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On-the-Fly Jumping With Soft Landing:
Leveraging Trajectory Optimization

and Behavior Cloning
Edoardo Panichi, Jiatao Ding , Vassil Atanassov , Peiyu Yang , Jens Kober , Senior Member, IEEE,

Wei Pan , Member, IEEE, and Cosimo Della Santina , Senior Member, IEEE

Abstract—Quadrupedal jumping has been intensively
investigated in recent years. Still, realizing controlled
jumping with soft landings remains an open challenge
due to the complexity of the jump dynamics and the need
to perform complex computations during the short time.
This work tackles this challenge by leveraging trajectory
optimization and behavior cloning. We generate an optimal
jumping motion by utilizing dual-layered coarse-to-refine
trajectory optimization. We combine this with a variable
impedance control approach to achieve soft landing.
Finally, we distill this computationally heavy jumping and
landing policy into an efficient neural network via behavior
cloning. Extensive simulation experiments demonstrate
that, compared to classic model predictive control, the
variable impedance control ensures compliance and
reduces the stress on the motors during the landing
phase. Furthermore, the neural network can reproduce
jumping and landing behavior, achieving at least a 97.4%
success rate. Hardware experiments confirm the findings,
showcasing explosive jumping with soft landings and
on-the-fly evaluation of the control actions.
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I. INTRODUCTION

QUADRUPEDAL robots excel at navigating complex ter-
rain, making them invaluable for exploring uncharted

areas, such as challenging stairs, rocky terrain, and confined
spaces. Among various locomotion modalities, quadrupedal
jumping enhances mobility and adaptability [1], [2]. In particu-
lar, achieving a soft landing after touch-down reduces mechani-
cal stress, extending robotic durability [3]. We aim to address this
challenge, especially for the quadruped without precise contact
force sensors [4] or without compliant mechanical design [5].

To address the computationally intense jumping planning and
control task, the pipeline is often split into two stages: a motion
planning stage and a motion tracking stage. A prevalent approach
in the planning phase is trajectory optimization (TO), aiming for
the optimal trajectory passing through a set of waypoints. This
method has enabled various achievements, including jumping
through window-shaped obstacles [6], robust jumping [7], and
continuous jumping [8]. To achieve online optimization, Chig-
noli and Kim[9] ignored joint dynamics and kinematics during
the stance phase, assuming that the feet are located within a
confined workspace that does not violate the limits of kinemat-
ics. Alternatively, Yue et al.[10] exploited analytical solutions
for fast computation. After obtaining a reference, model-based
controllers, such as virtual model control [11], model predictive
control (MPC) [12], and whole-body control [13], can be inte-
grated for motion tracking. However, none of the above work
emphasizes soft landing.

A soft landing is characterized by two main features: com-
pliance with movement and reduction in motor stress. In this
context, Jeon et al.[14] developed an optimal landing controller
to regulate touchdown postures and forces. Although impres-
sive, this work focused on falling rather than jumping. Roscia
et al.[15] solved the problem of landing control with aggres-
sive horizontal velocities, which, however, is limited by the
assumption of landing on flat ground. Ding et al.[16] utilized
an online TO to generate the Cartesian space landing motion
but ignored the feasibility of the joint movement. Lu et al.[17]
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adopted virtue force control for soft landing, however, without
considering constraints.

In contrast to model-based approaches, model-free strate-
gies, such as reinforcement learning (RL), enable learning con-
trol policies through data sampling. Deep RL has facilitated
significant advancements in performing jumping tasks [18],
[19], among which the imitation learning (IL) framework has
been well investigated [20], [21], [22]. However, the RL frame-
work requires careful design and reward tuning, and needs to
bridge the sim2real gap. In contrast, behavior cloning (BC), a
variant of IL [23], allows the agent to learn an effective policy
matching the behavior of the expert while avoiding the compu-
tational overhead of TO. Although impressive results have been
achieved [24], [25], very limited trials in quadrupedal jumping
are reported. Kurtz et al. [26] appeared to be the closest study,
where a synthetic dataset was used to train a model on robot
reorientation and landing during falls. However, comprehensive
jumping with soft landing is not investigated.

In this work, we exploit the best of both fields, i.e., TO
and BC, to achieve quadrupedal jumping with a soft landing.
In particular, our solution involves a deep supervised learning
framework that replaces the model-based planner and controller,
enabling on-the-fly execution. First, we utilize model-based TO
to generate optimal reference conditioned by jumping goals.
Then, integrated with a variable impedance controller (VIC) for
compliant landing, we generate a synthetic dataset of 11 000
jumps with soft landings. This dataset is then used to train a
neural network (NN), achieving performance comparable to the
model-based method, but releasing the computational burden.

The main contributions are as follows.
1) We formulate a dual-layer TO for jumping motion gen-

eration, leveraging the actuated spring-loaded inverted
pendulum (aSLIP) dynamics and the single rigid body
(SRB) dynamics.

2) We develop a compliant controller to minimize landing
impact and motor efforts after touch-down.

3) We propose a BC scheme for on-the-fly control. Ex-
periments demonstrate that the trained NN successfully
replicates the soft landing behaviors and bypasses com-
putational inefficiencies associated with the planner.

The rest of this article is organized as follows. In
Section II, we state the problem formulation. Section III details
the optimization-based jumping and landing control strategy.
Section IV explores the supervised learning-based BC approach.
Section V presents the experimental results. Finally, Section VI
concludes this article and discusses the future work.

II. PROBLEM STATEMENT

The primary objective is to perform a quadrupedal jump with
a soft landing. In particular, we aim for on-the-fly execution
without necessitating extensive computation.

For a jumping motion, the full state of the robot is

X+ = [x, y, z, φ, θ, ψ, ẋ, ẏ, ż, ωr, ωp, ωy, q
T, q̇T] (1)

where [x, y, z] represent the 3-D center of mass (CoM) position,
while [φ, θ, ψ] denote roll, pitch, and yaw angles. [ẋ, ẏ, ż] and

Fig. 1. Go1 jumps with a soft landing, using the learned policy from
the BC. The distance between the red and green lines is 40 cm.

[ωr, ωp, ωp] represent the linear velocity and the angular veloc-
ity, respectively. Joint positions and velocities are indicated as
q ∈ R12 and q̇ ∈ R12, respectively.

In this work, we focus on the sagittal jump. Given the desired
jumping distance d, the state of the robot at any given moment
is then encapsulated by

X = [z, φ, θ, ψ, ẋ, ẏ, ż, ωr, ωp, ωy, q
T, q̇T, d]. (2)

Denoting the control input u, the problem is defined as follows.
Problem: Starting from an initial state denoted byX0, identify

the control action sequence u that enables the robot to achieve
a jump of the desired length d. This sequence should be opti-
mized to minimize motor effort and ensure smooth deceleration
during the landing phase for a soft landing. Moreover, real-time
computation of u must be ensured.

Notations: Matrices and vectors are separately highlighted
in bold normal font and bold italic font. The superscript (·)T

represents the transpose operation. For the matrix with multiple
rows and columns, the index (·)(k) means the kth column, and
the subscript (·)(i,j) notes the element in the ith row and jth
column. For the vector, (·)(k) refers to thekth element. Variables
accompanied by (·)r denote the reference values. Besides, vari-
ables with the superscript (·)max and (·)min separately denote
the upper and lower boundaries, respectively.

III. JUMPING PLANNING AND CONTROL

This section details the model-based motion planning and
control. For motion planning, a dual-layer TO is proposed. For
the soft landing, we resort to the VIC.

A. Jumping Motion Generation: Coarse-to-Refine TO

As illustrated in Fig. 1, we divide the jumping motion into a
stance phase and a flight phase, with all and none of the feet in
contact, respectively. Assuming Ns knots for stance (each knot
lasts ts) andNf knots for flight (each knot lasts tf ), we generate
the jumping trajectory over N knots (N=Ns+Nf ).

1) First-Layer—TO With aSLIP Dynamics: Given the desired
landing position, the first layer quickly generates a raw jump-
ing trajectory, providing an initial guess for the second layer.
Modeling the quadruped as an aSLIP [16], we solve

arg min
c,a,dt

Jcost (3a)

s.t. Kinematic constraints

c(0) = c0, ċ(0) = 0 (3b)
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c(1,N−1) = zrf (3c)

c(1,Ns−1) = zrtakeoff (3d)

cmin ≤ c(k) ≤ cmax ∀k ≤ Ns (3e)

dtmin ≤ dt ≤ dtmax (3f)

Dynamics constraints

∀k ∈ [0, 1, . . . , N−1]

c(k + 1) = Taylor(c(k), ċ(k), c̈(k)) (3g)

∀k ≤ Ns :

c̈(k) =Fs(c(k))/m+g+a(k) (3h)

a(1,k) + F s,z(c(k))/m ≥ 0 (3i)

|c̈(0,k)/(c̈(1,k) + g)| ≤ μ (3j)

∀k > Ns

c̈(k) = g (3k)

where c ∈ R2×N is the sagittal CoM position where the first
and second row separately denote the forward and vertical
position. a ∈ R2×N is the sagittal acceleration resulting from
the actuation force, and dt ∈ R2 is the time steps for the stance
and flight phase. Fs(c(k)) ∈ R2 is spring force and F s,z(c(k))
is the vertical component. m is the total mass and g = [0, g]T is
the gravitational acceleration.

Cost function: The cost function in (3a) penalizes control
inputs (i.e., a) and CoM jerk (

...
c ) during stance, penalizes the

jumping height during the flight, and penalizes the tracking error
of landing position. In short, it is defined as

Jcost =

Ns∑
k=1

(βa‖a(k)‖2 + βjerk‖...
c (k)‖2)

+

N∑
k=Ns

βf‖cz(k)− zrtakeoff‖2 + βx‖cx(N−1)− xrf‖2

(4)

with xrf and zrtakeoff being the desired landing distance and
takeoff height, respectively, and, βa, βjerk, βf , and βx, being
the coefficients.

Constraints: Equation (3b) ensures that the trajectory starts
from a particular initial state (with c0 ∈ R2 being the initial
CoM position). Equation (3c) ensures that the robot lands at
the desired height zrf (as illustrated in Fig. 1). Equation (3d)
regulates the height of the takeoff (zrtakeoff) so that the robot
can jump. Furthermore, (3e) obeys the kinematic reachability.
Equation (3f) limits the timestep.

The dynamics constraints ensure that the robot follows the
aSLIP dynamics [with (3h) in stance and (3k) in flight]. Equa-
tion (3g) is realized through second-order Taylor integration.
Furthermore, the constraint in (3i) avoids free fall, and (3j)
ensures that there is no slippage in stance with μ being the
friction coefficient.

2) SRB-Based Kino-Dynamics Optimization: Using the first
layer as the reference, we refine the motion with kino-dynamics

TO, leveraging the SRB dynamics,1 in the following:

arg min
X+,F,r

‖X̃− X̃r‖2
Q (5a)

s.t. Kinematic constraints

X+(0) = X+
0 , r(0) = r0 (5b)

cd − ε ≤ X(0:2,N−1) ≤ cd + ε (5c)

∀k ∈ [1, 2, . . . , N ]

ri(k) = FK(qi(k)), i ∈ {1, 2, 3, 4} (5d)

‖hi(k)− ri(k)‖ ≤ Lmax
leg (5e)

X+(k) ∈ B (5f)

Dynamics constraints

∀k ≤ N − 1

Ẋ+(k + 1) = f(X+(k), r(k),F(k)) (5g)

∀k ≤ Ns

CCC(F(k), r(k)) (5h)

|[J(qi(k))]TFi(k)| ≤ τmax (5i)

− μFi
(2,k) ≤ Fi

(0,k) ≤ μFi
(2,k) (5j)

− μFi
(2,k) ≤ Fi

(1,k) ≤ μFi
(2,k). (5k)

With this formulation, we optimize the full state (X+ ∈
R36×N ), contact force (F ∈ R12×N ), and foot location (r ∈
R12×N ). Fi, hi, qi, and ri (∈ R3×N ) are the contact force, hip
position, joint angle, and foot location of the ith leg, respectively.

Cost functions: Equation (5a) penalizes the tracking errors
of the reference CoM motion. X̃ ∈ R6×N contains the first
six states of X+, and X̃r ∈ R6×N contains the reference CoM
position and body inclination, among which the reference lateral
CoM position and body inclination angles are zeros by default.
The state errors are weighted by the matrix Q.

Constraints: Constraints (5b) define the initial conditions,
including the starting CoM stateX+

0 and the initial foot position
r0. Equations (5c) ensure the terminal CoM position near the 3-D
target position (cd ∈ R3), with ε serving as slack parameters.

The constraint in (5d) transforms the joint angles into the
feet’ positions with forward kinematics. Equation (5e) restricts
leg length within kinematic reachability, defined by Lmax

leg .
The constraint (5f) sets boundaries for the state variables.

Equation (5g) imposes the SRB dynamics. At each step, we
have that

Ẍ+
(0:2,k) =

nc∑
i=1

Fi(k)/m−fg

d

dt
(IX+

(9:11,k)) =

nc∑
i=1

(ri(k)−X+
(0:2,k))×Fi(k). (6)

1The formulation draws inspiration from the work in [14]. However, while
the work in [14] mainly addresses falls, we here define the TO for explosive
jumping.
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In (6), linear dynamics is defined as the sum of contact forces
acting on each foot minus the gravitational force (fg ∈ R3).
The rotational dynamics is determined by the torque generated
by these forces around the CoM. The variable nc represents the
number of feet in contact with the ground, and I is the inertia
tensor. Note that in the flight phase (k ∈ (Ns, N ]), the robot
follows a parabolic trajectory.

Equation (5h) enforces contact complementary constraints,
maintains contact in the stance phase, and improves the conver-
gence of the TO algorithm. Check [14] for details.

The inequality constraint in (5i) guarantees a reasonable joint
torque, where J(qi(k)) ∈ R3×3 is the contact Jacobian. The
constraints in (5j) and (5k) prevent slippage.

B. Soft Landing Control

To realize soft landing, we need to mitigate impact perturba-
tions. The VIC [27] could minimize accelerations while keeping
tracking errors within an acceptable range by regulating the
impedance online. Here, we first introduce the basic idea and
then apply it to landing control.

1) VIC Basis: VIC works by solving the following optimiza-
tion problem [27] :

argmin
D,K

J(D,K)

s.t. Dmin
(i,j) ≤ D(i,j) ≤ Dmax

(i,j)

Kmin
(i,j) ≤ K(i,j) ≤ Kmax

(i,j)

max
x̃0, ˙̃x0,F ext

|x̃i(t)| ≤ bi ∀t ∈ [0,+∞)

s.t. x̃max
0 ≤ x̃0 ≤ x̃max

0

˙̃xmin
0 ≤ ˙̃x0 ≤ ˙̃xmax

0

Fmin
ext ≤ F ext ≤ Fmax

ext

Λ(q)¨̃x+D ˙̃x+Kx̃ = F ext. (7)

with i ∈ {0, . . . , 5} and j ∈ {0, . . . , 5}.
The above problem seeks to find the optimal damping matrix

(D ∈ R6×6) and stiffness matrix (K ∈ R6×6) that minimize the
cost function J(D,K). The solution ensures bounded tracking
errors (x̃ ∈ R6) over time. In particular, the peak value of the ith
component over time (x̃i(t)) is constrained within bi, assuming
bounded external forces (F ext ∈ R6) and initial conditions (x̃0 ∈
R6 and ˙̃x0 ∈ R6).

In the optimization problem, x̃ denotes the tracking error
of the CoM position and rotation. Λ(q) ∈ R6×6 represents the
positive-definite Cartesian inertia, and the vector F ext encap-
sulates the external force/torque acting on the CoM. Bilateral
constraints are applied to the variables D(i,j), K(i,j), x̃0, ˙̃x0,
and F ext, of which the boundary values are chosen to satisfy the
stability, motion tracking, and feasibility requirements.

Assuming that Λ(q), D, and K are diagonally dominant, the
work in [27] demonstrates that a closed-form solution of the
above optimization problem exists. The ith diagonal element of

Fig. 2. Example of jumping trajectory generated with the aSLIP model.
The red zone and green zone separately mark the stance and the flight
phase.

the matrix D (denoted as di, bounded by dmin
i and dmax

i )

di = min

(
max

(
dmin
i ,

2mi
˙̃x0i,max

(bi − x̃0i,max)e

)
, dmax

i

)
. (8)

where mi represents the ith diagonal element of the matrix
Λ, and e is the natural constant. x̃0i,max and ˙̃x0i,max (with
i ∈ {0, . . . , 5}) are defined by

x̃0i,max � max
(|x̃min

0 (i)|, x̃max
0 (i)

)
˙̃x0i,max � max

(| ˙̃xmin
0 (i)|, ˙̃xmax

0 (i)
)
.

To achieve a soft landing, we demand a critically damped
behavior in the system. Then, the ith diagonal element of the
matrix K (denoted as ki) is determined as

ki = d2
i/(4mi). (10)

2) Landing Controller: Upon landing, we calculate the torque
command for soft landing in the following.

1) Calculate damping D and stiffness K with VIC.
2) Validate the gains against the stability criteria. If the

stability criteria are satisfied, then assign D and K as
the final gains, i.e., Dfinal and Kfinal. Otherwise, assign to
Dfinal the stability bound (see [27]) plus a small increment,
and Kfinal can be recalculated using (10).

3) Calculate the desired wrench Wcom ∈ R6 as follows:

Wcom = Kfinalx̃+Dfinal ˙̃x. (11)

4) Computing GRFs via quadratic programming. Details
follow the work in [11].

5) Generating τVIC ∈ R12 with Jacobian transformation.

IV. SUPERVISED LEARNING-BASED BC

This section introduces the BC scheme for on-the-fly jump-
ing and landing control. First, we summarize the model-based
jumping control pipeline. Then, we introduce two methods to
learn jump and landing behavior.

A. Jumping Control Pipeline

Fig. 2 describes the pipeline for model-based jumping plan-
ning and soft landing control. Given the task requirement, i.e.,
the desired jump distance, the dual-layer offline TO generates the
optimal jump trajectory. For online motion control, MPC [16] is
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Fig. 3. Overall pipeline for model-based control.

used to generate the torque command (τmpc ∈ R12) in the stance
phase. Once landing, the VIC is activated.2

In addition to the feedforward torque (τ ff ∈ R12) above, the
feedback torque (τ fb ∈ R12) is also considered, following:

τ fb = Kp(q
r − q) +Kd(q̇

r − q̇) (12)

whereKp andKd (∈ R12×12) are the proportional and derivative
gains, respectively. The reference joint angle qr ∈ R12 and
angular velocity q̇r ∈ R12 are calculated by inverse kinematics.
Note that Kp and Kd are set at low values to avoid interference
with the compliance provided by the VIC.

B. Deep Learning-Based BC

Since the TO process above is computationally intensive,
it is difficult to execute all processes on-the-fly, limiting the
deployment of responsive quadruped robots in real-world en-
vironments. To overcome this issue, this section introduces the
BC method, which directly learns a mapping from observations
to actions by mimicking expert demonstrations.

1) Network Structure: Inspired by the work in [26], we de-
veloped and compared two distinct NN architectures, named
feedforward NN and feedback NN.

Feedforward NN: The core concept of the “feedforward”
approach involves a single prejump prediction by the NN,
forecasting the trajectory over the whole jumping process. To
enhance the robustness, we take the initial state and desired
jumping length (ddes) as the input.3 That is

XFF=[z0, φ0, θ0, ψ0, ẋ0, ẏ0, ż0, ωr,0, ωp,0, ωy,0, q0, q̇0, ddes].
(13)

Following the control logic in Fig. 3(a), the feedforward NN
predicts the desired feedforward torque, joint angle, and angular
velocities for low-level control. For safety checking, we also
output the sagittal CoM position. As a result, the output of the
feedforward NN (OFF) comprises

OFF =
[
xp, zp, τ p, qp, q̇p

]
(14)

with p indicating predicted trajectories.
As depicted in Fig. 3(a), in real applications, τ p replaces

τ ff in Fig. 2, and qp and q̇p facilitate the computation of
τ fb according to (12). The generated trajectory contains 150
timesteps. We interpolate the output to synchronize with the
controller’s frequency.

2VIC can also be used in the stance phase. However, considering that the
MPC can achieve better tracking performance, we use it for stance control.

3A comparison study with the feedforward NN without taking the initial state
as the input is attached in the Supplementary Material.

Feedback NN: The feedback NN works like a traditional feed-
back control system, where the NN computes torque commands
τ p based on the real state of the robot. The input to this network
(XFB) is a 36-element vector, defined as

XFB = [z, φ, θ, ψ, ẋ, ẏ, ż, ωr, ωp, ωy, q, q̇, d, t] (15)

where t is the elapsed time since the start of the motion.
Then, feedback NN outputs the torque command, as follows:

OFB = τp.

Differing from the feedforward NN, the feedback NN predicts
12 joint torques at each timestep, which is applied directly to
the robot, as illustrated in Fig. 3(b).

2) Data Collection: As described in Section IV-B1, the BC
methodology belongs to supervised learning. Since we adopt the
deep learning framework, the quality and volume of training data
are paramount. For this project, we used the simulation engine
PyBullet [28] to generate a diverse dataset, comprising ap-
proximately 11 000 simulated jumps under varying conditions.
These jumps were executed by the robot using the framework
described in Fig. 2. Specifically, the robot was programmed to
jump forward, ranging from 0.10 to 0.55 m, in increments of
0.01 m.4 This approach ensured that each discrete distance was
represented equally in the dataset, providing a comprehensive
basis for training the algorithm.

To explore the whole state space while avoiding overfitting,
we introduced the following three types of noise when collecting
data.

1) Gaussian noise in the initial configuration, facilitating a
broad range of starting positions.

2) Gaussian noise in the state, exploring the neighborhood of
the trajectory and promoting resilience to sensory errors.

3) An external disturbance force applied to the robot’s CoM.
The disturbance force, equivalent to 10% of the robot’s
mass, was applied with a 30% probability at each control
iteration, with its direction randomized.

Of the 11 000 jump simulations, one third incorporated all
three types of noise. The remaining two-thirds included only the
first two types, ensuring a balanced and comprehensive dataset
for training our BC network.

V. EXPERIMENTAL VALIDATION

This section verifies the proposed methodology. To start, we
clarify the evaluation metrics for landing compliance. Then, we
compare the SLIP-TO [16] and the dual-layer TO, MPC and
VIC, and fully analyze the BC performance in simulation where
the three types of noises described in Section IV-B2 are added
in simulations when evaluating MPC, VIC, and BC policies.
Finally, we report the hardware experiments. Results can be seen
online.5

4The dual-layer TO hardly generates a feasible jumping longer than 0.55 m.
5[Online]. Available: https://youtu.be/EEsEgtZr62s

Authorized licensed use limited to: TU Delft Library. Downloaded on August 22,2025 at 13:46:33 UTC from IEEE Xplore.  Restrictions apply. 

https://youtu.be/EEsEgtZr62s


PANICHI et al.: ON-THE-FLY JUMPING WITH SOFT LANDING: LEVERAGING TRAJECTORY OPTIMIZATION 3147

Fig. 4. Behavior clone schemes. (a) Feedforward NN. (b) Feedback
NN.

A. Evaluation Metrics

As introduced in Section I, a soft landing is distinguished
by two key characteristics: minimal stress on the motors and a
compliant response from the robot. To evaluate motor effort, we
devised two metrics: rotational effort and peak torque.

The rotational effort is defined as

Rotational effort =
12∑
i=1

∫
|τi(t)| dt (16)

with τi being the sensory torque of the ith motor, and dt is the
time interval of each control loop.

The peak effort is defined as

Peak effort = max
j

⎛
⎝
√√√√ 12∑

i=1

τ 2
ij

⎞
⎠ (17)

with j being the time instance and i the motor number. The low
rotational effort and peak effort indicate a soft landing. However,
although rotational effort and peak effort effectively measure
motor stress, they do not directly capture the landing impact.
To this end, we also examine the maximal CoM acceleration
during landing, which can characterize the contact force when
using the SRB dynamics, as listed in (6). Note that we do not
evaluate the contact force directly since the measured force will
drift a lot when landing occurs, especially when equipped with
cheap sensors.

B. Tracking Performance-SLIP-TO [16] Versus
Dual-Layer TO

We here compare the tracking performance with different
reference trajectories generated by SLIP-TO in [16] and the
dual-layer TO proposed in the work. For a fair comparison, we
use the same controller, i.e., MPC, in both cases.

To quantify the result, we compute the mean-square error
(mse) of each jumping trajectory. The robot jumped from 0.1
to 0.55 m, in increments of 0.05 m. Each distance is repeated
20 times (adding Gaussian noise in the state each time), and we
report the mean values and standard deviations (Std.) of mse.
Fig. 4 reveals that the dual-layer TO consistently outperforms
SLIP-TO (except at 0.35 m-“CoMx MSE”), meaning that a
refined model yields improved performance.

Fig. 5. CoM tracking error with SLIP-TO and dual-layer TO. “CoMx”
and “CoMz” separately denote the forward and vertical CoM position,
respectively.

Fig. 6. Rotational effort after landing when jumping on flat ground.

Fig. 7. Peak effort during the landing phase when jumping on flat
ground.

C. Landing Performance in Simulation—MPC Versus
VIC

To verify the soft landing on flat ground, we compare the
performance with the explosive jump at different distances
(ranging from 0.1 to 0.55 m, increasing by 0.05 m). For each
distance, the robot completed 20 trials, and we report the mean
values and Std. of each metric.

When evaluating the MPC, we adhered to the scheme outlined
in Fig. 2, while continuing to use the MPC even after landing.
Conversely, we switched to the VIC when the robot’s four feet
made contact with the ground.

Figs. 5 and 6 separately plot the rotational effort and peak
effort during the landing phase. As depicted in Fig. 5, the VIC
generally shows reduced rotational effort across various jump
distances, except for the 0.50-m forward jumping. In addition,
Fig. 6 shows that the VIC reduces the peak effort across all
jumping distances. In particular, the maximum torque is reduced
by around 40% when jumping from 0.2–0.5m.

Besides, Fig. 7 shows the maximal CoM acceleration along
the x- (forward) and z- (vertical) axes with various jumping
distances. It is clear that the VIC consistently outperforms the
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TABLE I
TRAINING SETUP FOR FEEDBACK AND FEEDFORWARD NNS

TABLE II
LANDING ERRORS WITH DIFFERENT METHODS

MPC in reducing vertical acceleration (see plots in “CoMz max.
acc”) at all jump distances. A similar trend is also observed along
the x-axis, except when jumping at 0.55 m.

D. BC Performance in Simulation

We train the NN with the Scikit − learn library [29]. The
network model and training setup are detailed in Table I. In
the training process, we adopted the input normalization and the
early stop mechanism to avoid overfitting.

1) Feedback Versus Feedforward NN: Before diving into the
details, we compare the landing precisions of different NNs,
where the robot performs 100 jumps of random length. Table II
reports the mean values and Std. of the forward and vertical
landing errors. In addition, landing errors when using the MPC
controller are also reported. As can be seen in Table II, the
feedback NN results in a smaller mean mse, i.e., a higher landing
precision, than feedforward NN. Compared with MPC, both NNs
achieve decent landing precision.

2) NN Performance: First, we plot the rotational effort, peak
effort, and maximal CoM acceleration with the BC schemes
against the model-based approaches. Figs. 5–7 demonstrate that
the feedback NN basically achieves a similar landing perfor-
mance to VIC while the feedforward NN performs a little worse
in reducing CoM acceleration (see Fig. 7). We guess it is because
of the lack of feedback regulation.

Second, we compare the solving time needed by different
blocks, including the time to solve the SRB-based TO (the
second layer), the time to solve the MPC, and the time for the NN
to predict the result. To this end, the TO solver, MPC solver, and
NN prediction are all implemented in C++. Table III compares
the mean, Std., and maximum solving/prediction time for 100
random jumps. We see that the NN substantially outperforms the
MPC by at least an order of magnitude in all metrics. The fast
computation with NN enables the quadruped robot to execute
continuous jumps without the necessity of precomputation, as

TABLE III
COMPUTING TIME NEEDED BY TO, MPC, AND FEEDBACK NN

Fig. 8. Maximal CoM accelerations during the landing phase when
jumping on flat ground. “CoMx max. acc” and “CoMz max. acc” sep-
arately denote the maximal CoM acceleration along the forward and
vertical directions.

Fig. 9. Relationship between the jump length, the number of attempts
per length, and the forward landing error. The red marks a failed jump.

can be seen in the Supplementary Material. In contrast, even with
the warm start for the SLIP-based TO, the large time cost to solve
the SRB-based TO makes it impractical to run the optimization
online.

Last, we evaluate the success rate of the BC approach,
where a “successful” motion means that the robot lands with-
out tipping over. Fig. 8 shows that the success rate of feed-
back NN is approximately 97.4%. The robot achieves a fairly
small landing error in the middle of the distance range. A
comparison with other policies, such as those trained with
a smaller dataset and a clean dataset (without adding noise
in data collection), is also conducted, see the Supplementary
Material.

E. Jumping in Unknown Situations

To demonstrate the scalability, we applied the proposed
method to unknown situations, including jumping across uneven
terrain and jumping onto an unknown slope. Here, we present
the jumping across uneven terrain, where the robot jumps over
the uneven ground with ±2 mm height variation.
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Fig. 10. Forward landing error when jumping over uneven ground.

Fig. 11. Peak effort after landing when jumping over uneven ground.

Fig. 9 shows that the model-based controller, i.e., MPC in the
stance phase, obtained the smallest landing error, while feedback
NN realized decent tracking. In contrast, due to the lack of a
feedback mechanism, feedforward NN resulted in the highest
landing error. In terms of the landing behavior (see Figs. 10 and
11), MPC generated the largest peak effort and rotational effort
while another three approaches achieved smaller values, mean-
ing softer landings. It is worth mentioning that the feedback NN
resulted in the largest Std. in most jumping distances, meaning
a fluctuated performance.

Similar results are found when jumping onto unknown slope
terrain. Check the Supplementary Material for more details.

F. Hardware Results

Although the feedback NN was found to be superior in achiev-
ing higher landing precision in simulation (see Sections V-D1
and V-E), feedforward NN offers essential benefits for hardware
applications, particularly in terms of success rate and inter-
pretability. Also, the feedforward NN enables the preassessment
of joint movements and CoM trajectories, which is crucial for
safe operations. Thus, this section proceeds with the feedfor-
ward NN for the hardware validation. To adapt feedforward NN
for hardware execution, the following two modifications were
implemented.

1) Introduction of a low-pass filter on the predicted torques.
2) Refining network using an additional dataset comprising

3000 simulated jumps.
In addition, 25 actual starting positions were recorded and

used to synthesize the additional dataset above for training,
working as data argumentation. Following these adjustments,
the robot was tested with jumps from 0.1 to 0.5 m. In each trial,
we judge the landing when there is a jerky joint velocity, without
relying on the contact force measurement.

TABLE IV
AVERAGE RESULTS DURING THE LANDING PHASE (HARDWARE)

Fig. 12. Rotational effort after landing when jumping over uneven
ground.

Fig. 13. Peak effort and rotational effort after landing with hardware
tests.

Fig. 14. Maximal CoM accelerations after landing with hardware tests.

Each jump was repeated three times, and no failure occurred.
Table IV gives that the forward BC scheme could suffer a
larger landing error (e.g., when jumping at 0.1 and 0.5 m).
Nevertheless, Figs. 12 and 13 demonstrate that the BC method
reduced the peak effort, rotational effort, and peak acceleration,
achieving a softer landing.

One 0.4 m forward jumping is depicted in Fig. 14. For other
jumping motions, including the comparison with MPC, check
the Supplementary Material.

VI. CONCLUSION AND DISCUSSION

This work realizes explosive jumping with a soft landing by
leveraging model-based and model-free approaches. We started
with dual-layer optimization. In addition, we incorporated VIC
to achieve a soft landing behavior. Experiments have demon-
strated that the BC approach could mitigate expert motions,
realizing on-the-fly execution of jumping with a soft landing.
It should be mentioned again that our approach does not rely
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on precise contact force measurement or compliant mechanical
design.

We found that the failure with the feedback network usually
occurs in the flight or stance phase, as shown in the Supplemen-
tary Material. To improve the success rate, we may also include
joint positions and velocities in output and add a low-gain
feedback controller to track joint motion. In addition, we may
improve the BC performance by using data argumentation or
adopting more advanced learning mechanisms, such as transfer
learning [30]. In the future, we are also keen to combine BC
with deep RL [31] to enhance jumping robustness across uneven
terrain while maintaining the soft landing. Furthermore, we will
extend it to 3-D jumping. To this end, we will first generate the
3-D jumping by reshaping the TO formulation following [16]
and then retrain the policy by considering more state inputs.
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