding the systematic
range errors, this uncertainty increases to the mm-level, which is a more realistic value
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considering the 5 mm single shot precision and 5 mm systematic range error.
An example of a more subtle unquantified true error source, is the periodic range

accuracy variation due to varying observation geometry found in Chapter 5 and discussed
in Section 8.1.2. These variations will, if not modelled (stochastically or otherwise), go
unobserved in any gauge of estimation error that is available in the data analysis, where
a (scaled) formal error is often used as a measure of quality. The lack of suitability
of using the formal error as a measure of observation quality was again highlighted in
Chapter 6, where we initially found, for the Phobos lander simulations, a decrease in
true error with increasing number of clock arcs Nc, followed by an increase in the true
error beyond a certain point. The formal error, however, continuously increased with
Nc. Finally, we showed in Chapter 7 that the error propagation of position errors onto
clock calibration errors (due to the proper time rate’s dependence on the translational
dynamics) is important for a correct characterization of the error budget of (one-way)
ranging data. In that chapter, we presented a model which introduces this coupling into
the estimation, thereby allowing the formal errors to capture this coupling.

In summary, although ILR data will allow substantial improvements in parameter
estimation from space mission tracking data, it is crucial to analyze the full analysis chain
from raw measurements to final science products. Errors in models which cannot be
constrained from tracking data may limit the final science return, which requires careful
consideration of the relation between the requirements imposed on various instruments
on a scientific mission, as well as the relation with a priori information. Similarly, the
error analysis that is used to assess the quality of the final science products must not be
based purely on the formal errors. This can be accomplished by, for instance, including
the dominant time correlated sources of error in the error propagation.

8.2 Comparison to Conventional Tracking Techniques

In Section 8.1, we have synthesized our discussion on range measurement error sources
from Section 3.2 and the core of this dissertation presented in Chapter 4-7, where we have
presented a number of novel methods and considerations regarding the error budget of
ILR missions. Summarizing, both our analysis in Chapters 4-7 and data from literature
presented in Section 3.2 (for instance the > 1 mm inaccuracies in the tropospheric
correction model and instabilities in the hardware), lead us to conclude that a 1 mm
accurate interplanetary laser range measurement will not be consistently attainable by
the network of ILRS stations in the coming years. Values of 3-6 mm accuracy are likely
to be more realistic, with the precise values dependent on a score of parameters related
to the hardware of the ground and space segments, environmental conditions and various
other aspects of the mission under consideration. Sub-mm precision (averaged over a
sufficient number of subsequent shots) is possible, though, but of limited value to the
science return of the system (Section 8.1.1).

In this section, we use our estimated ILR measurement accuracy values to compare
attainable science return from an ILR mission to that from a mission employing standard
radiometric tracking techniques, building upon our preliminary comparison in Section
2.1.3. To this end, we derive a quantitative criterion for comparative quality of range
and range rate measurements in Section 8.2.1. Subsequently, we use a simplified, purely
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periodic, model for the influence of physical signals on both range and range-rate mea-
surements. The application of this model using current and near-future tracking data
accuracy values is presented in Section 8.2.2, where we discuss the implications for the
competitiveness of ILR as a technology for achieving science goals of planetary missions,
such as those discussed in Sections 2.2 and 2.3.

8.2.1 Definition of Comparison Criterion

To properly compare the range and range-rate observables, it should be evaluated how
their total measurement value, and time-variations of these values, relate to the influence
of a parameter q that is to be estimated. In this section we derive a criterion based
upon which the contribution of the range and range-rate observables to the estimation
of physical parameters can be quantitatively compared.

The sensitivity of an observable h to a parameter q is determined by its associated
partial derivative ∂h/∂q, (e.g., Montenbruck and Gill, 2000; Tapley et al., 2004). Since
the range-rate observable ṡ is calculated from time differenced range observables, as
shown by Eqs. (2.1) and (2.3), the partial derivative of the range rate observable can
be expressed in terms of range observable s as follows:

∂ṡ(t)

∂q
=

1

∆ti

(
∂s(t+ ∆ti)

∂q
− ∂s(t)

∂q

)
(8.1)

This relation shows that the range-rate observable will be completely insensitive to
parameters q which have a constant influence on the range measurement (∂s/∂q =
constant). Similarly, the range rate observable will be only weakly sensitive to periodic
signals of a parameter q for which the period T is much larger than ∆ti.

To quantitatively compare the data types, we define a criterion that describes the
influence of a unit change in q on bothn range and range-rate by comparing it to the noise
levels of s and ṡ (which we denote σs and σṡ, respectively). Essentially, this criterion is a
signal-to-noise (SNR) criterion, comparing signal from a parameter q to a measurement
noise level σh. For any observable h, the SNRh;q for measuring a parameter q may then
be defined as:

SNRh;q =

∣∣∣∣ 1

σh

∂h

∂q

∣∣∣∣ (8.2)

which is a first-order estimate of the relative sensitivity of an observable h to a parameter
set q.

Using Eq. (8.2) we can define the following criterion to determine when a range
observable becomes more sensitive to a parameter q than the range rate observable:

SNRs;q > SNRṡ;q (8.3)

Using this criterion, the qualitative comparative discussion of range and range rate in
Section 2.1.3 can be quantified, which we present and discuss for a simplified behaviour
of the parameter q in Section 8.2.2.

With the criterion defined by Eqs. (8.2) and (8.3), we are in a position to make
a conceptual comparison between the capabilities of an ILR system and a radiometric
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Doppler system of representative current and near-future capabilities. Specifically, for
current radiometric systems, we use accuracies of 1 m in range and 0.04 mm/s over
an integration time ∆ti of 60 s in range rate (Section 2.1.2). As a result of a number
of modifications, such as the use of a multi-wavelength system (Bertotti et al., 2003),
these values are expected to improve for future missions. In our analysis, we assume
0.2 m accuracy in radiometric range, and both 0.01 mm/s at 60 s integration time and
0.002 mm/s at 1000 s integration time, values which we extrapolate both from required
Doppler noise levels of next-generation space missions, and experience with the Cassini
dual-wavelength system (Section 2.1.2). We use the methods described in Section 8.2.1
to investigate the types of effects that can be measured more accurately by laser ranging
measurements, when compared to existing and near-future Doppler tracking capabilities.

For our comparison, we use a simplified model for the behaviour of the parameters
q. Specifically, we assume that a variation of a parameter q is manifested in the range
measurements as a purely sinusoidal signal of amplitude A and angula frequency ω, so
that:

∂s

∂q
= A sin(ωt) (8.4)

and it subsequently follows from Eqs. (8.1) and (8.4) that:

∂ṡ

∂q
=

1

∆ti

(
A sin

(
ω(t+ ∆ti)

)
−A sin(ωt)

)
(8.5)

=
A

∆ti

((
cos(ω∆ti)− 1

)
sin(ωt) + sin(ω∆ti) cos(ωt)

)
(8.6)

From these equations, it can be seen that the signal of a parameter q on the range and
range-rate measurement will be a sinusoid of equal period. However, they will exhibit a
phase and amplitude difference that varies with ω∆ti. The phase difference will converge
to π/2 in the limit of ω∆ti → 0, though, as follows from the limit ratio of the multipliers
of the sin(ωt) and cos(ωt) terms in Eq. (8.6):

lim
ω∆ti→0

cos (ω∆ti)− 1

sin (ω∆ti)
= 0 (8.7)

and the contribution of the sin(ωt) term in Eq. (8.6) becomes negligible for ω∆ti → 0.
Consequently, the range rate sensitivity limit case is derived from Eq. (8.6) as:

lim
ω∆ti→0

(
max
t

(
∂ṡ

∂q

))
=

2πA

T
= ωA (8.8)

which is independent of ∆ti. Since the range-rate noise level decreases with integra-
tion time (Asmar et al., 2005), a range rate observation with a longer integration time
is inherently better suited for estimating parameters for which T > ∆ti (for similar
environment and hardware conditions). For T < ∆ti, however, a 2π ambiguity arises
in the estimation of purely periodic signals, requiring the use of a smaller integration
time. Range measurements can be used for the estimation of such high-periodic sig-
nals, although with a generally reduced sensitivity compared to short integration time
range-rate measurements, since ∂s

∂q does not increase with decreasing T , as opposed to
∂ṡ
∂q .
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8.2.2 Quantitative Comparison for Periodic Signals

Using our representative values of the laser range accuracy and radiometric data accuracy
and integration time given in Section 8.2.1, we use Eq. (8.2) to evaluate the sensitivities
of these observables to our periodic signals. To compare the performance of range and
range-rate systems, we calculate the maximum values of Eqs. (8.4) and (8.5) over a
single period to determine the maximum observable signal of the parameter q on both
s and ṡ, respectively. Subsequently, we use Eq. (8.3) to determine for which periods ω
of the signal q the range measurements become superior to Doppler measurement (in
terms of SNRh;q), for our assumption of purely periodic signals. Since Eqs. (8.4) and
(8.5) are both linearly related to the amplitude of the signal A, we set A = 1 in our
analysis without loss of generality.

The results of our analysis are shown in Fig. 8.3 where the sensitivity of a number
of range (laser and radiometric) and range-rate systems to periodic signals are shown.
If laser ranging systems are to be implemented in the future, it should be shown that
it has a clear scientific advantage over next-generation Doppler systems. From the
figure we see that, depending on the integration time of the range-rate and the precise
assumption on the laser ranging accuracy, the Doppler and laser range curves cross in
the range of 0.5-5 hours. Consequently, physical parameters with periods longer than
these values are better estimated using laser ranging than radiometric Doppler systems
(under the assumptions of the model we use here). For current typical radiometric range
and range-rate measurements, the cruves cross at a period of about 40 hours, indicating
the relative weakness of current range measurements for use in estimating short-periodic
effects (Section 2.1.3). Note that our approach neglects the different influence of mutual
correlations between multiple estimated parameters, which may be different for range
and range-rate measurements, as well as any the influence of any non-(purely) periodic
effects of the parameters q on the measurements. Furthermore, it omits the influence
of measurement frequency (i.e., how many measurements are taken per unit time) on
the estimation, quality, as it is assumed that the measurements can fully sample the
peak-to-peak behaviour of Eqs. (8.4) and (8.5), respectively.

An overview of the various scientific applications of planetary tracking data was
given in Sections 2.2 and 2.3, where we also qualitatively discussed the potential value
of laser ranging technology. Based upon the results shown in Fig. 8.3, we are now in a
position to draw preliminary quantitative conclusions on the comparative performance
of an ILR system. Despite the fact that our approach will only be valid as a first-order
approximation (as discussed above), it provides a good initial estimate of the physical
parameters and associated science goals for which the use of laser ranging can offer
competitive performance.

In Section 2.2.1, it was discussed that range measurements are poorly suited to es-
timating planetary gravity fields of higher degrees and orders. Considering the results
shown here in Fig. 8.3 and typical orbital periods of planetary missions, this conclu-
sion can be seen to be justified. For JUICE, for instance, the orbital period around
Ganymede during the 500 km circular orbit phase will be about 3 hours (Grasset et al.,
2013). The main BepiColombo spacecraft (Benkhoff et al., 2010) will have a similar or-
bital period around Mercury (about 2.6 hours at a moderate eccentricity of about 0.16).
From Fig. 8.3, we see that Doppler tracking will become superior to the 3 mm accurate
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Figure 8.3: Comparison of range and range-rate observable to purely periodic signals of am-
plitude ω (dashed line represents ILR, thick lines next-generation radiometric, dashed-dotted
current radiometric).

laser ranging measurement at 2.5 and 0.5 hours for Doppler cases A and B, respectively.
For the 6 mm range accuracy, these crossing points are 1 hour and 5 hour. Conse-
quently, for orbital periods such as those of JUICE and BepiColombi, laser ranging can
be competitive for the estimation of the very low degree gravity field coefficients and/or
Love number. Assuming an orbital period of 3 hours, the 3 mm range measurement has
similar sensitivity as Doppler case A at degree 2, and the same or higher sensitivity up
to 6 for Doppler case B. For the 6 mm range measurement, Doppler case A is clearly
superior even at degree 2, whereas Doppler case B has the same sensitivity at degree
3. For higher degrees, the reduction in gravity field signal wavelength means that the
Doppler measurement will likely yield superior results. For spacecraft orbiting larger
bodies the orbital period will be longer, increasing the potential value of laser ranging.
The period of the science orbit of Juno around Jupiter will be approximately 10 days at
an eccentricity of 0.95, for instance (Matousek, 2007). Consequently, laser ranging could
offer superior performance for signals up to moderate gravity field coefficients. However,
these estimates only hold for circular orbits, omitting the influence of the eccentricity
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of these missions (which is substantial for Juno, for instance). The signal of the gravity
fields will be especially strong at periapsis, where the velocity of the spacecraft is larger
and the (pseudo-)period of the measurable effect resultantly smaller, further reducing
the relative value of range measurements for gravimetric purposes, especially for higher
degrees and orders.

For the extraction of rotational parameters of solar system bodies (Section 2.2.2)
from tracking data of landers, the strongest signals will typically be those with a once-
per-revolution signal. The full spectrum of relevant rotational variations spans a wide
range of periods, but significant variations are typically not much smaller than the
rotational period, (e.g., Williams et al., 2001; Konopliv et al., 2006; Petit et al., 2010).
Rotational variations with much larger periods (such as the precession) may be used
to deduce valuable information on a body’s interior, though. Considering the typical
rotational periods of bodies in our solar system, we can confidently state that laser range
measurements to landers will be better suited for the estimation of such parameters than
Doppler measurements will be. For some fast-rotating bodies such as Phobos, the ratio
SNRs/SNRṡ at the rotational period will be relatively low: around 3.5 for range-rate
case A, and around 15 for range-rate case B (assuming σs=3 mm). For landers on bodies
with much slower rotational periods, such as Ganymede and Mercury, the SNR ratio is
about 70 and 1,000, respectively. However, as we found to be the case for simulated data
to a Phobos lander (Chapter 4), at these levels of observational accuracy, many models
will need to be improved to make full use of the data quality that would be available
(Section 8.1.4), making it doubtful that the quality of the final science products from a
laser ranging mission to Ganymede or Mercury would be 70 and 1,000 times that from a
system using Doppler tracking. Nevertheless, it does illustrate the exceptional strength
that laser ranging technology can have in characterizing rotational motion in the solar
system. Similarly, tidal deformation of bodies will in most cases manifest itself most
strongly as an approximately once-per-revolution effect on the range to a lander, making
laser ranging exceptionally well suited for the determination of h2 and l2 Love numbers
(and possible k2, due to its influence on rotational dynamics, see Section 2.2.2). It should
be noted, though, that the use of (radiometric) same-beam interferometry (Section 2.1.1)
could provide even greater estimation accuracy for these parameters, although it will
require a network of (at least two) landers on the target body.

A number of physical effects, such as the influence of a tidal lag angle on the orbital
dynamics of natural satellites (Section 2.2.3), are primarily secular in nature. These ef-
fects, however, will not propagate into a secular change in the amplitude of the observable
sensitivity ∂h/∂q. Instead, since effects causing secular orbital acceleration/deceleration
result in an increase/decrease in the orbital period, respectively, they will result in vari-
ations δω of ω (and associated variations δT of the period T ) of the measurement signal,
leading to a range sensitivity of the form:

∂s

∂q
= A sin(ωt+ (δω)t) (8.9)

so that a secular effect on the orbit will manifest itself as a secular effect on the phase
of the partial derivative for the range observable. Assuming δω � ω, the phase shift
will be approximately constant over a single period T of the signal. Consequently, in
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the presence of such a secular effect, the range-rate partial will undergo a phase shift of
the same magnitude as the range partial in Eq. (8.9). Also, the period of the signal of
a parameter q on the range and range-rate partials is equal. Therefore, we can compare
their sensitivity to a secular effect by comparing their sensitivities at the parameter’s
basic frequency ω, which will be the orbital period in the case of the influence of tidal
dissipation.

For the determination of planetary ephemerides (Section 2.2.4), radiometric range
and VLBI measurements are currently the primary sources of spacecraft-based data,
due to the very long periodic signals that must be resolved for their estimation. Laser
range measurements will be about a factor 150-300 more accurate than current planetary
range measurements, and about 30-60 times more accurate than range measurements
from next-generation radio tracking systems. However, the use of laser ranging will not
improve the angular position observations of spacecraft, which are obtained by VLBI
measurements. For VLBI observations, the state-of-the-art measurement accuracy of
1 nrad leads to an approximate position accuracy of 150 m for every AU of distance
between Earth and the target. Although the VLBI measurements provide much looser
constraints in the estimation of ephemerides than laser ranging will, its unique sensitivity
to the out-of-plane component will continue to be an important asset for anchoring
planetary ephemerides, especially over longer time scales. We discussed the potential of
ILR measurements to improve planetary ephemerides in a more general sense in Section
8.1.3.

As discussed in Section 2.3.3, many of the current experimental contributions that
planetary tracking has made to gravitational physics have been obtained from planetary
ephemerides, either directly during the estimation or indirectly through postfit analysis.
Although we have not explicitly included the estimation of gravitational physics param-
eters (as is done by e.g., Turyshev et al. (2010)) in most of our analyses in Chapters 4-7,
our discussion both in this chapter and also in Chapter 4 highlights and partially quan-
tifies the influence that laser ranging could have on experimental gravitational physics,
through its improvement in planetary ephemerides. Additionally, although our analysis
in Chapter 7 showed that relativistic clock effects will not do much to improve the sci-
ence return of planetary landers, the use of the framework that we developed there could
be helpful in achieving longer-term stability of planetary orbiter dynamics estimation,
providing more stringent constraints on gravitational physics parameters. As discussed
in Section 2.3.3 and shown by Eqs. (2.43)-(2.45), a number of physical parameters (both
relativistic and classical) are strongly correlated due to the nearly circular and equato-
rial orbits of the planets. Therefore, highly accurate ephemerides of multiple bodies will
be highly beneficial to decouple these parameters, and ILR tracking data from a single
body will be only limitedly capable of decorrelating various parameters beyond their
current level of uncertainty (Section 8.1.3).

In this section, we have focussed largely on the analysis of two-way ILR data. The
use of one-way data, which suffers from the influence of clock noise (Chapter 6), will
most likely not be able to compete with two-way radiometric data, which is expected to
reach 0.2 m accuracy for next-generation missions. Furthermore, one-way range requires
the estimation of clock parameters, which correlate strongly with long-periodic effects
(see Chapter 6; Section 8.1.3). Therefore, even if the measurement accuracy of one-
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way laser ranging could be reduced to below the expected error level of radiometric
systems, the combined estimation of both clock parameters with arc length Tc and
physical parameters with periodic signals of period Tp will reduce the physical reliability
of both sets of parameters by orders of magnitude if Tc � Tp. This is detrimental for
the science case of such a system, since it is especially the long-periodic effects where the
strength of laser ranging can be exploited (as discussed above and shown in Fig. 8.3). As
such, to make the use of one-way laser ranging systems competitive in e.g., gravitational
physics experiments, an exceptionally stable space-based clock will be required. When
using such clocks, the clock arc length can be increased to a point where its correlation
with the signals from the estimated physical parameters diminishes, and clock noise can
be removed to well below that of a radiometric system. Such a development may be
facilitated by both ground- and space-based optical clocks, (e.g., Bloom et al., 2014),
potentially providing a competitive implementation for one-way laser ranging in the
coming decades.

Our discussion in this section may lead one to the conclusion that laser ranging
will be the superior tracking method for most missions, as only gravity field estimation
seems to be superior with Doppler tracking (using our first-order model), due to the
short wavelength of the signals that are to be measured. However, gravity field determi-
nation is a crucial part of planetary geodesy, as discussed in Section 2.2.1. Additionally,
the very short periodic perturbations that higher degree gravity field coefficients have on
the orbit of a spacecraft makes the accurate knowledge of these parameters important
for an accurate orbit reconstruction of the space segment. This is illustrated very clearly
by Mazarico et al. (2013), who compare the orbit determination of lunar orbiters before
and after the availability of the lunar gravity field computed from GRAIL data (Section
2.2.1). Although gravity field coefficients of low degrees and orders will be estimat-
able with laser ranging systems to an accuracy that is competitive with state-of-the-art
Doppler systems, Doppler will likely remain the method of choice for the estimation of
moderately low-to-high degree gravity fields. For use on landers on solar system bodies,
however, the case from the science return point of view seems clear, with laser ranging
the preferred technology. Nevertheless, as discussed in this dissertation and summarized
in Chapter 9, a variety of issues remain for the implementation of laser ranging technol-
ogy, despite its potential for revolutionizing various aspects of the science return from
planetary missions.



CHAPTER 9

Concluding Remarks

Having synthesized our results of Chapters 4-7 in Chapter 8, taking into consideration
our previous discussion of the theoretical and technological background of ILR of Chap-
ters 2 and 3, we can now offer several overarching conclusions on the use of ILR in
planetary missions. In Section 9.1, we address the main research questions discussed in
Chapter 1. Finally, we provide an outlook to future research and implementation of ILR
in space missions in Section 9.2.

9.1 Conclusions

Our goal in this dissertation was to analyze the potential for future scientific applica-
tion of ILR, with a focus on planetary science objectives (Section 1.2). Specifically, the
goal was to understand the quantitative scientific contributions that ILR could make
to achieving a mission’s planetary science objectives, as well as to understand the main
limitations in the accuracy and implementation of the technology. To this end, we have
analyzed a variety of sources of uncertainty in the measurement and analysis process
(Chapters 4-7; Section 8.1) and have simulated the potential science return for rep-
resentative ILR missions (Chapters 4, 6 and 7). To guide the selection of a specific
type of tracking system, we have investigated the comparative performance of different
types of ILR systems and, finally, have made a first-order comparison of the science re-
turn from a mission employing ILR to that from typical radiometric Doppler and range
measurements (Section 8.2).

Error sources and mitigation

Due to the lack of current missions employing ILR, we cannot yet create an estimate of
ILR measurement and analysis uncertainties based on existing data sets (Section 3.3.1).

261



262 Concluding Remarks

Instead, we have relied on both numerical simulations and extrapolation from existing
systems, especially those used in SLR and laser time transfer. We have provided a
detailed discussion of the various error sources in measurements and data analysis in
Section 8.1. Here, we summarize the key issues regarding error sources in ILR, forming
a crucial part of the analysis of its potential use.

For ILR, hardware and operational developments of both the ground and space seg-
ments will build strongly upon existing and near-future activities of the SLR community.
For the ground segment, this means that ILR will rely on the use of the existing ILRS
station network (Section 3.1.6). For the development of the active space segment of
ILR, hardware developments that are ongoing for laser time transfer and communica-
tions (and to a lesser degree altimetry) provide strong synergy (Sections 3.3.3-3.3.5).

One key factor in the operational design of such a system is the requirement of single-
photon signal intensity detection (Section 3.2.1, Chapter 5). In ILR, the temporal
pulse shape can be modelled to exceptionally high accuracy, due to the absence of
retroreflectors. Therefore, operating at the single-photon detection energy levels allows
the transmitted temporal pulse shape to be directly sampled, with little ambiguity in
how the mean single-photon detection time compares to the pulse centroid’s arrival time
at the detector. Resultantly, nearly all inherent stochasticity in the pulse detection time,
including turbulence-induced signal strength variations, can be removed. Furthermore,
laser ranging operations could be extended into the few-photon detection regime without
significant loss of accuracy by the use of multi-array detector systems. However, a variety
of errors due to both the hardware and analysis model uncertainties (Sections 8.1.2 and
8.1.3) will likely prevent mm-level ILR from being performed in the near future.

A number of the current limitations in the realization and analysis of SLR data will
carry over to ILR. Specifically, the uncertainty in tropospheric range corrections, terres-
trial reference frame, (non-)tidal loading and rotational variations of the Earth will limit
the accuracy of data analysis to the level of at best several mm (Section 3.2.2). Inaccura-
cies due to hardware imperfections will likely be at a similar level, although the absence
of retroreflectors in ILR, and the development of stable (space-grade) detection, timing
and calibration systems may allow mm-level hardware-induced inaccuracies in the future
(assuming single-photon detection). Such accuracy has already been demonstrated on
laboratory scales for a two-way asynchronous system. An important difference between
the error budgets of SLR and ILR, though, is the influence of clock noise. This is es-
pecially true for the use of a one-way range system, where clock noise can cause large
range errors (tens to hundreds of meters) if not mitigated by either the use of an ex-
tremely stable clock or the estimation of clock parameters (with resulting difficulties, as
discussed below), see Chapter 6. For a two-way system, ground stations will require an
H-maser quality clock (or better) for typical planetary target light times to prevent the
clock noise at the ground station from introducing >mm-level errors in the (two-way)
measurements.

As a specific test case of a planetary mission employing ILR, we analyzed in depth
the science return from a Phobos lander equipped with a laser ranging system, focussing
on the estimation of geodetic characteristics of the Martian system (Chapter 4). Our
analysis has shown that systematic range measurement errors will be 1-2 orders of mag-
nitude more influential in the final error budget of the estimated parameters than the
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measurement precision will be. This makes the mitigation of Gaussian uncorrelated
measurement noise (for instance by means of using a shorter laser pulse) of limited
interest. The specific influence of a general time-correlated error source, of which a sys-
tematic error is but one example, depends on how its behaviour compares to that of the
estimated parameters.

One of the measurement error sources we investigated in detail here is the non-
Gaussian range error due to variable signal strength caused by varying turbulence
strength, zenith angle, atmospheric transmittance, target distance, etc. (when not op-
erating at the single-photon level), see Chapter 5. We found that this error source can
induce variations in the range measurement at the several mm-level for typical ILR
systems. Furthermore, such variations will show a periodic signature with a period ap-
proximately equal to the synodic period between the Earth and the target body. Such
variations could be absorbed into the ephemerides estimation, potentially diminishing
their quality, as well as complicating the determination of their accuracy (Section 8.1.2).

Influence of ILR system type

In the selection of an ILR system, mission designers are faced with a range of choices
in the type of laser ranging system. Primarily, this concerns the choice of a one-way
or two-way system, but also the choice of space segment hardware and ground segment
requirements, potentially limiting the set of ILRS stations that can contribute to the
tracking campaign.

In this dissertation, we have for the first time made a detailed analysis of the com-
parative performance of a one- and two-way laser ranging system (Chapter 6). The
error budgets of these systems differ primarily in how the clock noise influences the
measurements, which accumulates with time for a one-way system, and only over the
light time for a two-way system. Due to the impossibility of a priori separation of ac-
cumulated clock noise from other measurement and model errors in a one-way system,
it provides inferior performance in terms of parameter estimation quality compared to
that of the two-way system. Nevertheless, a one-way system only requires a detector on
the space segment, not an active laser system, thereby reducing the system’s mass and
power requirements. Although the complexity of a one-way system is lower, making it
a lower-risk solution, a two-way system could be repurposed to function as a one-way
system in the event of failure of part of the space segment hardware.

In the analysis of one-way data, the influence of clock noise can be reduced with the
estimation of clock parameters. This approach is currently taken in the orbit determi-
nation of LRO from laser ranging data (Bauer et al., 2014). However, correlations with
other parameters, as well as the typically non-continuous coverage of laser ranging data,
prevent the use of very short clock arcs. We observed this effect clearly in our simulated
estimation of the state of Phobos using one-way range data. There, the increasing in-
fluence of correlations with an increasing number of clock arcs prevents the use of clock
arcs shorter than about 5 days, resulting in an error of Phobos’ state that is 2 orders
of magnitude larger than that which is obtained from the two-way data simulations.
Furthermore, our numerical analyses show that the estimation of clock parameters to
mitigate the accumulated clock noise in a one-way system will correlate strongly with
parameters that are manifested as long-periodic signals in the range data, such as lan-
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der positions, once-per-orbit planetary dynamics effects, etc. Consequently, missions for
which the estimation of such parameters is crucial for attaining the (primary) science
goals should not use a one-way system that requires the estimation of even moderately
short clock arcs. This is problematic for the science case of a one-way system, since
range measurements are especially competitive with existing tracking techniques in the
estimation of long-periodic effects (Sections 2.1.3 and 8.2.2). The estimation of clock pa-
rameters can be prevented by the use of an extremely accurate clock on both the ground
and space segments, which can largely undo the influence of clock noise altogether. How-
ever, the mass and power requirements of such a timing system may completely undo
the advantage of the relative simplicity of a one-way system (compared to a two-way
system).

Similar to the influence of clock noise on one-way data, the coupling between trans-
lational dynamics and clock rates can cause substantial one-way range errors in the
data analysis, when using an a priori time ephemeris (Chapter 7). Updating the time
ephemeris during each iteration of the estimation can largely mitigate this problem,
provided that the parameters that are relevant for computing the time ephemeris are
included in the estimation and can be improved to a sufficient degree with the available
data. However, to fully quantify the influence of this effect on the estimation uncer-
tainty, the time dynamics and orbital dynamics should be concurrently estimated. We
have developed the framework for such an approach in this dissertation.

Despite the apparently clear advantage of a two-way system in terms of parameter
estimation uncertainty, the quality of the analysis of both one- and two-way data may be
limited by uncertainties in other models, as we found in the case of orbit determination
of a lunar orbiter, where dynamical model uncertainty limits the attainable position
uncertainty (Chapter 6). As a result, the quality of the orbits estimated from the
one- and two-way data was similar. However, two-way data may be used to improve
(non-conservative) force models, whereas it is difficult to fully distinguish mismodelled
dynamics from clock noise in the residuals of one-way data. As a result, determining the
added value of using a two-way system in a specific mission (compared to a one-way or
radiometric system) will require an analysis of the full chain of measurement and model
errors, including the potential for the measurement data to improve such models.

Comparison and synergy with other science instruments

For ILR to be implemented as a tracking system for planetary missions, considerations
of either scientific or programmatic (cost, mass, power, etc.) nature should show its
inclusion to be the optimal design choice for the mission under consideration. From a
science return point of view, it should be shown to be either a superior choice compared
to existing (radiometric) tracking techniques, or to provide valuable data in addition to
typical tracking techniques. As we have shown in Section 8.2.2, Doppler tracking data
is strongest for observing short-periodic effects, since their sensitivity decreases with
increasing period of the effects that is to be observed, making them more suitable for
estimating the spacecraft’s local dynamics. Range measurements, on the other hand,
are equally sensitive to effects at any period, making them well suited to observing
the global dynamics. We have quantified the comparison of radio Doppler with laser
ranging by assuming purely periodic effects on the range measurements due to estimated
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parameters. We find that, depending on the precise quality of the next generation
of Doppler and laser range systems under consideration, an ILR system can provide
competitive estimation quality for parameters which are manifested in the data as signals
with a period of longer than 0.5 to 5.0 hours. These values indicate similar or superior
estimation performance from ILR for most parameters that are typically estimated from
planetary tracking data, with the important exception of all but the lowest orders of a
body’s gravity field coefficients. The weakness of ILR in gravity field estimation may
limit its capabilities as a tracking tool for planetary orbiters, since uncertainty in the
planetary gravity field will propagate into uncertainty in the spacecraft’s orbit, and the
associated science products. For the case of landers on solar system bodies, however,
the science return from an ILR system is in most cases clearly superior to that from a
radiometric Doppler system, at least in the first-order comparison model that we employ.

The analysis of ILR data poses important challenges beyond the estimation of geode-
tic (Section 2.2) and relativistic (Section 2.3) parameters, which are typically the two
classes of science parameters that are estimated from tracking data. Due to the revolu-
tionarily accurate range measurements that ILR will be able to deliver, improvements in
the various models entering the analysis and interpretation of the data must be brought
to a level where it can be used to its full potential (Chapter 4; Section 8.1.4). Not only
will this require significant modelling efforts (for instance for detailed rotational, tidal or
relativistic models), but interpretation of the data will require more accurate knowledge
of various quantities that cannot be obtained from tracking data alone. Examples of
such synergistic data are magnetic field, heat flow, geological and seismic measurements,
which will be important for the full characterization of a body’s interior structure and
composition. We discussed this effect in detail for our simulations of a Phobos lander
in Chapter 4, for which the shape model’s uncertainty limits the degree to which the
estimated gravity field and rotational characteristics can be mapped to interior structure
and composition models. Similarly, due to the difficulty in decorrelating various classical
and relativistic effects from planetary orbital dynamics, ILR data for multiple bodies
would be highly advantageous in the estimation of parameters that quantify such effects
(such as the solar J2 and the PPN parameter β), see Section 2.3.3.

Similar results on the limitations of highly accurate two-way data were found in the
analysis of simulations for a lunar orbiter (Chapter 6), in which the dynamical model un-
certainty, not the measurement errors, limited the orbit estimation quality. Additionally,
for our analysis of the coupling between time and translational dynamics (Chapter 7),
our results indicated that the uncertainty of a priori orbital solutions can dramatically
reduce the quality of the analysis of (one-way) range data, if no suitable corrective ac-
tion is taken during the estimation process. The fact that significant influence of model
errors appears in various, unrelated, aspects of ILR data analysis is inherent in the un-
precedented measurement accuracy. Resultantly, its application will require not only
development of the technique itself, but also the development of related next-generation
models and instruments, to ensure a balanced science return from future planetary mis-
sions, in which the various instruments complement each other to a level where each of
them can be exploited to its full potential.
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9.2 Recommendations and Outlook

The first implementation of ILR as an operational tracking technique may very well occur
some time in the next decades. Considering the high cost and resulting relative scarcity
of planetary missions, however, a more precise timeframe for the first operational ILR
system is impossible to define. Moreover, the use of ILR is strongly contingent upon
the capabilities of such a system to strengthen the science case of a specific mission.
In the case of lander missions for which the accurate estimation of rotational, orbital
and/or tidal characteristics is crucial to attaining the mission’s science goals, this case
is the strongest, as we have shown in this dissertation (Section 8.2.2). However, before
the technology is implemented, a variety of aspects needs to be investigated further.
For instance, the space-segment systems will need to be developed in more detail. Also,
ground station operations and systems, specifically the clock quality and bistatic pointing
capabilities, will require additional attention for the implementation of ILR (Sections
3.1.6 and 3.2.1; Chapter 6). As such, this dissertation only forms one of the first steps
in the path to its implementation in planetary science missions.

The High Gain Antenna and associated systems on planetary missions fulfil two core
functions: tracking and communications. In principle, both functions can also be per-
formed by a laser system. Even so, the limitations of a laser ranging system in observing
short-periodic effects in the tracking data may prevent an optical system from replacing
radiometric systems in future missions. Moreover, there is decades worth of experience
with the design, operations and analysis of radiometric systems, making them the logical
default choice in mission design. As such, it seems unlikely that the first missions em-
ploying ILR will rely entirely on it for their tracking data. Instead, the first operational
use of two-way ILR will likely be in combined use with a radiometric system, where the
laser system is possibly multi-purposed as a communications or altimetry system, as
was the case for LRO (Section 3.3.1). However, as has been shown extensively in both
theoretical work and recently in practice by the LADEE mission, a laser communica-
tions system can offer extremely high data rates at low mass and power requirements
(Section 3.3.3). Therefore, for missions in which the quantification of short-periodic
orbital effects is not crucial, using a laser system instead of a radio system may already
be a competitive system design choice. Based on these considerations, an optical system
could especially facilitate the tracking and communications of planetary microsatellites
or cubesatellites, which have much more stringent mass and power requirements. How-
ever, a crucial design issue of any space segment performing ILR (especially spacecraft)
is the pointing accuracy and stability that is required, which is in the order of 50 µrad (≈
10 arcseconds) (Section 3.1.3), orders of magnitude more stringent than for radiometric
tracking. Development of a pointing system for the laser transmission and detection
assembly (potentially bistatic) will be an important part of the required technology de-
velopment and operational implementation that falls outside the scope of typical SLR
operations. However, developments in the field of optical communications (which has
more stringent pointing requirements than ILR) are of significant value in this respect.

We have clearly shown throughout this dissertation (Chapters 4-7; Section 8.1.4) that
the true error distribution behaves rather differently from the formal error distribution
that is obtained from the least squares estimation. Crucially, the formal error can
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often be order(s) of magnitude more optimistic than the true estimation error. The
use of (scaled) formal errors, as obtained from a weighted least squares estimation,
remains common practice in (planetary) tracking data analysis. However, the inclusion
of detailed error descriptions directly in the estimation will both streamline the analysis
process and allow for the robust processing and interpretation of future ILR data. This
could be achieved by including a priori knowledge on the magnitude and statistical
behaviour of non-Gaussian and time-correlated error sources in both the measurements
and analysis models, by applying more elaborate estimation schemes than the typical
least squares approach, such as an extended Kalman filter, (e.g., Tapley et al., 2004), in
which measurement and model uncertainty distributions can be directly incorporated.
Setting up a generic simulation and analysis framework that incorporates such techniques
will facilitate the rapid analysis of tracking architectures of future planetary missions,
thereby allowing the value of ILR to be analyzed and traded off against other tracking
techniques in an early phase of the mission concept development.

Furthermore, such analysis of the performance of an ILR system, including the crucial
quantification of differences between true and formal errors, will benefit greatly from a
bottom-up measurement error model, efforts towards which have been performed for
this dissertation. Using such a bottom-up model, a time series of measurement errors
can be generated from hardware and environmental characteristics. These measurement
errors can then be used in a simulation/estimation framework, allowing for a realistic
mapping from hardware, mission and environment properties to science return. Such
models should include the simulation of noise levels and the subsequent data filtering,
which will allow for a better quantification of limiting geometric configurations of a
mission (such as the Sun avoidance angle) based on models for, for instance, the stray
light in a laser detection system, atmospheric scattering, etc.

ILR operations will most likely rely largely or entirely on the existing ground infras-
tructure of the ILRS. Although it is possible that only a selected set of ground stations
will contribute to interplanetary ranging campaigns (as was the case for LRO), it is
unrealistic to expect that all stations will operate in such a manner that single-photon
signal intensity detection is always ensured. In all likelihood, ILRS stations will continue
to consider SLR/LLR as their primary goal, and invest their resources to upgrade and
optimize their systems accordingly. Nonetheless, current developments in the ground
station hardware to achieve mm-accuracy SLR measurements will mostly benefit the
improvement of ILR data quality equally well. However, ILR will also require H-maser
quality clocks to minimize their error budgets (Section 3.2.1; Chapter 6). Additionally,
the required point-ahead of the transmitter (due to the large light times in ILR) will
complicate the operations at the ground station, since bistatic pointing will most likely
be required, in which the detection and transmission telescope can be independently di-
rected. For both the development of ground station operations and space-grade hardware
developments, previous experience with LADEE (Section 3.3.3), current developments
on the European Laser Time transfer (ELT) project (Sections 3.2.1 and 3.3.4), and other
future developments in laser time transfer, communications and altimetry systems will
improve the Technological Readiness Level (TRL) of ILR.

In addition to the need to improve the accuracy and operational readiness of the
technology, models for the analysis of ILR data will need to be improved to fully exploit
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the information content encoded in the data, as shown at multiple points in this disser-
tation (Chapters 4, 6 and 7; Section 3.2.2 and 8.1.3). Such improvements include those
which are relevant for existing space geodetic techniques, for instance the improvement
of the accuracy of the terrestrial reference frame, models for loading effects on station
position and models for Earth rotation, each of which currently prevents sub-mm ac-
curate modelling of ground station positions. With the implementation of ILR, such
mm-level effects that have plagued the analysis of terrestrial satellite geodesy data will
also strongly enter the error budgets of planetary missions. Similarly, sub-mm accurate
tropospheric range corrections will be required for the laser data, which could be facil-
itated by the routine use of ray-tracing models. However, mm-level modelling of ILR
data will require substantial developments beyond the terrestrial realm. For instance,
dynamical models for the solar system will need to be brought to a new level for ILR data
analysis, requiring not only the development of new models, but also the implementation
of various physical effects into existing codes, which were mostly developed in an era
when mm-level interplanetary range measurements were not deemed to be realistic. One
of the key issues is the asteroid and Kuiper belt’s perturbations on planetary motions,
which will be especially crucial for the accurate ephemerides of the terrestrial planets
(Section 2.2.4). Mitigating this perturbation may require the estimation of a very large
number of individual asteroid masses and orbits, in addition to the typical estimation
of a ring-shaped mass distribution. Furthermore, relativistic modelling issues, such as
deviations of a body’s geodesic from the worldline of its center of mass and second-order
post-Newtonian dynamics and frame transformation effects (Section 2.3.2) will need to
be developed and implemented in existing ephemeris generation codes for laser ranging
data analysis. At the mm-level, non-gravitational forces, most notably radiation pres-
sure, will begin to be relevant for an increasing number of bodies, such as the Martian
moons. Also, the influence of higher order gravitational interactions (between J2 terms
for instance) on the translational dynamics of bodies in close orbits, such as Phobos and
Mars, may become relevant in ILR data analysis. Finally, as we showed in Section 7.1 of
Chapter 4 the decoupled analysis for translational and rotational motion will no longer
be sufficient for such close bodies, requiring the concurrent modelling and estimation of
both types of dynamics (in addition to the time dynamics that we discuss in Chapter 7).
In such an approach, the estimation of rotational dynamics could be done on an equal
footing with that of translational dynamics. The estimated parameters would be the
initial rotational state and relevant physical characteristics (inertia tensor, tidal proper-
ties), as opposed to the estimation of a wide spectrum of libration amplitudes (Section
2.2.2), which was shown to be an issue for ILR tracking data of a Phobos lander. Such
a development of coupled translational-rotational dynamics estimation would be in line
with the unification of the estimation of initial translational state and proper time that
we have developed here in Chapter 7.

In this dissertation, we have mostly focussed on Phobos as a scientific target of
interest, as it forms both a very suitable target for ILR from a mission design perspective
and an interesting target from a planetary science as well as a fundamental physics
point of view. However, the science case for other mission architectures will require
specific attention, as the results for a Phobos lander cannot be directly quantitatively
carried over to other missions. Such analyses will be best performed in the context
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of a complete mission design, be it for a mission call, such as ESA’s M- or L-class
missions, or a mission design study such as that performed by JPL’s Team X, which
resulted in the study of Turyshev et al. (2010), or ESA’s Concurrent Design Facility
(CDF). By performing the analysis within a larger framework, the synergy with other
instruments, and interdependencies of their system and science requirements will be
more easily identified, which we have shown is crucial in the design of an ILR mission.
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J. G., and Karatekin, Ö. (2010). Librational
response of Enceladus. Geophysical Research
Letters, 37:4202.



Bibliography 289

Rambaux, N., Castillo-Rogez, J. C., Le Maistre,
S., and Rosenblatt, P. (2012). Rotational mo-
tion of Phobos. Astronomy and Astrophysics,
548:A14.

Rambaux, N. (2013). Rotational motion of phobos
in the earth equatorial reference frame. Techni-
cal Note IMCCE.

Reasenberg, R. D., Shapiro, I. I., MacNeil, P. E.,
Goldstein, R. B., Breidenthal, J. C., Brenkle,
J. P., Cain, D. L., Kaufman, T. M., Komarek,
T. A., Zygielbaum, A. I. (1979). Viking relativ-
ity experiment - Verification of signal retarda-
tion by solar gravity. The Astrophysical Jour-
nal, 234:L219–L221.

Recolons, J., Andrews, L. C., and Phillips, R. L.
(2007). Analysis of beam wander effects for
a horizontal-path propagating Gaussian-beam
wave: focused beam case. Optical Engineering,
46(8):086002–086002–11.

Richard, A., Rambaux, N., and Charnay, B.
(2014). Librational response of a deformed
3-layer Titan perturbed by non-Keplerian or-
bit and atmospheric couplings. Planetary and
Space Science, 93:22–34.

Richter, G. W. and Matzner, R. A. (1983). Second-
order contributions to relativistic time delay
in the parametrized post-Newtonian formalism.
Physical Review D, 28:3007–3012.

Ricklefs, R. and Shelus, P. (1992). Poisson Filter-
ing of Laser Ranging Data. In 8th International
Workshop on Laser Ranging, pp. (9–26) – (9–
32).

Riley, W. (2008). Handbook of frequency stabil-
ity analysis. US Department of Commerce, Na-
tional Institute of Standards and Technology.

Rivoldini, A., van Hoolst, T., Verhoeven, O., Moc-
quet, A., and Dehant, V. (2011). Geodesy con-
straints on the interior structure and composi-
tion of Mars. Icarus, 213:451–472.

Rivoldini, A. (2012). The interior structure of ter-
restrial planets - An application to Mars. PhD
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feld eines Massenpunktes nach der Einstein-
schen Theorie. Sitzungsberichte der Königlich
Preußischen Akademie der Wissenschaften
(Berlin), pp. 189–196

Seeber, G. (2003). Satellite Geodesy. Walter de
Gruyter, 2nd edition.

Seidelmann, P. K., Abalakin, V. K., Bursa, M.,
Davies, M. E., de Bergh, C., Lieske, J. H.,
Oberst, J., Simon, J. L., Standish, E. M.,
Stooke, P., and Thomas, P. C. (2002). Re-
port of the IAU/IAG Working Group on Carto-
graphic Coordinates and Rotational Elements of
the Planets and Satellites: 2000. Celestial Me-
chanics and Dynamical Astronomy, 82:83–111.

Shapiro, I.I. (1964). Fourth Test of General Rela-
tivity. Physical Review Letters, 13(26):789–791.

Sheikh, S. I., Pines, D. J., Ray, P. S., Wood,
K. S., Lovellette, M. N., and Wolff, M. T.
(2006). Spacecraft Navigation Using X-Ray Pul-
sars. Journal of Guidance, Control and Dynam-
ics, 29:49–63.

Shin, D., Bagri, D., and Border, J. (2014).
Advanced Calibration Technique for Accurate
Three-Way Spacecraft Ranging. Interplanetary
Network Progress Report, 42(199):C1.

Shklovskii, I. S., Esipov, V. F., Kurt, V. G., Moroz,
V. I. and Shcheglov, P. V. (1959). An Artificial
Comet. Soviet Astronomy, 3:986–991.

Siegman, A. E. (1986). Lasers. University Science
Books.

Sinclair, A. (1997). Data Screening and Nor-
mal Point Formation - Re-Statement of
Herstmonceux Normal Point Recommen-
dation. http://ilrs.gsfc.nasa.gov/data and
products/data/npt/npt algorithm.html, last
accessed 01/03/2014.

de Sitter, W. (1916). On Einstein’s theory of grav-
itation and its astronomical consequences. Sec-
ond paper. Monthly Notices of the Royal Astro-
nomical Society, 77:155–184.

Sjogren, W. L. and Wollenhaupt, W. R. (1973).
Lunar Shape via the Apollo Laser Altimeter.
Science, 179:275–278.

Smith, D., Zuber, M., Sun, X., Neumann, G., Ca-
vanaugh, J., McGarry, J., and Zagwodzki, T.
(2006). Two-way Laser Link over Interplane-
tary Distance. Science, 311:53–53.

Smith, D. E., Zuber, M. T., Neumann, G. A.,
Lemoine, F. G., Mazarico, E., Torrence, M. H.,
McGarry, J. F., Rowlands, D. D., Head, J. W.,
Duxbury, T. H., Aharonson, O., Lucey, P. G.,
Robinson, M. S., Barnouin, O. S., Cavanaugh,
J. F., Sun, X., Liiva, P., Mao, D.-d., Smith,
J. C., and Bartels, A. E. (2010). Initial ob-
servations from the Lunar Orbiter Laser Al-
timeter (LOLA). Geophysical Research Letters,
37:18204.



Bibliography 291

Smith, D. E., Zuber, M. T., Phillips, R. J.,
Solomon, S. C., Hauck, S. A., Lemoine, F. G.,
Mazarico, E., Neumann, G. A., Peale, S. J.,
Margot, J.-L., Johnson, C. L., Torrence, M. H.,
Perry, M. E., Rowlands, D. D., Goossens, S.,
Head, J. W., and Taylor, A. H. (2012). Gravity
Field and Internal Structure of Mercury from
MESSENGER. Science, 336:214–217.

Soffel, M. H. (1989). Relativity in Astrometry, Ce-
lestial Mechanics and Geodesy. Springer.

Soffel, M., Klioner, S. A., Petit, G., Wolf, P.,
Kopeikin, S. M., Bretagnon, P., Brumberg,
V. A., Capitaine, N., Damour, T., Fukushima,
T., Guinot, B., Huang, T.-Y., Lindegren, L.,
Ma, C., Nordtvedt, K., Ries, J. C., Seidelmann,
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Sośnica, K. (2014). Determination of Precise
Satellite Orbits and Geodetic Parameters using
Satellite Laser Ranging. PhD thesis, University
of Bern.
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G., Mazarico, E., Torrence, M., McGarry, J., Smith, D., and Zuber, M. (2013), Analysis and
application of one-way laser ranging data from ILRS ground stations to LRO. In ibid., paper
number 13-0404

• Thuillot, W., Lainey, V., Arlot, J.-E., Dehant, V., Gurvits, L.,, Hussmann, H., Oberst, J.,
Rosenblatt, P., Marty, J. C., Vermeersen, B., de Cuyper, J.-P., Dirkx, D., Cimò, G., Duev,
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